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Abstract

This research report gives a high-level technical overview of avenues that can
be used to attack applications that use Software Guard Extensions as a privacy
enhancing technology. We cover multiple attack vectors and give overview of
techniques to make these attack vectors more challenging to exploit. The reader of
this report–likely a software architect, or security engineer, etc.–is expected to be
somewhat familiar with Intel Software Guard Extensions.
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1 Technical Background

Intel Software Guard Extensions (SGX) is an extension of the instruction set of Intel
processors which enables developing secure applications when even the host operating
system is not trusted. SGX relies on three concepts to protect data: enclaves, attestation
and data sealing.
SGX is a set of CPU instructions for creating and operating with memory partitions called
enclaves. When an application creates an enclave, it provides a protected memory area
with confidentiality and integrity guarantees. These guarantees hold even if privileged
malware is present in the system, meaning that the enclave is protected even from the
operating system that is running the enclave. With enclaves, it is possible to significantly
reduce the attack surface of an application.
Remote attestation is used to prove to an external party that the expected enclave was
created on a remote machine. During remote attestation, the enclave generates a report
that can be remotely verified with the help of the Intel Attestation Service. Using remote
attestation, an application can verify that a server is running trusted software before
private information is uploaded.
Data sealing allows enclaves to store data outside of the enclave without compromising
confidentiality and integrity of the data. The sealing is achieved by encrypting the data
before it exits the enclave. The encryption key is derived in a way that only the specific
enclave on that platform can later decrypt it.
SGX can be used to greatly enhance security of applications but it is important to
highlight that organizational and human aspects of security are nearly always more
important than technical aspects. Information may leak due to a human error without
any malicious parties involved. For example, due to coding mistakes, lack of knowledge,
or high-level decisions to not commit sufficient resources to security. Furthermore, no
mitigation is helpful when the platform (SGX SDK and firmware) in not kept up to
date. SGX requires some rather advanced techniques to be attacked successfully but
automated tools that exploit such vulnerabilities (such as transient execution) are already
out there in the wild [Cim20]. In SGX many of such vulnerabilities have been mitigated
by microcode updates.
In Section 1.1 we give a short overview of Intel SGX technology. The overview is rather
brief and the reader unfamiliar with the technology is welcome to consult introductory
materials such as the Intel SGX developer guide [Int21]. In Section 1.2 we classify
protected resources into categories: cryptographic keys, user data, and statistics/metadata.
Each type of resource could be protected with different mitigations. In Chapter 2 we
go over the following attack vectors that can be used to target applications protected
by Intel SGX: cryptographic primitives and protocols (Section 2.1), enclave surface
(Section 2.2), side channels (Section 2.4), speculative execution (Section 2.5), and output
inference (Section 2.6). For each attack vector we cover some proof of concept attacks
and give some guidelines for mitigations.
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1.1 Protection mechanisms of Intel SGX

When talking about protections mechanisms providedby SGX the overarching assumption
is that Intel is a trusted third party. Currently we have to assume that the hardware has
no back doors and that Intel is an honest and uncompromised participant during remote
attestation.
The internals of Intel CPU dies are nearly completely opaque and best guesses on how
they internally function are via official Intel documentation and patent applications.
Luckily, great strides have been recently made by security researchers by revealing
security weaknesses and flaws in CPU design. While discovered flaws affect Intel the
most (due to promised guarantees of SGX) they are not limited to Intel. Some of the
timing side channels are inherent to (modern) microcontrollers and thus affect all modern
CPUs (see Nemesis: Studying Microarchitectural Timing Leaks in Rudimentary CPU
Interrupt Logic [BPS18]).
But, unfortunately, without fully transparent view andaccess to documentation of internals
it is impossible to prove lack of security vulnerabilities. Even with full transparency
building a formal specification, model and proving security of such complex architecture
would be a monumental undertaking.

1.1.1 Privacy, integrity and isolation of data

SGX enclaves are isolated memory regions of code and data residing in main memory
(RAM). Privacy, integrity and isolation of data between enclaves is achieved via
authenticated encryption with the help of trusted hardware on the CPU-die [Gue16].
Unencrypted plain-text values only reside on the CPU-die in registers and various caches.
Enclave may store values in RAM region that is protected by encryption and any attempts
to modify the values will be detected when the tampered region is read. When integrity
(encrypted value is modified) or freshness (encrypted value is replayed) violation is
detected the system will hang and will need to be re-booted (so-called drop-and-lock
policy). An outside observer is not able to distinguish if encrypted values in the enclave
memory refer to equal plaintext values or not. Additionally, an outside observer will
not be able to tell if subsequent writes to the same (or different) memory address
store the same plaintext values or not. While SGX protects the contents of memory
cryptographically it does not hide the locations where memory stores and loads refer
to. Many attacks exploit exactly that limitation in combination with transient execution
behaviour of modern processors.

1.1.2 Remote attestation and integrity of code

The Intel SGX features remote attestation [AGJS13, JSR+16, KSC+18] allowing for
clients to remotely establish trust of secure enclaves. Remote attestation is a cryptographic
protocol that in the end establishes a secure communication channel between a secure
enclave and a client. While Intel SGX offers more flexibility in this work we assume
that remote attestation involves following three parties:
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• a server hosting a secure application with its enclave,

• a client that is mistrustful of the server but wants to establish trust of the enclave,
and

• the Intel Attestation Service (IAS) that verifies the enclave and provides the client
the assurance of enclaves’ authenticity.

If the client trusts SGX technology, and trusts Intel to not collude with the server (and
not behave maliciously in other ways) then the client can assume that remote attestation
establishes the following:

• Identity (cryptographic hash of code and data) of the enclaved application.

• That enclave has not been tampered with.

• Version of the hardware platform.

• The security patch level of hardware.

• Version of Intel SGX SDK (software library provided by Intel for developing SGX
applications).

Further details of remote attestation scheme is beyond the scope of this work.

1.1.3 Attack surface minimization

Major protection mechanism of Intel SGX is attack surface minimization1.
When a remote attacker is targeting a security critical application in classically hosted
(personal server, cloud) environment often the initial point of entry is not the security
application itself but some other application running (in user mode) on the same host.
The other application acts as a gateway to deploy an exploit against operating system
that, in turn, compromises all other applications on that host. This means that the attack
surface may encompass many millions of lines of code. Such a large code base is
infeasible to protect or audit.
SGX enclaves run in user mode and are protected from a potentially hostile operating
system. By eliminating the direct threat of the operating system we reduce the attack
surface by an order of magnitude against remote attackers and offer protection against
attackers with privileged and even physical access.
Applications that use SGX are divided into two parts. A trusted component (a set of
enclaves) and an untrusted component. The untrusted component is regular application
code that interacts with enclave(s) in some way. From the enclave standpoint both the
operating system and the rest of the application are to be viewed as untrusted.
To some degree most SGX enclaves need to communicate with the operating system
(to manage files, to perform I/O, etc.) or non-enclaved part of the security application.

1https://software.intel.com/en-us/articles/intel-software-guard-extensions-
tutorial-part-1-foundation
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This interaction between barriers of trust can not be achieved via regular function calls.
Instead, there are two special calls: ECALLs and OCALLs. ECALL is a (trusted)
function call that enters an SGX enclave and OCALL is an (untrusted) function call
that leaves an enclave. ECALLs are referred to as trusted calls in the sense that they
invoke trusted (enclaved) code, and similarly OCALLs are referred to as untrusted calls
in the sense that they execute code that the host of the server is able modify without the
client being made aware of it. Other function calls made in enclave can not leave that
same enclave. Using Intel SGX SDK the set of allowed OCALLs and ECALLs for each
enclave is strictly specified using enclave definition language (or EDL) and this set of
calls defines the direct attack surface of the enclave.

1.2 Protected resources

We consider three types of resources in the order of sensitivity: cryptographic keys, user
data, and statistics/metadata.

1.2.1 Cryptographic keys

In order to protect user data enclaved applications have to generally manage some sort
of cryptographic key material. For example, during remote attestation client and enclave
could establish a symmetric session key that is used to encrypt further communication
between the client and the enclave. If this session key is compromised the trusted channel
is broken and any participant with appropriate access can play either the role of the client
or the enclave or simply passively collect all client data. Side-channel vulnerabilities
are particularly dangerous against algorithms that handle keys as even partially leaked
information about a key can lead to a total compromise.
Cryptographic keys are the most sensitive resource to protect. When keys are com-
promised it is likely that user data can be decrypted and, in some extreme cases, all
security guarantees of SGX enclave can be broken (see ZombieLoad [SLM+19], ) if
SGX internal keys are compromised. Using compromised cryptographic keys an attacker
can forge messages and manipulate data in undetectable ways. Hence, most aggressive
mitigations should be applied to protecting cryptographic keys and procedures should
be developed to lessen the impact of compromised keys.

1.2.2 User data

The primary goal of SGX is to keep user data secure by protecting both privacy and
integrity at runtime. Hence, as the most basic security consideration user data must be
kept encrypted at rest using industry standard cryptographic primitives.
SGX automatically provides strong in-memory encryption via a specialized on-chip
hardware memory encryption engine (see A Memory Encryption Engine Suitable for
General Purpose Processors [Gue16] by Shay Gueron) and a convenient API for working
with encrypted files. Both of these mechanisms also protect data against tampering
(integrity protection). The memory encryption engine furthermore also offers data replay
protection.
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Many applications also use publicly available data while processing private information.
When this public data is tampered it affects results of (private) data processing. For this
reason the integrity of publicly available data should be protected. Thanks to its low cost
overhead of SGX, it is often easy for public data to be protected by the same encryption
and integrity protection mechanisms as private data.
Data processing algorithms are frequently difficult to protect against side-channel
attacks (see Section 2.4). Attack mitigations can reduce performance significantly.
For this reasons it is often not feasible to handle processing of public and private
data uniformly. For example, the same functionality could be implemented in two
distinct ways: one implementation to handle private data in a side-channel protected
manner, and the second implementation to handle public data in a more performant (but
non-side-channel-hardened) manner.
In conventional languages without a security type system [SM03] it is difficult to cleanly
segregate data with different security levels and, thus, it is easy to introduce accidental
data leakage when handling public and private data non-uniformly (e.g. calling algorithm
that is not side-channel hardened on private data). When the language offers sufficiently
powerful type system the information flow security can be encoded at the library level (for
example [PVH19, BVR15]). Great care must be taken when handling data of different
security levels.

