
CYBERNETICA
Institute of Information Security

A general mechanism for
implementing secure

operations on secret shared
data

Sander Siim, Dan Bogdanov

T-4-21 / 2014

Copyright c©2014
Sander Siim1,2, Dan Bogdanov1.
1 Cybernetica, Institute of Information Security,
2 University of Tartu, Institute of Computer Science,

This research was, in part, funded by the U.S. Gov-
ernment. The views and conclusions contained in this
document are those of the authors and should not be
interpreted as representing the official policies, either
expressed or implied, of the U.S. Government. Dis-
tribution Statement A (Approved for Public Release,
Distribution Unlimited).

All rights reserved. The reproduction of all or part of
this work is permitted for educational or research use
on condition that this copyright notice is included in
any copy.

Cybernetica research reports are available online at
http://www.cyber.ee/

Mailing address:
Cybernetica AS
Mäealuse 2/1
12618 Tallinn
Estonia

2

http://www.cyber.ee/

A general mechanism for implementing secure

operations on secret shared data

Sander Siim, Dan Bogdanov

18th March 2014

Abstract

This report describes the prototype implementation of a generic mech-
anism for creating secure multiparty computation (SMC) protocols that
work on secret-shared data. The standard method for designing effi-
cient protocols for secure computation based on secret sharing includes
the clever use of algebraic properties to enable fast implementations on
current hardware. However, these kinds of protocols are often less flexi-
ble with regard to bit level access. On the other hand, Yao-style garbled
boolean circuits are very flexible, but can be less efficient. The goal of
this work is to balance the low computational complexity of secret shar-
ing with the high flexibility of garbled boolean circuits. We will build a
hybrid protocol that enables garbled boolean circuit evaluation on bitwise
secret shared data. The report also describes an implementation of this
capability within the Sharemind 3 runtime and its initial benchmarking
results.

3

Contents

1 Design of a hybrid protocol 5

1.1 Foundations . 5

1.1.1 Protocols based on secret sharing 5

1.1.2 Protocols based on garbled boolean circuits 6

1.2 The hybrid protocol . 7

1.3 Parts of the hybrid protocol . 9

1.3.1 Oblivious transfer . 9

1.3.2 Garbling . 10

1.4 Security proof . 13

1.5 Simulatability of Oblivious Transfer 14

1.5.1 Simulatability of the Hybrid Protocol 17

2 Implementation details 19

2.1 Using the protocol to implement primitive operations 19

2.2 Circuit setup . 19

2.3 Optimizations . 20

3 Experimental results 22

4

1 Design of a hybrid protocol

1.1 Foundations

1.1.1 Protocols based on secret sharing

Secret sharing is a well-known cryptographic method for distributing a secret
amongst a group of parties [Sha79]. The secret is divided into shares and each
party receives a share of the secret, which appears random to the receiving
party. The goal for any secret sharing scheme is that the secret can only be
reconstructed by combining a sufficiently large subset of the shares. For a k-
out-of-n secret sharing scheme, the secrets are divided into n shares and knowing
any k− 1 shares does not reveal the original secret. Secret sharing schemes can
be used in secure multiparty computation to build protocols that guarantee data
privacy by performing computations on secret-shared data [BOGW88, CCD88].

SMC protocols based on secret sharing require multiple computing parties since
the data is distributed. To ensure data privacy, the computing parties must not
learn the shares of the other parties, otherwise they could reconstruct the secret
shared data. For that end, the protocol performs distributed secure computa-
tions on the shares. The general construction for a SMC protocol using secret
sharing is the following [Bog13]:

1. An input party IP divides its data into n shares

2. IP sends a share to each computing party CPi

3. The computing parties CP1,. . . ,CPn perform secure computations on the
shares

4. The computing parties send the output shares to a result party RP

5. RP receives the shares and reconstructs the actual output

secure
computations

Figure 1: General construction of secret sharing protocols

Such a protocol calculates a specific function f , which is determined by the com-
putations performed in step 3. To build a protocol which calculates a different
function g, different secure computations must be specified. Constructing such

5

protocols is not always straightforward and requires careful manipulation of the
shares to ensure data privacy. For example, constructing a division protocol for
secret-shared integers is quite a challenging task [BNTW12].

1.1.2 Protocols based on garbled boolean circuits

Yao’s garbled boolean circuit protocol is a widely used and provably secure
solution to the two-party secure computation problem [LP04]. It allows secure
function evaluation for two parties, that is to compute a function on their inputs
without revealing one’s inputs to the other.

In Yao’s protocol, the computed function f is presented as a boolean circuit.
A boolean circuit is a set of gates and wires. Wires connect gates and transfer
bit values between them. Each gate has a number of input wires and output
wires. If a gate has n input wires and m output wires, then the gate calculates
a function f : {0, 1}n → {0, 1}m. In practice, mostly 2-to-1 and 1-to-1 gates are
used. The gate calculates the function by receiving the input bits from its input
wires and storing the output to its output wires.

To illustrate Yao’s protocol, let us consider the situation where parties A and
B want to compute some function f on their respective secret inputs a and b.
Both parties want to learn the result f(a, b), but neither wants to disclose his
input to the other party. Let f be presented as a boolean circuit. One party will
take the role of the garbler and the other the evaluator. Let A be the garbler
and B the evaluator.

The essence of Yao’s protocol is that the garbler uses symmetric encryption
to encrypt the truth table values of the circuit’s gates. This process is called
garbling. For each wire the garbler generates two tokens X0, X1 which represent
the bit values of the wire - one token for bit value 0 and one for bit value 1.
However, the token itself does not reveal to which bit it maps to. The circuit can
then be evaluated only if the secret tokens of the input wires that correspond
to the given input bits are known.

The garbled truth tables are then sent to the evaluator along with the input
tokens of the garbler’s input. Oblivious transfer is used to transport the input
tokens corresponding to evaluator’s input to the evaluator, which guarantees
that the garbler does not find out the evaluator’s input. The evaluator can then
evaluate the circuit gate-by-gate without actually learning the garbler’s input,
since during evaluation, the tokens that represent bit values are passed along
wires, not the bit values themselves.

