
CYBERNETICA
Institute of Information Security

An improved method for privacy-preserving
web-based data collection

Riivo Talviste, Dan Bogdanov

T-4-5 / 2009



Copyright c©2009
Riivo Talviste1, Dan Bogdanov1,2.
1 University of Tartu, Institute of Computer Science
2 AS Cybernetica, Institute of Information Security

The research reported here was supported by:

1. Estonian Science foundation, grant(s) No. 8058,

2. the target funded theme SF0012708s06 “Theoretical
and Practical Security of Heterogenous Information
Systems”,

3. the European Regional Development Fund through
the Estonian Center of Excellence in Computer Sci-
ence, EXCS, and the Software Technology and Appli-
cations Competence Centre, STACC,

4. EU FP6-IST project AEOLUS (contract no. IST-
15964).

All rights reserved. The reproduction of all or part of
this work is permitted for educational or research use on
condition that this copyright notice is included in any copy.

Cybernetica research reports are available online at
http://research.cyber.ee/

Mailing address:
AS Cybernetica
Akadeemia tee 21
12618 Tallinn
Estonia

2



An improved method for privacy-preserving
web-based data collection

Riivo Talviste, Dan Bogdanov

January 25, 2010

1 Introduction

Lately, people have become more concerned about their privacy. Also processing pri-
vate data is regulated by laws. This means that confidentiality is an important issue
in many (computer) applications. For example, e-voting is an information system
with multiple parties, who have something to hide from each other — everybody’s
vote has to be kept in secret.

In January 2008 in Denmark, a nation-wide exchange in a form of double auction
was carried out to rearrange sugar beet growing contracts between local farmers and
Danisco company. Together with the auction, a survey was conducted, showing that
farmers really care about the confidentiality of their bids (Figure 1). Thus, it was
decided that the role of the auctioneer would be played by three independent parties
using secure multiparty computation (MPC). To make bidding more convenient for
farmers, a web-based application was used. It was the first large-scale and practical
application of multiparty computation [BCD+08].

In this paper we analyse the architecture of this auction and describe some of
its constraints and shortcomings. Our goal is to propose a privacy-preserving data
collection architecture. It would enable us to gather and process confidential data so
that the user inserting the data would be the only one who knows the input. Such
a technology would make it easier to conduct web-based surveys, questionaries and
auctions with confidential data.

Section 2 of this paper describes the forementioned system in more detail and
summarizes some of its constraints and shortcomings. In Section 3 we give an over-
all description of our proposed improved architecture, its security constraints and
implementation details. Section 4 gives a more detailed overview of the JavaScript-
based solution. The architecture described in this section is similar to the one used

3



Agree strongly

Agree

Don't know

Disagree

Disagree strongly

0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50%

35%

43%

18%

2%

1%

It is important that my bids are kept confidential

Figure 1: Survey results showing farmers’ confidentiality expectations.

in the Danish auction system and thus has the same security risks. However, usabil-
ity is improved by using the JavaScript technology. An architecture with stronger
security guarantees is detailed in Section 5. This solution uses secure connections
and is implemented with Adobe Flex framework.

2 State of the art

2.1 The Danisco auction

In Denmark several thousand farmers produce sugar beets, which they sell to the
Danisco company — the only sugar beets processor on the local market. Farmers
have contracts that give them rights and obligation to deliver a certain amount of
sugar beets to Danisco who pays them, according to a pricing scheme given in their
contracts. With recent changes in EU funding schema, however, these contracts had
to be reallocated to farmers where the production pays off best. It was decided that
this must be done via nation-wide double auction [BCD+08].

Double auction works in a way that each seller declares how much is he or she

4



willing to sell for a given price range and also each buyer specifies how much is he or
she willing to buy for each price range. From these bids, auctioneer calculates the
market clearing price. All sellers who accepted to sell for that price or lower, get to
sell their goods at that price and all buyers who offered more than that price, get to
buy the goods.

However, like the forementioned survey showed, farmers wanted their bids to be
kept in secret, as their bids would clearly reveal information about their economic
position and productivity. Thus, they would have been reluctant to use the Danisco
company as auctioneer. On the other hand, using an independent third party as an
auctioneer was unacceptable for Danisco as the contracts contain vital information
for the company. Hence, it was decided that the role of auctioneer would be played
by a group of three independent parties: the Danisco company, DKS (a sugar beet
growers association) and SIMAP (Secure Information Management and Processing)
project, which has been responsible for the practical application of MPC, described
in [BCD+08].