1.2.3 Statistics/metadata

The result of processing private user data is usually some statistics intended for some
participant. For example, distribution of salary information including minimum, max-
imum, average and quantiles. Leakage of statistical information across large sets of data
is occasionally not problematic but statistical information is often gathered for many
subsets of records (for each age group, for each gender, etc). In general it is reasonable
to assume that output statistics is very sensitive information and should be handled
as carefully as regular data. Only the intended participants should have accesses to
statistical results.
Side channels (see Section 2.4) usually do not directly leak input records or output
statistics but rather they indirectly reveal some (statistical) information such as the
number of records, distribution of record values, or when and how often a particular data
is accessed. Depending of the structure of processed data this may also include sizes of
individual records. We call this indirectly revealed statistical information inferable as a
malicious party does not directly learn it. Instead, a malicious party must make some
effort to deduce it via side channel analysis.
Inferable information is not immediately public to everyone. The amount of information
leakage depends on the involved participants, the amount of risk potential attackers are
willing to take, and resources they can afford to spend. For example:

• Honest (but curious) clients are only able to learn approximate timing of data
processing applications. However, this can be done with no risks involved or
resources spent.
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• An honest host is able to see input sizes and also learn decently accurate timing of
the application2.
Millisecond-level timings can often be directly learned from logs or by observing
the process table. We consider such coarse grained measurements to not be a
security risk. A host that wants to learn fine-grained timings to mount side channel
or speculative execution attack has to take higher risks and expand more resources.

• A remote client with malicious intent will need to spend a great deal more resources
to break into the application host, escalate privileges, and then mount a local
attack against the security enclave.

• Furthermore, malicious third parties need even more resources to gain access to
any inferable information and mostly likely need to take higher risks to doing so.

Without knowing the data processing algorithm implementation details and precise
specification of the CPU it is impossible to accurately characterize what data can be
indirectly inferred. For this reason indirectly inferable statistics can be the most difficult
resource to protect.
As an example consider attempts to hide size information of tabular data. First of all, for
every data column all cells must be padded to the same length. Next, all algorithms that
subsequently process that data must not leak the real record sizes via timing or memory
access patterns. To be sure of that, a developer: must have a clear understanding what
data in the application at any point is sensitive, must be aware of how compilers transform
high-level code to machine code, and has to also be aware of what data processing steps
are constant time. This kind of know-how must reach down to low-level knowledge of
some CPU internals in order to understand what instructions are side-channel safe.
Inferable data can occasionally be either not as important to protect or is already public
information. For example, the number of patients suffering from a particular disease
is not very sensitive information if that information is taken from general population.
However, if that information can be sensitive if it applies to a small sub-group.
For an attacker to infer fine-grained sensitive statistical information it usually needs very
high access levels. This means that the attacker has to be hosting the secure enclave
and/or has significant resources to conduct a targeted attack remotely. For more details
see Section 2.4.

2 Attack vectors

In this chapter we cover four of the attack vectors that can target applications that
use Intel SGX: cryptographic primitives and protocols (Section 2.1), enclave surface
(Section 2.2), side channels (Section 2.4), speculative execution (Section 2.5), and
output inference (Section 2.6). Each section covering an attack vector is independent
and gives a brief overview of the vector, covers some proof of concept attacks, and
give some guidelines for mitigation. Sections do cross references each other as they

2This information is usually logged without any confidentiality or integrity protection.
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are not completely independent. For example, speculative execution and side channel
attacks are often closely related. The list of attack vectors that we cover is by no means
comprehensive and many common vectors (credential compromise, phishing, denial of
service, etc.) are beyond the scope of this document.
Furthermore, many of the attacks [BKS+22, MOG+20] could be considered to directly
exploit architectural or microarchitectural bugs depending on the security model and the
amount of effort required for secret extraction. We classify these powerful attacks under
side-channel vulnerabilities.

2.1 Cryptographic primitives and protocols

Attacks against cryptographic primitives and protocols are not specific to SGX. However,
it is possible for SGX to make these vulnerabilities more difficult to find and exploit due
to attack surface minimization. With a classical approach to security an attacker that has
gained total local access would not need to attack cryptographic methods directly. SGX
enabled applications may force attacker to resort to exploiting cryptography.

2.1.1 Access requirements

Design or implementation flaws in cryptographic protocols (like TLS) may lead to
remote vulnerabilities [DKA+14]. Remote code execution and other similar attacks via
buffer overflows are covered in Section 2.2; these means of entry exploit the enclave
surface and not cryptography directly.
An attacker with local access is able to retain enclave state and thus apply long-term
attacks on encrypted data. This includes brute-forcing encryption keys when weaknesses
are eventually found in cryptographic primitives. Furthermore, local privileged attacker
can also arbitrarily invoke enclave in a sequential or parallel manner in order to exploit
weaknesses in any cryptographic protocols the enclave implements.

2.1.2 Countermeasures

Cryptographic primitives that SGX uses and recommends (AES128, SHA256, ECC
P-256) have been well researched and are widely considered to offer strong security.
While it is impossible to fully rule out the risk, a rapid advances in research that allows
for these primitives to be easily broken are unlikely to happen.

2.1.2.1 Misuse errors

Perhaps simplest to exploit enclave surface attacks target the misuse of otherwise secure
cryptographic primitives. This misuse can often stem from poorly designed API and
bad library documentation [GS16]. For example misuse errors include:

• misunderstandings of properties a specific cryptographic primitive offers,

• unsatisfied preconditions for secure use of a primitive,
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• regular coding errors.

We make the following recommendations to combat misuse errors:

• When available use high-level cryptographic API.

– Prefer battle-tested and well-documented libraries (when available).
– Only use low-level API when necessary and always provide a reason why a

low-level interface is used.
– Strongly prefer libraries that have simple and hard-to-misuse interfaces.

Functions should have no combination of parameters that directly lead to
vulnerabilities. Functions should offer sensible and secure default parameters.

• Use as simple as possible protocols for a given task. Large protocol suits have
correspondingly larger attack surface.

• Do not implement custom cryptographic primitives and avoid using existing
cryptographic primitives in non-standard ways.

• Establish a code review process.

• Train developers on secure programming and cryptography fundamentals.

2.1.2.2 Long term attacks

A potential attack scenario directly against cryptographic primitives is one where slow
progress over years eventually reveals weaknesses that over time lead to practical attacks
long (after the primitive has been phased out of use). For example, SHA1 hash has
not been considered safe to use since an attack published in 2005 [RO05] showed
fundamental weaknesses in design3. The first publicly known collision was announced
over a decade later in 2017 [SBK+17]. At the time the attack required considerable
computing power (6500 years CPU-time and 110 years GPU-time).
To exploit this vector an attacker has to retain encrypted data for a long time (years or
even decades) waiting for advances in security research and/or for computing power to
become more accessible and cheaper. This kind of long-term approach is available to
state-level attackers.
Attacks of this type are one of the least probable and most costly. Most likely there are
easier ways for an attacker to achieve the same results. Regardless, to make long term
attacks more resource costly to conduct we make the following recommendations:

• Use well-researched cryptographic primitives and protocols and follow up-to-date
recommendations [Bar20].

• Use perfect forward secrecy where applicable.

3Despite recommendations to prefer replacements since 2010, web browsers only stopped accepting SHA-1
SSL certificates in 2017.
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• Limit the amount of data encrypted using the same key.
In general limit the use of each key. In particular avoid using the same key for
different purposes. For example, in most cases it is a good idea to never use the
same asymmetric key for both encryption and authentication.

• Do not retain keys unless absolutely necessary.
For example, when intermediate data processing results need to be stored on disk
do not persist the encryption key. Either re-derive key when data is needed again
or keep the key temporarily in memory.

• When secrets need to remain protected for long periods of time (say, decades)
quantum resistant security becomes relevant.
Intel SGX alone without other strong security protection is difficult to recommend
as a solution for applications that require protection against state-level attackers
and need for data to remain protected long periods of time.

2.2 Enclave surface

Enclave surface is the most probable attack avenue against enclaved applications.
Attacking enclave via local access is similar to attacking web applications via remote
access. In both cases there is a defined and rather limited interface that an attacker can
work with. In both cases the goal is to exploit this interface to move an application
into an unintended state and by doing so either learn some information or tamper with
existing data.
Attack surface of an enclave developed using Intel SGX SDK is defined in three parts:

1. The set of ECALLs and OCALLs specified in EDL files (either switchless or not).
Attacker with privileged local access is able to arbitrarily use the ECALL/OCALL
mechanism. Attacker can replace OCALL implementations as they reside in
untrusted part of the application. Attacker can also arbitrarily perform ECALLs
to enclave. Using those means attacks can attempt to move enclave into some
unintended state.

2. Reads and writes to shared public memory.
Enclaves have the freedom to read and write non-encrypted (public) memory
regions subject to OS restrictions. An attacker with privileged local access is able
to arbitrarily manipulate public memory.

3. The CPU architecture and behaviour. Including instruction timings, memory
access patterns and other side-channels.
SGX is very complex and interacts with parts of the CPU in ways that are difficult
to intuitively understand. While parts of Intel CPUs, like the instruction set, are
very well documented the implementation details are often not specified. Some
operations performed in an enclave will affect the CPU state in a way that is
visible to a non-enclaved observer.
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2.2.1 Notable proof-of-concept attacks

2.2.1.1 The Guard’s Dilemma: Efficient Code-Reuse Attacks Against Intel SGX

An attack [BCD+18] that allows various memory corruption vulnerabilities in enclave
code to be easily exploited. They abuse the Intel SGX SDK to make attacks more
effective. Their attack does not rely on elevated privileges or a malicious operating
system.
If an enclave does not have vulnerable code then the described attack does not work.

2.2.1.2 AsyncShock: Exploiting Synchronization Bugs in Intel SGX Enclaves

An attack [WKPK16] that relies on enclaves to have memory vulnerabilities (like
use-after-free). They show that these vulnerabilities in enclaves are easier to exploit in
multi-threaded code and present a semi-automated tool for exploiting synchronization
bugs.
If a synchronization bug exists in an enclave the compromised OS can schedule the
enclave threads in a way to always trigger said bug. We consider this to be fundamental
issue that stems from the design trade-offs. This proof-of-concept attack shows the
importance of developing bug-free enclaves. Avoiding multi-threaded enclaves also
fully mitigates this attack vector.

