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Abstract 

In preceding works, Priit Ruberg et al. devised methodology for estimating the energy 

consumption and performance of C-code programs. This thesis describes the 

implementation of a software system which is meant to automate this methodology. The 

implementation of two key components is described: that of the atomic operations parser 

and the analyzer. LLVM and clang libraries were used for the implementation of the 

parser. The product of this thesis is a functional system which can the number of unique 

operations a given C-code program executes. The implemented system was then tested 

on both known example programs used by Ruberg et al., and on the Dhrystone and 

Whetstone benchmark systems. 

This thesis is written in English and is 42 pages long, including 7 chapters, 14 figures and 

7 tables. 
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Annotatsioon 

Riistvara jõudluse hindamiseks loodud C-keele parser & 

analüsaator 

Eelnevates töödes kirjeldavad Priit Ruberg jt. uut meetodit C-keeles kirjutatud tarkvara 

programmide jõudluse ja energiatarbe hindamiseks. Käesoleva töö eesmärk on kirjeldada 

tarkvarasüsteemi, mis automatiseerib selle meetodi rakendamist. 

Töö alguses teostatakse ülevaade eelnevatest töödest ja kirjeldatakse nende poolt välja 

toodud meetodeid. Selle põhjal kirjeldatakse töö käigus arendatud tarkvarasüsteemi 

tööpõhimõte ja meetodid. Süsteemi töö põhineb hinnatava C-koodi süntaksi parsimisel ja 

analüüsimisel. 

Peale rakendatavate meetodite kirjeldust seatakse paika süsteemi nõuded. Lisaks selle ka 

süsteemi struktuur. Struktuuri põhiosad, mida selle töö käigus realiseeriti, on 

operatsioonide parser ja analüsaator programm. Järgnevates töö osades kirjeldatakse 

mõlema osa tehniline lahendus. 

Operatsioonide parser loodi C++ programmeerimiskeeles, rakendades LLVM ja clang 

teeke. Analüsaator on Python3-s loodud programm. Valmistükina võetud süsteemi 

komponendiks on gcov ja gcovr koodikatvust hindavad tööriistad. 

Koostatud tarkvarasüsteemi tööd võrreldakse eelnevates töödes kasutatud 

programmidega. Lisaks sellele katsetatakse süsteemi võimekust informatsiooni eraldada 

tuntumatest jõudluse hindamisprogrammidest, Dhrystone ja Whetstone. 

Lõputöö on kirjutatud Inglise keeles ning sisaldab teksti 42 leheküljel, 7 peatükki, 14 

joonist, 7 tabelit. 
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List of abbreviations and terms 

AST Abstract syntax tree. 

JSON JavaScript Object Notation. 

UML Unified Modelling Language. 

GCC The GNU Compiler Collection. 

cc1 GCC’s C language compiler and preprocessor. 

RTL Register transfer language. 

LLVM A collection of modular and reusable compiler and toolchain 

technologies. 

clang A C language front end for the LLVM infrastructure. 

gcov A C language code coverage tool. 
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1 Introduction 

Over the past few years, addressing the energy consumption of various computational 

systems has become an increasingly important priority. In the case of smaller embedded 

devices, it would be useful if a developer could estimate the energy consumption of a 

program on potential target hardware. If this ability could be integrated into the 

developer’s workflow, then it would be easier for them to make decisions that are 

conscious of energy consumption. This is what motivated Priit Ruberg to research a novel 

method of energy consumption and performance estimation for such platforms in his 

doctoral thesis and related works. [1] 

The goal of this present work is to build upon that foundation. The methodology presented 

by Ruberg involves parsing C-code programs by hand and extracting specific atomic 

operations from them. And then combining that information with the output of a simulator 

or a code coverage tool. The fact that the application of this methodology has thus far 

been done by hand limits its application. 

1.1 Task 

The goal of this work is to have an outline of a software system which is able to 

automatically perform the analysis process presented in [1]. In short, this thesis describes 

the implementation of a system which can: 

• Automate the C-code parsing and analysis methodologies that were described in 

[1]. 

• Extend the application of the aforementioned methodology by being able to parse 

relevant and known benchmarking programs, such as Dhrystone and Whetstone. 
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1.2 Structure 

The remainder of the thesis is divided into five chapters. Chapter 2 will provide a review 

of the theoretical background of the work. A methodology for accomplishing the task, as 

outlined previously, will also be presented there. 

Following this, the next three chapters will outline the system as a whole and describe its 

implementation in depth. This includes outlining the system requirements, establishing 

the system’s structure, conducting review of available tools, and describing nuances of 

the implementation that were discovered. The system that is described in these chapters 

was also implemented and can be tested further in this work. 

The remaining chapter, Chapter 6, will focus on testing and validating the system. First, 

a comparison against known test cases from [1] is performed. Then the system’s ability 

to parse more complex programs is evaluated, and the results from it presented. The 

chapter will close with an overview for potential future work with respect to further 

developing the tool. 

Finally, the work will be summarized in the last chapter. 
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2 Methodology & Previous Work 

This chapter will conduct a review of the work that this one is based on. It will summarize 

the performance and energy consumption methodology outlined in [1]. The need for the 

system that is described in this work will then be outlined. This will be followed by an 

overview of a proposed methodology for automating the performance and energy 

consumption estimation process. 

2.1 Estimation of performance & energy consumption on embedded 

systems 

In [1], a novel solution for estimating the performance and energy consumption of a piece 

of C-code being executed on a microcontroller is proposed. This method relies on static 

analysis of the source code, simulation of the source code, and on a database of profiling 

results. A flowchart of key actions for this methodology is provided in the following 

figure: 

 

Figure 1. Overview key actions of the estimation methodology. 

First, the atomic operations in a given C-code program are counted. Following this, the 

program is simulated, and the simulation results combined with the earlier results, to 

obtain the total number of atomic operations executed. This information can then be used 

to estimate performance figures. 

