CYBERNETICA

Institute of Information Security

Serial Model for Attack Tree
Computations

Jan Willemson, Aivo Jiirgenson

T-4-6 / 2009

Copyright (©)2009

Jan Willemson®, Aivo Jiirgenson?.

L' AS Cybernetica, Institute of Information Security
2 Tallinn University of Technology, Institute of
Informatics

The research reported here was supported by:

1. Estonian Science foundation, grant(s) No.
7081,

2. the target funded theme SF0012708s06
“Theoretical and Practical Security of
Heterogenous Information Systems”,

3. the European Regional Development Fund
through the Estonian Center of Excellence in
Computer Science, EXCS, and the Software
Technology and Applications Competence
Centre, STACC,

All rights reserved. The reproduction of all or part
of this work is permitted for educational or research
use on condition that this copyright notice is
included in any copy.

Cybernetica research reports are available online at
http://research.cyber.ee/

Mailing address:

AS Cybernetica

Akadeemia tee 21

12618 Tallinn

Estonia

Serial Model for Attack Tree Computations

Jan Willemson, Aivo Jiirgenson

January 25, 2010

Abstract

In this paper we extend the standard attack tree model by intro-
ducing temporal order to the attacker’s decision making process. This
will allow us to model the attacker’s behaviour more accurately, since
this way it is possible to study his actions related to dropping some of
the elementary attacks due to them becoming obsolete based on the
previous success/failure results. We propose an efficient algorithm for
computing the attacker’s expected outcome based on the given order
of the elementary attacks and discuss the pros and cons of consider-
ing general rooted directed acyclic graphs instead of plain trees as the
foundations for attack modeling.

1 Introduction

Attack tree (also called threat tree) approach to security evaluation is several
decades old. It has been used for tasks like fault assessment of critical sys-
tems [15] or software vulnerability analysis [16, 11]. The approach was first
applied in the context of information systems (so-called threat logic trees) by
Weiss [17] and later more widely adapted to information security by Bruce
Schneier [14]. We refer to [5, 6] for good overviews on the development and
applications of the methodology.

Since their first introduction, attack trees have been used to describe
attacks against various real-world applications like Border Gateway Proto-
col [4], SCADA protocols [3] and e-voting infrastructures [2]. Attack trees
have found their place in computer science education [13] and several support
tools like AttackTree+' and SecurITree? have been developed.

Early approaches to attack tree modeling were mostly concerned with
just categorising the attacks [4] or modeling the attacker’s behaviour by one

"http://www.isograph-software.com/atpover.htm
’http://www.amenaza.com/

specific parameter of the attacks like the cost, difficulty or severity [14, 3, 10].
A substantial step forward was taken by Buldas et al. [1] who introduced the
idea of game-theoretic modelling of the attacker’s decision making process
based on several interconnected parameters like the cost, risks and penalties
associated with different elementary attacks. This approach was later refined
by Jiirgenson and Willemson [7, 8] and applied to the analysis of the security
of several e-voting solutions by Buldas and Mégi [2].

So far, practically all the research in the field of attack trees has concen-
trated on what one could call a parallel model [17, 14, 11, 4, 3, 12, 10, 1, 7, 2,
8]. Essentially, the model assumes that all the elementary attacks take place
simultaneously and hence the attacker’s possible decisions based on success
or failure of some of the elementary attacks are ignored. However, as noted
already in [8], this model is unrealistic. In practice, the attacker is able to
order his actions and try different alternative scenarios if some others fail
or to stop trying altogether if some critical subset of elementary attacks has
already failed or succeeded. Not risking with the hopeless or unnecessary at-
tempts clearly reduces the amount of potential penalties and hence increases
the attacker’s expected outcome.

The main contribution of this paper is to surpass this shortcoming by
introducing what one could call a serial model for attack trees. We extend the
basic parallel model with temporal order of the elementary attacks and give
the attacker some flexibility in skipping some of them or stopping the attack
before all of the elementary attacks have been tried. The other contribution
is a generalisation of the attack tree approach to accommodate arbitrary
rooted directed acyclic graphs, which will enable us to conveniently ensure
consistency of our computations in the general framework proposed by Mauw
and Oostdijk [10].

