
Tallinn 2021

TALLINN UNIVERSITY OF TECHNOLOGY

School of Information Technologies

Erki Meinberg 192563IASM

C-language Parser & Analyzer for Hardware

Performance Estimations

Master's thesis

Supervisor: Priit Ruberg

 Ph.D.

Co-supervisor: Peeter Ellervee

 Ph.D.

Tallinn 2021

TALLINNA TEHNIKAÜLIKOOL

Infotehnoloogia teaduskond

Erki Meinberg 192563IASM

"Riistvara jõudluse hindamiseks loodud C-keele

parser & analüsaator"

Magistritöö

Juhendaja: Priit Ruberg

 Ph.D.

Kaasjuhendaja: Peeter Ellervee

 Ph.D.

3

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references

to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.

Author: Erki Meinberg

10.05.2021

4

Abstract

In preceding works, Priit Ruberg et al. devised methodology for estimating the energy

consumption and performance of C-code programs. This thesis describes the

implementation of a software system which is meant to automate this methodology. The

implementation of two key components is described: that of the atomic operations parser

and the analyzer. LLVM and clang libraries were used for the implementation of the

parser. The product of this thesis is a functional system which can the number of unique

operations a given C-code program executes. The implemented system was then tested

on both known example programs used by Ruberg et al., and on the Dhrystone and

Whetstone benchmark systems.

This thesis is written in English and is 42 pages long, including 7 chapters, 14 figures and

7 tables.

5

Annotatsioon

Riistvara jõudluse hindamiseks loodud C-keele parser &

analüsaator

Eelnevates töödes kirjeldavad Priit Ruberg jt. uut meetodit C-keeles kirjutatud tarkvara

programmide jõudluse ja energiatarbe hindamiseks. Käesoleva töö eesmärk on kirjeldada

tarkvarasüsteemi, mis automatiseerib selle meetodi rakendamist.

Töö alguses teostatakse ülevaade eelnevatest töödest ja kirjeldatakse nende poolt välja

toodud meetodeid. Selle põhjal kirjeldatakse töö käigus arendatud tarkvarasüsteemi

tööpõhimõte ja meetodid. Süsteemi töö põhineb hinnatava C-koodi süntaksi parsimisel ja

analüüsimisel.

Peale rakendatavate meetodite kirjeldust seatakse paika süsteemi nõuded. Lisaks selle ka

süsteemi struktuur. Struktuuri põhiosad, mida selle töö käigus realiseeriti, on

operatsioonide parser ja analüsaator programm. Järgnevates töö osades kirjeldatakse

mõlema osa tehniline lahendus.

Operatsioonide parser loodi C++ programmeerimiskeeles, rakendades LLVM ja clang

teeke. Analüsaator on Python3-s loodud programm. Valmistükina võetud süsteemi

komponendiks on gcov ja gcovr koodikatvust hindavad tööriistad.

Koostatud tarkvarasüsteemi tööd võrreldakse eelnevates töödes kasutatud

programmidega. Lisaks sellele katsetatakse süsteemi võimekust informatsiooni eraldada

tuntumatest jõudluse hindamisprogrammidest, Dhrystone ja Whetstone.

Lõputöö on kirjutatud Inglise keeles ning sisaldab teksti 42 leheküljel, 7 peatükki, 14

joonist, 7 tabelit.

6

List of abbreviations and terms

AST Abstract syntax tree.

JSON JavaScript Object Notation.

UML Unified Modelling Language.

GCC The GNU Compiler Collection.

cc1 GCC’s C language compiler and preprocessor.

RTL Register transfer language.

LLVM A collection of modular and reusable compiler and toolchain

technologies.

clang A C language front end for the LLVM infrastructure.

gcov A C language code coverage tool.

7

Table of contents

1 Introduction ... 11

1.1 Task .. 11

1.2 Structure.. 12

2 Methodology & Previous Work .. 13

2.1 Estimation of performance & energy consumption on embedded systems.......... 13

2.2 Methodology for automating atomic operation analysis 14

2.3 Example of the Application of the Methodology ... 15

3 Proposed System Architecture... 18

3.1 System Requirements ... 18

3.2 System Architecture Overview ... 18

4 Atomic Operations Parser .. 21

4.1 Requirements .. 21

4.2 Selection of Tooling ... 21

4.2.1 pycparser .. 22

4.2.2 GCC ... 22

4.2.3 LLVM & clang .. 23

4.2.4 Conclusion ... 24

4.3 AST Parsing with LLVM & Clang... 25

4.3.1 Simple operations .. 27

4.3.2 Expression types .. 28

4.3.3 For-loop headers .. 30

4.4 Parser output format ... 31

4.5 Conclusion .. 32

5 Profiling & Analyzer ... 33

5.1 gcov & gcovr .. 33

5.1.1 Branches in gcov ... 34

5.2 Analyzer .. 35

5.3 Conclusion .. 37

6 Evaluation and Results .. 38

8

6.1 Full Example... 38

6.2 Validation of the Atomic Operation Parser .. 41

6.3 More Complex Benchmarks ... 42

6.4 Summary and Future Work .. 43

7 Summary .. 45

References .. 46

Appendix 1 – Non-exclusive licence for reproduction and publication of a graduation

thesis ... 48

Appendix 2 – Source code of the tool .. 49

Appendix 3 – Matrix multiplication benchmark program .. 50

Appendix 4 – Other benchmark programs ... 51

9

List of figures

Figure 1. Overview key actions of the estimation methodology. 13

Figure 2. An example C-code program for power estimation. 16

Figure 3. Proposed system information flow diagram. .. 19

Figure 4. GCC's compilation path. ... 23

Figure 5. The main activity diagram of the atomic operations parser. 26

Figure 6. Main classes required to interface with clang's AST and front-end. 27

Figure 7. Example of an arithmetic expression resulting in implicit conversion. 29

Figure 8. An example of implicit operand promotion in arithmetic expression due to

other operand type. ... 29

Figure 9. A for-loop AST example. .. 30

Figure 10. For statement parsing activity diagram. .. 31

Figure 11. Example output of the atomic operations parser. .. 32

Figure 12. gcovr JSON output structure. .. 34

Figure 13. gcovr JSON output line object structure. .. 34

Figure 14. The analyzer's main activity diagram. ... 36

file://///ERKI02-manjaro/projects/kool/magister/_ms_thesis.docx%23_Toc71840863
file://///ERKI02-manjaro/projects/kool/magister/_ms_thesis.docx%23_Toc71840865
file://///ERKI02-manjaro/projects/kool/magister/_ms_thesis.docx%23_Toc71840866
file://///ERKI02-manjaro/projects/kool/magister/_ms_thesis.docx%23_Toc71840867
file://///ERKI02-manjaro/projects/kool/magister/_ms_thesis.docx%23_Toc71840868
file://///ERKI02-manjaro/projects/kool/magister/_ms_thesis.docx%23_Toc71840868
file://///ERKI02-manjaro/projects/kool/magister/_ms_thesis.docx%23_Toc71840870
file://///ERKI02-manjaro/projects/kool/magister/_ms_thesis.docx%23_Toc71840872
file://///ERKI02-manjaro/projects/kool/magister/_ms_thesis.docx%23_Toc71840873