2.2.1.3 SnakeGX: a sneaky attack against SGX Enclaves

Code-reuse attacks can be difficult to detect. SnakeGX [TGCZ21] is an attack framework
to implant a persistent backdoor in legitimate enclaves. The framework is designed
to leave minimal footprint. In particular, the original enclave configuration does not
change; making the enclave compromise not detectable via remote attestation.
While the attack requires the enclave to contain a memory corruption vulnerability this
is not a tall order [Cpp19] as Intel SGX SDK is designed to be used with C++. The
attack is also made easier if the targeted enclave is multi-threaded.

2.2.1.4 SmashEx: Smashing SGX Enclaves Using Exceptions

“In this paper, we introduce a new attack called SmashEx which exploits the
OS-enclave interface for asynchronous exceptions in SGX. It demonstrates
the importance of a fundamental property of safe atomic execution that
is required on this interface. In the absence of atomicity, we show that
asynchronous exception handling in SGX enclaves is complicated and prone
to re-entrancy vulnerabilities. Our attacks do not assume any memory
errors in the enclave code, side channels, or application-specific logic flaws.”
([CYS+21])
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The SmashEx vulnerability relies on software and/or architectural weaknesses of
asynchronous exception handling that enables code-reuse attacks such as return oriented
programming. The attack is powerful enough to leak 1024-bit private key from enclave
memory when using Intel SGX SSL (based on OpenSSL v1.1.1i). This particular
vulnerability has been fixed in SGX SDK since version 2.14.

2.2.2 Countermeasures

2.2.2.1 Enclave API design considerations:

• Simplify and minimize the set of OCALLs and ECALLs.
Simpler interfaces with clear purpose are easier for developers to reason about.
A smaller set of calls allows developers to keep a bigger proportion of the enclave
surface in mind at the same time.

• Document the enclave surface.
Clear and thorough documentation allows developers to reason about the enclave
surface. Good documentation stands as an excellent starting point for formal
specification and proofs if the security level requires that.

• When reasonable split a security application into multiple simple enclaves. While
this introduces the complexity of parallel composition it can be worthwhile if
enclaves can be compartmentalized [And20, Chapter 10].
A system that is compromised of multiple enclaves can be more resilient against
compromise of a single enclave. Consider splitting application to multiple enclaves
if:

– each of the enclaves has a clear purpose and single responsibility; and
– when one of the enclaves is compromised the security impact is clear and

limited.

• When security requirements are strict consider formal specification with correctness
and security proofs.

2.2.2.2 Secure programming considerations:

• Train developers on secure software engineering to follow best practices.

• Establish a code review process.

• Use memory safe languages.
To some degree using a memory safe language mitigates risks involved with SGX
enclaves being able to read and write arbitrary memory. Memory safe languages
reduce the risk of introducing memory safety issues that cause a large portion of
all software vulnerabilities [Cpp19].
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• Avoid using multiple threads in an enclave unless there are very compelling
reasons. In general enforce that enclave can only be entered by a single thread.
This can be forced by configuring the enclave with TCSNum and TCSMaxNum
parameters set to one.
Parallel composition of protocols and interfaces is challenging to reason about
due to exponentially increased number of possible state transitions. An attacker
with local access can trigger any multi-threading bug as they fully control enclave
scheduling.

• Prefer message passing to shared memory.
Whenever trusted (enclaved) and untrusted parts of an application need to com-
municate either prefer the explicit ECALL/OCALL mechanism or some other form
of message passing over shared memory.

• Avoid error recovery and fail fast (see crash-only software [CF03]).
Error recovery paths are likely to contain bugs as they get least amount of testing
given how rarely these paths are taken. To securely implement error recovery
developers must not only reason about correct states of the application but also
incorrect states. With crash-only approach error recovery paths are taken every
time the application starts.

• During remote attestation verify that SMT (simultaneous multithreading) has been
disabled.
Majority of side-channel attacks against SGX are significantly more efficient in
the presence of SMT.

Side-channel attack mitigations are covered in Section 2.4.4.

2.3 Persistent Memory

Enclaves may need to store their state on a disk in order to recover from a reboot, or to
restart after an application failure. SGX supports this through the data sealing capability:
An enclave can ask the CPU through a special instruction, EGETKEY, to derive a sealing
key and then use that key to encrypt the state. Using the same request arguments at a
later call to EGETKEY, the same sealing key can be re-derived for decrypting the old state.
This sealing key can only be re-derived on the same physical CPU, and, depending on
the request arguments, only by the same enclave.
If the solution foresees that the encrypted state is further fully managed by untrusted
components, then the enclave needs to be aware of state rollback and state forking
attacks. A broad overview and systematization of these attacks is given in [MAK+17,
NPZZ22, BKSW23]. A visualization of the capabilities of the untrusted host is shown
in fig. 1: The untrusted host can repeatedly restart the enclave from the same (old) state
to perform some attack; the untrusted host can create multiple enclave instances of
the same .so enclave file using arbitrary states, and incoming client requests might be
incapable of detecting whether they talk to a legitimate or illegitimate fork.
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Figure 1: A legitimate enclave starts its lifetime, saves its state two times and then dies.
The untrusted host created three additional enclave instances from the same .so file,
using different state files.

If the enclave state is split into multiple encrypted files, like a tree-shaped state shown
in fig. 2, then additional care needs to be taken to ensure that the untrusted host cannot
shuffle around some of the state across forked enclave instances.

Figure 2: An enclave may need to split its state into multiple files. For example with a
key-value store, the full set of small keys could be stored in the root state, and each large
value could be stored in a separate file. The enclave code should ensure that a fresh or
forked root state cannot successfully use an unrelated child state.

2.3.1 Access requirements

If the enclave creates encrypted states, then an attacker needs to be able to manage both
the encrypted state data and the enclave life cycle.
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2.3.2 Countermeasures

[MAK+17, NPZZ22, BKSW23] name a few countermeasures which are used by existing
project and comments on their drawbacks. The two main approaches are to use some
secure store which either records a monotonic counter, which is increased by the enclave,
or a state digest (a hash over the state and more). Monotonic counters can be problematic
since a forked enclave will continue to increment its monotonic counter through the
same values as the original enclave. For the secure store various techniques have been
proposed:

• TPMs can store monotonic counters. However, they require hundreds of mil-
liseconds for write and read operations and might be prone to wear out after
insufficiently few write operations, resulting in dysfunctional systems after only a
few days.

• The clients could store the monotonic counters or state digests. However, depending
on the life cycle of clients, they could have problems with validating whether
their recorded state digest is an ancestor of the one in the enclave, or whether the
enclave state was rolled back (and forked).

• A trusted third party, possibly a block chain. This could add additional infra-
structure/deployment burden and may add latency to each request to get full
protection.

2.4 Side channels

Side-channel attacks exploit implementation details of an algorithm to learn more
information about input data that what is intended by the abstract description of the
algorithm. An abstract description of an algorithm does not usually tell anything about
how the program is evaluated in practice, what kind of hardware the code is executed
on, or what kind of underlying data structures are used. All these implicit properties
may give rise to hidden information leaks. Side-channel attacks may exploit timing
information, instruction counts, network packet sizes, probed memory locations, or
power consumption.
Side-channel vulnerabilities are an old topic of research spanning decades. Meltdown
and Spectre attacks exploited side channel vulnerabilities and allowed attackers with
unprivileged local access to leak memory contents from one application to another.
A remote variant of Spectre [SSL+19] also exists. SGX intends to protect against
privileged local attackers that, compared to remote attackers, have a much larger set of
possible side channels to exploit. In this security model any information leaked via side
channels may mean compromised security. Side channels are one of the few known
attack vectors against Intel SGX enclaves.

“As opposed to protection against cryptographic attacks, protection against
side channel attacks is never expected to be absolute: a determined at-
tacker with a massive amount of resources will sooner or later be able to
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Listing 1: Side-channel vulnerable mean
float mean(float * arr, size_t n) {

float s = 0.0f;
for (size_t i = 0; i < n; ++ i) {

s += arr[i];
}

return s / static_cast <float >(n);
}

break an implementation. The engineering challenge is putting in enough
countermeasures such that the attack becomes too expensive to be inter-
esting. Products that offer a high level of security typically implement
countermeasures on multiple levels.” (The Keccak Team4)

2.4.1 Sources of side channel vulnerabilities

The following code structures can lead to side channel vulnerabilities when they depend
on secrets:

• Conditional branches and loop bounds.

• Array/memory look-ups.

• Variable latency CPU instructions.

Side channels are everywhere. For example, even computing the statistical mean of a
data set (see Listing 1) leaks the approximate number of input elements via the running
time – the longer the program runs the more input it was given. This side channel is
even exploitable by a remote attacker. With local access attackers can determine the
number of input elements more precisely. Fortunately, in most applications the number
of data elements is not considered to be sensitive information. This example is artificial
at best but does demonstrate how even the simplest piece of code that does not seem to
have any obvious security flaws may reveal unintended information via side channels.
Whether or not the code in Listing 1 actually has a vulnerability depends on if we
consider the data set size to be sensitive information. In most cases it is not, but in some
cases it might be. In particular when computing mean of many small subsets.
When we consider the number of inputs n to be private the code example leaks information
in 3 distinct ways. It has a loop with an upper bound n, memory is accessed n times
which also leak approximate size, and the division operation can leak some information
both about final output s and input n (via instruction timing channel). If n is considered
to be public then only the final division operation leaks some information about the
magnitude of s to a highly motivated5 local attacker.