The paper is organised as follows. In Section 2 we first briefly review the
basic multi-parameter attack tree model. Sections 3 and 4 extend it by intro-
ducing attack descriptions based on general Boolean functions, and temporal
order of elementary attacks, respectively. Section 5 presents an efficient algo-
rithm for computing the attacker’s expected outcome of the attack tree with
the predefined order of leaves. Finally, Section 6 draws some conclusions and
sets directions for further work.

2 The Attack Tree Model

Basic idea of the attack tree approach is simple — the analysis begins by
identifying one primary threat and continues by dividing the threat into
subattacks, either all or some of them being necessary to materialise the

primary threat. The subattacks can be divided further etc., until we reach
the state where it does not make sense to divide the resulting attacks any
more; these kinds of non-splittable attacks are called elementary attacks and
the security analyst will have to evaluate them somehow. During the splitting
process, a tree is formed having the primary threat in its root and elementary
attacks in its leaves. Using the structure of the tree and the estimations of
the leaves, it is then (hopefully) possible to give some estimations of the root
node as well. In practice, it mostly turns out to be sufficient to consider only
two kinds of splits in the internal nodes of the tree, giving rise to AND- and
OR-nodes. As a result, an AND-OR-tree is obtained, forming the basis of
the subsequent analysis.

The crucial contribution of Buldas et al. [1] was the introduction of four
game-theoretically motivated parameters for each leaf node of the tree. This
approach was later optimised in [8], where the authors concluded that only
two parameters suffice. Following their approach, we consider the set of
elementary attacks X = {X;, X,,..., X,,} and give each one of them two
parameters:

e p; — success probability of the attack X,

e Expenses, — expected expenses (i.e. costs plus expected penalties) of
the attack X;.

Besides these parameters, there is a global value Gains expressing the benefit
of the attacker if he is able to materialise the primary threat.

In the parallel model of [8], the expected outcome of the attacker is com-
puted by maximising the expression

Outcomeg = pg - Gains — Z Expenses, (1)
X;es

over all the assignments S C X that make the Boolean formula F, repre-
sented by the attack tree, true. (Here pg denotes the success probability
of the primary threat.) Like in the original model of Buldas et al. [1], we
assume that the attacker behaves rationally, i.e. he attacks only if there is an
attack scenario with a positive outcome. The defender’s task is thus achiev-
ing a situation where all the attack scenarios would be non-beneficial for the
attacker.

Our aim is to develop this model in two directions. In Section 3 we
will generalise the attack tree model a bit to allow greater flexibility and
expressive power of our model, and in Section 4 we will study the effects of
introducing linear (temporal) order to the set of elementary attacks.

3 Attack Descriptions as Monotone Boolean
Functions

Before proceeding, we briefly discuss a somewhat different perspective on
attack tree construction. Contrary to the standard top-down ideology pop-
ularised by Schneier [14], a bottom-up approach is also possible. Say, our
attacker has identified the set of elementary attacks X available to him and
he needs to figure out, which subsets of X are sufficient to mount the root
attack. In this paper we assume that the set of such subsets is monotone,
i.e. if some set of elementary attacks suffices, then so does any of its super-
sets. This way it is very convenient to describe all the successful attacks by
a monotone Boolean function F on the set of variables X'.

Of course, if we have constructed an attack tree then it naturally corre-
sponds to a Boolean function. Unfortunately, considering only the formulae
that have a tree structure is not always enough. Most notably, trees can not
handle the situation, where the same lower-level attack is useful in several,
otherwise independent higher-level attacks, and this is clearly a situation we
can not ignore in practical security analysis.