10

List of tables

Table 1. Comparison of available libraries for the atomic operations parser. 24

Table 2. Overview of atomic operations extracted by the atomic operations parser. 27

Table 3. Example output of the system. ... 39

Table 4. Overview of modelled microcontrollers. .. 40

Table 5. Energy consumption estimation results. ... 40

Table 6. Comparison of reference atomic operation counts vs. those counted by the

system. .. 41

Table 7. Dhrystone and Whetstone atomic operations counts. 43

11

1 Introduction

Over the past few years, addressing the energy consumption of various computational

systems has become an increasingly important priority. In the case of smaller embedded

devices, it would be useful if a developer could estimate the energy consumption of a

program on potential target hardware. If this ability could be integrated into the

developer’s workflow, then it would be easier for them to make decisions that are

conscious of energy consumption. This is what motivated Priit Ruberg to research a novel

method of energy consumption and performance estimation for such platforms in his

doctoral thesis and related works. [1]

The goal of this present work is to build upon that foundation. The methodology presented

by Ruberg involves parsing C-code programs by hand and extracting specific atomic

operations from them. And then combining that information with the output of a simulator

or a code coverage tool. The fact that the application of this methodology has thus far

been done by hand limits its application.

1.1 Task

The goal of this work is to have an outline of a software system which is able to

automatically perform the analysis process presented in [1]. In short, this thesis describes

the implementation of a system which can:

• Automate the C-code parsing and analysis methodologies that were described in

[1].

• Extend the application of the aforementioned methodology by being able to parse

relevant and known benchmarking programs, such as Dhrystone and Whetstone.

12

1.2 Structure

The remainder of the thesis is divided into five chapters. Chapter 2 will provide a review

of the theoretical background of the work. A methodology for accomplishing the task, as

outlined previously, will also be presented there.

Following this, the next three chapters will outline the system as a whole and describe its

implementation in depth. This includes outlining the system requirements, establishing

the system’s structure, conducting review of available tools, and describing nuances of

the implementation that were discovered. The system that is described in these chapters

was also implemented and can be tested further in this work.

The remaining chapter, Chapter 6, will focus on testing and validating the system. First,

a comparison against known test cases from [1] is performed. Then the system’s ability

to parse more complex programs is evaluated, and the results from it presented. The

chapter will close with an overview for potential future work with respect to further

developing the tool.

Finally, the work will be summarized in the last chapter.

13

2 Methodology & Previous Work

This chapter will conduct a review of the work that this one is based on. It will summarize

the performance and energy consumption methodology outlined in [1]. The need for the

system that is described in this work will then be outlined. This will be followed by an

overview of a proposed methodology for automating the performance and energy

consumption estimation process.

2.1 Estimation of performance & energy consumption on embedded

systems

In [1], a novel solution for estimating the performance and energy consumption of a piece

of C-code being executed on a microcontroller is proposed. This method relies on static

analysis of the source code, simulation of the source code, and on a database of profiling

results. A flowchart of key actions for this methodology is provided in the following

figure:

Figure 1. Overview key actions of the estimation methodology.

First, the atomic operations in a given C-code program are counted. Following this, the

program is simulated, and the simulation results combined with the earlier results, to

obtain the total number of atomic operations executed. This information can then be used

to estimate performance figures.

The estimation methodology relies on summing the costs of various atomic operations

that are executed in a piece of code. An atomic operation being a specific C-language

14

syntax operation, such as the add operator “+”. The methodology requires the

measurement of the cost of each individual atomic operation type, in order to compose a

model of a given microcontroller. [1]

For a given program, the energy consumption of a program can be estimated as follows,

per equation 2.3 from [1], presented here as equation (1):

𝐸𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 = ∑ 𝑚𝑖 × 𝐸𝑎𝑡𝑜𝑚𝑖𝑐−𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑖

𝑛
𝑖=1 (1)

Where 𝐸𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 is the estimated energy consumption of the program. 𝑛 is the number

of different (unique) atomic operations present in the program. 𝑚𝑖 is the number of

repetitions of a given atomic operation. And 𝐸𝑎𝑡𝑜𝑚𝑖𝑐−𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 is the energy consumption

of a given atomic operation.

In order to find the number of repetitions of each atomic operation, two pieces of

information are necessary. First, the atomic operations within each C-code source file of

a program must be mapped. In [1], this was done manually. And then the program must

be simulated using a code coverage tool. Those two pieces of data are then merged, in

order to find the total repetitions for each atomic operation.

The manual mapping of atomic operations in a source file is laborious process. And it

limited the benchmarks which were used to test out the methodology established in [1].

The merging of the simulation report along with the mapped atomic operations was also

done manually in [1]. And this is also a process which can be automated.

Automation of these two processes can enable the wider application of this performance

estimation methodology. This will help further evaluating this methodology, by making

it applicable for more complex and more common benchmarking programs. And will also

allow for its further development and deployment.

2.2 Methodology for automating atomic operation analysis

As established in the previous subsection, there is a need for a system which automates

the extraction of atomic operations from C-code source files. This extraction needs to be

done by automatically parsing the C programming language.

15

All of the atomic operations described in the practical experiments of [1] are considered

expressions by the C language standard: “An expression is a sequence of operators and

operands that specifies computation of a value, [...]” [2, p. 76]. This means that a tool

capable of extracting expressions from arbitrary C-code should be capable of extracting

all of the necessary atomic operations from it.

This would best be done with a tool which is capable of parsing the C-code files into an

abstract syntax tree (AST). The AST can then be traversed, and the required expressions

extracted from it. Along with the necessary supplementary information, such as the

datatypes involved. Due to the specifics of working with embedded technologies, such a

tool should at least be able to parse all code that complies with the C99 ISO standard [3].

These atomic operations must be tied to lines within their respective source code files.

The simulation tool then outputs the number of times each source code line is executed.

These two pieces of information can then be combined to calculate the total number of

repetitions for each atomic operation.

For each atomic operation, the total repetitions 𝑚𝑎𝑡𝑜𝑚𝑖𝑐 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 is calculated as the

following sum in equation (2):

𝑚𝑎𝑡𝑜𝑚𝑖𝑐 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 = ∑ 𝑘𝑖
𝑛
𝑖=1 (2)

Where 𝑛 represents every source code line that specific atomic operation was encountered

on. And 𝑘𝑖 is the number of times that specific source code line was executed in the

simulated run.

This repetition count can then used together with formula (1) to calculate the performance

information of a given C-code program. Provided that the system has access to a

previously measured database of atomic operation profiles.

