
Information Security Research Institute

Modelling a cryptographic protocol
with the purpose of formal

verification in Isabelle

Version 1.0
Johanna Maria Kirss

D-2-457 / 2022

Copyright ©2022
Johanna Maria Kirss.
Cybernetica AS

All rights reserved. The reproduction of all or part of this
work is permitted for educational or research use on condition
that this copyright notice is included in any copy.
Cybernetica research reports are available online at
http://research.cyber.ee/

Mailing address:
Cybernetica AS
Mäealuse 2/1
12618 Tallinn
Estonia

2

http://research.cyber.ee/

Modelling a cryptographic protocol with the
purpose of formal verification in Isabelle

Johanna Maria Kirss

Version 1.0

Abstract

This report reviews a research project in modelling a cryptographic protocol in
Isabelle, a proof assistant. It details its premises, theoretical framework, implement-
ation and reflects on the outcomes of the project.

3

Contents

1 Introduction 5

2 Preliminaries 5
2.1 Secure multiparty computation . 5
2.2 Foundations of programmable secure multiparty computation 5
2.3 The goal of this project . 6

3 Theoretical framework 6
3.1 Formal proofs and Isabelle . 6
3.2 Reactive simulatability . 7
3.3 Execution model . 8
3.4 The adversary . 8

4 Result and implementation 9
4.1 Result . 9
4.2 The code layout . 9
4.3 Datatypes . 10
4.4 Adversarial actions . 10
4.5 Machines . 12
4.6 Execution loop . 12

5 Conclusion and takeaways 13

A Output equivalence with shared memory model 14
A.1 Brief description of the result . 14
A.2 The security definition of a protocol 14
A.3 Bisimulation proofs . 15
A.4 Shared-memory model . 15
A.5 Output equivalence of the basic and shared-memory models 16
A.6 Proving modified bisimulation . 16

4

1 Introduction

The aim of this document is to report on a formal verification project done by Johanna
Maria Kirss, Sven Laur and with the aid of Dominique Unruh. The project consisted of
modelling of a cryptographic protocol in the proof assistant Isabelle in order to formally
verify a result about the protocol. While originally the goal was to prove a theorem
detailed in the appendix, the project was later adjusted to just the modelling of the
protocol.

In section 2, we introduce some important preliminaries like formal verification and
the proof assistant Isabelle, secure multiparty computation, and an outline of a paper
by Pille Pullonen-Raudvere and Sven Laur that this project is based on. Section 3 of
the report introduces the theoretical framework of the project. That is, it surveys the
reactive simulatability formalism and shows how secure multiparty computation can be
modelled within it – what kinds of participants there are, and what their possible actions
are. Section 4 explains the result to be proven as well as the Isabelle code. It introduces
some auxiliary work done. The report closes with a concluding note on the current state
of the research and further directions. The appendix surveys a larger theorem the project
originally meant to tackle, before the scope of the project was adjusted.

2 Preliminaries

2.1 Secure multiparty computation

Secure multiparty computation (MPC) is a general term for the process of finding results
from multiple inputs while keeping those inputs private. It can be a simple procedure
like determining the the richer person of two while keeping their incomes secret [Yao82],
or a complex one like collecting browser user statistics ([CGB17]). The range of use
cases for MPC is impressive, including e.g. determining illegal passengers of a flight (by
securely finding the intersection between a carrier’s ticket holders and a local authority’s
no-fly list) ([FNP04]), and obscuring the memory usage patterns of a client in public
storage ([Fle16]).

2.2 Foundations of programmable secure multiparty computation

This project is a part of a larger body of work being done by Pille Pullonen-Raudvere and
Sven Laur. The relevant paper, whose working title is “Foundations of programmable
secure multiparty computation”, builds an abstract framework to describe MPC protocols.
The paper is not publicly available yet, but in extremely brief terms, it is a series of
theorems transforming a general MPC protocol to an equivalent, but simpler and more
abstract protocol. It achieves an abstract model of MPC execution. That model is most
suited to the Sharemind architecture but also fits other multiparty solutions.