The estimation methodology relies on summing the costs of various atomic operations 

that are executed in a piece of code. An atomic operation being a specific C-language 
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syntax operation, such as the add operator “+”. The methodology requires the 

measurement of the cost of each individual atomic operation type, in order to compose a 

model of a given microcontroller. [1] 

For a given program, the energy consumption of a program can be estimated as follows, 

per equation 2.3 from [1], presented here as equation (1): 

𝐸𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 = ∑ 𝑚𝑖 × 𝐸𝑎𝑡𝑜𝑚𝑖𝑐−𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑖

𝑛
𝑖=1                           (1) 

Where 𝐸𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 is the estimated energy consumption of the program. 𝑛 is the number 

of different (unique) atomic operations present in the program. 𝑚𝑖 is the number of 

repetitions of a given atomic operation. And 𝐸𝑎𝑡𝑜𝑚𝑖𝑐−𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 is the energy consumption 

of a given atomic operation. 

In order to find the number of repetitions of each atomic operation, two pieces of 

information are necessary. First, the atomic operations within each C-code source file of 

a program must be mapped. In [1], this was done manually. And then the program must 

be simulated using a code coverage tool. Those two pieces of data are then merged, in 

order to find the total repetitions for each atomic operation. 

The manual mapping of atomic operations in a source file is laborious process. And it 

limited the benchmarks which were used to test out the methodology established in [1]. 

The merging of the simulation report along with the mapped atomic operations was also 

done manually in [1]. And this is also a process which can be automated. 

Automation of these two processes can enable the wider application of this performance 

estimation methodology. This will help further evaluating this methodology, by making 

it applicable for more complex and more common benchmarking programs. And will also 

allow for its further development and deployment. 

2.2 Methodology for automating atomic operation analysis 

As established in the previous subsection, there is a need for a system which automates 

the extraction of atomic operations from C-code source files. This extraction needs to be 

done by automatically parsing the C programming language. 
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All of the atomic operations described in the practical experiments of [1] are considered 

expressions by the C language standard: “An expression is a sequence of operators and 

operands that specifies computation of a value, [...]” [2, p. 76]. This means that a tool 

capable of extracting expressions from arbitrary C-code should be capable of extracting 

all of the necessary atomic operations from it. 

This would best be done with a tool which is capable of parsing the C-code files into an 

abstract syntax tree (AST). The AST can then be traversed, and the required expressions 

extracted from it. Along with the necessary supplementary information, such as the 

datatypes involved. Due to the specifics of working with embedded technologies, such a 

tool should at least be able to parse all code that complies with the C99 ISO standard [3]. 

These atomic operations must be tied to lines within their respective source code files. 

The simulation tool then outputs the number of times each source code line is executed. 

These two pieces of information can then be combined to calculate the total number of 

repetitions for each atomic operation. 

For each atomic operation, the total repetitions 𝑚𝑎𝑡𝑜𝑚𝑖𝑐 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 is calculated as the 

following sum in equation (2): 

𝑚𝑎𝑡𝑜𝑚𝑖𝑐 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 = ∑ 𝑘𝑖
𝑛
𝑖=1                                          (2) 

Where 𝑛 represents every source code line that specific atomic operation was encountered 

on. And 𝑘𝑖 is the number of times that specific source code line was executed in the 

simulated run. 

This repetition count can then used together with formula (1) to calculate the performance 

information of a given C-code program. Provided that the system has access to a 

previously measured database of atomic operation profiles. 

2.3 Example of the Application of the Methodology 

To illustrate the application of the methods presented in this chapter, let us consider the 

following C-code program presented in Figure 2: 
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Figure 2. An example C-code program for power estimation. 

 

The program in question has a total of 5 atomic operations: 

1. The assignment of constant value to variable a on line 2. 

2. The assignment of the constant value to variable b on line 3. 

3. The addition of variable a and b on line 5. 

4. The assignment of that sum to variable b on line 5. 

5. The loop condition and header on line 4. 

Using a code coverage tool, we can determine that the atomic operations 1 and 2 will be 

executed once, and operations 3, 4, and 5 will be executed three times each. It should also 

be taken into consideration that operations 1, 2, and 4 are of the same type. 

With the atomic operations parsed and mapped out, it is now necessary to calculate the 

total repetition count of each atomic operation. The comparison and addition atomic 

operations are both done three times each. And as all of the assignment operations are of 

the same type, their repetitions are summarized according to equation (2): 

𝑚𝑐𝑜𝑚𝑝𝑎𝑟𝑒 = 3 

𝑚𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛 = 3 

𝑚𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡 = 3 + 1 + 1 = 5 

If we then assign some corresponding energy values to each unique type of atomic 

operation, we can estimate the total energy consumption 𝐸𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 of the program by 

applying equation (1) as follows: 

1. int main() { 

2.     int a = 5; 

3.     int b = 0; 

4.     while (b < 15) { 

5.         b = a + b; 

6.     } 

7. } 
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𝐸𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 = 𝑚𝑐𝑜𝑚𝑝𝑎𝑟𝑒 × 𝐸𝑐𝑜𝑚𝑝𝑎𝑟𝑒 + 𝑚𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛 × 𝐸𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛

+ 𝑚𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡 × 𝐸𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡 

A similar calculation will apply for execution times as well, provided that the execution 

time of each atomic operation is known. What can also be observed is that the only 

remaining variable for that program is tied to the microcontroller itself: the energy 

consumption of each atomic operation. This allows for this method to be used for 

comparing the same program on various hardware pieces. 
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3 Proposed System Architecture 

This chapter will outline the specific architecture of the software system that has been 

developed in the process of creating this thesis. The software system will implement the 

automated estimation methodology as explained in 2.2. First, the system requirements for 

such a system will be outlined. Then the high-level architecture for the system will be 

presented. This will provide a functional description of each specific software component. 

These software components will then be explained in depth in later chapters of this work. 

