
CYBERNETICA
Institute of Information Security

Kademlia-based distributed hash tables
implementation for VirtualLife

Jaak Ristioja

T-4-7 / 2009

Copyright c©2009
Jaak Ristioja1.
1 AS Cybernetica, Institute of Information Security
The research reported here was supported by:

1. Estonian Science foundation, grant(s) No.
6944,

2. the target funded theme SF0012708s06
“Theoretical and Practical Security of
Heterogenous Information Systems”,

3. the European Regional Development Fund
through the Estonian Center of Excellence in
Computer Science, EXCS, and the Software
Technology and Applications Competence
Centre, STACC,

4. EU FP7-ICT project VirtualLife (contract no.
216064).

All rights reserved. The reproduction of all or part
of this work is permitted for educational or research
use on condition that this copyright notice is
included in any copy.

Cybernetica research reports are available online at
http://research.cyber.ee/

Mailing address:
AS Cybernetica
Akadeemia tee 21
12618 Tallinn
Estonia

2

Kademlia-based distributed hash tables
implementation for VirtualLife

Jaak Ristioja

January 25, 2010

1 Motivation

DHT or Distributed Hash Table1 is a decentralized distributed system, that
provides a lookup service. In its essence, it’s similar to a hash table, as it
stores key-value pairs as its content, allowing clients to lookup values, using
a key. The content is distributed among all participating nodes in a way that
causes minimal disruption from node additions, removals, failures etc.

VirtualLife is a 3D virtual world running on several servers (zone servers),
to which clients connect. The virtual world spans over all the zone servers,
i.e. each zone server handles objects in a particular area in the virtual world.
The client application connects to a single zone server at the time. It retrieves
all required objects from that zone server. Given this design, the need for
the client to access objects from other zone servers arises.

For example each identified client might have an inventory which contains
objects located in different zones of the virtual world. The client can still
only connect to one zone server at a time, but still needs to access objects
in his inventory from different zones. Since the client only retrieves objects
from the zone server it is currently connected to, that zone server has to
provide those objects. To do so, the zone server first needs to know from
which zone server to retrieve an object, then retrieve that object and pass it
to the client.

Since all the zone servers in the virtual world are connected to the same
nation server, the easiest way would be for the zone servers to query the
nation server for the locations of such objects. This requires the nation
server to provide an indexing service for storing the locations of these objects.
However, putting too much load on the single nation server will be inefficient.
Therefore a more distributed means for providing such index is required.

1http://en.wikipedia.org/wiki/Distributed_hash_table

3

The objects are stored on the zone servers, hence likely the best solution
to this problem is for the zone servers themselves to provide some kind of
distributed indexing service. For this purpose, a distributed hash tables
(DHT) solution called Kademlia2 was implemented for the zone servers in
VirtualLife. For indexing purposes, Kademlia provides both fault-tolerance
and performance. When several zone servers participating in the DHT go
offline, this will not cause a serious data loss in the index itself, since the index
data is distributed on multiple zone servers. For the same reason lookups
from the index do not require many messages to be sent between the zone
servers, resulting in fast lookups.

2http://en.wikipedia.org/wiki/Kademlia

4

2 Summary of DHT in VirtualLife

The foremost purpose of the DHT in VirtualLife is to provide a mapping of
asset GUID’s to their location in the system, i.e. it stores pairs of (GUID,
GUID), since the locations where assets are stored also have a GUID. DHT
does NOT provide any means to retrieve the assets from their location.

Figure 1: Example of handling an asset request by a client. DHT is used in
2-3.

