
CYBERNETICA
Institute of Information Security

Profile for High-Performance
Digital Signatures

Version 1.2
Margus Freudenthal

T-4-23 / 2017

Copyright c©2017
Margus Freudenthal.
Cybernetica AS, Department of Information Security
Systems

All rights reserved. The reproduction of all or part of
this work is permitted for educational or research use
on condition that this copyright notice is included in
any copy.

Cybernetica research reports are available online at
http://research.cyber.ee/

Mailing address:
Cybernetica AS
Mäealuse 2/1
12618 Tallinn
Estonia

2

http://research.cyber.ee/

Profile for High-Performance Digital Signatures

Margus Freudenthal

Version 1.2

Abstract

Digital signatures and timestamps are a good way to prove integrity
of messages exchanged between parties. However, a digital signature im-
plementation may encounter performance, latency and reliability issues
unless certain care is taken when designing a solution for efficient use of
Public Key Infrastructure protocols.

This specification profiles XAdES and ASiC specifications to describe
a signature scheme that is more scalable than the naive implementation.
This signature scheme is used by Cybernetica’s Unified eXchange Platform
and the systems based on it such as the Estonian X-Road.

3

Contents

1 Introduction 5

1.1 General . 5

1.2 Terms and Abbreviations . 5

1.3 Signature Creation Process . 6

2 Document Formats 7

2.1 Adding Signature to a Message 8

2.1.1 Profile of XAdES Signature 8

2.1.2 Signatures in ASiC Container 8

2.2 Adding Timestamp to a Signature 9

3 Verification Algorithm 11

A Example ASiC Containers 13

A.1 Simple Signature and Simple Timestamp 13

A.2 Batch Signature and Batch Timestamp 14

4

1 Introduction

1.1 General

Employing digital signatures and timestamping in a system that has high scal-
ability and availability requirements is often not straightforward. The reason
for this is that the standard PKI protocols (such as OCSP and timestamping
protocol) are not designed for scalability and high performance. These issues
are discussed by Ansper et al. in [1]. Whereas the referenced paper explains the
problem and a general solution, this specification describes technical protocols
that implement this solution. The technical protocol is employed in Cybernet-
ica’s Unified eXchange Platform1 (UXP) and the Estonian X-Road system.

The signed documents are based on the Associated Signature Containers (ASiC)
format [2]. For signatures, we use the XML Advanced Electronic Signature
(XAdES) [8] format and for timestamps we use the IETF timestamping proto-
col [7]. For certificate validity information, Online Certificate Status Protocol
(OCSP) [4] is used. Batch hashing scheme [3] is used to implement batch sig-
natures and batch timestamps.

In UXP, parties communicate by invoking SOAP [5] services. The communicat-
ing parties install components called security servers that act as gateways by
encrypting, signing, archiving and timestamping the exchanged SOAP messages.
Security servers make the archived and timestamped messages available as ASiC
containers that can be processed and verified off-line. The container contains
message and all the necessary supporting information, such as signature, signing
certificate, OCSP response(s) and timestamp.

In general, the ASiC container created by a security server is a self-contained
item that contains the signed message and all the necessary information needed
for verification. However, if SOAP attachments (see [6]) are used then only the
SOAP message part of the full SOAP message package is required to be included
in the ASiC container. The security servers may, but are not required to include
attachments in the container. However, the container contains information that
is sufficient to verify that externally stored attachments are indeed signed by
the given signature. See Section 3 for details.

1.2 Terms and Abbreviations

ASiC Associated Signature Container

CA Certification Authority

HSM Hardware Security Module

1Unified eXchange Platform is a system for connecting different organizations. It is used
as a basis for several national data interchange systems such as the Estonian X-Road infras-
tructure.

5

MIME Multipurpose Internet Mail Extensions

OCSP Online Certificate Status Protocol

SSCD Secure Signature Creation Device

TSP Timestamp Provider

TST Timestamp Token

UXP Unified eXchange Platform

XAdES XML Advanced Electronic Signature

1.3 Signature Creation Process

The following is a list of steps that a security server performs when creating a
complete signed and timestamped message container.

1. The sender security server receives a SOAP message from the end en-
tity (an information system communicating via the UXP). The message
can have (binary) attachments according to the SOAP with attachments
specification [6].