3.1 System Requirements 

The general requirements for the system are defined as follows: 

• the system must be able to parse a project spanning multiple C source files, 

• the system must be able to parse all compliant C99 code, 

• the system must be able to parse C source files that include common system 

header files and gracefully handle other external header files, 

• the system must produce a list of atomic operations found in the program, 

associated with their line number in the respective source file, 

• the system must be able to extract execution information from a simulated 

instance of the program under evaluation, 

• the system must be able to combine these two outputs with a database of atomic 

operation information to output an estimation of run time and power consumption. 

3.2 System Architecture Overview 

The system will be composed of four major components that will be realized individually 

or already exist. Figure 3 illustrates both the key components of the system, along with 

the general information flow that was described previously. The components that will be 
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realized for the purpose of this thesis are marked as bold on the figure. The other 

components, marked with italics, will be off-the-shelf tools. 

 

 

 

The first component that will be described in-depth in this work is the atomic operation 

parser. This component will take the C-code source files and will extract atomic 

operations from them, as is required by the methodology and system requirements 

described previously. It will output a list of atomic operations present in the source code 

of the program being evaluated. 

The analyzer will be the component that realizes the formulae described in Chapter 2. It 

will count the total number of repetitions each atomic operation has during the simulated 

run. And it will combine this with the atomic operations database in order to perform 

energy consumption and execution time estimations. For this, it will need to accept input 

from both the atomic operation parser and the simulation tool. 

The simulation tool will be used to execute a simulated run of the program being tested. 

In [1], gcov was used for this. It is important that the simulation tool used generates a 

machine-readable report. The analyzer will be responsible for parsing said report. 

The atomic operations database is a collection of energy consumption measurements for 

each atomic operation. As detailed in [1], it details a model of a given microcontroller or 

platform, for which the estimation is being composed. 

Figure 3. Proposed system information flow diagram. 
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From Figure 3, it can be seen that multiple components need to exchange information 

between each other. JavaScript Object Notation (JSON) will be used as a general 

information exchange format. This is due to its ubiquity and the availability of tools in 

various languages for parsing it: libraries for parsing it exist in both C++ and Python. 
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4 Atomic Operations Parser 

As outlined in the previous chapters, the objective of the atomic operations parser is to 

extract a list of atomic operations present in given C-code source files. This chapter will 

detail the specific implementation of the tool, including the extra requirements that are 

specific to it, and how they are addressed. 

4.1 Requirements 

The key requirements, relevant from 3.1 to the parser, are that the parser must be capable 

of processing multiple files and these files may include system or external library headers, 

which should also be successfully processed. The parser must then output this information 

in a manner such that the analyser is able to consume it. As noted earlier, JSON will be 

used for this. 

As outlined in 2.2, the primary task for the parser is to compile the C-code from source 

files into an AST, and to then extract specific operations from it. Due to the way that 

atomic operation performance is measured, all type names should also be resolved to their 

canonincal form, if possible. To minimize the need for manual removal of duplicates. 

For the atomic operation extraction to work, the AST must also be bound to specific 

source line locations. This will later allow us to properly combine them with the 

simulator’s output. 

A further consideration is how easily the source files can be preprocessed using a 

complaint C language preprocessor. This means both being able to scan include files and 

being able to parse their contents within the currently active file, as to pick up on things 

like typedefs and global variable definitions. 

4.2 Selection of Tooling 

The primary component of the parser will be the library or tool which compiles C-code 

into an AST. For this purpose, two possible candidate libraries were found: pycparser and 
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LLVM with the clang frontend. Both tools can generate an AST from C-code source files, 

thought with different restrictions. The following sections will provide a short overview 

of both tools and will conclude with a selection of one of them, which will be used for 

the rest of this work. 

4.2.1 pycparser 

First, pycparser will be reviewed. As described in the documentation in [4], is a parser 

for the C language written in the Python programming language. The outlined goal of the 

tool is to be a fully compliant C99 parser; and it has some support for C11 features. 

There exist multiple examples for parsing C-code files and obtaining their AST as a 

Python code structure. This AST can then be traversed. It further meets requirements in 

that the parser is able to tie specific AST entries to their location in the source file. 

One issue with the pycparser is that by itself, it does not include a preprocessor [4]. As 

such, another compiler or preprocessor should be used to preprocess the source files prior 

to giving them over to the parser. In testing with GCC’s preprocessor, using the -E switch, 

issues were observed with the parser being unable to handle all of the preprocessed output. 

As such, further work would have been needed to make the preprocessed files usable. 

The second large issue with the parser is how easily it could be made to use system library 

headers. To quote the documentation: “While (with some effort) pycparser can be made 

to parse the standard headers from any C compiler, it's much simpler to use the provided 

"fake" standard includes in utils/fake_libc_include” [4]. The recommended method of 

stubbing out system headers would likely be very work intensive. 

The remaining benefit of parser is that it is written in Python. Ergo the project setup time 

would likely be shorter. Initial testing confirmed as much. 

4.2.2 GCC 

The GNU Compiler Collection (GCC) is a collection of compilers and libraries for 

various programming languages, including for the C language. The project is entirely 

open source and free software. GCC is a very long-lived project, which is used in many 

large software projects, including the GNU operating system. [5] 
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The GCC component responsible for preprocessing and compiling C-code is called cc1. 

The cc1 tool has three distinct stages of compilation: the front end, middle end, and back 

end, as illustrated in Figure 4. The front end is the area where an AST is used as the 

primary representation. In the middle end, the AST is translated into a register transfer 

language (RTL) representation. And the final output from the back end is an object 

representation in assembly language. [6] 

 

Figure 4. GCC's compilation path. 

 

The toolchain is compliant with the latest published C language standards, including the 

system requirement of C99. As noted earlier, cc1 also contains a preprocessor to handle 

that stage of compilation. The compiler also constructs a usable AST, as is required by 

the methodology. 

The key issue which arose with attempting to use GCC for this component of the system 

was that its source code is not easily extensible. Specially when compared to LLVM and 

clang, which were created with the express purpose of being modular. As such, while the 

tool itself is likely capable of producing the results required, applying it for the task at 

hand looked to be more difficult than LLVM. 