Another shortcoming of the plain attack tree model follows from the gen-
eral framework by Mauw and Oostdijk [10]. They argue that the semantics
of an attack tree is inherently consistent if and only if the tree can be trans-
formed into an equivalent form without changing the value of the expected
outcome. When stating and proving their result, they essentially transform
the underlying Boolean formula into a disjunctive normal form, but when
doing so, they need to introduce several copies of some attacks, therefore
breaking the tree structure in favour of a general rooted directed acyclic
graph (RDAG). Since AND-OR-RDAGS are equivalent to monotone Boolean
functions, there is no immediate need to take the generalisation any further.

Thus it would be more consistent and fruitful not to talk about attack
trees, but rather attack RDAGs. On the other hand, as the structure of a tree
is so much more convenient to analyse than a general RDAG, we should still
try to stick to the trees whenever possible. We will see one specific example
of a very efficient tree analysis algorithm in Section 5.

4 Ordering Elementary Attacks

After the attacker has selected the set of possible elementary attacks X and
described the possible successful scenarios by means of a monotone Boolean
function F, he can start planning the attacks. Unlike the naive parallel model
of Schneier [14], the attacker has a lot of flexibility and choice. He may try

some elementary attack first and based on its success or failure select the next
elementary attack arbitrarily or even decide to stop attacking altogether (e.g.
due to certain success or failure of the primary threat). Such a fully adaptive
model is still too complicated to analyse with the current methods, thus we
will limit the model to be semi-adaptive. l.e., we let the attacker to fix linear
order of some elementary attacks in advance and assume that he tries them
in succession, possibly skipping superfluous elementary attacks and stopping
only if he knows that the Boolean value of F has been completely determined
by the previous successes and failures of elementary attacks.
The full strategy of the attacker will be the following.

1. Create an attack RDAG with the set of leaf nodes X = { X, X, ..., X, }.

2. Select a subset S C X materialising the primary threat and consider
the corresponding subtree.

3. Select a permutation « of S.

4. Based on the subtree and permutation «, compute the expected out-
come.

5. Maximise the expected outcome over all the choices of S and «.

This paper is mostly concerned with item 4 in the above list, but doing so
we must remember that when building a complete attack analysis tool, other
items can not be disregarded either. Optimisations are possible, e.g. due to
monotonicity there is no need to consider any subsets of attack suites that
do not materialise the primary threat. Even more can be done along the
lines of [8], Section 4.1, but these aspects remain outside of the scope of the
current paper.

Since only one subset S and the corresponding subtree are relevant in the
above step 4, we can w.l.o.g. assume that S = X. The attacker’s behaviour
for permutation a will be modelled as shown in Algorithm 1.

Consider the example attack tree depicted in Figure 1, where we assume
a = id for better readability.

The attacker starts off by trying the elementary attack X;. Independent
of whether it succeeds or fails, there are still other components needed to
complete the root attack, so he tries X5 as well. If it fails, we see that the
whole tree fails, so it does not make sense to try X3 and X,. If both X; and
X5 have succeeded, we see that it is not necessary to try Xz, since X; and X3
have a common OR-parent, so success or failure of X, determines the final
outcome. If X; fails and X5 succeeds, we need the success of both X3 and
X, to complete the task; if one of them fails, we stop and accept the failure.

7

Algorithm 1 Perform the attack
Require: The set of elementary attacks X = {Xj, Xs,..., X, }, permuta-
tion a € S,, and a monotone Boolean formula F describing the attack
scenarios
1: for i:=1ton do
2: Consider X,
3: if success or failure of X,(; has no effect on the success or failure of
the root node then
Skip Xa(i)
else
Try to perform X,
if the root node succeeds or fails then
Stop
end if
10: end if
11: end for

The expected outcome of the attack based on permutation o will be
defined as
Outcome,, = p, - Gains — Z Pa,i - Expenses; |, (2)
X;ex
where p, is the success probability of the primary threat and p,; denotes
the probability that the node X; is encountered during Algorithm 1. Before
proceeding, we will prove that the expected outcome of Algorithm 1 does
not depend on the specific form of the formula F. This essentially gives
us the compliance of our attack tree model in the framework of Mauw and
Oostdijk [10]. Formally, we will state and prove the following theorem, similar
to Proposition 1 in [8].