2. The sender security server acquires an OCSP response for the signing
certificate. The OCSP response can be cached and reused for several
messages that are sent during a configured time interval. This reduces the
load on the OCSP server.

3. The sender security server signs the message. If the signing load of the
security server is greater than the signing speed of the signing device2 then
the sender uses batch signatures to sign a set of messages with one oper-
ation. Batch signatures are also used to sign message with attachments.

4. The sender security server transmits to the receiving security server:

• the SOAP message with attachments;

• the XAdES signature containing, among other things,

– signing certificate,

– certificate chain from the signing certificate to the trusted CA,
and

– OCSP response(s) confirming the validity of the signing certifi-
cate and all of the intermediate certificates; and

• the hash chain result and the hash chain, if the signature is a batch
signature.

2This can happen when the key is stored in a slow hardware device such as a smart card.

6

5. The receiver security server verifies the signature. When verifying the
OCSP responses, the receiver checks that all the responses are sufficiently
fresh (the producedAt field indicates time that is not older than the con-
figured threshold).

6. The receiver security server saves the received data items to the message
log. The SOAP attachments are not saved in order to keep the size of the
message log minimal.

7. After a preconfigured time has passed, the security server timestamps the
collection of signatures. It uses batch hashing to create a single times-
tamping request for all the signatures received within a time interval. The
timestamping operation produces a single timestamp token and hash chain
result together with one hash chain for every timestamped signature. All
these data items are stored in the message log.
In some configurations, the timestamps are separately requested for every
incoming signature. In this case, the batch hashing is not used.

8. When there arises a need to prove reception of the request to a third
party, the security server creates a single ASiC container that can be
verified without consulting additional data sources. The complete signed
document will contain

• SOAP message;

• sender’s signature on the message;

• in case batch signing was used, a signed hash chain result and a hash
chain proving that the message (and the attachments) participated
in signature calculation;

• timestamp proving that the signature was created before a certain
time; and

• in case batch timestamping was used, a timestamped hash chain re-
sult and a hash chain proving that the signature participated in the
timestamp request.

2 Document Formats

Signing and timestamping are two separate operations and the decisions to use
batch signing and batch timestamping are independent of each other. There-
fore this section describes as two separate operations the process of adding a
signature to a message and the process of adding a timestamp to a signature.
Irrespective of the signing or timestamping method used, the ASiC containers
contain files mimetype and META-INF/manifest.xml containing, respectively
the MIME type of the ASiC container and the list of signed data files.

7

2.1 Adding Signature to a Message

2.1.1 Profile of XAdES Signature

The signature format used in UXP is a profile of the XAdES Basic Electronic
Signature form (XAdES-BES, see [8], Section 4.4.1) and of the XAdES Baseline
Profile [9] (B-level conformance). If batch signatures and batch timestamps are
not used, timestamped signatures conform to XAdES Electronic Signature with
Time (XAdES-T) (LT-level conformance in the Baseline Profile). See Section
2.2 for further details.

Table 1 lists the qualifying signed properties and table 2 lists the qualifying
unsigned properties that are used in UXP signatures.

2.1.2 Signatures in ASiC Container

The use of signatures in ASiC container depends on whether simple or batch
signatures were used.

Simple signatures are used if the SOAP message consists of only the XML
part and the speed of the signing device allows creating a separate signature
for each incoming message. Table 3 shows contents of the ASiC container for
simple signatures.

Batch signatures are used if any of the following two conditions are true.

1. The SOAP message received by the security server contains attachments.

2. The signing device is not sufficiently fast to separately sign each incoming
message.

Batch signatures use the batch hashing format described in [3]. Table 4 shows
contents of the ASiC container for batch signatures.

SOAP Attachments are not stored in the container. However, they are ref-
erenced in the hash chain with DataRef element and therefore participate in
the signature calculation and can be considered signed. When encountering
DataRef elements that refer to files not present in the container, a signature
verification application can either

• ignore the references, possibly issuing a warning;

• output the referenced files together with the message digest thus allowing
the user to verify that the detached file indeed has the given message
digest; or

• require that the user retrieve the referenced file and present it for verifi-
cation.

8

Table 1: The use of qualifying signed properties in signatures
Element Comments

SignedProperties
.SignedSignatureProperties
. .SigningTime The time at which the signer

(purportedly) performed the
signing process. GMT time
zone shall be used.

