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Abstract

Bilinear pairings are powerful mathematical structures that can be used in cryptography.
Their equational properties allow constructing cryptographic primitives and protocols that
would be otherwise ineffective or even impossible.

In formal cryptography, the protocols are expressed through term algebras and process cal-
culi. ProVerif, one of the most successful protocol analyzers, internally converts them to Horn
theories for the analysis. This approach cannot easily deal with complex equational theories.

In this paper, we propose an equational theory that models bilinear pairings in formal cryp-
tography. We also propose a reduction from the derivation problem for Horn theories modulo
this equational theory to (almost) purely syntactical derivation problem for Horn theories. This
derivation problem can be readily tackled by ProVerif. We have implemented our analysis and
have demonstrated that it is able to handle several secure and insecure protocols based on
bilinear pairings.

Our approach mostly follows Küsters’s and Truderung’s handling of Diffie-Hellman expo-
nentiation. The greater complexity of the theory for bilinear pairings introduces several com-
plications; the arithmetic properties of exponentiation play a much bigger role in our reduction.
Still, our approach has the same kind of generality as theirs. Similarly to their approach, we do
not treat the group operations as (independent) term constructors. But we show that access to
those operations will not increase the power of the adversary.

1 Introduction

The complex algebraic properties of bilinear pairings, combined with well-understood intractability
assumptions make them one of the most versatile components of cryptographic primitives and pro-
tocols, having been used to construct identity- and attribute-based cryptosystems [BF01, Hes02],
encryption systems with keyword search [BCOP04], designated verifier signatures [SBWP03], effi-
cient key-agreement protocols [Jou00, ARP03], etc. that would be impossible or much less efficient
with other techniques. Therefore it seems surprising that there have been almost no attempts to
treat pairings abstractly in the symbolic (formal, perfect) cryptography, and to subject systems
employing them to formal verification.

In this work, we propose a model for bilinear pairings in symbolic cryptography. Compared to
the only other model proposed so far [KM10], the operations it offers are much closer to what are
used in computational cryptography. Our model allows for exponentiations and pairings of arbitrary
values, and is sufficiently rich to enable modeling of several pairing-based protocols proposed in the
literature.

We also propose a method for automatically verifying protocols containing bilinear pairings. We
concentrate on verification tools based on performing derivations according to Horn theories that the
protocol descriptions have been transformed into; particularly on ProVerif [Bla01], one of the most
successful tools for cryptographic protocol verification. By extending the theory transformation
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methods of Küsters and Truderung [KT09], we can change the problem of derivation modulo the
equational theory for bilinear pairings into the problem of syntactic derivation.

Our protocol verification method inherits the strengths and weaknesses of the method of [KT09].
It can be used to verify basic secrecy and authentication (modeled as correspondence) properties
of protocols, because these are easily expressed through Horn theories. More complex properties,
expressed through observational equivalence, are not so readily expressed. Our method allows the
honest participants to perform exponentiations and pairings with the values they’ve obtained, but
not multiplications in the group (there is no such constraint for the adversary, though). Our method
also requires that the number of different exponents used by honest parties is bounded. However,
we have no such restriction on the number of protocol sessions the parties can execute.

This work has the following structure. After reviewing related work in Sec. 2 and Horn theory
based protocol analysis in Sec. 3, we describe our symbolic model for bilinear pairings in Sec. 4.
Sec. 5–8 deal with making the inference modulo properties of bilinear pairings tractable for ProVerif.
Sec. 5 extends the notion of exponent ground theories [KT09] to pairings. Sec. 6 presents the ideas
of theory transformation at term level, while Sec. 7 and 8 show the actual transformation and prove
its results sound (Sec. 8) and complete (Sec. 7) with respect to our theory of bilinear pairings.

We finish the paper with an overview of our experimental results in Sec. 9, with the analysis
of the adversarial power in the presence of group operations (Sec. 10) and with the conclusion in
Sec. 11.

2 Related work

We perform the analysis of protocols in the symbolic cryptography [DY83] model, using the ProVerif
protocol analyzer [Bla01]. Our reduction from Horn theories modulo equational theory for bilinear
pairings to an almost pure Horn theory advances the methods of Küsters and Truderung who have
used similar reductions to deal with the algebraic properties of XOR [KT08] and Diffie-Hellman
exponentiation [KT09] before (see these papers for a more thorough discussion on XOR- and DH-
theories in protocol verification). Their reduction can handle more possible adversarial actions than
the equational reasoning ProVerif itself is capable to handle (although this has also been used for
certain protocol analysis [ABF07, BAF08]). Recently, however, Mödersheim [Möd11] has shown
that in certain well-tagged [BP03] cases, ProVerif’s treatment may be equivalent to Küsters and
Truderung [KT09].

By our knowledge, bilinear pairings in symbolic cryptography have been considered only by
Mazaré and Kremer [KM10]. They proposed a signature and an equational theory for it that
did not actually contain the pairing operation e. Instead, common uses of pairings (by legitimate
participants) in protocols were modeled by derivation rules. They showed that their extension
is computationally sound against passive adversaries, thereby extending the seminal reconciliation
result by Abadi and Rogaway [AR02].

The task considered in this paper is an instance of the general problem of inference in Horn the-
ories modulo equational theories. While the static equivalence of terms is usually decidable [AC05,
CDK09], it is much harder to perform an actual protocol analysis modulo an equational the-
ory [BAF08].

3 Modeling Protocols with Horn Theories

Let Σ be a finite signature. A term t over Σ is either a variable x from a countable set V , a name
m from a countable set N or f(t1, . . . , tar(f)) for f ∈ Σ. By var(t) we denote the set of variables
occurring in term t. A term is ground if it contains no variables.

When modeling cryptographic protocols, the signature contains constructors corresponding to
cryptographic operations. E.g. we may have a binary constructor enc(·, ·) for modeling deterministic
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encryption and dec(·, ·) for modeling decryption.
For a predicate P of arity k and terms t1, . . . , tk, we call P (t1, . . . , tk) an atom. It is ground if

t1, . . . , tk are ground. A Horn clause has the form a1, . . . , an → a0, where a0, . . . , an are atoms. A
Horn theory is a finite set of Horn clauses.

A ground atom a can be (syntactically) derived in theory T (denoted T ` a) if there exists a
derivation π = b1, . . . , bl where bl = a and for each j ∈ {1, . . . , l}, bj is a ground atom and there
exists a clause a1, . . . , an → a0 ∈ T and a variable substitution σ, such that σ(a0) = bj and each
σ(ai) (i ∈ {1, . . . , n}) occurs in the set {b1, . . . , bj−1}. A theory is non-trivial if at least one ground
atom can be derived in it. If ∼ is a congruence relation on terms then we can speak about derivation
modulo ∼ (denoted T `∼ a). In this case, all term equalities in the the definition of ` are replaced
with the relation ∼.

ProVerif [Bla01] translates protocols into Horn theories for the purpose of verification. The main
predicate symbol it uses is unary I, denoting intruder knowledge. The initial knowledge of the
intruder is modeled as facts (clauses with zero premises) in the theory T . The possible operations
the intruder can perform with messages are readily expressed as Horn clauses — if an attacker knows
messages of certain shape, it can produce other messages from them. The messages of the protocol
can also be represented as clauses — if the intruder has messages 1,. . . ,i of a protocol session, it
can also obtain the message no. i + 1 (presumably by handing some previous message over to
a participant). This model introduces certain abstractions (e.g. one cannot naturally state that
sessions are non-interleaving), but keeps the precision with respect to sizes of terms and number of
sessions (both can be unbounded). For a protocol P , we let TP be the corresponding Horn theory
(including intruder’s initial knowledge and possible operations on messages). This theory can be
used to answer certain questions about the protocol, e.g. is the intruder able to learn a certain
message m?

4 Equational Theory for Bilinear Pairings

In the computational model of cryptography [GM84], a (symmetric) bilinear pairing [Jou00, BF01]
is an efficiently computable non-degenerate mapping e : G1 × G1 → GT , where G1 (written ad-
ditively) and GT (written multiplicatively) are cyclic groups of size p. The mapping must satisfy
e(Q1, R1 +R2) = e(Q1, R1)e(Q1, R2) and e(Q1 +Q2, R1) = e(Q1, R1)e(Q2, R1) (bilinearity) for any
Q1, Q2, R1, R2 ∈ G1. As G1 and GT are cyclic, we immediately obtain e(aP, bP ) = e(P, P )ab for the
generator P of G1 and any a, b ∈ Z. Weil or Tate pairings [BF01, BKLS02] are the typical examples
of a bilinear pairing.

Typical intractability assumptions for cyclic groups with bilinear pairings are the computational
Diffie-Hellman (CDH) assumption or the bilinear computational Diffie-Hellman (BCDH) assumption
(the second implies the first). CDH assumption postulates the intractability of finding the element
abP ∈ G1 from the elements P, aP, bP ∈ G1. BCDH assumption postulates the intractability of
finding the element e(P, P )abc ∈ GT from the elements P, aP, bP, cP ∈ G1. In the symbolic setting,
however, it makes sense to model pairing as an operation that has the bilinear property stated above,
and satisfies no other equations.

For symbolically modeling bilinear pairings and exponentiations, we assume that beside other
operations, the signature Σ contains binary operations ? and ↑ (for modeling multiplication in G1

and exponentiation in GT ), unary operation ·−1 (for modeling
negation in G1, inverse in GT , and
inverses in the exponents), and the binary operation e (pairing). Similarly to [KT09] (and all

other approaches so far), we omit additions in G1 / multiplications in GT from our signature (see
Sec. 10 for their treatment). Using our notation, if the term t models an element Q of G1, and the
term u models an integer n, then the term t?u models the element nQ of G1. Similarly, if t modeled
an element h of GT instead, then the term t ↑ u would model the element hn in GT .
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The equational theory ∼ for bilinear pairings is the least congruence on terms containing the
following equations, where the variables x, y, z may be instantiated with any terms.

(x ↑ y) ↑ z ∼ (x ↑ z) ↑ y (x ? y) ? z ∼ (x ? z) ? y

e(x, y) ∼ e(y, x)

(x ↑ y) ↑ y−1 ∼ x (x−1)−1 ∼ x (1)

(x ? y) ? y−1 ∼ x
x−1 ? y ∼ (x ? y)−1 x−1 ↑ y ∼ (x ↑ y)−1

e(x, y ? z) ∼ e(x, y) ↑ z e(x, y−1) ∼ e(x, y)−1

The commutativity of e actually follows from the cyclicity of G1, but this notion is not available
in the symbolic setting.

Associated with the operations in the signature are also the rules for intruder for composing and
decomposing messages. We let the predicate I(t) denote that the intruder sees the term t. The rules
associated with bilinear pairings are

I(x), I(y)→ I(e(x, y)) I(x), I(y)→ I(x ? y)

I(x), I(y)→ I(x ↑ y) I(x)→ I(x−1)

We let TE denote the theory consisting of the rules above.
Although the groups G1 and GT have different operations, the intruder has freedom to apply the

operation of G1 to the elements of GT and the operation of GT to the elements of G1. The theory
described in this work allows that, and there are no type constraints in its description. This ability,
however, does not give the intruder anything useful (as we see in this paper), and therefore type
constraints can be added when applying this theory with ProVerif.

Given a protocol P and a message m, the fact that TP ∪ TE 0∼ I(m) means that the intruder
cannot get the message m even when employing the algebraic properties of bilinear mappings.

5 Exponent-ground Theory for Bilinear Pairings

Küsters and Truderung [KT09], constrain the theory for Diffie-Hellman exponentiation TDH to a
theory TC

DH that can be used only with exponent-ground terms. In the same way, the theory TE
should be constrained to TC

E . First, we need to define what does it mean for a term to be exponent-
ground. We say that a term is

• reduced, if no equations in last four rows of (1), interpreted as reduction rules from left to
right, can be applied to it modulo the equations in the first two rows;

• standard, if its head symbol is neither ?, ↑, −1, nor e;

• pure, if the symbols ?, ↑, −1, and e do not occur in it;

• well-formed if each of its subterms of the form s−1 only occurs in a context of the form s′ ↑ s−1

or s′ ? s−1 for some s′;

• exponent-ground if it is well-formed and for each of its subterms of the form t ↑ s or t ? s it is
true that s is of the form c or c−1, where c is a pure, ground term;

• C-exponent-ground if it is exponent-ground and has exponents only from the predefined finite
set C;
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• exponent-reduced if all its subterms in an exponent position (right argument of ? or ↑) are
reduced.