4https://keccak.team/files/NoteSideChannelAttacks.pdf Accessed: 2021-03-18
5Instruction-timing attacks require repeated measurements and high resolution timing information.
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Memory accesses may also lead to timing vulnerabilities. Each RAM read6 will cache a
small region of memory so that subsequent accesses to that region would be faster. It
is a natural optimization as most memory accesses are consecutive. This way the high
bandwidth of RAM can compensate for its relatively poor latency (compared to on-die
registers and caches). Consider two consecutive memory accesses to the same memory
object, the first with index i and the second with j7. Assuming that no part of the array
has been previously cached then the speed of the second memory access depends on the
distance between the two indices. Hence, timing information leaks if the index i is close
to j.
Side-channel attacks can also exploit shared hardware resources. For example in Intel
CPUs the L1 cache can be shared by multiple threads if these threads happen to be
executed simultaneously on the same core. This is called simultaneous multithreading or
SMT (Intel’s proprietary implementation is called hyper-threading or HT). This means
that in some situations processes can observe each others read and write locations. Even
locations of reads performed by an enclave can be observed.
We take a conservative policy and assume that a privileged attacker is able to observe
all memory read and write patterns. A consequence of this assumption is that many
common algorithms leak a significant amount of information. For example, most sorting
algorithms leak the structure of the input data. The exact information depends on the
algorithm used but for instance if the algorithm (e.g. insertion sort, selection sort,
quicksort) performs no memory writes the input must have been already sorted. In other
words, attackers are able to keep track of the permutation between input and output. If
an attacker happens to have a priori knowledge about the ordering of input data then that
may already leak sensitive information about the output.
Consider a database of name-salary pairs that is initially sorted by names. When the
database is reordered by salary then an attacker capable of tracking memory access
patterns will be able to establish a decently accurate mapping between names and salaries.
However, if the database is initially ordered randomly then only an approximate shape of
the distribution of salaries leaks. Note that, when comparison-based sorting is used then
the salary distribution itself does not leak because those sorting algorithms have identical
memory accesses patterns under all order preserving transformations. For example
sorting the array [3,1,2] yields same access pattern as sorting [10000,9,370].
Last but not least we must note that not all Intel CPU instructions are constant time.
There is a number of useful operations that have latencies that vary with input, most
notably integer division executes in a fewer cycles on certain input ranges and can leak
approximate information about how large the instruction inputs are (we will discuss
techniques to avoid instruction-timing leaks later). Luckily extracting information with
this side channel requires great effort from the adversary. It requires thorough code
analysis and multiple precise measurements. Even then an attack may not be able to
extract precise secret value but only some rough statistical information.

6Memory writes lead to similar issues via various caches and line fill buffers.
7This is a heavily simplified scenario. In practice these memory accesses may be executed out-of-order. To

force these accesses to happen consecutively the second read location must depend on the result of the first
read. For instance j = mem[i]; k = mem[j];.
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Listing 2: Side-channel protected select
// Denotationally: select(b, x, y) == b ? x : y
unsigned select(bool b, unsigned x, unsigned y) {

// well-defined, when b == 1 then m == UINT_MAX
unsigned m = - (unsigned) b;
return (x&m) | (y&~m);

}

Listing 3: Side-channel vulnerability from use of side-channel safe primitive
float fselect(bool b, float x, float y) {

union { float f; unsigned u; } X, Y, Z;
X.f = x;
Y.f = y;
Z.u = select(b, X.u, Y.u);
return Z.f;

}

2.4.1.1 Maintenance and complexity of mitigations

Naive attempts at hardening side-channel vulnerable code may fail due to compiler
optimizations. In many circumstances code that looks like it should not have conditional
branches will have them on the machine code level. Code that makes use of Boolean
logic operations is particularly vulnerable to this.
Consider the attempt to implement a side-channel safe procedure select (Listing 2)
to pick one of two values based on a Boolean. This code is side-channel safe on most
platform, compiler, and optimization flag combinations. But in some rare cases it might
not be. For example, using clang (versions 3.0 to 8.0) to compile for 32-bit platform
(-m32 -march=i386) produces machine code that is vulnerable to side-channel attacks
due to a jump instruction.
When implementing side-channel safe primitives one must hence not only be careful
implementing the algorithms but also continuously and diligently test and verify that the
machine code output has remained safe over code changes and updates to compiler(s)
across various supported CPU architectures.
Furthermore, a primitive that compiles to a side channel safe machine code might not
remain safe under composition. The aforementioned function select will compile
to using a CMOV instruction with clang compiler (with -O2 optimization level for a
64-bit platform). This is a side-channel safe implementation on current Intel platforms.
Surprisingly, if used to implement oblivious selection offloating-point numbers (Listing 3)
a vulnerability is introduced.
Machine code that is produced when compiling select and fselect can be found
in Listing 4. Notice how fselect performs a conditional jump. This is a very short
jump but even those are distinguishable for a local attacker. This concrete issue can
be solved by forcing the compiler to never inline select. But the example highlights
the importance of side-channel safety review and testing. Great care must not only be

22



Listing 4: Assembly for side-channel vulnerable select (GNU syntax)
select:

testl %edi, %edi
cmovel %edx, %esi
movl %esi, %eax
retq

fselect:
testl %edi, %edi
jne .LBB1
vmovaps %xmm1, %xmm0

.LBB1:
retq

taken to verify that primitives are safe but extra care must also be taken to make sure
that composition of those primitives remains safe.

2.4.1.2 Practical attack resources and tools

In practical terms to track timing and memory access patterns a malicious host can
use SGX-Step [BPS17]. It is a tool that allows OS level adversaries to interrupt victim
enclaves after every single instruction allowing side-channel observations to be made
at extremely fine-grained resolution. Hence, we must assume that local attackers
are fully able to track the control flow path taken by enclaved code, including the
ability to distinguish if-branches that execute instructions that in total have equivalent
timings [BPS18]. All conditional branches leak to local attackers.

2.4.2 Access requirements

Size-information is exploitable via (remote) snooping attacks. Relatively coarse grained
timing information also leaks remotely.
Most powerful side-channel attacks leverage local access. Control over operating system
gives attacker the power to single-step enclaved applications and allows them to gather
various side-channel information after each executed instruction. Access to physical
hardware can facilitate even more attacks and allows attackers to bypass some software-
based mitigations. Mitigations against local attackers are the most challenging and
expensive to implement.

2.4.3 Notable proof-of-concept attacks

2.4.3.1 Nemesis: Studying Microarchitectural Timing Leaks in Rudimentary
CPU Interrupt Logic

“Nemesis-style interrupt timing attacks leak this information at an instruction-
level granularity, which allows to precisely isolate (successive) data-
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dependent instruction timing measurements in a larger enclaved com-
putation.” (Jo Van Bulck, Frank Piessens, and Raoul Strackx)

Published in 2018 the paper [BPS18] describes very fine-grained attacks that leverage
timing and interrupt counting side channels. The attack relies on the ability to externally
interrupt enclaved execution. We consider this side-channel to be fundamental and
unlikely to be mitigated in hardware in the near future. Timing-attack resistant processor
design remains an active research topic.
They are able to extract the secret lookup key from a (timing vulnerable) binary search
function of the Intel SGX SDK. Among other results, they clearly demonstrate that
latencies of DIV and IDIV instructions increase with the number of significant digits in
the dividend. Thus, (integer) division leaks secret input(s) magnitude.

2.4.3.2 High-resolution side channels for untrusted operating systems

The paper [HCP17] presents side-channel attack using timer interrupts and cache misses
to partially recover images from libjpeg running in an SGX enclave. The attack incurs
heavy overhead to the enclave process. They provide an example with an overhead of
over 3000x (219 seconds compared to 62 milliseconds).
This is a clear and practical demonstration that running existing code (such as libjpeg) in
SGX enclave without further mitigations does not provide sufficient protection against a
malicious host. In the particular case it has been shown that an automated tool could be
developed that can extract images from any enclave that uses libjpeg.

2.4.3.3 Single Trace Attack Against RSA Key Generation in Intel SGX SSL

The paper [WSB18] identifies a critical side-channel vulnerability in RSA key generation
of Intel SGX SSL and the underlying OpenSSL library. The attack allows to recover 16
bits of one of the two prime factors of the public key by observing a single execution of
the algorithm. The vulnerability was fixed in subsequent OpenSSL and Intel SGX SSL
releases.
Such critical side-channel vulnerabilities are particularly dangerous when they occur in
cryptographic primitives. Even a small number of leaked bits from a private key can
compromise an entire enclave.

2.4.3.4 Leaky Cauldron on the Dark Land: Understanding Memory Side-Channel
Hazards in SGX

In this paper [WCP+17] memory side-channels of Intel SGX are classified. Additionally
they propose schemes for making attacks more difficult to detect. To demonstrate
effectiveness they attack the spelling engine Hunspell, the font rendered FreeType and
EdDSA (from libgcrypt v1.7.6, not side-channel hardened) running in enclave. In the
latter attack they are able to fully recover the secret session key.
The demonstrated memory side-channel attacks are not effective with appropriate
countermeasures (see below).
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2.4.3.5 MemJam: A False Dependency Attack against Constant-Time Crypto
Implementations

MemJam [MWES19] demonstrates an attack against side-channel hardened software
AES from Intel Integrated Performance Primitives (IPP). They demonstrate key recovery
against two different implementations which are secure against cache timing attacks.
We have to note that the Intel SGX SDK does not use this AES implementation.
Additionally, AES implemented using AES-NI instructions is not vulnerable to this type
of attack. Finally, this attack requires hyper-threading.
While this attack is defeated by side-channel countermeasures (see below) they demon-
strate that modern microarchitectures are so complex that countermeasures that have
long been believed to be effective can turn out to not be so. In particular MemJam (as
did CacheBleed) is able to track memory accesses within a same cache-line.

2.4.3.6 CacheBleed: A Timing Attack on OpenSSL Constant Time RSA

CacheBleed [YGH17] is not an attack that targets SGX enclaves. However, it is a relevant
side channel attack that uses a timing information to extract a secret key from OpenSSL
constant time RSA implementation. Parallel implementation of CacheBleed allows
complete recovery of the secret key in minutes by observing decryption operations (60%
of the key is recovered by observing 16000 decryptions).
Intel has historically promoted avoiding memory accesses at coarser than cache line
granularity as a side-channel attack countermeasure. CacheBleed clearly demonstrated
that this mitigation is not effective (on HT enabled platforms).

“CacheBleed demonstrates that secret-dependent memory access at a finer
than cache line granularity is vulnerable to timing attacks. In particular, the
scatter-gather technique is not safe. Sensitive software should be written
to eliminate all secret-dependent memory access.” (Yuval Yarom, Daniel
Genkin, and Nadia Heninge)

As with MemJam this attack also requires the victim and the attacker processes to be
located on the same physical core. Disabling hyper-threading mitigates this attack fully.

