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Abstract

The physical deployment of an information system is an important factor
in its security. When an information system is hosted in an untrusted envi-
ronment, its owner may lack controls to prevent unauthorized access to the
data in the system. For example, if the system is hosted by a cloud provider,
there is often no way for controlling which country the system is geograph-
ically located in. If the data owners do not trust the information system,
then they may be unwilling to use it for processing their data. In response
to these threats, the data security research community has developed se-
cure multiparty computation techniques that reduce the trust requirements
for the hosts of information systems. In this paper, we describe how to
construct information systems that allow the use of secure multiparty com-
putation techniques for achieving improved security and privacy guarantees.

1 Introduction

Organizations in both the public and private sector need to gather and process
private data to achieve their goals. For example, government agencies need to
be aware of changes in the economical and medical well-being of the population.
Similarly, medical institutions have to collect patient data to improve treatments
and perform research. Furthermore, private companies are collecting customer
information to make business decisions. Since private information is processed
during these activities, they are regulated by data protection laws that require the
organizations to preserve the privacy of the involved individuals.

The regulations directly influence the design of information systems. Although
the privacy requirements have existed for years, systems with strong privacy guar-
antees are still rare. Also, numerous incidents [2, 12] involving the loss of large
databases on portable storage devices such as USB sticks or misplaced backups
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show that the technologies and procedures of privacy preservation are not yet
mature.

Research in the area of information security and cryptography has provided
information system developers several techniques for improving the security of
privacy-preserving data processing. One of the most promising results with re-
gard to practical security guarantees are currently provided by secure multiparty
computation. In secure multiparty computation, multiple servers exchange infor-
mation in order to perform privacy-preserving computations.

Secure multiparty computation has been applied for solving practical prob-
lems [5,6]. However, the technology is not yet commonly used, as it sets restrictions
on the deployment of applications and requires developers to rethink application
architectures. In this article we discuss these restrictions and security guaran-
tees that secure multiparty computation can provide for information systems that
process private data.

In this paper we use privacy terminology from the ISO/IEC 29100 privacy
framework standard [1]. Personally identifiable information (PII ) is any informa-
tion that:

1. can be used to identify the person to whom such information pertains,

2. from which such information can be derived, or

3. that is or might be directly or indirectly linked to a natural person.

The information system will have a set of privacy safeguarding requirements and
privacy is breached when PII is not processed according to these requirements. The
privacy safeguarding requirements restrict the ways in which the system is allowed
to process PII. Therefore, techniques that help enforce such restrictions, also called
privacy enhancing technologies or PETs reduce the risk of privacy breaches. For
example, with secure multiparty computation, the parties processing the data
do not have to see the values provided by the data owner in order to compute
statistical results. This reduces the risk of PII breaches during processing through
insider attacks or negligence.

The main contributions of this article are an analysis of how secure multiparty
computation affects information system design, two generic information system
architectures suitable for deployment in a secure multiparty computation setting
and three examples that implement these architectures for improved privacy guar-
antees. In Section 2 we introduce secure multiparty computation as a technique for
secure computations. Section 3 describes how secure multiparty computation and
privacy requirements affect information system design. In Section 4 we propose
two generic architectures for private information systems for which we give usage
examples in Section 5.
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Figure 1: The input nodes connect to all SMC nodes and store their data using
secret sharing.

2 Secure Multiparty Computation

Before discussing the use of secure multiparty computation in the context of in-
formation systems and privacy we give a generic overview of the technology.

Secure multiparty computation (SMC) with n parties is defined as the compu-
tation of a function f(x1, . . . , xn) = (y1, . . . , yn) so that the result is correct and
the input values of all the parties are kept private. Every party Pi will provide
an input value xi and learn only the result value yi. For some functions f and
some input values it might be possible to deduce other parties’ inputs from the
result. Still, in the case of data aggregation algorithms it is not possible to learn
the inputs of other parties from the result.

