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Abstract

This report describes submission to the LDTA 2011 tool challenge,
created with Simpl DSL tool.

1 Introduction

In 2011, the Workshop on Language Descriptions, Tools and Applications
(LDTA) issued a tool challenge [LDT11] that aimed to compare different
language tools. The participants completed the same tasks and reported on
the results. This technical report describes the tool challenge entry that was
implemented using the Simpl DSL toolkit [FP11].

1.1 Description of the Task

Detailed description of the implementation task can be found at the chal-
lenge home page [LDT11]. In short, the task was to create an implementa-
tion of Oberon0 as described by Niklaus Wirth in his compiler construction
book [Wir96] (see Section 1.2 for notes on the Oberon0 language). The task
was divided into several modules, according to language levels and imple-
mented functionality. The reason for this was that one of the goals of the
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challenge was to see if the language tools can produce modular implementa-
tions that support language evolution.
Table 1 lists the language levels and table 2 lists the functional tasks. To tie
the two aspects together, a set of implementation artifacts (see table 3 for
list) was defined. Each artifact represented a module that was implemented
based on previous modules and that could be run separately.

Table 1: Language levels used in task description

Level Description
L1 Oberon0 with primitive types, simple expressions,

and assignment statements
L2 L1 with Pascal-style for loop and case statement
L3 L2 with support for procedures
L4 L3 with support for arrays and records

Table 2: Functional tasks

Task Description
T1 Parsing and pretty-printing the Oberon0 program
T2 Name analysis – binding the name uses to their

declarations and reporting the errors
T3 Type analysis – checking type correctness of the

program and reporting the errors
T4 Source-to-source transformation – lifting the nested

procedures to top level and performing other
transformations, such as expressing complex
language constructs in terms of simpler ones

T5 C code generation – translating the Oberon0
program to ANSI C

1.2 Notes on the Oberon0 Language

The task language for the challenge was Oberon0, a simplified version of the
Oberon language described in Niklaus Wirth’s book “Compiler Construc-
tion” [Wir96]. In addition, language level L2 amended the basic Oberon0
with for and case constructs taken from the main Oberon language [Wir88].
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Table 3: The challenge artifacts

Artifact Language Tasks Comments
A1 L2 T1-2 Core language with pretty-printing

and name analysis
A2a L3 T1-2 A1 with added support for procedures
A2b L2 T1-3 A1 with type checking
A3 L3 T1-3 Composition of A2a and A2b
A4 L4 T1-5 A3 with support for arrays and

records, source-to-source
transformation, and code generation

Oberon0 is a simple imperative language belonging to Modula-2 and Pascal
family. It contains all the basic building blocks, such as integer, boolean,
array and record types; variables; expressions; assignment, conditional and
iteration statements; and procedures that support both by-value and by-
reference parameter passing. Figure 1 shows an example Oberon0 program.

During the challenge, it was discovered that the book’s description of Oberon0
and the reference implementation are incomplete and/or contradictory. The
reference implementation imposed constraints that were not present in lan-
guage description. For example, boolean constants can only be valued with
constants TRUE or FALSE. It is not possible to use other boolean expres-
sions as constant values. Additionally, the nested procedures did not use
nested scope as initially expected, but instead only variables defined inside
procedure were visible inside it. This also reduced the value of the proce-
dure lifting task as there was no need to handle variables that are defined
in outer scope. In the end, some open issues in the language definition were
were simply decided by the participants. This definition was encoded in test
suite consisting of 355 Oberon0 programs and the expected results. The test
suite contained both positive and negative (e.g., parse errors, type errors)
examples.

2 Simpl DSL Toolkit

Simpl is a toolkit mainly targeted at implementing domain-specific languages
(DSLs) in an enterprise setting. The aim is to use DSLs in systems that are
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MODULE Factorial;

VAR
n, fact: INTEGER;

PROCEDURE Fact(n: INTEGER; VAR result: INTEGER);
VAR

i: INTEGER:
BEGIN

result := 1;
FOR i := 1 TO n DO

result := result * i
END

END Fact;

BEGIN
Read(n);
Fact(n, fact);
Write(fact);
WriteLn

END Factorial.