Theorem 1 Let F; and Fy be two monotone Boolean formulae such that
Fi = F,, and let Outcome, and Outcome? be the expected outcomes obtained
running Algorithm 1 on the corresponding formulae. Then

Outcome. = Outcome?, .

Proof. We can observe that Algorithm 1 really does not depend on the
attack description having a tree structure, all the decisions to skip or stop
can be taken based on the Boolean function F. Assume we have already
fixed the results of the elementary attacks X,),..., Xa@—1). Then we see
that

&

Decrypt
company
secrets
v &
Obtain Obtain
encrypted the password
file
Bribe the Break into Steal the Install the
sysadmin the system backup keylogger

Figure 1: An example attack tree. The left-to-right ordering of the leaf
nodes in the tree represents the permutation o = id of the set X =
{X17X27X37X4}-

e the node X,(;) may be skipped if for all the values of X, q1),..., Xam)
we have

F (Xa(1)7 cey Xa(z‘—l), t, Xa(i—i—l), .. ,Xa(n)) =
= F(Xa@s--» Xa-1), [+ Xa@+1)s - - - Xa@w)) »

e there is no need to proceed with Algorithm 1 after the node X, if for
all the values of X,(it1), ..., Xa@m) we have

F (Xa(1)7 . 7Xa(i—1)7 Xa(i), Xa(i—i—l), .. ,Xa(n)) =1

or
F (Xaq), - Xagi-1): Xa@), Xag+1)s - - -» Xam)) = f -

O
Thus, our serial model for attack trees follows the guidelines given in Section 3
and it really is safe to talk about Boolean functions describing the attack
scenarios.
Next we will show formally that introducing order to the elementary
attacks really increases the attacker’s expected outcome. Comparing (2) to
(1) we get the following theorem.

Theorem 2 Let F be a monotone Boolean function on n > 2 wvariables
describing the attack scenarios. Let Outcome, be defined by (2) and let

9

Outcomey be defined by (1) for S = X. Then we have
Outcome, > Outcomey . (3)

If for all the elementary attacks X; (i =1,...,n) one also has Expenses, > 0,
then strict inequality holds in (3).

Proof. First we note that by [8] we can compute the success probability
of the attacker as follows:

bx = Z sz' H (1—pj),

S C X X,es XjEX\S
F(S := true) = true

where F(S := true) denotes evaluation of the Boolean function F, when
all the variables of S are assigned the value true and all others the value
false. This is exactly the total probability of all the successful branches of
Algorithm 1 and thus py = p, (implying that p, is actually independent
of). We also have that Vip,,; < 1 and hence the inequality (3) follows.

Assume now that for all X; we have Expenses, > 0. Then in order to
prove that strict inequality holds in (3), we need to show that there exists
such an index ¢ that p,,; < 1. Consider the elementary attack X,y that the
attacker is supposed to try last. If there exists an evaluation of the Boolean
variables X1y, ..., Xo(n-1) such that

F (Xa(l)a cee 7Xa(n71)7 t) =F (Xa(1)> cee aXa(nfl)a f))

then X, is superfluous in this scenario and hence p,, < 1.
If on the other hand we have

F (Xa(1)7 s 7Xa(n71)7 t) 7é va (Xa(l)u SRR) Xa(nfl)a f)

for all evaluations of Xy, .., Xam-1), then due to monotonicity of F we
can only have that

a (Xa(l)a SR >Xa(n—1)> f) =f
and
a (Xa(1)7 ooy Xan-1), t) =1,

implying F(Y7,...,Y,) = Y,,. But in this case all the elementary attacks
before the last one get skipped, so po1 = ... = pan—1 = 0. 0

Thus, introducing ordering of the elementary attacks is guaranteed to
give at least as good a result to the attacker as the routine described in [8].
In the interesting case, when all attack components have positive expenses,
the attacker’s expected outcome is strictly larger.

