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Improved protocols for the SHAREMIND virtual machine

Dan Bogdanov, Margus Niitsoo, Tomas Toft, Jan Willemson

1 Introduction

The aim of secure multi-party computation (MPC) is to enable a number of networked
players to carry out distributed computing tasks on their private information while being
evesdropped on by a subset of malicious, colluding players.

The SHAREMIND (introduced in [1] and the extended version [2]) framework aims
for a practical implementation of multi-party computation. It is based on share comput-
ing on additive shares from the ring Z232 and provides security in the honest-but-curious
model. The framework has secure MPC protocols for performing private addition, mul-
tiplication, comparison and individual bit extraction operations on 32-bit integers or
integer vectors. The protocols are designed to be universally composable, which allows
running them sequentially and in parallel without compromising security.

Currently, the system works with 3 parties or miners. In this work, we propose new
protocols for multiplication, conversion from bit shares to integer shares, bit extraction
and equality testing that all make essential use of the 3-party assumption to provide
substantial speed increases over the previously used protocols without compromising
on the security assumptions. To simplify the security analysis of these protocols, we
also introduce a new analysis framework that simplifies the security proofs to a great
degree.

2 Proving Security of Sharemind Protocols

We will prove that all the proposed protocols are secure in the passive (honest-but-
curious) model against one attacker. For that, we will use the framework established
in [1], proving in fact, that all our protocols are perfectly simulatable.

Definition 1. We say that a share computing protocol is perfectly simulatable if there
exists an efficient universal non-rewinding simulator S that can simulate all protocol
messages to any real world adversaryA so that for all input shares the output distribu-
tions of A and S(A) coincide.

Perfect simulatability is not enough when we need to compose the protocols. Namely,
output shares of a perfectly simulatable protocol may depend on input shares. As a re-
sult, published shares may reveal more information about inputs than necessary. There-
fore, we must often re-share the output shares at the end of each protocol. As proven
in Lemma 2 of [1], this guarantees universal composability. However, in the protocols
presented in the current paper, the final resharing is usually dropped.

In order to prove perfect simulatability, we consider the incoming views of all the
computing parties and prove that they are independent of the input shares of the other



parties, hence proving existence of the simulator. We will use the sequences-of-games
formalism in our proofs. Denote the distribution of the incoming view G as JGK and let
the original incoming view of the party P be G0. Then we are interested in finding a
sequence G0, G1, . . . , Gn such that

JG0K = JG1K = . . . = JGnK

and that the view Gn does not contain any references to input shares of the other parties.
The main tool that allows us to construct such sequences is the following lemma.

Lemma 1. Let the incoming view G contain incoming messages a1 ± r, a2, . . . , ak

where a1, r are elements of finite additive group A and where r is a uniformly random
element of A, independent from all ai. Then

JGK = JG[a1 ± r/r]K .

Proof. If r ∈ A is uniformly distributed and independent from all ai then so is r ± a1

since fr(x) := r ± x is a bijective mapping for A. ut

In the following security proofs this lemma will be used for various groups, includ-
ing Z2, Z2n and (Z2)n. In the current implementation of SHAREMIND, n = 32 and
thus log2 n = 5.

3 Improved Protocols

3.1 Multiplication

Instead of using the Du-Atallah multiplication protocol proposed in [1], we propose a
new protocol described in Algorithm 1.

Theorem 1. Algorithm 1 is correct and secure against a passive attacker.

Proof. For correctness we note that

w = w1 + w2 + w3 = u′1v
′
1 + u′1v

′
3 + u′3v

′
1 + u′2v

′
2 + u′2v

′
1 + u′1v

′
2 + u′3v

′
3 +

+u′3v
′
2 + u′2v

′
3 =

= (u′1 + u′2 + u′3)(v
′
1 + v′2 + v′3) =

= (u1 + r12 − r31 + u2 + r23 − r12 + u3 + r31 − r23)×
(v1 + s12 − s31 + v2 + s23 − s12 + v3 + s31 − s23) =

= (u1 + u2 + u3)(v1 + v2 + v3) = uv .

To prove security, we note that Algorithm 1 is symmetric for all the parties. Thus,
it will be enough to consider just the incoming view of P1. Using Lemma 1 two times,
we get u
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Since the last view does not depend on private inputs other than u1 and v1, we conclude
that the protocol can be perfectly simulated. ut



Algorithm 1: Protocol for multiplying two shared values
Data: Shared values [[u]] and [[v]].
Result: Shared value [[w]] such that w = uv.
Round 1

P1 generates r12, s12 ← Z2n .
P2 generates r23, s23 ← Z2n .
P3 generates r31, s31 ← Z2n .
All values ∗ij are sent from Pi to Pj .