Finally, as the result of the evaluation the evaluator receives f(a, b). In the
semi-honest model, the garbler is also guaranteed to receive the output, as the
evaluator simply sends it to him. Additionally, the output wires’ values can also
be encrypted by the garbler. In that case, the evaluator sends the result of the
evaluation back to the garbler, who can decrypt it to receive the actual output.
Again, in the semi-honest model, the garbler is guaranteed to send the actual
output back to the evaluator.

6

Generate
input tokens

Send input tokens
corresponding to

Receive
input tokens

Input: Input:

Oblivious transfer
of input tokens

corresponding to

Garble circuit
and send to

Receive
garbled circuit

Evaluate circuit
using input tokens

Send result
to

Receive result

Figure 2: General construction of Yao garbled circuit protocols

Using Yao’s protocol, two parties can compute virtually any function in a
privacy-preserving manner, provided that the boolean circuit representation of
the required function is known. Building efficient implementations of Yao’s pro-
tocol has been a significant challenge in the past, but over the past years, many
succesful implementations have emerged [MNPS04, HKS+10, HEKM11, KSS12].

1.2 The hybrid protocol

The goal of this document is to describe a general SMC protocol which allows
secure evaluation of any function on bitwise secret-shared data, meaning that
every bit of the data is shared independently. We will call this the hybrid
protocol, since it combines the efficiency of secret sharing with the robustness

7

of Yao’s garbled circuit approach. Note that in the scope of this document,
we are interested only in security in the semi-honest model, where computing
parties are honest in the sense that they strictly follow the protocol, but curious,
meaning that they will try to use all data available to them to learn as much as
they can.

We will give the description of the protocol in the Sharemind multiparty com-
putation setting. Sharemind uses three computing parties, which run secure
protocols on secret-shared data [Bog13]. Sharemind operates on a 3-out-of-3
secret sharing scheme, which means that in order to reconstruct data which
is shared between the computing parties, all three shares are needed. We will
denote the computing parties as CP1, CP2 and CP3. In the hybrid protocol,
CP1 and CP2 will take the roles of the garbler and evaluator respectively from
the Yao garbled circuit protocol. Since the hybrid protocol operates on secret
shared data, we will use [[b]] = [[b1, b2, . . . , bn]] to denote a bit vector with length
n which is shared between the miners, where [[bi]] represents the i-th shared bit
from the vector. Note that each bit bi is shared individually.

Oblivious transfer protocol

generate

garble
learn

Resharing protocol

evaluate
learn

Figure 3: Hybrid protocol overview

Now, suppose we have a bit vector [[x]] = [[x1, . . . , xn]] shared between the com-
puting parties and we want to compute the result f([[x]]) = [[y]] = [[y1, . . . , ym]],
where f is a function f : {0, 1}n → {0, 1}m. Let us assume that all computing
parties have access to a boolean circuit C which calculates the function f . Since
the garbling process produces a pair of tokens for each wire, we will use Xb

j to

denote the token of the j-th wire corresponding to bit b ∈ {0, 1}. We say Xb
j has

the semantics of b. The high-level description of the hybrid protocol is given as

8

Algorithm 1: Hybrid protocol

Input: Shared bit vector [[x]] = [[x1, . . . , xn]]
Boolean circuit C for the function f : {0, 1}n → {0, 1}m
Output: Shared bit vector [[y]] = [[y1, . . . , ym]] such that [[y]] = f([[x]])
foreach input wire i ∈ {1, . . . , n} do

CP1 generates token pair (X0
i , X

1
i)

The computing parties initiate an oblivious transfer protocol which results in
CP2 receiving {Xx1

1 , . . . , Xxn
n } (the input tokens corresponding to the actual

input bits)
CP1 garbles circuit C and sends the garbled truth tables to CP2

CP2 evaluates garbled C using input tokens {Xx1
1 , . . . , Xxn

n } and receives
output wires’ tokens

{
Xy1
o1 , . . . , X

ym
om

}
The computing parties produce their output shares and reshare the output to
receive [[y]]
return [[y]]

Algorithm 1.

Note, that unlike the original Yao’s garbled circuit protocol where input comes
from both the garbler and evaluator, here the input is secretly shared between
all miners as well as the output. For oblivious transfer between computing par-
ties, the protocol makes use of Sharemind’s secure multiplication and addition
protocols on secret-shared integers to perform an oblivious choice.

Since we do not want any of the computing parties to actually learn the output
of the calculation, the output wires’ values are also encrypted by the garbler,
but the evaluator does not send the result of the evaluation back to the garbler.
Instead, the computing parties will calculate random shares of the output using
a perfectly secure resharing protocol. This will guarantee the perfect security of
our protocol [Bog13].

1.3 Parts of the hybrid protocol

The next sections will cover different parts of the hybrid protocol in detail.
We will also give a proof of the perfect security of our protocol following the
blueprint described in [Bog13], showing that the hybrid protocol is perfectly
simulatable and is followed by a perfectly secure output resharing protocol.

