
UNIVERSITY OF TARTU
Faculty of Science and Technology

Institute of Computer Science
Computer Science Curriculum

Karl Hannes Veskus

Privacy-Preserving Data Synthesis Using
Trusted Execution Environments

Master’s Thesis (30 ECTS)

Supervisor(s): Liina Kamm, PhD

Sven Laur, PhD

Tartu 2022

Privacy-preserving data synthesis using trusted execution environ-
ments

Abstract:
Data synthesis is the process of generating new synthetic data from existing data. Often
companies do not have the the in-house competence to synthesize data themselves, and
are willing to outsource the process. However, synthesis requires access to the original
data. Sharing data with a third party can be complex, especially so if it contains sensitive
information or is considered as personal data by regulations such as the GDPR.

The goal of this thesis is to develop a proof-of-concept privacy-preserving data
synthesis service showing that it is possible to use trusted execution environments to
perform data synthesis in a privacy-preserving manner. Such a service would enable
outsourcing the data synthesis process to an untrusted remote server by ensuring that
both the original and synthesized data are fully hidden from the untrusted server host
throughout the lifecycle of the service.

A prototype of the service was developed in the scope of an ongoing proof-of-concept
project. To achieve the required security goals the service prototype uses trusted execution
environment technologies, specifically the Sharemind HI development platform, which is
in turn based on the Intel SGX platform. The developed service shows that synthesizing
data in a privacy-preserving manner is indeed feasible if trusted execution environments
are used. However, future work is needed to optimize the service to allow larger input
and output files, and to support additional data synthesis methods.

Keywords:
Data synthesis, trusted execution environments, privacy-preserving technologies.

CERCS: P170 Computer science, numerical analysis, systems, control.

2

Privaatsust säilitav andmesüntees usaldatavas täitmiskeskkonnas
Lühikokkuvõte:
Andmete sünteesimine on olemasolevate andmete põhjal uute sünteetiliste andmete
loomine. Paljudel organisatsioonidel ei ole kompetentsi ise andmeid sünteesida ning nad
on valmis seda teenusena ostma. Andmesüntees vajab aga juurdepääsu algandmetele.
Andmete jagamine kolmanda osapoolega võib olla raske, eriti kui tegu on isikuandmetega
või muul viisil privaatsete andmetega.

Magistritöö eesmärk on luua privaatsust säilitav andmesünteesi teenuse protüüp, mis
tõestab, et usaldatavaid täitmiskeskkondi on võimalik kasutada andmesünteesiks. Teenust,
mis tagab, et nii algsed kui ka sünteesitud andmed on kogu teenuse elutsükli jooksul
serveri haldaja eest täielikult peidetud, on võimalik juurutada ebausaldusväärsetesse
serveritesse, kaasa arvatud pilvteenusetarnija poolt pakutavatesse serveritesse.

Magistritöö käigus valmis töötav teenuse protoüüp, mis turvanõuete tagamiseks
kasutab Sharemind HI arendusplatvormi, mis omakorda põhineb Intel SGX usaldatava
täitmiskeskkonna tehnoloogial. Valminud prototüüp on tõestuseks, et usaldatavaid
täitmiskeskkondi on tõepoolest võimalik kasutada privaatsust-säilitava andmesünteesi
teenuse loomiseks. Edasisteks ülesanneteks jääb teenuse jõudluse optimeerimine, mis
võimaldaks kasutada suuremaid andmehulki sisendina ning ka sünteesisida rohkem
andmeid, ja teenusele rohkemate sünteesimeetodite lisamine.

Võtmesõnad:
Andmesüntees, usaldatavad täitmiskeskkonnad, privatsust säilitavad tehnoloogiad.

CERCS: P170 Arvutiteadus, arvutusmeetodid, süsteemid, juhtimine (automaatjuhtimis-
teooria).

3

Acknowledgments
The prototype, on which this thesis is based on, is developed in cooperation with Cy-
bernetica AS1, in the scope of an ongoing proof-of-concept (PoC) project called “Data
protection Aware syNthesis of test databases using secure Computing tEchnology” or
“DANCE”. The project is funded by the PoC grant EAG189. The author of this thesis
works in Cybernetica AS as a member of the team responsible for the “DANCE” project.
Writing the thesis was funded by STACC OÜ.

The author would like to thank the project team in Cybernetica for providing valuable
feedback and support throughout the project, as well as the supervisors, Liina Kamm
and Sven Laur, for their constructive criticism and support in writing the thesis.

1https://cyber.ee/

4

https://cyber.ee/

Contents
1 Introduction 9

2 Preliminaries 11
2.1 Data protection . 11
2.2 Information security . 12
2.3 Privacy-enhancing technologies . 13
2.4 Data synthesis . 13

2.4.1 Synthesis methods . 14
2.4.2 The Gaussian mixture modeling method 16

2.5 Intel® SGX . 17
2.5.1 Enclaves . 18
2.5.2 Attestation . 21
2.5.3 Data sealing . 24
2.5.4 Security . 24

2.6 Sharemind HI . 26
2.6.1 Access controls and dataflow configuration. 26
2.6.2 Architecture . 28
2.6.3 Security . 29

3 Privacy-preserving data synthesis service 31
3.1 Use cases and motivation . 31
3.2 Design of the service . 33

3.2.1 Stakeholders and roles . 33
3.2.2 Components . 33
3.2.3 Access rights and the DFC . 36
3.2.4 Service lifecycle . 36
3.2.5 User interface . 37

4 Service Architecture 41
4.1 Server-side architecture . 41

4.1.1 Data synthesis library . 42
4.1.2 Model task enclave . 42
4.1.3 Synthesis task enclave . 43
4.1.4 Adding support for the Rust language 43

4.2 Client-side architecture . 45
4.2.1 CSV processing library . 45
4.2.2 User interface . 45
4.2.3 Public metadata . 46

5

5 Security of the service 48

6 Service performance and benchmarks 51

7 Conclusion 55

References 56

A BPMN 59

6

Acronyms
API application programming interface

BPMN Business Process Model and Notation

CA certification authority

CCPA California Consumer Privacy Act

CPU central processing unit

CSV comma-separated values

DANCE Data protection Aware syNthesis of test databases using secure Computing
tEchnology

DFC dataflow configuration file

DRAM dynamic random access memory

EM expectation-maximization algorithm

EPID Enhanced Privacy ID

FFI foreign function interface

GAN generative adversarial network

GDPR General Data Protection Regulation

GMM Gaussian mixture modeling

HIPAA Health Insurance Portability and Accountability Act

IAS Intel Attestation Service

LE Launch Enclave

MAC message authentication code

MEE Memory Encryption Engine

MPC secure multi-party computation

7

PET privacy-enhancing technology

PoC proof-of-concept

PRM Processor Reserved Memory

QE Quoting Enclave

SGX Software Guard Extentions

TEE trusted execution environment

TTP trusted third party

UI user interface

8

1 Introduction
Data synthesis is the process of generating new synthetic data from existing data. Recent
communications by European data protection authorities indicate that synthetic data is
not considered to be personal data in terms of the General Data Protection Regulation
(GDPR) [1], even when generated from personal data. This would allow to use synthetic
data instead of personal data for testing of information systems, accelerating the develop-
ment of many data-driven services including artificial intelligence and machine learning.
Synthesizing data can be a complex process, which many organisations are willing to
buy as a service as they lack the competence to implement it themselves. While several
commercial solutions for outsourcing data synthesis already exist on the market, all of
them have to process the original data to do so, which needs a lawful basis and trust from
the data owner. The requirements set by data protection regulations for sharing personal
data to third parties, can often be a blocking factor when considering outsourcing. The
question arises whether it is possible to use privacy-preserving technologies to perform
data synthesis in a cloud environment in a way that protects the original data from the
service provider. Such a service would enable outsourcing the synthesis process in
compliance with privacy regulations with minimal effort from the data owner.

Trusted execution environments (TEE) are a class of privacy-enhancing technologies
that enable running trusted code in untrusted computation environments. As such they
are the perfect tool to implement a privacy sensitive service where the server host is not
trusted. Furthermore, some implementations of TEEs, like the Intel SGX platform [2],
provide means to hide data from the host machine altogether by encrypting the working
memory and implementing access controls on the processor chip level.

The goal of the thesis is to verify whether it is possible to create a privacy-preserving
data synthesis service by utilizing the security guarantees provided by trusted execution
environments. This is done by developing a working prototype of the service, built
on existing secure computing platforms. The technology used in the service prototype
to ensure privacy of the original data is Sharemind HI. Sharemind HI is a commercial
product offered by Cybernetica AS, that acts as a platform for developing privacy-
preserving data analysis applications. Sharemind HI is in turn based on the Intel SGX
trusted execution environment platform.

The service prototype, on which this thesis is based on, is developed as a team effort.
The author of this thesis worked as a member of the development team, contributing
in three general fields: developing missing features for the Sharemind HI platform,
designing and implementing the user interface, and implementing the logic, in form of a
web application, that joins all the various parts of the solution into a coherent working
service. Specifically, the author’s contributions were as follows:

• added a feature to Sharemind HI, that enables a user to add public metadata to
uploaded files;

9

• implemented critical input-output functionality to a prototype feature of Sharemind
HI, which enables writing solution-specific enclave code in the Rust programming
language;

• implemented the solution-specific workflow that is run inside the enclaves;

• designed and implemented the web based user interface for the service prototype;

• implemented the functionality behind the user interface that joins various parts of
the service together.

The thesis is separated into 7 sections, including the introduction and conclusion.
Section 2 gives an overview of the preliminary knowledge needed to discuss the results
and the technologies used in the service prototype. Sections 3, 4, and 5 describe the
implementation of the service prototype. Specifically, Section 3 outlines the overall
motivations and design of the service, Section 4 describes the architecture details, and
Section 5 provides a brief security analysis. The thesis is concluded with benchmark
results of the prototype in Section 6, which prove that synthesizing data in a privacy-
preserving manner is indeed feasible.

10

2 Preliminaries
This section gives an overview of the general background knowledge needed to under-
stand the results of thesis as well as more detailed explanations of the technologies used
in the proof-of-concept (PoC) privacy-preserving data synthesis service developed as
a part of this thesis. Section 2.1 goes over the current legal situation in the privacy
landscape, providing motivations for protecting data at all. While most regions have their
own specific regulations regarding data protection, the thesis focuses on the European
Union and the General Data Protection Regulation (GDPR). Section 2.2 describes what
it means for data to be protected and secure in a practical sense, and Section 2.3 provides
a brief overview of the various technologies available for protecting data. Data synthesis
and the specific method used in the service prototype are described in Section 2.4. The
specific technologies used to implement the service prototype are described in more
detail in Sections 2.5 and 2.6.

The readers of this thesis are expected to have a basic understanding of general
computer science and software development topics. Additionally, the readers will benefit
from having familiarity with cryptography and information security, and can refer to
Introduction to Modern Cryptography by Katz and Lindell [3] or any other textbook on
cryptography for further reading.

2.1 Data protection
On the 25th of May 2018, the General Data Protection Regulation (GDPR) [1] started
to apply, bringing a significant change to the data protection landscape in the EU. The
GDPR aims to protect the personal data of European citizens by regulating how their data
can be used. While similar regulations also exist elsewhere in the world, for example
the California Consumer Privacy Act (CCPA) [4] and Health Insurance Portability and
Accountability Act (HIPAA) [5] in the US, this thesis will limit its scope to only GDPR.