Round 2
P1 computes u′1 ← u1 + r12 − r31, v′1 ← v1 + s12 − s31.
P2 computes u′2 ← u2 + r23 − r12, v′2 ← v2 + s23 − s12.
P3 computes u′3 ← u3 + r31 − r23, v′3 ← v3 + s31 − s23.
P1 sends u′1 and v′1 to P2.
P2 sends u′2 and v′2 to P3.
P3 sends u′3 and v′3 to P1.

Round 3
P1 computes w1 ← u′1v

′
1 + u′1v

′
3 + u′3v

′
1.

P2 computes w2 ← u′2v
′
2 + u′2v

′
1 + u′1v

′
2.

P3 computes w3 ← u′3v
′
3 + u′3v

′
2 + u′2v

′
3.

3.2 Multiplication 2

Algorithm 1 can also be transformed to have one less round, see Algorithm 2
Correctness and security of Algorithm 2 are proved exactly the same way as for

Algorithm 1.

3.3 Share Conversion

An improved version of share conversion routine is presented as Algorithm 3

Theorem 2. Algorithm 3 is correct and secure against one passive attacker.

Proof. For correctness, we first note that

u = u1 ⊕ u2 ⊕ u3 = b⊕m⊕ b12 ⊕ s23 ⊕ b13 ⊕ s32 = m⊕ s .

Hence, if s = 1, we have

v = v1 + v2 + v3 = 1−m12 −m13 = 1−m ,

which is equal to m⊕ 1 when embedded to Z2n . If s = 0 we have

v = v1 + v2 + v3 = m12 + m13 = m ,

which is equal to m⊕ 0 when embedded to Z2n .
To prove security, we will consider all the three computing parties and prove that

their incoming views can be perfectly simulated.



Algorithm 2: Protocol for multiplying two shared values
Data: Shared values [[u]] and [[v]].
Result: Shared value [[w]] such that w = uv.
Round 1

P1 generates u13, v13 ← Z2n .
P2 generates u21, v21 ← Z2n .
P3 generates u32, v32 ← Z2n .
P1 → P2 : u1 − u13, v1 − v13; P2 → P1 : u21, v21.
P2 → P3 : u2 − u21, v2 − v21; P3 → P2 : u32, v32.
P3 → P1 : u3 − u32, v3 − v32; P1 → P3 : u13, v13.

Round 2 (post-processing)
P1 and P2 compute u′1 ← u1 − u13 + u21 and v′1 ← v1 − v13 + v21.
P2 and P3 compute u′2 ← u2 − u21 + u32 and v′2 ← v2 − v21 + v32.
P3 and P1 compute u′3 ← u3 − u32 + u13 and v′3 ← v3 − v32 + v13.
P1 computes w1 ← u′1v

′
1 + u′1v

′
3 + u′3v

′
1.

P2 computes w2 ← u′2v
′
2 + u′2v

′
1 + u′1v

′
2.

P3 computes w3 ← u′3v
′
3 + u′3v

′
2 + u′2v

′
3.

Algorithm 3: Protocol for converting a share from Z2to Z2n

Data: Shared value [[u]] in bit shares.
Result: Shared value [[v]] such that [[u]] = [[v]] and [[v]] is shared in full shares.
Round 1

P1 generates random b← Z2 and sets m← b⊕ u1.
P1 locally converts m to Z2n , generates random m12 ← Z2n and computes
m13 = m−m12.
P1 generates random b12 ← Z2 and computes b13 = b− b12 = b⊕ b12.
All values ∗ij are sent from Pi to Pj .

Round 2
P2 sets s23 ← b12 ⊕ u2.
P3 sets s32 ← b13 ⊕ u3.
All values ∗ij are sent from Pi to Pj .

Round 3 (Post-processing)
P1 sets v1 ← 0
P2 and P3 set s← s23 ⊕ s32

if s = 1 then
P2 sets v2 ← (1−m12).
P3 sets v3 ← (−m13).

else
P2 sets v2 ← m12.
P3 sets v3 ← m13.

end



– The view of party P1 contains no incoming messages, so the corresponding simu-
lator is trivial.