5

2.3 The goal of this project

At the outset, the aim of this project was to verify the proof of one of such intermediate
theorems in that paper. That is, the relevant theorem would have been about the
equivalence of two protocols when considering the distribution of their final outputs.
It does have a pen-and-paper proof, however, since it is about the properties of two
complex distributed systems, a formal proof would have greatly reduced the uncertainty
of whether the proof’s correctness.
So, in light of that, the original structure of the project was as follows. First, it would be
necessary to describe the two different models of multiparty computation in Isabelle.
Once we have set up both models in functional language, the equivalence of the models
would be proven by a series of formal statements. The formal reasoning would follow
the pen-and-paper proof. The crucial part of the proof would have been a relation in
between system states similar to a bisimulation. Its purpose is to show that the states, in
some precise sense, operate in “lockstep” and provide the same outputs for related states.
However, the modelling of the protocol proved a much more complex task than originally
thought (the issues are touched on in the conclusion), it became clear that both modelling
and proving that result in one semester is infeasible. In response, the project became
an exercise in modelling a complex real-life distributed system in functional language,
rather than an in formally verifying any theorem. Of course, the modelling is affected
by the choice of theorem, since a model is informed by what is relevant with respect to
some purpose. To that end, we did choose a small statement to prove to aim for. This
result is explained at the end of 4.

3 Theoretical framework

3.1 Formal proofs and Isabelle

For a more thorough guide to formal methods, see the reading list at [FM].
Consider a mathematical theorem. A theorem usually has a proof, written by one
or several mathematicians – call this a pen-and-paper proof. While pen-and-paper
proofs are the norm, convoluted or massive arguments may be too slippery, sometimes
even impossible, for a human mind to treat with rigor. This can happen with complex
mathematical proofs, but also when one tries to prove properties about complex systems
– for example, distributed computing systems.
In these cases, proof assistants and formal verification may be a valuable addition in a
scientist’s toolbox. Where a human would get disoriented or accidentally neglect parts
of the argument, a computer can reason methodically about every possible case.
So, in addition to the result and its pen-and-paper proof, a mathematical argument can
also be built with a computer. This can be called a formal proof. To build formal proofs,
different proof assistants – tailored programming languages – have been created. Its
user may then transcribe their result into the proof assistant, and using suitable methods
of the assistant, build a formal proof of the result.

6

Isabelle is one such proof assistant. It is a functional programming language, and it is
tailored specifically to expressing statements in formal language, and also building their
proofs with logical calculus. Here is an example of a theorem from the Isabelle tutorial
[NPW10].

datatype ’a list = Nil ("[]")
| Cons ’a "’a list" (infixr "#" 65)

(* This is the append function: *)
primrec app :: "’a list => ’a list => ’a list" (infixr "@" 65)
where
"[] @ ys = ys" |
"(x # xs) @ ys = x # (xs @ ys)"

primrec rev :: "’a list => ’a list" where
"rev [] = []" |
"rev (x # xs) = (rev xs) @ (x # [])"

theorem rev_rev [simp]: "rev(rev xs) = xs"

In this example, a list datatype is first defined inductively. Then, a concatenating function
app is defined, as well as a function rev that reverses the list. Finally it is stated that
reversing a list twice yields the original result.
As can somewhat be seen above, mathematical results are not the only things one can
reason about in Isabelle. One can also prove statements about data structures (as shown
in the example), or even model a larger structure (for example, a network protocol) as
a function or datatype, and prove properties of that structure. The latter is what this
project set out to achieve.