1.3.1 Oblivious transfer

Let us first consider the oblivious transfer of the input tokens. The input to the
protocol is [[x1, . . . , xn]] and the garbler CP1 has generated corresponding input
tokens

{
X0

1 , . . . , X
0
n, X

1
1 , . . . , X

1
n

}
. We now need an oblivious transfer protocol

from CP1 to CP2 which satisfies the following conditions:

1. As the result, CP2 should learn {Xx1
1 , . . . , Xxn

n } and nothing else

9

Algorithm 2: Oblivious transfer of input tokens

Input: CP1 holds the input tokens
{
X0

1 , . . . , X
0
n, X

1
1 , . . . , X

1
n

}
The input bit vector [[x]] = [[x1, . . . , xn]] is shared between all parties
Output: CP2 receives input tokens {Xx1

1 , . . . , Xxn
n }

[[X0]] = [[X0
1 , . . . , X

0
n]] and [[X1]] = [[X1

1 , . . . , X
1
n]] are instantiated as shared

values, with CP1 taking as his shares the actual tokens and CP2, CP3 taking
zero-shares
[[x̂]] = [[1]]− [[x]]
[[Y ′]] = [[X0]] · [[x̂]]
[[Y ′′]] = [[X1]] · [[x]]
[[Y]] = [[Y ′]] + [[Y ′′]]
[[Y]] is declassified to CP2 as CP1 and CP3 send their shares of [[Y]] to CP2

CP2 combines the shares of [[Y]] to get {Xx1
1 , . . . , Xxn

n }
return {Xx1

1 , . . . , Xxn
n }

2. CP1 must not learn {Xx1
1 , . . . , Xxn

n }, i.e, which tokens were transferred to
CP2

3. No computing party can learn the input {x1, . . . , xn}

It can be seen easily that if we had an oblivious choice protocol which follows
conditions 2., 3. and outputs [[Xx1

1 , . . . , Xxn
n]] shared between the computing

parties, then satisfying condition 1. is trivial, since we can extend the oblivious
choice by simply sending all result shares from other computing parties to CP2.
Performing an oblivious choice on secret-shared data however can be easily
implemented using secure multiplication and addition protocols. The resulting
oblivious transfer protocol is described in Algorithm 2.

On lines 2-5, Sharemind’s secure multiplication and addition protocols are used
to perform an oblivious choice. The calculations can be summarized as [[Y]] =
[[X0]] · ([[1]]− [[x]]) + [[X1]] · [[x]] , but for clarity, separate protocol calls are written
on different lines. As the result, [[Y]] contains the necessary tokens which need
to be transferred to CP2. Then on line 6, the shares of [[Y]] are sent to CP2 who
can combine them to receive the actual input tokens. Note that the tokens Xi

are bit strings of length k. Although Sharemind’s multiplication and addition
are defined on elements of a ring Z2n , we can decode the tokens as an array
of Z2n elements, and extend [[x]] and [[x̂]] to match the extended length of the
tokens.

We will prove in Section 1.5 that the oblivious transfer protocol described in
Algorithm 2 is perfectly simulatable.

1.3.2 Garbling

After the oblivious transfer of the input tokens to the evaluator, the hybrid
protocol is very similar to a standard Yao garbled circuit protocol and can be

10

implemented using various garbling schemes and circuit formats.

Our implementation uses the garbling scheme GaXR presented by Bellare et
al. [BHKR13], which is based on modeling fixed-key AES as a random permuta-
tion. Bellare et al.’s garbling scheme is one of the most efficient garbling schemes
to date and takes full advantage of hardware with AES-NI support. Also, the
chosen scheme is compatible with the well-known free-XOR [KS08] and garbled
row reduction [PSSW09] optimizations. For encryption, we chose A4 over other
alternatives presented in the paper since it helps reduce network communica-
tion, which we expected to be a performance bottleneck. Note that this garbling
scheme is defined for a specific circuit construction. The circuit must consist
of only 2-to-1 gates with arbitrary fan-out and functionality. Each non-input
wire must be an outgoing wire of a gate. Circuit’s output wires cannot be input
wires or inputs to gates. All input wires and output wires are unique and no
wire can twice feed a gate.

Following the notation of [BHKR13] each circuit C can be described as a tu-
ple (n,m, q,A,B,G), where n is the number of input wires, m the number
of output wires and q the number of gates in C. Then Inputs = [1, . . . , n],
Wires = [1, . . . , n + q], OutputWires = [n + q − m + 1, . . . , n + q] and Gates
= [n+ 1, . . . , n+ q]. A and B are functions Gates → Wires\InputWires which
respectively identify the first and second input wire of any gate. G is a function
Gates ×{0, 1}2 → {0, 1} which determines the functionality of each gate. We
have presented detailed algorithms of the whole protocol for each computing
party in Figure 4.

For each input wire i ∈ Inputs, the garbler CP1 generates a token pair (X0
i , X

1
i)

with X0
i and X1

i having the semantics of 0 and 1 respectively. We will call the
last bit of a wire token it’s value bit, since the evaluator uses it to choose which
row in the garbled truth table to decrypt. However, to hide the true semantics
of the tokens from the evaluator, each token’s value bit is masked with a random

bit pi
$←− {0, 1}, which is called a permutation bit. We will denote a token Xb

i

with a value bit pi as Xb
i |pi. Finally, this results in tokens (X0

i |pi, X1
i |pi) for

wire i, with value bits pi and pi respectively.

Since we are using the free-XOR technique, the input tokens are generated using

a global random token R
$←− {0, 1}k−1 ‖ 1, where the last bit of R is always 1.

This guarantees that tokens with different semantics also have different value
bits, as X1

i is generated as X1
i ← X0

i ⊕R.

After the input tokens have been generated, each computing party participates
in the oblivious transfer of the input tokens to CP2. We use OT to denote the
call to the oblivious transfer protocol. Each party inputs their shares of [[x]] to
the OT protocol and CP1 also inputs the generated input tokens. Note that the
OT protocol is run simultaneously on all three computing parties.