In order use secure multiparty computation for implementing larger algorithms,
it makes sense to use universally composable secure multiparty computation pro-
tocols [7]. Such protocols can be executed sequentially and in parallel without loss
of privacy.

Most secure multiparty computation methods are based on encryption or se-
cret sharing. However, due to the computational complexity of encryption-based
solutions, methods based on secret sharing achieve a better performance. For this
reason in this paper we concentrate on methods based on secret sharing—also
called share computing techniques.

Share computing uses secret sharing for the storage of data. Let s be the secret
value. An algorithm S defines a k-out-of-n threshold secret sharing scheme, if it
computes S(s) = [s1, . . . , sn] and the following conditions hold [13]:

1. Correctness: s is uniquely determined by any k shares from {s1, . . . , sn}
and there exists an algorithm S′ that efficiently computes s from these k
shares.

2. Privacy: having access to any k− 1 shares from {s1, . . . , sn} gives no infor-
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Figure 2: The SMC nodes can run SMC protocols to compute useful results from
secret-shared data.

mation about the value of s, i.e., the probability distribution of k− 1 shares
is independent of s.

An input party who provides data for secure computations, distributes it data
into shares using secret sharing. The input parties will then send one share of each
value to a single SMC party. The data storage process with three SMC nodes is
illustrated on Figure 1. This separation of nodes into input nodes and SMC nodes
is useful, since it does not force every party in the information system to run SMC
protocols. This reduces the complexity of the system.

After the data has been stored, the SMC nodes can perform computations on
the shared data. Notice that none of the SMC nodes can reconstruct the input
values thanks to the properties of secret sharing. We now need to preserve this state
during computations. This is achieved by using secure multiparty computation
protocols that specify which messages the SMC nodes should exchange in order to
compute new shares of a value that corresponds to the result of an operation with
the input data.

Figure 2 shows the overall structure of secure multiparty computations. As-
sume, that the SMC nodes have shares of input values u and v and want to compute
w = u ⊕ v for some operation ⊕. They run the SMC protocol for operation ⊕
which gives each SMC node one share of the result value w. Note that the pro-
tocols do not leak information about the input values u and v . For details and
examples on how this can be achieved, see the classical works on SMC [3,7,8,15].

After computations have been finished, the results are published to the client
of the computation. The SMC nodes send the shares of the result values to the
client node that reconstructs the real result from the shares. See Figure 3 for an
example. Note, that it is important not to publish results when they could still
leak information about the inputs. The algorithms running in the SMC nodes
must be audited to ensure that they do not publish private inputs.

SMC protocol suites provide different levels of privacy depending on the adopted
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Figure 3: Results are published after the computation is complete.

security model. In the semi-honest model it is assumed that SMC parties follow
protocol, but they may also perform more computations to try and figure out the
input values. In the malicious model, SMC nodes can deviate from the protocol,
but the deviation can be detected and the necessary corrective actions can be
taken.

A significant parameter of SMC systems is the number of misbehaving parties
in a system. Classical results [3,8] show that there is a correct, private and robust
share computing protocol evaluating a function f with n parties in the malicious
model if and only if no more than n

3
players are corrupted. In the semi-honest

model no more than n
2

parties can be corrupt. These bounds are optimal and
therefore we assume that there is an honest majority among parties in the system.
Protocols without honest majorities exist, but they are weaker to cryptographic
attacks.

We note that protocols that are proven secure in the semi-honest model provide
reasonable privacy preservation. Intuitively, if the secret sharing scheme is secure
and the SMC protocols are secure in the semi-honest model, then even the system
administrator of a SMC node cannot reconstruct the individual values provided by
the data input nodes. For example, in a three-node SMC system that is secure in
the semi-honest model, two SMC nodes will have to collude to reconstruct input
values. In the real world, such collusion is prevented by choosing SMC parties
in a way that they are motivated to preserve privacy. This can be achieved by
contractual means. It also helps to choose the SMC nodes from the data providers
so that they are also preserving their own privacy.