All these notions are also lifted to atoms, clauses and theories in the natural way.
We need to define a C-exponent ground theory TC

E that allows multiplication and exponentiation
only with ground multipliers (exponents). Let C be the set of pure, ground terms that may be used
as multipliers or exponents. The theory contains the following rules:

1. I(x), I(y)→ I(e(x, y));

2. I(x), I(c)→ I(x ↑ c) for each c ∈ C;

3. I(x), I(c)→ I(x ↑ c−1) for each c ∈ C;

4. I(x), I(c)→ I(x ? c) for each c ∈ C;

5. I(x), I(c)→ I(x ? c−1) for each c ∈ C.

Here ”for each c ∈ C” implies that the number of intruder rules is linearly dependent on the size
of the set C.

In these rules we no longer need the rule that allows the intruder to find inverses of the elements.
We do not need the inverses of group elements if we are dealing only with products in exponents, and
the rules 3 and 5 actually give the intruder the ability to find inverses of integers when performing
multiplication (exponentiation).

Let T be a C-exponent-ground theory that represents some protocol. We need to show that
if a C-exponent-ground atom a can be derived using the properties of bilinear pairings from a
C-exponent-ground theory T (denote it as T ∪ TE `∼ a), then there exists a C-exponent-ground
derivation of a.

Theorem 1. Let C be a set of pure, ground terms. Let T be a C-exponent-ground Horn theory and
a be a C-exponent-ground atom. If T ∪ TE `∼ a, then there exists a C-exponent-ground derivation
for T ∪ TC

E `∼ a, where the substitutions applied to this derivation are also C-exponent-ground.

In order to prove Theorem 1, we need to show how to transform arbitrary derivation modulo ∼
to a C-exponent-ground derivation. We start by defining a function δC that turns any term into
a C-exponent-ground term. Let C−1 =

{
c−1|c ∈ C

}
, and let C∗ = C ∪ C−1. The function δC is

defined inductively:

δC(x) = x for a variable or name x

δC(t ↑ s) = δC(t) ↑ s if s ∈ C∗

δC(t ↑ s) = δC(t) if s /∈ C∗

δC(t−1) = δC(t)

δC(t ? s) = δC(t) ? s if s ∈ C∗

δC(t ? s) = δC(t) if s /∈ C∗

δC(f(t1, . . . tn)) = f(δC(t1), . . . δC(tn)) for f /∈
{
↑, ?,−1

}
This function throws away all the non-ground multipliers (exponents) and gets rid of the −1

operation.
We will show now that applying this function to some derivation T ∪ TE `∼ a returns a C-

exponent-ground derivation T ∪ TC
E `∼ a.

Lemma 2. For any set C of pure, ground terms and for every term t we have:

1. δC(t) is C-exponent-ground.
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2. δC(t) = t iff t is C-exponent-ground.

3. δC(δC(t)) = δC(t).

Proof: This lemma summarizes the properties of the function δC . The proof of first two points is
based on induction and case distinction. We have to look through all the possible cases of application
of δC . The third point is directly implied by the first two.

1. δC(t) is C-exponent ground.

• t = x for a variable x: δC(x) = x, and a variable is considered to be C-exponent-ground
since it does not use any exponents at all.

• t = t′−1 for a term t′: δC(t′−1) = δC(t′). The term δC(t′) is C-exponent-ground according
to induction hypothesis.

• t = t′ ↑ s, where t′ is some term and s ∈ C∗. δC(t′ ↑ s) = δC(t′) ↑ s. Since t′

is C-exponent-ground by induction hypothesis, and s ∈ C∗, the whole term is also C-
exponent-ground.

• t = t′ ↑ s, where t′ is some term and s /∈ C∗. δC(t′ ↑ s) = δC(t′), and δC(t′) is C-
exponent-ground according to induction hypothesis.

• t = t′ ? s: the proof is analogical to exponentiation cases.

• t = f(t1, . . . tn) for some terms t1, . . . , tn.
δC(f(t1, . . . tn)) = f(δC(t1), . . . δC(tn)). The arguments of f , namely δC(t1), . . . δC(tn),
are C-exponent-ground by induction hypothesis, and after applying the function f , the
term is still C-exponent-ground.

2. δC(t) = t iff t is C-exponent ground.

The function δC transforms arbitrary terms to C-exponent-ground terms. Hence if we take t
that is not C-exponent-ground, the term δC(t) still must be C-exponent-ground, and therefore
δC(t) 6= t. It remains to prove that if t is C-exponent-ground, then δC(t) = t.

• t = x for a variable x. A variable is C-exponent-ground. δC(x) = x = t.

• t = t′−1 for a term t′. The term t is not C-exponent-ground, so we may omit this case.

• t = t′ ↑ s, where t′ is some term and s ∈ C∗. δC(t′ ↑ s) = δC(t′) ↑ s. If t is C-exponent-
ground, it means that t′ should also be C-exponent-ground (otherwise t would not be).
By induction hypothesis, t′ = δC(t′). We get that δC(t) = t′ ↑ s.
• t = t′ ↑ s, where t′ is some term and s /∈ C∗. The term t is not C-exponent-ground.

• t = t′ ? s: the proof is analogical to exponentiation.

• t = f(t1, . . . tn) for some terms t1, . . . , tn.
δC(f(t1, . . . tn)) = f(δC(t1), . . . δC(tn)). The arguments of f , namely δC(t1), . . . δC(tn),
should be C-exponent-ground (otherwise t would not be), and, by induction hypothesis,
f(δC(t1), . . . δC(tn)) = f(t1, . . . tn) = t.

3. δC(δC(t)) = δC(t).

Since from the two previous points we know that δC(t) is C-exponent ground and that δC does
not modify the terms that are already C-exponent ground, we get δC(δC(t)) = δC(t).

�
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The lemma shows that the function δC indeed turns arbitrary terms into C-exponent-ground
terms, and does not modify the terms that have already been C-exponent-ground.

We need to show that if any two terms have been equivalent before, they still remain equivalent
after applying the function δC to them. We will consider only the terms that are already exponent-
reduced. It is necessary to prove that δC preserves the equivalence on exponent-reduced terms.

Lemma 3. For any set C of pure, ground terms and for all exponent-reduced terms t and s, if t ∼ s,
then δC(t) ∼ δC(s).

Proof: We will first consider the case where s is a reduced form of t. In this case, the proof is
done by induction over the structure of t:

1. If the head operation of t is neither ?,−1 nor ↑, then the term s should have the same head
operation as t has, since the reduction does not modify any other functional symbols. There
are now two cases:

(a) If t is a constant or a variable, then δC(t) = t = s = δC(s).

(b) If t is of the form f(t1, . . . , tn), then s should be of the form f(s1, . . . , sn), where si
is a reduced form of ti. By the induction hypothesis, δC(ti) ∼ δC(si), and therefore
δC(t) = f(δC(t1), . . . , δC(tn)) ∼ f(δC(s1), . . . , δC(sn)) = δC(s).

2. If the head operation of t is −1, then t = u−1 for some u. There are now two cases for u:

(a) If u is of the form r−1 for some r, then s is a reduced form of r and, based on induction
hypothesis, δC(t) = δC(r) ∼ δC(s).

(b) If u is not of the form r−1 for some r, then s should be of the form w−1 where w is a
reduced form of u. By the induction hypothesis, δC(u) ∼ δC(w), and since δC(t) = δC(u)
and δC(s) = δC(w) (from the definition of δC), we have δC(t) ∼ δC(s).

3. If the head operation of t is ↑, we may take into account all the sequential ↑ head operations
of t and write t as t0 ↑ t1 ↑ . . . ↑ tn, where the head symbol of t0 is not ↑.

(a) There are i, j ∈ {1, . . . , n} such that ti ∼ t−1
j . These two terms in fact cancel each other

out, and if we remove these terms from t and obtain t′, we get that s is a reduced form
of t′. Because t is exponent-reduced, it follows that ti = t−1

j or t−1
i = tj , and we get that

ti ∈ C∗ iff tj ∈ C∗. We have δC(t) ∼ δC(t′), and by induction hypothesis δC(t′) ∼ δC(s),
which implies δC(t) ∼ δC(s).

(b) If there are no such i and j, then s must be of the form s0 ↑ s1 ↑ . . . ↑ sn, where head
symbol of s0 is not ↑, s0 is a reduced form of t0, and ti = si for each i ∈ {1, . . . , n} (t is
exponent-reduced implies that all ti-s are exponent-reduced). Now, δC(t) = δC(t0) ↑ ti1 ↑
. . . ↑ tik , where ti1 , . . . , tik are exactly these elements of t1, . . . , tn which belong to C∗. We
have that ti ∈ C∗ iff si ∈ C∗ for each i ∈ {1, . . . , n}, and therefore δC(s) = δC(s0) ↑ si1 ↑
. . . ↑ sik . By the induction hypothesis, δC(t0) = δC(s0). It follows that δC(t) ∼ δC(s).

4. If the head symbol of t is ?, we may write t as t0 ? t1 ? . . . ? tn, where the head symbol of t0 is
not ?. We have to look through exactly the same cases as in the exponentiation.

Consider now arbitrary t and s, such that t ∼ s. Let r be a reduced form of t. In this case, r is
also a reduced form of s. By the argument above, δC(t) ∼ δC(r) ∼ δC(s) and the transitivity of ∼
implies δC(t) ∼ δC(s).

�
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Example 1. Let C = {c1, c2}. Let t = enc(x−1 ? c1, x ↑ y ↑ b), where x, y are variables and enc is
some function.

δC(t) = δC(enc(x−1 ? c1, x ↑ y ↑ c2))

= enc(δC(x−1 ? c1), δC(x ↑ y ↑ c2))

= enc(δC(x−1) ? c− 1, δC(x ↑ y ↑ c2))

= enc(x ? c1, δC(x ↑ y ↑ c2))

= enc(x ? c1, δC(x ↑ y) ↑ c2)

= enc(x ? c1, δC(x) ↑ c2)

= enc(x ? c1, x ↑ c2)

The function δC has in fact turned x−1 and x ↑ y to x (made these subterms C-exponent ground).
Here we get the same term x from different exponent-reduced terms x−1 and x. This example shows
why Lemma 3 works only in one direction. �

When ProVerif analyzes the protocol, the variables in terms are being instantiated by some
substitution. We need to show that the function δC does not affect the substitution, and there is no
difference if we apply δC before or after the substitution.

Lemma 4. Let C be a set of pure, ground terms. Let t be a C-exponent-ground term, and θ be a
substitution. Then δC(tθ) = tδC(θ).

Here tθ means that the substitution θ is applied to the term t, and δC(θ) denotes applying the
function δC to the terms that are going to substitute the variables of t.

Proof: The proof is done by induction over the structure of t:

1. If t is a standard term, δC(tθ) = tδC(θ) since δC does not modify t at all. Let it be the
induction basis.

2. If t = s−1 for some s, then t is not a C-exponent-ground term. We do not have to consider
this case.

3. If t = s ↑ s′, it follows that s is C-exponent-ground and s′ ∈ C∗. We have δC(tθ) = δC(sθ ↑
s′) = δC(sθ) ↑ s′. By the induction hypothesis, δC(sθ) = sδC(θ). Thus, δC(sθ) ↑ s′ = sδC(θ) ↑
s′ = tδC(θ).

4. If t = s ? s′, the proof is analogical to exponentiation.

5. If t = e(s, s′) for some C-exponent-ground terms s and s′, then e can be considered as an
ordinary functional symbol since δC has no special definition for e. δC(tθ) = δC(e(sθ, s′θ)) =
e(δC(sθ), δC(s′θ)) = e(sδC(θ), s′δC(θ)) = e(s, s′)δC(θ) = tδC(θ)

�

Example 2. Let C = {c1, c2}. Let t = e(x, y) ↑ c1, where x, y are variables. Let θ = {u−1/x, v?w/y}
be a substitution. In this example, it is not important if e denotes pairing or it is some other function,
since δC regards pairing in the same way like any other functions.

δC(tθ) = δC((e(x, y) ↑ c1)θ)

= δC(e(u−1, v ? w) ↑ c1)

= δC(e(u−1, v ? w)) ↑ c1
= e(δC(u−1), δC(v ? w)) ↑ c1
= e(u, δC(v ? w)) ↑ c1
= e(u, v) ↑ c1
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tδC(θ) = tδC(u−1/x, v ? w/y)

= t(δC(u−1)/x, δC(v ? w)/y)

= t(u/x, v/y)

= e(x, y) ↑ c1(u/x, v/y)

= e(u, v) ↑ c1

It means that it does not matter whether we apply δC after the derivation in the end or apply it
to the initial facts and only then start the unification process. �

Sketch of proof for Theorem 1
According to the previous lemmas, we have that:

• δC turns any terms to C-exponent ground terms, and therefore it can be used to transform a
non-C-exponent ground derivation to a C-exponent ground derivation.

• δC preserves equivalence on exponent-reduced terms.

• It does not matter whether we apply δC to C-exponent ground terms (including the terms of
the initial C-exponent-ground theory T ) before or after the substitution.