After completing the oblivious transfer, CP1 starts garbling the circuit and pro-
duces the encrypted truth tables of all gates, which are saved in P . For each
gate g, the encrypted output corresponding to input tokens with value bits
i, j ∈ {0, 1} is stored in P [g, i, j]. However, XOR-gates are not encrypted, but

11

Algorithm 3: Hybrid protocol view of
CP1

Input: Input shares
x∗1 = [x11, . . . , xn1] and circuit
Cf = (n,m, q,A,B,G)

Output: Shares [y11, . . . , ym1] of [[y]]
such that [[y]] = f([[x]])

R
$←− {0, 1}k−1 ‖ 1

for i←− 1 to n do

pi
$←− {0, 1}

X0
i

$←− {0, 1}k−1 ‖pi, X1
i ←− X0

i ⊕R
OT ([X0

1 , . . . , X
0
n], [X1

1 , . . . , X
1
n], x∗1)

for g ←− n+ 1 to n+ q do
a←− A(g), b←− B(g)
if Gg = XOR then

X0
g ←− X0

a ⊕X0
b , X1

g ←− X0
g ⊕R

else
for i←− 0 to 1, j ←− 0 to 1 do

u←− i⊕ lsb(X0
a)

v ←− j ⊕ lsb(X0
b)

r ←− Gg(u, v)
if i = 0 and j = 0 then

Xr
g ←−

Enc(Xu
a , X

v
b , g, 0

k)
Xr−1
g ←− Xr

g ⊕R
else

P [g, i, j]←−
Enc(Xu

a , X
v
b , g,X

r
g)

Send P to CP2

for i←− 1 to m do
y′i1 ←− lsb(X0

n+q−m+i)
[y11, . . . , ym1]←
Reshare([y′11, . . . , y

′
m1])

return [y11, . . . , ym1]

Algorithm 4: Hybrid protocol view of
CP2

Input: Input shares
x∗2 = [x12, . . . , xn2] and circuit
Cf = (n,m, q,A,B,G)

Output: Shares [y12, . . . , ym2] of [[y]]
such that [[y]] = f([[x]])

[X1, . . . , Xn]←− OT (0k·n, 0k·n, x∗2)
Receive P from CP1

for g ←− n+ 1 to n+ q do
a←− A(g), b←− B(g)
i←− lsb(Xa), j ←− lsb(Xb)
if Gg = XOR then

Xg ←− Xa ⊕Xb

else if i = 0 and j = 0 then
Xg ←− Enc(Xa, Xb, g, 0

k)
else

Xg ←− Dec(Xa, Xb, g, P [g, i, j])
for i←− 1 to m do

y′i2 ←− lsb(Xn+q−m+i)
[y12, . . . , ym2]←
Reshare([y′12, . . . , y

′
m2])

return [y12, . . . , ym2]

Algorithm 5: Hybrid protocol view of
CP3

Input: Input shares
x∗3 = [x13, . . . , xn3]

Output: Shares [y13, . . . , ym3] of [[y]]
such that [[y]] = f([[x]])

OT (0k·n, 0k·n, x∗3)
[y′13, . . . , y

′
m3]←− 0m

[y13, . . . , ym3]←
Reshare([y′13, . . . , y

′
m3])

return [y13, . . . , ym3]

Figure 4: Detailed algorithms of the hybrid protocol for all computing parties.

instead the tokens for a XOR-gate’s output wire are chosen such that the eval-
uator CP2 need only perform a bitwise XOR operation on the two input tokens
to receive the corresponding output token [KS08].

For non-XOR gates, the garbled row reduction technique applies, meaning that

12

the first row of each non-XOR gate’s truth table is not encrypted, but rather,
the gate’s output tokens are chosen such that CP2 can obtain the output token
corresponding to input tokens Xu

a |0 and Xv
b |0 directly from those input to-

kens [PSSW09]. For the remaining three rows of the truth table, CP1 encrypts
the corresponding output tokens using the input wires’ tokens and saves them
in P . lsb(X) denotes taking the least significant bit from X and is used to
extract the value bit from a wire’s token.

After all gates are garbled, CP1 sends P to CP2, who will start evaluating the
circuit gate-by-gate. The encryption scheme used to encrypt the truth tables is
a function Enc : {0, 1}k×{0, 1}k×{0, 1}τ ×{0, 1}k which takes secret tokens A
and B and a tweak T to encrypt X, resulting in a ciphertext Enc(A,B, T,X).
Enc is defined as

Enc(A,B, T,X) = π(K ‖ T)[1:k] ⊕K ⊕X

with
K = 2A⊕ 4B

where X,A,B ∈ {0, 1}k and T ∈ {0, 1}τ . The function π : {0, 1}k+τ →
{0, 1}k+τ is a random permutation. π(K ‖ T)[1:k] denotes taking the first k
bits of the result. In our implementation we use as pseudorandom permutation
a fixed-key AES-128 with k = 80 and τ = 48. The encryption key for AES is
randomly generated and renewed after each circuit evaluation. For the tweak
T , we use the gate’s index encoded as a 48-bit integer. 2A denotes a doubling
function which can be implemented in many different ways providing different
security guarantees [BHKR13]. We chose multiplication over finite field GF (2k)
due to it providing the best security guarantees.

Decryption is symmetric and uses the same function Enc. For a non-XOR gate
g with input wires a and b, the evaluator takes the value bits of the input tokens
Xi
a|pa and Xj

b |pb and decrypts the truth table row P [g, pa, pb].

After CP2 has succesfully evaluated the circuit, the result [[y]] is shared between
CP1 and CP2 as CP2 holds the value bits of the output tokens and CP1 holds
the permutation bits of the output tokens. The XOR of the two provides the
actual result since the value bits represent the semantics of the tokens, but are
masked with the permutation bits.

The protocol ends with a resharing step to share the output securely between
all three computing parties. Reshare denotes the resharing protocol described
in [Bog13].

1.4 Security proof

We have now described the hybrid protocol in detail and will give a proof that
the presented protocol is secure. We will use the security proof framework
of [Bog13]. Our goal is to prove that the hybrid protocol is perfectly secure. To

13

prove perfect security, we will need to show that our protocol is perfectly simu-
latable and ends with a perfectly secure output resharing protocol (see Theorem
5 from [Bog13]).

The security framework of [Bog13] is based on the ideal vs real world paradigm.
The aim is to prove the security of a multiparty computation protocol by showing
that attacks against it in the real world can be transformed into attacks in
the ideal world, which are roughly equivalent in terms of resources used and
probability of success. This is done by constructing a simulator S which can
simulate every real world run of the protocol in the ideal world. Since we are
operating in the semi-honest model, we must prove security against a passive
adversary who does not actively tamper with the defined protocols, but can
corrupt a single computing party to see its inputs and outputs.