Several secure multiparty computation frameworks have implementations [9,11,
14]. While the majority of implementations are research-oriented, it is expected
that more practical systems will be created as the technology matures.
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3 Secure Multiparty Computation in Informa-

tion Systems

3.1 Prerequisites for Using SMC

The use of secure multiparty computation and, more precisely, share computing,
adds the following requirements to an information system.

1. Multiple server nodes. The processing of data requires a minimum of
three SMC nodes.

2. Focus on aggregation. SMC improves security guarantees the most in
statistics and data mining systems.

3. Limited amount of data. The current SMC technologies are less effi-
cient than standard computing. This limitation must be considered during
application planning.

Recently, significant advances have been achieved in alternative secure com-
putation techniques. The best known result from recent years is the construction
of a fully homomorphic encryption scheme [10]. The use of fully homomorphic
encryption could remove the requirement for multiple server nodes. However, the
technique is several orders of magnitude slower than share computing and requires
significantly more storage space. Therefore, we do not consider it in this paper for
efficiency reasons.

In the following we discuss the effect that the use of secure multiparty compu-
tation has on the design of the information system. We concentrate our analysis
on atomic database operations and generic information system processes.

3.2 Working with Data

We start by discussing the effect of secret sharing on the level of atomic database
operations. We categorize the operations into creating, reading, updating and
deleting data. For each operation we discuss both risks and security guarantees
associated with the use of this technology.

Storing new PII. Input nodes insert PII into the database in a secret-shared
form. As a result, the SMC nodes are unable to learn the actual input values.
This operation has low privacy risks, since the SMC nodes learn only the shares
of the values.
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Reading PII. We have to distinguish between reading operations initiated by the
SMC nodes and by all other nodes. The first kind is secure since moving shares
around inside the SMC node does not compromise the PII. However, if shares are
transferred outside the SMC node, we have to consider it as publishing.

It is easy to see why individual values in the database must not be published
as it could directly compromise the PII provided by the respective input node. It
follows directly, that it is impossible to completely preserve privacy in information
systems that need to process and present PII on the level of individual records.

Therefore, our focus is on systems where the main task is PII aggregation.
The respective category of applications would be statistical analysis tools and
data warehouses. Indeed, publishing aggregate results computed from collected
PII is less probable to leak information. Of course, this depends, among other
things, on the amount of PII records, the aggregate function and the distribution
of the PII values.

Running aggregation functions on a subset of the PII specified by filters is a
complex issue. It is clear that the SMC nodes may not learn information about
the exact identity of records that belong to the specified subset. We note, however
that oblivious selection techniques such as the ones described in [4] can be used to
perform filtered aggregations without disclosing the records that corresponded to
the filtering condition.

To conclude, the SMC nodes are allowed to read shares from the database and
run computations. They should also do their best to not publish non-aggregated
PII. This requires the SMC nodes to be aware of data processing algorithms and
possibly have them built into the system. This way the client nodes can request
the results of the whole computation that can be performed without having to
publish the input data or intermediate values.

Updating PII. We need to distinguish between two cases of updating PII values in
the database. Global updates that change all the records in the database without
filtering are acceptable. If the changes replace old values or update them with
results of secure computations then the privacy of stored PII is preserved.

However, updating individual records based on some criteria is more complex,
as the matching records have to be identified. It is again possible to use the
oblivious selection techniques to prevent the SMC nodes from knowing which rows
were updated. However, it must be noted that this technique requires the whole
database to be modified and this can be inefficient. This again stresses the suitabil-
ity of privacy preserving techniques in creating data warehouses, since the latter
have less update operations.