4.2.3 LLVM & clang 

LLVM is an extensible compiler project. It was first presented in [7] as a tool for research 

and future compilers. The working principle of LLVM is that front ends for specific 

languages provide a common output, which can then be analyzed using LLVM’s own 

infrastructure. This has led to the LLVM infrastructure being used for various static 

analysis tasks, such as those described in [8] and [9]. The LLVM infrastructure has also 

been applied to static analysis tasks that concern embedded systems, such statically 

checking for memory safety issues in C-code programs as in [10]. All of this preceding 

work presents the LLVM infrastructure as a potentially suitable option for this work. 

clang is the most commonly used C language frontend for the LLVM tool library. Written 

in C++, the project is meant to be an extensible and modifiable toolkit for building C and 

C++ tooling. This includes the ability to preprocess source files, and support for most 
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GCC extensions. clang has multiple subcomponents which claim to make the process of 

creating a complete command-line tool along with AST matching relatively straight 

forward with libTooling, libASTMatcher. [11], [12] 

Due to the presence of a complete preprocessor as a plugin, the problem of handling 

standard library headers and other external headers with clang and LLVM appears to be 

a non-issue. The preprocessing can simply be done on the input sources prior to the AST 

extraction phase, in the same executable. 

libTooling and libASTMatchers also offer two interfaces for accessing the then-generated 

AST. The higher-level interface is using libASTMatchers, which has its own DSL for 

extracting only the relevant components from the AST. The lower-level interface allows 

one to recursively crawl the AST, much like would be the case with the pycparser library. 

[13] 

While it was initially figured that the high-level interface might permit easier prototyping, 

it was later learned that it is not all that useful for the purposes of this parser, especially 

with respect how for-loops need to be parsed. [13] 

A major concern with the library was also the fact that both LLVM and the clang libraries 

needed to be compiled for them to be used. However, the process is well documented, 

and this would be a one-time setup cost. 

4.2.4 Conclusion 

Table 1 provides an overview of the analysis carried out in the preceding subsections. 

Table 1. Comparison of available libraries for the atomic operations parser. 

Tool Can parse system 

headers itself? 

Supported C language 

standards 

Ease of use 

pycparser No C99 Easy 

GCC Yes C99 and later Hard 

LLVM & clang Yes C99 and later Moderate 
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For the purposes of this work, LLVM with the clang front end was chosen as best choice. 

The extra work required to enable parsing of system headers with pycparser eliminated it 

as a valid option. With GCC and LLVM, the modular and tooling oriented approach of 

LLVM made it the better choice of the two. Otherwise, both are equally capable of 

accomplishing the required task. This chapter will then continue with detailing the 

implementation of the atomic operations parser using the LLVM and clang libraries. 

4.3 AST Parsing with LLVM & Clang 

In this section, the implementation of the atomic operations parser component will be 

detailed. As a result of the analysis carried out in the previous section, it uses clang and 

LLVM for both the pre-processing and AST creation. With the AST parsing being written 

as a custom front-end action for clang. 

Figure 5 illustrates the main activity and data flow of the atomic operations parser per C-

code source file. The same activity is carried out for every source file that is given to the 

parser. The segmentation illustrates clearly which parts of the parsing activity are handled 

by clang’s own front-end, and what components are custom code. As can be seen, clang 

itself manages the proper preprocessing and AST generation for the parser, so the custom 

extensions only need to consume the ready-made AST. 
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For consuming the AST, as mentioned in the previous section, two possibilities exist with 

clang and LLVM: using libASTMatchers and writing a custom AST consumer module. 

Originally, an attempt was made to use the DSL that comes with libASTMatchers, and it 

did provide a quick start for the project. However, complications arose when attempting 

to integrate execution branch labelling and more stateful parsing. Due to this, a custom 

AST consumer was written instead. 

In order to interface between clang’s AST, a small object hierarchy needed to be created, 

as shown in Figure 6. The OperationFinderAstAction implements a clang front-end 

action, which clang’s own front-end will instantiate at the appropriate time. This object 

is then responsible for creating a OperationFinderAstConsumer, onto which clang’s 

frontend passes complete ASTs for every translation unit. The OperationFinderAstVisitor 

that is attached to it is then handed those ASTs, one at a time, for recursive visitation. 

Figure 5. The main activity diagram of the atomic operations parser. 
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The OperationFinderAstVisitor object will recursively descend the AST in a depth-first 

manner. Appropriate hooks are called out when an AST node of interest is encountered, 

along with callbacks for node entry and exit. This visitor then extracts required 

information from the AST nodes, as is described in the following subsections. 

4.3.1 Simple operations 

With the goal of extracting atomic operations from the now compiled AST, the AST 

visitor is responsible for picking out the following operations from the AST provided by 

clang: 

Table 2. Overview of atomic operations extracted by the atomic operations parser. 

Operation type Included operands Saved information 

Binary operators +, -, /, *, <, >, <=, 

>=, ==, <<, >>, % 

Left hand operand type, right hand 

operand type, result type, source code 

line. 

Unary operators !, ++, --, ~ Left hand operand type, result type, 

source code line. 

Figure 6. Main classes required to interface with clang's AST and front-end. 
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Operation type Included operands Saved information 

Array subscript 

operators 

X[Y] Array (X’s) type being accessed, index’s 

(Y’s) type, result type, source code line. 

Function call 

expressions 

N/A Result type, source code line. 

 

For the basic operators, the AST visitor saves the following information to the file: types 

of the left-hand side, the right-hand side (unless unary), and the type resulting from the 

expression; the operation name; the line within the source file. For function calls, the 

function’s name is saved along with the return type of the call expression, along with the 

line within the source file. All type names involved must be parsed to their canonincal 

names, this includes going through type names which are created using typedef’s and 

resolving them. The clang libraries provide the necessary tooling for this. 