10

5 Computing the Expected Outcome

There are n 4+ 1 parameters that need to be computed in order to find the
expected outcome using the formula (2) — the total success probability p, and
the probabilities p,; that the node X; is encountered during Algorithm 1. It
turns out that there is an efficient algorithm for computing these quantities
provided that the given monotone Boolean function can actually be described
by a tree. In what follows we will also assume that the tree is binary, but
this restriction is not a crucial one.

So let us have an attack tree with the leaf nodes Xi,..., X, and the
corresponding success probabilities p;, ¢ = 1,...,n. We will assume that all
these probabilities are independent and consider the permutation a € S,,.
In order to explain the algorithm we first introduce three extra parameters
to each node Y, namely Y.t, Y.f and Y.u showing the probabilities that the
node has been proven to be respectively true, false or yet undefined in the
course of the analysis. Initially, we may set Y.t =Y.f =0 and Y.u = 1 for
all the nodes and the algorithm will work by incrementally adjusting these
values, so that in the end of the process we will have R.t = p, for the root
node R. Throughout the computations we will of course retain the invariant
Yt+Y.f+Yu =1 for all the nodes Y, hence one of these parameters is
actually superfluous. In the presentation version of the algorithm we will
drop the parameter Y.u, even though it actually plays the central role.

Going back to the high-level description of Algorithm 1, we see that
the most difficult step is step 3, where the attacker is supposed to find out
whether the next elementary attack in his list may have any effect on the
success or failure of the root node. Elementary attack does not have any
effect iff there is a node on the path from that particular leaf to the root
that has already been proven to be true or false. Thus the next elementary
attack should be tried iff all the nodes on this path are undefined — and this
is precisely the event that gives us the required probability p,, ;.

Let the path from root R to the leaf X; then be (Yy = R, Y1,..., Y, = X)).
Thus, we need to compute the probability

Pai = PrlYo=u&Yi=u&k ... &Y, =u|=
= PrlYo=u|Yi=u,..., Y, =ul-
PriYi=u|Yo=u,..., Y, =u]-
oo PrYo =w| Y, =l - Pr[Y, =u] =

= PrlYo=u|Yi=u]-Pr[Yi=u|Yo=u]-...
oo Pr[Y o =u| Y, =l - Pr[Y, =yl (4)

11

The equations
PriYi=u|Yir1=u, ..., Yy =ul =Pr[Yy =u|Yi = u

hold due to the tree structure of our underlying RDAG and the independence
assumption of the elementary attacks. In (4) we have Pr[Y,, = u] = Pr[X; =
u] = 1 and all the other probabilities are of the form Pr[Y, = u|Yyy =
u]. Hence, we need to evaluate the probability that the parent node Y
is undefined assuming that one of its children, Y., is undefined. This
probability now depends on whether Y}, is an AND- or OR-node. If Y} is an
AND-node and Y}y is undefined, then so is Yy, if its other child Z is either
true or undefined, which is the case with probability Z.t + Zu =1— Z.f.
Similarly, if Y} is an OR-node and Y} is undefined, then so is Y, if its
other child Z is either false or undefined, which is the case with probability
Zf+Zu=1-2t.

This way, (4) gives an efficient way of computing p,; assuming that the
current parameters of the internal nodes of the tree are known. Hence, we
need the routines to update these as well. These routines are straightforward.
If the elementary attack X; is tried, only the parameters of the nodes on the
path (Y, = X, ..., Y1, Yy = R) from that leaf to the root need to be changed.
We do it by first setting Y,,.t = p;, Y;n.f =1 —p; and Y,,.u = 0 and then
proceed towards the root. If the node we encounter is AND-node A with
children B and C, we set

At = Bit-Ci, (5)
Af = Bf+C.f—B.f-C.f, (6)

and if we encounter an OR-node A with children B and C, we set

At = Bt+Ct—Bit Ct, (7)
Af = B.f-C.f. (8)

As noted above, we see that the quantities Y.u are actually never needed in
the computations.