Deleting data. Deleting data is a low-risk operation when performed on a whole
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table or set of PII. However, deletions based on a criteria cannot be done as the
SMC nodes would have to separate the respective PII records. The oblivious
selection technique does not helps us, because there is not yet a good way to
perform oblivious deletions. A feasible alternative is to use a private attribute
to determine, which records are “inactive” and use this attribute to separate the
records in further computations. Since private values can be updated private in
a way mentioned above, this private inactivity flag can be also be set based on
securely evaluated conditions.

If we introduce public attributes in the database in addition to private ones, we
gain the ability to distinguish between values in the database for some cases. The
main requirement is that the public value may in no way compromise the secret-
shared values that it will be associated with. Artificial identifiers are suitable for
such use. Given such public values, we can separate, update and delete private
values if the conditions are evaluated based on public values and not PII.

3.3 Processes

We will now discuss a subset of the basic processes of information systems and
how they are affected by the use of secure multiparty computation.

Gathering data. Data should be secret-shared as close to the source as possible.
In other words, PII should be accessible by as few nodes as possible. Preferably,
every input node performs secret sharing and transmits only shares to the SMC
nodes.

PII can originate from human users with a desktop or web-based interface, or
from an existing database or a sensor network. The choice of input source has
little effect on the technical privacy guarantees.

Backup and restoring. Every SMC node can back up its part of the secret-
shared database. It can be restored as usual. Notice, that should a database or
a backup of a single SMC node be stolen, the SMC nodes can protect the PII by
initiating the resharing procedure. During resharing, all values in the database
will be recomputed from the previous ones by computing new shares that rep-
resent the same values. The process does not leak information about the shares
and the stolen shares become effectively useless. However, if the resharing process
takes place, all SMC nodes must destroy previous backups as they pose a security
risk together with the compromised shares. Additionally, they must and make
new backups immediately, as the loss of one SMC node’s database will render all
shares useless.

Performing computations. The client nodes may request that the SMC run an
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aggregation algorithm on collected PII that is stored in the database. The SMC
nodes will synchronously run the necessary protocols and compute shares of the
results. These results can also be stored in the SMC nodes’ local databases as
input for future computations.

Note, that the security guarantees for input data can also be extended to the
query parameters provided by client nodes. This means that it is possible to query
the secure database so that the SMC nodes do not learn the true values of the
query parameters. This may be important if the client nodes have something to
lose by disclosing their query parameters. This, however, does not mean that the
client nodes can do whatever they want with the PII, as the SMC nodes restrict
the list of allowed analysis algorithms beforehand.

The algorithms used in the computations have to be agreed upon before compu-
tation. Every SMC node must have the same version of the algorithm. If a single
SMC node does not support an algorithm due to technical or privacy reasons,
the computation cannot proceed. Since the SMC nodes are ultimately responsible
for controlling the publishing of results, they must independently check that the
algorithms do not leak information. Hence, even though the SMC nodes cannot
learn the query parameters, they will validate the data analysis operations needed
to execute the query. This can be a part of the audit process applied to secure
systems.

Access control and auditing. Access control in a privacy-aware information
system is not different from a standard information system. Users have access
levels and they are enforced as usual.

However, an important issue in privacy-preserving information systems is the
auditing process. Since the organizations hosting the SMC nodes have no way
to compromise PII without colluding with other SMC nodes, the need to prevent
technical personnel from accessing data is not as pressing as in normal information
systems. Audit logging is still an important feature, but extra care must be taken
to make sure that shares of the database do not become public through system
logs.

A limitation of privacy-preserving systems is the lack of data auditing mea-
sures. Since in data aggregation we are not disclosing PII to the client nodes, we
cannot allow monitoring applications that let the user inspect individual records
for correctness of data. It is, however, possible to check the range of user in-
puts by using cryptographic techniques. Also, one can analyze the consistency of
the collected PII by statistical methods such as value distribution and aggregate
statistics.