3.2 Reactive simulatability

In the paper, secure multiparty computation is modelled as an asynchronous distributed
system, and thus uses a conceptual and visual framework based on reactive simulatability
(RSIM). For a detailed treatment of the reactive simulatability, see [BPW04].
In the RSIM framework, distributed systems are made up of machines, modelling
parties or system components. The machines are capable of delivering and receiving
asynchronous messages, and this is modelled using buffers. Messages can be written
into buffers, and at a later time, the recipient can clock (process) said message. A finite
set of machines and buffers is called a collection.
The buffers are connected to the machines using ports – ports can be for input or output,
and some can also send clocking signals. Interestingly, a port is called a free port if it
belongs to a machine in the collection, but is not connected to any other machine or
buffer in the system. Between a machine and a port is a connector; a free connector is
attached to a buffer but to no machine in the system.

7

If two collections can be merged by joining free port and free connector pairs in a way
that respects the input/output type of the ports, then the collections are said to have
matching interfaces. For two collections C1, C2 with matching interfaces, the result of
their merging is denoted C1⟨C2⟩. If more than two collections are joined in this manner,
it can be denoted as C1⟨C2, C3⟩ or C1⟨C2⟨C3⟩⟩. Finally, if a collection has no free ports
or connectors, it is called a closed collection.

3.3 Execution model

In this project, the model is a closed collection of three collections: Π, the collection
modelling the actual protocol, Env, an environment collection with a minimal role in
this project, and A, the adversary. The collection is denoted as Env⟨Π,A⟩.
The protocol Π has two specific kinds of machines – protocol parties written as Pi and
functionalities written as Fk. A protocol party really consists of two machines – an
interpreter written as Ii, and a corruption module written as Zi.
Both protocol parties and functionalities have sets of public and private parameters, as
well as incoming and outgoing buffers, and both types of machines keep some sort of
state that they use to process messages. An important difference between the machines
is that a protocol party can be corrupted.
A party’s interpreter Ii processes incoming messages according to the state it keeps of
the party. That is, an interpreter keeps track of the party’s code, program counter (where
in the code the party is with its execution), buffers and stored values, and when there
is an incoming message, it processes the message according to those and its internal
semantics.
The corruption module Zi, however, acts differently depending on whether the party
is in the honest or corrupted state. If it is honest, it forwards received messages to the
interpreter for processing, but if corrupted, it sends them to the adversary without calling
the interpreter.
A functionality Fk has a complex inner architecture that was less relevant to detail
in the implementation. It consists of three modules – the sharing, reconstruction and
computation modules – which communicate with the parties, reconstruct information
and perform computations. When processing a message, it uses those three modules
instead of a single interpreter, but the execution of that was left unspecified in this project.
The environment Env was also left quite unspecified as its function was not relevant to
either the original or later result we aimed to prove.

3.4 The adversary

The adversary, in this model, can corrupt parties, peek into buffers or clock messages to
their recipients, send new messages from corrupted parties, query functionalities and
the environment. We describe here what the adversary does during those actions, and
then in section 4, we show more of how this was achieved in code.
Corrupting a party is quite self-explanatory but an auxiliary effect is that the party’s
interpreter reveals its state to the adversary.

8

In peeking into a buffer, an adversary can learn the n-th message in the queue that is a
buffer between a party and a functionality, however the message remains in the queue.
Clocking a message to a party Pi means the message in front of the relevant queue
gets handed to the party’s corruption module Zi. If the party is corrupted, it sends the
message to the adversary, if honest, to the interpreter Ii. However, clocking a message
to a functionality Fk always results in the message being forwarded to the functionality
for processing (since a functionality cannot be corrupted, as said above).
Querying the functionalities and environment were specified up to the input and
output types of the calls to the functionality and environment.
This range of actions is arrived at in the original paper by showing that the behavior of
an arbitrary adversary can be simplified this way. The adversary that can do only these
actions (and fulfils some other criteria) is called a lazy, semi-simplistic adversary.
The other criteria are quite extensive in full. Among them is that a lazy adversary never
desynchronizes a protocol by forcing a corrupted party to send a message before the
protocol admits it. One of the semi-simplistic rules is that an adversary always forwards
the message it gets from clocking an incoming buffer to the interpreter. There are
checks at various points of the execution loop to make sure the adversary is lazy and
semi-simplistic, and the result we later aimed to prove had to do with the forwarding of
the clocked message.