2.3 Example of the Application of the Methodology

To illustrate the application of the methods presented in this chapter, let us consider the

following C-code program presented in Figure 2:

16

Figure 2. An example C-code program for power estimation.

The program in question has a total of 5 atomic operations:

1. The assignment of constant value to variable a on line 2.

2. The assignment of the constant value to variable b on line 3.

3. The addition of variable a and b on line 5.

4. The assignment of that sum to variable b on line 5.

5. The loop condition and header on line 4.

Using a code coverage tool, we can determine that the atomic operations 1 and 2 will be

executed once, and operations 3, 4, and 5 will be executed three times each. It should also

be taken into consideration that operations 1, 2, and 4 are of the same type.

With the atomic operations parsed and mapped out, it is now necessary to calculate the

total repetition count of each atomic operation. The comparison and addition atomic

operations are both done three times each. And as all of the assignment operations are of

the same type, their repetitions are summarized according to equation (2):

𝑚𝑐𝑜𝑚𝑝𝑎𝑟𝑒 = 3

𝑚𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛 = 3

𝑚𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡 = 3 + 1 + 1 = 5

If we then assign some corresponding energy values to each unique type of atomic

operation, we can estimate the total energy consumption 𝐸𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 of the program by

applying equation (1) as follows:

1. int main() {

2. int a = 5;

3. int b = 0;

4. while (b < 15) {

5. b = a + b;

6. }

7. }

17

𝐸𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 = 𝑚𝑐𝑜𝑚𝑝𝑎𝑟𝑒 × 𝐸𝑐𝑜𝑚𝑝𝑎𝑟𝑒 + 𝑚𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛 × 𝐸𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛

+ 𝑚𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡 × 𝐸𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡

A similar calculation will apply for execution times as well, provided that the execution

time of each atomic operation is known. What can also be observed is that the only

remaining variable for that program is tied to the microcontroller itself: the energy

consumption of each atomic operation. This allows for this method to be used for

comparing the same program on various hardware pieces.

18

3 Proposed System Architecture

This chapter will outline the specific architecture of the software system that has been

developed in the process of creating this thesis. The software system will implement the

automated estimation methodology as explained in 2.2. First, the system requirements for

such a system will be outlined. Then the high-level architecture for the system will be

presented. This will provide a functional description of each specific software component.

These software components will then be explained in depth in later chapters of this work.

3.1 System Requirements

The general requirements for the system are defined as follows:

• the system must be able to parse a project spanning multiple C source files,

• the system must be able to parse all compliant C99 code,

• the system must be able to parse C source files that include common system

header files and gracefully handle other external header files,

• the system must produce a list of atomic operations found in the program,

associated with their line number in the respective source file,

• the system must be able to extract execution information from a simulated

instance of the program under evaluation,

• the system must be able to combine these two outputs with a database of atomic

operation information to output an estimation of run time and power consumption.

3.2 System Architecture Overview

The system will be composed of four major components that will be realized individually

or already exist. Figure 3 illustrates both the key components of the system, along with

the general information flow that was described previously. The components that will be

19

realized for the purpose of this thesis are marked as bold on the figure. The other

components, marked with italics, will be off-the-shelf tools.

The first component that will be described in-depth in this work is the atomic operation

parser. This component will take the C-code source files and will extract atomic

operations from them, as is required by the methodology and system requirements

described previously. It will output a list of atomic operations present in the source code

of the program being evaluated.

The analyzer will be the component that realizes the formulae described in Chapter 2. It

will count the total number of repetitions each atomic operation has during the simulated

run. And it will combine this with the atomic operations database in order to perform

energy consumption and execution time estimations. For this, it will need to accept input

from both the atomic operation parser and the simulation tool.

The simulation tool will be used to execute a simulated run of the program being tested.

In [1], gcov was used for this. It is important that the simulation tool used generates a

machine-readable report. The analyzer will be responsible for parsing said report.

The atomic operations database is a collection of energy consumption measurements for

each atomic operation. As detailed in [1], it details a model of a given microcontroller or

platform, for which the estimation is being composed.

Figure 3. Proposed system information flow diagram.

20

From Figure 3, it can be seen that multiple components need to exchange information

between each other. JavaScript Object Notation (JSON) will be used as a general

information exchange format. This is due to its ubiquity and the availability of tools in

various languages for parsing it: libraries for parsing it exist in both C++ and Python.

21

4 Atomic Operations Parser

As outlined in the previous chapters, the objective of the atomic operations parser is to

extract a list of atomic operations present in given C-code source files. This chapter will

detail the specific implementation of the tool, including the extra requirements that are

specific to it, and how they are addressed.

4.1 Requirements

The key requirements, relevant from 3.1 to the parser, are that the parser must be capable

of processing multiple files and these files may include system or external library headers,

which should also be successfully processed. The parser must then output this information

in a manner such that the analyser is able to consume it. As noted earlier, JSON will be

used for this.

As outlined in 2.2, the primary task for the parser is to compile the C-code from source

files into an AST, and to then extract specific operations from it. Due to the way that

atomic operation performance is measured, all type names should also be resolved to their

canonincal form, if possible. To minimize the need for manual removal of duplicates.

For the atomic operation extraction to work, the AST must also be bound to specific

source line locations. This will later allow us to properly combine them with the

simulator’s output.

A further consideration is how easily the source files can be preprocessed using a

complaint C language preprocessor. This means both being able to scan include files and

being able to parse their contents within the currently active file, as to pick up on things

like typedefs and global variable definitions.

4.2 Selection of Tooling

The primary component of the parser will be the library or tool which compiles C-code

into an AST. For this purpose, two possible candidate libraries were found: pycparser and

22

LLVM with the clang frontend. Both tools can generate an AST from C-code source files,

thought with different restrictions. The following sections will provide a short overview

of both tools and will conclude with a selection of one of them, which will be used for

the rest of this work.

4.2.1 pycparser

First, pycparser will be reviewed. As described in the documentation in [4], is a parser

for the C language written in the Python programming language. The outlined goal of the

tool is to be a fully compliant C99 parser; and it has some support for C11 features.

There exist multiple examples for parsing C-code files and obtaining their AST as a

Python code structure. This AST can then be traversed. It further meets requirements in

that the parser is able to tie specific AST entries to their location in the source file.

One issue with the pycparser is that by itself, it does not include a preprocessor [4]. As

such, another compiler or preprocessor should be used to preprocess the source files prior

to giving them over to the parser. In testing with GCC’s preprocessor, using the -E switch,

issues were observed with the parser being unable to handle all of the preprocessed output.

As such, further work would have been needed to make the preprocessed files usable.

The second large issue with the parser is how easily it could be made to use system library

headers. To quote the documentation: “While (with some effort) pycparser can be made

to parse the standard headers from any C compiler, it's much simpler to use the provided

"fake" standard includes in utils/fake_libc_include” [4]. The recommended method of

stubbing out system headers would likely be very work intensive.