– The incoming view of P2 can be perfectly simulated, since using Lemma 1 we see
that its distribution u
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~

is independent of private inputs other than u2.
– Similarly, the incoming view of P3 can be perfectly simulated, since using Lemma 1

we see that its distribution
u

v
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is independent of private inputs other than u3.
ut

3.4 Bit extraction

An improved version of bit extraction routine is presented in Algorithm 4. In the al-
gorithm, lower indices are used to refer to the computing parties and they are handled
modulo 3 (i.e., where necessary we identify P4 = P1 and P0 = P3). All the binary
operations (⊕ and ∧) on 32-bit values are performed bitwise i.e. as operations in (Z2)n

for integer values in Z2n .

Theorem 3. Algorithm 4 is correct and secure against one passive attacker.

Proof. The basic working principle of Algorithm 4 is the same of the bitwise addition
protocol explained in [2]. During the first two rounds, u is represented as

u = u1 + u2 + u3 = (r + r2 + r3) + (v2 − r2) + (v3 − r3) = v2 + v3 + r = v + r ,

where r has a known shared bit decomposition r = r2 ⊕ r3. Thus, in order to find the
bits of u, we can use bitwise addition to compute the bits of v+r. To do that, one needs
to compute the carry bits, and this is done using the carry-lookahead algorithm exactly
as in [2].

First, we set s = v ∧ r and p = v ⊕ r (see lines number 9 to 11). Then in the main
cycle (lines 13 to 21), the values p and s first get reshared (lines 14 to 16). Indeed, note
that

p1 ⊕ qk
1 ⊕ qk

3 ⊕ p2 ⊕ qk
2 ⊕ qk

1 ⊕ p3 ⊕ qk
3 ⊕ qk

2 = p1 ⊕ p2 ⊕ p3 = p ,

and similarly for s.
Lines 18 to 22 implement the carry-lookahead algorithm. It works by iteratively

merging the adjacent blocks of bits of p and s; see [2] for the full description of the
algorithm.1 The major technical detail is working bitwise over the field Z2, so that

1 Do we need to explain the algorithm here in detail?



Algorithm 4: Protocol for bit extraction.
Data: Additively shared value [[u]].
Result: Bitwise shares [[w(j)]] of u.
Round 11

P1 generates random r, r2, r2 ← Z2n and computes r3 ← u1 − r − r2, r3 ← r ⊕ r2.2
P1 sends ri, ri to Pi (i = 2, 3).3
Each Pi chooses q0

i , t0i ← Z2n and sends them to Pi+1.4
Round 25

Pi (i = 2, 3) computes the share vi ← ui + ri and sends it to P6/i.6
Rounds 3 to log2 n + 27
P2, P3 compute v = v2 + v3.8
P1 sets p1 ← 0, s1 ← 0.9
P2 sets p2 ← v ⊕ r2, s2 ← v ∧ r2.10
P3 sets p3 ← r3, s3 ← v ∧ r3.11
All parties Pi perform the following computations:12

for k ← 0 to log2 n− 1 do13

pi ← pi ⊕ qk
i ⊕ qk

i−1.14

si ← si ⊕ tk
i ⊕ tk

i−1.15
Send pi, si to Pi+1.16

Generate new random items qk+1
i , tk+1

i ← Z2n and send them to Pi+1.17

for `← 0 to 2k − 1 do18
for m← 0 to n

2k+1 − 1 do19

[[s(2k+`+2k+1m)]]← [[s(2k+`+2k+1m)]]⊕ [[p(2k+`+2k+1m)]] ∧ [[s(2k+2k+1m−1)]]20

[[p(2k+`+2k+1m)]]← [[p(2k+`+2k+1m)]] ∧ [[p(2k+2k+1m−1)]]21
//Note that ([[a]] ∧ [[b]])i can be computed locally as22
(ai ∧ bi)⊕ (ai ∧ bi−1)⊕ (ai−1 ∧ bi))

Define si
(−1) = 023

for j ← 0 to n− 1 do24
In P1: w1

(j) ← s1
(j−1)25

In P2: w2
(j) ← v(j) ⊕ r2

(j) ⊕ s2
(j−1)26

In P3: w3
(j) ← r3

(j) ⊕ s3
(j−1)27

Run share conversion protocol (Algorithm 3) on all [[w(j)]].28

addition is represented by ⊕ and multiplication by ∧. In order to compute the multi-
plication over Z2, we will essentially use the idea behind Algorithm 1 by computing
[[a]] ∧ [[b]] locally as (ai ∧ bi)⊕ (ai ∧ bi−1)⊕ (ai−1 ∧ bi). Indeed, adding all the shares
we get

(a1 ∧ b1)⊕ (a1 ∧ b3)⊕ (a3 ∧ b1)⊕ (a2 ∧ b2)⊕ (a2 ∧ b1)⊕
⊕(a1 ∧ b2)⊕ (a3 ∧ b3)⊕ (a3 ∧ b2)⊕ (a2 ∧ b3) =

= (a1 ⊕ a2 ⊕ a3) ∧ (b1 ⊕ b2 ⊕ b3) = a ∧ b .

