
Received: 17 October 2019 Revised: 17 March 2020 Accepted: 30 April 2020

DOI: 10.1002/spe.2850

S P E C I A L I S S U E PA P E R

EFFORT: Energy efficient framework for offload
communication in mobile cloud computing

Saif U. R. Malik1,2 Hina Akram3 Sukhpal Singh Gill4 Haris Pervaiz5

Hassan Malik6

1Cybernetica AS, Tallinn, Estonia
2Department of Computer Science,
COMSATS University, Islamabad,
Pakistan
3COMSATS Institute of Information
Technology, Islamabad, Pakistan
4School of Electronic Engineering and
Computer Science, Queen Mary
University of London, London, UK
5School of Computing and
Communications, Lancaster University,
Lancaster, UK
6Department of Computer Science, Edge
Hill University, Ormskirk, UK

Correspondence
Haris Pervaiz, School of Computing and
Communications, Lancaster University,
Lancaster, UK.
Email: h.b.pervaiz@lancaster.ac.uk

Summary
There is an abundant expansion in the race of technology, specifically in the
production of data, because of the smart devices, such as mobile phones, smart
cards, sensors, and Internet of Things (IoT). Smart phones and devices have
undergone an enormous evolution in a way that they can be used. More and
more new applications, such as face recognition, augmented reality, online inter-
active gaming, and natural language processing are emerging and attracting
the users. Such applications are generally data intensive or compute inten-
sive, which demands high resource and energy consumption. Mobile devices
are known for the resource scarcity, having limited computational power
and battery life. The tension between compute/data intensive application and
resource constrained mobile devices hinders the successful adaption of emerg-
ing paradigms. In the said perspective, the objective of this article is to study
the role of computation offloading in mobile cloud computing to supplement
mobile platforms ability in executing complex applications. This article proposes
a systematic approach (EFFORT) for offload communication in the cloud. The
proposed approach provides a promising solution to partially solve energy con-
sumption issue for communication-intensive applications in a smartphone. The
experimental study shows that our proposed approach outperforms its counter-
parts in terms of energy consumption and fast processing of smartphone devices.
The battery consumption was reduced to 19% and the data usage was reduced
to 16%.

K E Y W O R D S

cloud computing, cloud service providers, energy consumption, IoT, Internet spoofing,
offload communication

1 INTRODUCTION

Technological advancements in the field of information and communications technology (ICT) cause an explosive growth
in the number of mobile devices accessing the wireless network. The development in Cloud Computing (CC) and wireless

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the
original work is properly cited.
© 2020 The Authors. Software: Practice and Experience published by John Wiley & Sons, Ltd.

1896 wileyonlinelibrary.com/journal/spe Softw: Pract Exper. 2021;51:1896–1909.

https://orcid.org/0000-0002-3913-0369
https://orcid.org/0000-0002-8364-4682
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fspe.2850&domain=pdf&date_stamp=2020-05-31

MALIK et al. 1897

communication technology has been the driving factor for such an exponential growth. It is anticipated that the total
number of mobile devices in 2020 will reach 75 billion, while the volume of data would exceed 24.3 exabytes.1 Recent
reports have highlighted the impact and significance of Mobile CC (MCC). For example, according to a study by ABI
Research, more than 240 million businesses will use services of cloud through mobile devices by 2015 and this will push
the revenue of the MCC to $5.2 billion.2 Furthermore, the use of smartphones has rapidly increased in numerous domains
such as gaming, healthcare, enterprise, e-learning, and management of information systems. Even though the prophecy
of mobile devices ruling the future computing devices; the smartphones alongside with their applications are still con-
strained by few limitations, such as memory, processor, and battery life. Nowadays, modern mobile devices have adequate
resources such as fast processors, large memory, and sharp screens. However, it is still not enough to help with computing
intensive tasks such as natural language processing, image recognition, and decision making.

To overcome the resource scarcity of smart devices, offloading computations is the demand in need.3 MCC is a com-
bination of CC and mobile computing that is generally a feasible solution to offload computations. However, the key
barriers to offloading computation in MCC are the network bandwidth and latency.4 If too many simultaneous offload-
ing requests are made through the wireless access to the cloud, then severe interference may be created, resulting in a
reduced data rates for data transmission.3,5 Besides latency, since mobile devices contain enormous amount of personal
data, there are concerns related to the data offloaded to the mobile cloud, such as trust, authentication, secure communi-
cation, privacy, and malicious attacks (like DoS).6 Moreover, considering the “Mobile” nature of mobile devices, questions
regarding what to offload, when to offload, and efficiency of offloading is still a research in demand.