4 Result and implementation

Since the result we aimed to prove informed, in big part, the model we built, the sections
for implementation and result are the same. The workflow of the project was such that
Sven would write sample code in Python that describes the protocol execution, and I
would use that and the paper to build the Isabelle code.

4.1 Result

The result to prove was that in any possible state of the system, if an adversary clocks
an incoming message to a party it has corrupted then it forwards that message to the
interpreter without modifications. For that, it was necessary to build a loop as described
below.

4.2 The code layout

The bulk of this work was to build the execution loop and what it requires. The behavior
of the system Env⟨A,Π⟩ is described so that a master scheduler – the adversary – is
appointed. It enacts something on the system, the system reacts and gives a response
back to the adversary. The adversary then decides on the next action by considering the
system state and the input it received. Thus, the behavior of a protocol with an adversary
can be viewed as a loop from one action of the adversary to the next; as an execution

9

loop
g : S ×A→ S ×A.

where S is the type of system states and A is the type of adversarial actions.
We describe the execution of a protocol in two phases – one phase in which the adversary
performs an action on the protocol and the protocol responds with an input to the
adversary; denote it as

f : S ×A→ S × I;

and another phase where the adversary receives the input and responds to it with the
next action. Then the two phases composed give the function g.
The task, then, was to model what the system does in response to the adversary, i.e. the
function f . This entailed specifying the adversarial actions, the data they contain, and
the response the action has on the system.

4.3 Datatypes

First, a range of datatypes had to be specified in order to create a model. In the system
state, the parties and functionalities are described by two dictionary-like data structures
that map the index of the machine to the machine itself. Thus, the code uses the types
party_id and functionality_id a lot. They are synonyms to the type nat of the natural
numbers – essentially, the identifiers are simply natural numbers, and the renaming
simply clarifies the code.
Perhaps one more important datatype to mention is the write_instructions. The datatype
write_instructions models the output of a party’s interpreter, or a functionality or the
environment after it processes a message. It shows which messages should be written to
which outgoing buffers in response to the message.

4.4 Adversarial actions

An adversary can corrupt a party, clock and peek into both incoming and outgoing
buffers, send messages on behalf of the corrupted parties, invoke the environment and
query any functionalities.
Corrupting the party is uniquely defined by just one argument, which is the party’s
identifier. However, the other actions require more data to be uniquely defined. Thus,
we introduce some custom datatypes.
The buffer_action type, for example, determines the party and functionality involved,
the message index, as well as which type of buffer is meant and whether the buffer is
clocked or just peeked.

datatype dir = Incoming | Outgoing
datatype act = Clock | Peek

record buffer_action =
bufferParty :: party_id

10

bufferFunc :: functionality_id
bufferDirection :: dir
bufferAction :: act
bufferInd :: msg_index

The send_message type contains the party and functionality involved and the message
sent:

record send_message =
sendParty :: party_id
sendFunc :: functionality_id
sendDir :: dir
sendMessage :: msg

Analogously, the datatype forquerying a functionality is defined with a record containing
the functionality_id and msg fields. All in all, the adversarial actions are defined with the
datatype adv_action:

datatype adv_action =
Empty |
CorruptParty party_id |
BufferAction buffer_action |
SendMessage send_message |
QueryFunctionality query_functionality

Once the adversary has chosen some action to take, the system reacts and gives a
response to the adversary. The type adv_input describes the types of input the adversary
can get from it:

datatype adv_input =
AdvNone |
CorruptionReply
"(instance_label, instance_state * nat) map
* public_param * private_param" |

PeekReply msg |
ClockIncomingReply "(nat * msg) option" |
SendIncomingReply write_instructions |
QueryFunctionalityReply msg

The first possible input to the adversary is AdvNone, the type for when the system gives
no response to the adversary. This happens in the case of an invalid action (e.g. wanting
to corrupt a party that is not listed), or in the case of clocking an outgoing buffer. The
reply from corruption is the interpreter’s internal state. Peeking a message gives the
respective message, whereas clocking an incoming buffer might give the message that
was clocked, but only if the party is corrupted. When an adversary sends an incoming
message (on to the party’s interpreter), it receives the interpreter’s write instructions,
and querying a functionaliy (here, also the environment), yields a message from the
functionality.