Note also that all the shares required for this computation on lines 20 and 21 are local
and that all these computations can be run in parallel.

As a result of the main cycle, the bit vector s will contain exactly the carry bits from
the corresponding positions when computing v + r, hence it remains to add these bits



to the shared bitwise ⊕ of v and r, which is done on lines 23 to 27. Indeed, we see that

w(j) = s1
(j−1) ⊕ v(j) ⊕ r2

(j) ⊕ s2
(j−1) ⊕ r3

(j) ⊕ s3
(j−1) = v(j) ⊕ r(j) ⊕ s(j−1) .

As the last step of the Algorithm, share conversion is run to represent the bit shares
as elements of the ring Z2n .

To prove security, we will consider all the three computing parties and prove that
their incoming views can be perfectly simulated.

– The incoming view of party P1 is
u
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Since last view only contains elements generated randomly and independently dur-
ing the protocol, it can be perfectly simulated.

– The incoming view of P2 looks mostly the same as that of P1, only the initial part
differs. We use Lemma 1 again to see that

u
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v

r2

r2

u3 + r3

. . .

}

��
~ =

u
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v
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r2
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. . .

}

��
~

which does not depend on any input values and can hence be perfectly simulated.
– Similarly, for party P3 we have the initial part of the incoming view

u
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u2 + r2

. . .

}
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which does not depend on any input values once again.
ut

We note that this protocol can also be used to improve the efficiency of comparison
protocols which usually use bit extraction as a subroutine [2].



3.5 Equality testing

We note that equality testing can be accomplished fairly easily via bit extraction. How-
ever, since it is used fairly often in practical applications, it makes sense to provide a
separate and more efficient protocol specifically designed for that task. The new equal-
ity testing protocol for two shared values is given in Algorithm 5.

Algorithm 5: Protocol for evaluating the equality predicate.
Data: Shared values [[u]] and [[v]].
Result: Shares [[w]] such that w = EQ(u, v).
Round 11

P1 generates random r2 ← Z2n and computes r3 ← (u1 − v1)− r2.2

P1 sends ri to Pi (i = 2, 3).3

Each Pi chooses q0
i ← Z2n and sends them to Pi+1.4

Rounds 2 to log2 n + 15

P2, P3 compute ei = (ui − vi) + ri.6

P1 sets p1 ← 2n − 1.7

P2 sets p2 ← e2.8

P3 sets p3 ← (0− e3).9

All parties Pi perform the following computations:10

for k ← 0 to log2 n− 1 do11

pi ← pi ⊕ qk
i ⊕ qk

i−1.12

Send pi to Pi+1.13

Generate new random qk+1
i ← Z2n and send it to Pi+1.14

for m← 0 to n
2k+1 − 1 do15

[[p(2k+1m)]]← [[p(2k+1m)]] ∧ [[p(2k+1m+2k)]]16

//Note that [[p]] can be computed locally17

Run share conversion protocol (Algorithm 3) on [[p(0)]] and return that as [[w]].18

Theorem 4. Algorithm 5 is correct and secure against one passive attacker.

Proof. For correctness note first that

e2 +e3 = (u2−v2)+r2 +(u3−v3)+r3 = (u2−v2)+(u3−v3)+(u1−v1) = u−v ,

hence u = v iff e2 = 0− e3. Algorithm 5 compares u and v by comparing p2 = e2 and
p3 = (0− e3) bitwise. For that, bitwise sum (xor) p of p1 = 2n− 1 = 111 . . . 1, p2 and
p3 is analyzed. We see that u = v iff all the bits of p are 1, which is exactly the case
when the product w =

∏n−1
i=0 p(i) of the bits of p is 1. This is exactly what the cycle in

lines 11 to 16 does.
To prove security, we will consider all the three computing parties and prove that

their incoming views can be perfectly simulated.



The incoming view of party P1 is
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following the same argumentation as in the preceding proof.
The incoming view of P2 is again pretty much the same as that of P1 with the only

exception of receiving one extra independently and uniformly chosen element r2, which
is trivial to simulate. The same goes for P3 who receives r3 = (u1 − v1) − r2 which
can be replaced by r2 by Lemma 1. ut
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