Following this idea, the extraction of simple operations (primarily arithmetic expressions) 

can be accomplished without any complex state. The primary consideration there is the 

extraction of the evaluation type, as will be discussed in 4.3.2. A more complex parsing 

case exists for for-loops, as will be explained in 4.3.3. 

4.3.2 Expression types 

One point of consideration for the parser is expression types and rules regarding operand 

promotion that exist within the C language standard. These rules are covered in section 

6.3 of ISO/IEC 9899:2011 [2]. These conversions are done implicitly and will determine 

what datatype is used to perform the actual atomic operation that is being considered. 

For arithmetic operands, the first consideration is how all integer types smaller than int 

are promoted: “If an int can represent all values of the original type (as restricted by the 

width, for a bit-field), the value is converted to an int; otherwise, it is converted to an 

unsigned int. These are called the integer promotions.” [2] This effectively means that 

any arithmetic operation that is done on types smaller than int, such as char, get promoted 

to int and compiled to the appropriate machine code. 
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As an example, Figure 7 illustrates a situation where an arithmetic operation (expr 1) 

involves implicitly converting both operands a and b to type int for the execution of the 

operation. This is the direct result of the previously specified rule from the standard. 

 

 

The second consideration is governed by subsection 6.3.1.8 of [2], regarding the “usual 

arithmetic conversions” pattern. This pattern is applied whenever deciding what the 

resulting type of an arithmetic operation is. An example of this behaviour, Figure 8 has 

the expression marked as “expr 1” result in implicit promotion of the right hand operand 

to the type long long for the duration of the addition. And thus the result type of the 

addition expression is long long. 

 

 

With consideration given to all of the above, it can be seen that the type as which an 

arithmetic expression is carried out is not necessarily obvious. And since the prediction 

methodology of the system relies on knowing exactly what datatype an atomic operation 

is done with, being able to retrieve the actual resulting expression from mixed typed 

operations is important. 

The clang AST model is capable of retrieving this information, and it is saved as the result 

type for binary and unary operations, as described in the previous section. This 

information can then be used in the analyzer for more accurate estimations. 

int main() { 

  char a = 4; 

  char b = 6; 

  char c = a + b; // expr 1 

} 

Figure 7. Example of an arithmetic expression resulting in implicit conversion. 

int main() { 

  long long a = 10; 

  int b = 40; 

  long long c = a + b; // expr 1 

} 

Figure 8. An example of implicit operand promotion in arithmetic expression due to other operand type. 
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4.3.3 For-loop headers 

Another point worth consideration is the handling of for-loops. In equation (2.8) from [1], 

the execution time of a for-loop is most accurately calculated as follows: 

𝑡𝑙𝑜𝑜𝑝 = 𝑡𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 + (𝑁 + 1) × 𝑡𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 + 𝑁 × 𝑡𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡 + 𝑁 × 𝑡𝑐𝑜𝑑𝑒 

where N is the number of iterations accomplished, the total loop execution time is 𝑡𝑙𝑜𝑜𝑝, 

the loop initialization expression time is 𝑡𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛, the loop’s condition expression 

time is 𝑡𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛, the loop’s increment expression time is 𝑡𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡, and the loop body’s 

execution time is 𝑡𝑐𝑜𝑑𝑒. This requires the AST visitor to extract all 4 distinct components 

from a C language’s for-loop and to separate them appropriately. 

A section of the AST for a complete for-loop looks as follows: 

 

Figure 9. A for-loop AST example. 

 

In Figure 9, the 4 distinct sub-nodes which make up a complete for-loop are shown: the 

initialization expression (Init), the condition expression (Cond), the increment expression 

(Inc), and the body compound statement (Body). Along with the visitation order of the 

nodes: 1 – 5. 

The generalized activity for handling this can be seen in Figure 10. The branch number 

is incremented only if the for-statement’s header has both an initialization expression, and 

either a condition or an increment expression or both. If this pattern is met, then the branch 

number that gets attached to nodes being extracted is incremented until the initialization 

expression is has been traversed. Otherwise, there is only one branch: either the 

initialization expression on its own, or the condition and increment expressions on their 

own. 
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This method of parsing guarantees that the branch numbers attached to the operations 

extracted from the for-loop headers match the output of the simulator. The practical 

implementation of this parsing ended up also requiring handling a few exceptional cases 

as well, due to the way the AST is traversed. 

 

4.4 Parser output format 

The parser’s output format, generated by the atomic operation storage object, consists of 

a JSON dictionary of C-code file names as keys, tied to a list of atomic operations as a 

corresponding value. An example of this is illustrated in Figure 11: 

Figure 10. For statement parsing activity diagram. 
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Figure 11. Example output of the atomic operations parser. 

 

Each atomic operation in the entry field contains serialized information outlined in Table 

2. In addition to this, an additional helper value is added to the JSON object, which 

contains the type of operation entry. For the purposes of this work, it indicates whether 

the entry is a basic operation or a function call. 

It should be noted that since the list of serialized atomic operation objects is flat, it is 

possible that multiple atomic operation objects exist with the same line number. This has 

to be taken into account when detailing the analyzer in the following chapter. 

4.5 Conclusion 

In this chapter, the operation and behaviour of the atomic operation parser has been 

detailed. Along with the output format that is going to be ingested by the analyzer. The 

analyzer shall be the next component that will be detailed. 

 

{ 

  "file_a.c": [ 

    { 

      "branch_number": 0, 

      "entry": [atomic operation] 

    }, 

    { 

      "branch_number": 1, 

      "entry": [atomic operation] 

    } 

  ] 

} 
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5 Profiling & Analyzer 

This chapter will describe the analyzer, which will combine the results of a simulated run 

of the program that is being evaluated, and the output of the parser. The output of the 

analyzer is a total count of every unique atomic operation that was executed during the 

simulated run, along with an execution time estimate based on these totals. As has been 

noted in Chapter 2 of this work, gcov is being used as a simulator and code coverage tool, 

along with gcovr. The following section will detail this process, and the limitations it 

imposes. 