11

4.5 Machines

A protocol party has buffers, a boolean field that shows whether the party is corrupted
or not, and an interpreter.

record protocol_party =
party_interpreter :: stateful_interpreter
party_corrupted :: bool
party_incoming_buffers :: "(functionality_id, msg list) map"
party_outgoing_buffers :: "(functionality_id, msg list) map"

While in the theoretical model, the corruption module and interpreter are different
machines, it was more natural to model the interpreter as contained in the protocol party
in this case. The party also has functions related to corruption, communicating with the
interpreter, and various buffer-related actions.
A party’s interpreter contains its public and private parameters, and the state described
above.

record stateful_interpreter =
int_public_params :: public_param
int_private_params :: private_param
int_program :: "cmd list"
int_incoming_buffers :: "int_msg list"
int_outgoing_buffers :: "int_msg list"
int_count_and_state :: "(instance_label, nat * nat * instance_state) map"
int_port_count :: nat

It has internal semantics – rules for what to do with incoming messages depending on
the rest of its state. All the semantics are defined as functions taking an interpreter and
returning a new, changed interpreter.
The functionality is left rather unspecified. It is a record as follows:

record functionality =
fnl_outgoing_buffers :: "msg list list"
fnl_is_env :: bool
fnl_state :: func_state

But in the loop, a functionality is not often altered, and so it does not have a lot of
functions attached to it. Perhaps most importantly, it has a function that returns a message
for the adversary when the latter queries it.

4.6 Execution loop

In the end, the execution loop f : S × A → S × I was built modularly: it was a
function that contained a helper function for each adversarial action. Those helpers then

12

contained either the description of the system’s response to that action, or other helpers
that comprised the system’s response.
Corruption and peeking messages were easy tasks to achieve. However, the biggest
challenges were the clocking of messages, and the sending of messages. It would be too
extensive to bring them out here in full, but the clocking and sending included multiple
different actions (checks on the adversary’s behavior, altering the buffers of a party,
querying an interpreter, calling a functionality, and so on), in a way that was not always
modular or in a way where return types could be understood in many ways. This made it
an interesting challenge to translate from object-oriented code to functional code.

5 Conclusion and takeaways

While the project’s scope was adjusted, the project was still quite work-intensive and
intellectually challenging. It was hugely informative in terms of functional programming,
but having chosen a smaller and more well-defined goal would have allowed to also
reach the formal methods more.
Modelling something in functional code proved to require quite a bit of refactoring,
and a lot of inquiry into the theory itself. Oftentimes, it was hard to refactor until the
purpose of the system, both in what it does in real life, and what we aim to prove about
it, was thoroughly clarified. It seemed sometimes that the ease of formal verification is
immensely proportional to how well the system and the result are understood through a
functional paradigm.
All in all, formal verification seems easier if the understanding of the problem, and
the understanding of how formal verification works, are simple, well-defined and
unambiguous. If the intentions aren’t fully understood by the implementer, or the
verification goal changes, a great deal of the model can become useless or need extensive
refactoring. However, when built correctly, a formal model can be a very valuable tool
to verify the properties of a protocol.

13

References

[BPW04] Michael Backes, Birgit Pfitzmann, and Michael Waidner. Secure Asynchron-
ous Reactive Systems. 2004.

[CGB17] Henry Corrigan-Gibbs and Dan Boneh. Prio: Private, robust, and scalable
computation of aggregate statistics. 2017.