Personal data is defined as any information relating to a data subject, that is an
identified or identifiable natural person. Personal data can be anything from a person’s
medical records to their IP address. GDPR defines anonymous data as information
which does not relate to an identified or identifiable natural person, or personal data
that is rendered anonymous in such a manner that the data subject is not or is no longer
identifiable. It is important to note that the requirements set by the GDPR only apply to
personal data but not anonymous data [6].

GDPR introduces many principles that have to be followed in order to handle personal
data, including having a lawful basis for processing, and ensuring the integrity and
confidentiality of personal data during processing. These obligations cannot be easily
generalized and have to be considered on a case-by-case basis. The level of controls
needed to fully comply with the regulation depends on many aspects, including the
type of data being processed, the reason for processing, and the method of processing

11

itself [1].
Article 24 of the regulation states: “... the controller shall implement appropriate

technical and organisational measures to ensure and to be able to demonstrate that
processing is performed in accordance with this Regulation.” [1]. Furthermore, Article 25
requires that processing has to implement “data protection by design and by default” [1].
In essence, these and other Articles of the GDPR require that adequate protection
measures be put in place from the design phase to ensure that personal data is sufficiently
protected. Such protection measures may include both technical (e.g. encryption) and
organisational means (e.g. data processing contracts between involved parties). Privacy-
enhancing technologies (PETs) can also function as protection measures for the purposes
of the GDPR.

Determining whether or not a given dataset contains identifiable data, and which
are the appropriate measures to be implemented by design and by default, has been left
open to interpretation by GDPR. Recital 26 of GDPR states: “To determine whether a
natural person is identifiable, account should be taken of all the means reasonably likely
to be used, such as singling out, either by the controller or by another person to identify
the natural person directly or indirectly. To ascertain whether means are reasonably
likely to be used to identify the natural person, account should be taken of all objective
factors, such as the costs of and the amount of time required for identification, taking into
consideration the available technology at the time of the processing and technological
developments.” Deciding which means are “reasonably likely to be used” has been left
as the responsibility of the data controller, who has to consult and confirm their decision
with the local data protection regulators. Disagreements between data controllers and
regulators on the matter of identifiability and sufficient measures are common, and are
solved by courts on a case-by-case basis.

2.2 Information security
In order to protect data from a would-be attacker, it is important to first have a formal-
ization of what it means for data to be protected. A general notion of security is often
used to talk about protecting data, however a rigorous definition is rarely given. Katz and
Lindell [3] split the security definition into a security guarantee and a threat model. A
security guarantee describes what attacks are prevented by a given system, while a threat
model describes what the attacker is capable of doing.

For example a security guarantee of an encryption scheme could be that the resulting
ciphertext does not leak any information about the original plaintext, that the attacker
does not already have. The threat model of an encryption scheme is usually described
in the form of a plausible attack vector. For example in a ciphertext-only attack the
adversary is only capable of seeing the ciphertext(s) and has to extract information from
it about the corresponding original plaintext(s), whereas in a chosen-ciphertext attack
the adversary can first decrypt arbitrary ciphertexts of their choosing and has to then

12

extract information from a different ciphertext. Whereas in the first attack the adversary
must initiate the extraction with no information other than the ciphertext, in the second
attack the adversary can first study an arbitrary number of plain- and ciphertext pairs
before having to extract any information, giving them significantly more information and
making the attack more powerful.

In the more general setting of information systems, it is important to specify what
pieces of data are protected, who are they protected from, and which measures are used to
do so. The threat models are often use-case specific and come directly from the specific
data and actors involved in the system, while the security guarantees are chosen and
influence which measures can be used.

2.3 Privacy-enhancing technologies
Privacy-enhancing technologies (PETs) are any technological solutions that make the
data less identifiable. The solutions can include any combination of anonymization
techniques, encryption schemes, secure computing methods, or data synthesis. The
common goal of PETs is to reduce the processing of personal data to a minimal level,
while still retaining all functionality of a system [7].

The Privacy Preserving Techniques Task Team of the UN considers five major
PETs in their handbook: secure multi-party computation (MPC), homomorphic encryp-
tion, trusted execution environments (TEEs), differential privacy, and zero knowledge
proofs [8]. Each of the listed technologies are suitable for different forms of processing
and offer different security guarantees. For example, while secure multi-party compu-
tation is considered to be information theoretically secure, its potential use-cases are
limited by it requiring multiple non-colluding parties and incurring significant commu-
nication overhead and latency. Differential privacy on the other hand deals with output
privacy, and hence cannot be used if the input needs to be private.

Among these five PETs, TEEs are mentioned to be the most scalable and performant.
Furthermore, implementing a solution based on TEEs requires minimal organizational
measures. The only requirement is having access to specialized hardware, such as Intel
SGX-enabled processors.

2.4 Data synthesis
Data synthesis is the process of generating new realistic looking data, based on real data.
Synthetic data is created from real datasets or some knowledge of the shape and structure
of the real data, using statistical or machine learning methods. The main goal of data
synthesis is for synthetic data to have all the same statistical properties as real data.

From one side, synthetic data does not include any real data and, as such, it cannot be
considered personal data. Hence it is also not subject to the numerous legal frameworks
pertaining to personal data, such as the General Data Protection Regulation (GDPR) [1],

13

the California Consumer Privacy Act (CCPA) [4], or the Health Insurance Portability and
Accountability Act (HIPAA) [5], making sharing and using synthetic data significantly
easier than using real data [9]. It is important to note however that synthetic data is not
automatically anonymous simply by the merit of being synthetic data. In order to assert
whether or not a specific synthetic dataset is considered to be personal data, a thorough
analysis has to be done to confirm whether any single real person is identifiable from it.

From the analytics side, the recent work on machine learning and artificial intelligence
systems have allowed to create increasingly better methods for generating synthetic
data [9, 10], allowing more complex data models to be synthesized as well as increasing
the utility of the synthesized data, meaning it emulates the real world more accurately
and retains more of the underlying connections in the real data. This directly leads to
a trade-off between the utility and privacy of synthetic data. Synthetic data with high
utility is more similar to real data, and hence reveals more about the underlying personal
data. Conversly, in order to best hide the personal data and provide the highest levels of
privacy, the more generalized the synthetic dataset has to become, losing in utility.

In addition to sharing the data with external parties without being subject to privacy
regulations, synthesized data can be used for a number of use-cases, each with their own
requirements for data utility. For example stress-testing a system might not need the data
to have any similarity to actual real world data, there only needs to be a lot of it, hence
one could use synthetic data with low utility. On the other end of the utility spectrum,
synthetic data with very high utility can be used to train machine learning models [10]
where a large amount of data is needed, but cannot be used due to restricted access, or
lack of resources or time [9].

As the data synthesis methods rely heavily on the structure of the real data, the
common approach is for the data owner to either build the data synthesis models and
generate the synthetic data themselves or pass the real data to a trusted third party (TTP),
who then analyses, cleans, and processes the data to create a synthesis model. The first
case requires the data owner to have the skillset needed to synthesize data, which severely
limits the number of potential users of the approach. The second case would incur
payments to the TTP for the services, and require a significant organisational overhead,
such as contracts between the data owner and the TTP, analysing if the TTP is compliant
with the relevant legal frameworks (e.g., GDPR), and notifying the data subjects of the
new external data processors [9].

2.4.1 Synthesis methods

As for any subject related to data analysis, there are many different approaches that allow
to achieve similar results. Which method of synthesis to use depends on the shape and
the distribution of real data, what level of privacy and/or utility is required of the resulting
synthesized data, and what levels of computational or organizational complexity are
practically achievable. For the simplest use-cases with the need for the lowest data utility,

14

like software testing, simpler models can be used. The most basic method is to generate
the synthesized data randomly based on a few simple rules. When slightly higher utility
is needed, the data points can be sampled from distributions similar to the original data.
This approach already needs analysing the data to determine which distributions best
describe it or using prior knowledge of the field and subject matter to come up with
rough estimates. For the highest utility requirements the most complex methods need to
be used, from older methods like Gaussian mixture modeling (GMM) [11], to areas of
current research [12] like generative adversarial networks (GANs) [13].

The goal of the proof-of-concept project is to only synthesize tabular data, and not
image or sound. Initially, both the GMM and GAN methods were implemented for use in
the PoC privacy-preserving data synthesis service, however exploratory tests on tabular
datasets showed that the GMM method resulted in more accurate models than the GAN
method. Furthermore, training the models took significantly less time using GMM. As
such, it was decided to shift focus to only implementing the GMM method for the service
prototype.

Since only the GMM method was fully integrated to the service, a brief overview of
the method is provided. For further reading on the topic an interested reader can refer to
the book Finite Mixture Distributions by Everitt and Hand [14].

Figure 1. Example of a mixture of four Gaussian distributions fitted to two dimensional
data [15].

15

2.4.2 The Gaussian mixture modeling method

Mixture models are a class of models in statistics, that describe data by combining
multiple distributions, each of which estimate some subset of the data, into a single
model. Gaussian mixture modeling (GMM) is a special case of mixture models, that
only combines Gaussian distributions. A graphical representation of a GMM is shown
on Figure 1. The following description of the GMM technique follows the textbook
Numerical Recipes by Press et al. [15].

It is clear that if we have a mixture of distributions describing the original data, gener-
ating synthetic data from the mixture only requires sampling from it. Hence, the problem
becomes finding the distributions, which, when combined, best describe the original
data. This is the classic problem of unsupervised learning and is solved by maximizing
the probability that the original dataset came from the mixture of distributions. The
maximization is commonly done using the expectation-maximization algorithm (EM).

Let there exist a dataset X in the form of a N ×M matrix and let the number K of
Gaussian distributions used in the model be fixed. Fitting the model to the dataset is
formalized by maximizing the likelihood, represented by Equation (1), where p(x⃗n) is
the probability of a given M -dimensional data point x⃗n (a row in X) originating from
the mixture.

L(X) =
N∏
n

p(x⃗n). (1)

p(x⃗n) =
K∑
k

N (x⃗n, µ⃗k,Σk)P (k) (2)

N (x⃗n, µ⃗k,Σk) =
exp

(
−1

2
(x⃗n − µ⃗k)

TΣ−1
k (x⃗n − µ⃗k)

)√
(2π)M |Σk|

(3)

The probability p(x⃗n) in Equation (2), consists of the sum over K multivariate
Gaussian density functions N (x⃗n, µ⃗k,Σk) and their corresponding mixture weights
P (k). Each mixture weight P (k) is the fraction of rows from the dataset X present in
the k-th distribution N (x⃗n, µ⃗k,Σk). The shape of the k-th distribution N (x⃗n, µ⃗k,Σk),
as shown on Equation (3), is determined by the variables µ⃗k and Σk, where µ⃗k is the
mean of the distribution, in the form of an M -dimensional vector, and Σk is the M ×M
covariance matrix for the distribution. These variables are the only ones that can be
changed to maximize the likelihood L, as all other variables are fixed.