The auction itself was held in two phases (Figure 2). In the first phase each farmer
logged in to his or her existing account on Danisco website. The initiated session
was forwarded to another web server, which provided farmer with a Java applet.
Together with this applet the farmer received three public keys, each belonging to
one of the auctioneers. Farmer placed his or her bid, which was split into three pieces
using secret sharing. Each piece was then encrypted with different public key and
sent back to the web server which stored them in a local database.

In the second phase each auctioneering party sent a representative who copied
their shares from the web server database and used their matching private keys to
decrypt them. The market clearing price was then calculated using decrypted shares
from the representatives and multiparty computation protocols.

2.2 Problem statement

The mentioned system worked as expected. However, it has a major security risk
— the web server that provides the farmer with Java applet and three private keys,
could send him or her three self-generated public keys instead. Thus, also having
the matching private keys for these public keys, the owner of this web server could
decrypt all the shares and therefore know all the farmers’ bids. This is possible,
because encrypted shares are sent back to a single web server.

Moreover, Java applets require a significant amount of resources and Java Run-
time Environment (JRE) is not installed in every client computer. This makes con-
ducting large-scale web-based surveys or auctions with suggested architecture more

5



Danisco
website

Farmer's
computer

Web serversession

Java applet
public keys

encrypted
shares

database Danisco

DKS SIMAP

MPC

Phase 1 Phase 2

login

Figure 2: The architecture used in the Danisco auction.

complicated.
The main contribution of this paper is to propose an architecture that eliminates

this security risk and try a different client-side technology that is easier for the client
to use.

3 Web-based data gathering with improved con-

fidentiality

3.1 Architecture

Our solution is quite similar to the architecture discussed in previous section, with
a few important differences. We use the Sharemind framework [BLW08, BK09] as
our backend system to store and later process the data. Data-analysis, however, is
not in the scope of this paper. Our intent is to gather and save the data to the data
storage and processing units, which in the Sharemind framework are called miners.

The lifecycle of private data in our proposed architecture is as follows (Figure 3).
The confidential data produced in the client’s computer is immediately distributed
into shares. Each share is then sent to a different miner’s web server that saves
it in a local database. A daemon application periodically queries that database
for new shares and converts and saves them to the corresponding miner’s database.

6



Miners can then use shares from their databases and MPC protocols to perform data
analysis. The local database is used for buffering and helps to keep the architecture
more robust. It means that collecting and secret sharing confidential data can be
performed independently from processing the data.

Miner 2

Web server

Miner
database

Local
database

Daemon

Miner 1Web server

Miner
database

Local
database

Daemon

Miner 3

Web server

Miner
database

Local
database

Daemon

MPC

Web server

Client's
computer

share

Application

Host organization 1

Host organization 2

Host organization 3

Host organization boundary

share

share

Figure 3: Data movement in the proposed architecture.

There is also another solution where the client sends its shares directly to all
three miners. However, this would require miners to also act as web servers, possibly
with SSL support. In the current implementation of the Sharemind framework the
miners can only access shares from their own internal databases.

3.2 Security

In the following we describe how the security is preserved as the confidential data
moves between components. If the connection from client’s computer to a miner’s

7



web server is secured using the HTTPS protocol, then the TLS/SSL protocol provides
the server authentication and channel security at that point. The solution with secure
HTTPS connections between the client and a miner’s web server is implemented with
Flex technology and detailed in Section 5.

On the other hand, if the standard HTTP protocol is used, then the client also
receives three public keys along with the application. Each of these keys is then used
to encrypt one of the shares. Encrypted shares are then sent back to the web server
that provided the application. The web server sends each encrypted share to the
corresponding miner’s web server that will then use its private key to decrypt the
share. In this case public-key encryption is used for keeping the shares in secret. The
case with unsecured HTTP connections is implemented with JavaScript technology
and described in Section 4.

The data movement from the miner’s web server to a local database and later
to the miner’s database takes place inside the organization. Thus, we rely on the
security guarantees of that company or data protection agency. In the data processing
phase where the miners use MPC protocols, the confidentiality of the data is provided
by the Sharemind framework.