2.4.3.7 SGX-Step: A Practical Attack Framework for Precise Enclave Execution
Control

SGX-Step [BPS17] is an open-source framework and a tool for side-channel attack
research on Intel SGX. It facilitates the ability to interrupt the enclave execution at
every single instruction. Note that a mitigation against SGX-Step is available on Intel®
Xeon® Processors with SGX support, named AEX-Notify [CBC+23], which makes it
much harder for an attacker to proceed only one instruction at a time.
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2.4.3.8 Plundervolt: Software-based Fault Injection Attacks against Intel SGX

Up until recent research into undervolting-based fault-injection attacks the integrity
of SGX enclaves was not compromised and vast majority of research was focused on
breaching confidentiality.

“We present the Plundervolt attack, in which a privileged software adversary
abuses an undocumented Intel Core voltage scaling interface to corrupt the
integrity of Intel SGX enclave computations. Plundervolt carefully controls
the processor’s supply voltage during an enclave computation, inducing
predictable faults within the processor package. Consequently, even Intel
SGX’s memory encryption/authentication technology cannot protect against
Plundervolt.” ([MOG+20])

Because the attack is fully software controlled it was possible for Intel to mitigate the
issue by modifying remote attestation to allow for clients to verify that software-based
undervolting is disabled.

2.4.3.9 VoltPillager: Hardware-based fault injection attacks against Intel SGX
Enclaves using the SVID voltage scaling interface

To overcome software-based mitigations against undervolting attacks hardware-based
voltage control can be used.

“To this end, we have built VoltPillager, a low-cost tool for injecting messages
on the Serial Voltage Identification bus between the CPU and the voltage
regulator on the motherboard. This allows us to precisely control the CPU
core voltage. We leverage this powerful tool to mount fault-injection attacks
that breach confidentiality and integrity of Intel SGX enclaves. We present
proof-of-concept key-recovery attacks against cryptographic algorithms
running inside SGX.” ([CVM+21])

This threat is somewhat managed by the fact that undervolting attacks are not simple to
carry out. As with many other side-channels attacks the targeted code has to be carefully
isolated unless vulnerability is exploited in a reusable piece of code. Furthermore,
undervolting can be unreliable. Too much undervolting leads to system instability that
can be detected by remote clients. Too little undervolting makes the attack impossible as
no faults are injected. The sweet spot is specific to hardware and can even depend on the
concrete CPU binning.
Hardware-based side-channel attacks against Intel SGX have not yet been explored
sufficiently and we expect this avenue to be a fruitful research direction.

2.4.3.10 PMFault: Faulting and Bricking Server CPUs through Management
Interfaces

Undervolting of the CPU can also be controlled through the PMBus by other components
on the motherboard.
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“In this paper, using the case study of the widely used Supermicro X11SSL
motherboard, we show how remotely exploitable software weaknesses in
the BMC (or other processors with PMBus access) can be used to access
the PMBus and then perform hardware-based fault injection attacks on the
main CPU. [...] [We] show that undervolting through the PMBus allows
breaking the integrity guarantees of SGX enclaves, bypassing Intel’s counter-
measures against previous undervolting attacks like Plundervolt/V0ltPwn.”
([MOG+20])

The specific software of that motherboard was fixed, and several other motherboards were
found to be resistant to that attack. However, a motherboard can contain components
whose firmware is not part of the SGX remote attestation measurement. Remote users
thus need to trust that all other relevant firmware of the server is up-to-date.

2.4.3.11 ÆPIC Leak: Architecturally Leaking Uninitialized Data from the Mi-
croarchitecture

“We discover ÆPIC Leak, the first architectural CPU bug that leaks stale
data from the microarchitecture without using a side channel. ÆPIC Leak
works on all recent Sunny-Cove-based Intel CPUs (i.e., Ice Lake and Alder
Lake). [...] We target data in use, e.g., register values and memory loads,
as well as data at rest, e.g., SGX-enclave data pages. Our end-to-end
attack extracts AES-NI, RSA, and even the Intel SGX attestation keys from
enclaves within a few seconds.” ([BKS+22])

While we classify it as such the ÆPIC vulnerability should not be considered a side-
channel vulnerability but a microarchitectural bug that allows attacker to gain access to
secrets in a quite direct manner. When SMT has been disable the attack is significantly
more difficult to carry out. This vulnerability has been mitigated in software since SGX
SDK version 2.17.101.1 and the presence of software and microcode updates are being
enforced since November 29, 2022 (when using Intel remote attestation).

2.4.3.12 Downfall: Exploiting Speculative Data Gathering

“We introduce Downfall attacks, new transient execution attacks that under-
mine the security of computers running everywhere across the internet. We
exploit the gather instruction on high-performance x86 CPUs to leak data
across boundaries of user-kernel, processes, virtual machines, and trusted
execution environments. We also develop practical and end-to-end attacks
to steal cryptographic keys, program’s runtime data, and even data at rest
(arbitrary data). Our findings, exploitation techniques, and demonstrated
attacks defeat all previous defenses, calling for critical hardware fixes and
security updates for widely-used client and server computers” ([Mog23])
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Using the SIMD gather instruction, the Downfall paper demonstrated a leak of SGX
sealing keys (and more) and thus the attack could be used to undermine remote attestation.
However, the attack uses single-stepping and zero-stepping which is currently mitigated
through AEX-Notify [CBC+23], and “Intel states that newer CPUs such as Alder Lake,
Raptor Lake, and Sapphire Rapids are unaffected” [Mog23].

2.4.4 Countermeasures

Because leakage strongly depends on the power of the attacker, the more privileged the
attacker the more information they are able gain access to. Hence, the first line of defense
must be strict access control to make local access as difficult to attain as possible.
It is not feasible to mitigate all possible side-channel vulnerabilities in a non-trivial data
processing application. In most cases doing so would increase the cost of development
prohibitively. To find the sweet spot between security and too excessive side-channel
hardening it is important to clearly specify what (statistical or otherwise) information
must be kept secret and what is allowed to leak to remote or privileged local attackers.
There are two approaches to mitigating side channel vulnerabilities. Either eliminate
the release of information, or break data associations so that any leaked information is
useless to an attacker.

2.4.4.1 Eliminate release of information

For protecting user (meta)data the most obvious approach is to make sure that no sensitive
information leaks. To achieve this user data needs to be processed in a side-channel
safe manner. Luckily, many simpler algorithms are already side channel-safe or only
require conceptually minor modifications. On the other hand, many more complicated
algorithms are highly challenging (area of active research) to make side channel safe.
One such class of algorithms are cryptographic primitives.
For protecting cryptographic keys it is utmost important to use side-channel safe
protocols and cryptographic algorithms. Choose by-design side-channel safe primitives
when possible. When no such primitive is available opt for well-researched ones with
implementations that have no known significant vulnerabilities. For example:

• Hardware based AES (Intel AES-NI [ADF+10]) is known to have strong side-
channel safety guarantees. Only known attacks are via fault-injection [CVM+21],
extensive power-analysis [SRH16, LKO+21], and other hardware vulnerabilit-
ies [BKS+22].

• Salsa20 [Ber08] stream cipher and its variant ChaCha are resistant to timing and
cache attacks by design.

• Side-channel safety of RSA is thoroughly researched [MML+20] and has hardened
implementations readily available. As demonstrated by CacheBleed [YGH17] full
mitigation remains challenging.
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• In comparison the safety of elliptic curve cryptography implementations is not
quite as well researched. Well-known techniques from protecting RSA and
software-based AES lead be used for more resilient implementations. Fully
side-channel resilient implementations are challenging [LR21].

Avoid hand-rolling constant-time cryptographic algorithms. Implementations are very
tricky to get right [Por] and vulnerabilities are found even in commonly used techniques
thought to be secure [YGH17, MWES19, Rya19].
For protecting data processing code developers have to make sure that there are no
secret-dependent conditional branches, loop bounds or memory accesses. As a rule of
thumb an algorithm is side-channel safe if for all possible secret input values it executes
exactly the same instructions and performs exactly the same set of memory accesses (in
the same order). Caveats apply. For example some arithmetic instructions, like DIV and
FSIN, have a latency that depends on input values (see Section 2.4.4.8). Generally try to
avoid using floating-point operations (see Section 2.4.4.9).

2.4.4.2 When possible use side-channel hardened high-level algorithms

Rather than implementing a custom solution for a specific domain use a combination of
side-channel protected algorithms that are more general. Even if there are significant
performance regressions from doing so. Premature optimization is the root of many data
leaks and other security regressions. Optimize only once the need arises and performance
bottleneck has been clearly determined.

2.4.4.3 Minimize side-effects in secret-processing code

Depending on the scope, side effects can be impossible to handle in a side-channel safe
manner. For example, it is not possible to make effects that require operating system
interaction non-observable. In most mainstream languages side effects can creep up
surprisingly; even memory accesses are usually side-effectful.
Limited forms of side effects can be manageable. Like local enclave state transitions.
Side effects that depend only on public inputs are safe. Of course, the side-effectful
function not only has to exclusively take public parameters it must also not be called in a
secret dependent way (all control flow paths that invoke the function are determinable
from public information).

2.4.4.4 Eliminate branches that depend on secrets

Instead of branching on a secret and then executing either of the branches evaluate both
branches and select one of the resulting values obliviously based on the secret bit. This
approach does not work if either of the branches performs side effects (like transitioning
the program state).
For example, instead of transforming program state s conditionally in-place

if (cond) { s = f(s); }

29



Listing 5: Side-channel protected one-armed conditional
auto const s1 = f(s);
s = select(cond, s1, s);

Listing 6: Attempt at implementing side-channel protected mean
float mean(float * arr, size_t n, size_t bound) {

float s = 0.0f;
for (size_t i = 0; i < bound; ++ i) {

s += fselect(i < n, arr[i], 0.0f);
}

return s / static_cast <float >(n);
}

transform the state into copy s1 and then commit the copy conditionally in an oblivious
manner. In imperative code the state is usually implicit and as such, for this technique to
work, needs to be made explicit. Depending on the size of the state and complexity of
the function f this solution is significantly slower.