In order to estimate the variables µ⃗k and Σk, that best fit the model to the data,
the expectation-maximization algorithm (EM) is used. As the name suggests, the EM
algorithm consists of an expectation step or E-step, and a maximization step or M-step.
The E-step consists of calculating the probabilities pnk, as shown on Equation (4), given
some values of µ⃗k, Σk, and P (k). The values pnk represent the probability that a point

16

x⃗n was sampled from the k’th distribution. These probabilities are used in the M-step, to
calculate the next estimations for µ⃗k, Σk, and P (k), as shown on Equations (5), (6), and
(7), respectively.

pnk =
N (x⃗n, µ⃗k,Σk)P (k)

P (x⃗n)
(4)

µk =

∑N
n pnkx⃗n∑N
n pnk

(5)

Σk =

∑N
n pnk(x⃗n − µ⃗k)⊗ (x⃗n − µ⃗k)∑N

n pnk
(6)

P (k) =

∑N
n pnk
N

(7)

Thus the EM algorithm first needs an initial guess for the values of µ⃗k, Σk, and P (k),
and can then run the E-step to first obtain the probabilities pnk and then the M-step
to estimate the new values of µ⃗k, Σk, and P (k). The steps can be repeated until the
likelihood L converges under some set threshold, or until a desired number of repetitions
is reached.

In practice the initial values for µ⃗k, Σk, and P (k) can be fixed and only the dataset
itself and the number of distributions used in mixture have to be provided by the user
in order to fit the model. While the dataset is usually fixed, the number of distributions
used can be changed and heavily influences the accuracy of the model. Using too few
distributions will result in a overly general and inaccurate model, while using too many
will quickly lead to overfitting.

Furthermore, it is apparent that GMM method can only handle datasets that are
the shape of a two-dimensional matrix containing only numeric values, and as such
it is important, from an implementation viewpoint, that the dataset does not contain
any non-numeric values, like text fields. This is in general true for most machine
learning methods and can be circumvented with preprocessing the data. Preprocessing
replaces unusable data types, like text fields and null values, with meaningful numeric
values, by using methods like one-hot encoding and imputation. Preprocessing can also
involve transforming the data to improve the performance of the models, mostly through
normalizing and standardizing the data. Which methods to use heavily depends on the
model being trained and the data being used.

2.5 Intel® SGX
Intel’s Software Guard Extentions (SGX) [2] is a collection of processor (CPU) instruc-
tions in Intel architectures that allows to create and manage secure containers, called

17

enclaves, in untrusted environments. The SGX instructions can provide protected mem-
ory areas controlled by hardware enforced access policies, isolating them from the rest
of the environment, including the operating system hosting the enclave and any hardware
peripherals.

To provide integrity and confirm that an enclave was correctly deployed, Intel pro-
vides an attestation mechanism. During the creation of an enclave, the trusted hardware
generates a cryptographic report, which includes information about how the enclave was
created, the properties it has, and the system it is running on. A remote party can then
verify this report by using the Intel Attestation Service (IAS) [16].

The enclaves can also store data outside of the protected memory using data sealing.
Data sealing is achieved by encrypting the data inside the enclave such that only that
enclave on the current platform can ever decrypt the data. This is done by deriving a
special encryption key from the immutable properties of the enclave and the underlying
system [16].

All of the information regarding SGX in this section comes from Costan and Devadas’
article Intel SGX Explained [17], unless explicitly cited otherwise. The article provides
an excellent and thorough overview of the Intel SGX platform, as well as an extensive
overview of background knowledge on computer architecture and security needed to
understand the details. The reader is heavily encouraged to refer to the article for any
additional details on the topics presented in this section.

2.5.1 Enclaves

The central component of SGX is the enclave. An enclave contains all of the code and
data needed to perform security-sensitive computations. For example an enclave can
contain the code for decrypting a database table, aggregating the table entries based on
some complex relations and then encrypting it again.

Access protection. All code and data of the enclave is kept in the Processor Reserved
Memory (PRM) section of dynamic random access memory (DRAM), which can only be
accessed by the processor. Access to the PRM is restricted by two separate means, one for
protecting against physical attacks and the other against software attacks. Unauthorized
access through physical means, such as directly accessing the DRAM chips, is restricted
by the Memory Encryption Engine (MEE)2 [18] added to SGX-capable processors, which
encrypts the content of the DRAM. Similarly, all communication outside the trusted
processor, such as on the bus wires connecting the processor and DRAM chip, is kept
encrypted. While an attacker can use mechanical means to read the physical bits on the
DRAM chips or in the wires during communication, the encryption makes it impossible

18

for an attacker to interpret any of the acquired data.
Software access to the PRM is restricted by memory controllers integrated to the

CPU. The controllers run memory access checks and forbid all non-enclave software
from accessing the PRM. Hence the enclave can only be accessed through the limited set
of instructions provided by the SGX-enabled CPU.

States. The SGX instruction set provides the means to create, manage, and destroy
the enclaves. There are four major states in which the enclave can exist: non-existing,
uninitialized, initialized, and running. Transitioning between the states happens only
through the SGX instructions, notably the ECREATE, EINIT, EENTER, EEXIT, and EREMOVE
instructions. The whole lifecycle of the enclave is illustrated on Figure 2.

During the creation of the enclave with the ECREATE instruction, the state moves
from non-existing to uninitialized. The CPU allocates memory in the PRM, sets up
and verifies all the needed background information about the enclave, like the enclave’s
size and location in memory, as well as creates a measurement of the enclave used in
attestation. Before initializing the enclave, it is also possible to load code and data from
the untrusted environment into the enclave with the EADD and EEXTEND instructions, the
latter of which also updates the enclave’s measurement.

To initialize the enclave with EINIT, a special pre-made Launch Enclave (LE) has
to first be used to create an initialization token. The initialization token is used in the
initialization process to derive a launch key and move the enclave to the initialized state.

In essence, the LE mainly exists as a licensing mechanism, as it is provided by
Intel, signed with a special hard-coded Intel key, and checks if the enclave creators
are licensees3. This mechanism ensures that only the enclaves, which are created by
developers that have been verified by Intel, can be initialized, minimizing the risk of
running an enclave, which containing malware.

From the initialized state it is possible for the host to run the enclave code using the
EENTER instruction, moving the enclave to the running state. Similarly, when the enclave
has finished, it will return control to the host using the EEXIT instruction, moving the
enclave back to the initialized state.

Finally the enclave can be moved from the initialized state back to an non-existing
state with the EREMOVE instruction. This first makes sure that the enclave’s code is not
running and then frees up memory resources, completely destroying the enclave.

Identity. For a user to be sure that it is communicating with or running a specific
enclave, there has to first exist a mechanism for distinguishing the enclaves. This directly

2In newer processor models, starting from the 3rd Generation Intel Xeon Scalable Processors [19], the
MEE has been replaced by the Total Memory Encryption technology [20].

3With certain newer hardware combinations it is also possible for enclave developers to create and sign
the launch enclave themselves [21].

19

Figure 2. Lifecycle of an SGX enclave.

leads to a requirement of there existing some identifying factor for each enclave. In order
to distinguish between enclaves, perform attestation, and derive cryptographic keys, the
trusted hardware computes a measurement of each enclave’s content. As the enclave
is created from some known and specific series of inputs to the creation instructions
ECREATE, EADD, and EEXTEND, which cannot be changed after initializing the enclave, the
measurement of the enclave is defined to be the 256-bit SHA-2 hash over those inputs.
The EINIT instruction completes the hashing process and seals the hash, so tt could no
longer be updated by the ECREATE, EADD, or EEXTEND instructions. The completed hash
is set as the measurement of the enclave, and denoted as MRENCLAVE.

It is important to note, however, that the measurements of two instances of the same
enclave will be identical and, as such, a second mechanism is needed to distinguish
between two enclaves that are running the same code on the same machine. For this
the enclaves require a certificate issued by the enclave’s author. The certificate is of a
specific format called a Signature Structure (SIGSTRUCT) and contains metadata about the
enclave, namely a hash of the enclave author’s public key, called MRSIGNER, the enclave’s
measurement and its version number. The enclave author’s private key is used to sign
the SIGSTRUCT. To prevent the creation of uncertified enclaves, the EINIT instruction
checks the validity of the certificate and fails to create the enclave when the certificate is
invalid [16].

Key derivation. The SGX instruction set provides the EGETKEY instruction for deriving
symmetric keys that can be used by the enclaves. The instruction can be configured to
generate keys of different types, each intended for use in a different process and using
different derivation materials. For example, there exists a key type used for encryption
in the data sealing process and a key type for computing a message authentication code
(MAC) [3] in the attestation process. In general, the derivation material uses secrets

20

embedded in the trusted hardware, and hence the symmetric keys can only be derived by
the trusted SGX-enabled processor chip. Furthermore, the derivation material includes
information about both the untrusted system and the enclave it will be used by, ensuring
that the key is only valid for a specific enclave on the given system. However, it is also
possible to configure the EGETKEY instruction to use the hash of the enclave author’s
public key, MRSIGNER, instead of the measurement of the enclave, MRENCLAVE, as a part
of the derivation material. This allows all enclaves on the system, that are created by
the same author, to derive a shared key, allowing, for example, to easily share secrets
between different enclaves running on the same machine.

2.5.2 Attestation

As the main problem that SGX is attempting to solve, is running trusted code on a remote
untrusted host machine, it needs a mechanism for verifying that the code and data have
not been modified. The problem is solved by using software attestation, a cryptographic
protocol for proving that an enclave with the specified measurements was created and
is running on trusted hardware. Additionally, the attestation process allows the enclave
and the remote trusted party to produce a shared key, which can be later used to create a
secure communication channel between the two, allowing a remote party to transport
secrets to and from the enclave.

The trust chain of the software attestation mechanism is described by Figure 3. The
figure indicates that a verifier only needs to trust Intel in order to trust the attestation
process as a whole, as the whole process relies on Intel’s root key, which is embedded in
the trusted hardware.

Intel provides two separate attestation methods, one for performing attestation be-
tween two enclaves running on the same system, and one for performing attestation
between a user and an enclave initialized on a remote untrusted host machine.

Local attestation. To prove its identity to a target enclave, the enclave being attested
uses the EREPORT instruction, which prompts the trusted CPU to generate an attestation
report. The report consists of the enclave’s measurement and certificate-based identity,
a message provided by the enclave, and a message authentication code (MAC) [3] tag
over the contents of the report. The reported MAC tag is computed by the trusted SGX
processor using a special report key. The report key is derived using the measurement of
the target enclave and a secret embedded in the processor chip. The target enclave can
use the EGETKEY instruction to derive the same key and use it to compute the MAC tag
over the report contents. If the computed MAC tag and the reported MAC tag match, the
target enclave can be sure that the enclave being attested is legitimate and can be trusted.
The report key can not be derived by anyone except the target enclave and the trusted
CPU, as they would not have access to the secret embedded in the processor, ensuring
the correctness of the local attestation process.

21

Figure 3. The trust chain of attestation [17].

Remote attestation. Remote attestation is used to verify to a remote client that the
enclave is running trusted code, and to establish an authenticated communication channel
between the enclave and the client. A few additional components are introduced for the
process.

First a new Intel provided enclave, the Quoting Enclave (QE), is used to verify the
local attestation reports coming from other enclaves, convert them into a quote and
sign it using a special device-specific key, the Intel Enhanced Privacy ID (EPID) key.
Secondly, the EPID signature over the quote can be verified by the Intel Attestation
Service4(IAS) [16].