3.3 Implementation

To prove the feasibility of our solution, we implemented it with two technologies:
JavaScript and Flex. These technologies have different features and constraints so
the implemented architectures are also slightly different. The corresponding archi-
tectures are discussed in more details in Sections 4 and 5.

In the following, we explain how the proposed architecture works in a prototype
survey application. Firstly, the user goes to a web page and receives a questionary as
a part of a survey. In the case of JavaScript technology, the questionary is a HTML
form, whereas in the case of Flex technology, it is Flex application embedded in the
web page. The user can then fill in the questionary and click the “Send” button.
Each of the inserted values is then distributed into shares and each share sent to a
different miner’s web server. Each miners’s web server saves the received share to its
local MySQL database. The web server also receives a unique session identifier from
the user and saves it in the same database.

The WebControllerProxy is a daemon application which is scheduled to run pe-
riodically after a specific time interval. This application is built with the Sharemind
framework controller library and used in each host organization. Its task is to poll
the local MySQL database for new shares, sort them by the session identifiers and
save the shares to the miner’s internal database. The miners can then use the shares

8



from their internal databases and the MPC protocols of the Sharemind framework
to run data analysis algorithms on the confidential data inserted by the user.

The described implementation is not a complete system. It is a proof-of-concept
of the solutions proposed in this paper.

4 A JavaScript-based solution

4.1 Technology overview

In this section we propose an architecture and its implementation with JavaScript,
an ECMAScript dialect. JavaScript is a widely spread scripting language, built
into most of the common web browsers like Mozilla Firefox, Apple Safari, Opera,
Konqueror, Google Chrome, etc. Microsoft’s Internet Explorer has its own dialect
of ECMAScript, named JScript. However, it is compatible with JavaScript in most
of the cases.

4.2 Solution architecture

The architecture itself is almost identical to the architecure used in the Danisco
auction. The data collection scheme is as follows (Figure 4). The client connects
to a web server hosting the data entry system and receives a JavaScript application
that runs on the client’s computer. Together with the application, the client receives
three public keys of three different miner web servers. After the confidential data
is entered, the application performs secret sharing and encrypts each share with a
different public key. All of the encrypted shares are sent back to the initial web
server, which distributes them among different miner web servers. Each miner’s web
server uses its corresponding private key to decrypt the share and save it in a local
database. The rest of the process is the same as explained in the general case.

This architecture uses public-key encryption on the shares, because JavaScript
applications cannot make direct secure connections to the miners’ web servers. Most
of the contemporary web browsers do not allow JavaScript applications to make
connections outside the DNS domain where the application is hosted. This constraint
is used in order to prevent cross-site scripting (XSS) with JavaScript. To solve that
problem, the web server that hosts the JavaScript application is used as a proxy.
However, to prevent that web server from recombining the shares, all of the shares
are encrypted with different public key.

9



Miner 2

Web server

Miner
database

Local
database

Daemon

Miner 1Web server

Miner
database

Local
database

Daemon

Miner 3

Web server

Miner
database

Local
database

Daemon

MPC

Web server

Client's
computer

Host organization 1

Host organization 2

Host organization 3

Host organization boundary

enc. share

JavaScript 
application with

public keys

encrypted
shares

enc. share

enc. share

Figure 4: The proposed architecture using JavaScript technology and three shared
public keys.

4.3 Security analysis

Since the architecture is the same as in the Danisco auction, the same security issues
also apply. The web server that provides the client with JavaScript application and
public keys, could send the client three self-generated keys instead. Thus, also having
the matching private keys for these public keys, the owner of this web server could
decrypt all the shares and therefore recombine the original data. This is possible,
because all the encrypted shares are sent back to a single web server.

4.4 Implementation details

While the Danisco auction used a Java applet, we use JavaScript for client-side
logic. The advantage is that most of the contemporary web browsers have a built-in
JavaScript engine, which means that the client does not have to install any additional
software. Moreover, JavaScript applications usually use fewer resources than Java

10



applets which run in their own Java virtual machine.
The client-side application needs RSA encryption functions to perform encryption

of secret shares. JavaScript does not have a built-in library for that, so in our
implementation we use the RSA library for JavaScript by Tom Wu [Wu].

Moreover, JavaScript does not have a cryptographically secure pseudo-random
number generator (CSPRNG) that would be sufficient to use in this architecture
to perform secret sharing and public-key cryptography. Instead we use an Arcfour
pseudo-random number generator (PRNG) and initialize it with the system time in
milliseconds as a seed. The Arcfour PRNG is also included in the RSA library by
Tom Wu. The absence of sufficient CSPRNG is a security risk that should be solved
on the technology level.