2.4.4.5 Avoid loops with secret-dependent bounds

Loops should be considered to always leak the bound.
If a loop bound is deemed to be confidential then determine a reasonable upper bound
and always perform that number of iterations. The loop body needs to be transformed to
handle extra iterations to preserve the semantics of the original. Frequently data that is
being processed needs to be padded and the loop body has to be able to correctly and
securely handle the extra padding.
To protect the previously seen function mean against some side channel attacks we can do
the following (using side-channel safe fselect). The function now takes 3 parameters.
The pointer to array arr, the actual size of the array n and an upper bound bound that is
acceptable to be leaked. The assumption is that arr holds room for bound number of
elements. We iterate over the entire capacity of arr and either increment the sum by
the present element or by 0. We select which number to add obliviously. If we know
beforehand that all padded elements are 0 then oblivious selection is not necessary.
In the above implementation care must be taken that fselect is not inlined and optimized
away to a side-channel vulnerable machine code. One possible way to achieve this (at
the expense of performance) is to make sure that fselect is not inlined at all and is a
completely opaque function call to the compiler. Disabling link-time optimizations is
also necessary.
In order to avoid comparisons (i < n) a sufficiently smart compiler may also split the
loop into two ranges. One spanning from i to (excluding) n and one spanning from n to
(excluding) bound. That would also lead to a side-channel vulnerable implementation.
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Listing 7: Side-channel protected mean
float mean(float * arr, size_t n, size_t bound) {

float s = 0.0f;
for (size_t i = 0; i < bound; ++ i) {

s += obl::fselect(obl::lt(i, n), arr[i], 0.0f);
}

return obl::fdiv(s, n);
}

To avoid this optimization we can move the comparison to a function that is opaque to
the compiler.
The code still has an instruction-level timing side-channel via floating-point division.
This can be remedied by implementing division in a side-channel protected manner. One
approach is to approximate the result via a binary-search that performs a fixed number
of iterations and manipulates the search bounds obliviously. The most complicated part
of the implementation is handling special cases in an oblivious manner (infinities, zero,
nan, subnormals) and porting various floating-point related functionality to be oblivious
from the C++ standard library. In fact, this is a considerable engineering effort. In
the end a fully safe (according to our knowledge) implementation of statistical mean is
presented in Listing 7. Oblivious operations have been moved to the namespace obl.

2.4.4.6 Hide data record size

In many cases the size of data records can leak sensitive information. For example a
person’s name length is sensitive (especially in smaller data sets), the length of a salary
string tells a lot about a person’s wealth, and some diseases can be uniquely identified
from the name length alone.
Avoid textual data and stringly typing in general. For instance store salary as 64-bit
integers as opposed to strings. Operations (arithmetic, comparison) on register-wide
integers do not leak information about magnitudes.
When applicable convert textual data to identifiers and store the mapping between
identifiers and names in another table8.
When textual data cannot be avoided pad it to a reasonable upper bound. If no obvious
upper bound exists data can be padded in rough increments. For example, in a coarsely
increasing increments with the smallest padding starting at least the median string length.
Adopt data processing algorithms to work on padded data in a side-channel safe manner
while keeping the actual length (and the amount of extra padding) a secret.

2.4.4.7 Avoid secret-dependent array/memory accesses

Frequently it is important to look up information based on private information from
some map, array or memory region. This need arises often in graph algorithms like

8Of course, that extra table has to be handled in side-channel protected manner.
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social network analysis. These operations can lead to vulnerabilities as memory accesses
are traceable by local adversaries and cache timing attacks can leak information to even
remote adversaries.
One way to hide memory access patterns is via using oblivious RAM (ORAM) that is
designed for this exact purpose. However, ORAM can be an order of magnitude slower
than regular random access memory (even with SGX encryption and ECALL overhead).
Most ORAM implementations are designed to work in a client-server model where
actions that a client performs leak information about the memory access pattern.
Another way is by breaking data associations (see Section 2.4.4.12) when it is applicable.

2.4.4.8 Avoid calling variable latency instructions on secret-dependent values

As a good rule of thumb the instructions to avoid are division/reminder (both integer
and floating-point) and various complex floating-point operations as square root, trigo-
nometric operations, exponentiation, and logarithm. This is of course in addition to all
instructions that take memory locations as arguments. Unfortunately, no comprehensive
documentation on instruction latencies is provided by Intel, but excellent third party
resources [Fog21] are available that give a decent indication whether or not an instruction
could be safe to use on a given CPU architecture.
Unfortunately there is no easy way to work around this timing side-channel and the best
approach is situational. There are few options to consider:

• Find a way to avoid using variable-latency instructions. For example, in a code that
handles geometry trigonometric operations (sine, cosine) can usually be avoided.

• Transform input such that leaking those secrets becomes acceptable (see the next
section).

• Use constant-time replacements. Unfortunately software implementations of such
low-level operations are often many times slower.

2.4.4.9 Assume that no floating-point operation is constant time

Majority of floating-point operations are not constant time. This includes all trigonometric
functions, square-root and division9. Even multiplication operation is not constant time
when denormals are present. Majority of standard library operations on floats are also
not constant-time.
Hence, whenever writing any floating-point code expect it to not be constant time.
Always thoroughly test that the code seems to inhabit constant time behavior.

9Division of single-precision floats is constant-time operation on later generation of CPUs, division of
double-precision floats is not.
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Listing 8: Enable FTZ and DAZ flags
#include <xmmintrin.h>
void enable_denormal_FTZ_and_DAZ() {

_mm_setcsr(_mm_getcsr() | 0x8040);
}

2.4.4.10 Disable denormalized floating-point numbers

All processors that support Intel SGX also support denormalized floating-point numbers10
that cause a significant [Daw] slowdown of floating-point operations and, as a result, may
create a side-channel vulnerabilities. FPVI [RBBG21] vulnerability provides another
avenue of attack in the presence of denormalized numbers. One way to avoid these
attacks is to make sure that floating-point operations do not create denormal values and
any denormal values that exist are treated as zeroes.
In modern Intel CPUs denormals are enabled as per default, but there is are Flush-to-Zero
(FTZ) and Denormals-are-Zero (DAZ) modes that together effectively disable denormal
numbers. The FTZ mode forces any floating-point operation that would produce a
denormal as an output instead returns a zero. The DAZ mode treats all denormal values as
zeroes. Either use the following code or some other means to fully disable denormalized
numbers.
Avoid using -ffast-math optimization flag. According to GCC documentation "-ffast-
math also may disable some features of the hardware IEEE implementation such as the
support for denormals or flush-to-zero behavior."

2.4.4.11 Use masking-based techniques to harden critical components

The countermeasures we have described here do not fully eliminate extremely low-level
hardware-based side-channels like electromagnetic (EM) radiation and power usage.
While there has been no published attacks that exploit these types of side-channels
against modern Intel CPUs11 we can not rule out their possibility.
Standard way to mitigate against these types of attacks is via masking. The idea is to
not manipulate value x directly but instead work with random shares x1, . . . , xn such
that x = x1 ⊕ . . .⊕ xn (this is Boolean masking, regular modular addition can also be
used). For an attacker to recover original value x all shares xi must be recovered. This
technique is very similar to how secret-sharing based multi-party computation works.
The number of shares correlates with the desired security level.
Because this mitigation is extremely technical to implement we recommend using it to
only protect the most critical parts of the application. For instance, code involved in
protecting and using private keys.

10https://en.wikipedia.org/wiki/Denormal_number Accessed: 2021-03-18
11Existing EM attacks against modern processors can reveal instructions that the CPU is executing. We

consider the enclaved program execution trace to already to be a publicly available information.
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Listing 9: Side-channel resistant swap
void swap(bool b, unsigned x, unsigned y,

unsigned & o1, unsigned & o2)
{

unsigned const m1 = - (unsigned) b;
unsigned const m2 = ~m1;
o1 = x&m1 ^ y&m2;
o2 = x&m2 ^ y&m1;

}

For a more thorough practical overview see Note on side-channel attacks and their
countermeasures12 by The Keccak Team. For a theoretical security analysis of masking-
based techniques see [PR13]. Masking-based techniques also have some drawbacks in
practice [Por] such as requirement of source of randomness.

2.4.4.12 Eliminate data associations

Occasionally it is easier to not eliminate side-channel leaks but to just make leaks
unusable. This can be done by breaking data associations. Recall the example of sorting
a database of name and salary records. The database is initially sorted by names and
afterwards will be sorted by salaries. Standard sorting algorithm will reveal (at least
partially) the permutation that maps the initial input to the ordered output. Hence, an
attacker is able to (approximately) match names to salaries. However, if the initial
name-ordered data set is randomly shuffled before sorting then the process of sorting by
salaries no longer reveals the mapping between input and output. In this case the sorting
algorithm does not have to be side-channel safe but the shuffling procedure has to be.
The ground-level primitive operation for breaking data associations is side-channel safe
2-swap. One possible implementation is found below. It can be used in combination
with RDRAND to implement random swap. This is by no means the only or the best
implementation and there is no guarantee that it will remain secure throughout compiler
improvements and new revisions of processors. A faster implementation could use CMOV
that, as of this writing, is constant time and does not modify the state of the branch
predictor (see Guidelines for Mitigating Timing Side Channels Against Cryptographic
Implementations [Int] and Intel® 64 and IA-32 Architectures Optimization Reference
Manual [Tho20]).
Breaking data associations in larger sequences can be built using this primitive. One
possible approach is to use permutation networks such as the Omega network [Law75]
or the Clos network [Erw41, Clo53] to construct a larger shuffle out of many 2-swaps.
Unfortunately, the minimal number of layers in these networks to achieve cryptographic
security is still an open problem and as such these shuffles should be viewed as
additional layers of security that alone do not provide full resilience against side-channel
attacks. Solutions that are decent in performance with logarithmic number of layers and
cryptographic security proofs [MR14, CGLS18] are complex in implementation.