Figure 1: Example Oberon0 program

built in a popular language (Java, C#) using a framework that dictates
the overall architecture of a system and where the DSL program is just
one module in the large system. In particular, the ability to embed DSL
programs and DSL implementations into a larger system is one of the main
design goals of Simpl. For a more thorough analysis of technical requirements
for embeddable DSL tools and review of existing DSL tools based on these
requirements, see [Fre10].

In order to be embeddable, a DSL toolkit should consist of two separate parts.
One, “non-visual” part contains the core of the DSL implementation: parser,
program checker, code generator, etc. that can be embedded into a larger
system. The other, “visual” part contains (possibly integrated) environment
for editing and managing DSL programs. Secondly, the non-visual part of the
DSL implementation should not make any assumptions on how the system is
implemented. In particular, the non-visual part must not have dependencies
on the visual part and must not assume that the DSL implementation is a
top-level program or function in the system.
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Simpl is designed to follow these non-functional requirements while providing
maximal usability. The current design philosophy of Simpl is to reuse existing
tools to minimize the amount of new tools and programming languages the
developer must learn. For example, instead of developing a new language
for expressing program transformations, Simpl relies on the programming
language Scala. In addition to Scala, Simpl builds on the ANTLR parser
generator [PQ94], Eclipse IDE platform, and IDE Meta-Tooling Platform
(IMP) [CFS07]. The main rationale for selecting these particular tools is that
they are mature, have good quality and are distributed under open source
licenses. Tools that make up the non-visual part of the DSL implementation
have few dependencies and can easily be embedded (and can coexist with
other DSL tools). From the integration point of view, the main restricting
choice is using Eclipse as the IDE platform – if the DSL user wants to use
IDE developed via Simpl, she must install Eclipse. In this case, we chose the
most popular platform.

Simpl

Language Implementation

Grammar
Description

Parser

AST Classes
Program

Transformations

Language
IDE

Code
Generator

Parser
Generator

Simpl
Libraries

IDE
Framework

Depends, uses

Generated from

Figure 2: Architecture of a DSL implemented with Simpl. Components with
captions in italic are automatically generated.

For the DSL developer, Simpl provides a parser generator, libraries for pretty-
printing and code generation, and an IDE framework. Figure 2 shows the
main components of a DSL implementation created with Simpl. The first
part is the non-visual language implementation that can be embedded into a
bigger system. Development of a new DSL starts with grammar description
that specifies both the context-free grammar of the DSL and the classes for
representing the abstract syntax tree (AST) of a DSL program. The Simpl
parser generator takes the grammar description as input and produces a
parser and the AST classes. The (optional) program transformation compo-
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nent takes as input an AST and checks or transforms it. The code generator
converts the preprocessed AST to text. The second part of the DSL imple-
mentation is the language IDE. It builds on the Simpl IDE framework and
the non-visual part of the language implementation.

3 Scanning and Parsing

In Simpl, the grammar description is used to generate both the parser and
Scala case classes that are used to express the abstract syntax tree (AST)
of the DSL program. By default, the AST class and attribute names are
derived from rule names. The developer can add annotations in the context-
free grammar to modify the generated AST classes. As an example, Figure
3 shows set of rules for parsing the Oberon0 CASE statement. Identifier
before an equals sign names the attribute in the case class that is used for
representing the AST of the child. Figure 4 shows the Scala case classes that
were generated from the example rules. The attribute types are automatically
derived from the types of called rules. If an attribute refers to rule(s) that
can be called multiple times, then the type of the attribute will be a list.
For example the clauses attribute in the CaseStatement class is typed as list
because there can be more than one clause in one case statement. Using
the same attribute name several times in a rule is allowed if the rule calls
assigned to this attribute have compatible types.

CaseStatement:
"CASE" expr=CompExpr "OF"

clauses=CaseClause ("|" clauses=CaseClause)*
("ELSE" elseClause=StatementSequence)?

"END";

CaseClause:
items=CaseConstant ("," items=CaseConstant)* ":"

stmt=StatementSequence;

CaseConstant: begin=SimpleExpr (".." end=SimpleExpr)?;

Figure 3: Grammar rules for parsing the Oberon0 CASE statement.
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case class CaseStatement(
var expr: Expression,
var clauses: List[CaseClause],
var elseClause: StatementSequence) extends Statement

case class CaseClause(
var items: List[CaseConstant],
var stmt: StatementSequence)

case class CaseConstant(
var begin: Expression,
var end: Expression)

Figure 4: AST classes for expressing the Oberon0 CASE statement.