The remaining benefit of parser is that it is written in Python. Ergo the project setup time

would likely be shorter. Initial testing confirmed as much.

4.2.2 GCC

The GNU Compiler Collection (GCC) is a collection of compilers and libraries for

various programming languages, including for the C language. The project is entirely

open source and free software. GCC is a very long-lived project, which is used in many

large software projects, including the GNU operating system. [5]

23

The GCC component responsible for preprocessing and compiling C-code is called cc1.

The cc1 tool has three distinct stages of compilation: the front end, middle end, and back

end, as illustrated in Figure 4. The front end is the area where an AST is used as the

primary representation. In the middle end, the AST is translated into a register transfer

language (RTL) representation. And the final output from the back end is an object

representation in assembly language. [6]

Figure 4. GCC's compilation path.

The toolchain is compliant with the latest published C language standards, including the

system requirement of C99. As noted earlier, cc1 also contains a preprocessor to handle

that stage of compilation. The compiler also constructs a usable AST, as is required by

the methodology.

The key issue which arose with attempting to use GCC for this component of the system

was that its source code is not easily extensible. Specially when compared to LLVM and

clang, which were created with the express purpose of being modular. As such, while the

tool itself is likely capable of producing the results required, applying it for the task at

hand looked to be more difficult than LLVM.

4.2.3 LLVM & clang

LLVM is an extensible compiler project. It was first presented in [7] as a tool for research

and future compilers. The working principle of LLVM is that front ends for specific

languages provide a common output, which can then be analyzed using LLVM’s own

infrastructure. This has led to the LLVM infrastructure being used for various static

analysis tasks, such as those described in [8] and [9]. The LLVM infrastructure has also

been applied to static analysis tasks that concern embedded systems, such statically

checking for memory safety issues in C-code programs as in [10]. All of this preceding

work presents the LLVM infrastructure as a potentially suitable option for this work.

clang is the most commonly used C language frontend for the LLVM tool library. Written

in C++, the project is meant to be an extensible and modifiable toolkit for building C and

C++ tooling. This includes the ability to preprocess source files, and support for most

24

GCC extensions. clang has multiple subcomponents which claim to make the process of

creating a complete command-line tool along with AST matching relatively straight

forward with libTooling, libASTMatcher. [11], [12]

Due to the presence of a complete preprocessor as a plugin, the problem of handling

standard library headers and other external headers with clang and LLVM appears to be

a non-issue. The preprocessing can simply be done on the input sources prior to the AST

extraction phase, in the same executable.

libTooling and libASTMatchers also offer two interfaces for accessing the then-generated

AST. The higher-level interface is using libASTMatchers, which has its own DSL for

extracting only the relevant components from the AST. The lower-level interface allows

one to recursively crawl the AST, much like would be the case with the pycparser library.

[13]

While it was initially figured that the high-level interface might permit easier prototyping,

it was later learned that it is not all that useful for the purposes of this parser, especially

with respect how for-loops need to be parsed. [13]

A major concern with the library was also the fact that both LLVM and the clang libraries

needed to be compiled for them to be used. However, the process is well documented,

and this would be a one-time setup cost.

4.2.4 Conclusion

Table 1 provides an overview of the analysis carried out in the preceding subsections.

Table 1. Comparison of available libraries for the atomic operations parser.

Tool Can parse system

headers itself?

Supported C language

standards

Ease of use

pycparser No C99 Easy

GCC Yes C99 and later Hard

LLVM & clang Yes C99 and later Moderate

25

For the purposes of this work, LLVM with the clang front end was chosen as best choice.

The extra work required to enable parsing of system headers with pycparser eliminated it

as a valid option. With GCC and LLVM, the modular and tooling oriented approach of

LLVM made it the better choice of the two. Otherwise, both are equally capable of

accomplishing the required task. This chapter will then continue with detailing the

implementation of the atomic operations parser using the LLVM and clang libraries.

4.3 AST Parsing with LLVM & Clang

In this section, the implementation of the atomic operations parser component will be

detailed. As a result of the analysis carried out in the previous section, it uses clang and

LLVM for both the pre-processing and AST creation. With the AST parsing being written

as a custom front-end action for clang.

Figure 5 illustrates the main activity and data flow of the atomic operations parser per C-

code source file. The same activity is carried out for every source file that is given to the

parser. The segmentation illustrates clearly which parts of the parsing activity are handled

by clang’s own front-end, and what components are custom code. As can be seen, clang

itself manages the proper preprocessing and AST generation for the parser, so the custom

extensions only need to consume the ready-made AST.

26

For consuming the AST, as mentioned in the previous section, two possibilities exist with

clang and LLVM: using libASTMatchers and writing a custom AST consumer module.

Originally, an attempt was made to use the DSL that comes with libASTMatchers, and it

did provide a quick start for the project. However, complications arose when attempting

to integrate execution branch labelling and more stateful parsing. Due to this, a custom

AST consumer was written instead.

In order to interface between clang’s AST, a small object hierarchy needed to be created,

as shown in Figure 6. The OperationFinderAstAction implements a clang front-end

action, which clang’s own front-end will instantiate at the appropriate time. This object

is then responsible for creating a OperationFinderAstConsumer, onto which clang’s

frontend passes complete ASTs for every translation unit. The OperationFinderAstVisitor

that is attached to it is then handed those ASTs, one at a time, for recursive visitation.

Figure 5. The main activity diagram of the atomic operations parser.

27

The OperationFinderAstVisitor object will recursively descend the AST in a depth-first

manner. Appropriate hooks are called out when an AST node of interest is encountered,

along with callbacks for node entry and exit. This visitor then extracts required

information from the AST nodes, as is described in the following subsections.

4.3.1 Simple operations

With the goal of extracting atomic operations from the now compiled AST, the AST

visitor is responsible for picking out the following operations from the AST provided by

clang:

Table 2. Overview of atomic operations extracted by the atomic operations parser.

Operation type Included operands Saved information

Binary operators +, -, /, *, <, >, <=,

>=, ==, <<, >>, %

Left hand operand type, right hand

operand type, result type, source code

line.

Unary operators !, ++, --, ~ Left hand operand type, result type,

source code line.

Figure 6. Main classes required to interface with clang's AST and front-end.

28

Operation type Included operands Saved information

Array subscript

operators

X[Y] Array (X’s) type being accessed, index’s

(Y’s) type, result type, source code line.

Function call

expressions

N/A Result type, source code line.

For the basic operators, the AST visitor saves the following information to the file: types

of the left-hand side, the right-hand side (unless unary), and the type resulting from the

expression; the operation name; the line within the source file. For function calls, the

function’s name is saved along with the return type of the call expression, along with the

line within the source file. All type names involved must be parsed to their canonincal

names, this includes going through type names which are created using typedef’s and

resolving them. The clang libraries provide the necessary tooling for this.