For any derivation step that uses rules from the initial C-exponent-ground theory T , we just need
to apply δC to the substitution in order to ensure that we get C-exponent ground terms. The rules
that belong to the theory TE (the intruder rules) are more complicated, but based on the previous
lemmas it can be shown that we can use the intruder rules from TC

E instead of the rules from TE .
Proof: Let π = b1, . . . , bl be a derivation for T ∪ TE `∼ a, where bl ∼ a. We can assume that

the a, the substitution θ, and therefore all bi-s are reduced. When constructing a protocol, we have
to reduce its terms first.

We need to show that δC(π) is a derivation for T ∪ TC
E `∼ a. This completes the proof, because

δC(π) is C-exponent-ground by Lemma 2.
Because bl ∼ a and both bl and a are reduced, by Lemma 3, we have δC(bl) ∼ δC(a). By

Lemma 2, δC(a) = a since a is C-exponent-ground, so we have δC(bl) ∼ a. To prove that δC(π) is a
derivation for T ∪TC

E `∼ a, we only need to show for each i ∈ {1, . . . , l} that δC(bi) can be obtained
from {δC(b1), . . . , δC(bi−1)} by applying one of the Horn clauses from T ∪ TC

E . We need to consider
five cases: whether bi is obtained by one of the clauses in theory T or one of the rules defined in the
theory TE .

Let us look through all these cases:

1. bi is obtained by applying some C-exponent-ground clause from T . There exists a clause
a1, . . . , an → a0 in T such that a0, . . . , an are C-exponent-ground. There exists a substitution
θ such that a0θ ∼ bi and for each j ∈ {1, . . . , n} there exists kj ∈ {1, . . . , n} with ajθ ∼ bkj

.
Since aj is C-exponent-ground and θ is reduced, ajθ is exponent-reduced. By Lemma 3,
δC(ajθ) ∼ δC(bkj

) for all j ∈ {0, . . . , n}. By Lemma 4, ajδC(θ) ∼ δC(bkj
). We can apply

the same clause a1, . . . , an → a0 in T with the substitution δC(θ) to δC(bk1), . . . , δC(bkn) and
obtain δC(bk0) = δC(bi).

2. bi is obtained by applying I(x), I(y) → I(e(x, y)). In this case, bi is of the form I(t), and,
for some j, k < i, the atom bj is of the form I(s), and the atom bk is of the form I(r) such
that t ∼ e(s, r). We need to show that I(δC(t)) can be obtained from I(δC(s)) and I(δC(r)).
Since s and r are reduced by assumption, by Lemma 3 we have δC(t) ∼ e(δC(s), δC(r)). We
apply the clause I(x), I(y)→ I(e(x, y)) from theory TC

E to get I(δC(e(s, r)) from I(δC(s)) and
I(δC(r)).
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3. bi is obtained by applying I(x) → I(x−1). In this case, bi is of the form I(t) and, for some
j < i, the atom bj is of the form I(s) with t ∼ s−1. Since t and s are reduced and thus both
t and s−1 are exponent-reduced, we use Lemma 3 to obtain δC(t) ∼ δC(s−1) = δC(s). Hence,
δC(bi) = I(δC(t)) ∼ I(δC(s)) = δC(bj).

4. bi is obtained by applying I(x), I(y)→ I(x ↑ y). In this case, bi is of the form I(t) and there
are atoms I(s) and I(r) amongst b1, . . . , bi−1 such that t ∼ s ↑ r. We need to show that
I(δC(t)) can be obtained from I(δC(s)) and I(δC(r)).

Since s and r are reduced, s ↑ r is exponent-reduced. By Lemma 3, we have δC(t) = δC(s ↑ r),
so it is enough to show that I(δC(s ↑ r)) can be obtained from I(δC(s)) and I(δC(r)). Consider
three subcases:

(a) If r /∈ C∗, then δC(s ↑ r) = δC(s).

(b) If r ∈ C, then δC(r) = r, and therefore δC(s ↑ r) = δC(s) ↑ r = δC(s) ↑ δC(r). I(δC(s ↑
r)) can be obtained from I(δC(s)) and I(δC(r)) using the rule I(x), I(c)→ I(x ↑ c).

(c) If r ∈ C−1, then r = δC(r)−1 and therefore δC(s ↑ t) = δC(s) ↑ t = δC(s) ↑ δC(r)−1.
I(δC(s ↑ r)) can be obtained from I(δC(s)) and I(δC(r)) using the rule I(x), I(c)→ I(x ↑
c−1).

5. bi is obtained by applying I(x), I(y)→ I(x?y). In this case, bi is of the form I(t) and there are
atoms I(s) and I(r) amongst b1, . . . , bi−1 such that t ∼ s ? r. We need to show that I(δC(t))
can be obtained from I(δC(s)) and I(δC(r)), and it can be done in the same way as it was
done for exponentiation, using the rules I(x), I(c)→ I(x ? c) and I(x), I(c)→ I(x ? c−1).

�

6 Encoding of Terms

In this section we present an encoding of terms that hides most of the algebraic properties of bilinear
pairings. The encoding is similar to [KT09], but more detailed. The main idea is to encode the
terms in such a way that equivalent terms would have the same syntactical representation.

Let C = {c1, . . . , cm} be the set of pure, ground terms used in the derivation according to the
theory T using the signature Σ.

Define Σpair = (Σ \
{
↑,−1 , ?

}
) ∪ {0, s, p, exp,mult} as the new signature.

The constant 0 and the unary functions s and p are used for encoding integers, as in [KT09].
The integer n will be encoded as sn(0) = s(. . . s(0) . . .), and −n as pn(0). This encoding defines two
metatheoretical conversion functions i2t(n) (integer to term) and t2i(t) (term to integer).

The functions mult and exp are of arity m+ 1, and are used to encode multiplication in G1 and
exponentiation in GT . The encoding of C-exponent-ground terms will be done over this signature.

We need to consider only C-exponent-ground terms in the derivations. A term of the form s ↑ c(n1)
1 ↑

. . . ↑ c(nm)
m will be encoded as exp(s, i2t(n1), . . . , i2t(nm)) over Σpair. Similarly, a term of the form

s ? c
(n1)
1 ? . . . ? c

(nm)
m will be encoded as mult(s, i2t(n1), . . . , i2t(nm)).

Example 3. Let C = {c1, c2, c3}. Let t = e(x, y) ↑ c1 ↑ c1 ↑ c−1
3 .

The term t will be encoded as exp(e(x, y), s2(0), 0, p(0)). �

There are two more metatheoretical functions that have been defined for increasing and decreas-
ing integers: incr(t) = i2t(t2i(t) + 1) and decr(t) = i2t(t2i(t)− 1). Formally, they are defined:

• incr(t) = t′, if t = p(t′), and incr(t) = s(t) otherwise;
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• decr(t) = t′, if t = s(t′), and decr(t) = p(t) otherwise.

For each i ∈ {1, . . . ,m} we define the metatheoretical functions incrXi and decrXi , where X ∈
{mult, exp}. Applying the function incrXi to a term t increases the power of the exponent (multiplier)
ci in the term t by 1, and decrXi is the inverse of incrXi . Formally, these functions are defined as
follows.

incrXi (X(t0, . . . , tm)) =

{
t0, if ti = p(0) and tj = 0 for all j 6= i
X(t0, . . . , ti−1, incr(ti), ti+1, . . . , tm), otherwise

decrXi (X(t0, . . . , tm)) =

{
t0, if ti = s(0) and tj = 0 for all j 6= i
X(t0, . . . , ti−1, decr(ti), ti+1, . . . , tm), otherwise.

If t is not of the form X(t0, . . . , tm) then

incrXi (t) = incrXi (X(t, 0, . . . , 0)) and

decrXi (t) = decrXi (X(t, 0, . . . , 0)) .

Example 4. Let C = {c1, c2, c3}. Then m = |C| = 3. Let x, y be variables.

• increxp2 (exp(e(x, y), 0, p(0), 0)) = exp(e(x, y), 0, 0, 0);

• incrmult
1 (x) = mult(x, s(0), 0, 0);

• decrexp1 (exp(y, s(s(0)), 0, 0)) = exp(y, s(0), 0, 0). �

The transformation of a C-exponent-ground term t to a term ptq over Σpair is given below.

• pxq = x for a variable or name x;

• pf(t1, . . . , tn)q = f(pt1q, . . . , ptnq) (f /∈
{
↑,−1 , ?, e

}
);

• pt ↑ ciq = increxpi (ptq);

• pt ↑ c−1
i q = decrexpi (ptq);

• pt ? ciq = incrmult
i (ptq);

• pt ? c−1
i q = decrmult

i (ptq);

• pe(t1 ? ci, t2)q = pe(t1, t2) ↑ ciq;

• pe(t1, t2 ? ci)q = pe(t1, t2) ↑ ciq;

• pe(t1, t2)q = e(pt1q, pt2q) (only if the two previous rules do not apply);

• pp(t)q = p(ptq), for an atom p(t).

We need to show that the function p·q preserves equivalence on the encoded terms.

Lemma 5. For C-exponent-ground terms t and s, if t ∼ s, then ptq ∼ psq.

Proof: The proof of this lemma is similar to the proof of [KT09]. It becomes more complex
since there are additional definitions regarding the terms whose head symbol is pairing function e.

Let t and s be C-exponent ground terms. Assume that t ∼ s. There exists a term r which is a
reduced form of both t and s. We can obtain r from s or from t applying the equations defined for
bilinear mappings:
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1. (x ↑ y) ↑ z = (x ↑ z) ↑ y; (x ? y) ? z = (x ? z) ? y can be applied from left to right and from
right to left a number of times. The transformation preserves p.q according to the definition
of p.q. Let y = ci and z = cj . Let x be some C-exponent ground term.

• p(x ↑ ci) ↑ cjq = increxpj (px ↑ ciq) = increxpj (increxpi (pxq)).

• p(x ↑ cj) ↑ ciq = increxpi (px ↑ cjq) = increxpi (increxpj (pxq)).

Here we need to show that the metatheoretical functions of the form increxpi and decrexpi

commute. This property is obvious from the metatheoretical meaning of these functions. It is
not hard to verify it for example by trying to reorder all the possibilities from the definition of
increxpi and decrexpi . There are too many different cases, and they are not brought here (this
proof is also not shown in details in [KT09]).

The proof for y = c−1
i , z = c−1

j , and ? operation is analogical.

2. e(x, y ? z) = e(x, y) ↑ z can be applied from left to right and from right to left a number of
times. Let z = ci, and let x, y be some C-exponent-ground terms. We get that p(e(x, y?ci))q =
pe(x, y) ↑ ciq directly from the definition of p·q.

3. (x ↑ y) ↑ y−1 = x; (x ? y) ? y−1 = x can be applied from left to right a number of times. The
transformation preserves p.q according to the definition of p.q. Let y = ci, we get p(x ↑ y) ↑
y−1q = decrexpi (px ↑ yq) = increxpi (decrexpi (pxq)) = pxq.

4. (x−1)−1 = x; e(x, y−1) = e(x, y)−1 cannot be applied, since t and s are C-exponent-ground
and all the transformations preserve C-exponent-groundness.

5. e(x, y) = e(y, x). There are two subcases for this formula.

• Suppose that the head symbol of one of the terms x and y is ?. Let x = z ? ci for some
C-exponent-ground term z. We get:

– pe(z ? ci, y)q = pe(z, y) ? ciq.

– pe(y, z ? ci)q = pe(y, z) ? ciq.

Here e(z, y) ∼ e(y, z), and therefore e(z, y)?ci ∼ e(z, y)?ci which by induction hypothesis
implies pe(z, y) ? ciq ∼ pe(z, y) ? ciq.

The case for y = z ? ci is analogical. It is important that the rule pe(x, y)q = e(pxq, pyq)
will not be applied until all the ? symbols will be handled.

• If the head symbol of x and y is not ?, we get e(pxq, pyq) ∼ e(pyq, pxq) since x ∼ pxq
and y ∼ pyq according to induction hypothesis.

It is important that we do not achieve syntactical equality just by applying p.q, and this
property is not encoded. In ProVerif, we will define this equation in the heading if it is
necessary for the protocol. In this theory, we assume that the equation e(x, y) = e(y, x) holds
also for the C-exponent-ground theory TC , and it does not have to be proved by encoding.