5 A Flex-based solution

5.1 Technology overview

The architecture proposed in this section uses Adobe Flex as a technology platform.
Flex is a free, open source framework for building web applications that deploy
consistently on all major browsers, desktops, and operating systems. It provides
a standards-based language and programming model that supports common design
patterns. Flex uses MXML, a declarative XML-based language, to describe user
interface layout and behaviors. ActionScriptTM 3 is an object-oriented programming
language, that is used in Flex to create client logic. Applications created with Flex
can run in the browser using Adobe Flash R© Player software or on the desktop on
Adobe AIRTM, the cross-operating system runtime [Incb]. In our implementation we
use Flex version 3, the latest release of the technology at the time of completing this
paper.

Flex is very similar to Adobe Flash technology. The main difference is that Flex
is designed to be used by developers, whereas Flash is more for designers. They
both produce a SWF file that is run in client’s web browser by Adobe Flash Player
software. In order to run the SWF file produced by Flex compiler, a client has to have
Adobe Flash Player version 9 or newer installed. As a Millward Brown survey [Inca],
conducted in December 2008 shows, about 99.0% of Internet-enabled desktops and
wide range of devices are using Adobe Flash Player software platform, while Java
is run by 81.0%. Thus, using Flex technology should not require any additional
installations from most of the clients, which makes data-mining with this technology
more convenient for end users.

It must be pointed out that while Flex is a free and open source framework, the

11



Adobe Flash Player is a proprietary product of the Adobe Systems Incorporated.
Also there are no free open source wide spread Flash players that could run SWF
files generated by the Flex compiler.

5.2 Solution architecture

The solution is quite similar to the architecture discussed in previous section, with
a few important dfferences. The data collecting process is detailed on Figure 5. The
client connects to a web server and receives a client-side Flex application. After the
confidential data is inserted by the client, the application performs secret sharing on
it and connects to three different miner web servers, using secure HTTP (HTTPS)
connections. Each miner’s web server receives one of the shares and saves it in a local
database. These shares are then accessed by a daemon application like described in
the overall architecture in Section 3.1.

5.3 Security analysis

In the architecture described in the previous section, the client has to trust the web
server to give him or her the correct public keys. Fortunately, in this case, the
client does not have to trust anyone unconditionally. The client connects to all the
miners directly using the HTTPS protocol, which means that he or she can examine
each miner’s certificate and decide whether to trust them or not. Thus, we still use
public-key cryptography, but the trust relationships are established directly.

In real life, however, the miners’ certificates should be signed by a high level
CA (Certificate Authority) that is already trusted by the client — this makes the
process more transparent. Unfortunately, this also poses a security risk. The web
server that sends the application to the client could send him or her an application
with a modified set of miner addresses. Provided, that the miners have certificates
that are already trusted by the client, the malicious owner of the web server would
receive all the shares and thus know the confidential data. However, finding a trusted
CA to sign malicious certificates is not an easy task. This makes that kind of attack
less probable.

5.4 Implementation details

As the data miners are controlled by different organizations or agencies, they are
also most probably in different DNS domains. To allow Flex application to query
servers on different domains than its own, the servers must have a XML file called

12



Miner 2

Web server

Miner
database

Local
database

Daemon

Miner 1Web server

Miner
database

Local
database

Daemon

Miner 3

Web server

Miner
database

Local
database

Daemon

MPC

Web server

Client's
computer

share

Flex
application

Host organization 1

Host organization 2

Host organization 3

Host organization boundary

share

share

HTTPS connection

Figure 5: The proposed architecture with Flex technology and direct HTTPS con-
nections.

crossdomain.xml in their document root directory. For example, provided that the
client running the Flex application has an IP address 192.168.10.101, the contents
of the crossdomain.xml should be similar to the following example:

<cross-domain-policy>

<allow-access-from domain="192.168.10.101" secure="true"/>

</cross-domain-policy>

The domain attribute may also contain wildcards, e.g. domain="*.example.com"
or domain="*", to allow connections from different subdomains or from all IP ad-
dresses.

Since the Flex application uses HTTPS connections to access miner web servers,
the Flex application itself also has to be served using secure HTTP connection. This

13



behaviour can be overridden by setting the secure attribute in previous example to
false, however, this creates an additional security risk.