Following this idea, the extraction of simple operations (primarily arithmetic expressions)

can be accomplished without any complex state. The primary consideration there is the

extraction of the evaluation type, as will be discussed in 4.3.2. A more complex parsing

case exists for for-loops, as will be explained in 4.3.3.

4.3.2 Expression types

One point of consideration for the parser is expression types and rules regarding operand

promotion that exist within the C language standard. These rules are covered in section

6.3 of ISO/IEC 9899:2011 [2]. These conversions are done implicitly and will determine

what datatype is used to perform the actual atomic operation that is being considered.

For arithmetic operands, the first consideration is how all integer types smaller than int

are promoted: “If an int can represent all values of the original type (as restricted by the

width, for a bit-field), the value is converted to an int; otherwise, it is converted to an

unsigned int. These are called the integer promotions.” [2] This effectively means that

any arithmetic operation that is done on types smaller than int, such as char, get promoted

to int and compiled to the appropriate machine code.

29

As an example, Figure 7 illustrates a situation where an arithmetic operation (expr 1)

involves implicitly converting both operands a and b to type int for the execution of the

operation. This is the direct result of the previously specified rule from the standard.

The second consideration is governed by subsection 6.3.1.8 of [2], regarding the “usual

arithmetic conversions” pattern. This pattern is applied whenever deciding what the

resulting type of an arithmetic operation is. An example of this behaviour, Figure 8 has

the expression marked as “expr 1” result in implicit promotion of the right hand operand

to the type long long for the duration of the addition. And thus the result type of the

addition expression is long long.

With consideration given to all of the above, it can be seen that the type as which an

arithmetic expression is carried out is not necessarily obvious. And since the prediction

methodology of the system relies on knowing exactly what datatype an atomic operation

is done with, being able to retrieve the actual resulting expression from mixed typed

operations is important.

The clang AST model is capable of retrieving this information, and it is saved as the result

type for binary and unary operations, as described in the previous section. This

information can then be used in the analyzer for more accurate estimations.

int main() {

 char a = 4;

 char b = 6;

 char c = a + b; // expr 1

}

Figure 7. Example of an arithmetic expression resulting in implicit conversion.

int main() {

 long long a = 10;

 int b = 40;

 long long c = a + b; // expr 1

}

Figure 8. An example of implicit operand promotion in arithmetic expression due to other operand type.

30

4.3.3 For-loop headers

Another point worth consideration is the handling of for-loops. In equation (2.8) from [1],

the execution time of a for-loop is most accurately calculated as follows:

𝑡𝑙𝑜𝑜𝑝 = 𝑡𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 + (𝑁 + 1) × 𝑡𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 + 𝑁 × 𝑡𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡 + 𝑁 × 𝑡𝑐𝑜𝑑𝑒

where N is the number of iterations accomplished, the total loop execution time is 𝑡𝑙𝑜𝑜𝑝,

the loop initialization expression time is 𝑡𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛, the loop’s condition expression

time is 𝑡𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛, the loop’s increment expression time is 𝑡𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡, and the loop body’s

execution time is 𝑡𝑐𝑜𝑑𝑒. This requires the AST visitor to extract all 4 distinct components

from a C language’s for-loop and to separate them appropriately.

A section of the AST for a complete for-loop looks as follows:

Figure 9. A for-loop AST example.

In Figure 9, the 4 distinct sub-nodes which make up a complete for-loop are shown: the

initialization expression (Init), the condition expression (Cond), the increment expression

(Inc), and the body compound statement (Body). Along with the visitation order of the

nodes: 1 – 5.

The generalized activity for handling this can be seen in Figure 10. The branch number

is incremented only if the for-statement’s header has both an initialization expression, and

either a condition or an increment expression or both. If this pattern is met, then the branch

number that gets attached to nodes being extracted is incremented until the initialization

expression is has been traversed. Otherwise, there is only one branch: either the

initialization expression on its own, or the condition and increment expressions on their

own.

31

This method of parsing guarantees that the branch numbers attached to the operations

extracted from the for-loop headers match the output of the simulator. The practical

implementation of this parsing ended up also requiring handling a few exceptional cases

as well, due to the way the AST is traversed.

4.4 Parser output format

The parser’s output format, generated by the atomic operation storage object, consists of

a JSON dictionary of C-code file names as keys, tied to a list of atomic operations as a

corresponding value. An example of this is illustrated in Figure 11:

Figure 10. For statement parsing activity diagram.

32

Figure 11. Example output of the atomic operations parser.

Each atomic operation in the entry field contains serialized information outlined in Table

2. In addition to this, an additional helper value is added to the JSON object, which

contains the type of operation entry. For the purposes of this work, it indicates whether

the entry is a basic operation or a function call.

It should be noted that since the list of serialized atomic operation objects is flat, it is

possible that multiple atomic operation objects exist with the same line number. This has

to be taken into account when detailing the analyzer in the following chapter.

4.5 Conclusion

In this chapter, the operation and behaviour of the atomic operation parser has been

detailed. Along with the output format that is going to be ingested by the analyzer. The

analyzer shall be the next component that will be detailed.

{

 "file_a.c": [

 {

 "branch_number": 0,

 "entry": [atomic operation]

 },

 {

 "branch_number": 1,

 "entry": [atomic operation]

 }

]

}

33

5 Profiling & Analyzer

This chapter will describe the analyzer, which will combine the results of a simulated run

of the program that is being evaluated, and the output of the parser. The output of the

analyzer is a total count of every unique atomic operation that was executed during the

simulated run, along with an execution time estimate based on these totals. As has been

noted in Chapter 2 of this work, gcov is being used as a simulator and code coverage tool,

along with gcovr. The following section will detail this process, and the limitations it

imposes.

5.1 gcov & gcovr

gcov is a test coverage tool, which is meant to aid in the profiling and analyzing of

programs compiled with GCC. A common use-case for the tool would be measuring unit

test coverage, for example. And this code coverage feature is the reason for using gcov

within the current work as well: it is able to output how many times a given line of C-

code is executed, if at all. [14]

In order to be used, the program under evaluation will first have to be adjusted into a state

where it can be executed on a regular personal computer. For embedded systems

programming, this would mean removing or stubbing out code which deals with

peripheral control, for example. This does put limits on the type of code which can be

evaluated by the system being described in this work. The code would then be compiled

with the “-ftest-coverage -fprofile-arcs” flags using GCC and executed.

There are some shortcomings with the methodology of using an external simulator. One

issue is that simulating external stimuli is difficult if not impossible. As such, when

writing the simulation program, care must be taken to specifically plan out the scenarios

that need to be measured.