�

Example 5. Let C = {c1}. Let t = enc(e(g ? c1, g ? c
−1
1 ),m) where g and m are some variables.
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ptq = penc(e(g ? c1, g ? c
−1
1 ),m)q

= enc(pe(g ? c1, g ? c
−1
1 )q, pmq)

= enc(pe(g, g ? c−1
1 ) ↑ c1q,m)

= enc(increxp1 (pe(g, g ? c−1
1 )q),m)

= enc(increxp1 (pe(g, g) ↑ c−1
1 q),m)

= enc(decrexp1 (increxp1 (pe(g, g)q)),m)

= enc(decrexp1 (increxp1 (e(pgq, pgq))),m)

= enc(decrexp1 (increxp1 (e(g, g))),m)

= enc(e(g, g),m) �

7 Derivation Rules for Encoded Terms

Given a theory T , we will now present the construction of a theory TC , such that a derivation
`∼ according to theory T ∪ TE is equivalent to an almost purely syntactic derivation `c according
to TC . Formally, the derivation `c is according to an equational theory that is generated by the
single equation e(x, y) = e(y, x). This theory is much simpler than ∼ and can be readily handled
by ProVerif. The precise meaning of the equivalence of definitions is given by Theorem 7 below.
Theory TC is generally similar to the one defined in [KT09], but contains significant new details for
handling the algebraic properties of pairings. The clauses of the theory TC that do not depend on
the clauses of T are given in Fig. 1.

The rules (2)–(4) deal with integers: the intruder must be able to derive any integer term.
The rules (5)–(8) enable the intruder to switch between t and exp(t, 0, . . . , 0), between t and

mult(t, 0, . . . , 0).

If the intruder knows ci, he is allowed to multiply (exponentiate) the term with c
(n)
i for any integer

n. This kind of reduction works better with ProVerif than just multiplying (exponentiating) a term
with ci n times. Given a term exp(x, x1, ..., xm), the intruder can produce exp(x, x1, ..., s(xi), ..., xm)
by exponentiating with ci. Hence he can non-deterministically change the i-th counter to any other
integer. The rule (9) deals with exponentiation, and the rule (10) deals with multiplication.

At this point we start diverging from [KT09]. Namely,
we must handle the addition of exponents. The term e(x ? c(x1) ? . . . ? c(xm), y ? c(y1) ? . . . ? c(ym))

is equivalent to e(x, y) ↑ c(z1) ↑ . . . ↑ c(zm), where for each i: zi = xi + yi; these terms have the same
encoding. We handle the addition by introducing a predicate A. Metatheoretically, A(x, y, z) is true
iff z = i2t(t2i(x) + t2i(y)).

The predicate A cannot be defined through case enumeration. We define it recursively, using
auxiliary predicates INCR and DECR. These definitions are expressed by the rules (11) — (15).

With help of the predicate A we can describe the intruder’s ability to compute the pairing of
two terms by introducing the rule (16).

Similarly to [KT09] we define predicates E, M , and P that will express exponentiation, multi-
plication and pairing for C-exponent-ground terms. Metatheoretically,

• E(x, y, z) is true iff x ↑ y ∼ z.

• M(x, y, z) is true iff x ? y ∼ z.

• P (x, y, z) is true iff e(x, y) ∼ z.

The main purpose of these predicates is to bring terms to normal form, so that two terms are
equivalent modulo TC iff they are syntactically equivalent modulo e(x, y) = e(y, x). This allows
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I(0) (2)

I(x) → I(s(x)) (3)

I(x) → I(p(x)) (4)

I(x) → I(exp(x, 0, . . . , 0)) (5)

I(exp(x, 0, . . . , 0)) → I(x) (6)

I(x) → I(mult(x, 0, . . . , 0)) (7)

I(mult(x, 0, . . . , 0)) → I(x) (8)

I(ci), I(y), I(exp(x0, x1, . . . , xm)) → I(exp(x0, . . . , xi−1, y, xi+1, . . . , xm)) (9)

I(ci), I(y), I(mult(x0, x1, . . . , xm)) → I(mult(x0, . . . , xi−1, y, xi+1, . . . , xm)) (10)

INCR(x, incr(x)) for x ∈ {0, s(y), p(y)} (11)

DECR(x, decr(x)) for x ∈ {0, s(y), p(y)} (12)

A(x, 0, x) (13)

A(x, y, z), INCR(z, w) → A(x, s(y), w) (14)

A(x, y, z), DECR(z, w) → A(x, p(y), w) (15)

A(x1, y1, z1), . . . , A(xm, ym, zm), I(mult(x, x1, . . . , xm)), I(mult(y, y1, . . . , ym)) → I(exp(e(x, y), z1, . . . , zm)) (16)

E(t, ci, incr
exp
i (t)) for each ci ∈ C and t ∈ {x, exp(x0, . . . , xm), exp(x0, . . . , p(xi), . . . , xm), px ↑ c−1

i q} (17)

E(t, ci, decr
exp
i (t)) for each ci ∈ C−1 and t ∈ {x, exp(x0, . . . , xm), exp(x0, . . . , s(xi), . . . , xm), px ↑ ciq} (18)

M(t, ci, incr
mult
i (t)) for each ci ∈ C and t ∈ {x,mult(x0, . . . , xm),mult(x0, . . . , p(xi), . . . , xm), px ? c−1

i q} (19)

M(t, ci, decr
mult
i (t)) for each ci ∈ C−1 and t ∈ {x,mult(x0, . . . , xm),mult(x0, . . . , s(xi), . . . , xm), px ? ciq} (20)

P (x, y, e(x, y)) (21)

P (mult(x, x1, . . . , xm), y, exp(e(x, y), x1, . . . , xm)) (22)

P (x,mult(y, y1, . . . , ym), exp(e(x, y), y1, . . . , ym)) (23)

A(x1, y1, z1), . . . , A(xm, ym, zm) → P (mult(x, x1, . . . , xm),mult(y, y1, . . . , ym), exp(e(x, y), z1, . . . , zm)) (24)

A(x1, y1, 0), . . . , A(xm, ym, 0) → P (mult(x, x1, . . . , xm),mult(y, y1, . . . , ym), e(x, y)) (25)

Figure 1: Generic clauses of the theory TC
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ProVerif to unify equivalent terms without using the other equations of TC . In the original pro-
tocol (the theory T ), all the terms of the form x ↑ y, x ? y, and e(x, y) will be replaced with the
corresponding terms z that are equivalent according to the definitions of the predicates E, M , and
P .

Predicates E and M are simple to express in theory TC . The predicate E has already been
defined in [KT09], and M is defined analogously. The rules (17) and (18) deal with exponentiation,
and the rules (19) and (20) deal with multiplication.

The rules for bilinear mappings are a little bit longer, because we have to add multipliers for each
ci ∈ C separately. This is the main reason why derivation time with ProVerif grows so rapidly with
increasing the set C. The rules (21)—(23) refer to the simpler part of the definition of P , where at
most one of the paired terms has mult as its head operation. We do not need to use addition of
exponents in these rules.

If we define in the same way the case where the head operation of both arguments of the pairing
function is mult, we would get an infinite number of clauses. We need to describe this case in another
way, using the auxiliary predicate A that we have already defined above. We do it by introducing
the rule (24).

This rule alone is still not enough for the full description of the predicate P . It may give
us answers like exp(e(x, y), 0, . . . , 0). Metatheoretically, the terms exp(e(x, y), 0, . . . , 0) and e(x, y)
denote the same quantity, but exp(e(x, y), 0, . . . , 0) 6= e(x, y). It is not a problem for the intruder
rules since he has rules for transforming exp(e(x, y), 0, . . . , 0) to e(x, y), but some congruences within
the initial protocol T would be lost. For example, there would be no syntactical equivalence between
e(x, y) ↑ c−1

1 ↑ c1 = e(x, y) and e(x?c1, y ? c
−1
1 ) = exp(e(x, y), 0, . . . , 0). Therefore, we need to define

a separate rule for this case — the rule (25).
Finally, we describe how the rules of the theory T are encoded as rules in theory TC . This

encoding is again similar to [KT09]. ProVerif is able to handle the encoded rules without difficulty.
Any clause r1, . . . , rn → r0 from a theory T is encoded by
substituting all non-ground, non-standard subterms with their
C-exponent-ground encodings. Similarly to [KT09], the encoded clause is

pθ(r1)q, . . . , pθ(rn)q, C → pθ(r0)q, (26)

where θ is the substitution from non-ground non-standard subterms to new variables, and C is
a set of clauses establishing that these variables equal the subterms they’ve replaced. Formally, let
R be the set of all subterms of r0, . . . , rn of the form s ? c, s ↑ c or e(s1, s2), where c ∈ C∗ and s, s1

or s2 is non-ground. For each term t ∈ R let xt be a new variable. The substitution θ works in a
top-down manner:

θ(u) = u for name or variable u

θ(t) = xt if t ∈ R
θ(f(t1, . . . , tn)) = f(θ(t1), . . . , θ(tn)) otherwise

θ(p(t1, . . . , tn)) = p(θ(t1), . . . , θ(tn)) for predicate p.

The set of clauses C is defined as follows:

C = {M(pθ(s)q, c, xs?c) | s ? c ∈ R}
∪ {E(pθ(s)q, c, xs↑c) | s ↑ c ∈ R}
∪ {P (pθ(s1)q, pθ(s2)q, xe(s1,s2)) | e(s1, s2) ∈ R} .

We see that the substitution θ and encoding p·q are applied also in the arguments of predicates
M , E, P . In this manner more complex expressions involving the operations ?, ↑, e can be encoded.
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The following lemma states that if an instance of normalization predicates E,P,M is defined
correctly in T (its metatheoretical meaning holds), then it can be derived in TC .

Lemma 6. Let t and s be C-exponent-ground terms, c ∈ C ∪ C−1. Then E(ptq, c, pt ↑ cq),
M(ptq, c, pt ? cq), P (ptq, psq, pe(t, s)q) can be derived from the theory TC .

Proof: We need this lemma in order to show that bringing the terms to normal form can indeed
be performed by the rules of theory TC . It shows that it can be done only for some particular uses
of E, M , and P . For example, E(t, s, s ? s) is not an instance of a fact of TC . The further lemmas
will show that we actually do not need it to hold for all possible cases. There are more cases that
should be looked through compared to the analogous lemma in [KT09].

The proof is based on the definition of the encoding function p·q. In the rules, we may substitute
the variables with any terms. Let c ∈ C, and let t, s be C-exponent-ground terms.

• E(ptq, c, pt ↑ cq) = E(ptq, ci, incr
exp
i (ptq))). This is an instance of the rule (17) for some i

where c = ci.

• E(ptq, c−1, pt ↑ c−1q) = E(ptq, ci, decr
exp
i (ptq))). This is an instance of (18) for some i where

c = ci.

• M(ptq, c, pt ? cq) = M(ptq, ci, incrmult
i (ptq))). This is an instance of (19) for some i where

c = ci.

• M(ptq, c−1, pt?c−1q) = M(ptq, ci, decrmult
i (ptq))). This is an instance of (20) for some i where

c = ci.

• If the head symbols of both s and t are not ?, then
P (ptq, psq, pe(t, s)q) = P (ptq, psq, e(psq, ptq)), which is an instance of (21).

Let C be a multiset {|ci1, . . . , cik|} where each cij is an element of C ∪ C−1. If t is a term then
let t ? C denote the term t ? ci1 ? · · · ? cik (it is well-defined up to ∼) and t ↑ C denote the term
t ↑ ci1 ↑ · · · ↑ cik. We also define the metatheoretical functions incrX

C , where X ∈ {mult , exp}, as
follows:

incrX
∅ (t) = t

incrX
C∪̇{|ci|}(t) = incrX

i (incrX
C(t)) ci ∈ C

incrX
C∪̇{|c−1

i |}
(t) = decrX

i (incrX
C(t)) ci ∈ C .

Again, the functions incrmult
C and increxp

C are well-defined due to the commutation properties of

the functions incrX
i and decrX

i . We use the defined notions to treat more complex cases of applying
the predicate P .

• If the head symbol of s is not ?, then
P (pt ?Cq, psq, pe(t, s) ↑ Cq) = P (incrmult

C (ptq), psq, increxp
C (e(ptq, psq))),

which is an instance of (22), according to the definition of increxp and incrmult.

• If the head symbol of t is not ?, then
P (ptq, ps ?Cq, pe(t, s) ↑ Cq) = P (ptq, incrmult

C (psq), increxp
C (e(ptq, psq))),

which is an instance of (23).

• P (pt ?C1q, ps ?C2q, pe(t, s) ↑ C1 ↑ C2q) =
P (incrmult

C1
(ptq), incrmult

C2
(psq), increxp

C1∪̇C2
(e(ptq, psq))). Therefore it can be derived from (24).
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• P (pt ?C1q, ps ?C2q, pe(t, s)q) = P (incrmult
C1

(ptq), incrmult
C2

(psq), e(ptq, psq)). Hence it can be
derived from the rule (25).

Let us consider the clauses given by the translation (26) for some clause A = (r1, . . . , rn → r0).
Denote the clause in TC resulting from A by A∗. First, if A does contain neither multiplication,

exponentiation nor the bilinear pairing operations, then A∗ = A. If A contains some term t ↑ d with
a non-ground term t, it is replaced by a fresh variable y, and the relation between t, d, and y is
captured by adding E(t, d, y) to the clause. Similarly, a term t ? d adds a new clause M(t, d, y), and
e(s, t) adds a new clause P (s, t, y). All terms are encoded using p.q to obtain terms over Σpair.