Simpl allows the developer to modify the AST nodes by using return ex-
pressions. Return expressions can specify the return type of a rule and/or a
Scala expression that is used to compute the actual AST node returned by
the rule. In the Oberon0 implementation, return expressions were used to
make the AST more regular and uniform. Figure 5 shows two examples. The
first rule ensures that the use of parentheses does not introduce additional
wrapping of the AST nodes. The second rule makes all the unary expressions
use a common AST class Unary(operation, expression) so that they can be
uniformly treated in the processing code.

ParenExpr returns Expression {expr}: "(" expr=CompExpr ")";

NotExpr
returns Expression {Unary(UnaryOp.Not, expr)}
: "~" expr=Factor;

Figure 5: Example rules using return expressions. Rule ParenExpr does not
wrap the inner AST node. Rule NotExpr returns a manually created AST
class.

In addition to return expressions, Simpl supports adding attributes and meth-
ods to AST classes. For example, the code for parsing identifiers is shown in
Figure 6. This code modifies the normally generated Id class by adding at-
tributes for storing reference to the definition of this identifier, pre-calculated
constant value if this identifier evaluates to a constant, and information
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whether the identifier is a by-ref procedure parameter. These attributes
are filled out and used during name, type checking and code generation.

terminal Id {
// What does this identifier point to?
var ref: Id = null
// If this is constant, then what is its value?
var constVal: Option[Int] = None
// Used for "VAR" parameters.
var byRef: Boolean = false
def isByRef = byRef || ((ref ne null) && (ref.byRef))

} : (’a’..’z’|’A’..’Z’) (’a’..’z’|’A’..’Z’|’0’..’9’)*;

Figure 6: Rule for parsing identifiers. The generated class Id is amended by
adding properties and methods to it.

4 Name Analysis

Simpl itself has no direct support for name analysis, therefore the name
analysis for the Oberon0 language was written in Scala. The implementation
is quite straightforward: it walks the AST (using depth-first traversal) and
for each identifier fills out its ref attribute (points from identifier, such as
variable reference, to declaration of this identifier. See also Figure 6). During
the walk, we maintain an environment: a mapping from identifier names to
declarations.

5 Type Checking

Like name analysis, type checking was implemented in Scala. Since name
analysis is run before type checking, there is no need to use environments
(mappings from names to types). Instead, the type checker first attaches type
information to all the declared identifiers (variables, constants, procedure
parameters). It then propagates the type information to all expressions and
procedure calls and checks the types of operation arguments and procedure
call parameters. According to the task definition, checking for negative array
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sizes is also part of type checking, and thus the type checker computes values
of all constant expressions and stores the values in the AST.

6 Source-to-Source Transformation

In order to simplify C code generation, the Simpl implementation transforms
Oberon0 programs to simplify Oberon0 language constructs that have no di-
rect equivalent in the C programming language. The first transformation lifts
nested procedures to top level. The second transformation replaces CASE
statements with a sequence of IF statements.

6.1 Procedure Lifting

Procedure lifting uses links created during the name analysis step and per-
forms in-place modifications of the AST. The task is accomplished in three
steps. The first step consists of scanning the AST and locating all the nested
procedures. Figure 7a shows an example Oberon0 program with the inner
procedure highlighted. In the second step, all the nested procedures are
lifted to top level. The new name is formed by concatenating names of outer
and inner procedures. If the concatenation does not produce unique name,
a number is added to the name. Figure 7b shows the results of this step
with the lifted procedure highlighted. Finally, the AST is scanned and all
identifiers that reference the lifted procedures are renamed to reflect the new
names. Since the name analysis links identifiers to concrete objects (proce-
dures, variable definitions, etc.), renaming of the procedures leaves the ref-
erence information intact. Figure 7c shows the final result with the renamed
identifier highlighted.

6.2 Simplifying CASE Statements

The Oberon0 CASE statement is more powerful than the switch statement
in C as it has support for ranges. In order to simplify code generation, we
transform Oberon0 CASE statements to a series of IF -ELSE statements
(see Figure 8 for an example transformation). For each CASE statement, we
generate new variable for storing the CASE condition. Because the results of
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PROGRAM Foo;
PROCEDURE Bar;

PROCEDURE Baz;
END Baz;

BEGIN
Baz

END Bar;
BEGIN

Bar
END Foo.