EPID is a group signature scheme [16] where each signer, with their own private key,
is assigned into a group based on their processor type [22]. The verifier has a single
corresponding public key for the entire group, providing privacy to the signers, while
still enabling cryptographic signing.

The remote attestation process consists of 7 distinct steps involving the enclave
being attested, the Quoting Enclave (QE), the untrusted application orchestrating the
communication, the Intel Attestation Service (IAS), and the relying party or challenger.
The process is illustrated on Figure 4. The process can also be thought of as a slightly
modified sigma protocol [23] between the application as the prover and the challenger

4It is also possible for an enclave developer to verify the quotes themselves by implementing and
deploying their own attestation service [21].

22

Figure 4. Example of the remote attestation process.

as the verifier, where only the commitment step has been changed from a commitment
message to initializing the enclave on SGX-enabled hardware.

1. The attestation process is initiated by requesting to create an authenticated channel
between the enclave and the challenger. The challenger sends the first protocol
message, consisting of a challenge and a nonce.

2. The application, running in the untrusted operating system, requests an attestation
report from the enclave and passes on the challenger’s nonce.

3. The enclave generates the report, using the EREPORT instruction, and a manifest,
consisting of the user data section from the report and optionally the nonce along
with a public key for the challenger to create the authenticated channel. Both the
report and manifest are returned to the untrusted application.

4. The application forwards the report to the QE, which verifies the report using local
attestation, converts it into a quote, and signs it with the EPID key.

5. The QE returns the signed quote to the application.

6. The application returns the quote from QE and the manifest from the enclave to
the challenger.

7. The challenger sends the quote to IAS, who verifies the EPID signature over the
quote and returns the result of the verification.

23

Figure 5. Attack surface minimisation [22].

2.5.3 Data sealing

In order to preserve data between multiple lifetimes of a single enclave or to share data
between multiple enclaves on the same system, a data sealing procedure is used. In
essence, data sealing is storing encrypted data on the file system of the untrusted machine.
The key used to encrypt the data before storing depends on who needs to access the data
later, and can be configured by the EGETKEY instruction. For example, it is possible to
seal data based on the measurement of an enclave, so that only the current and future
versions of that enclave, running on the same machine, can decrypt the data, or based
on the signature of the enclave author, so that all enclaves of the author on the same
platform can decrypt the data.

It is important to note that sealing data using the latter method goes somewhat against
the goal of isolating the enclaves and minimizing the attack surface. If any of the enclaves
that can access the shared data are compromised by a malicious party, all of the shared
data is leaked. However, the compromised enclave is still isolated and will not gain
access to any other data, limiting the damage to only the shared sections.

2.5.4 Security

The strongest security guarantees offered by SGX come from minimizing the attack
surface in an application, as illustrated by Figure 5. When implementing a security
sensitive application without using any PETs, a separate application running on the same
machine may be compromised and give an attacker operating system level access to
the machine, allowing them to attack the sensitive application with ease. In contrast,
isolating any security-sensitive parts of an application into enclaves circumvents the

24

operating system entirely, hence the only possible attacks involve either the processor
chip directly or the boundary points between the enclave and the application.

While securing the boundary points on the application side is the responsibility of
the application developer, everything involving the hardware and the SGX instruction set
is handled by Intel. As the specifics of Intel’s processor chips and the implementation
of SGX instructions are not publicly disclosed, a full comprehensive analysis of all
possible vulnerabilities cannot be done outside of Intel. While significant efforts have
been made in reverse engineering the chips and instructions, for example by Costan and
Devadas [17], any security guarantees ultimately still rely on trusting Intel and assuming
there are no backdoors or hidden critical flaws [24].

An enclave is fully isolated from other hardware by means of both physical and
cryptographic protections, namely by using the Memory Encryption Engine (MEE),
removing the need to trust any peripherals except for the Intel CPU. Similarly, access
checks done by the CPU forbid unauthorized software access to the enclave, including
access by the operating system and other priviledge software. This isolation is exactly
what enables SGX to shorten the trust chain to just Intel, while normal applications need
to trust all of the hardware and software present in the computer.

Even when assuming that Intel is trustworthy, the reverse engineering done by re-
searchers has revealed several vulnerabilities. Such vulnerabilities are, however, expected
from a system this large and are largely mitigated by continued updates from Intel. While
most of the more serious vulnerabilities have been patched by Intel soon after they have
been discovered, the complexity and lack of public documentation regarding SGX give
reason to suspect other attacks still exist and are not yet mitigated.

The threat model of SGX aims to protect the data inside the enclave from a malicious
host system. Combining the Memory Encryption Engine (MEE), hardware level access
checks, and attestation, the Intel SGX platform manages to provide confidentiality, in-
tegrity, and freshness guarantees for the data inside the enclaves against other software,
like the operating system, running on the host machine. However, while protections
against direct attacks, using either physical or software based approaches, towards the
enclaves are sufficient, the design of SGX is not intended to protect against side-channel
attacks or attacks targeting the processor chip. As such most of the vulnerabilities
that have been found utilize some forms of side-channel attacks. While it is close to
impossible to eliminate all possible side-channel attacks, there are methods to mini-
mize and mitigate such vulnerabilities, like keeping the SGX deployment up to date,
enforcing additional access controls, and following strict secure programming practices.
Furthermore, most vulnerabilities have only been utilized by proof-of-concept attacks
carried out in controlled laboratory settings. As no such attacks have been noted in
practical settings, there is hope that exploiting these vulnerabilities requires very specific
conditions and specialized equipment, making them unviable in practice. Some examples
of proof-of-concept attacks, which have utilized the side-channel vulnerabilities, are

25

the Nemesis attack [25], which leverages timing side-channels and relies on being able
to externally interrupt the code running in the enclave, and the Plundervolt attack [26],
which leverages voltage based side-channels. A thorough overview of the vulnerabilities
in SGX applications and potential ways to mitigate them is provided in a research report
by Randmets [24].

2.6 Sharemind HI
Sharemind HI is a platform for developing privacy-preserving data analysis applications,
where confidential data is protected throughout its lifecycle in the service. Data is
encrypted by the data owner prior to sending it to the Sharemind HI service and will
remain protected through cryptographic means throughout the analysis. The host of
the service will only ever have access to encrypted data and no means to remove the
protections applied by Sharemind HI. The security guarantees rely on a trusted execution
environment (TEE) technology, that provides secure containers for the confidential parts
of the application, isolating them from the rest of the untrusted environment using trusted
hardware. Sharemind HI uses Intel® Software Guard Extentions (SGX) as its TEE
technology to implement the privacy-preserving data processing [27].

Sharemind HI combines the hardware-based security guarantees given by SGX
with additional organizational measures and access controls. The goal is to simplify
the implementation and deployment of the solution-specific logic involving multiple
stakeholders, while retaining the security and privacy guarantees. It achieves this by
abstracting away key management and cryptographic measures, leaving the developer to
implement the business logic and access controls.

Sharemind HI operates as a client-server service, based on tasks running as SGX
enclaves. The client is a user-side application tasked with calling operations on the
server, encrypting data, and performing remote attestation. The server acts as a host
for the SGX-enabled processor and is tasked with managing the authentication and
authorization of users, managing and storing encryption keys of the data in a secure
manner, orchestrating the internal and external data transfers, scheduling the running of
the tasks, and keeping a log of all operations performed on the server [28].

2.6.1 Access controls and dataflow configuration.

A solution deployed on Sharemind HI contains multiple interconnected components and
parties with different rights and responsibilities. For computations with confidential data,
there can exist a number of tasks with different inputs and outputs. The storing and
grouping of data with similar access requirements is handled by data topics. The topics
can also be thought of as protection domains. The stakeholders involved in the solution
can be assigned various roles, each with separate responsibilities and access rights. All
rules regarding the tasks, topics, access rights, and stakeholder roles are described in a

26

dataflow configuration file (DFC). The DFC contains a list of all task enclaves involved
in the solution along with their measurements, the certificates of all the stakeholders
along with their roles, and all topics along with a list of users and tasks that are allowed
to input or output data from a topic [28].

There are three main interactive roles for a stakeholder [28].

• The input provider who can upload data into topics.

• The output consumer who can download data from topics.

• The runner who can trigger the task enclave code to be run.

Additionally, there are three roles for providing increased security.

• The auditor who can have access to the audit logs and is responsible for validating
critical code components before deployment, issuing the application fingerprint,
and performing system audits to check if the deployment and operation conform
to the specification.

• The coordinator who is responsible for coordinating any activities related to setup
and deployment.

• The enforcer who can approve the DFC and is responsible for checking that the
specified DFC holds the security objectives that the parties want to achieve. An
agreement from all the enforcers is required before any data can be collected or
any task enclaves can be run.

Figure 6 illustrates the information flow defined by a possible DFC. The figure
includes two distinct sequential tasks, a number of input providers, and two output
consumers, one of whom simultaneously has a runner role. The input providers encrypt
their confidential data and upload it to Topic A. The runner can start the analysis by
triggering the code in Task A to run. When run, Task A may download and decrypt any
data uploaded to Topic A, run computations on the decrypted data inside the enclave to
create some output, encrypt the output and upload it to Topic B. Similarly, the runner can
start Task B, which in turn may download and decrypt any data in Topic B and upload its
encrypted output to Topic C. Both consumers can at any point download and decrypt any
data in Topic C. Note that the confidential data is encrypted by the input providers prior
to uploading and is only ever decrypted inside the task enclaves while performing the
analysis. The outputs of the tasks are similarly encrypted inside the enclaves and can
only be decrypted by the intended recipients. This means all data is encrypted while in
transit or at rest, and only usable by the original data owners or inside the SGX enclaves.
As none of the stakeholders can access the data in Topics A and B, they never see the
original confidential data uploaded by the providers, nor the intermediate results output
by Task A.

27

Figure 6. A dataflow configuration graph example.

2.6.2 Architecture

Sharemind HI consists of two distinct components, the client and the server. The client
includes application specific code and a general purpose Sharemind HI client library,
used to interface with the Sharemind HI server, encrypt data, and perform remote
attestation. The server is split into trusted and untrusted components. The untrusted
components contain functionality for coordinating work, network communication, file
system interaction, and creating, running and delivering messages to the enclaves in the
trusted part of the server. As the name implies, the untrusted components do not run
inside SGX and therefore cannot be allowed to access any confidential information [28].

The trusted components are the solution-specific task enclaves and three management
enclaves: the attestation enclave, the key enclave, and the core enclave. The management
enclaves provide all functionality for secure communication and task execution. They
are split into distinct enclaves in order to isolate the functionality into easily auditable
pieces with the smallest possible attack surface. The attestation enclave is responsible for
remote attestation and setting up secure communication channels between the client and
the other enclaves. The only purpose of the key enclave is to store and manage access to

28

the keys required to use any confidential data. The core enclave handles coordinating
data storage and retrieval, stores and manages the solution state, and creates the audit
log. While the core enclave is in the trusted section of the server, it does not have access
to any confidential data, except for the secure communication channel secrets. The
task enclaves implement any and all solution-specific code that actually processes the
confidential user data. They acquire input data from the core enclave and the respective
keys from the key enclave [28].