As with the JavaScript language, Flex framework does not have a built-in CSPRNG
to use in secret sharing the confidential data. To produce random numbers, we use
the Park Miller “minimal standard” linear congruential pseudo-random number gen-
erator [PM88], which is implemented in Flex by Michael Baczynski [Bac].

This algorithm is capable of producing 31-bit random values, however, the Share-
mind framework uses 32-bit values to hold secret data and shares. One possible
solution to get 32-bit random values usable in cryptography is as follows. The Flex
application makes a secure connection directly to each miner’s web server and re-
quests a random number. Since the web servers run on an operating system, they
most probably have access to a CSPRNG. The Flex application then combines all
three random numbers, e.g. XOR-s them together, and uses the result as the needed
random value. This solution is secure if at least one web server is honest and does
not log the random value that it sends to the application. However, a similar solution
would not work in JavaScript, as the security contraints of web browsers do not allow
JavaScript application to make HTTPS connections outside the application’s DNS
domain.

6 Conclusion

First large-scale practical applications of multiparty computation are already in use.
In January 2008, a large-scale auction was carried out in Denmark. The bids were
kept confidential by the means of secret sharing and using three independent com-
panies as auctioneer. The data processing phase used multiparty computation pro-
tocols, so no one learned the original data. In this paper we analyse the used archi-
tecture from the point of security and usability.

Firstly, we improve the usability of the architecture by using JavaScript technol-
ogy on the client side. In the abovementioned auction, a Java applet was used as a
client side applicaion to collect the data. However, a JavaScript interpreter is already
built into most of the contemporary browsers, so no Java Runtime Environment is
needed. Also, JavaScript applications require less resources. Unfortunately, with
this architecture, the client needs to trust the web server that hosts the survey.

Secondly, we propose a new architecture that eliminates a security risk by using
secure HTTP connections. This eliminates the requirement for encrypting shares
as TLS/SSL provides the necessary security. We chose Adobe Flex platform to
implement our proposed architecture. Flex is a free open source framework designed
to develop rich client-side internet applications. Applications written in Flex are run

14



by Adobe Flash Player. Since most of the internet-enabled computers already have
Flash Player installed, applications built with Flex are convenient for the clients.

We implemented both the JavaScript-based and the Flex-based solutions as a
part of this paper. In our case, we used the Sharemind framework as the backend
privacy-preserving computation engine.

Both presented solutions can be used for private web-based data collection either
for the Sharemind framework or other secure multiparty computation systems.

References

[Bac] Michael Baczynski. A good pseudo-random number generator
(prng). Published online at http://lab.polygonal.de/2007/04/

21/a-good-pseudo-random-number-generator-prng/. Last visited on
May 26, 2009.

[BCD+08] Peter Bogetoft, Dan Lund Christensen, Ivan Damg̊ard, Martin Geisler,
Thomas Jakobsen, Mikkel Krøigaard, Janus Dam Nielsen, Jesper Buus
Nielsen, Kurt Nielsen, Jakob Pagter, Michael Schwartzbach, and Tomas
Toft. Multiparty computation goes live. Cryptology ePrint Archive, Re-
port 2008/068, 2008. http://eprint.iacr.org/.

[BK09] Dan Bogdanov and Liina Kamm. Architectures for privacy-preserving
information systems. to appear, 2009.

[BLW08] Dan Bogdanov, Sven Laur, and Jan Willemson. Sharemind: A framework
for fast privacy-preserving computations. In Sushil Jajodia and Javier
López, editors, ESORICS, volume 5283 of Lecture Notes in Computer
Science, pages 192–206. Springer, 2008.

[Inca] Adobe Systems Incorporated. Flash player penetration. Pub-
lished online at http://www.adobe.com/products/player_census/

flashplayer/. Last visited on April 23, 2009.

[Incb] Adobe Systems Incorporated. Flex overview. Published online at http:

//www.adobe.com/products/flex/overview/. Last visited on April 23,
2009.

[PM88] Stephen K. Park and Keith W. Miller. Random number generators: Good
ones are hard to find. Commun. ACM, 31(10):1192–1201, 1988.

15



[Wu] Tom Wu. Bigintegers and rsa in javascript. Published online at http://
www-cs-students.stanford.edu/~tjw/jsbn/. Last visited on May 26,
2009.

16