We will show for each computing party CPi that there exists an efficient non-
rewinding simulator Si which can simulate all the incoming messages to CPi. We
can prove the existence of such a simulator by showing that all incoming mes-
sages of a computing party are independent from the inputs of the other parties
and that the messages are distributed according to some known distribution.

We will also use Theorem 4 from [Bog13], which states that a protocol consisting
of several perfectly simulatable sub-protocols is also perfectly simulatable if

• The output of each sub-protocol is either the input of another sub-protocol
or the output of the main protocol.

• The data dependency graph of sub-protocols is a directed acyclic graph.

If we can prove the perfect simulatibility of our protocol, then to achieve perfect
security of the whole protocol, we must simply run a perfectly secure output
resharing protocol on the output shares. Intuitively, resharing the output guar-
antees that the output shares are completely independent of the input shares.
We use the standard resharing protocol which is described and proved to be
perfectly secure in [Bog13] (Algorithm 1).

We will not discuss the security of the garbling scheme directly, as this is well
proven by Bellare et al. [BHKR13] who give exact security bounds for the ad-
verserial advantage.

1.5 Simulatability of Oblivious Transfer

Let us first prove that the oblivious tranfer protocol described in Section 1.3.1
is perfectly simulatable. We will divide the oblivious transfer into two parts:

1. The oblivious choice [[Y]] = [[X0]] · ([[1]]− [[x]]) + [[X1]] · [[x]]

2. Declassifying [[Y]] to CP2

Note that the oblivious choice part is implemented by using successive calls to
Sharemind’s secure addition and multiplication protocols. Since addition and

14

multiplication are perfectly simulatable [BNTW12], then the whole oblivious
choice is a perfectly simulatable protocol according to Theorem 4 from [Bog13].
Thus we know that there exists a simulator S1 which can simulate the incoming
messages that are sent during the oblivious choice to any computing party. Since
there is no incoming communication to CP1 and CP3 after the oblivious choice,
then S1 is also the simulator for the whole oblivious transfer protocol for parties
CP1 and CP3.

For CP2 however, we must construct a simulator which can additionally simulate
the shares of [[Y]] sent by CP1 and CP3. Let F1 be the trusted third party who
executes the ideal functionality of the oblivious choice and F2 the trusted third
party for the declassification of [[Y]] to CP2. We can construct a simulator SOT
for the whole oblivious transfer protocol by extending S1. We will construct
SOT in the case where the input contains only one bit x with shares (x1, x2, x3)
which means CP2 must receive a single token Y = Xx with length k. This can
trivially be extended to the case where the input is a bit vector with arbitrary
length. Let A be the adversary corrupting CP2. The simulator construction for
SOT is given in Figure 5.

Figure 5: Simulator construction for oblivious transfer.

First, all computing parties CPi send their input shares xi to F1 who will com-
pute the shares of [[Y]]. The adversary also receives x2, since he sees all incom-
ing messages to CP2. Let tokengen() denote the token generation algorithm
that the garbler uses to generate input tokens (Algorithm 3 lines 1-4). Then
F1 generates input tokens X0, X1 ← tokengen(), combines the input shares

15

x1 + x2 + x3 = x and finally calculates Y = Xx. F1 then divides Y into three
uniformly distributed shares Y1, Y2, Y3 so that Y = Y1 + Y2 + Y3.

The shares Y1 and Y3 are simply forwarded to S2 who will simulate the declas-
sification of [[Y]]. S1 simulates all communication during the oblivious choice to

CP2 and finally sends some Y ∗2 ← {0, 1}
k

to CP2 which simulates Y2.

We need S2 to now simulate the shares Y1 and Y3 to CP2. For this, S2 can
simply replicate the input token generation and oblivious choice performed by
F1. Note that the tokens produced by tokengen() are uniformly distributed.
S2 will do the following:

X0∗ , X1∗ ← tokengen()

x∗
$←− {0, 1}

Y ∗ ← (1− x∗) ·X0∗ + x∗ ·X1∗

Y ∗1
$←− {0, 1}k

Y ∗3 ← Y ∗ − Y ∗1 − Y ∗2

Then Y ∗1 + Y ∗2 + Y ∗3 = Y ∗, which the adversary cannot distinguish from the
actual oblivious choice result Y , since both Y = Xx and Y ∗ = Xx∗

are uniformly
distributed.

We need to show now that the distribution of all simulated messages in the
ideal world coincides with the distribution of messages sent to the adversary in
the real world. Since S1 is a perfect simulator, the messages simulated during
the oblivious choice step are identically distributed in the real world. We need
to additionally show that this also holds for messages Y ∗1 and Y ∗3 . We can see
from above that Y ∗1 and Y ∗3 are uniformly and independently distributed. Let
us show that this is also the case in the real world for Y1 and Y3.

Let us recall how the oblivious choice is calculated for input x and tokensX0, X1:

[[x̂]] = [[1]]− [[x]]

[[Y ′]] = [[X0]] · [[x̂]]

[[Y ′′]] = [[X1]] · [[x]]

[[Y]] = [[Y ′]] + [[Y ′′]]

We can now see, that Y1 = Y ′1 +Y ′′1 and Y3 = Y ′3 +Y ′′3 are sums of shares, which
are the output shares of products [[X0]] · [[x̂]] and [[X1]] · [[x]]. These products
are calculated using the multiplication protocol of Sharemind, which guaran-
tees that the shares of both [[Y ′]] and [[Y ′′]] are uniformly and independently
distributed [Bog13]. This means that the shares of [[Y]] are also uniformly dis-
tributed and pair-wise independent. Therefore, Y1 and Y3 are uniformly and

16

independently distributed and indistinguishable from Y ∗1 and Y ∗3 to the adver-
sary.

Since the messages simulated by SOT are distributed identically to the messages
sent to the adversary in the real world, then SOT is a perfect simulator.