Due to the advancement in the telecom industry, computing hardware has allowed the programmers to design com-
plex applications in smartphones such as gaming apps, multimedia streaming, communication apps, and m-commerce.
The goal is to facilitate the users to communicate effectively and efficiently. To address such communication intensive
nature of applications, various solutions are proposed at different abstraction levels, from energy efficient hardware com-
ponent (low-level) to user related solutions (high-level).3 Some of the most prominent solutions are the one discussed in
Reference 6, mobiByte,7 Clone Cloud,8 and MAUI system.9 The total energy savings in the case of computation offloading
is limited because it reduces the energy footprint of computationally intensive applications, which are not yet frequently
used.10,11 Considering smart phones having continuous and reliable connectivity, some interesting questions are which
surrogate server to choose to offload data, when to decide for the offloading, and what data should be offloaded to meet
the Quality of Experience (QoE) of the users.12 There is a growing trend that service-oriented attributes like Quality of
Service (QoS) does not cover every aspect of the application performance-related perspective.8 As a consequence, the con-
cept of QoE has gained strong interest in the research community.13 Apart from the offloading decisions, another concern
involved in MCC is network congestion control.14 Mobile traffic is tremendously increasing, and network oper ators have
to adopt new mechanisms to deliver smooth communication between users and cloud endpoints.15

In this research, we propose an Energy eFFicient framewORk for offload communicaTion (EFFORT) in MCC for com-
munication offloading used for communication intensive applications that we believe will significantly reduce energy
footprint for two main reasons. The first reason is, these applications are widely used by most smartphone users; and sec-
ond, these applications are continuously or periodically run as a background process either as home screen widget or as
background service and monitor some source of information on the Internet. Some examples include Really Simple Syn-
dication (RSS) readers, social networking apps, weather information widgets, traffic information widgets, sports score
services, and so on. To demonstrate the effectiveness and efficiency of our proposed approach, we developed a prototype
application and benchmark it is using different Android devices in a real mobile cloud environment. The experiments
were aimed to identify the network and battery consumption of the devices when the offloading mechanism is adopted.

Our Contributions: The main contributions of this research article are as follows:

a. Introducing a novel mechanism for efficient communication intensive applications on smartphones and analyzing
them by identifying its requirements and crucial issues.

b. Implementation of communication offloading framework in the CC environment along with its evaluation with
real-life applications.

c. Performance of proposed approach has been evaluated in cloud environment.
d. Addressing the challenges in MCC that require more investigation and elaboration.

The rest of the article is organized as follows: Section 2 explains the critical background concepts and terminology,
including CC, the MCC concept, computation offloading and issues Smartphone's users are facing. Section 3 presents
the MCC concept in detail. A comparison between the different offloading frameworks and their critical issues along

1898 MALIK et al.

with the methodology and implementation overview of communication offloading framework is discussed in Section 4.
Experimental validation is discussed in Section 5 and article is concluded in Section 6 along with some future directions
in the area of CC.

2 RELATED WORK

Even from the days of Simian Operating System (OS), people started using smartphones to perform several day-to-day
activities that were earlier performed on Personal Computers (PC).16 Due to the extensive range of smartphone appli-
cations, they are becoming the prime platform for computing for mobile users. Every year the number of smartphone
shipments is increasing with the record growth rate of 16%. With the introduction of applications like 3G/4G Internet,
people are not bound to sit in front of the machines (PC/Laptop) to use the Internet, but they can use it on a smartphone
directly. Mobile computing is a promising technology that is gaining esteem as a mean to enlarge the potential of smart-
phone that is one of the resource-constrained devices. The models proposed for mobile cloud application development
have been divided into different categories based on their efficiency, performance, memory, execution of an application
that are the core objectives of the applications along with the offloading technique.