2.6.3 Security

Sharemind HI relies and builds on the security guarantees of SGX, discussed in Sec-
tion 2.5.4. While on a low-level the attack model of Sharemind HI is identical to that
of Intel SGX, it introduces additional technical and organisational measures to reduce
the risk of any high-level attacks caused by incorrect key management, flawed access
controls, or mistakes in the programming or deployment of SGX-based applications. A
thorough attack model, listing all considered threats and corresponding control measures,
is provided in the Sharemind HI white paper [27]. The following gives a brief overview
of the information from the white paper.

The security goal of Sharemind HI is that any confidential data uploaded to the
Sharemind HI platform should only be accessed by those stakeholders and task enclaves
that have the necessary permissions. Any other parties, like the server host or malware
present in the system, should not be able to access the data in a unencrypted format. The
security model of Sharemind HI focuses on attacks against confidentiality and integrity.
Attacks against availability are considered to be the responsibility of stakeholders and
out-of-scope for Sharemind HI. An illustration of the security model of Sharemind HI is
given on Figure 7.

Input data is encrypted by the data owner at their premises using the Sharemind HI
client. The encrypted data is sent to the Sharemind HI server, where it is stored in a topic,
while the encryption keys are sent to the key enclave using secure authenticated channels.
Similarly, output data is encrypted inside of a task enclave and stored on the server in a
(possibly different) topic. When a stakeholder requests to download the output data, their
authorization to access the data is confirmed, and the key enclave securely transfers the
encryption keys to the authorized party.

Enforcers are required to verify that a task enclave is configured and deployed as
agreed upon by the stakeholders. Each input provider and output consumer can select a
subset (including the empty or full set) of enforcers they trust. Access control measures
implemented in Sharemind HI ensure that the input providers can only upload data to
and output consumers can download data from tasks which have been approved by their
trusted enforcers. This trust chain ensures that any data uploaded to Sharemind HI is not
made available to undesired task enclaves, as well as that the data is only received from
approved task enclaves.

29

Figure 7. Security model of Sharemind HI [27].

Prior to deployment an auditor is required to validate the enclaves, ensuring they are
secure and privacy-preserving, resulting in a cryptographic proof of the audited code. A
client can, at any point after deployment, compare that proof against any of the deployed
enclaves, ensuring the integrity of the server.

The coordinator has to generate a deployment specific asymmetric key pair for
each Sharemind HI deployment. The public key certificate is signed by the Cybernetica
Deployment Root CA for Sharemind HI, binding the coordinator to the key pair. Similarly,
each client who needs to communicate with the Sharemind HI server, generates an
asymmetric key pair, and their public key certificate is signed with the coordinator’s
private key. The coordinator’s signed public key certificate is loaded into the server
during deployment and used to authenticate clients in remote attestation. Analogously,
the Cybernetica Deployment Root CA certificate is embedded into the server and verifies
the validity of the coordinator’s public key certificate. This ensures that only the parties
explicitly added by the coordinator are allowed to access the deployment, and facilitates
authenticating the stakeholders and enforcing access controls.

Sharemind HI also enforces all available measures provided by SGX to combat
side-channel attacks. While SGX only provides the option to enable the mitigations with
the cost of slower execution speeds, Sharemind HI takes a conservative approach and
enforces using all available mitigatory measures.

30

3 Privacy-preserving data synthesis service
The DANCE project, which this thesis is based on, aims to develop a proof-of-concept
(PoC) privacy-preserving data synthesis service, which enables data owners to outsource
the synthesis process while being in compliance with data protection regulations. Ul-
timately, to fully comply with GDPR, the data controller has to decide, whether or
not the organizational and technical measures offered by the service are sufficient for
their specific use-case. However the service is designed with the goal to be suitable for
most use-cases, by ensuring that the data is protected even from the service provider. It
achieves this through the use of Sharemind HI.

At the highest level, the whole process of synthesizing data with the service can be
separated into three steps. First the data owner encrypts their CSV file and uploads it to
the Sharemind HI server. Secondly the task enclaves in the server decrypt the CSV file,
use it to create and train a synthesizer model, and synthesize data based on the trained
model. Lastly the data owner can download and decrypt the final synthesized data using
the Sharemind HI client.

3.1 Use cases and motivation
As mentioned in Section 2.4, there are many use-cases for using synthetic data in general,
like stress-testing of systems, data sharing, and training machine learning models. The
main hurdle in generating synthetic data is the need to create a synthesizer model, which
requires significant resources and knowledge of the subject matter. While multiple
companies offering commercial solutions for data synthesis already exist, like Statice5,
Mostly.ai6, Hazy7, Replica Analytics8, and Datagen9, none of them offer data synthesis
where the input data would be hidden from the service provider themselves. The DANCE
project attempts to fill that void by creating a PoC privacy-preserving data synthesis
service.

As an example use-case one can imagine a financial institution that wishes to create
new machine learning models to combat fraud. If the institution does not have in-
house capabilities to research and develop such models, they need to outsource the
process. However since training, developing, and testing the machine learning models
requires large amounts of relevant data, in this case the financial data collected by the
institution, it would have to be shared to the outsourced research and development
(R&D) company as well. As financial data is highly private and subject to the strongest
clauses of data protection, banking secrecy, and confidentiality regulations, sharing it

5https://www.statice.ai/
6https://mostly.ai/
7https://hazy.com/
8https://www.replica-analytics.com/
9https://datagen.tech/

31

https://www.statice.ai/
https://mostly.ai/
https://hazy.com/
https://www.replica-analytics.com/
https://datagen.tech/

would require additional contracts between the parties, notifying data subjects of external
processing of their private data, analysing compliance to the relevant regulations and
implementing all appropriate technical and organizational measures required by data
protection regulations. The technical and organizational measures required by privacy
regulations can even become too difficult or expensive to be viable, making the sharing
impossible. The issue would be solved by providing synthetic data to the R&D company,
and only doing minimal fine-tuning of the models in-house. If the financial institution
does not have the capability to synthesize data in house, which is likely, given they did
not have the capability for building the original models, they would use a commercial
service for it. Similarly, as original data is needed to generate the synthetic data, the
same issues arise as with giving the data straight to the outsourced R&D company.

The PoC privacy-preserving data synthesis service developed during the thesis pro-
vides a solution to the issues outlined above. The service is designed with privacy in
mind, providing strong technical and organizational measures to protect the data of the
user. Once privacy regulators deem trusted execution environment (TEE) to be a ma-
ture enough technology, the service would enable minimizing the legal and operational
overhead that comes with sharing personal data.

The financial institution can use the service to encrypt and upload their financial data
to Sharemind HI, where the synthesized data is generated securely inside the protected
SGX enclaves. The synthetic data can then be downloaded and decrypted, and shared to
the R&D company creating the machine learning models.

The example use-case is also highly relevant as financial institutions have been
looking into using synthetic data to drive innovation in banking as well as to include it
in their artificial intelligence and machine learning pipelines [29]. Mostly.ai claims that
machine learning models trained using synthetic data compare with models trained using
real data with up to 99% accuracy, and can, in some cases, even provide better models10.
The idea of using synthetic data to train better models is further supported by Andrew
White11, who also claims that in a few years time a majority of artificial intelligence
systems will be trained using synthetic data.

In addition to hypothetical examples, Elering AS12, the Estonian Rescue Board13,
and the Information Technology Centre for the Estonian Ministry of Finance14 have all
shown interest in the results of the project.

10https://mostly.ai/blog/15-synthetic-data-use-cases-in-banking/
11https://blogs.gartner.com/andrew_white/2021/07/24/by-2024-60-of-the-data-used-

for-the-development-of-ai-and-analytics-projects-will-be-synthetically-generated/
12https://elering.ee/en
13https://www.rescue.ee/
14https://www.rmit.ee/

32

https://mostly.ai/blog/15-synthetic-data-use-cases-in-banking/
https://blogs.gartner.com/andrew_white/2021/07/24/by-2024-60-of-the-data-used-for-the-development-of-ai-and-analytics-projects-will-be-synthetically-generated/
https://blogs.gartner.com/andrew_white/2021/07/24/by-2024-60-of-the-data-used-for-the-development-of-ai-and-analytics-projects-will-be-synthetically-generated/
https://elering.ee/en
https://www.rescue.ee/
https://www.rmit.ee/

3.2 Design of the service
3.2.1 Stakeholders and roles

The service includes a number of stakeholders with different roles. As a direct result of
using the Sharemind HI platform, the stakeholders can be described through the roles
they have in the solution. Table 1 illustrates the roles assigned to each stakeholder. The
end-users have all of the interactive roles: they have the input provider role as they are the
data owners that have to encrypt and upload the original data; they have the runner role
as they have to specify when to run the tasks and provide input parameters; they have the
output consumer role to download and decrypt the final synthetic data. Cybernetica AS is
in the role of the coordinator, as the developer of the service and the tasks. There also has
to exist at least one auditor and one enforcer, who ensure that the service is safe to use for
the end-users and that it complies with any and all specified security requirements. The
physical server, where Sharemind HI is deployed, can either be hosted by Cybernetica
AS, the external auditor, or some new stakeholder (e.g., a cloud service provider) with the
appropriate hardware (a server equipped with an SGX-enabled processor). It is important
to note that the server host should not have the runner role, as this would facilitate easier
side-channel attacks. A host with the runner role can run a task and rollback the server
state to before running the task, allowing them to easily generate many side-channel
measurements.

Currently every end-user’s access rights and roles have to be configured separately in
the dataflow configuration file (DFC). This means that all end-users have to be configured
in the DFC prior to the launch of the service, as the DFC has to be approved by the
enforcers and additional parties cannot be added later without resetting the service. In
order to facilitate adding many end-users in a scalable way, a new feature has to be
introduced to Sharemind HI. It should be possible to configure a stakeholder to act
as a certification authority (CA) that can issue certificates to end-users, who will then
automatically have the same rights and roles as the issuing party (henceforth the rootCA
stakeholder).

3.2.2 Components

In addition to the stakeholders, the service also involves multiple technical components
inside the Sharemind HI server, namely data topics and task enclaves. There are three
primary data topics involved in the service:

• an InputData topic, which stores the preprocessed contents of the CSV files
uploaded by end-users,

15While the external auditors are important to ensure the security of the solution, for the PoC phase
there are no external auditors and the enforcer and auditor roles will be assigned to the end-users and
Cybernetica AS.

33

Stakeholders
Cybernetica AS End-user External auditor(s)15

Server host +
Coordinator +

Enforcer +
Input provider +

Roles Output consumer +
Runner +

Developer +
Auditor +

Table 1. Assignment of roles to stakeholders.

• a Model topic, which stores the trained synthesizer models, and

• a SynthesizedData topic, which stores the synthesized data.

There are also two auxiliary data topics:

• a Metadata topic, which stores sensitive metadata about the data items in the
primary topics, like filenames, and

• a Preprocessing topic, which stores parameters related to the preprocessing of
user CSV files, like normalization ranges and encodings of any categorical fields
in the original data.

The processing of data is split into two task enclaves:

• a Model task, which creates and trains a synthesizer model, and

• a Synthesis task, which generates synthetic data.