1.5.1 Simulatability of the Hybrid Protocol

We will now show that the hybrid protocol as described in Figure 4 is simu-
latable, ignoring the resharing of the output shares at the end of the protocol.
Since we know that the resharing protocol is perfectly secure, it is sufficient to
show the simulatability of the protocol without the resharing step in order to
prove the perfect security of the whole protocol (Theorem 5 of [Bog13]).

We can see from the detailed algorithm of the whole hybrid protocol on Figure 4
that the only communication that occurs between the computing parties after
the oblivious transfer, is sending the circuit’s garbled tables P to CP2. Since
there is no incoming communication to CP1 and CP3, we need only concern
ourselves with the incoming view of CP2 and must construct a simulator which
can simulate the garbled truth tables P .

Note that P is uniquely determined by the circuit C which is being evaluated
and the generated input tokens. Therefore, P is computationally independent
of the protocol’s input (x1, x2, x3), which means that it is trivial to simulate
the garbled tables P by simply letting a simulator run Algorithm 3 without the
oblivious transfer. However, for perfect simulatability of the whole protocol, we
must ensure that we construct the simulator such that the joint distribution of
all simulated messages is identical to that in the real world.

For this, we will extend our previous simulator construction with an additional
simulator S3, which will simulate the garbled tables. Let F3 be the trusted third
party who produces the garbled truth tables according to the generated input
tokens. The extended simulator construction is presented in Figure 6.

The idea is to simulate the garbled tables by letting the simulator S3 generate
them using the exact same algorithm that the garbler uses in the real world,
but using the input tokens generated by S2. Since S2 generates the tokens
X∗0 , X

∗
1 using the same algorithm as F1, then the distribution of the tokens is

identical. From this, it follows that since the garbling process itself is completely
deterministic given fixed input tokens, then naturally the garbled truth tables
P ∗ produced by S3 will be identically distributed as P in the real world. Also,
the evaluator will be able to evaluate the circuit using Y ∗ and P ∗ to receive
a valid result, which corresponds to the random input x∗ generated by S2.
Therefore, the constructed simulator SH is sufficient to prove the simulatability
of the whole hybrid protocol and by using the resharing protocol in the end, we
can extend simulatability to perfect security.

Now, the only concern left for security is that the adversary should not be able
to deduce anything from the garbled tables about the wire tokens which are not
explicitly available to CP2 or the inputs of the other parties. This means that

17

Figure 6: Simulator construction for the whole hybrid protocol.

the evaluator should not be able to decrypt rows of the garbled truth tables for
which he does not possess the tokens for, or learn something about the semantics
of the wire tokens available to him. These kinds of possible vulnerabilities are
direct attacks against the garbling scheme used and are out of the scope of this
document. For the garbling scheme used in our protocol, a thorough security
analysis for these kinds of vulnerabilites and the bounds for the adverserial
advantage are presented in [BHKR13].

18

2 Implementation details

2.1 Using the protocol to implement primitive operations

Our goal is to use the hybrid protocol in Sharemind to implement a range of
composable primitive operations. Current Sharemind protocols are designed to
operate on elements of a ring Z2n [BNTW12], but such protocols are not well-
suited for robust bit level manipulation over data types with arbitrary bit-width.
The hybrid protocol is much better suited for implementing such operations,
since we have designed it to operate on bitwise secret shared boolean vectors
with arbitrary length depending on the circuit used.

Because the hybrid protocol is universally composable, it can be used together
with other Sharemind protocols to provide a versatile set of available secure
operations to be used in Sharemind applications. The output of one circuit can
be used as the input to another circuit or even a different Sharemind protocol.
The advantage of this approach is that we can support a wide range of possible
secure calculations without having to generate circuits on the fly.

2.2 Circuit setup

Since the hybrid protocol does not generate circuits itself, it requires a circuit
description in some suitable format for each primitive that needs to be imple-
mented. Currently we have used circuits from Stefan Tillich and Nigel Smart
from the University of Bristol [TS13] and Kreuter et al. [KSS12] for bench-
marking our protocol. Also, we have experimented with the new PCF circuit
compiler and interpreter [KMSB13] to generate custom circuits from C pro-
grams and evaluate them using our hybrid protocol. In all cases, the circuits
are stored as individual files on the Sharemind computing party servers. The
protocol takes the name of the circuit as an input argument and parses the
corresponding circuit file to compute the result. Both the garbler and evaluator
parse the circuit exactly the same way since we are not required to hide the func-
tion that is evaluated, only the input and output data along with intermediary
computation results.

Tillich and Smart’s circuits are presented in a straight-forward format which lists
all gates in the circuit along with their input and output wires in a topological
order. For these circuits, we wrote our own simple circuit parser which reads the
whole circuit structure into memory once before evaluation. Since our chosen
garbling scheme is not suitable for garbling 1-to-1 gates, our parser optimizes
out the logical inverse gates from these circuits. This is achieved by modifying
the truth tables of the gates which have inputs originating from an inverse
gate. However, since we do not want to lose XOR gates from the circuit, we
do not modify their truth tables in case of an inverted input, but change the
truth tables of successive non-XOR gates instead. Since evaluating the circuit
requires no extra information from the circuit file, the parsing can be done
in an offline phase, which reduces the time spent for garbling and evaluating.

19

However, keeping the whole circuit directly in memory consumes large amounts
of memory, which makes this method impractical for very large circuits.

Kreuter et al. were kind enough to provide us with a parser for their circuits,
which we used as basis in our protocol. Their circuits are presented in a compact
binary format. The parser does not read the whole circuit structure into memory
at once, but provides an interface which emits the circuit’s gates one-by-one.
At any time, only a working set of the circuit’s wires are kept in memory.
This method scales much better with larger circuits, but introduces a slight
performance drawback, since circuits need to be parsed again for each successive
evaluation, increasing the time spent for garbling and evaluating.