The term offloading is defined as a mechanism of shifting the specific computing tasks to an external platform, such
as cloud, cluster, or grid, and so on. It may be essential due to the limitations of hardware in a computer system handling
a specific task on its own. There are two types of offloading mechanisms; the first one is Computation offloading and
the second one is Communication offloading. In computation offloading a clone image of the smartphone is formed
which is comprised of the data and all the installed applications. Then the clone image is shifted to the cloud, where it
dwells and executes on a virtual machine(s). The clone periodically synchronizes with the smartphone to keep the clone
execution consistent and to facilitate computation offloading. Whereas, in communication offloading a clone method of
communication is placed on the cloud, once a message is sent from the application to the clone method on the cloud, the
clone method will forward that communication to the service on a cloud environment. There are two ends of that service,
one resides on Cloud and other will be running on a mobile device.17 The service on the cloud will fetch the data from clone
methods on cloud and then push the data to the listener service to desired Smartphone. The service on the cloud is also
responsible to identify the correct communication to correct mobile device. The listener service on a mobile device will
identify the correct application and forward the data to the application. By doing this there will be only service running
in mobile instead of each application running its on service. Table 1 shows the comparison between cloud and MCC in
terms of the factors supported by respective technology. Moreover, in Table 2 a detailed comparison of existing offloading
approaches is provided. We have precisely compared the existing offloading framework based on certain metrics. The
“Cuckoo” framework is proposed in Reference 18 that provides an offloading mframework using Java Virtual Machines.
The Ibis high programming system24 provides the foundation for the communication components in Cuckoo. To use the
framework, all of the applications have to be re-written to support local and remote processing. Although the authors in
Reference 18 claimed to gain a considerable speedup, no specific figures are mentioned. Moreover, the framework is not
adaptive, as soon as the mobile is connected to the cloud, the computations are offloaded. The other model is CloneCloud,8
which is based on distributed execution by offloading certain parts of the applications. Unlike Cuckoo, the CloneCloud
does not require programmer support for application execution. There are five basic distributed execution mode supported

Factors Cloud computing Mobile cloud computing

Context awareness × ✓

Device energy × ✓

Bandwidth utilization cost × ✓

Network connectivity × ✓

Mobility × ✓

Location awareness × ✓

Bandwidth × ✓

Security ✓ ✓

T A B L E 1 Mobile cloud and cloud
computing comparison

MALIK et al. 1899

T A B L E 2 Offloading techniques

Model Context awareness Latency Bandwidth utilization Scalability Privacy

18 L M L H L

8 M All H L L

19 M M L H M

20 L L L L L

21 L H M & H L L

22 L M & H M H M

23 H L L M L

9 H L L L L

Note: L (low), M (medium), and H (high), cloud (C), nearby infrastructure (NI).

by CloneCloud, whose details can be found in Reference 25. The main advantage of CloneCloud is that it is adaptive and
the offloading decisions are made by considering the offloading cost and other constraints. The offloading mechanisms
proposed in References 19,20 are mainly focused to support flexibility and scalability. Both of the aforesaid model support
heterogeneous components execution, where the component can either execute on the cloud or on the phone. Similarly,
the models explained in References 21-23 and 9 support computational offloading. However, none of the aforesaid models,
discussed or provided any framework to support communication offloading for data intensive applications. Therefore, in
this article, we made an attempt to propose a framework that can facilitate communication offloading to achieve energy
efficiency in mobile cloud. From the computation offloading solutions discussed in this section, following observations
can be made:

1. There is a tradeoff between different factors in all of these solutions. The optimum solution will be the one that will
not only lower the bandwidth usage but also address the processor usage, battery usage, privacy, and so on.

2. The optimum solution also needs to be, first, workable for developers. Considering the current trend creating any
mobile application and making it available for App user is as easy as it can be. The first and most obvious question
should be “Why a developer follows any of the purposed models for their application?”

3. Considering all the above facts we also need to re-consider our hypothesis that mobile devices need to offload com-
munication/computation. We need to decide either if this is a problem in real or not. If so, then the solution provided
above does not address all the areas.

The literature mainly focused on approaches that address the issues regarding computation offloading to overcome
the limitations of mobile phones in terms of computation, memory, and battery. However, communication offloading is
an under studied topic in the research community and we believe it can significantly improve the performance within
the MCC environment.

3 SYSTEM MODEL

Computation and communication offloading at a lower power and latency is an emerging area of research in the domain
of MCC.17 As shown in Figure 1, there are three main components in our proposed system. The first one is the View,
which provides a UI for the Android application (communication or data intensive), cloud, and push notifications. Second
is the Controller, which controls the clone cloud and native mobile application. Third is the Model, which defines the
interaction between the client and the server.