This way we get the full routine described as Algorithm 2.

Algorithm 2 is very efficient. In order to compute the n + 1 necessary
probabilities, it makes one run through all the leaves of the tree and at each
run the path from the leaf to the root is traversed twice. Since the number of
vertices on such a path in a (binary) tree can not be larger than the number of
leaves n, we get that the worst-case time complexity of Algorithm 2 is O(n?).
If the tree is roughly balanced, this estimate drops even to O(nlogn). This
is a huge performance increase compared to a naive algorithm that one could

12

Algorithm 2 Computing the probabilities p,, ;

Require: An attack tree with leaf set X' = {X;, X5,..., X,,} and a permu-
tation o € S,
Ensure: The probabilities p,; for: =1,2,....,n
1: for all Z € {X,...,X,} do
2. Zit:=0,2.f:=0
3: end for
4: for i :=1ton do
5. Find the path (Yp,Yi,...,Y,,) from the root Yy = R to the leaf Y,, =
Xa()

6: Paat) = [[j=(1 = Zj.a), where Z; is the sibling node of Y; and

| t, itY;_;is an OR-node,
“= { f, if Y;_ is an AND-node
7 Xa(i).t = Pa(i)
8: Xa(z)f =1- Pa(i)
9: Update the parameters of the nodes Y;, 1,Y,,_o,..., Yy according to
formulae (5)—(8)
10: end for

design based on the complete attack scenario analysis described after Figure 1
in Section 4. We studied the naive algorithm and it turns out that it is not
only worst-case exponential, but also average-case exponential [9].

Of course, as noted in Section 4, Algorithm 2 is only one building block in
the whole attack tree analysis. In order to find out the best attack strategy
of the attacker, we should currently consider all the subsets of X and all their
permutations. Optimisation results presented in [7] give a strong indication
that a vast majority of the possible cases can actually be pruned out, but
these methods remain outside of the scope of the current paper.

6 Conclusions and Further Work

In this paper we studied the effect of introducing a temporal order of elemen-
tary attacks into the attacker’s decision making process together with some
flexibility in retreating of some of them. It turns out that taking tempo-
ral dependencies into account allows the attacker to achieve better expected
outcomes and as such, it brings the attack tree model one step closer to
the reality. This reality comes for a price of immense increase in computa-
tional complexity, if we want to compute the attacker’s exact outcome by

13

considering all the possible scenarios in a naive way.

Thus there are two main challenges for the future research. First, one
may try to come up with optimisations to the computational process and in
this paper we showed one possible optimisation which works well for attack
trees. The second approach is approximation. In attack tree analysis we
are usually not that much interested in the exact maximal outcome of the
attacker, but we rather want to know whether it is positive or negative. This
observation gives us huge potential for rough estimates, which still need to
be studied, implemented and tried out in practice.

In this paper we limited ourselves to a semi-adaptive model, where the
attacker is bound to the predefined order of elementary attacks and may only
choose to drop some of them. Fully adaptive case where the attacker may
choose the next elementary attack freely is of course even more realistic, but
it is currently too complicated to analyse. Our model is also non-blocking
in the sense that there are no elementary attacks, failure of which would
block execution of the whole tree. However, in practice it happens that when
failing some attack, the attacker might get jailed and is unable to carry on.
Hence, future studies in the area of adaptive and possibly-blocking case are
necessary.

As a little technical contribution we also discussed the somewhat in-
evitable generalisation of attack trees to RDAGs, but our results also show
that whenever possible, we should still stick to the tree structure. Possi-
ble optimisations of RDAG-based algorithms remain the subject for future
research as well.

7 Acknowledgments

The authors are grateful to Margus Niitsoo for his collaboration and helpful
comments.