12https://keccak.team/files/NoteSideChannelAttacks.pdf
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An alternative approach to shuffling multiple records is to add a new column filled with
unique random numbers to the data set. Next, order the records by the new row. The
ordering phase requires side-channel safe sorting of which best known implementations
haveO(n log2 n) complexity andO(log2 n) round complexity (sorting networks [Bat68]
such as bitonic mergesort and odd-even mergesort).
One approach to generate a column of random numbers is to generate a random AES
key and encrypt subsequent numbers with that key. This yields a cryptographically
strong random-looking sequence and avoids duplicates. Hashing based approaches could
also be used by generating a random key K and computing a sequence of HMAC-s
as HMACK(1), . . . ,HMACK(n). We recommend HMAC as it is a well established
standard and resistant to extension attacks. Alternatively, one can simply generate
sufficiently large random numbers and with high probability they are unique. When
generating 232 random 64-bit numbers then more than half of the time the sequence
contains only distinct elements. While this approach does not generate all possible
permutations uniformly it yields a sufficiently good shuffle when large random numbers
are used. If a conservative approach is desired we recommend to not shuffle more than⌊
2n/2−2

⌋
elements using a randomly generated column of n-bit numbers. This lowers

the probability of having duplicates in the generated sequence to just three percent.
Note that the commonly used shuffling algorithm Fisher-Yates13 leaks entire permutation
via side channels. Firstly, it performs random memory accesses. Secondly, the algorithm
needs to sample numbers from arbitrary ranges and the typical methods of doing so
(rejection sampling) are not side-channel safe. One can attempt to harden Fisher-Yates
with ORAM but that leads to much worse performance compared to previous methods.
Furthermore, ORAM implementations are commonly built upon side-channel safe
sorting or shuffling.

2.4.4.13 Duplicate and compare

To protect against hardware-based fault-injection attacks the only known software-based
mitigation is to compute intermediate results multiple times and verify that all duplicate
computations yield the same result. This is difficult to implement manually in all
but the most critical code paths. Letting compiler insert duplicated instructions or by
rewriting (binary) code is feasible with appropriate tooling. The obvious down side of
this mitigation is significant reduction of performance.
Implementing duplicate-compare checks in high-level language like C or C++ is made
more difficult by compilers assuming that no hardware-faults can happen. Compilers are
very good at eliminating common sub-expressions. A way to force re-computations to
happen is to mark all involved variables as volatile. For example, following function
computes square of input and offers some resilience against fault injection attacks.
Modern compilers (tested with GCC, Clang, ICC, and MSVC) produce machine code
that computes multiplication twice and checks for inequality.

13https://en.wikipedia.org/wiki/Fisher%E2%80%93Yates_shuffle Accessed: 2021-03-18
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Listing 10: Fault-injection resilient squaring
unsigned checked_square(unsigned num) {

volatile auto v = num;
const auto r1 = v * v;
const auto r2 = v * v;
if (r1 != r2) [[unlikely]] {

std::terminate();
}
return r2;

}

2.4.4.14 Prepare for eventual vulnerabilities

No matter what other mitigations are in place always be prepared for vulnerabilities to be
found. Prepare processes for vulnerability management, respond quickly, make software
upgrade for users as seamless as possible, and minimize the impact of unintended
information disclosure as the final layer of defense. Specifically, secrets provisioned
to trusted enclaves could leak later due to future vulnerabilities. The processes should
incorporate the possibility that security updates for the platform may not become available
in a timely manner after a vulnerability is published. In the context of SGX this has been
well demonstrated by SGX.Fail attacks.

“We show that in both cases vendors are unable to meet security goals
originally envisioned for their products, presumably due to SGX’s long
update timelines and the complexities of a manual update process. This
in turn forces vendors into making difficult security/usability trade offs,
resulting in security compromises.” ([vSSY+22])

Unfortunately, it is difficult to work around slow update cycle of hardware vendors.
Software vendors often can not do better than try and minimize the impact of attacks
enabled by hardware vulnerabilities.

2.5 Speculative execution

Speculative (or transient) execution attacks exploit exception or branch misprediction
events that modify CPU state (like shared caches) in a secret-dependent way. The attacker
is able to observe these state changes and may thus learn secret information. This is a
notable subclass of side channel vulnerabilities that relies on hardware optimizations
(like branch prediction) present in most microarchitectures.
Speculative execution attacks require enclave code to have particular exploitable code
patterns. Unfortunately, those kinds of patterns occur surprisingly often in user code
and in reusable SGX libraries. In the worst case the exploitable code processes private
keys and is thus a pathway to compromise both confidentiality and integrity guarantees
of SGX. If an exploitable function is found in a commonly reused component (such as
in the SGX standard library) then easy-to-use exploit tools can be implemented.
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Listing 11: Enclave code fragment vulnerable to speculative execution attack
1 void enclave_function(size_t untrusted_index) {
2 if (untrusted_index < array1_size) {
3 uint8_t secret_value = array1[untrusted_index];
4 temp &= array2[secret_value * 4096u];
5 }
6 }

In this section we will follow a code example where an attacker controls an untrusted
index that it uses to speculatively load otherwise inaccessible memory that holds secret
data. The secret is then leaked via a memory timing side-channel. For this attack to work
the vulnerable (victim) code needs to perform two loads: first with the untrusted index
and second with the previously loaded value. Do note that this is by far not the only way
to exploit transient execution. For more variants and a much more thorough overview
see A survey of microarchitectural timing attacks and countermeasures on contemporary
hardware [GYCH18], A Systematic Evaluation of Transient Execution Attacks and
Defenses [CBS+19] and Security Vulnerabilities of SGX and Countermeasures: A
Survey [FYDX21].
In the code example the conditional branch that is guarded by a bounds check can
be speculatively executed by the CPU. This means that both load statements may be
executed regardless of whether untrusted_index is in the bounds of array1 or not.
Next, the attacker is able to use a side-channel vulnerability to learn the value of the
secret via a memory timing attack; after executing line 4 the attacker can probe, outside
of enclave, all of array2 to detect which part of the array was loaded into the CPU
cache14. By doing that the attacker learns the secret value.
In summary, these types of attacks use speculative execution optimization and side-
channel vulnerability in tandem to leak secret values. For more details about side-channel
vulnerabilities see sections 2.4 and 2.5.2.1.

2.5.1 Access requirements

Theoretically this attack can be conducted remotely if the enclave has a web-facing
interface and if a suitable side-channel is found. However, no such attacks have been
demonstrated yet and those are the easiest to detect and the most resource-consuming for
an attacker. Most dangerous attacks that exploit this vector require local and privileged
access.
Local, privileged access enables the use of specialized tools and kernel modules that
make some of the attacks of this kind even possible. For example, side-channel leaks are
much more powerful if an attacker can force victim enclave and the attacker process to
be executed on same physical core in an hyper-threading enabled system.

14Often this process needs to be repeated multiple times to learn the secret information with high probability.
Such attacks can be very slow in practice.
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2.5.2 Notable proof-of-concept attacks

2.5.2.1 RIDL: Rogue In-Flight Data Load

RIDL [vSMÖ+19] enables attacker to leak data across VM and SGX security boundaries
despite mitigations against existing attacks. SGX enclaves are vulnerable to their cross-
process attacks when SMT is enabled. The attack requires that victim and attacker
processes are situated on the same physical core in which case reads and writes trivially
leak to the attacker.
They demonstrated that contents of the /etc/shadow file can leak from one VM to
another using a RIDL attack. The attack is relatively slow and takes 24 hours to leak 16
bytes of the file.
The vulnerability has since been fixed via hardware microcode security updates. Enclaves
running on platforms with disabled SMT are not vulnerable to this attack.

2.5.2.2 FORESHADOW: Extracting the Keys to the Intel SGX Kingdom with
Transient Out-of-Order Execution

Foreshadow [BMW+18] (also known as L1 Terminal Fault or L1TF) attack exploits a
speculative execution bug in Intel processors to reliably leak enclave secrets from the
CPU cache. They demonstrate the attack by extracting full cryptographic keys from
enclaves and forging arbitrary local and remote attestation responses.
The vulnerability has since been fixed via hardware microcode security updates. The
attack does not work on platforms with (in hardware) disabled SMT.

2.5.2.3 SgxPectre Attacks: Stealing Intel Secrets from SGX Enclaves via Specu-
lative Execution

SgxPectre [CCX+18] exploits a CPU bug to break the confidentiality and integrity
guarantees of SGX enclaves. They show that enclave code can be influenced by programs
outside of the enclave such that the control flow of the enclave program can be temporarily
altered to execute instructions that lead to observable cache-state changes. By observing
these changes an attacker can learn secrets inside the enclave memory or its internal
registers.
They applied the attack to extract sealing keys and attestation keys from Intel signed
quoting enclaves. The sealing key allows persistent enclave data to be decrypted and
the attestation key can be used to forge attestation signatures. This attack completely
undermined the security guarantees of Intel SGX.
This attack relies on specific vulnerable code gadgets (patterns) to exist in enclaved code.
If no such gadgets exist then the enclaved application is not vulnerable to this attack.
Intel firmware microcode updates have since fixed some more dangerous Spectre variants.
However, some transient effects remain observable but these can be either eliminated
(Section 2.5.4.2) or mitigated by avoiding side-channel leaks (Section 2.4.4).
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2.5.2.4 ZombieLoad: Cross-Privilege-Boundary Data Sampling

In ZombieLoad [SLM+19] proof-of-concept attack it is demonstrated that recently
loaded values can leak across logical cores. This means that on SMT (hyper-threading)
enabled cores enclaves may leak information via a side-channel to processes situated
on the same physical core. The attack broke security guarantees of Intel SGX. The
vulnerability has since patched via a BIOS applied microcode update and the attack is
also completely mitigated by disabling hyper-threading.

2.5.2.5 LVI: Hĳacking Transient Execution through Microarchitectural Load
Value Injection

“LVI abuses that a faulting or assisted load instruction executed within a
victim domain does not always yield the expected result, but may instead
transiently forward dummy values or (attacker-controlled) data from various
microarchitectural buffers. We consider attackers that can either directly or
indirectly induce page faults or microcode assists during victim execution.
LVI provides such attackers with a primitive to force a legitimate victim
execution to transiently compute on “poisoned” data (e.g., pointers, array
indices) before the CPU eventually detects the fault condition and discards
the pending architectural state changes.” ([VBMS+20])

2.5.3 Complexity

Most of speculative vulnerabilities are difficult to exploit and require local privileged
access.
One exception is if a speculative vulnerability is found in shared code. In that case
automated exploit tools can be developed. Even then an attacker might need to observe
thousands of program runs, and may slow the program execution down greatly or may
need the ability to rerun programs multiple times on varied inputs.
Usually there are much easier attack vectors to exploit like classic software vulnerabilities
(that lead to remote code execution) or attacks directed against data owners.