Whenever a task has to be offloaded, there is a cost associated to it. The cost is usually computed in terms of power
consumption or time required to perform the offloading. The power consumption of a task when its executed locally on
the mobile device is computed as in (1):

𝜌l = 𝜌m ∗ i
sm

(1)

1900 MALIK et al.

F I G U R E 1 Basic components of proposed framework

where 𝜌m is the power consumed by mobile device on each instruction, i is the total number of instructions to be executed,
and sm is the processing speed of the mobile. In contrast, the power consumption, in case of offloading the task to the
cloud is computed as26,27:

𝜌o = 𝜌m(I) + 𝜌m(S) + 𝜌m(R), (2)

where

𝜌m(I) = iρ
[

i
sc

+
Dm,c

p

]
, (3)

𝜌m(S) = sρ ∗
𝜑s

ℸs
, (4)

𝜌m(R) = rρ ∗
𝜑r

ℸr
. (5)

The power consumption for offloading (𝜌o) is mainly computed by adding up the power when the mobile is in idle state
(𝜌m(I)), sending state (𝜌m(S)), and in receiving state (𝜌m(R)). The 𝜌m(I) is then further computed as the idle state power
consumption of the device (i𝜌), speed of the cloud (sc), distance between mobile device and the cloud (Dm, c), and the
propagation delay (p). The 𝜌m(S) and 𝜌m(R) are computed in a similar passion, using the power consumption in respective
states s𝜌 and r𝜌, and the amount of data send and received (𝜑s, 𝜑r) over the respective transmission rate (ℸs, ℸr).

In remote processing, the turnaround time is one of the most important parameters, especially in case of communi-
cation or data intensive applications. There are several phases, where the processing is conducted, which cause delays at
several instances. In offloading process, several delays are encountered that makes up the turnaround time for the remote
processing. The turnaround time includes28: (a) time taken to maintain the states of running instances of offloaded appli-
cations, (b) time to transfer the clone from a mobile device to the cloud, (c) time to download the clone at server, (d) time
taken to set the preferences of mobile application to server node, (e) time to configure the clone to the server node, and
(f) time to send the result to the mobile device.

4 PROPOSED FRAMEWORK

This section presents the proposed solution for communication offloading. The proposed framework exploits the advan-
tages of offloading to devise a relatively new technique of offloading communication in MCC. The main usage of
Smartphone devices is communication, and some applications are communication expensive. We have identified a class
of frequently used applications, information monitoring applications, requiring significant communication. The aforesaid

MALIK et al. 1901

applications are continuously or periodically run as a background process, either as home screen widget or as background
service and monitoring some source of information on the Internet.16 Few examples of such applications are RSS readers,
Social networking apps, weather information widgets, traffic information widgets, sports score services, and much more.
This research targets these applications to offload communication, thus, enhancing the performance and battery life of
Smartphone devices.

To test the effectiveness of the proposed communication offloading framework, experiments are conducted; writing
applications using Software as a Service (SaaS) and placing its clone on the cloud component that is, Infrastructure as a
Service (IaaS). Details of the experiment, along with its results will be presented in the following section.

4.1 Communication offloading framework

The architecture of communication offloading framework is depicted in Figure 2. In the framework, for each application,
there will be a clone method of communication placed on the cloud. Once a message is sent from the application to the
clone method on the cloud, the clone method will forward that communication to the service on cloud environment.17

There are two ends of that service, one resides on Cloud and other will be running on a mobile device.17 The service
on the cloud will fetch the data from clone methods on cloud and then push the data to the listener service to desired
Smartphone. The service on the cloud is also responsible to identify the correct communication to correct mobile device.
The listener service on a mobile device will identify the correct application and forward the data to the application. By
doing this there will be only service running in mobile instead of each application running its own service.

To send communication from mobile using any application, there will be no need to involve cloud as this will cause
an overhead. The applications in mobile can communicate directly with the live applications when it comes to sending
data. The live application will create the object of the data needed to be sent, and forward it to its clone on the cloud by
encrypting it with the Mobile Device ID that is authorized to receive the data. The clone that will add the application ID
and send it to the service over the cloud that will push the object to the desired device based on Device ID. Once the object
is received on the Smartphone, the service will push the data to right Application using the Application ID and finally,
the data will be decrypted using the current mobile Device ID. In this scenario, every mobile has its Unique ID that will
be used to encrypt and decrypt data for security. A unique application ID will be assigned to each application to ensure
the data are sent to the correct application.

F I G U R E 2 Communication offloading framework

1902 MALIK et al.

4.2 Implementation of communication offloading framework

There are three main modules of a mobile application regardless of its host operating system which are as follows:
Cloud Application: By using this module a listener method of application can be placed which is unique to all the

applications and the purpose of this method is to listen to the messages sent from the application on the server. Meanwhile,
a unique application ID along the message object is sent from the application server and afterward pushed to the cloud
with the help of push service. Push Service on Cloud: Figure 3 depicts the sequence diagram of push service notification.
This service, upon receiving the communication object from the above module will send to the designated mobile device
by using the device ID.