The service also includes a web based user interface (UI). The UI acts as a wrapper
for the Sharemind HI client, displays all relevant metadata about the data items currently
in the topics, and is tasked with preprocessing the CSV files before uploading. From this
list of responsibilities the UI can be separated into three components:

• the Sharemind HI client,

• visualization, and

• a CSV processor, which parses the CSV files and preprocesses their contents.

34

S t a k e h o l d e r s :
− Name : rootCA

C e r t i f i c a t e F i l e : p a t h / t o / rootCA . c r t
− Name : e x t e r n a l A u d i t o r

C e r t i f i c a t e F i l e : p a t h / t o / e x t e r n a l A u d i t o r . c r t
A u d i t o r s :

− e x t e r n a l A u d i t o r
E n f o r c e r s :

− e x t e r n a l A u d i t o r
Tasks :

− Name : m o d e l _ t a s k
E n c l a v e F i n g e r p r i n t : " . . . "
S i g n e r F i n g e r p r i n t : " . . . "
Runners :

− rootCA
− Name : s y n t h e s i s _ t a s k

E n c l a v e F i n g e r p r i n t : " . . . "
S i g n e r F i n g e r p r i n t : " . . . "
Runners :

− rootCA
To p i c s :

− Name : I n p u t D a t a
P r o d u c e r s :

− rootCA
Consumers :

− m o d e l _ t a s k
− Name : Model

P r o d u c e r s :
− m o d e l _ t a s k

Consumers :
− s y n t h e s i s _ t a s k

− Name : S y n t h e s i z e d D a t a
P r o d u c e r s :

− s y n t h e s i s _ t a s k
Consumers :

− rootCA
− Name : P r e p r o c e s s i n g

P r o d u c e r s :
− rootCA

Consumers :
− rootCA

− Name : Metada ta
P r o d u c e r s :

− rootCA
Consumers :

− rootCA

Listing 1. DFC file of the service.

35

3.2.3 Access rights and the DFC

Prior to any data being uploaded or processed, all stakeholders, tasks, topics, and access
rights have to be formalized in the DFC file, as outlined in Section 2.6.1. An example of a
DFC file used in the service can be seen on Listing 1 and is illustrated by a corresponding
dataflow configuration graph on Figure 8.

Note that while the end-users are not explicitly listed in the DFC file, the rootCA
stakeholder is. As a result everyone who is issued a certificate by the rootCA, will have
all the same access rights as the rootCA. The end-users and the rootCA are allowed to
upload data into the InputData topic, download data from the SynthesizedData topic,
and both upload and download data from the Metadata and Preprocessing topics.
They are also allowed to run both the Model and Synthesis tasks. The Model task is
only allowed to read data from the InputData topic and upload data to the Model topic.
Similarly, the Synthesis task is only allowed to read data from the Model topic and
upload data to the SynthesizedData topic.

The external auditor does not interact with the launched service, and as such, is
not depicted on the graph in Figure 8. However, due to having the enforcer role, they
are allowed to and responsible for approving the DFC before the service is launched.
Additionally, due to having the auditor role, they are allowed to download and decrypt
the audit logs at any point after the service has been launched.

3.2.4 Service lifecycle

The lifecycle of the service can be separated to pre- and post-launch phases. In the
pre-launch phase the stakeholders generate asymmetric key pairs and corresponding
certificates, the DFC is constructed and approved, and enclaves are initialized. In the
post-launch phase, only the rootCA, end-users, and the server will be involved with the
service. The whole process flow of the deployed service can be separated into 11 distinct
steps as shown on Figure 8.

1. The rootCA stakeholder issues a certificate to an end-user, giving them access to
the service.

2. The end-user uses the Sharemind HI client to encrypt and upload their CSV file to
the InputData topic on the Sharemind HI server.

3. The end-user uses the Sharemind HI client to trigger the Model task to run, and
to provide the necessary input arguments to the task (e.g., which CSV file to use,
model specific parameters, metadata).

4. The Model task downloads the specified CSV file from the InputData topic.

5. The Model task decrypts the CSV file, and uses it to create and train the synthesizer
model.

36

6. The Model task encrypts the trained model and uploads it to the Model topic.

7. The end-user uses the Sharemind HI client to trigger the Synthesis task to run,
and to provide the necessary input arguments to the task (e.g., which model to use,
how many rows of data to synthesize, metadata).

8. The Synthesis task downloads the specified model from the Model topic.

9. The Synthesis task decrypts the model, and uses it to generate synthesized data.

10. The Synthesis task encrypts the synthesized data and uploads it to the SynthesizedData
topic.

11. The end-user uses the Sharemind HI client to download and decrypt a synthesized
CSV file from the SynthesizedData topic on the Sharemind HI server.

More detailed Business Process Model and Notation (BPMN) diagrams of uploading
a CSV file, running the Model task, running the Synthesis task, and downloading
synthetic data, can be found in Appendix A on Figures 15, 16, 17, and 18, respectively.

3.2.5 User interface

For a more streamlined user experience, the service includes a web application that
handles the preprocessing of CSV files, provides a user interface (UI) to the Sharemind
HI client, and displays the data present in Sharemind HI servers to the user.

The CSV preprocessing consists of converting all categorical text values in the CSV
file to numeric values using label-encoding, standardizing all numeric values column-
wise, and serializing the resulting matrix. By default, standardization uses the minimum
and maximum values of each column. However these ranges are also displayed to the
user, who can modify the ranges to better suit their needs, and the user provided values
are used for standardization instead. The user-provided ranges are also used during
synthesis to ensure no values outside the specified range are generated. This filtering
is needed to ensure that, for example, the synthesized data does not include negative
values in the column representing a person’s age. While some existing models, like the
truncated mixture models, can handle such limitations natively, the Gaussian mixture
modeling (GMM) included in the service does not. To avoid limiting the selection of
models that could be added to future iterations of the service, the filtering was added
instead of changing the model.

The preprocessing is done entirely inside the end-user’s browser, due to security,
performance, and usability considerations. From the security side, parsing text fields in a
side-channel safe manner is difficult and requires more sophisticated methods instead of
naïvely parsing the file row-by-row. For example, the length of each row in the CSV file
can already leak a substantial amount of information, if timing attacks are used. From the

37

Figure 8. Dataflow configuration graph describing the access control and process flow of
the service.

performance perspective, parsing large sections of data inside the enclave is significantly
slower than doing it outside the enclave due to memory limitations. While the memory
restrictions can be circumvented by using synthesizer models that allow using streams, or
incrementally training the models chunk-by-chunk, doing so was considered out-of-scope
for the PoC service. Lastly, preprocessing inside the task enclave would incur slight
usability issues, as the Sharemind HI task enclaves are designed to only take inputs
before starting the task. Hence, changing the column ranges based on user input would
require terminating the currently running task and starting a new one with the new ranges.

The web application provides convenient buttons for uploading and downloading
data, as well as for starting the model training and data synthesis tasks. The user does
not need to know anything about the Sharemind HI client working in the background.
The web application also automatically queries the Sharemind HI server to display any

38

Figure 9. A screenshot of the user interface.

39

upload or created files, providing the user with an overview of available files. The user
interface is shown on Figure 9.

The expected user flow through the service can be separated into four steps: uploading
a CSV file, training a model, synthesizing data, and downloading the synthesized data.

To upload a CSV file, the user clicks the “Upload CSV” button and selects a file from
their local file system. The web application parses the file and asks the user to confirm or
change the inferred column ranges, after which the CSV file is preprocessed and uploaded
to the InputData topic in Sharemind HI server. The file name and preprocessing info is
uploaded to their corresponding topics, respectively the Metadata and Preprocessing
topics. The table containing uploaded files is updated, confirming that the file was indeed
uploaded to Sharemind HI and is available for further actions.

To train a synthesizer model based on the newly uploaded file, the user selects the
file from the UI, enters a name for the model, specifies the number of clusters the
GMM model should be trained with, and clicks the “Securely Compute Synthesizer
Model” button. The web application consolidates the user inputs into metadata and
task arguments, sends the task run request to the Sharemind HI server, and uploads the
metadata to the Metadata topic. Once the model is successfully trained, the model along
with its metadata appears in the table containing all models.

Similarly, in the data synthesis step, the user selects a model, enters a name for
the synthesized data, specifies how many rows the output should have, and clicks the
“Securely Synthesize Data” button. The web application acts the same way as it did
in the model training step and the synthesized data file appears in the table containing
synthesized data.

Finally the user can click the “Download and decrypt” button next to a synthe-
sized data file, which prompts the web application to download the file from the
SynthesizedData topic and the preprocessing information from the Preprocessing
topic, convert the data back to the original data ranges, format the data as a CSV file, and
initiate the download to the user’s local file system.

While the project is intended to act as a commercial service involving many end-users,
for the proof-of-concept (PoC) phase we only allow for a single user. Supporting multiple
users requires implementing login and user management systems to the web application,
which is not in the scope of the PoC privacy-preserving data synthesis service and is
intended as future work.

40

4 Service Architecture
The proof-of-concept (PoC) privacy-preserving data synthesis service developed as a
part of this thesis is separated into a client-side and a server-side architecture, which
communicate with each other using strictly defined application programming interfaces
(API). Both sides also contain generic libraries for performing specific tasks, with the
goal of reusing them in future projects.

4.1 Server-side architecture
The server-side architecture wholly consists of the Sharemind HI server. The general
architecture of the server is discussed in Section 2.6.2. As the management enclaves
are independent of the solution, we will not discuss them further and consider them a
black-box in terms of the architecture of the service. The task enclaves, however, are
solution-specific and contain the most critical parts of the service.

As described in Section 3, there are two sequential tasks that need to use confidential
information. The synthesizer model is created and trained in the Model task enclave and
data is synthesized in the Synthesis task enclave. Having two smaller isolated tasks
allows for easier auditing and reasoning about the code, which reduces the risk of task
developers introducing vulnerabilities and enforcers not noticing said vulnerabilities.
Additionally, separating the tasks isolates them and hence minimizes the attack surface
and limits the damage of any potential breaches caused by unforeseen attacks. From the
usability side having the tasks separate gives the end-users more options by allowing them
to easily re-use a model to generate multiple synthetic datasets from a single model, as
well as allowing to create multiple models with different parameters prior to synthesizing
any data. Both task enclaves are written in the Rust programming language16 and make
use of a custom built data synthesis library, also written in Rust, which provides all
necessary functionality for data synthesis.

The actual solution-specific code, which runs inside the task enclaves of the PoC
service, was a contribution of the author. At the beginning of the project this involved
creating and deploying empty task enclaves, written in C++, to facilitate the development
of other parts of the service and ensure the future development of the enclaves can be
done rapidly along with the other parts. At later stages of development, task enclaves
were iteratively upgraded to include basic input and output for testing the functionality
of the web application and the deployment of the service. The main implementation
of the task enclaves was only started once the CSV processing library (Section 4.2.1),
and the data synthesis library (Section 4.1.1), were completed. While the logic that
has to run inside the task enclaves is not too complex, implementing it inside the task
enclaves required utilizing and understanding all other parts of the service. Hence the

16https://www.rust-lang.org/

41

https://www.rust-lang.org/

main difficulties in implementing the logic involved fully understanding the service
architecture and the implementations of all the included parts.