. .SigningCertificate Identifier and digest of the
signing certificate. The full
value of the signing certificate
can be found in the
ds:KeyInfo element.

. .SignaturePolicyIdentifier Policy under which the
signature can be determined
to be valid. Refers to this
document.

. . .SignaturePolicyId

. . . .SigPolicyId Method OIDAsURN is used,
value of the OID is
1.3.6.1.4.1.3516.16.2.

. . . .SigPolicyHash Hash value of this document.

. . . .SigPolicyQualifiers

.SigPolicyQualifier

.SPURI URL to this document.
https://repo.cyber.ee/
dsig-profile-1.2.pdf

.SignedDataObjectProperties

. .DataObjectFormat This element will describe
either a SOAP message (if
batch signing was not used)
or a hash chain result (if
batch signing was used). See
Section 2.1.2 for details.

2.2 Adding Timestamp to a Signature

Depending on circumstances, a security server produces either simple or batch
timestamps. The default option is to use batch timestamps that significantly
reduce the load of the TSP and are less dependent on TSP’s availability. This
is offset by the risk that a security server fails to timestamp the signature on a
received message before the certificate used to sign the message is revoked (and
it becomes impossible to prove that the signature was created using a valid
certificate). If this risk is not acceptable, the security server can be configured

9

https://repo.cyber.ee/dsig-profile-1.2.pdf
https://repo.cyber.ee/dsig-profile-1.2.pdf

Table 2: The use of qualifying unsigned properties in signatures
Element Comments

UnsignedProperties
.UnsignedSignatureProperties
. .SignatureTimeStamp This element is present only

when batch timestamping is
not used. See Section 2.2 for
details.

. . .EncapsulatedTimeStamp The time-stamp token (an
ASN.1 data object) generated
by the TSP.

. .CertificateValues Contains full certificate chain
from the signing certificate
(not included) to a trusted
certification authority
(included).

. .RevocationValues

. . .OCSPValues Contains OCSP responses for
all the certificates in the
certificate chain, excluding
the trust anchor.

. .xadesv141:TimestampValidationData This element is used only
when batch timestamping is
not used. See Section 2.2 for
details.
If the timestamping
provider’s certificate is not
present in the TST, then the
certificate will be presented in
this element.

10

Table 3: Contents of ASiC container for simple signatures
File Comments

message.xml SOAP message (content type is text/xml)
META-INF/signatures.xml XAdES signature that conforms to

Section 2.1.1 and references the message.xml
file.

Table 4: Contents of ASiC container for batch signatures
File Comments

message.xml XML part of the SOAP message.
sig-hashchainresult.xml Result of the Merkle tree calculation. This file

will be signed.
sig-hashchain.xml Hash chain calculation from the input data

(message.xml and optional attachments) to
the hash chain result.

META-INF/signatures.xml XAdES signature that conforms to
Section 2.1.1. One ds:Reference element in
the signature refers to file
sig-hashchainresult.xml that contains the
result of the Merkle tree calculation. In order
to verify that the message was signed, one
needs to verify that it was part of the Merkle
tree resulting in the signed hash chain result.

to separately timestamp every received signature. This eliminates the risk of
failed timestamps, but puts a significant load on the TSP and creates a new
single point of failure in the system.

Simple timestamps created by the security servers are compatible with
the requirements to XAdES SignatureTimeStamp element. If the times-
tamp does not contain TSP’s certificate then the certificate is stored in the
xadesv141:TimeStampValidationData signature property.

Batch timestamps created by the security servers use batch hashing [3] to
hash several signatures together in a Merkle tree and timestamp the root hash
of the tree. With batch timestamps, the input to the timestamping process
is the entire signature (contents of META-INF/signatures.xml file). Table 5
shows how the batch timestamps are stored in the ASiC container.

3 Verification Algorithm

This chapter describes the algorithm that should be used when verifying the
ASiC containers conforming to this specification.

11

Table 5: Contents of ASiC container for batch timestamps
File Comments

ts-hashchainresult.xml Result of the Merkle tree calculation. This
file will be timestamped.

ts-hashchain.xml Hash chain calculation from the signature
(the entire contents of the
META-INF/signatures.xml file) to the
hash chain result.