5.1 gcov & gcovr 

gcov is a test coverage tool, which is meant to aid in the profiling and analyzing of 

programs compiled with GCC. A common use-case for the tool would be measuring unit 

test coverage, for example. And this code coverage feature is the reason for using gcov 

within the current work as well: it is able to output how many times a given line of C-

code is executed, if at all. [14] 

In order to be used, the program under evaluation will first have to be adjusted into a state 

where it can be executed on a regular personal computer. For embedded systems 

programming, this would mean removing or stubbing out code which deals with 

peripheral control, for example. This does put limits on the type of code which can be 

evaluated by the system being described in this work. The code would then be compiled 

with the “-ftest-coverage -fprofile-arcs” flags using GCC and executed. 

There are some shortcomings with the methodology of using an external simulator. One 

issue is that simulating external stimuli is difficult if not impossible. As such, when 

writing the simulation program, care must be taken to specifically plan out the scenarios 

that need to be measured. 

To better preprocess the output of the gcov tool, a supplementary tool was used: gcovr. 

gcovr is a utility program in Python, which takes the output of gcov and generates a more 
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usable report from it. This work uses gcovr to generate a JSON report, which is similar 

to the output of the atomic operations parser: a list of executed lines that can tied to file 

names. [15] 

The following figure illustrates the JSON output of a gcovr report: 

Where each line object is structured as follows: 

Where “count” is the number of times this line was executed during the simulation run, 

line_number is the line number from the source file, and noncode is a boolean value 

indicating whether or not the line in question contained executable code. 

5.1.1 Branches in gcov 

An interesting issue to address has been gcov’s and gcovr’s reporting of multiple branches 

of execution on the same line. The way this is handled, in the output, is by adding a special 

“branches” list to a line entry, as was illustrated in the previous section. The list will 

contain all the different branches of execution that are present on that one line, along with 

specific hit “counts”. The sum of the branch hit counts is equal to the hit count of the line 

containing the branches. 

{ 

  "gcovr/format_version": gcovr_json_version 

  "files": [ 

    { 

      "file": "file_name.c", 

      "lines": [line] 

    } 

  ] 

} 

{ 

  "branches": [branch], 

  "count": count, 

  "line_number": line_number, 

  "noncode": noncode 

} 

Figure 12. gcovr JSON output structure. 

Figure 13. gcovr JSON output line object structure. 
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For the purposes of this work, branches have been labelled with their index, as they appear 

in the JSON report generated by gcovr. The first branch, if present, will be marked as 

branch 0, the next branch on the same line as branch 1, and so on. 

Understanding how these branches correlate to actual execution logic within the C-code 

is important to increase the prediction accuracy of the analyzer. As already explained in 

Subsection 4.3.3, the parser itself is able to separate items like the for-loop initialization 

expression out from the condition and increment expressions. Due to this, the analyzer is 

required to do the same. A second use-case for understanding branching is the dissection 

of eagerly evaluated logical expressions, where the time spent on different branches is 

non-trivial. 

For-loop headers will generate two branches: one for the initialization clause, and the 

other branch for both the condition and the incrementation clause. Testing revealed that, 

consistently, gcovr on version 4.2 produces a JSON report wherein the initialization 

branch is always as branch index 1, and the condition and increment branch are presented 

as branch 0. The parser mimics this behaviour: marking all atomic operations in the 

initialization statement as branch 1, and the other for-loop header components as branch 

0, if they are present. 

The other common case for encountering branches is the expressions for complex 

conditional clauses. A simple logical OR or AND expression will generate 4 different 

branches from gcov, if used in an if-clause. Two OR or AND expressions joined together 

will produce 6 different branches. However, mapping these branches back to their 

semantic meaning has not been successful over the course of this work. As such, the 

analyzer cannot differentiate which exact branches of logical expressions are being 

executed. This may lead to error in the execution time prediction if the subexpressions in 

some logical expressions are non-trivial. 

5.2 Analyzer 

The analyzer program itself is implemented using the Python programming language. In 

Figure 3, it accepts the output of both the atomic operations parser and the simulator 

(gcovr) as inputs. As specified earlier, these are handled as JSON data files. And the 
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analyzer will then output JSON and a user readable result containing the following 

information: 

• the total number of times each atomic operation is used for the given C-code 

source files, 

• an estimation of the total execution time for the program, using the methodology 

outlined in the beginning of this work. 

The analyzer’s primary activity is described in the following UML activity diagram. The 

activity is executed per source file that exists in both the simulator output file and the 

atomic operations parser’s output file. 

 

Figure 14. The analyzer's main activity diagram. 



37 

Lines from the gcovr simulation report are read and processed one at a time. Due to the 

way gcovr puts branches as members of the line object, the analyzer will actually create 

a gcov line object per branch per line. The branch numbers are set appropriately, so that 

atomic operations can be matched with appropriate branches from gcovr. 

A hashmap-like structure is used to hold all of the atomic operations that have been 

encountered thus far, along with a count. This structure will, by the end of the analyzer’s 

work, contain the total counts for each unique atomic operation. These totals can then be 

output to the user. 

The atomic operations database can be realized as either another JSON file or some other 

format. It would contain a map of atomic operations with their execution times as 

measured by experimentation. The total time of execution would then be done by 

summarizing, as explained in 2.1. This will output the final prediction for the total 

execution time of the program. 

5.3 Conclusion 

This chapter detailed the implementation of the analyzer, which is the final component 

for the performance estimation system. It allows us to provide a list of atomic operations 

from parsed source code files, and to combine them with a simulator’s output in order to 

conduct an estimation of both execution time and energy usage. 
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6 Evaluation and Results 

This chapter will focus on evaluating the results of the system that was implemented over 

the course of this thesis work. The goal here is to first validate the system and to then test 

it against with more complicated and relevant problems. The source code for the system 

that was developed as a product of this work can be found in Appendix 2. 