1. Client requests an asset from a zone.

2. The zone queries the DHT network.

3. The location of the asset is returned by the DHT query.

4. The zone requests the asset from the location returned by the DHT query.

5. A copy of the asset is returned to the zone.

6. The zone returns a copy of the asset to the client.

If a client asks for an asset from a zone by the GUID and the zone does
not possess it, nor have it cached, it uses the DHT to find the location of
the asset (see Figure ??). The zone does this by querying the DHT using
the GUID given by the client. In return, the DHT query either returns the
location of the asset, or a failure. If the DHT query succeeds and returns
the location of the asset, the zone attempts to retrieve the asset from that
location. In case the asset cannot be retrieved in an acceptable manner (e.g.
location does not respond or possess the asset any more), then the asset
is found to be unavailable. On successful retrieval, the asset is forwarded

5

to the client, and may optionally be cached in the zone. In case the DHT
query returns a failure, or if the asset can not be retrieved from the location
received from the DHT query, a failure is returned to the client.

2.1 Participants

The nodes of the DHT consist only of Virtual Zones. The DHT network
itself is kept private (clients will have no direct access), as it’s only directly
used by the nodes (the Virtual Zones) themselves.

2.2 Storage

The DHT is used to store the locations of various assets, and not the assets
themselves. This means that in case the DHT contains the location for
a given GUID, the asset may still be unavailable from that location (e.g.
network failure). As each location is also identified by a GUID, we store
(GUID-GUID) pairs.

The contents of the DHT (GUID-GUID pairs) will be distributed among
all participating nodes, whereas multiple nodes may contain the unique
GUID-GUID pairs (to counter node failures and provide faster lookup). The
current implementation tries to stores any pair on at least 10 (parameter
DHT K, see Kademlia paper) participating nodes. In case of many DHT
nodes, the more popular a GUID-GUID pair is (i.e. frequent enough lookups
for that pair key are done), the more nodes that pair will be stored on.

2.3 Types assets in the DHT

Since the DHT will be able to store any GUID→GUID mappings, it does not
actually matter what you put into the DHT. You could, in theory, store what-
ever key-value pairs of type GUID-GUID you like. So from the viewpoint
of developing the DHT, we actually won’t have to consider what abstract
information those pairs hold. For simplicity, in the current DHT API im-
plementation you are only allowed to issue a store request on a DHT node
where in the key-value pair the value is the GUID of the same node.

6

3 DHT description

The DHT implementation is an overlay network running on top of the mes-
sage system, using the Kademlia3 protocol. The nodes participating in the
DHT overlay are identified by the GUID of their entity manager. That GUID
will also be used when addressing messages.

3.1 Differences from the Kademlia paper

To better suit the DHT needs of VirtualLife, the Kademlia protocol was not
implemented in the exact manner described in the Kademlia paper. This
section describes the most important aspects of Kademlia that were imple-
mented with changes.

3.1.1 Node distance metric

We have slightly modified the XOR metric described in the Kademlia paper.
According to Kademlia the distance between 2 nodes with the GUID’s x
and y would be d(x, y) = x ⊕ y, whereas in the DHT implementation in
VirtualLife the distance is actually d(x, y) = 128−f(x⊕y), where 128 is the
number of bits in the GUID, and the function f returns the index (starting
from 0) of the first set bit (1) in its argument or 128 if no bit is set. In
comparison to the distance metric used in Kademlia, our distance metric is
less accurate, but fulfills our DHT needs and fits nicely into a CPU register,
since 0 ≤ d(x, y) ≤ 128. Our distance metric can immediately be used as an
index of a k-bucket, without requireing any conversion.

Just as Kademlia’s XOR metric, it satisfies the following properties:

• d(x, x) = 0

• d(x, y) > 0 if x 6= y

• ∀x, y : d(x, y) = d(y, x)

• ∀x, y, z : d(x, y) + d(y, z) ≥ d(x, z)

3http://pdos.csail.mit.edu/~petar/papers/maymounkov-kademlia-lncs.pdf

7

3.1.2 System-wide parameters

Here’s a descriptive list of numeric parameters present in the Kademlia paper
and their counterparts in the VirtualLife DHT implementation.