We also integrated the PCF interpreter with our hybrid protocol. The C imple-
mentation of the PCF interpreter can be used as an external library and provides
a circuit parsing black box to be used with any secure computation system to
handle parsing and evaluating circuits compiled with the PCF compiler. It pro-
vides a simple interface which emits circuit gates similarly to Kreuter et al.’s
circuit parser. The reading and writing of data to circuit wires is handled via
customly definable callbacks, giving the opportunity to use any desired garbling
scheme to securely evaluate the circuit.

2.3 Optimizations

We have implemented some standard optimizations for the garbling and eval-
uating of circuits in the hybrid protocol. As discussed in Section 1.3.2, the
garbling scheme we use incorporates the free-XOR [KS08] and garbled row re-
duction [PSSW09] optimizations.

The free-XOR technique removes the need to garble XOR-gates by choosing the
wire tokens in a clever way. Namely, for a XOR-gate, the tokens for the gate’s
output wire are chosen such that the bitwise XOR of the input tokens always
results in the correct output token for the gate according to the semantics of the
tokens. This greatly reduces the communication cost for the garbling procedure
as no garbled tables need to be sent for XOR-gates. Also, the computational
cost for XOR-gates is minimized, since there is no need to encrypt XOR-gates’
truth tables.

The garbled row reduction method further reduces the communication overhead
of garbling by 25%. This is achieved by setting one of the tokens for the output
wire of a non-XOR gate as a function of two input wire’s tokens. Then for these
two input tokens, the corresponding output token can be calculated directly
by the evaluator without using the garbled truth table of the gate, effectively
reducing the size of the garbled truth table by one row.

We are also using a streaming approach to the garbling and evaluating of circuits
to parallelize the work of the garbler and the evaluator. When the garbler
has finished garbling a batch of the circuit’s gates, he can send the garbled
truth tables to the evaluator, who can start evaluating the circuit while the

20

garbler encrypts the next batch of gates. The optimal batch size for circuit
streaming can be fine-tuned to match the running Sharemind instance’s network
and hardware capabilities.

21

3 Experimental results

We now present the performance results of our implemented hybrid protocol
prototype. The prototype was benchmarked with various circuits from Stefan
Tillich and Nigel Smart [TS13] and Kreuter et al. [KSS12] The descriptions of
the used circuits and the corresponding performance results are presented in
Tables 1 and 2 respectively.

Table 1 lists for every circuit the size of the input in bits, the overall number
of logic gates in the circuit, and the number of XOR-gates in the circuit. The
No of batches column shows in how many batches the garbled tables are sent
from garbler to evaluator. The batch size was fixed for all test runs on 35,000
non-XOR gates’ tables.

In Table 2, the performance results for all circuits are presented. The table lists
the mean times spent on different phases of the protocol separately, and also
the mean total elapsed time. All times are reported in milliseconds with a 95%
confidence interval, where 123k denotes 123,000 ms.

The initial parsing time for Kretuer et al.’s circuits is very small due to the
fact that the circuit is actually parsed gate-by-gate during garbling and eval-
uation. Initially, the circuit is memory-mapped so that it could be efficiently
parsed during runtime. The runtime parsing time is reflected in the garbling
and evaluation times for Kreuter et al.’s circuits.

For Tillich and Smart’s circuits, the whole circuit is parsed once before gar-
bling/evaluation. The circuit format is much less efficient to parse than Kreuter
et al.’s and therefore the initial parsing times are quite significant. However,
in theory the circuit could be parsed once in an offline phase and reused for
multiple evaluations, but this approach is not viable if very large circuits need
to be evaluated since it would consume large amounts of memory.

The garbling and evaluation times include the time spent on communication
in addition to the computational time. Due to network layer instability issues,
we were forced to make the garbler thread sleep for 40ms after each batch of
garbled tables, except the last, was sent. 40ms was enough so that the next
batch would not be sent until the previous had been received by the evaluator.
Therefore, the garbling and evaluation times of our prototype are roughly the
same for larger circuits. For smaller circuits, the garbling time is almost always
smaller, which is due to the communication overhead since evaluation is actually
less computationally intensive than garbling.

For the oblivious transfer phase and the total runtime of the protocol, the mean
was calculated from the maximum of reported times of all computing parties,
meaning that only the reported time of the last computing party to finish was
used.

22

Circuit
Input
size(bits)

No of gates
No of
XOR-gates

No of
batches

Description

Kreuter et al.’s circuits

mil4 10 57 22 1
Solves the millionaire’s problem for
4bit values

mil128 258 1,793 766 1
Solves the millionaire’s problem for
128bit values

AES 384 50,935 34,865 1
Encrypts a 128-bit block with given
key using AES-128 block cipher

edt-dist128 272 3,442,956 2,007,816 41
Calculates the edit distance of two
128bit strings

dijkstra50 5,216 22,114,948 11,939,325 291
Computes the Dijkstra algorithm
on a given 50-node graph

dijkstra100 10,416 168,432,798 90,738,125 2220
Computes the Dijkstra algorithm
on a given 100-node graph

Tillich and Smart’s circuits
mult-32x32 64 6,995 1,069 1 Multiplies two 32-bit numbers

AES 256 31,924 25,124 1
Encrypts a 128-bit block with given
key using AES-128 block cipher