2.5.4 Countermeasures

The foremost countermeasure is to keep hardware microcode and the SGX SDK up to
date. Secondarily, consider software based countermeasures.
Assuming that an attacker has privileged local access there are various avenues to reduce
efficacy of such attacks against secure enclaves. To name a few:

• prevent speculation (Section 2.5.4.2)

• prevent reading of inaccessible data (Section 2.5.4.3)

• avoid side-channel leaks (Section 2.4.4)
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• obfuscate and randomize (Section 2.5.4.4)

This list of mitigations is by no means complete, For a more detailed overview of Spectre
and mitigations see Spectre is here to stay [MST+19].
All transient execution mitigations have downsides that contribute to higher relative
costs of developing hardened software:

• complexity – it is difficult to find correct places to apply mitigations and every
mitigation adds development complexity,

• fragility – hardware microcode changes, compiler changes, and modifications to
dependencies can break existing mitigations,

• testability – it is challenging to test if applied mitigations are effective on a given
platform, and

• overhead – many of the mitigations come with a significant performance impact.

2.5.4.1 When to harden against transient execution attacks?

In general we recommend applying software based mitigations only when it is deemed
necessary.
In other cases we make the following recommendations:

• Always use software based mitigations when handling secret keys.
In particular only use side-channel safe (or hardened) cryptographic primitives
that are well researched and understood.

• Use transient execution hardened high-level data structures and algorithms for
processing private user data.
Do so even if it incurs significant performance cost. Do so only if such primitives
are readily available as implementing them is challenging.

• Minimize the time that secrets reside in memory.
The smaller the time span that a secret resides in (encrypted) memory the smaller
is the amount of code that an attacker can exploit to extract it (say, via speculative
execution).

• Avoid writing low-level code.
This cannot always be avoided, but prefer using side-channel safe high-level
operations. For example, instead of implementing high-performance array
processing algorithms that directly manipulate indices implement the same logic
using operations such as mapping, filtering, sorting, joining or using iterators
and ranges. Often low-level code, in particularly one that manipulates pointers
or array indices, is difficult to reason about and thus errors there are more
challenging to find.
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Listing 12: Speculative execution resistant branching via a memory fence
void enclave_function(size_t untrusted_index) {

if (untrusted_index < array1_size) {
sgx_lfence(); // speculative memory load barrier
uint8_t secret_value = array1[untrusted_index];
temp &= array2[secret_value * 4096u];

}
}

• While the body of research is still young and practical tools are not plentiful
considerusing static analysis andcode instrumentation (fuzzing) tools that highlight
potential speculative execution vulnerabilities.

– SpecFuzz: Bringing Spectre-type vulnerabilities to the surface [OTSF19]
– DIFFUZZ: Differential Fuzzing for Side-Channel Analysis [NNP19]
– Respectre: The State of the Art in Spectre Defenses [OPE18]
– oo7: Low-overhead Defense against Spectre Attacks [WCG+18]
– SPECTRE Variant 1 scanning tool15 (RedHat).
– MSVC compiler has Spectre 1 pass via /qspectre option (Microsoft)

2.5.4.2 Preventing speculation

One way to avoid speculative execution attacks is to make sure that speculative execution
does not happen on branches that are conditional on untrusted inputs.
The most sure-fire way to achieve this is to disable speculation of all branches. This can
be done with automated tools that insert speculation barriers into appropriate places.
Such a heavy handed solution incurs a great performance cost. The V8 Javascript JIT
engine runs the octane benchmark16 2-3 times slower with speculation barrier on every
critical branch. Fortunately, in domain specific applications there are far fewer relevant
branches and generally the run-time overhead would be much lower.
To mitigate our previous (Listing 11) example we can insert a memory fence (in Intel
SGX SDK sgx_lfence) after the bounds check to make sure that the memory is not
speculatively loaded on that branch.
For more details on this mitigation technique see Intel® Software Guard Extensions
(SGX) SW Development Guidance for Potential Bounds Check Bypass Side Channel
Exploits [Int18].

2.5.4.3 Preventing reading of inaccessible data

Speculative execution in essence is not the whole story of these types of attacks. A critical
part is also accessing information that lies outside of the bounds of an array (or some

15https://access.redhat.com/blogs/766093/posts/3510331 Accessed: 2021-03-18
16https://chromium.github.io/octane/ Accessed: 2021-03-18
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Listing 13: Speculative execution resistance via masking
volatile int poison;
void enclave_function(size_t untrusted_index) {

if ((poison = (untrusted_index < array1_size))) {
uint8_t secret_value = array1[untrusted_index] * poison;
temp &= array2[secret_value * 4096u];

}
}

Listing 14: Speculative execution resistance via index masking
volatile unsigned array1_mask = array1_size - 1;
void enclave_function(size_t untrusted_index) {

if (untrusted_index < array1_size) {
uint8_t secret_value =

array1[untrusted_index & array1_mask];
temp &= array2[secret_value * 4096u];

}
}

other memory object). A way to mitigate this speculative execution attack is to simply
mask the inaccessible data. These and some other mitigation techniques are explained in
more detail in Speculative Load Hardening [Car] from LLVM documentation.
For example, in our running example we can mask the secret_value by tracking a
poison bit that is either set to 1 if the branch is actually taken and 0 otherwise. Even if
secret_value is wrongly speculatively computed its value will always be 0. Great care
must be taken to make sure that the compiler does not optimize computation involving
poison bit as it may easily undo this mitigation.
This approach has a much smaller running time overhead than explicit memory fences.
Downsides are that it is also up to the developer to find and fix potential security critical
pieces of code and additionally has to make sure that compiler optimizations will not
undo this mitigation. Great care must be taken to test that new platform and compiler
combinations remain secure.
When the array has power of two elements then an even faster alternative is masking
array indices. This mitigation can have better performance but will increase memory
usage if many (or large) arrays are forced to power-of-two length. Again, much care
must be taken that the compiler does not elide the masking operation.

2.5.4.4 Obfuscation and randomization

There is a wide class of various obfuscation and randomization techniques available.
Most of those only make attacks more costly and time consuming but do no fully mitigate
their possibility. Regardless, these are still very useful hardening techniques.

• SGX-Shield: Enabling Address Space Layout Randomization for SGX Pro-
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grams [SLK+17]17

• Mitigating Branch-Shadowing Attacks on Intel SGX using Control Flow Random-
ization [HLLP18]

• SGXBOUNDS: Memory Safety for Shielded Execution [KOA+17]

• DR.SGX: Hardening SGX Enclaves against Cache Attacks with Data Location
Randomization [BCD+17]

• SGXElide: enabling enclave code secrecy via self-modification [BWZL18]

• Preventing Page Faults from Telling Your Secrets [SCNS16]

• OBFUSCURO: A Commodity Obfuscation Engine on Intel SGX [AJX+19]

2.6 Output inference

Output inference is not an attack that exploits implementation details or design weaknesses
of SGX enclaves. Rather it is occasionally possible to infer more information from
intended application output than was initially expected. In particular anonymization
techniques have shown to often fail [NS08, NS09, GKdPC14] as much fewer bits of
data can lead to full de-anonymization/re-identification as what is commonly expected.
Output inference can be combined with other techniques (side channel attacks) to make
attacks more effective. Because output inference attacks are a very general technique
independent of trusted execution being used or not we only give a brief overview here.

2.6.1 Access requirements

At minimum output inference requires client level access. Multiple malicious clients in
collaboration can infer more from joint output. Higher access levels provide access to
side channels that enable further attacks in combination with output inference.

2.6.2 Notable proof-of-concept attacks

This class of attacks is not specific to SGX and there exists a body of literature on
de-anonymization, re-identification, and database reconstruction attacks

2.6.2.1 Robust De-anonymization of Large Datasets (how to break anonymity of
the Netflix prize dataset)

“We apply our de-anonymization methodology to the Netflix Prize dataset,
which contains anonymous movie ratings of 500,000 subscribers of Netflix,
the world’s largest online movie rental service. We demonstrate that an
adversary who knows only a little bit about an individual subscriber can
easily identify this subscriber’s record in the dataset.” ([NS08])

17There have been attempts at breaking ASLR in SGX enclaves [KSC23].
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2.6.2.2 De-anonymizing Social Networks

“To demonstrate its effectiveness on real-world networks, we show that a
third of the users who can be verified to have accounts on both Twitter, a
popular microblogging service, and Flickr, an online photo-sharing site,
can be re-identified in the anonymous Twitter graph with only a 12% error
rate.” ([NS09])

2.6.2.3 Why Your Encrypted Database Is Not Secure

“In this paper, we take a system-centric view of encrypted databases and
investigate what an attacker would learn in a realistic scenario: stealing a
disk, performing SQL injection, or rootkitting the OS. We demonstrate that
a “snapshot” attacker, which is the main security model of most encrypted
databases, is largely a myth. Modern DBMS’s keep logs, caches, and data
structures that, in any realistic snapshot attack, reveal information about
past queries. This leakage is inherent in today’s production environments
because a DBMS must maintain caches and other metadata to adapt the
system to the workload and help manage its performance.” ([GRS17])

2.6.3 Countermeasures

First and foremost the amount of output and how often it is provided needs to be well
thought out. These attacks usually stem from underestimating information leakage from
the design phase of the application. Classical techniques such as statistical disclosure
control [HDFF+10] should be applied.
Do not give input providers the control to run analysis and extract output on demand.
This could lead to attacks where queries are repeatedly run on carefully chosen inputs to
see how it affects the output. Differences in output can leak information about inputs
that should be hidden from the attacker.
Differential privacy (DP) is a mitigation technique that has steadily gained use in
practice [EPK14, Tea17] and recently the 2020 US Census is design to apply DP for
publishing results [Abo18]. DP is still a very active research topic. A challenge with DP
is parameter selection which is not always intuitive [TKB+17] and requires trade-offs
between privacy and accuracy [Haw20].
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