[Fle16] Christopher Fletcher. Oblivious RAM : from theory to practice. PhD thesis,
2016.

[FM] Formal methods reading list. http://plfmse.cs.illinois.edu/
formalmethods.html. Accessed: 2022-07-03.

[FNP04] Michael J. Freedman, Kobbi Nissim, and Benny Pinkas. Efficient private
matching and set intersection. In EUROCRYPT, 2004.

[NPW10] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL —
A Proof Assistant for Higher-Order Logic. 2010.

[San12] Davide Sangiorgi. Introduction to Bisimulation and Coinduction. Cambridge
University Press, 2012.

[Yao82] Andrew C. Yao. Protocols for secure computations. In 23rd Annual
Symposium on Foundations of Computer Science, pages 160–164, 1982.

A Output equivalence with shared memory model

A.1 Brief description of the result

The result whose proof we previously aimed to verify is about a protocol Π being as
secure as an altered protocol Π⋄. This is shown by taking a certain adversary A, giving
a construction ϕ⋄(A) of a novel adversary and showing that for any environment Env,
the collections Env⟨Π,A⟩ and Env⟨Π⋄, ϕ⋄(A)⟩ are output equivalent. After introducing
the security definitio, bisimulations, and the other model, the initial result is stated. To
finish off, we sketch how the bisimulation argument would have been adapted to the
model(s) we would have built.

A.2 The security definition of a protocol

The information contained in this subsection is a recap of the material in the aforemen-
tioned, not available yet doctoral thesis of Pille Pullonen-Raudvere.
Let there be three collections Env,A and Π that model, respectively, the protocol Π, the
environment Env calling out the protocol Π, and the adversary A. If the interface of
Π splits into two subinterfaces – one to match with the interface of Env and one with

14

http://plfmse.cs.illinois.edu/formalmethods.html
http://plfmse.cs.illinois.edu/formalmethods.html

A – then we can view a collection Env⟨Π,A⟩. The security definition is given for such
closed collections.
Multiple notions of equivalence can be given for two such closed collections. The one
used in the result to be proved is of output equivalence; this means that the outputs given
by Env are indistinguishable in the closed collections Env⟨Π1,A1⟩ and Env⟨Π2,A2⟩.
The formalisation of the security definition is as follows. Let Π1 and Π2 be collections
with an identical service interface and let E be the set of compatible environments. Let
A1,A2 be the set of possible adversaries for Π1 and Π2, respectively. Then Π1 is as
secure as Π2 if there is a construction ρ : A1 → A2 such that

∀A1 ∈ A1,∀Env ∈ E : Env⟨Π1,A1⟩ ≡ Env⟨Π2, ρ(A1)⟩.

Essentially, what this says is that Π1 is as secure as Π2 if, for any adversary A1 and
environment Env that one can compatibly connect to Π1, the collections Env⟨Π1,A1⟩
(the collection of joining Env and the adversary A1 to Π1) and Env⟨Π2, ρ(A1)⟩ (the
collection of joining Env and the altered adversary ρ(A1)) are equivalent.

A.3 Bisimulation proofs

Let us define a labelled transition system and a bisimulation – we will use related notions
in constructing the proof of the result in Isabelle. [San12] A labelled transition system
is a triple (S,Λ, σ) where S is called the set of states, Λ is called the set of actions,
and σ ⊂ S × Λ× S is called the transition relation. If there is a triple (s, α, s′) in the
transition relation, we denote it also as s α−→ s′. The definition of a bisimulation says
that if two states s and t of a system are in relation, and there exists a transition α from s
to s′, then the same transition also exists out of t, and moreover, the yielded new states
s′ and t′ are also related; analogously for if a transition exists out of t. This creates a sort
of “lockstep” changing of the states where the transitions out from a pair of related states
match, and one cannot reach an unrelated pair of states from a related pair. [San12] Let
L = (S,Λ, σ) be a labelled transition system, and let R ⊂ S × S be a relation on the
states of L. The relation R is a bisimulation if whenever (s, t) ∈ R,