Example 6. Let C = {c1, c2}. Let secret be a constant of T . Suppose that T contains the fact

R = I(e(x, y ? a))→ I(secret).

For this clause, we get the rule

R′ ≡M(pθ(y)q, c1, z), P (pθ(x)q, pθ(y ? c1)q, v), pθ(I(e(x, y ? c1)))q→ pθ(I(secret))q.

Here z, v are newly introduced variables. They define the substitution θ = {z/y?c1, v/e(x, y?c1)}.
We get

R′ ≡M(pyq, c1, z), P (pxq, pzq, v), pI(v)q→ pI(secret)q.

Since x, y are variables, the function p·q does not do anything interesting, and we get

R′ ≡M(y, c1, z), P (x, z, v), I(v)→ I(secret).

Note that the predicate E does not occur in this rule since exponentiation symbol ↑ is not used in
the initial clause.

Consider now the application of R / R′ during the derivation. Let σ = {g ? c−1
1 /x, g ? c2/y} be

the substitution that gives the values of x and y for which we want to apply the rule R′. If the
derivation is being done according to the theory TC , we have the substitution

σ′ = {mult(g, p(0), 0)/x,mult(g, 0, s(0))/y} .

Applying σ′ to R′ gives the instantiation

σ′(R′) ≡M(mult(g, 0, s(0)), a, z), P (mult(g, p(0), 0), z, v), I(v)→ I(secret).

The variables z, v are auxiliary, and they remain free in σ′(R). In order to establish the truth
of the right hand side of this rule, the derivation engine (ProVerif) needs to find appropriate values
for z, v. According to the definition of M and P , there is only one way to evaluate them to true —
I(secret) will be established if z = mult(g, s(0), s(0))) and v = exp(e(g, g), 0, s(0)). In fact, we get
the clause I(exp(e(g, g), 0, s(0))) → I(secret) assuming that M(. . .) and P (. . .) are true. This rule
belongs to TC . �

Theorem 7. Let T be a non-trivial, C-exponent-ground theory over Σ and b = p(t) be a C-exponent-
ground atom over Σ, with p being a predicate occurring in T . Then, T ∪ TE `∼ b iff TC `c pbq.

If we prove this theorem, it means that any derivation modulo ∼ (using the properties of bilin-
ear mappings) can be reduced to an almost purely syntactical derivation and can be analyzed by
ProVerif. First, we need to prove several lemmas.

Lemma 8. If there exists a C-exponent-ground derivation for T ∪ TC
E `∼ b obtained using C-

exponent-ground substitutions, then TC ` pbq.
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Proof:
The proof of the lemma contains a larger number of different cases than the similar proof

in [KT09]. It shows that using facts and rules encoded by p·q one can derive all the C-exponent-
ground atoms that can be derived by T ∪ TC

E , and the only difference is that the derived term will
be encoded.

Let π = b1, . . . , bl be a C-exponent-ground derivation for T∪TC
E `∼ b obtained using C-exponent-

ground substitutions. The lemma can be proved by induction over the length of π:

• Base: If l = 0, there is no derivation

• Step: Let π<l = b1, . . . , bl−1. We know that b ∼ bl can be derived from π<l by applying a
clause from T ∪ TC

E using a C-exponent-ground substitution σ. It is enough to show that pbq
can be syntactically derived from pπ<lq using TC . There are two cases to consider:

1. If b is obtained using a clause of TC
E , then b = I(t) for some C-exponent-ground term t. There

are three subcases:

(a) The set π<l contains atoms I(r) for a C-exponent-ground r and I(ci) for ci ∈ C, such
that t ∼ r ↑ ci or t ∼ r ↑ c−1

i . The atom I(ptq) can be obtained from I(prq) and I(pciq)
using the following clauses:

i. (5) if the reduced form of r is standard.

ii. (9) is used with an appropriate integer term derived by integer-derivation clauses
(2)—(4).

iii. If the reduced form of t is standard, then (6) is applied.

(b) The set π<l contains atoms I(r) for a C-exponent-ground r and I(ci) for ci ∈ C, such
that t ∼ r ? ci or t ∼ r ? c−1

i . The atom I(ptq) can be obtained from I(prq) and I(pciq)
using analogical clauses that are defined for multiplication in TC .

(c) The set π<l contains atoms I(r) and I(s) for C-exponent-ground r and s, such that
t ∼ e(r, s). The atom I(ptq) can be obtained from I(prq) and I(psq) using the following
clauses:

i. If r(or s) is not of the form mult(x0, x1, . . . , xm), then (7) must be applied to r(or
s) in order to get I(mult(r0, r1, . . . , rm)) and I(mult(s0, s1, . . . , sm)), where r ∼
mult(r0, r1, . . . , rm) and s ∼ mult(s0, s1, . . . , sm).

ii. Apply the rule (16) to mult(r0, r1, . . . , rm) and mult(s0, s1, . . . , sm).

2. If b is obtained by some C-exponent-ground clause r1, . . . , rn → r0 of T , there exists a C-
exponent-ground substitution σ such that b ∼ σ(r0) and all σ(r1), . . . , σ(rn) belong to π<l

(everything modulo ∼). The pbq can be obtained by using the clause that uses predicates
E,M , and P . Denote the clause r1, . . . , rn → r0 as R→ S. We will write out the rule (26):
M(pθ(s′1)q, b1, x1), . . . ,M(pθ(s′j)q, bj , xj),

E(pθ(t′1)q, d1, y1), . . . , E(pθ(t′k)q, dk, yk),

P (pθ(u′1)q, pθ(v′1)q, z1), . . . , P (pθ(u′l)q, pθ(v
′
1)q, zl),

pθ(r1)q, . . . , pθ(rn)q→ pθ(r0)q.
Define a substitution σ∗, which will be applied to R→ S to obtain pbq as follows:

• σ∗(x) = pσ(x)q, for x ∈ var(r1, . . . , rn);

• σ∗(xi) = pσ(si)q;

• σ∗(yi) = pσ(ti)q;
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• σ∗(zi) = pσ(wi)q.

It is easy to show by induction that, for each subterm u of r0, . . . , rm, which is not of the form
w−1, we have σ∗(pθ(u)q) = pσ(u)q:

(a) If u is standard, the claim immediately follows by induction hypothesis.

(b) if u is a ground, non-standard subterm, then both σ∗(pθ(u)q) and pσ(u)q are equal to
puq.

(c) If u is non-ground and non-standard, then:

i. if u ∈ {s1, . . . , sk}, then θ(u) = xi for some i.

ii. if u ∈ {t1, . . . , tk}, then θ(u) = yi for some i.

iii. if u ∈ {w1, . . . , wk}, then θ(u) = zi for some i.

The claim follows from the definition of σ∗.

Now we have that σ∗(pθ(ri)q) = pσ(ri)q for each i ∈ {0, . . . , n}; in particular, σ∗(pθ(ri)q) ∈
pπ<lq for each i ∈ {1, . . . , n}, and we obtain σ∗(pθ(ri)q) = pσ(r0)q = pbq by applying R→ S
with substitution σ∗ (the equality follows from Lemma 5). It remains to prove that:

E∗ ≡ σ∗(E(pθ(t′i)q, di, yi)),

M∗ ≡ σ∗(M(pθ(s′i)q, bi, xi)),

P ∗ ≡ σ∗(P (pθ(u′i)q, pθ(v
′
i)q, zi))

can all be derived from TC .

• For exponentiation, we have: E∗ = σ∗(E(pθ(t′i)q, di, yi)) = E(σ∗(pθ(t′i)q), di, σ
∗(yi)) =

E(pσ(t′i)q, di, pσ(ti)q) = E(pσ(t′i)q, di, pσ(t′i) ↑ diq).
By Lemma 6, the last fact is an instance of (17) or (18), depending on whether di belongs
to C or C−1.

• Analogically, for multiplication we have: M∗ = M(pσ(s′i)q, bi, pσ(s′i)?biq). By Lemma 6,
this fact is an instance of (19) or (20), depending on whether bi belongs to C or C−1.

• For pairing, we have P ∗ = σ∗(P (pθ(u′i)q, pθ(v
′
i)q, zi)) = P (σ∗(pθ(u′i)q), σ

∗(pθ(v′i)q), σ
∗(zi)) =

P (pσ(u′i)q, pσ(v′i)q, pσ(wi)q) = P (pσ(u′i)q, pσ(v′i)q, pe(σ(u′i), σ(v′i))q).

By Lemma 6, this fact is an instance of:

– (21) if the head symbol of both u′i and v′i is not ?.

– (22) if the head symbol of u′i is ?, and the head symbol of v′i is not ?.

– (23) if the head symbol of v′i is not ?, and the head symbol of u′i is ?.

– (24) if the head symbols of both u′i and v′i are ?.

– (25) if the head symbols of both u′i and v′i are ?, and after the pairing all the multipliers
are going to be cancelled out (A(x1, y1, 0), . . . , A(xm, ym, 0) are true).

Theorem 1 states that the existence of derivation T ∪TE `∼ b implies the existence of derivation
T ∪ TC

E `∼ b. Together with Lemma 8, this proves one direction of Theorem 7.
We need to show that the other direction also holds, thus establishing the soundness of the

reduction. The next section describes decoding of the terms.
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8 Decoding the Terms: Soundness of the Reduction

We have proved that T ∪ TE `∼ b implies TC `c pbq, but this is not sufficient. Now we are going to
prove that TC `c pbq implies T ∪ TE `∼ b. It is very important since it proves the soundness of our
reduction. In order to do that, we need to define a decoding function that would turn terms over
Σpair back into terms over Σ.

In the process of decoding, we will use the non-triviality of the protocol theory T : there exists
some u such that T ∪ TE `∼ I(u). If T was empty, the verification task would be trivial.

Previously, the function t2i was defined only on integer terms. Now the domain of t2i will be
extended to all terms in the same way as it has been done in [KT09]. If the term is not an integer
term, then t2i turns it to 0.

• t2i(0) = 0;

• t2i(s(t)) = t2i(t) + 1;

• t2i(p(t)) = t2i(t)− 1;

• t2i(t) = 0, for any term t /∈ {0, s(t′), p(t′)} for some term t′.

Now we can define the decoding function, a mapping x·y from terms over Σpair to terms over Σ.

• xxy = x, for a variable x;

• x0y = u;

• xs(t)y = u;

• xp(t)y = u;

• xexp(t, s1, . . . , sm)y = xty ↑ ct2i(s1)
1 ↑ . . . ↑ ct2i(sm)

m ;

• xmult(t, s1, . . . , sm)y = xty ? ct2i(s1)
1 ? . . . ? c

t2i(sm)
m ;

• xf(t1, . . . , tn)y = f(xt1y, . . . , xtny),
where f /∈ {0, s, p, exp,mult} ;

• xp(t)y = p(xty), for an atom p(t).

In this definition, we need u only to express that if an integer term occurs somewhere outside
of multiplication or exponentiation, then its decoding can also be derived from T . The decoding is
meaningless for the actual protocol, and is only necessary for the formal statement of the further
lemmas: since the intruder can derive any integer term in TC , we need to show that he can derive
the same term in its decoded form. This has been done in the same way in [KT09].

Example 7. Let C = {c1, c2}. Suppose that we are given a term t := exp(f(p(0), x), 0, s(s(0))) over
Σpair, where x is a variable and f is arbitrary functional symbol. We have:

xty = xexp(f(p(0), x), 0, s(s(0)))y

= xf(p(0), x)y ↑ c22
= f(xp(0)y, xxy) ↑ c22
= f(u, x) ↑ c22 �
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There must be a relationship between the functions p.q and x.y. Everything that was encoded may
be later decoded. These functions are not the inverse functions of each other because syntactically
different, but congruent terms have the same encoding. But we do not need the syntactical equality
of the terms t and xptqy, equivalence modulo ∼ is sufficient.

Lemma 9. Let t be a C-exponent-ground term over Σ. Then xptqy ∼ t.

Proof:
This lemma can be proved by structural induction over t. If t is standard, the statement imme-

diately follows by the induction hypothesis. If t is not standard, let t′ be its reduced form. We have
to look through three cases for a non-standard form: exponentiation, multiplication and pairing.
The proof is similar to [KT09], but it includes additional cases for pairing.

• If t′ = t0 ↑ c(k1)
1 ↑ . . . ↑ c(km)

m for some integers k1, . . . , km and a C-exponent ground term t0,
then pt′q = exp(pt0q, i2t(k1), . . . , i2t(km)). By definition of x·y and the fact that t2i(i2t(k)) =

k, we obtain xpt′qy = xpt0qy ↑ c(k1)
1 ↑ . . . ↑ c(km)

m . The induction hypothesis yields that

xpt0qy ∼ t0, and therefore xpt′qy ∼ t0 ↑ c(k1)
1 ↑ . . . ↑ c(km)

m . Hence, xpt′qy ∼ t′. Since t ∼ t′,
Lemma 5 implies that pt′q ∼ ptq and so xpt′qy ∼ xptqy. Consequently, t ∼ t′ ∼ xptqy.