References

[1] Ahto Buldas, Peeter Laud, Jaan Priisalu, Méart Saarepera, and Jan
Willemson. Rational Choice of Security Measures via Multi-Parameter
Attack Trees. In Critical Information Infrastructures Security. First
International Workshop, CRITIS 2006, volume 4347 of LNCS, pages
235-248. Springer, 2006.

[2] Ahto Buldas and Triinu Mégi. Practical security analysis of e-voting sys-
tems. In A. Miyaji, H. Kikuchi, and K. Rannenberg, editors, Advances

14

[10]

in Information and Computer Security, Second International Workshop
on Security, IWSEC, volume 4752 of LNCS, pages 320-335. Springer,
2007.

E.J. Byres, M. Franz, and D. Miller. The use of attack trees in assess-
ing vulnerabilities in SCADA systems. In International Infrastructure
Survivability Workshop (IISW’04), IEEE, Lisbon, Portugal, 2004.

S. Convery, D. Cook, and M. Franz. An attack tree for
the border gateway protocol. IETF Internet draft, Feb 2004.
Available at http://www.ietf.org/proceedings/04aug/I-D/
draft-ietf-rpsec-bgpattack-00.txt.

Kenneth S. Edge. A Framework for Analyzing and Mitigating the Vul-
nerabilities of Complex Systems via Attack and Protection Trees. PhD
thesis, Air Force Institute of Technology, Ohio, 2007.

Jeanne H. Espedahlen. Attack trees describing security in distributed
internet-enabled metrology. Master’s thesis, Department of Computer
Science and Media Technology, Gjgvik University College, 2007.

Aivo Jiirgenson and Jan Willemson. Processing multi-parameter attack-
trees with estimated parameter values. In A. Miyaji, H. Kikuchi, and
K. Rannenberg, editors, Advances in Information and Computer Secu-
rity, Second International Workshop on Security, IWSEC, volume 4752
of LNCS, pages 308-319. Springer, 2007.

Aivo Jurgenson and Jan Willemson. Computing exact outcomes of
multi-parameter attack trees. In On the Move to Meaningful Internet
Systems: OTM 2008, volume 5332 of LNCS, pages 1036-1051. Springer,
2008.

Aivo Jirgenson and Jan Willemson. Riindepuud: pooladapti-
ivne mudel ja ligikaudsed arvutused (in Estonian). Technical Re-
port T-4-4, Cybernetica, Institute of Information Security, 2009.
http://research.cyber.ee/.

Sjouke Mauw and Martijn Oostdijk. Foundations of attack trees. In
Dongho Won and Seungjoo Kim, editors, International Conference on
Information Security and Cryptology — ICISC 2005, volume 3935 of
LNCS, pages 186—-198. Springer, 2005.

15

[11]

[12]

[13]

[14]

[15]

Andrew P. Moore, Robert J. Ellison, and Richard C. Linger. Attack
modeling for information security and survivability. Technical Report
CMU/SEI-2001-TN-001, Software Engineering Institute, 2001.

Alexander Opel. Design and implementation of a support tool for at-
tack trees. Technical report, Otto-von-Guericke University, March 2005.
Internship Thesis.

Vineet Saini, Qiang Duan, and Vamsi Paruchuri. Threat modeling using
attack trees. J. Comput. Small Coll., 23(4):124-131, 2008.

Bruce Schneier. Attack trees: Modeling security threats. Dr. Dobb’s
Journal, 24(12):21-29, December 1999.

W.E. Vesely, F.F. Goldberg, N.H. Roberts, and D.F. Haasl. Fault Tree
Handbook. US Government Printing Office, January 1981. Systems
and Reliability Research, Office of Nuclear Regulatory Research, U.S.
Nuclear Regulatory Commission.

John Viega and Gary McGraw. Building Secure Software: How to Avoid
Security Problems the Right Way. Addison Wesley Professional, 2001.

J. D. Weiss. A system security engineering process. In Proceedings of
the 14th National Computer Security Conference, pages 572581, 1991.

16