The app on Mobile Phone: The actual application on Smartphone device will receive the message object from the
CloneCloud, as shown in Figure 4. Upon receiving it the steps that will be performed are as follows:

1. By checking the Application ID, the object will be sent to the respective mobile application.

F I G U R E 3 Sequence diagram of notification

MALIK et al. 1903

F I G U R E 4 Sequence diagram for CloneCloud (Code of data sending request before implementing cloud)

2. Mobile Application will decrypt the message by taking the current Device ID. If the message is decrypted properly, it
will be displayed in the app otherwise the package will be disregarded. This will ensure the message is sent to correct
device and application.

3. A service needs to run on mobile that will receive all the objects coming from cloud service and assign them to the
appropriate device.

5 PERFORMANCE EVALUATION AND EXPERIMENTAL RESULTS

The experiments are performed on four different mobile vendors, namely Sony, Samsung, LG, and Q-Mobile. We devel-
oped an application in the Android platform for the validation of communication offloading. We choose Android platform

1904 MALIK et al.

as it is compatible with the solution of communication offloading also it is an open source OS and the majority of Smart-
phone users uses it. To demonstrate the effectiveness and efficiency of our proposed approach, we developed a prototype
application and benchmark it using different Android devices in a real mobile cloud environment. Several Android
devices, shown in Table 3, (whose details are mentioned in the later section) were part of the experiment. As seen in
Table 3, we chose different mobile devices from different vendors with different specifications, so as to test our prototype
application on a diverse set of machines. Moreover, the experimental setup was consisting of a server node to run virtual
Android device and an Internet connection (Wifi or 3G). The server machine was used to deploy the virtual device to
offload the execution of the service mechanism. Java Development Toolkit was used to develop the prototype application.
Several third-party tools, such as OS Monitor by EOLWRAL, were used to measure and monitor the resource utilization
of the system. Furthermore, for battery consumption Power Tutor28 Tool is used.

The prototype application that we build for our experimental analysis and evaluation is a sport score update app, which
interacts with server and update the score board periodically. For intensive communication, we developed a smart phone
application of CricInfo that interacts with the server and provide periodic updates. When the device is connected to the
network the updates are sent using push notifications automatically. We developed two prototype of the application, one
that uses offloading and the other that does not. As the mobile devices are resource constrained, our goal was to analyze
the effect of offloading on the battery and other resources of the mobile devices. For the evaluation purpose, we have used
the following devices:

5.1 Battery consumption in apps with and without cloud

The battery was charged 100% at the beginning of the test. The normal processes were running in the background to
analyze the overall status of the battery consumption. The results of using these applications for continuously for 2 hours
are listed in Table 4. It can be clearly observed from the results depicted in Table 4 that the batteries of the devices are
consumed more when the apps are executed without cloud. In case of cloud, the battery consumption is relatively less
than the previous case. The results imply the energy efficiency can be achieved through offloading.

5.2 Network usage test

The network test was conducted to check how much network is utilized while apps are executed on cloud and without
cloud. Since, the network usage is directly related to the energy consumption of the device, the larger is the consumption
the higher will be the energy footprints. For the test, we used the Apps on Wifi and 3G. We sent the same number of data

Device name OS Battery

Sony Xperia T 4.3 1850 mAh

Samsung S5 5.0 2800 mAh

Q-Mobile Noir Z9 5.1.1 3000 mAh

Sony Xperia Z3 5.1.1 3100 mAh

LG Nexus 5 5.0 2300 mAh

T A B L E 3 Devices used in evaluation

T A B L E 4 Battery consumption in apps

Device name OS Battery Without cloud test end %age With cloud test end %age

Sony Xperia T 4.3 1850 mAh 68 71

Samsung S5 5 2800 mAh 76 79

Q-Mobile Z9 5.1.1 3000 mAh 71 73

Sony Xperia Z3 5.1.1 3100 mAh 83 88

LG Nexus 5 5 2300 mAh 75 81

MALIK et al. 1905

on both networks, namely Wifi and 3G for apps with and without cloud implementation. The results are shown in Table 5
and it is evident that the apps with the cloud have less network consumption, in both scenarios and on all devices, than
the apps without cloud.

5.3 Performance test

For performance, we analyzed our framework with non-cloud-based implementation alongside Wifi and 3G. For perfor-
mance monitoring, we have used a free third-party tool from Android marketplace that is, OS Monitor by EOLWRAL.
The goal of this test was to observe the overall effect of the offloading mechanism on the device. As we can see in Table 6,
the performance of the devices with cloud execution is in all of the devices is relatively better than the without cloud
environment.