11



4 Deployment Architectures

The deployment of nodes is an important consideration in the development of a
privacy preserving information system based on secure multiparty computation.
Choosing input nodes and client nodes is simple—everyone who provides data is
an input node and everyone who needs the analysis results is a client node.

There are more factors to consider when deciding who should host the SMC
nodes. Firstly, one should choose organizations that are sufficiently trusted by
possible individuals or organizations at the input nodes. Second, the SMC node
hosts should have no incentive for colluding with each other. This can be achieved
by selecting competing organizations as hosts. If the selection of SMC nodes fails
because of these restrictions, then any trusted third party trusted by input nodes
and already selected SMC nodes, can fulfill the role of the final SMC node.

Recall, that for share computing, the number of SMC nodes should be at least
three, as two-party secure computation systems are more inefficient than ones
with three or more parties. On the other hand, the number should be as low
as possible, as every additional node decreases the efficiency of computation by
increasing communication complexity.

Taking that into account, the most efficient scenario is the one with three SMC
nodes. They should be chosen in such a way that the rest of the parties can trust
them to not collude. This is called trust transfer—the input nodes trust the group
of SMC nodes to handle their PII without abusing the trust.

We now look at two example deployment scenarios for selecting organizations
to host the SMC nodes.

A single service provider. If an information system has one hosting organi-
zation, but wishes to apply secure multiparty computation, then it needs to find
at least two more organizations to reach the required three. These organizations
should be trusted by the input nodes and they should not be motivated to com-
promise the PII being collected. Good candidates are competing organizations
and secure hosting providers. Keep in mind, that the users do not have to trust
the organizations unconditionally, just the fact that they will not collude. The
reduced trust requirements can lead to greater participation in such studies.

Input nodes can be either individuals or other organizations. PII can be col-
lected for the internal use of the service provider or, for example, marketing anal-
ysis results. Examples for such scenarios are medical organizations or research
institutions conducting surveys and consulting companies performing data mining
on data collected from companies.

Systems with two competing host organizations have to act similarly to the
single service provider case and find a third partner.
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Multiple service providers. Three or more competing organizations can create
a common data warehouse without disclosing their own PII records to the partners.
The input nodes may again be individuals and outside organizations, but they
could also be the SMC node host organizations themselves. The organizations can
collect the data for their own purposes or share the results with third parties.

Sharing business information in a data warehouse may be beneficial for mak-
ing business decisions for a members of an industrial consortium. For example,
Internet service providers could learn more about the global properties and short-
comings of the network by aggregating information about their individual deploy-
ments and monitoring results. This could also help detect distributed network
attacks [6]. However, these organizations cannot disclose the information required
for such an analysis as it contains PII and possibly business secrets and its publi-
cation may cause losses. In this setting, the prerequisites for SMC node selection
are ideally achieved, since the organizations are motivated to process the data, but
care enough for their own data to refrain from colluding with another SMC node.

With more than three candidates for SMC nodes, a decision could be made to
elect three among them to collect and share the data. This would give the infor-
mation system better performance. However, if this cannot be done due to trust
issues, more parties could become SMC nodes. It is, in fact, possible to provide
better security guarantees with more SMC nodes as was mentioned in Section 2.
For example, with three SMC nodes none of the organizations can collude but with
five SMC nodes up to two of them can collude without compromising PII. Note
that in this scenario the SMC node host may have access to the values of its own
PII records, but this does not give an advantage in determining the PII records of
other input nodes.

5 Case Studies

5.1 A Survey System

The privacy guarantees of surveys will benefit greatly from secure multiparty com-
putation. Given that the survey organizer finds partners to ensure privacy pro-
tection, the provided guarantees for people filling the survey can be better than
with standard solutions. The identities of the individual input nodes cannot be
determined neither directly nor indirectly from collections of attributes. Com-
municating these improved guarantees can help researchers arrange surveys with
potentially embarrassing questions.