(∃α ∈ Λ, s′ ∈ S : s
α−→ s′) =⇒ (∃t′ ∈ S : t

α−→ t′) ∧ (s′, t′) ∈ R

and
(∃α ∈ Λ, t′ ∈ S : t

α−→ t′) =⇒ (∃s′ ∈ S : s
α−→ s′) ∧ (s′, t′) ∈ R

The union of two labelled transition systems is itself a labelled transition system. Thus,
while we consider the relation R on the states of a single LTS, it is still possible to
consider it on two LTS-s by taking their union and considering the respective relation.

A.4 Shared-memory model

The first model is the one described above. In the second, “shared-memory” model, the
protocol party Pi is now split into three: the interpreter I⋄i , the corruption module
Z⋄

i , and the memoryM⋄
i . Now I⋄i is a stateless interpreter andM⋄

i , the memory, is

15

a dedicated machine where the internal state of the interpreter including all random
choices is stored. The functionalities now also have access to the shared memory
modulesMi, and a new functionality F⋄

io is introduced.
The protocol Π⋄ is considered to be the interpreters, shared memories and functionalities,
whereas the adversarial construction ϕ⋄(A) will now also include the new corruption
modules Z⋄

i . The corruption modules’ purpose is to simulate the behavior of the
interpreter to the adversary, and the proof of the theorem relies in big part on constructing
such an adversary that also abides by certain additional constraints on the protocol.

A.5 Output equivalence of the basic and shared-memory models

The theorem that we wish to verify is as follows. LetΠ be the protocol with a well-formed
implementation and let EΠ be the set of compatible environments. Then

∀Env ∈ EΠ : ∀A ∈ Alazy
Π,Env : Env⟨Π,A⟩ ≡ Env⟨Π⋄, ϕ⋄(A)⟩,

where Alazy
Π,Env is the set of compatible lazy, semi-simplistic adversaries. In other words,

this is a specific case of the general security definition A.2; we wish to show that the
shared-memory protocol Π⋄ corresponding to Π is as secure as Π.
Note that the protocol is considered well-formed if it has certain properties regarding the
correct use of memory, the correct order of messages, and restrictions on how memory
locations can be accessed or written into.

A.6 Proving modified bisimulation

In the approach to verifying the proof, a property similar to being a bisimulation is used.
Let us introduce a definition for it. Let L = (S,Λ, σ) be a labelled transition system,
and let R ⊂ S × S be a relation on the states of L. Take (s, t) ∈ R and an adversarial
action a. Call R a modified bisimulation if

((s′, o)← f(s, a) ∧ (t′, p)← f(t, a)) =⇒ (s′, t′) ∈ R ∧ o = p.

This definition of a bisimulation more aptly helps model output equivalence of our
protocols. It says that if there is an adversarial action that takes a related pair of states
(s, t) to the states s′ and t′, then those states are also related, i.e. (s′, t′) ∈ R, and the
inputs provided to the adversary o and p are the same.
Then, for a proof we need to show that the pen-and-paper relation fulfills two conditions:
that the initial states of both systems are related, and that it is indeed such a modified
bisimulation. Doing those two things ensures that for any action the adversary might
take on either system, the systems execute in a precisely analogous manner, providing
the exact same inputs to the adversary. Thus, the protocols are output equivalent.

16

	Introduction
	Preliminaries
	Secure multiparty computation
	Foundations of programmable secure multiparty computation
	The goal of this project

	Theoretical framework
	Formal proofs and Isabelle
	Reactive simulatability
	Execution model
	The adversary

	Result and implementation
	Result
	The code layout
	Datatypes
	Adversarial actions
	Machines
	Execution loop

	Conclusion and takeaways
	Output equivalence with shared memory model
	Brief description of the result
	The security definition of a protocol
	Bisimulation proofs
	Shared-memory model
	Output equivalence of the basic and shared-memory models
	Proving modified bisimulation