META-INF/ASiCManifest.xml Manifest connecting the TST with the
timestamped data object
(ts-hashchainresult.xml).

META-INF/timestamp.tst RFC 3161 compatible timestamp token.
The input to the timestamping process is
the digest of the
ts-hashchainresult.xml file.

1. If the container contains separate timestamp token (file
META-INF/timestamp.tst), verify the token. The input to the
TST must be a hash chain calculation. Verify that the batch hash
calculation takes the signature (file META-INF/signatures.xml) as
input.
The genTime field of the TST will become the time of signing.

2. If the container does not contain a separate timestamp token then extract
the TST from SignatureTimeStamp unsigned property in the signature
(file META-INF/signatures.xml). The input to the TST must be the
ds:SignatureValue element according to the XAdES specification.
The genTime field of the TST will become the time of signing.

3. Verify the signature. The certificates in the certificate chain must be valid
at the time of signing. The OCSP responses used to validate the certifi-
cates must be fresh – the time difference between the producedAt field
of the OCSP response and the time of signing must not exceed threshold
configured in the security policy of the verifier.

If the signature refers to the hash chain result then verify the hash chain
result. The input to the batch hash calculation must be the SOAP message
(file message.xml). Additionally, the hash chain may refer to attachments
that are not present in the container. In this case, the verifier should
retrieve the attachments and use the message digests present in the hash
chain to verify them.

12

References

[1] Arne Ansper, Ahto Buldas, Margus Freudenthal, and Jan Willemson. High-
Performance Qualified Digital Signatures for X-Road. In 18th Nordic Con-
ference, NordSec 2013, LNCS 8208, pages 123–138. Springer, 2013.

[2] Electronic Signatures and Infrastructures (ESI); Associated Signature Con-
tainers (ASiC), Version 1.3.1. Technical Specification TS 102 918, ETSI ESI,
June 2013.

[3] Margus Freudenthal. Using Batch Hashing for Signing and Time-Stamping.
Research Report T-4-20, Cybernetica AS, 2013.

[4] X.509 Internet Public Key Infrastructure. Online Certificate Status Protocol
- OCSP. Request for Comments 6960, Internet Engineering Task Force, June
2013.

[5] Simple Object Access Protocol (SOAP) 1.1. W3c note, May 2000.

[6] SOAP Messages with Attachments. W3c note, December 2000.

[7] Internet X.509 Public Key Infrastructure. Time-Stamp Protocol (TSP). Re-
quest for Comments 3161, Internet Engineering Task Force, August 2001.

[8] Electronic Signatures and Infrastructures (ESI); XML Advanced Electronic
Signatures (XAdES). Technical Specification TS 101 903, ETSI ESI, De-
cember 2010.

[9] Electronic Signatures and Infrastructures (ESI); XAdES Baseline Profile.
Technical Specification TS 103 171, ETSI ESI, March 2012.

A Example ASiC Containers

A.1 Simple Signature and Simple Timestamp

This example corresponds to the situation where the SOAP message does not
contain attachments and the signing device has sufficient speed to sign each
message separately. Additionally, the security server timestamps each signature
separately. In this case the ASiC container will contain the following files:

• mimetype

• message.xml

• META-INF/signatures.xml (contains SignatureTimeStamp unsigned prop-
erty)

• META-INF/manifest.xml

13

A.2 Batch Signature and Batch Timestamp

This example corresponds to the situation where the SOAP message does con-
tains attachments (not included in the ASiC container) or when the the signing
device has insufficient speed to sign each message separately. Additionally, the
security server timestamps several signatures together creating a batch times-
tamp. In this case the ASiC container will contain the following files:

• mimetype

• message.xml

• sig-hashchainresult.xml

• sig-hashchain.xml

• ts-hashchainresult.xml

• ts-hashchain.xml

• META-INF/manifest.xml

• META-INF/signatures.xml

• META-INF/timestamp.tst

• META-INF/ASiCManifest.xml

14

	Introduction
	General
	Terms and Abbreviations
	Signature Creation Process

	Document Formats
	Adding Signature to a Message
	Profile of XAdES Signature
	Signatures in ASiC Container

	Adding Timestamp to a Signature

	Verification Algorithm
	Example ASiC Containers
	Simple Signature and Simple Timestamp
	Batch Signature and Batch Timestamp