In SMC terms, every survey taker is an input party. It is important that the
implementations of surveys that use secure multiparty computation provide user-
friendly interfaces so that technological shortcomings will not stop the people from
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Figure 4: Example deployment of a survey system.

taking part in the survey. The data from the filled surveys will be collected and
stored by the SMC nodes hosted by the survey organizer and the other enlisted
parties.

During the following analysis the analysts can request basic statistics from con-
tinuous attributes, histograms over multiple-choice attributes and more complex
statistical analyses such as correlations. The service provider may allow third par-
ties to make queries on the collected data. However, this requires an agreement
between all the SMC nodes since the responsibility for the PII is shared.

Figure 4 shows an example deployment of a survey system based on secure
multiparty computation. On the left there are the survey takers who connect to
all of the three SMC noes. On the right, there are the SMC nodes processing
survey data. The organizational limits are shown by dashed lines. The data
analysis results are published to the organization hosting the first SMC node.

Note, that surveys are a rather specific case for applications with a single service
provider and actual use-cases may range from online auctions and voting systems
to privacy-preserving billing systems.

5.2 Sales Data Analysis

Companies who run sales outlets like retail shops analyze the shopping habits
of their customers. This is one reason for deploying customer loyalty programs.
Customers have the possibility to request a customer card in exchange for some
personal data. The company uses this data to analyze customer demographics.
The customer then presents this card during each shopping trip at the cashier for
a discount. The list of bought items is registered and shopping basket analysis can
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Figure 5: Example deployment of a sales data analysis system.

be performed.
To use secure multiparty computation, the company would find two partners

host the secure data. Note, that if the other nodes are competitors who also provide
similar data, this kind of an analysis can be performed on a much larger scale.
Customer PII is collected at the customer service desks where cards are issued
and at the cashier desks where shopping basket contents are stored. The shopping
baskets can be associated with the customer through an artificial identifier assigned
with the card.

The data will be analyzed by the marketing department of the companies.
Useful analyses include a demographical profile of the customer base, frequent
itemsets from shopping baskets and possibly correlations between customer and
products. The received generic associations will help the company make business
decisions for targeted advertising or shopping floor rearrangements. The privacy
of the customer is again improved, as no shopping basket is associated to a certain
customer.

Figure 5 shows the deployment of the described system.

5.3 Network Traffic Analysis

Finally, we look at a scenario where all the SMC nodes are stakeholders and
provide PII for the information system. The example comes from the area of
Internet service provision. Assume that ISPs are aggregating information about
bottlenecks in their networks. Such actions require co-operation between service
providers, but it is hard to achieve as traffic logs contain PII about the users’
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Figure 6: A privacy-preserving network monitoring system.

network using habits.
The ISPs can select among themselves a number of SMC nodes. Then, every

service provider in the group acts as an input node and sends network usage data
to the shared secure database. Subsequently, the service providers can act as client
nodes and run queries on the jointly collected data.

This system is uniquely interesting because all involved organizations want to
use the data and, at the same time, keep its privacy. Even, if the latter is caused
by regulation, the trust relations are stronger than between weakly-connected or-
ganizations.

The deployment of secure multiparty computation parties can be seen on Fig-
ure 6. Every company is an input node, a SMC node and a client node at the
same time. There may be additional organizations who do not act as SMC nodes
and only provide data and request aggregated results.

6 Conclusion

Developments in secure multiparty computation techniques have made their appli-
cation in real-world scenarios feasible. It is possible to create information systems
with strong, provable security guarantees. However, the technology sets restric-
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tions on the kinds of applications that can be built.
We have described how the use of secure multiparty computation affects in-

formation system design with regard to data management and generic processes.
We found that while it may be impossible to preserve privacy in all information
systems due to the invasive nature of business processes, the technology can suc-
cessfully be applied to develop secure data warehouses.

Based on this we propose two architectural patterns for building information
systems based on secure multiparty computation methods. Three example appli-
cations illustrate the use of these architectures.
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