To better preprocess the output of the gcov tool, a supplementary tool was used: gcovr.

gcovr is a utility program in Python, which takes the output of gcov and generates a more

34

usable report from it. This work uses gcovr to generate a JSON report, which is similar

to the output of the atomic operations parser: a list of executed lines that can tied to file

names. [15]

The following figure illustrates the JSON output of a gcovr report:

Where each line object is structured as follows:

Where “count” is the number of times this line was executed during the simulation run,

line_number is the line number from the source file, and noncode is a boolean value

indicating whether or not the line in question contained executable code.

5.1.1 Branches in gcov

An interesting issue to address has been gcov’s and gcovr’s reporting of multiple branches

of execution on the same line. The way this is handled, in the output, is by adding a special

“branches” list to a line entry, as was illustrated in the previous section. The list will

contain all the different branches of execution that are present on that one line, along with

specific hit “counts”. The sum of the branch hit counts is equal to the hit count of the line

containing the branches.

{

 "gcovr/format_version": gcovr_json_version

 "files": [

 {

 "file": "file_name.c",

 "lines": [line]

 }

]

}

{

 "branches": [branch],

 "count": count,

 "line_number": line_number,

 "noncode": noncode

}

Figure 12. gcovr JSON output structure.

Figure 13. gcovr JSON output line object structure.

35

For the purposes of this work, branches have been labelled with their index, as they appear

in the JSON report generated by gcovr. The first branch, if present, will be marked as

branch 0, the next branch on the same line as branch 1, and so on.

Understanding how these branches correlate to actual execution logic within the C-code

is important to increase the prediction accuracy of the analyzer. As already explained in

Subsection 4.3.3, the parser itself is able to separate items like the for-loop initialization

expression out from the condition and increment expressions. Due to this, the analyzer is

required to do the same. A second use-case for understanding branching is the dissection

of eagerly evaluated logical expressions, where the time spent on different branches is

non-trivial.

For-loop headers will generate two branches: one for the initialization clause, and the

other branch for both the condition and the incrementation clause. Testing revealed that,

consistently, gcovr on version 4.2 produces a JSON report wherein the initialization

branch is always as branch index 1, and the condition and increment branch are presented

as branch 0. The parser mimics this behaviour: marking all atomic operations in the

initialization statement as branch 1, and the other for-loop header components as branch

0, if they are present.

The other common case for encountering branches is the expressions for complex

conditional clauses. A simple logical OR or AND expression will generate 4 different

branches from gcov, if used in an if-clause. Two OR or AND expressions joined together

will produce 6 different branches. However, mapping these branches back to their

semantic meaning has not been successful over the course of this work. As such, the

analyzer cannot differentiate which exact branches of logical expressions are being

executed. This may lead to error in the execution time prediction if the subexpressions in

some logical expressions are non-trivial.

5.2 Analyzer

The analyzer program itself is implemented using the Python programming language. In

Figure 3, it accepts the output of both the atomic operations parser and the simulator

(gcovr) as inputs. As specified earlier, these are handled as JSON data files. And the

36

analyzer will then output JSON and a user readable result containing the following

information:

• the total number of times each atomic operation is used for the given C-code

source files,

• an estimation of the total execution time for the program, using the methodology

outlined in the beginning of this work.

The analyzer’s primary activity is described in the following UML activity diagram. The

activity is executed per source file that exists in both the simulator output file and the

atomic operations parser’s output file.

Figure 14. The analyzer's main activity diagram.

37

Lines from the gcovr simulation report are read and processed one at a time. Due to the

way gcovr puts branches as members of the line object, the analyzer will actually create

a gcov line object per branch per line. The branch numbers are set appropriately, so that

atomic operations can be matched with appropriate branches from gcovr.

A hashmap-like structure is used to hold all of the atomic operations that have been

encountered thus far, along with a count. This structure will, by the end of the analyzer’s

work, contain the total counts for each unique atomic operation. These totals can then be

output to the user.

The atomic operations database can be realized as either another JSON file or some other

format. It would contain a map of atomic operations with their execution times as

measured by experimentation. The total time of execution would then be done by

summarizing, as explained in 2.1. This will output the final prediction for the total

execution time of the program.

5.3 Conclusion

This chapter detailed the implementation of the analyzer, which is the final component

for the performance estimation system. It allows us to provide a list of atomic operations

from parsed source code files, and to combine them with a simulator’s output in order to

conduct an estimation of both execution time and energy usage.

38

6 Evaluation and Results

This chapter will focus on evaluating the results of the system that was implemented over

the course of this thesis work. The goal here is to first validate the system and to then test

it against with more complicated and relevant problems. The source code for the system

that was developed as a product of this work can be found in Appendix 2.

6.1 Full Example

First, a full example to demonstrate the complete functionality of the system. Let us take

the matrix multiplication benchmark program as an example. The code for this program

can be found in Appendix 3 and was originally published in [16]. The goal of this example

is to illustrate how the system functions, what the intermediate outputs are, and how this

can be integrated with the estimation methodology to provide an energy consumption

estimation.

The source file of the program is first run through the atomic operations parser. This will

extract all of the atomic operations, as was described in Chapter 4. In the case of the

matrix multiplication program, the parser will extract 20 unique atomic operations from

the source file. These are saved as a JSON file.

Following this, the source program is compiled with GCC and special switches to allow

for code coverage reports to be generated. These switches are: “-fprofile-arcs -ftest-

coverage -fPIC -O0”. As explained in Section 5.1, test-coverage is necessary for gcov to

work, along with the profile-arcs flag. The PIC flag enables generation of position

independent code. And O0 disables compiler optimizations, which is necessary to

generate more accurate coverage output. The position independent code flag may not be

strictly necessary for this methodology to work. Running the compiled output will then

generate the files necessary for gcov to accurately report code coverage.

39

The gcovr tool is then ran, with the JSON output format specified and saved to a file. In

the case of the current example, the tool will report that 7 lines of the source code were

hit. With 6 distinct branches: 2 for each for-loop present in the program.

Finally, both JSON files output from the gcovr tool and the atomic operations parser are

given to the analyzer. The analyzer will then output the following information as both

JSON and user readable text as shown in Table 3. The total number of unique operations

executed during the simulation run was 700.

Table 3. Example output of the system.

Operation

name

Count Additional information

< 78 Result type: int

++ 78 Result type: int

= 19 Result type: int

= 15 Result type: unsigned short

Array subscript 75 Result type: unsigned short

Array subscript 75 Result type: volatile UInt16 [5]

+= 60 Result type: unsigned short

* 60 Result type: int

Array subscript 120 Result type: unsigned short

Array subscript 60 Result type: const UInt16 [4]

Array subscript 60 Result type: const UInt16 [5]

This information can now be used for estimating the power consumption of the program

on different platforms for which models exist. For the purposes of this example, limited

models for two microcontrollers were created: the STM32F401RE and the ATmega32U4.