6.1 Full Example 

First, a full example to demonstrate the complete functionality of the system. Let us take 

the matrix multiplication benchmark program as an example. The code for this program 

can be found in Appendix 3 and was originally published in [16]. The goal of this example 

is to illustrate how the system functions, what the intermediate outputs are, and how this 

can be integrated with the estimation methodology to provide an energy consumption 

estimation. 

The source file of the program is first run through the atomic operations parser. This will 

extract all of the atomic operations, as was described in Chapter 4. In the case of the 

matrix multiplication program, the parser will extract 20 unique atomic operations from 

the source file. These are saved as a JSON file. 

Following this, the source program is compiled with GCC and special switches to allow 

for code coverage reports to be generated. These switches are: “-fprofile-arcs -ftest-

coverage -fPIC -O0”. As explained in Section 5.1, test-coverage is necessary for gcov to 

work, along with the profile-arcs flag. The PIC flag enables generation of position 

independent code. And O0 disables compiler optimizations, which is necessary to 

generate more accurate coverage output. The position independent code flag may not be 

strictly necessary for this methodology to work. Running the compiled output will then 

generate the files necessary for gcov to accurately report code coverage. 
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The gcovr tool is then ran, with the JSON output format specified and saved to a file. In 

the case of the current example, the tool will report that 7 lines of the source code were 

hit. With 6 distinct branches: 2 for each for-loop present in the program. 

Finally, both JSON files output from the gcovr tool and the atomic operations parser are 

given to the analyzer. The analyzer will then output the following information as both 

JSON and user readable text as shown in Table 3. The total number of unique operations 

executed during the simulation run was 700. 

Table 3. Example output of the system. 

Operation 

name 

Count Additional information 

< 78 Result type: int 

++ 78 Result type: int 

= 19 Result type: int 

= 15 Result type: unsigned short 

Array subscript 75 Result type: unsigned short 

Array subscript 75 Result type: volatile UInt16 [5] 

+= 60 Result type: unsigned short 

* 60 Result type: int 

Array subscript 120 Result type: unsigned short 

Array subscript 60 Result type: const UInt16 [4] 

Array subscript 60 Result type: const UInt16 [5] 

 

This information can now be used for estimating the power consumption of the program 

on different platforms for which models exist. For the purposes of this example, limited 

models for two microcontrollers were created: the STM32F401RE and the ATmega32U4. 
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A comparison of the two microcontrollers can be found in Table 4. Both microcontrollers 

were measured on development boards. This specifically caused the STM32’s 

measurements to be higher than expected, as the board also supplied power to an 

additional programmer component. However, for gauging the accuracy of the estimation, 

this will not cause issues. The limited models were created using the measurement 

methodology outlined in Section 3.1. of [1]. 

Table 4. Overview of modelled microcontrollers. 

Microcontroller Development 

board 

Architecture Clock speed 

STM32F401RE Nucleo-64 

F401RE 

32-bit ARM 84 MHz 

ATmega32U4 Arduino Micro 8-bit AVR 16 MHz 

 

With the models present, the estimated energy usage of the program could be calculated 

by the system for both platforms. This can then be compared with the actual energy 

consumption of the benchmark. The results can be found in Table 5. The error values 

were calculated with the following equation: 

𝑒 =
|𝐸𝑎𝑐𝑡𝑢𝑎𝑙 − 𝐸𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑|

𝐸𝑎𝑐𝑡𝑢𝑎𝑙
× 100% 

Table 5. Energy consumption estimation results. 

Microcontroller 𝑬𝒂𝒄𝒕𝒖𝒂𝒍 (mJ) 𝑬𝒆𝒔𝒕𝒊𝒎𝒂𝒕𝒆𝒅 (mJ) 𝒆  

STM32F401RE 11.4 13.2 15.8% 

ATmega32U4 101.8 111.5 9.5% 

 

In both cases, the estimated energy consumption was higher than the actual energy 

consumption of the program. The primary cause of this error is likely down to the manual 

and less accurate methodology. Specifically, the power usage measurement devices used 
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were not as accurate as they could have been or were in [1]. An illustration of this is that 

when just the execution times for the atomic operations are looked at, the errors between 

the estimation and the actual measured values for both microcontrollers become smaller: 

10.6% for the STM32F401RE and 7.3% for the ATmega32U4. This would clearly 

indicate that a considerable difference comes from how the energy consumption figures 

were measured. It is likely that the more refined automated modelling methodology 

described in Section 3.2. of [1] would offer better results. 

Overall, this section illustrated how a complete estimation could be acquired for a given 

program. The atomic operations parser in combination with the analyzer were used to 

gather the total number of unique atomic operations that were executed by a given 

program. And then this information was successfully integrated with a model, created 

according to earlier methodology, to provide a complete energy consumption estimation. 

6.2 Validation of the Atomic Operation Parser 

This chapter will continue by ensuring that the parser and analyzer are able to successfully 

parse other benchmarks used in [1]. No energy consumption estimations are done for 

these more complex programs due to missing models. The objective here is simply to 

validate the automatic atomic operation extraction and summarization process against 

known data. The source code for the specific versions of the programs used is found in 

Appendix 4. The matrix multiplication and FIR filter programs were originally published 

in [16]. The validation programs were run through the parser and the analyzer, to 

automatically count the number of total atomic operations found. The results and a 

comparison with the counts from [1] are shown in the following table: 

Table 6. Comparison of reference atomic operation counts vs. those counted by the system. 

Benchmark 

program 

Atomic 

operations per 

[1] 

Atomic 

operations 

counted 

Remarks 

Matrix 

multiplication 

292 700  

FIR filter 2 557 4 213  
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Benchmark 

program 

Atomic 

operations per 

[1] 

Atomic 

operations 

counted 

Remarks 

Image 

processing 

541 208 602 549 Filter size is 50x50. 