• If t′ = t0 ? c
(k1)
1 ? . . . ? c

(km)
m for some integers k1, . . . , km and a C-exponent ground term t0,

then pt′q = mult(pt0q, i2t(k1), . . . , i2t(km)). As in the case of exponentiation, we get xpt′qy =

xpt0qy ? c
(k1)
1 ? . . . ? c

(km)
m . According to induction hypothesis, xpt′qy ∼ t0 ? c

(k1)
1 ? . . . ? c

(km)
m .

Applying Lemma 5, we again get that t ∼ t′ ∼ xptqy.

• If t′ = e(r′, s′), then we have three different cases:

– If r′ and s′ are standard, then pt′q = pe(r′, s′)q = e(pr′q, ps′q) = e(r′, s′). By definition
of x·y, we get xpt′qy = t′.

– If either r′ = r0 ? c
(k1)
1 ? . . . ? c

(km)
m or s′ = s0 ? c

(k1)
1 ? . . . ? c

(km)
m , then

pt′q = exp(e(pr0q, ps′q), i2t(k1), . . . , i2t(km)) or
pt′q = exp(e(pr′q, ps0q), i2t(k1), . . . , i2t(km)).

By definition of x·y, we obtain:

xpt′qy = e(xpr′qy, xps0qy) ↑ c(k1)
1 ↑ . . . ↑ c(km)

m or

xpt′qy = e(xpr0qy, xps′qy) ↑ c(k1)
1 ↑ . . . ↑ c(km)

m .

The induction hypothesis yields that xpr0qy ∼ r0, xps0qy ∼ s0, xpr′qy ∼ r′, and
xps′qy ∼ s′. We get:

xpt′qy = e(r′, s0) ↑ c(k1)
1 ↑ . . . ↑ c(km)

m or

xpt′qy = e(r0, s
′) ↑ c(k1)

1 ↑ . . . ↑ c(km)
m .

We get that xpt′qy ∼ t′, and, according to Lemma 5, t ∼ xpt′qy.
– If both r′ = r0 ? c

(k1)
1 ? . . . ? c

(km)
m and s′ = s0 ? c

(l1)
1 ? . . . ? c

(lm)
m , then

pt′q = exp(e(pr0q, ps0q), i2t(k1 + l1), . . . , i2t(km + lm)).

Again, by definition of x·y, we get that:

xpt′qy = e(xpr0qy, xps0qy) ↑ c(k1+l1)
1 ↑ . . . ↑ c(km+lm)

m .
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By induction hypothesis, xpt′qy = e(r0, s0) ↑ c(k1+l1)
1 ↑ . . . ↑ c(km+lm)

m .

Applying Lemma 5, we again have t ∼ xpt′qy.
�

The next lemma shows that if any instance of the predicates E,M , or P can be derived from TC ,
then this instance is defined correctly according to the the metatheoretical meaning of E,M ,P (it
indeed represents exponentiation, multiplication, or pairing). There is an analogous lemma in [KT09]
without the proof.

Lemma 10. Let t,d, and s be ground terms over Σpair. Let C∗ = C ∪ C−1.

• If E(t, d, s) can be derived from TC , then d ∈ C ∪ C−1 and xsy ∼ xty ↑ d.

• If M(t, d, s) can be derived from TC , then d ∈ C ∪ C−1 and xsy ∼ xty ? d.

• If P (r, s, t) can be derived from TC , then
xty ∼ e(xry, xsy).

Proof: The proof of each point can be carried out by case distinction.

Exponentiation: The variable d belongs to the set C ∪ C−1 because the rules for predicate E
are all only of the form E(t, ci, incr

exp
i (t)), where ci ∈ C, or of the form E(t, ci, decr

exp
i (t)), where

ci ∈ C−1. The proof of equivalence can be carried out by case distinction.

• E(t, d, s) = E(t, ci, incr
exp
i (t)).

Then, xsy = xincrexpi (t)y. We have three different cases for t:

– Let t be of the form exp(t0, . . . , tm), where
ti = p(0) and ∀j 6= 0 tj = 0.

We have that

xincrexpi (t)y = xt0y. On the other hand,

xty ↑ d = xty ↑ ci
= xexp(t0, . . . , tm)y ↑ ci
= xt0y ↑ c(t2i(t1))

1 ↑ . . . ↑ c(t2i(tm))
m ↑ ci

= xt0y ↑ c(0)
1 ↑ . . . ↑ c−1

i ↑ . . . ↑ c(0)
m ↑ ci

∼ xt0y ↑ c(−1)
i ↑ ci

∼ xt0y .

– Let t be of the form exp(t0, . . . , tm), where either ti 6= p(0) or ∃j 6= i tj 6= 0. We have
that

xincrexpi (t)y = xexp(t0, . . . , ti−1, incr(ti), ti+1, . . . , tm)y

= xt0y ↑ c(t2i(t1))
1 . . . c

(t2i(incr(ti)))
i . . . ↑ c(t2i(tm))

m .

On the other hand,
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xty ↑ d = xty ↑ ci
= xexp(t0, t1, . . . , tm)y ↑ ci
= xt0y ↑ c(t2i(t1))

1 ↑ . . . ↑ c(t2i(tm))
m ↑ ci

∼ xt0y ↑ c(...)1 ↑ . . . ↑ c(t2i(ti)+1)
i ↑ . . . ↑ c(...)m

= xt0y ↑ c(...)1 ↑ . . . ↑ c(t2i(s(ti)))i ↑ . . . ↑ c(...)m

= xt0y ↑ c(...)1 ↑ . . . ↑ c(t2i(incr(ti)))
i ↑ . . . ↑ c(...)m .

– If t be not of the form exp(t0, . . . , tm), then, by definition of function increxpi , we have

xincrexpi (t)y = xincrexpi (exp(t, 0, . . . , 0))y

= xexp(t, 0, . . . , increxpi (0), . . . , 0)y

= xty ↑ c(0)
1 ↑ . . . ↑ c(t2i(s(0)))

i ↑ . . . ↑ c(0)
m

∼ xty ↑ ci .

• E(t, d, s) = E(t, ci, decr
exp
i (t)). The proof is very similar to the case E(t, d, s) = E(t, ci, incr

exp
i (t)).

We only need to replace all instances of increxpi with decrexpi and use the properties of the
function decrexpi .

Multiplication: This is analogical to exponentiation. We need to use functions incrmult
i and

decrmult
i .
Pairing: This equivalence can also be proved by case distinction. We have to look through all

possible uses of the predicate P .

• P (r, s, t) = P (x, y, e(x, y)). This is the simplest case, we have that xty = xe(x, y)y =
e(xxy, xyy), directly from the definition of x·y.

• P (r, s, t) = P (mult(x, x1, . . . , xm), y, exp(e(x, y), x1, . . . , xm)).

We have:

xty = xexp(e(x, y), x1, . . . , xm)y

= xe(x, y)y ↑ c(t2i(x1))
1 ↑ . . . ↑ c(t2i(xm))

m

= e(xxy, xyy) ↑ c(t2i(x1))
1 ↑ . . . ↑ c(t2i(xm))

m .

On the other hand,

e(xry, xsy) = e(xmult(x, x1, . . . , xm)y, xyy)

= e(xxy ? ct2i(x1)
1 ? . . . ? ct2i(xm)

m , xyy)

∼ e(xxy, xyy) ↑ ct2i(x1)
1 ↑ . . . ↑ ct2i(xm)

m .

• P (r, s, t) = P (x,mult(y, y1, . . . , ym), exp(e(x, y), y1, . . . , ym)). The proof is almost the same,
and the only difference is that the arguments of e are switched.
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• P (r, s, t) = P (mult(x, x1, . . . , xm),mult(y, y1, . . . , ym), exp(e(x, y), z1, . . . , zm)),

which requires the predicates A(x1, y1, z1), . . . , A(xm, ym, zm) to be true.

According to the definition of the predicate A(. . .), we have ∀i zi = i2t(t2i(xi) + t2i(yi)).

xty = xexp(e(x, y), z1, . . . , zm))y

= xe(x, y)y ↑ c(t2i(i2t(t2i(x1)+t2i(y1)))
1 ↑ . . . ↑ c(t2i(i2t(t2i(xm)+t2i(ym)))

m .

= xe(x, y)y ↑ c(t2i(x1)+t2i(y1))
1 ↑ . . . ↑ c(t2i(xm)+t2i(ym))

m

= e(xxy, xyy) ↑ c(t2i(x1)+t2i(y1))
1 ↑ . . . ↑ c(t2i(xm)+t2i(ym))

m .

On the other hand,

e(xry, xsy) = e(xmult(x, x1, . . . , xm))y, xmult(y, y1, . . . , ym))y)

= e(xxy ? ci2t(x1)
1 ? . . . ? ci2t(xm)

m , xyy ? ci2t(y1)
1 ? . . . ? ci2t(ym)

m )

∼ e(xxy, xyy) ↑ ci2t(x1)
1 ↑ . . . ↑ ci2t(xm)

m ↑ ci2t(y1)
1 ↑ . . . ↑ ci2t(ym)

m

∼ e(xxy, xyy) ↑ c(t2i(x1)+t2i(y1))
1 ↑ . . . ↑ c(t2i(xm)+t2i(ym))

m .

• P (r, s, t) = P (mult(x, x1, . . . , xm),mult(y, y1, . . . , ym), e(x, y)). This is just a particular case
of the previous rule. Here we have that ∀i zi = 0. As in the previous example, we get:

e(xry, xsy) ∼ e(xxy, xyy) ↑ c(t2i(x1)+t2i(y1))
1 . . . ↑ c(t2i(xm)+t2i(ym))

m

= e(xxy, xyy) ↑ c(0)
1 ↑ . . . ↑ c(0)

m

∼ e(xxy, xyy)

= xty .

�

Example 8. Let C = {c1, c2}. According to the definition of TC , the fact

P (x,mult(y, y1, y2), exp(e(x, y), y1, y2)),

where x, y, y1, y2 are variables, is a fact of TC .
Consider substitution

σ = {g/x, g/y, s(0)/y1, g/y2}

for a constant g. Then,
P (g,mult(g, s(0), g), exp(e(g, g), s(0), g))

is an instance of the previous fact. We have that

xexp(e(g, g), s(0), g)y = xe(g, g)y ↑ ct2i(s(0))
1 ↑ ct2i(g)

2

= e(xgy, xgy) ↑ c11 ↑ c02
= e(g, g) ↑ c1.
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e(xgy, xmult(g, s(0), g)y) = e(g, xgy ? ct2i(s(0))
1 ? c

t2i(g)
2 )

= e(g, g ? c11 ? c
0
2)

= e(g, g ? c1)

∼ e(g, g) ↑ c1. �

Now we need to show that each fact that can be derived in TC , can also be derived in T in its
decoded form. We cannot say that the fact derived in T will be exactly the same after decoding. As
it was said before, there is no one-to-one correspondence between p·q and x·y, but the facts derived
from T and TC will be equivalent modulo ∼.

Lemma 11. Let a = p(t) be an atom, such that p occurs in T . Then, TC `c a implies T∪TE `∼ xay.

Proof:
We need to take the derivation of a in TC , remove all the atoms of the form E(. . .), M(. . .), and

P (. . .), and replace all the remaining atoms ai by xaiy. The proof can be carried out by induction
and case distinction, in the same way as it has been done in [KT09]. There are additional cases for
pairing.

Let π = a1, . . . , al be a derivation for TC `c a. The proof proceeds by induction over the length
of π. The induction base is l = 0, there is nothing to show. For the induction step, we need to show
that xaly can be derived from xπ<ly, where π<l = a1, . . . , al−1, and xπ<ly is the sequence of atoms
obtained from π<l by removing all atoms of the form E(. . .), M(. . .), and P (. . .), by replacing all
the remaining atoms ai by xaiy.

By assumption, predicate symbols E, M , and P do not occur in T . It suffices to consider different
cases of how al is obtained.

Here we list all the possible cases that we have to consider, including those that have been proved
in [KT09].

1. If al is obtained using the integer derivation rules (2)—(4), it must be of the form I(0), I(s(t)),
or I(p(t)). Therefore, xaly = u, and we have T ∪ TE `∼ I(u).

2. If al is obtained using the rules (4)—(8), it is enough to note that xty = xexp(t, 0, . . . , 0)y =
xmult(t, 0, . . . , 0)y.