T A B L E 5 Network usage in apps Without cloud With cloud

Device name OS Wifi 3G Wifi 3G

Sony Xperia T 4.3 1000 KB 998 KB 860 KB 890 KB

Samsung S5 5 990 KB 1008 KB 858 KB 901 KB

Q-Mobile Noir Z9 5.1.1 989 KB 992 KB 862 KB 888 KB

Sony Xperia Z3 5.1.1 999 KB 999 KB 866 KB 892 KB

LG Nexus 5 5 964.1 KB 1002 KB 858 KB 895 KB

T A B L E 6 Performance monitoring in apps with and without cloud implementation

Without cloud With cloud

Device OS WiFiCPU usage 3GCPU usage WiFiCPU usage 3GCPU usage

Sony Xperia T 4.3 App1: 11.6 App1: 12.1 App1: 5.3 App1: 5.5

App2: 11.6 App2: 12.1 App2: 5.3 App2: 5.5

App3: 11.6 App3: 12.1 App3: 5.3 App3: 5.5

App4: 11.6 App4: 12.1 App4: 5.3 App4: 5.5

Samsung S5 5 App1: 9.7 App1: 10.0 App1: 4.4 App1: 4.6

App2: 9.7 App2: 10.0 App2: 4.4 App2: 4.6

App3: 9.7 App3: 10.0 App3: 4.4 App3: 4.6

App4: 9.7 App4: 10.0 App4: 4.4 App4: 4.6

Q-Mobile Noir Z9 5.1.1 App1: 13.3 App1: 13.9 App1: 6.9 App1: 7.1

App2: 13.3 App2: 13.9 App2: 6.9 App2: 7.1

App3: 13.3 App3: 13.9 App3: 6.9 App3: 7.1

App4: 13.3 App4: 13.9 App4: 6.9 App4: 7.1

Sony Xperia Z3 5.1.1 App1: 8.6 App1: 9.4 App1: 3.9 App1: 4.3

App2: 8.6 App2: 9.4 App2: 3.9 App2: 4.3

App3: 8.6 App3: 9.4 App3: 3.9 App3: 4.3

App4: 8.6 App4: 9.4 App4: 3.9 App4: 4.3

LG Nexus 5 5 App1: 10.3 App1: 10.7 App1: 5.8 App1: 6.2

App2: 10.3 App2: 10.7 App2: 5.8 App2: 6.2

App3: 10.3 App3: 10.7 App3: 5.8 App3: 6.2

App4: 10.3 App4: 10.7 App4: 5.8 App4: 6.2

1906 MALIK et al.

6 DISCUSSION

We have conducted a series of experiments on several Android-based systems with different applications. The goal was to
evaluate the significance of offloading communications from the mobile devices to the cloud and how much gains can be
achieved. The experiments results revealed that the battery consumption drops when we adopt cloud model as described
earlier. On average, with the entire devices that we have tested, we found that about 19% of battery is saved within 2 hours
of testing, as shown in Figures 5 and 6. Both of the aforesaid figures indicate a drop in the energy consumption of the
mobile devices.

In terms of network usage, we analyzed the connectivity of both, the Wifi and 3G, as shown in Figure 7. The devices
we had were not all 4G compatible. However, we assume the results do not significantly differ in 4G as well. The data
that are sent and received is quite evident that the proposed model helps in saving data as well. On average, from the test
results, we can see that the data usage decreases by 16%.

From the performance perspective, we considered a worst-case scenario by executing all of the applications
at once. Although, the said is a rare scenario, but it could still possibly happen. We noticed a slight hike
in the cloud-based approach. However, even with the hike in performance, it is only 6.5% more usage of the
processor.

F I G U R E 5 Battery consumption of device (Performance evaluation
over 3G)

F I G U R E 6 Difference in the battery consumption of the devices

F I G U R E 7 Average network consumption on Wifi and 3G using
cloud offloading and without cloud

MALIK et al. 1907

F I G U R E 8 Coefficient of variation for cloud offloading and without cloud for (A) energy consumption and (B) network consumption

6.1 Constraints and limitation

After thorough evaluation and experiments, we have observed the following limitations and constraints in our proposed
approach.

• The true benefit of the proposed model is possible when there are several applications that use communication
offloading. We believe that a single application may not get the best results out of the model.

• Since, we have focused on communication offloading only, the model is not suitable for computational offloading or
may require significant changes in the model to support other operations.

• A centralized server is required, preferably by OS marketplace that will host all the application methods and has the
service of cloud to Push data to relevant devices.