(a)

PROGRAM Foo;
PROCEDURE BarBaz;
END BarBaz;

PROCEDURE Bar;
BEGIN

Baz
END Bar;

BEGIN
Bar

END Foo.

(b)

PROGRAM Foo;
PROCEDURE BarBaz;
END BarBaz;

PROCEDURE Bar;
BEGIN

BarBaz
END Bar;

BEGIN
Bar

END Foo.

(c)

Figure 7: Three stages of procedure lifting: locating nested procedures (a),
lifting the procedures (b), and renaming the procedure references (c).

CASE simplification will go straight to C code generation, we can optimize
by not making the generated identifier gen_1 a legal Oberon0 identifier. In
this way we do not have to ensure that it does not clash with any identifiers
in this scope.

CASE foo + bar OF
1 : Write(1)

| 3..4 : Write(34)
ELSE

Write(-1)
END;

(a)

VAR gen_1: INTEGER;
...
gen_1 := foo + bar;
IF gen_1 = 1 THEN

Write(1)
ELSE IF gen_1 >= 3 AND gen_1 <= 4 THEN

Write(34)
ELSE

Write(-1)
END;

(b)

Figure 8: Oberon0 CASE statement before (a) and after transformation (b).
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7 Code Generation

When implementing C code generation, we decided to decouple translating
Oberon0 language constructs to C from outputting properly formatted C
code. This allowed us to concisely express the transformation between the
Oberon0 AST to a C AST without concerning ourselves with pretty-printing
of C code. First, we created Scala case classes for expressing the abstract
syntax of C. Next, the Oberon0 AST was transformed to a C AST. Because
the more complicated Oberon0 constructs were previously simplified (see the
previous subsection), the translation was quite straightforward. In the last
step, the C AST was transformed to a string using the pretty-printing library
included in Simpl (it is based on Philip Wadler’s Haskell library [Wad98]).

Figure 9 illustrates the code generation process with an example procedure
for calculating factorials. Since Oberon0 has no functions, the result is re-
turned in a VAR parameter. Whereas AST of the Oberon0 FOR statement
(see Figure 9b) corresponds to Oberon0 syntax, the translated for statement
(see Figure 9c) corresponds to C syntax (initialization and increment are
statements, guard is an arbitrary expression). During the translation, all
the identifiers are prefixed with underscore to prevent clashes with existing
keywords.

8 Overview of the Results

8.1 Code Sizes

The Oberon0 implementation is composed of five different artifacts (A1, A2a,
A2b, A3, A4). Each artifact either adds additional constructs to the language
or adds additional features, such as type checking, procedure lifting or code
generation. Table 4 shows the code sizes for the various artifacts and tasks.
Code size is measured in lines of code; empty lines and comments were not
counted. For counting lines of code, we used the program cloc1 that was
extended with support for Simpl grammar files. In the table, each row rep-
resents the size of a particular component:

1see http://cloc.sourceforge.net/
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PROCEDURE Fact(
n: INTEGER;
VAR Res: INTEGER);

VAR i: INTEGER;
BEGIN
Res := 1;
FOR i := 1 TO n DO
Res := Res * i;

END
END Fact;

(a) Oberon0 source before code
generation.

ForStatement(
Id(i),
NumberLit(1),
Id(n),
null,
StatementSequence(
List(
Assignment(
Id(Res),
Binary(*,Id(Res),Id(i))))))

(b) Oberon0 AST corrensponding to
the highlighted FOR statement.

For(
Assign(
Id(_i,false),
NumberLit(1)),
Binary(
<=,
Id(_i,false),
Id(_n,false)),
Inc(_i,NumberLit(1)),
Sequence(
List(
Assign(
Id(_Res,true),
Binary(

*,
Id(_Res,true),
Id(_i,false))))))

(c) FOR statement translated to
AST representing a C program.

void _Fact(int _n,int *_Res) {
int _i;
(*_Res) = 1;
for (_i = 1; _i <= _n; _i += 1)

{
(*_Res) = (*_Res) * _i;

}
}

(d) C source generated from the
function in sub-figure (a). The

highlighted for statement
corresponds to AST from sub-figure

(c).