40

A comparison of the two microcontrollers can be found in Table 4. Both microcontrollers

were measured on development boards. This specifically caused the STM32’s

measurements to be higher than expected, as the board also supplied power to an

additional programmer component. However, for gauging the accuracy of the estimation,

this will not cause issues. The limited models were created using the measurement

methodology outlined in Section 3.1. of [1].

Table 4. Overview of modelled microcontrollers.

Microcontroller Development

board

Architecture Clock speed

STM32F401RE Nucleo-64

F401RE

32-bit ARM 84 MHz

ATmega32U4 Arduino Micro 8-bit AVR 16 MHz

With the models present, the estimated energy usage of the program could be calculated

by the system for both platforms. This can then be compared with the actual energy

consumption of the benchmark. The results can be found in Table 5. The error values

were calculated with the following equation:

𝑒 =
|𝐸𝑎𝑐𝑡𝑢𝑎𝑙 − 𝐸𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑|

𝐸𝑎𝑐𝑡𝑢𝑎𝑙
× 100%

Table 5. Energy consumption estimation results.

Microcontroller 𝑬𝒂𝒄𝒕𝒖𝒂𝒍 (mJ) 𝑬𝒆𝒔𝒕𝒊𝒎𝒂𝒕𝒆𝒅 (mJ) 𝒆

STM32F401RE 11.4 13.2 15.8%

ATmega32U4 101.8 111.5 9.5%

In both cases, the estimated energy consumption was higher than the actual energy

consumption of the program. The primary cause of this error is likely down to the manual

and less accurate methodology. Specifically, the power usage measurement devices used

41

were not as accurate as they could have been or were in [1]. An illustration of this is that

when just the execution times for the atomic operations are looked at, the errors between

the estimation and the actual measured values for both microcontrollers become smaller:

10.6% for the STM32F401RE and 7.3% for the ATmega32U4. This would clearly

indicate that a considerable difference comes from how the energy consumption figures

were measured. It is likely that the more refined automated modelling methodology

described in Section 3.2. of [1] would offer better results.

Overall, this section illustrated how a complete estimation could be acquired for a given

program. The atomic operations parser in combination with the analyzer were used to

gather the total number of unique atomic operations that were executed by a given

program. And then this information was successfully integrated with a model, created

according to earlier methodology, to provide a complete energy consumption estimation.

6.2 Validation of the Atomic Operation Parser

This chapter will continue by ensuring that the parser and analyzer are able to successfully

parse other benchmarks used in [1]. No energy consumption estimations are done for

these more complex programs due to missing models. The objective here is simply to

validate the automatic atomic operation extraction and summarization process against

known data. The source code for the specific versions of the programs used is found in

Appendix 4. The matrix multiplication and FIR filter programs were originally published

in [16]. The validation programs were run through the parser and the analyzer, to

automatically count the number of total atomic operations found. The results and a

comparison with the counts from [1] are shown in the following table:

Table 6. Comparison of reference atomic operation counts vs. those counted by the system.

Benchmark

program

Atomic

operations per

[1]

Atomic

operations

counted

Remarks

Matrix

multiplication

292 700

FIR filter 2 557 4 213

42

Benchmark

program

Atomic

operations per

[1]

Atomic

operations

counted

Remarks

Image

processing

541 208 602 549 Filter size is 50x50.

As can be noted, there is a discrepancy between the atomic operations counted in [1] and

by the tools created for this work. There are two key points of difference: first, the

previous methodology counted for-loops as a singular atomic operation. Whereas the

analysis methods used by the system presented in this work will more accurately split for-

loops into multiple atomic operations corresponding to the individual expressions. The

second key difference is that the current methodology counts array subscript operations

as atomic operations, while the other does not. The output of the system for all three test

cases was manually verified as correct.

6.3 More Complex Benchmarks

As more complex benchmarks, the Dhrystone [17] and Whetstone [18] benchmarks were

used. The objective of this experiment is to see if the system is capable of parsing these

benchmark programs, so that future work may use it as a stepping off point.

Both benchmark programs parse successfully, with no error being created. One key

difference between these programs and the benchmarks covered in the preceding work is

the usage of goto statements and various standard library function calls. Goto-s are

unparsed as of this time, and function calls will require supplementary measurement and

profiling to get proper performance estimation.

43

The atomic operation counts for both of the mentioned benchmarks are presented in the

following table:

Table 7. Dhrystone and Whetstone atomic operations counts.

Benchmark program Atomic operations counted

Dhrystone 1 651 801

Whetstone 92 801

Closer inspection of both of those programs also reveals that they contain calls to external

functions. As such, not all atomic operations are completely visible to the parser at this

point. In order to gain accurate estimations of these external functions, they would have

to profiled individually, or somehow otherwise introspected. However, the current

parsing results are good enough for immediate use.

6.4 Summary and Future Work

This chapter has provided a full example demonstrating how the automated system

detailed throughout this work can be used to apply the energy consumption methodology

of [1] to produce a complete power consumption estimation. Following this, the system

was proved able to successfully parse all of the test programs that were originally used to

verify this methodology. And finally, it was demonstrated that the system is able to handle

more complex programs, including relevant and popular benchmarking programs, such

as Dhrystone and Whetstone. This allows for easier application and validation of the

performance estimation methodology that was originally proposed in [1].

A possible topic for future work would be automating the analysis of C-standard library

functions. Currently, the parser can only extract unique operations if it has access to the

source code of a given function. This leaves external functions, such as the standard

library functions, as black boxes which have to be individually profiled for increased

accuracy during the estimation. Though the parser in its current state does extract and

point out calls to them.

44

Tied to the previous point is also the matter of functions that belong to other external

libraries. A code project may include proprietary dependencies, the source code of which

is not available for parsing. This would require additional functionality, such as parsing

the library’s object code, in order to obtain atomic operations. Both estimation and parsing

methodology would have to be reviewed to accommodate this.

One final matter that could be addressed would be to look further into the branches that

gcov generates as a part of its analysis. This issue was raised in Subsection 5.1.1. While

with trivial logical expressions the impact on estimation accuracy may be negligent,

logical expressions with longer execution times will increase the estimation error.

45

7 Summary

Over the course of this work, a methodology for extracting and summarizing atomic

operations from C-code files was proposed and detailed. The chosen methodology relies

on parsing the AST of a C-code program, and extracting atomic operations from there.

The atomic operations would then be automatically combined with the output of the code

coverage tool gcov.

The atomic operations parser implementation was done using the LLVM and clang

libraries. This was the component responsible for doing the atomic operation extraction.

In its final implementation, the atomic operations parser is successfully able to parse both

the example programs from [1] and more complex programs. These complex programs

include the Dhrystone and Whetstone benchmarks.

Following this, the analyzer’s implementation and functionality was described. The

analyzer is the component responsible for combining the output of a code coverage tool

with that of the atomic operations parser. Combining these two pieces of information

allows the analyzer to count all of the individual atomic operations that would be executed

during the runtime of the simulated program.