7 STATISTICAL ANALYSIS

Statistical significance of the results has been examined by Coefficient of Variation (CoV), a statistical method which is
used to equate to different means and moreover provide an overall study of performance of the proposed approach used
for generating the statistics. It states the deviation of the data as a proportion of its average value, and is calculated as
follows (Equation (6)):

CoV = SD
M

× 100 (6)

where SD is a SD and M is a mean. CoV of energy consumption with cloud offloading and without cloud is shown in
Figure 8A. Range of COV is (0.39%-0.97%) for energy consumption approves the stability of proposed framework. CoV of
network consumption with cloud offloading and without cloud is shown in Figure 8B. Range of COV is (0.46%-0.99%) for
network consumption approves the stability of proposed framework. Small value of CoV signifies proposed framework is
more efficient and stable for offload communication in MCC.

8 CONCLUSIONS AND FUTURE DIRECTIONS

In recent times CC has emerged as a new and attractive standard for distributing services over the Internet. Though,
in spite of the fact that this standard provides numerous prospects to the various industries such as IT, business, and
so on there are many issues in this area that still needs to be focused. In this article, we present the issue of battery
consumption in Smartphones due to its performance of applications, storage, and computation these days. We have

1908 MALIK et al.

conducted experiments which show that our proposed approach is an adaptive optimization framework for offload com-
munication in CC to reduce the energy consumption in Smartphones along with increasing the speed of its intensive
operations by a significant level. Furthermore, the aim of this article is to provide a better understanding of the challenges
and discover major research directions in MCC as the recent technologies that exist are not adequate to comprehend its
full potential. In future, our plan is to study the security and privacy attacks that can possibly be applied to cache, such
as Cache Usage Attacks,29,30 where the attacker monitors the CPU activities through caches on the physical machines.
Moreover, to improve the cache hit ratio, a speculative mechanism can be developed that pre-fetches the data within the
cache based on certain predictive parameter.

ACKNOWLEDGEMENTS
We would like to thank the editor, area editor, and anonymous reviewers for their valuable comments and suggestions to
help and improve our research article.

ORCID
Sukhpal Singh Gill https://orcid.org/0000-0002-3913-0369
Haris Pervaiz https://orcid.org/0000-0002-8364-4682

REFERENCES
1. Wu J, Zeng M, Chen X, Li Y, Jin D. Characterizing and predicting individual traffic usage of Mobile application in cellular network.

Paper presented at: Proceedings of the ACM International Symposium on Pervasive and Ubiquitous Computing and Wearable Computers;
2018:852-861; ACM.

2. Akherfi K, Gerndt M, Harroud H. Mobile cloud computing for computation offloading: issues and challenges. Appl Comput Inform.
2017.14:1–16.

3. Ghosh A, Khalid O, Rais RN, Rehman A, Malik SUR, Khan IA. Data offloading in IoT environments: modeling, analysis, and verification.
EURASIP J Wirel Commun Netw. 2019;53(1):1-53.

4. Mach P, Becvar Z. Mobile edge computing: a survey on architecture and computation offloading. IEEE Commun Surv Tutor.
2017;19(3):1628-1656.

5. Chen X. Decentralized computation offloading game for mobile cloud computing. IEEE Trans Parall Distrib Syst. 2015;26(4):974-983.
6. Mollah MB, Azad MAK, Vasilakos A. Security and privacy challenges in mobile cloud computing: survey and way ahead. J Netw Comput

Appl. 2017;84:38-54.
7. Khan AR, Othman M, Akhtar S, Khan AN, Madani S. MobiByte: an application development model for Mobile cloud computing. J Grid

Comput. 2015;13 (1572–9184):1-24.
8. Chun BG, Ihm S, Maniatis P, and Naik M. Clonecloud: boosting mobile device applications through cloud clone execution; 2010. arXiv

preprint arXiv:1009.3088.
9. Cuervo E, Balasubramanian A, Cho D, Wolman A, Saroiu S, Chandra R, Bahl P. MAUI: making smartphones last longer with code offload.

Paper presented at: Proceedings of the 8th International Conference on Mobile Systems; 2010:49-62.
10. Han B. Mobile data offloading through opportunistic communications and social participation. IEEE Explorer. 2012;11:821-834.
11. Zhou Q, Xu M, Gill SS, Gao C, Tian W, Xu C, Buyya R. Energy efficient algorithms based on VM consolidation for cloud computing:

comparisons and evaluations. Paper presented at: Proceedings of the 20th IEEE/ACM International Symposium on Cluster, Cloud and
Grid Computing (CCGRID 2020); 2020:1-10.

12. Gill SS, Tuli S, Xu M, et al. Transformative effects of IoT, Blockchain and artificial intelligence on cloud computing: evolution, vision,
trends and open challenges. Internet of Things. 2019;8:100118.