Value in Kademlia Value in VirtualLife Description
160 bits 128 bits length of ID’s / GUID’s.
k = 20 DHT K = 10 system-wide replication parameter.
α = 3 DHT A = 3 system-wide concurrency parameter.
24h DHT VALUE TIMEOUT = 24h key-value pair expiration time.
1h DHT VALUE REPUBLISH = 1h how often to republish key-value pairs.
1h DHT BUCKET REFRESH = 1h if we have not done any lookups for the

GUID range of a specific bucket for the
specified time, we have to refresh this
bucket.

5 DHT STALE COUNT = 5 number of failed requests to a peer to
consider it stale.

not described DHT REQUEST TIMEOUT = 2s timeout for a request.
assuming 1 DHT PUSH VALUES THRESHOLD = 3 only store a value on a new

peer if we are one of the
DHT PUSH VALUES THRESHOLD
closest nodes to that value.

3.1.3 Routing table

Instead of having a dynamic tree for a routing table we just keep 128 buckets
for simplicity. Since the number of participating DHT nodes is quite low, we
also do not limit node data kept in memory.

3.1.4 Optimizations

We have not implemented the optimization of avoiding a node lookup before
republishing keys. Nor have we implemented any optimizations regarding
the routing table as a tree, since we don’t keep it as a tree.

8

4 API

4.1 DHT subsystem initialization

4.1.1 DHT initialization in the zone server

The general steps to initialize DHT in the zone server are as follows:

1. Initialize the entity manager

2. Create a ZoneDHTManager

3. Create a ZoneDHTComponent and attach it to the message queue.

4. To start the bootstrapping process for DHT, pass the GUID of the
nation to ZoneDHTManager

Listing 1: Example of initializing the DHT in the zone server

// Presuming the en t i t y manager has a l r eady been s e t up , we
// i n i t i a l i z e the DHT manager by pas s ing i t a r e f e r e n c e to
// the network p ro to co l :
ZoneDHTManager &DHTManager(∗ZoneDHTManager : : c r e a t e ()) ;
DHTManager . in i tNetworkProtoco l (p ro to co l) ;

// Setup the DHT component and attach i t to the message queue :
EntityManager &em(EntityManager : : g e tS ing l e t on ()) ;
ZoneDHTComponent ∗DHTComponent = new ZoneDHTComponent () ;
em . addComponent (∗DHTComponent , EntityManager : : PRIORITY NORMAL) ;

// After a l l network connec t i ons have been setup we need to
// boots t rap the DHT:
ZoneDHTManager : : g e tS ing l e t on () . i n i t (nationGuid) ;

// At t h i s po int the DHT in the zone has s t a r t ed boots t rapp ing
// i t s e l f and w i l l be ready f o r g ene ra l use a f t e r i t has f i n i s h e d
// boots t rapp ing .

4.1.2 DHT initialization in the nation server

To initialize DHT in the nation

1. Create a NationDHTManager singleton

2. Create a NationDHTComponent and attach it to the message queue of
the nation’s entity manager.

9

Listing 2: Example of initializing the DHT in the nation server

// Create the DHT manager :
NationDHTManager : : c r e a t e () ;

// Create the NationDHTComponent and attach i t to the message
// queue :
EntityManager &em(EntityManager : : g e tS ing l e t on ()) ;
NationDHTComponent∗ pDht = new NationDHTComponent () ;
em . addComponent (∗pDht , EntityManager : : PRIORITY LOW) ;

// Now the DHT in the nat ion w i l l r e c e i v e and answer DHT
// boots t rap que r i e s from zones .

4.2 Other bindings

4.2.1 Zone bindings

When the zone receives a message from the nation (especially when its a DHT
message), the message must explicitly be passed to ZoneDHTManager. This
is because the nation messages are currently not forwarded to the general
message loop, and will not be received by the ZoneDHTComponent.

Listing 3: Passing on messages from the nation

ZoneDHTManager : : g e tS ing l e t on () . processNationMessage (message) ;

4.2.2 Nation bindings

When a zone goes offline for any reason, the nation should pass that zone’s
GUID to the DHT manager.