This total number of unique operations, along with their types, can then later be combined

with models of various microcontrollers to trivially generate energy consumption and

performance estimations. A demonstration of this was offered in Section 6.1, where the

energy consumption of a benchmark was estimated using the system, and then compared

with the real results.

As a result of this work, there now exist tools for applying the methodology devised in

[1] to more complex programs. This is an important step in potentially integrating this

methodology in regular development workflows. And it also provides the necessary tools

for further testing and refining the methodology in the future.

46

References

[1] P. Ruberg, “Energy Consumption and Performance Estimation of Embedded

Software,” Ph.D. dissertation, Dept. of Computer Engineering, Tallinn University

of Technology, Tallinn, 2018.

[2] Information technology -- Programming languages -- C, ISO/IEC 9899:2011,

2011.

[3] Information technology -- Programming languages -- C, ISO/IEC 9899:1999,

1999.

[4] e. a. E. Bendersky, “pycparser 2.20 readme,” 22 September 2020. [Online].

Available: https://github.com/eliben/pycparser/blob/master/README.rst.

[Accessed 22 April 2021].

[5] Free SoftwareFoundation, Inc., “GCC, the GNU Compiler Collection - GNU

Project - Free Software Foundation (FSF),” 07 May 2021. [Online]. Available:

https://gcc.gnu.org/. [Accessed 7 May 2021].

[6] Free Software Foundation, Inc., GNU C Compiler Internals, Boston: Free

Software Foundation, Inc., 2013.

[7] C. Lattner, “LLVM: An Infratstructure for Multi-Stage Optimization,” Computer

Science Dept., University of Illinois, Urbana-Champaign, 2002.

[8] D. Dhurjati, S. Kowshik, V. Adve and C. Lattner, “Memory Safety Without

Runtime Checks or Garbage Collection,” in LCTES-2003, San Diego, CA, 2003.

[9] S. Kowshik, D. Dhurjati and V. Adve, “Ensuring Code Safety Without Runtime

Checks for Real-Time Control Systems,” in CASES 2002, Grenoble, 2002.

[10] D. Dhurjati, S. Kowshik, V. Adve and C. Lattner, “Memory safety without

garbage collection for embedded applications,” ACM Transactions on Embedded

Computing Systems, vol. 4, no. 1, pp. 73 - 111, 2005.

[11] The Clang Team, “Clang C Language Family Frontend for LLVM,” 2021.

[Online]. Available: https://clang.llvm.org/. [Accessed 22 April 2021].

[12] The Clang Team, “LibTooling - Clang 12 Documentation,” 2021. [Online].

Available: https://clang.llvm.org/docs/LibTooling.html. [Accessed 22 April 2021].

[13] The Clang Team, “Introduction to the Clang AST - Clang 12 Documentation,”

2021. [Online]. Available:

https://clang.llvm.org/docs/IntroductionToTheClangAST.html. [Accessed 22

April 2021].

[14] Free Software Foundation, Inc., “Gcov Intro (Using the GNU C Compiler

Collection (GCC)),” 27 April 2021. [Online]. Available:

https://gcc.gnu.org/onlinedocs/gcc/Gcov-Intro.html#Gcov-Intro. [Accessed 27

April 2021].

[15] The gcovr authors, “gcovr - gcovr 4.2 documentation,” 19 June 2018. [Online].

Available: https://gcovr.com/en/stable/. [Accessed 27 April 2021].

47

[16] G. Morton and K. Venkat, “MSP430 Competitive Benchmarking,” Texas

Instruments, 2006, revised 2009.

[17] R. P. Weicker, “Dhrystone: a synthetic systems programming benchmark,”

Commun. ACM, vol. 27, no. 10, pp. 1013-1030, October 1984.

[18] H. J. Curnow and B. A. Wichmann, “A synthetic benchmark,” Computer Journal,

vol. 19, no. 1, pp. 43-49, 1976.

48

Appendix 1 – Non-exclusive licence for reproduction and

publication of a graduation thesis1

I Erki Meinberg

1. Grant Tallinn University of Technology free licence (non-exclusive licence) for my

thesis “C-language Parser & Analyzer for Hardware Performance Estimations”,

supervised by Priit Ruberg and Peeter Ellervee

1.1. to be reproduced for the purposes of preservation and electronic publication of

the graduation thesis, incl. to be entered in the digital collection of the library of

Tallinn University of Technology until expiry of the term of copyright;

1.2. to be published via the web of Tallinn University of Technology, incl. to be

entered in the digital collection of the library of Tallinn University of Technology

until expiry of the term of copyright.

2. I am aware that the author also retains the rights specified in clause 1 of the non-

exclusive licence.

3. I confirm that granting the non-exclusive licence does not infringe other persons'

intellectual property rights, the rights arising from the Personal Data Protection Act

or rights arising from other legislation.

10.05.2021

1 The non-exclusive licence is not valid during the validity of access restriction indicated in the student's application for restriction on access to the graduation

thesis that has been signed by the school's dean, except in case of the university's right to reproduce the thesis for preservation purposes only. If a graduation thesis

is based on the joint creative activity of two or more persons and the co-author(s) has/have not granted, by the set deadline, the student defending his/her

graduation thesis consent to reproduce and publish the graduation thesis in compliance with clauses 1.1 and 1.2 of the non-exclusive licence, the non-exclusive

license shall not be valid for the period.

49

Appendix 2 – Source code of the tool

The source code of the tool that was developed over the course of this work can be found

in the git repository here, licensed under the MIT license:

https://git.skullnet.me/erki/masters-thesis

https://git.skullnet.me/erki/masters-thesis

50

Appendix 3 – Matrix multiplication benchmark program

typedef unsigned short UInt16;

const UInt16 m1[3][4] = {

{0x01, 0x02, 0x03, 0x04},

{0x05, 0x06, 0x07, 0x08},

{0x09, 0x0A, 0x0B, 0x0C}

};

const UInt16 m2[4][5] = {

{0x01, 0x02, 0x03, 0x04, 0x05},

{0x06, 0x07, 0x08, 0x09, 0x0A},

{0x0B, 0x0C, 0x0D, 0x0E, 0x0F},

{0x10, 0x11, 0x12, 0x13, 0x14}

};

int main(void)

{

int m, n, p;

volatile UInt16 m3[3][5];

for(m = 0; m < 3; m++)

{

for(p = 0; p < 5; p++)

{

m3[m][p] = 0;

for(n = 0; n < 4; n++)

{

m3[m][p] += m1[m][n] * m2[n][p];

}

}

}

return 0;

}

51

Appendix 4 – Other benchmark programs

All of the programs used as benchmarks for this thesis can be found in the following git

repository, under the “testcases” folder: https://git.skullnet.me/erki/masters-thesis

Check specific file headers for attribution and licensing information.

https://git.skullnet.me/erki/masters-thesis