Figure 9: Code generation example: translating the procedure from Oberon0
to C.
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• Parse – Simpl grammar file and any additional Scala code (such as cus-
tom classes for expressing binary operators and checks that numerical
constants fit into 32 bits);

• Name – code for name analysis;

• Type – code for type checking and and constant inlining2;

• Lift – code for lifting nested procedures to top level;

• Gen – code generator, including simplification of CASE statements,
transforming Oberon0 AST to C AST, and pretty-printing C AST;

• Pretty – pretty-printing of Oberon0 code;

• Other – other supporting code, such as error handling, main functions,
etc.

Table 4: Code sizes for different artifacts and components. Sizes are ex-
pressed as non-blank, non-comment lines of code.

Artifact Parse Name Type Lift Gen Pretty Other Total
A1 193 181 44 418
A2a 38 135 16 189
A2b 301 17 318
A3 92 17 109
A4 48 44 89 72 463 198 39 953

Total 279 360 482 72 463 198 133 1987

Except for A1, the artifacts are not self-contained in the terms of code. The
artifacts reuse grammar files and Scala code. Figure 10 shows the depen-
dency graph between the artifacts. The grammar files are reused by using
include directives. For example, L3 grammar includes L2 grammar and over-
writes production rules for declarations (by adding procedure declarations)
and statements (by adding procedure calls). Services written in Scala, such
as name analysis and type checking, were extended using inheritance. In
general, the extension consisted in overriding processStatement, processExpr
etc. methods and adding new case clauses to process additional kinds of
statements or expressions.

2Constant inlining is used to check for negative array sizes.
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Figure 10: Dependencies between artifacts in the Oberon0 implementation.

In addition to artifacts mandated in the challenge, we used Simpl to im-
plement a basic IDE for the Oberon0 language (see Figure 11 for example
screenshot). The IDE provided syntax highlighting, error highlighting, out-
line view, hyperlinking, code folding, and occurrence marking. The total
code size for the IDE module was 106 lines, some of which was filler. Most
of the Oberon0-related functionality was encapsulated in a 33-line class that
contained IDE services. The IDE code was based on the existing code checker
(artifact A4) and did not involve references to Eclipse APIs.

Figure 11: Screenshot of Oberon0 IDE
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8.2 Observations

First, it should be noted that Simpl is not directly targeted at creating
full-featured implementations of typical programming languages. Currently
the focus is on domain-specific languages and quite simple code generators.
Therefore, Simpl provided direct support for a subset of all the tasks con-
tained in this challenge. In particular, we used Simpl to create a parser and
class model for expressing AST of Oberon0 programs, and for pretty-printing
the AST. Although not included in the challenge, we also used Simpl to create
an IDE for the Oberon0 language.

Simpl currently uses ANTLR as a parser backend and therefore inherits the
use of the LL(k) parsing algorithm. The LL(k) algorithm has difficulties
expressing left-recursive grammar rules and thus parsing left-associative op-
erators. This limitation means that operator precedence must be encoded
in grammar rules3 and it also results in cumbersome AST. The cumbersome
AST can be worked around by using return expressions that reshape the AST
nodes returned by the grammar rules. In the future, we plan to use a parser
backend that does not have this restriction.

The Simpl grammar system is not specifically targeted at implementing mod-
ular grammars. It only supports simple inclusion mechanism with the ability
to overwrite rules in the included grammars. In the challenge, this introduced
minor code duplication. For example, in order to introduce a new kind of
statement, one has to repeat the Statement rule with all the other preex-
isting statements. Overall, the modularity features were adequate for the
current situation where we were dealing with language levels with increasing
complexity and each following level only extended the language. However,
for more complicated situations the current modularity features likely would
not have sufficed.

9 Conclusion

In general, implementing the challenge with Simpl was a straightforward ex-
ercise. The grammar description was legible and the automatically generated
AST classes worked well with processing code written in Scala. Simpl does

3In this challenge the grammar was already specified in this form.
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not have support for implementing program checkers and program transfor-
mations, therefore these functions were written in straight Scala. In addition
to the required tasks, we implemented an IDE for Oberon0. The IDE was
based on the code of the challenge tasks and required a minimal amount of
effort to create.
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