Listing 4: Example of notifying the DHT that a zone has left

NationDHTManager : : g e tS ing l e t on () . zoneLe f t (zoneGuid) ;

4.3 DHT Access

4.3.1 Publishing objects

Publishing a key means that the zone will tell DHT, that it has made the
object in question available. That object is uniquely identified by its GUID,
the key. Publishing an object therefore comes down to storing a key-value
pair on DHT: the key is the GUID of the object in question, and the value
is the GUID of the zone that provides the object.

10

WARNING! If any zone publishes a key that has already been published
by another zone, the original value will mostly prevail, but it cannot be
guaranteed that lookups for that key will always return the original value.
However, it is possible to modify the DHT subsystem in the future so that
it stores multiple GUID values per key GUID, i.e. GUID→[GUID] pairs.

Listing 5: Method for telling the DHT that an object is available from this
zone, by passing the GUID of the object

void ZoneDHTManager : : pub l i sh (const Guid &key) ;

This starts an asynchronous storage process. So this does not guarantee
that the key-value pair was or will actually be stored properly (right away),
because of the peer-to-peer nature of DHT.

Listing 6: Example of publishing an object

ZoneDHTManager &dm(ZoneDHTManager : : g e tS ing l e t on ()) ;
i f (dm. ge tS ta t e () == ZoneDHTManager : :RUNNING) {

ZoneDHTManager : : g e tS ing l e t on () . pub l i sh (objectGuid) ;
}

If a published key-value pair has not been (re)published within 24 hours,
it will disappear from DHT. ZoneDHTManager will automatically republish
all keys it has not (re)published within an hour. When the zone is restarted,
the zone would need to republish all keys (the ones it is the original publisher
of) manually by using ZoneDHTManager::publish(const Guid &key), be-
cause ZoneDHTManager does not save it’s state to disk. If the zone does not
republish its keys, they will disappear from DHT after the 24 hours have
elapsed.

4.3.2 Lookup

To asynchronously look up the location of an object on DHT, the ZoneDHTManager
provides the following method:

Listing 7: Asynchronous lookup method for DHT

template <class F, class G>
bool ZoneDHTManager : : lookup (const Guid &key ,

const F &fa i l u r eCa l l b a ck ,
const G &succe s sCa l lback) ;

The lookup method returns true if the asynchronous lookup was properly
initiated, and false otherwise, e.g. when the DHT has not yet been properly
bootstrapped. One of the two callbacks provided is called respectively either
when the lookup fails or succeeds.

11

Listing 8: Example of doing an asynchronous DHT lookup

class MyLookup {
bool doLookup (const Guid &key) {

return ZoneDHTManager : : g e tS ing l e t on () . lookup (
key ,
boost : : bind(&MyLookup : : onFailToFind , this , 1) ,
boost : : bind(&MyLookup : : onFound , this , 1 , 2)

) ;
}
void onFailToFind (const Guid &key) ;
void onFound (const Guid &key , const Guid &value) ;

}

12

5 DHT internals

The DHT implementation consists of mainly 2 modules for both the Nation
and the Zone: the DHT manager singleton (classes ZoneDHTManager and
NationDHTManager), and the DHT Component (classes ZoneDHTComponent

and NationDHTComponent), which is attached to the message queue of the
zone’s (or nation’s) entity manager. DHT messages are received from the
entity managers message loop via the DHT Component (except for mes-
sages in the zone received from the nation, which are directly passed to
the ZoneDHTManager from ZoneNetComponent). For sending messages, the
NetworkManager singleton is used directly.

5.1 DHT in the nation

Figure 2: DHT in the nation

5.1.1 NationDHTComponent

The nation DHT component handles DHT bootstrap messages (i.e. the
GET NODES request) from DHT nodes, and replies with a list (gotten from
NationDHTManager) of other DHT nodes that are already online. It also
notifies the NationDHTManager when a nodes comes online.