SHA-256 512 132,854 42,029 3
Calculates the SHA-256 hash of a
512-bit block

Table 1: Descriptions of circuits used for benchmarking the hybrid protocol

23

Circuit Initial parsing
Oblivious
transfer

Garbling Evaluation Total

Kreuter et al.’s circuits

mil4
0.1±0.74% 37.4±1.46% 0.17±0.55% 0.03±0.29% 45.6±0.98%

0.1±0.73% 37.8±1.44% 0.18±0.53% 0.04±0.41% 45.6±0.97%

mil128
0.2±0.72% 40.0±1.50% 2.3±0.12% 3.2±9.20% 51.0±1.13%

0.2±0.75% 40.0±1.58% 2.7±0.10% 3.6±9.20% 51.1±1.14%

AES
0.2±1.41% 44.0±1.82% 29.8±0.58% 87.8±0.52% 126.8±0.48%

0.2±1.47% 44.8±1.70% 34.4±0.59% 92.4±0.51% 132.9±0.55%

edt-dist128
0.2±2.82% 41.0±3.33% 3.88k±0.10% 4.00k±0.11% 4.04k±0.11%

0.2±2.90% 41.1±3.90% 4.29k±0.11% 4.40k±0.12% 4.44k±0.12%

dijkstra50
2.0±2.59% 124.2±5.38% 27.97k±0.16% 28.05k±0.16% 28.18k±0.18%

1.9±3.20% 124.8±5.51% 31.34k±0.14% 31.41k±0.14% 31.54k±0.15%

dijkstra100
5.3±1.55% 311.3±4.57% 226.8k±2.75% 226.8k±2.75% 227.2k±2.75%

5.3±1.82% 326.8±3.62% 252.3k±1.94% 252.3k±1.94% 252.7k±1.94%

Tillich and Smart’s circuits

mult-32x32
37.8±0.34% 38.6±1.53% 12.9±0.40% 30.2±0.86% 104.8±0.46%

38.3±0.33% 39.2±1.56% 16.3±0.51% 36.0±1.33% 111.3±0.58%

AES
101.4±0.20% 43.1±1.63% 16.1±0.77% 38.3±1.30% 182.5±0.4%

100.6±0.20% 44.2±1.71% 19.5±0.89% 43.8±0.91% 187.9±0.32%

SHA-256
768.8±0.31% 92.8±5.06% 195.8±0.30% 287.3±0.25% 1,146±0.37%

778.3±0.27% 94.4±4.51% 224.4±0.27% 305.7±0.29% 1,171±0.32%

Table 2: Performance results of the hybrid protocol in milliseconds with 95%
confidence interval. For every circuit, the first row shows results with AES-NI
instructions used and the second row with a purely software implemented AES

24

References

[BHKR13] Mihir Bellare, Viet Tung Hoang, Sriram Keelveedhi, and Phillip
Rogaway. Efficient garbling from a fixed-key blockcipher. IACR
Cryptology ePrint Archive, 2013:426, 2013.

[BNTW12] Dan Bogdanov, Margus Niitsoo, Tomas Toft, and Jan Willemson.
High-performance secure multi-party computation for data min-
ing applications. International Journal of Information Security,
11(6):403–418, 2012.

[Bog13] Dan Bogdanov. Sharemind: programmable secure computations
with practical applications. PhD thesis, University of Tartu, 2013.

[BOGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Complete-
ness theorems for non-cryptographic fault-tolerant distributed com-
putation (extended abstract). In Simon [Sim88], pages 1–10.

[CCD88] David Chaum, Claude Crépeau, and Ivan Damg̊ard. Multiparty
unconditionally secure protocols (extended abstract). In Simon
[Sim88], pages 11–19.

[HEKM11] Yan Huang, David Evans, Jonathan Katz, and Lior Malka. Faster
secure two-party computation using garbled circuits. In USENIX
Security Symposium. USENIX Association, 2011.

[HKS+10] Wilko Henecka, Stefan Kögl, Ahmad-Reza Sadeghi, Thomas Schnei-
der, and Immo Wehrenberg. TASTY: tool for automating secure
two-party computations. In Ehab Al-Shaer, Angelos D. Keromytis,
and Vitaly Shmatikov, editors, Proceedings of the 17th ACM Con-
ference on Computer and Communications Security. CCS’10, pages
451–462. ACM, 2010.

[KMSB13] Ben Kreuter, Benjamin Mood, Abhi Shelat, and Kevin Butler.
PCF: A portable circuit format for scalable two-party secure com-
putation. In Proceedings of the 22Nd USENIX Conference on Se-
curity, SEC’13, pages 321–336, Berkeley, CA, USA, 2013. USENIX
Association.

[KS08] Vladimir Kolesnikov and Thomas Schneider. Improved garbled cir-
cuit: Free xor gates and applications. In Luca Aceto, Ivan Damg̊ard,
Leslie Ann Goldberg, Magnús M. Halldórsson, Anna Ingólfsdóttir,
and Igor Walukiewicz, editors, ICALP (2), volume 5126 of Lecture
Notes in Computer Science, pages 486–498. Springer, 2008.

[KSS12] Benjamin Kreuter, Abhi Shelat, and Chih-Hao Shen. Towards
billion-gate secure computation with malicious adversaries. IACR
Cryptology ePrint Archive, 2012:179, 2012.

25

[LP04] Yehuda Lindell and Benny Pinkas. A proof of yao’s protocol for
secure two-party computation. Cryptology ePrint Archive, Report
2004/175, 2004. http://eprint.iacr.org/.

[MNPS04] Dahlia Malkhi, Noam Nisan, Benny Pinkas, and Yaron Sella. Fair-
play - Secure Two-Party Computation System. In Proceedings of
the 13th USENIX Security Symposium. USENIX’04, pages 287–302.
USENIX, 2004.

[PSSW09] Benny Pinkas, Thomas Schneider, Nigel P. Smart, and Stephen C.
Williams. Secure two-party computation is practical. IACR Cryp-
tology ePrint Archive, 2009:314, 2009.

[Sha79] Adi Shamir. How to share a secret. Commun. ACM, 22(11):612–
613, 1979.

[Sim88] Janos Simon, editor. Proceedings of the 20th Annual ACM Sym-
posium on Theory of Computing, May 2-4, 1988, Chicago, Illinois,
USA. ACM, 1988.

[TS13] Stefan Tillich and Nigel Smart. Circuits of basic functions suitable
for MPC and FHE, 2013.

26

http://eprint.iacr.org/

	Design of a hybrid protocol
	Foundations
	Protocols based on secret sharing
	Protocols based on garbled boolean circuits

	The hybrid protocol
	Parts of the hybrid protocol
	Oblivious transfer
	Garbling

	Security proof
	Simulatability of Oblivious Transfer
	Simulatability of the Hybrid Protocol

	Implementation details
	Using the protocol to implement primitive operations
	Circuit setup
	Optimizations

	Experimental results