 

As can be noted, there is a discrepancy between the atomic operations counted in [1] and 

by the tools created for this work. There are two key points of difference: first, the 

previous methodology counted for-loops as a singular atomic operation. Whereas the 

analysis methods used by the system presented in this work will more accurately split for-

loops into multiple atomic operations corresponding to the individual expressions. The 

second key difference is that the current methodology counts array subscript operations 

as atomic operations, while the other does not. The output of the system for all three test 

cases was manually verified as correct. 

6.3 More Complex Benchmarks 

As more complex benchmarks, the Dhrystone [17] and Whetstone [18] benchmarks were 

used. The objective of this experiment is to see if the system is capable of parsing these 

benchmark programs, so that future work may use it as a stepping off point. 

Both benchmark programs parse successfully, with no error being created. One key 

difference between these programs and the benchmarks covered in the preceding work is 

the usage of goto statements and various standard library function calls. Goto-s are 

unparsed as of this time, and function calls will require supplementary measurement and 

profiling to get proper performance estimation. 

  



43 

The atomic operation counts for both of the mentioned benchmarks are presented in the 

following table: 

Table 7. Dhrystone and Whetstone atomic operations counts. 

Benchmark program Atomic operations counted 

Dhrystone 1 651 801 

Whetstone 92 801 

 

Closer inspection of both of those programs also reveals that they contain calls to external 

functions. As such, not all atomic operations are completely visible to the parser at this 

point. In order to gain accurate estimations of these external functions, they would have 

to profiled individually, or somehow otherwise introspected. However, the current 

parsing results are good enough for immediate use. 

6.4 Summary and Future Work 

This chapter has provided a full example demonstrating how the automated system 

detailed throughout this work can be used to apply the energy consumption methodology 

of [1] to produce a complete power consumption estimation. Following this, the system 

was proved able to successfully parse all of the test programs that were originally used to 

verify this methodology. And finally, it was demonstrated that the system is able to handle 

more complex programs, including relevant and popular benchmarking programs, such 

as Dhrystone and Whetstone. This allows for easier application and validation of the 

performance estimation methodology that was originally proposed in [1]. 

A possible topic for future work would be automating the analysis of C-standard library 

functions. Currently, the parser can only extract unique operations if it has access to the 

source code of a given function. This leaves external functions, such as the standard 

library functions, as black boxes which have to be individually profiled for increased 

accuracy during the estimation. Though the parser in its current state does extract and 

point out calls to them. 
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Tied to the previous point is also the matter of functions that belong to other external 

libraries. A code project may include proprietary dependencies, the source code of which 

is not available for parsing. This would require additional functionality, such as parsing 

the library’s object code, in order to obtain atomic operations. Both estimation and parsing 

methodology would have to be reviewed to accommodate this. 

One final matter that could be addressed would be to look further into the branches that 

gcov generates as a part of its analysis. This issue was raised in Subsection 5.1.1. While 

with trivial logical expressions the impact on estimation accuracy may be negligent, 

logical expressions with longer execution times will increase the estimation error. 
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7 Summary 

Over the course of this work, a methodology for extracting and summarizing atomic 

operations from C-code files was proposed and detailed. The chosen methodology relies 

on parsing the AST of a C-code program, and extracting atomic operations from there. 

The atomic operations would then be automatically combined with the output of the code 

coverage tool gcov. 

The atomic operations parser implementation was done using the LLVM and clang 

libraries. This was the component responsible for doing the atomic operation extraction. 

In its final implementation, the atomic operations parser is successfully able to parse both 

the example programs from [1] and more complex programs. These complex programs 

include the Dhrystone and Whetstone benchmarks. 

Following this, the analyzer’s implementation and functionality was described. The 

analyzer is the component responsible for combining the output of a code coverage tool 

with that of the atomic operations parser. Combining these two pieces of information 

allows the analyzer to count all of the individual atomic operations that would be executed 

during the runtime of the simulated program. 

This total number of unique operations, along with their types, can then later be combined 

with models of various microcontrollers to trivially generate energy consumption and 

performance estimations. A demonstration of this was offered in Section 6.1, where the 

energy consumption of a benchmark was estimated using the system, and then compared 

with the real results. 

As a result of this work, there now exist tools for applying the methodology devised in 

[1] to more complex programs. This is an important step in potentially integrating this 

methodology in regular development workflows. And it also provides the necessary tools 

for further testing and refining the methodology in the future. 
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Appendix 2 – Source code of the tool 

The source code of the tool that was developed over the course of this work can be found 

in the git repository here, licensed under the MIT license: 

https://git.skullnet.me/erki/masters-thesis 

  

https://git.skullnet.me/erki/masters-thesis
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Appendix 3 – Matrix multiplication benchmark program 

typedef unsigned short UInt16; 

 

const UInt16 m1[3][4] = { 

{0x01, 0x02, 0x03, 0x04}, 

{0x05, 0x06, 0x07, 0x08}, 

{0x09, 0x0A, 0x0B, 0x0C} 

}; 

 

const UInt16 m2[4][5] = { 

{0x01, 0x02, 0x03, 0x04, 0x05}, 

{0x06, 0x07, 0x08, 0x09, 0x0A}, 

{0x0B, 0x0C, 0x0D, 0x0E, 0x0F}, 

{0x10, 0x11, 0x12, 0x13, 0x14} 

}; 

 

int main(void) 

{ 

int m, n, p; 

volatile UInt16 m3[3][5]; 

for(m = 0; m < 3; m++) 

{ 

for(p = 0; p < 5; p++) 

{ 

m3[m][p] = 0; 

for(n = 0; n < 4; n++) 

{ 

m3[m][p] += m1[m][n] * m2[n][p]; 

} 

} 

} 

return 0; 

} 
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Appendix 4 – Other benchmark programs 

All of the programs used as benchmarks for this thesis can be found in the following git 

repository, under the “testcases” folder: https://git.skullnet.me/erki/masters-thesis 

Check specific file headers for attribution and licensing information. 

https://git.skullnet.me/erki/masters-thesis