13. Reichl P. From charging for quality of service to charging for quality of experience. Ann Telecommun. 2010;65(3–4):189-199.
14. Gill SS, Garraghan P, Stankovski V, et al. Holistic resource management for sustainable and reliable cloud computing: an innovative

solution to global challenge. J Syst Softw. 2019;155:104-129.
15. Mukherjee M, Kumar S, Shojafar M, Zhang Q, & Mavromoustakis CX. Joint task offloading and resource allocation for delay-sensitive

fog networks. Paper presented at: Proceedings of the ICC 2019-2019 IEEE International Conference on Communications (ICC); 2019:1-7;
IEEE.

16. Buyyaa R, Shin Yeo C. Cloud computing and emerging IT platforms: vision, hype, and reality for delivering computing as the 5th utility.
Future Generat Comput Syst. 2009;25(06):599-616.

17. Ahmed E, Gani A, Khan MK, Buyya R, Khan SU. Seamless application execution in mobile cloud computing: motivation, taxonomy, and
open challenges. J Netw Comput Appl. 2015;52:154-172.

18. Kemp R, Palmer N, Kielmann T, Bal H. Cuckoo: a computation offloading framework for smartphones. In: Gris M, Yang G, eds.
Mobile Computing, Applications, and Services. MobiCASE 2010. Lecture Notes of the Institute for Computer Sciences, Social Informatics and
Telecommunications Engineering (Vol. 76). Berlin, Heidelberg: Springer; 2012:59-79.

19. Zhou B, Srirama S, Buyya R. An auction-based incentive mechanism for heterogeneous Mobile clouds. J Syst Softw (JSS). 2019;152:
151-164.

https://orcid.org/0000-0002-3913-0369
https://orcid.org/0000-0002-3913-0369
https://orcid.org/0000-0002-8364-4682
https://orcid.org/0000-0002-8364-4682

MALIK et al. 1909

20. Bowen Zhou, Amir Vahid Dastjerdi, Rodrigo N. Calheiros, Satish Narayana Srirama, and Rajkumar Buyya,mCloud: a context-aware
offloading framework for heterogeneous Mobile cloud IEEE Trans Serv Comput (TSC), Volume 10, Number 5, Pages: 797–810, IEEE
Computer Society Press, USA, 2017.

21. Satyanarayanan M, Kozuch MA, Helfrich CJ, OHallaron DR. Towards seamless mobility on pervasive hardware. Pervasive Mob Comput.
2005;1(2):157-189.

22. Ma RK, Lam KT, Wang CL. eXCloud: transparent runtime support for scaling mobile applications in cloud. Paper presented at: Proceedings
of the IEEE International Conference on Cloud and Service Computing (CSC); 2011:103-110.

23. Kosta S, Aucinas A, Hui P, Mortier R, Zhang X. Unleashing the power of Mobile cloud computing using ThinkAir; 2011. arXiv preprint
arXiv:1105.3232.

24. Van Nieuwpoort R, Maassen J, Wrzesiska G, et al. Ibis:aflexibleandefficientjavabasedgridprogramming environment. Concurr Comput
Pract Exp. 2005;17:1079-1107.

25. Othman M, Madani SA, Khan SU. A survey of mobile cloud computing application models. IEEE Commun Surv Tutor. 2013;16(1):393-413.
26. Roy DG, De D, Mukherjee A, Buyya R. Application-aware cloudlet selection for computation offloading in multi-cloudlet environment.

J Supercomput. 2017 Apr 1;73(4):1672-1690.
27. Mukherjee A, De D, Roy DG. A power and latency aware cloudlet selection strategy for multi-cloudlet environment. IEEE Trans Cloud

Comput. 2016;7(1):141-154.
28. PowerTutor. http://ziyang.eecs.umich.edu/projects/powertutor/. Accessed September 05, 2019.
29. Ristenpart T, Tromer E, Shacham H, Savage S. Hey, you, get off of my cloud: exploring information leakage in third-party compute clouds.

Paper presented at: Proceedings of the 16th ACM Conference on Computer and Communications Security; 2009:199-212; Chicago, IL.
30. Standaert FX. Introduction to side-channel attacks. Secure Integrated Circuits and Systems. New York, NY: Springer; 2010:27-42.

How to cite this article: Malik SUR, Akram H, Gill SS, Pervaiz H, Malik H. EFFORT: Energy efficient
framework for offload communication in mobile cloud computing. Softw: Pract Exper. 2021;51:1896–1909. https://
doi.org/10.1002/spe.2850

http://ziyang.eecs.umich.edu/projects/powertutor/