4.1.1 Data synthesis library

The data synthesis library defines and implements an API that allows to easily create and
train a synthesizer model, serialize and deserialize a trained model for storage or transfer,
use the model to generate synthetic data, and compute various metrics from the model
and synthetic data. The library has a modular design enabling easy inclusion of new
synthesis algorithms. Currently only Gaussian mixture modeling (GMM) and generative
adversarial network (GAN) methods are implemented, however only the GMM method
is available for use through the API.

The implementation of GMM in the synthesis library requires the input data for
training a model to be in the format of a two-dimensional matrix of 32-bit floating-
point numbers. Synthesizing data using the model returns a matrix of the same format.
Additionally, training the model requires the number of clusters to be specified by the
user.

The synthesis library consolidates the functionality of multiple external libraries.
However, since all functionality has to be run inside the enclaves, the code of the
external libraries is modified to accommodate the restricted environment. This is done
by removing their dependency of the Rust Standard Library17 (libstd), or in other words
making them no-std compatible. This is needed as code running inside the enclaves
does not have access to the primitive operations, like interfacing with file systems
and managing memory, which the Rust Standard Library relies on to implement its
functionality and which are usually provided by the operating system [30].

4.1.2 Model task enclave

The Model task enclave takes as input the ID of a CSV file in the InputData topic and
the number of clusters the GMM model should use. It then reads the specified data item
from the InputData topic, and parses and formats it into a structure usable by the data
synthesis library. The parsed data is fed to the data synthesis library to create and train a
model based on the inputs. The trained model is serialized, encrypted and written to the
Model topic.

As all data transport into and out of enclaves happens as bytes, the data is serialized
as shown on Figure 10. This format allows for easy and fast serialization from a CSV
encoding and deserialization to a matrix of floating-point numbers as required by the
data synthesis library.

The first four bytes (each byte is denoted as u8) are the big-endian encoding (meaning
the first byte holds the most-significant bits of the number and the last byte holds the

17https://doc.rust-lang.org/std/

42

https://doc.rust-lang.org/std/

[u8, u8, u8, u8︸ ︷︷ ︸
u32

,

2·4·m elements︷ ︸︸ ︷
u8, u8, u8, u8︸ ︷︷ ︸

f32

, . . . , u8, u8, u8, u8︸ ︷︷ ︸
f32

,

n·4·m elements︷ ︸︸ ︷
u8, u8, u8, u8︸ ︷︷ ︸

f32

, . . . , u8, u8, u8, u8︸ ︷︷ ︸
f32

]

Figure 10. The memory layout of serialized input data.

least-significant bits of the number) of a 32-bit unsigned integer (denoted u32) and the
rest of the bytes are big-endian encodings of 32-bit floating-point numbers (f32).

The unsigned integer represents the number of columns in the CSV file, denoted as
m. The following floating-point values are separated into two sections. The first 2m
values are the normalized ranges for each column, where the first half are the minimum
and second half are the maximum values. All floating-point values after the ranges are
the normalized values of the input file. Hence the byte array consists of 4 · (n+2) ·m+4
bytes, where n is the number of rows and m is the number of columns in the CSV file.

The enclave reads the whole byte array at the specified ID in the InputData topic
into the enclave memory, extracts the number of columns from the first four bytes, and
parses the rest into corresponding vectors of minimum and maximum values, and a
2-dimensional matrix usable by the data synthesis library.

An argument could be made to further split the Model task enclave into smaller tasks,
like a model initialization and model training tasks, isolating them and making the service
more robust against potential attacks. However, this would introduce more complexity
into the overall structure of the service, making it a trade-off between the cohesion of the
process as a whole and isolation of specific tasks.

4.1.3 Synthesis task enclave

The Synthesis task enclave takes as input the ID of a model in the Model topic and the
number of rows to be synthesized. The specified model is read from the Model topic into
enclave memory, and used to synthesize new data row-by-row using the data synthesis
library. The synthesized rows are filtered based on the user specified ranges, dropping
any row that includes a value that is out of range. The synthesis process is repeated until
the requested number of valid rows is reached, at which point the resulting matrix is
serialized and written to the SynthesizedData topic.

4.1.4 Adding support for the Rust language

The choice to write parts of the service in Rust had multiple advantages over writing
them in the C++ language, although only the latter is natively supported by Sharemind
HI for writing task enclaves. First and foremost, the low-level nature of Rust combined

43

with its security oriented design promising to remove many common programming
pitfalls that come with manual memory management and raw pointer handling, makes it
an attractive choice for writing security critical embedded code [30]. Secondly, using
the Rust language was intended as a secondary research objective by the project team,
allowing them to gather experience with the language and to test whether writing task
enclave code in Rust is feasible.

One of the goals of Sharemind HI is to minimize the risk of introducing errors
and bugs when implementing business logic, that may influence the security of the
solution. A common source of such errors come from the complexity and power of
the C++ programming language [24]. The Rust programming language is designed
to prevent many common pitfalls, while retaining the low-level capabilities of other
common systems programming languages [30]. The alignment of these design goals
leads to the natural conclusion to allow implementing the solution-specific logic used in
Sharemind HI task enclaves in the Rust programming language, further reducing the risk
of introducing security critical errors.

Task enclaves have access to a limited set of operations to interface with the rest of the
Sharemind HI server. Specifically these operations are reading data (and public metadata)
from the topics for which the task enclave has an output consumer role, writing data
(and public metadata) to the topics for which the task enclave has an input provider role,
reading the public data present in the dataflow configuration file (DFC), and receiving
the task invocation-specific arguments.

In order to support developing task enclaves in Rust, a foreign function interface (FFI)
was implemented. The FFI serves as a bridge between the existing limited operation
set written in C++ and the task enclaves written in Rust. From the viewpoint of the
task enclave developer, the only thing that has changed is the programming language.
When a Rust task enclave calls a function included in the FFI, the Rust side of the FFI
deconstructs all the arguments given to the function into raw pointers and passes the
pointers over to C++ side of the FFI, which translates the pointers back into arguments
usable by the original task enclave operations in C++. Sending information back to the
Rust enclave happens analogously, where the raw pointers to the memory location of the
information are passed over the FFI, and read back in the appropriate format usable by
Rust.

While the basic interface for downloading data from data topics into the enclave was
created by a senior developer in the Sharemind HI team, the author of this thesis was
responsible for testing and fixing the created interface, adding other critical functionality
needed in the DANCE project, like uploading data to topics and adding public metadata,
and ensuring the code can be successfully deployed and run in Sharemind HI enclaves.

The implementation required the author to learn the Rust programming language,
including advanced features like “unsafe Rust” and managing of raw pointers [30], and
to fully understand how the task enclaves are created and deployed in Sharemind HI.

44

4.2 Client-side architecture
The client-side web application consists of a CSV processing library, the Sharemind HI
client library, and the user interface (UI). The Sharemind HI client library was discussed
in Section 2.6.2 and can be considered a simple API for interfacing with the Sharemind
HI server. For the full version of the service, a user management system is also planned,
however it is not implemented during the PoC phase.

The UI also makes heavy use of the public metadata feature, which was added to
Sharemind HI by the author of this thesis, to display information to the user about the
data items present in the server and to ensure the correct data items are uploaded and
downloaded. For example the public metadata attached to the models includes the date
when the model was trained, the number of clusters used in the GMM model, the ID of
the input data in the InputData topic used for training, the ID of the private metadata
of the model in the Metadata topic, and ID of the preprocessing information in the
Preprocessing topic.

4.2.1 CSV processing library

The CSV processing library contains all of the functionality to parse, preprocess, and
serialize a CSV file. Similarly to the data synthesis library discussed in Section 4.1.1,
the CSV processing library is written in the Rust programming language, and does not
depend on the Rust Standard Library.

While the CSV processing library is not used inside an enclave in the DANCE project,
it was designed with the goal of being re-usable in future projects, which may require
using it inside enclaves as well. As the CSV processing library is written to be re-usable,
it also contains many functionalities that are not used in the DANCE project, like nullable
fields and fields containing dates.

Furthermore, the CSV processing library is written to be compatible with WebAssem-
bly18. Compiling the library with WebAssembly allows it to be run in most browsers,
which can not normally run compiled Rust code.

4.2.2 User interface

The user interface has two intertwined tasks. First and foremost it provides the user with
all the required information about the process through the use of buttons, forms, and
tables. Secondly it joins together the user inputs, the CSV processing library, and the
Sharemind HI client, and translates between them.

When a user first connects to the web application, their certificate and cryptographic
keys are used to negotiate a temporary session key with the Sharemind HI server. The
session key is used for all communication between the Sharemind HI client and server.

18https://webassembly.org/

45

https://webassembly.org/

For the PoC phase, however, the user’s certificate and keys are hardcoded into the
application. The functionality to generate, store, and import the certificates and keys is
planned to be included in the full version of the service.

After the session has been established with the server, and after each user action
involving the server, the web application queries the server for the metadata of all data
items available to the user. The results are displayed to the user in the form of tables.
Quering the metadata after each action also allows to display a fully consistent state to
the user. In the PoC phase the user has access to the metadata of all data items, however
once the functionality for multiple users is added, each user should only see the metadata
of the data items, which they have uploaded or created.

While retrieving all of the metadata after each query incurs a large overhead in
communication, ease of implementation was preferred in the PoC phase, as all processes
can be optimized in future iterations of the service.

The UI is written in the TypeScript19 programming language and uses the React20

framework.
The author of this thesis was fully responsible for everything related to the user

interface, from its design, to the implementation and deployment. This includes creating
the graphical user interface, including and using all involved libraries, such as the CSV
processing library and Sharemind HI client library, implementing the communication
with the Sharemind HI server and managing the data items, handling the user credentials,
and locally deploying and testing the whole service.

4.2.3 Public metadata

As Sharemind HI is intended as a general purpose platform, it needs to provide flexible
functionality to account for as many use-cases as possible. In many situations an input
provider may wish to include additional public information with the confidential data
they upload. While some information is infeasible to hide completely, like the upload
dates or file sizes, others may be public by design, like solution-specific variables or who
the original data owner is. Prior to the DANCE project the Sharemind HI platform did
not include functionality to handle such cases. The public information had to either be
handled externally or serialized along with the confidential data, which complicated the
design and analysis of task enclaves.

To simplify the development and analysis of the data synthesis service, the function-
ality to include public metadata was added. This public metadata is implemented as a
list of key-value pairs for each data item, which can be defined arbitrarily by an input
provider when uploading the data.

Sharemind HI already included some technical metadata in the DFC file about the
data items present on the platform. For example, the DFC included the IDs of all data

19https://www.typescriptlang.org/
20https://reactjs.org/

46

https://www.typescriptlang.org/
https://reactjs.org/

items in all topics as well as some technical details, like the hash values of the data items.
Furthermore, the DFC was visible to all stakeholders at all times, and updated during
runtime when new data items were uploaded. Hence the new user defined metadata was
added to the DFC, to explicitly display the metadata as public, and to implicitly group
together all public information about the data items uploaded to Sharemind HI.

Implementing the public metadata feature required the author to acquire a deep level
of understanding on how the DFC is constructed and updated in the Sharemind HI
platform, and how the client-server communication works.