5.1.2 NationDHTManager

The only role of the nation DHT manager is to keep a list of DHT nodes
that are currently online (i.e. connected to the nation). A DHT node is
considered being online by the nation when the nation receives a GET NODES

request from the DHT node when the latter bootstraps itself. For a reply

13

to the GET NODES request, the nation DHT manager returns a list of DHT
nodes ”closest” to the bootstrapping node.

5.2 DHT in the zone

Figure 3: DHT in the zone

5.2.1 ZoneDHTComponent

The zone DHT component is the first to handle messages received from the
entity manager. Based on the message type, it takes the message components
apart from their container, and passes them to the respective ZoneDHTManager
method.

5.2.2 ZoneDHTManager

The zone DHT manager is the central component of the DHT subsystem. It
provides storage for DHT key-value pairs, keeps track of other DHT nodes,
handles most communication between with other DHT nodes etc.

Value storage Values stored in DHT are stored in ZoneDHTManager, in
a map storing key-value pairs where the key is the GUID of the object,
and value is a structure containing the value and other mostly DHT-specific
metadata. Any key-value pairs that expire 24 hours after being republished
by the original publisher, are removed from the node. Any key-value pairs
that need to be republished will be republished.

Peer storage For keeping track of other DHT nodes, the ZoneDHTManager
keeps a mapping of DHT node’s GUID’s to pointers to structures containing
node metadata. ZoneDHTManager also contains a distance table (or a routing

14

table), where pointers to node metadata are kept in a specific sorted order
in buckets in order to optimize DHT-specific communication between nodes.

Pending activities To keep track of all ongoing asynchronous operations
(such as RPC’s etc), the zone DHT manager keeps a list of these operations.
Each such pending activity inherits from the class Activity, and therefore
has an unique ID. Whenever such an operation is added to the list, it is
activated via the start() method. DHT requests sent by these activities
may also carry the ID if the activity, the request ID. Whenever a message
with such ID is received by the DHT, it is first parsed by the zone DHT
manager, and relevant information in the message is forwarded to the activity
expecting the message. Activities may also choose to time out when their
onTick() method is called, and remove themselves from the list of pending
activities.

The class Activity has the following subclasses:

• Bootstrap

1. Sends a GET NODES request to the nation to retrieve GUID’s of
some other DHT nodes.

2. Performs a node lookup (using NodeLookup) on this node’s GUID.

• Lookup, a base class inherited by NodeLookup and ValueLookup

– NodeLookup

1. Performs a node lookup for the given key.

2. Returns a list of nodes.

– ValueLookup

1. Performs a value lookup for the given key.

2. Returns the found value or failure.

• Refresh

1. Generates a random GUID in the range of the given bucket.

2. Does a node lookup (using NodeLookup) on that GUID.

• Request, a base class inherited by FindNodeRequest and FindValueRequest

– FindNodeRequest

1. Does a FIND NODE request on the given node.

2. Returns a list of nodes or failure.

15

– FindValueRequest

1. Does a FIND VALUE request on the given node.

2. Returns the found value, a list of nodes or failure.

• Store

1. Does a node lookup (using NodeLookup) on the given key.

2. Sends a STORE messages to all the nodes returned by that lookup
to store the given value.

Figure 4: Dependancies between DHT activity classes.

16

6 DHT Monitor

In addition to implementing DHT in VirtualLife, an interactive tool with
a graphical user interface was implemented for monitoring DHT activity in
VirtualLife zone servers. Its was written mostly for testing purposes. It also
allows to perform certain tests using the value injection and lookup methods
provided.

The DHT monitor is a client, which connects to the running DHT nodes.
The DHT nodes send the DHT monitor messages about their changing states
and the DHT monitor displays these in a human-readable way. The DHT
monitor allows to publish (inject) GUID’s on a connected DHT node, and
observe these being propagated to other DHT nodes. It is also possible to
perform lookup queries for the keys that were previously injected.

17