3. If al is obtained using the rule (9), the atom al is of the form

I(exp(s0, . . . , si−1, s
′
i, si+1, . . . , sm)), such that I(exp(s0, . . . , sm)), I(ci), and I(s′i) occur in

π<l. Set b = I(exp(s0, . . . , sm)). Then, xby = I(xexp(s0, . . . , sm)y) and xI(ci)y = I(ci) are
elements of xπ<ly.

Now we need to derive xaly from xby and I(ci).

• If t2i(s′i) > t2i(si), apply the clause I(x), I(y)→ I(x ↑ y) from TE t2i(s′i)− t2i(si) times.

• If t2i(s′i) < t2i(si), apply the clause I(x) → I(x−1) to I(ci), then apply the rule
I(x), I(y)→ I(x ↑ y) from TE t2i(si)− t2i(s′i) times.

• If t2i(s′i) = t2i(si), then xaly is a repetition of xby.

4. If al is obtained using the rule (10) the proof is analogical to exponentiation.

5. If al is obtained using the rule: (16) then the atom al is of the form
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exp(e(u0, v0), s1, . . . , sm), such that I(mult(u0, u1, . . . , um)) and I(mult(v0, v1, . . . , vm)) occur
in π<l, and the predicates A(u1, v1, s1), . . . , A(um, vm, sm) are true. By definition of the pred-
icate A(. . .), they are true iff si = i2t(t2i(u1) + t2i(vi)) for each i.

Now denote b1 = I(mult(u0, u1, . . . , um)),b2 = I(mult(v0, v1, . . . , vm)). We get that

xb1y = I(xmult(u0, u1, . . . , um)y) and xb2y = I(xmult(v0, v1, . . . , vm)y) are elements of xπ<ly.
Then, xaly can be derived from xb1y and xb2y by applying the rule I(x), I(y) → I(e(x, y))
from TE .

We get a term of the form e(. . . , . . .) without any exponents, but using equations e(x, y ? z) =
e(x, y) ↑ z and e(x, y) = e(y, x) we get that the result is actually equivalent to xaly. Each
exponent ci is taken out from xb1y ui times, and from xb2y vi times. As the result, we get
xexp(e(u0, v0), i2t(t2i(u1)+t2i(v1)), . . . , i2t(t2i(um)+t2i(vm)))y = xexp(e(u0, v0), s1, . . . , sm))y =
xaly.

6. Suppose that al is obtained using the rule (26). We write this rule out in more details:

M(pθ(s′1)q, b1, x1), . . . ,M(pθ(s′j)q, bj , xj),

E(pθ(t′1)q, d1, y1), . . . , E(pθ(t′k)q, dk, yk),

P (pθ(u′1)q, pθ(v′1)q, z1), . . . , P (pθ(u′l)q, pθ(v
′
1)q, zl),

pθ(r1)q, . . . , pθ(rn)q→ pθ(r0)q.

Assume that this clause was instantiated with a substitution σ: it means that al = σ(pr0q).
Furthermore, all the σ(pθ(ri)q) for all i ∈ {1, . . . , n}, and all the E(σ(pθ(t′i)q), di, σ(yi)),
M(σ(pθ(s′i)q), bi, σ(xi)), and P (σ(pθ(u′i)q), σ(pθ(v′i)q), σ(zi)) for all corresponding indices i,
are in π<l. Therefore, xσ(pθ(ri)q)y for all i ∈ {1, . . . , n} are in xπ<ly.

By Lemma 10, we have that xσ(yi)y ∼ xσ(pθ(t′i)q)y ↑ di, xσ(xi)y ∼ xσ(pθ(s′i)q)y?bi, xσ(zi)y ∼
e(xσ(pθ(u′i)q)y, xσ(pθ(v′i)q)y).

Let σ∗(x) = xσ(x)y. For each subterm t of r0, . . . , rn such that t is not of the form w−1, we
show by induction over the size of t, that σ∗(t) ∼ xσ(pθ(t)q)y:

(a) If t = x is a variable: pθ(x)q = x, and thus σ∗(x) = xσ(pθ(x)q)y, by definition of σ∗.

(b) If t = f(t1, . . . , tn) for f /∈ {↑, ?, e}: the claim easily follows by induction.

(c) If t = t′ ↑ d and t is ground: xσ(pθ(t)q)y = xptqy, and σ∗(t) = t. We know that xptqy ∼ t
by Lemma 9.

(d) If t = t′ ? d and t is ground: similar to exponentiation.

(e) If t = ti = t′i ↑ di, by the induction hypothesis we have

σ∗(ti) = σ∗(t′i) ↑ di ∼ xσ(pθ(t′i)q)y ↑ di.
We have xσ(yi)y ∼ xσ(pθ(t′i)q)y ↑ di. Therefore, σ∗(ti) ∼ xσ(yi)y = x(pθ(ti)q)y.

(f) If t = si = s′i ? bi: similar to exponentiation.

(g) If t = wi = e(u′i, v
′
i), by the induction hypothesis we have

σ∗(wi) = e(σ∗(u′i), σ
∗(v′i)) ∼ e(xσ(pθ(u′i)q)y, xσ(pθ(v′i)q)y).

We have xσ(zi)y ∼ e(xσ(pθ(u′i)q)y, xσ(pθ(v′i)q)y). Therefore, σ∗(wi) ∼ xσ(zi)y = x(pθ(wi)q)y.

By the above, we have that σ∗(ri) ∼ xσ(pθ(ri)q)y (ri can not be of the form w−1 since it is C-
exponent-ground). We have that all the xσ(pθ(ri)q)y for all i ∈ {1, . . . , n} are in xπ<ly, which
means that we can apply the clause r1, . . . , rn → r0 with σ∗ to obtain σ∗(r0) ∼ xσ(pθ(r0)q)y =
xaly. �
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Example 9. Let C = {c1, c2}. Let secret be a constant of T . Let f be an arbitrary functional
symbol. Suppose that the atom ã ≡ I(exp(e(g, g), 0, s(0))) has been derived from TC using the rule

R′ = I(f(x, y)),M(y, c1, z), P (x, z, v)→ I(v).

Assume that TC contains a fact

I(f(mult(g, p(0), 0),mult(g, 0, s(0)))),

and the substitution obtained in the derivation process is

σ = {mult(g, p(0), 0)/x,

mult(g, 0, s(0))/y,

mult(g, s(0), s(0))/z,

exp(e(g, g), 0, s(0))/v}.

Note that after fixing x or y, the value of z is uniquely determined since otherwise the predicates
M(. . .) and P (. . .) would be false, and the atom ã could not have been obtained in this derivation.

Applying σ and removing the instances of M and P from the derivation leaves the rules:

1. I(f(mult(g, p(0), 0),mult(g, 0, s(0))));

2. I(f(mult(g, p(0), 0),mult(g, 0, s(0))))→ I(exp(e(g, g), 0, s(0))).

After decoding the terms, we get:

1. I(f(g ? c−1
1 , g ? c2))→ I(e(g, g) ↑ c2);

2. I(f(g ? c−1
1 , g ? c2)).

These two rules belong to the theory T , and the clause I(e(g, g) ↑ c2) can be obviously derived
from T . On the other hand, I(e(g, g) ↑ c2) ∼ xãy. �

Proof of Theorem 7: We have used Lemma 8 to prove that T ∪ TE `∼ b implies TC `c pbq.
Now suppose that TC `c pbq. By assumption, b = p(t), where p occurs in T . Lemma 11 implies that
T ∪ TE `∼ xpbqy. By Lemma 9, xpbqy ∼ b, and therefore T ∪ TE `∼ b. �

As the result, we can say that instead of analyzing the C-exponent-ground protocol that uses
bilinear pairings in T ∪ TE , it can be analyzed in T ∪ TC

E without any loss of information.

9 Experiments

We have extended the Horn theory transformer by Küsters and Truderung [KT09] to also handle
pairing operations.

In their transformer, the protocol is written first as an ordinary Prolog program, and afterwards
it is translated to a file that can be tested by ProVerif.

With the help of this extended transformer, we have used ProVerif to analyze several protocols
employing bilinear pairings. All of them are key-agreement protocols. In our experiments, we have
asked whether the attacker (an insider in the system) is capable of finding or determining the session
key. Namely, at the end of the session, each party encrypts a secret value sec with the key determined
during the session, and releases it to the network. We query whether I(sec) can be derived. The
results of our tests are the following:
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• Joux’s protocol. This [Jou00] is the original three-party Diffie-Hellman key exchange pro-
tocol without any authentication of messages. Our analysis finds it secure if the channels
between parties are authenticated, and insecure otherwise.

• A variation of Shim’s protocol. We consider the repaired version [CVC04] of Shim’s three-
party certificate-based one-pass key-exchange protocol [Shi03]. Our analysis finds it secure.
There is an interesting detail in the model of this protocol. Namely, when a party receives
the messages from other parties, it is supposed to verify whether two terms t1 and t2, both
constructed by this party as t1 = e(t11, t12) and t2 = e(t21, t22), are equal. In symbolic model,
obviously the equality modulo ∼, not the syntactic equality (supported natively by ProVerif)
has to be used. We thus add the atoms P (t11, t12, T ) and P (t21, t22, T ) as premises to the
clause corresponding to the protocol action that depends on the results of this comparison.

• TAK 1. This certificate-based three-party key-exchange protocol by Al-Riyami and Pater-
son [ARP03] includes the public keys in the generated session key. It was found to be secure.

• TAK 2. This protocol by the same authors [ARP03], although similar to the previous one,
is insecure [SW07]. We were able to find the same attack using the theory transformer and
ProVerif.

• A Six Pass Pairing Based AKC Protocol. This protocol is also proposed by Al-Riyami
and Paterson [ARP03]. It was found to be secure.

Our implementation is available from http://comserv.cs.ut.ee/forms/ati_report//index.

php?year=2011.

Efficiency

We have tested the running time of the analysis on the listed protocols. Similarly to [KT09], our
Horn theory transformer has negligible running time. Unfortunately, the situation is different for
ProVerif’s running time on transformed protocols. In our experiments, the running time of ProVerif
seems to grow fast with the number of pairing operations in the protocols.

Our experiments were performed with ProVerif 1.84 on a 2.21 GHz AMD Athlon 64X2 Dual Core
Processor 4400+ with 2GB of RAM. The running time for the simplest of the protocols — Joux’s
key exchange — was still a fraction of a second. In this protocol, each participant has to perform
just a single pairing per session. TAK 1, six-pass AKC, and repaired Shim’s protocol each required
time between 6 and 23 minutes. TAK 2 protocol makes the most use of pairings (the agreed key in
this protocol is the hash of the concatenation of results of three different pairing operations). The
time to find the attack in this protocol amounted to several hours.

In our experiments, we did away with the commutation rule e(x, y) ∼ e(y, x). This means that
ProVerif performed a purely syntactic derivation. This change was sound because in all protocols,
only a single generator p of the group G1 was considered. This meant that e(p, p) was the only
considered generator for the group GT . Our transformation p·q thus brings all terms involving
pairings to the form exp(e(p, p), . . .). Getting rid of the commutation rule improved the running
time of ProVerif a couple of times, but the more complex protocols still required a long time to
analyze.

10 Addition in G1 and multiplication in GT

Our treatment allows neither the protocol participants nor the adversary to apply the full set of
operations available in the groups G1 and GT “in real life”. Namely, similarly to previous ap-
proaches [KT09], we have very much concentrated on Diffie-Hellman-like protocols and exponenti-
ation operations in groups. Addition in G1 and multiplication in GT have not been a part of the
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signature, meaning that no-one could apply those. As these operations can interfere with existing
operations in our signature (meaning: there are equations involving both of them and the exponenti-
ation operations) we may ask whether an adversary capable of applying them could attack protocols
that our analysis has found to be secure. This issue would not have arisen if there were no such
interference [CC10].

We will now extend the signature Σ with addition ‘+’ in G1 and multiplication ‘·’ in GT , intro-
ducing the equations and intruder theory which make them behave as the corresponding operations
in cyclic groups. If ∼] is the new equivalence of terms, and TE] is the new intruder theory, then we
show that for a protocol P that does not contain operations of addition in G1 and multiplication
in GT , and for an atom a that similarly does not contain these operations, TP ∪ TE] `∼] a implies
TP ∪ TE `∼ a. Hence these operations do not help the adversary.

The equations involving + and · are given below. We additionally make use of two free constants
0 and 1, denoting the zero element in G1 and the unit element in GT .

x+ y ∼] y + x x · y ∼] y · x

(x+ y) + z ∼] x+ (y + z) (x · y) · z ∼] x · (y · z)

(x+ y)−1 ∼] x−1 + y−1 (x · y)−1 ∼] x−1 · y−1

x+ 0 ∼] x x+ x−1 ∼] 0 x · 1 ∼] x x · x−1 ∼] 1

(x+ y) ? z ∼] (x ? z) + (y ? z) e(x+ y, z) ∼] e(x, z) · e(y, z)

(x · y) ↑ z ∼] (x ↑ z) · (y ↑ z)

(27)

The additions to the intruder theory due to these operations are straightforward. The theory
TE] consists of the rules of the theory TE , plus the following rules:

I(x), I(y)→ I(x+ y) I(x), I(y)→ I(x · y) .

As the protocol P does not contain + or ·, they can be introduced into a derivation only through
adversarial rules. We will show now that there is no reason for the adversary to introduce those
operations — if the goal of the adversary is to establish an atom a not containing + or ·, then any
derivation where + and · are introduced can be repeated without their introduction. The necessary
definitions for formally stating and establishing these results are given below, while their proofs are
given in the appendix.

We will extend the definition of a reduced term to the terms that contain + and · operations.
We call a term over Σ reduced if no equations in last four rows of (1) and last four rows of (27) can
be applied to it from left to right modulo the equations in the first two rows of (1) and first two
rows of (27). Hence in a reduced term, when several operations in and between G1 and GT have to
be performed, we first perform the pairings e, then the exponentiation-like operations ? and ↑, then
the inversions, and finally the multiplication-like operations + and ·. Each term can be brought
to a reduced form and the reduced form is determined uniquely modulo the associativity and/or
commutativity of ?, ↑, +, · and e.

Example 10. Suppose that we are given a term

t := e((p ? a+ p ? b) ? c, p ? a ? c) ↑ a−1 .

We will bring the term t to its reduced form:
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t = e((p ? a+ p ? b) ? c, p ? a ? c) ↑ a−1

∼] e(p ? a ? c+ p ? b ? c, p ? a ? c) ↑ a−1

∼] e(p ? a ? c+ p ? b ? c, p) ↑ a−1 ↑ a ↑ c
∼] e(p ? a ? c+ p ? b ? c, p) ↑ c
∼] (e(p ? a ? c, p) · e(p ? b ? c, p)) ↑ c
∼] e(p ? a ? c, p) ↑ c · e(p ? b ? c, p) ↑ c
∼] e(p, p) ↑ c ↑ a ↑ c · e(p, p) ↑ c ↑ b ↑ c
∼] e(p, p) ↑ a ↑ c2 · e(p, p) ↑ b ↑ c2

In this example, the + operation has disappeared from t because it has been applied to terms
under pairing. Note that the operation + may still remain in the reduced form.

The + and · operations are also not restricted to head operations. They can be hidden inside
the term, and they may remain there after the reduction. For example, f(a + b) ↑ c is a reduced
term. �

According to this new definition of reduced form, the terms (and their subterms) that do not
contain the operations + and · are reduced in the same way as according to the previous definition
(without + and ·).

We define a function DF (”decomposed form”) that we will use to remove all the + and ·
operations and replace them with single addends and factors. This can be done by defining special
functions that will select particular elements from the sums and the products. Additionally, we need
to ensure that applying these functions will keep equivalence modulo the equations of (27).

Let Trm+· be the set of reduced terms whose head symbol is not + or ·. Let P 6=∅fin (X) denote the

set of all the finite non-empty subsets of X. We define Sel+· as the set of pairs of functions (g+, ġ)

from P 6=∅fin (Trm+·) to Trm+·, satisfying the following conditions for all X,Y ∈ P 6=∅fin (Trm+·):

• g+(X) ∈ X and ġ(X) ∈ X;

• g+(X ∪ {0}) = g+(X) and ġ(X ∪ {1}) = ġ(X);

• if Y = {x ? t|x ∈ X}, then g+(Y ) = g+(X) ? t;

• if Y = {x ↑ t|x ∈ X}, then ġ(Y ) = ġ(X) ↑ t;

• if Y = {e(x, t)|x ∈ X}, then ġ(Y ) = e(g+(X), t).

We use the functions g+ and ġ to select addends from sums and factors from products.

For a term t in reduced form and a pair of functions (g+, ġ) ∈ Sel+· we define a term DF (t, g+, ġ)
as follows:

• DF (u, g+, ġ) = u (for a variable or a name u);

• DF (f(t1, . . . , tk), g+, ġ) = f(DF (t1, g
+, ġ), . . . ,DF (tk, g

+, ġ)) (for f /∈ {+, ·});

• DF (t1 + . . .+ tk, g
+, ġ) = DF (g+({t1, . . . , tk}), g+, ġ) (where the head symbol of ti is not +);

• DF (t1 · . . . · tk, g+, ġ) = DF (ġ({t1, . . . , tk}), g+, ġ) (where the head symbol of ti is not ·).
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We see that the term DF (t, g+, ġ) is a “simplified” form of t in the sense that wherever in t a
sum or a product is contained, the term DF (t, g+, ·g) only contains a single addend or factor of this
sum or product.

For an atom a = P (t1, . . . , tk) and functions g+, ġ we define the new atom DF (P (t1, . . . , tk), g+, ġ) =
P (DF (t1, g

+, ġ), . . . ,DF (tk, g
+, ġ)).

Example 11. Suppose that we have a term

s := enc(p ? a+ f(c · d) ? b,msg) ,

the function DF will decompose the reduced form of s to addends:

s′ = DF (s, g+, ġ)

= DF (enc(p ? a+ f(c · d) ? b,msg), g+, ġ)

= enc(DF (p ? a+ f(c · d) ? b, g+, ġ),DF (msg, g+, ġ))

= enc(DF (g+({p ? a, f(c · d) ? b}), g+, ġ),msg)

Depending on the definition of g+, we select either the first or the second argument of addition.

If we select p ? a:

s′ = enc(DF (p ? a, g+, ġ),msg)

= enc(DF (p, g+, ġ) ? a,msg)

= enc(p ? a,msg)

If we select f(c · d) ? b:

s′ = enc(DF (f(c · d) ? b, g+, ġ),msg)

= enc(f(DF (c · d, g+, ġ)) ? a,msg)

= enc(f(DF (ġ({c, d}), g+, ġ)) ? a,msg)

Here we again select either c or d, depending on the definition of ġ:

enc(f(DF (c, g+, ġ)) ? a,msg) = enc(f(c) ? a,msg)

enc(f(DF (d, g+, ġ)) ? a,msg) = enc(f(d) ? a,msg)

The obtained terms do not contain the addition operation. �

Now we need to show that if a protocol TP does not contain the operations + and ·, then there
is no difference whether the intruder uses his additional power from TE] or not. The main idea is
to show that if the intruder just stores addends and factors and does not apply +, · to them (this
will be modeled by function DF ), he can still derive a if he could do it before.

First of all, we state an auxiliary lemma that we need to prove in order to get the promised
result.
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Lemma 12. Let R ≡ r1, . . . , rk → r be a rule in the theory TP ∪TE. Let a1, . . . , ak → a be a ground

instance of this rule. Let (g+, ġ) ∈ Sel+·. Then DF (a1, g
+, ġ), . . . ,DF (ak, g

+, ġ)→ DF (a, g+, ġ) is
an instance of R.

Proof:
Let x1, . . . , xj be the variables occurring in the rule R. Let θ be the substitution of x1, . . . , xj with

ground terms, such that riθ ∼] ai and rθ ∼] a. Define the substitution θ̃ by xiθ̃ = DF (xiθ, g
+, ġ).

One can easily verify that riθ̃ = DF (ai, g
+, ġ) and rθ̃ = DF (a, g+, ġ).

�
We can now state a lemma that immediately implies the result we promised to show in this

section.

Lemma 13. If P is a protocol that does not contain the operations + and ·, then for any reduced

atom a and any pair of functions (g+, ġ) ∈ Sel+·:

TP ∪ TE] `∼] a =⇒ TP ∪ TE `∼ DF (a, g+, ġ) .

Proof:
The lemma is proved by induction over the derivation length.
We need to show how to obtain the derivation modulo ∼ for each DF (a, g+, ġ).
First of all, note that according to the definition of DF a term that contains neither + nor · will

not be modified by DF .
Let π = b1, . . . , bl, be a derivation for TP ∪ TE] `∼] a where a ∼] bl. The proof is based on

induction over the length of π.

• Base: If l = 0, there is no derivation. Since TP does not contain operations + and · and the
rules of TE] have not been used yet, it means that a contains neither + nor ·. By definition of
DF , we have DF (a, g+, ġ) = a.

• Step: Let π<l = b1, . . . , bl−1. By the assumption of the lemma, we know that a ∼] bl can
be derived from π<l by applying a clause from TP ∪ TE] . We need to show that for any

(g+, ġ) ∈ Sel+·, the term DF (a, g+, ġ) can be derived from π<l modulo ∼ using TP ∪ TE .

1. If the rule used to obtain a is in TE] , but not in TE , then it is one of the following cases:

(a) Suppose that a is obtained using the rule

I(x), I(y)→ I(x+ y) .

In this case, a = I(t) is equivalent to I(r+s) for some terms I(r) and I(s) that have been
derived from π<l. It is possible that the head operation of r or s is +. Let r = r1+. . .+rkr

and s = s1 + . . .+ sks
, where kr, ks ≥ 1 and the head operations of r1, . . . , rkr

, s1, . . . , sks

are not +.

By the definition of DF , the term DF (t, g+, ġ) is equal to some DF (ri, g
+, ġ) or DF (sj , g

+, ġ),
depending on the value of g+({r1, . . . , rkr , s1, . . . , sks}). Without lessening the generality,

assume that for some i, the function g+ selects ri from that set. Define the pair (g̃+, ˜̇g)

by initially making them equal to (g+, ġ) and then defining g̃+({r1, . . . , rkr
}) = ri. Also

change other points of g̃+ and ˜̇g, such that the conditions put on the pairs of functions in

Sel+· continue to hold. It is obvious that (g̃+, ˜̇g) can be defined in this manner. It is also

obvious that DF (r1 + · · ·+ rkr
+ s1 + · · ·+ sks

, g+, ġ) = DF (r1 + · · ·+ rkr
, g̃+, ˜̇g) because

at all other points where they are going to be applied, (g+, ġ) and (g̃+, ˜̇g) are equal.

By induction hypothesis, the atom I(DF (r, g̃+, ˜̇g)) can be derived from TP ∪ TE modulo
∼, concluding the induction step.

34



(b) Suppose that a is obtained using the rule

I(x), I(y)→ I(x · y) .

The proof is analogous, only instead of the function g+ we use the function ġ.

2. Now suppose a is obtained using a rule R ≡ r1, . . . , rk → r from TP ∪ TE .

In the derivation of a, we use the instance of this rule a1, . . . , ak → a, where ai are atoms derived
from π<l. Let A := {a1, . . . , ak}. By induction hypothesis, DF (ai, g

+, ġ) for any ai ∈ A can
be derived from TP ∪ TE . By Lemma 12 we can infer DF (a, g+, ġ) from DF (A, g+, ġ) :=
{DF (ai, g

+, ġ)|ai ∈ A}. �

Additionally, we need to note that for any atom a that does not contain the operations + and ·
we have DF (a, g+, ġ) = a. In this way we achieve the promised result.

It is quite obvious that the converse of this lemma does not hold. If the theory TP contains the
atoms I(h(a)) and I(h(b)) for some operation h, and no means to construct other terms of the form
h(. . .), then the atom I(h(a+ b)) cannot be derived from TP ∪ TE] .

11 Conclusions

We have presented an equational theory for bilinear pairings in the symbolic model of cryptography
and shown how to reduce Horn theory derivations modulo that equational theory to almost syntactic
derivations. We have tested our reduction as a preprocessor for the cryptographic protocol analyzer
ProVerif on several pairing-based protocols, affirmed the security of some of them and discovered
known attacks for others.

A notable omission in our signature and equational theory is the absence of the treatment of
addition (in G1) or multiplication (in GT ). While the same omission is also present in existing
treatments Diffie-Hellman exponentiation, it is more pronounced in our case, because a sizable
number of protocols (e.g. [Sma02]) make use of it. While the full treatment of addition is most likely
intractable, we may try to adapt some ideas of Kremer and Mazaré [KM10] who allow multiplication
in GT , but no addition in G1. A different possible line of future work would be the extension of
Mödersheim’s results [Möd11] to pairings in order to make verification more efficient.

Our results hold in the symbolic model of cryptography. If one considers a computational seman-
tics of the processes, interpreting ? as the group operation in G1, ↑ as the group operation in GT

and e as an actual pairing operation from G1 to GT , then one may naturally ask to which extent the
secrecy and authenticity properties of the protocol in the symbolic model imply the corresponding
properties in the computational model. In the presence of equational theories, it is tricky to relate
the properties of symbolic and computational models, even if one considers only passive adversaries
[BCK09, BMS06]. The results of Kremer and Mazaré [KM10] sidestep these issues, but put many
restrictions on the use of the results of pairings (and also consider only the passive adversary). Still,
one would expect that at least for authenticity properties, a result mimicking [CW05] should be
possible.
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