47

5 Security of the service
The PoC privacy-preserving data synthesis service developed as a part of this thesis
mostly relies on the security properties of Intel SGX and Sharemind HI, discussed
respectively in Sections 2.5.4 and 2.6.3. This section will focus on the threat model of
the PoC privacy-preserving data synthesis service developed as a part of this thesis, and
access rights of each party as defined by the dataflow configuration file (DFC).

The main goal of the service is to synthesize data based on confidential input data,
without the host of the server ever seeing the original values. This primary goal can be
formalized as a security requirement, where a malicious server host should not be able to
learn anything about the uploaded CSV files of the users.

In addition to the server host and the end-user, the service also includes multiple
other parties, like the auditors or other end-users in the final version of the service, each
of whom has their own access rights. It is important to ensure that no information about
a given end-user’s confidential data leaks to any of the other parties. Hence we can
generalize the security requirement to include any malicious party instead of just the
server host.

In addition to the actual confidential contents of the CSV files, the service uses
auxiliary metadata. While some metadata, like file sizes and upload dates, are considered
to be public information (as the effort spent to protect these from trivial side-channel
attacks would exceed their potential sensitivity), other pieces, like filenames, have to be
kept secret.

The above considerations are summarized in Table 3 in Appendix A, which shows
the full list of all data items involved in the client-server communication, along with who
has access to which data items. Furthermore, the flow of the data items between parties
is visible in the BPMN graphs on Figures 15, 16, 17, and 18. The table and BPMN
graphs mirror the dataflow configuration file (DFC) contents shown on Listing 1, which
is the basis for access control management in Sharemind HI. Sharemind HI enforces the
access controls as listed in the DFC file, ensuring that each data item is only accessible
as shown in Table 3.

A malicious end-user is not considered in the PoC phase, as they are the only party
whose data we are protecting, and maliciousness would directly imply that all confidential
data has leaked. The security guarantees of Intel SGX protect against a malicious server
host through the use of enclaves. The security guarantees of Sharemind HI protect against
malicious task enclave developers, as all task enclaves have to be first checked by auditors
and approved by enforcers, and are later confirmed to run the approved code using the
attestation process. Similarly, the code of the Sharemind HI client should be confirmed
by the enforcers and can be checked by the auditors. However, the case of a malicious
web application developer is not considered in the PoC phase. While the code of the web
application (and the code of Sharemind HI client included within the web client) can be
checked by the enforcers and auditors, there are no ways to confirm if the checked version

48

is the same as the one sent to the end-user. The issue is somewhat mitigated by the fact
that the code runs fully in the end-user’s browser and can be checked by the end-user
each time they interact with the service. This, however, is infeasible for most end-users
and, as such, does not provide a strong protection. Ensuring that the code sent out by the
web server is the same that was received by the client is a critical known weakness of
web applications in general [31]. As such this is considered to be an acceptable risk and
the end-user needs to trust the developer of the web application. The cases of malicious
enforcers and auditors can be mitigated by having multiple non-colluding stakeholders
with these roles. Hence the security of the service requires trusting the developer of the
web application and some subset of enforcers. In turn, the enforcers need to trust Intel
and the attestation process.

The trust assumptions and potential attack vectors applicable for each component in
the PoC privacy-preserving data synthesis service developed as a part of this thesis is
given in Table 2. The table shows, that in order to use the service, an end-user needs to
ultimately trust two separate parties: Intel, as the developer of SGX, and Cybernetica
AS, as the developer of Sharemind HI and the web application. Additionally, trust in the
enforcers and auditors reduces the relience on Cybernetica AS, as they can verify that
the service fulfills the promised security requirements. The end-user is also expected to
trust their browser, as the web-application has no protections against a corrupted browser.
This limitation could be removed by, for example, providing a binary executable file, the
integrity of which could be verified with a checksum provided through trusted channels.
This approach, however, requires the end-user to download, verify, and run the executable,
which is significantly less user-friendly than the current method, making it unsuitable to
be the primary means of accessing service.

49

Component Requires trust in Potential attack vectors
Intel CPU Intel Physical access to the CPU.

SGX instruction set Intel CPU

Attacks on trusted components.
Side-channel leakage from the host machine.
Exploiting flaws in the implementation of SGX.
Breaking cryptographic primitives.

Intel’s pre-made enclaves SGX instruction set,
Intel

Attacks on trusted components.
Exploiting flaws in the implementation of the pre-made enclaves.

Local attestation Intel’s pre-made enclaves
Attacks on trusted components.
Corrupting communication between enclaves.

Remote attestation Intel Attestation Service,
local attestation

Attacks on trusted components.
Corrupting communication between the verifier and the enclave.
Corrupting communication between the verifier and the IAS.

Sharemind HI server

Cybernetica AS,
remote attestation,
enforcers,
auditors

Attacks on trusted components.
Exploiting flaws in the implementation of the Sharemind HI server.

Sharemind HI client
Cybernetica AS,
enforcers,
auditors

Attacks on trusted components.

Task enclaves
Sharemind HI server,
enforcers,
auditors

Attacks on trusted components.
Exploiting flaws in the implementation of the Sharemind HI client.

Web Application
Cybernetica AS,
Sharemind HI client,
browser

Attacks on trusted components.
Exploiting flaws in the implementation of the application.
Exploiting vulnerabilities in the dependencies of the application.
Corrupting the user’s browser or machine.
Corrupting the communication between the user and the web server.

PoC service Web application,
task enclaves Attacks on trusted components.

Table 2. List of trust assumptions and attack vectors by component.

50

6 Service performance and benchmarks
The PoC privacy-preserving data synthesis service developed as a part of this thesis was
deployed on a server with the following technical specifications:

• CPU: Intel® Xeon® CPU E3-1225 v5 @ 3.30GHz

• RAM: 4x8GiB DDR4, ECC UDIMM, 2133 Mbps

• Storage: Samsung SSD 850 PRO 1TB

The server was running the Sharemind HI server and serving the web application. The
service was accessed through a 100 MB/s wireless connection using the Chrome browser
on a client machine, which had the following technical specifications:

• CPU: Intel® Core™ i5-7300U @ 2.60GHz.

• RAM: 2x8GiB DDR3, SODIMM, 2133 Mbps

• Storage: Toshiba SSD KXG5AZNV 256GB

Currently, the maximum size of CSV files that can be processed and uploaded is 64
KiB, due the limitations of the CSV parsing library. This limitation could be overcome
with optimizations to the CSV parsing library, and as such will not be considered in
further tests. For measuring the performance of other sections of the service, parsing
the CSV files was circumvented by generating randomized raw data and uploading it
directly to Sharemind HI.

Benchmarking various metrics for assessing the accuracy or goodness-of-fit of the
trained model is considered out-of-scope for this thesis, as the synthesis method and its
implementation are only used in the service and have not been developed by any member
of the project team.

All results are reported as the average run-time over ten independent runs, where time
is measured from two pairs of start and end points. The end-to-end times are measured
on the client-side from the moment of starting a task in the user interface until receiving
confirmation of task completion. The enclave times are measured from inside the task
enclaves from the moment the task enclave code starts running until exiting the enclave.
Input data consisted of random values between zero and one and was regenerated for
every run.

The performance of the Model task enclave is described by Figures 11 and 12. Fig-
ure 11 describes the relation between the run-time of the Model task and the size of the
input dataset, while the number of clusters used to train the models was fixed at three.
Figure 12 describes the relation between the run-time of the Model task and the number
of clusters used to train the synthesis model, while the size of the input data was fixed at
4 kB. The Model enclave was allocated 50 MiB of stack and 352 MiB of heap for tests.

51

The performance of the Synthesis task enclave is similarly described by Figures 13
and 14. Figure 13 describes the relation between the run-time of the Synthesis task and
the size of the output dataset, while the number of clusters used to train the models was
fixed at three and the size of the input dataset was fixed at 4 kB. Figure 14 describes the
relation between the run-time of the Synthesis task and the number of clusters used to
train the synthesis model, while the size of both the input and output data was fixed at 4
kB. The Synthesis enclave was allocated 256 Kib of stack and 16 Mib of heap for both
tests.

Running the tests showed that the maximum size of the input datasets was directly
dependant on the size of the stack allocated to the Model enclave during the deployment
phase of the service. This limitation, however, could be reduced by adding synthesis
methods that allow for streamable or batch-based training of models. The relatively small
maximum size of output data was caused by the lack of optimization in the Synthesis
enclave causing it to run out of memory when bigger sets were generated.

Comparing the end-to-end and enclave run times shows that the overhead of commu-
nication between the client and the server, and of creating and destroying the enclave
takes constant time, regardless of the size of input data or the arguments supplied. It is
also important to note that the amount of time needed to create an enclave is heavily
dependant on the amount of stack and heap allocated to the enclave, which is fixed
during the deployment phase of the service. The Sharemind HI team has plans to further
improve the enclave creation process, further reducing the overhead.

It is clear that the number of clusters used to train the model increases the run-time
of the Model task exponentially, however has minimal effect on the Synthesis task, the
run-time of which increased linearly in relations to the number of clusters used. As
expected, however, increasing the input size for the Model task and output size for the
Synthesis task increases the workload of both tasks linearly.

The performance results brought attention to the need of further optimizing the
service in terms of memory management. One of the main limitations of the service
is the relatively small size of data that can be processed across all parts, starting from
the 64 KiB limit of the CSV parsing library, to the 1 MB limit of output data in the
Synthesis enclave. Removing these limitations and improving the general performance
of the service is intended as future work. Significant optimizations could be made by
adding synthesis methods that support streamable or batch-based training of the models
or that can utilize multi-threaded computation environments. Such methods would be
able to better utilize the low-memory environment of the enclaves, leading to a smaller
memory footprint and reducing slowdowns caused by memory paging.

However, disregarding the current limitations and extrapolating from the performance
results indicates that a synthesizer model for an input dataset of size 1 GB could be
trained in less than two hours. Furthermore, there is hope that the planned optimizations
would reduce the training time significantly, proving that synthesizing data in a privacy-

52

preserving manner by using trusted execution environments is not only possible, but also
feasible in practice.

Figure 11. Run-time of the Model task relative to input size.

Figure 12. Run-time of the Model task relative to the number of clusters.

53

Figure 13. Run-time of the Synthesis task relative to output size.

Figure 14. Run-time of the Synthesis task relative to the number of clusters.

54

7 Conclusion
The goal of this thesis is to develop a proof-of-concept service showing that it is possible
to use trusted execution environments to perform data synthesis in a privacy-preserving
manner. The thesis gives an overview of the design, architecture, and security properties
of the prototype for a privacy-preserving data synthesis service.

The service enables outsourcing the data synthesis process to an untrusted remote
server, by ensuring that both the original and synthesized data are fully hidden from the
untrusted server host throughout the lifecycle of the service. To achieve the required
security goals the service prototype uses trusted execution environment technology,
specifically the Sharemind HI development platform, which is in turn based on the Intel
Software Guard Extentions (SGX) platform.

The author of the thesis worked as a member of the team responsible for developing
the service prototype. Over the course of development the author contributed in three
general fields: developing missing features for the Sharemind HI platform, designing
and implementing the user interface, and implementing the logic that joins all the various
parts of the solution into a coherent working service.

The developed service prototype proves that it is indeed possible to synthesize data
in a privacy-preserving manner by using trusted execution environments. Furthermore,
benchmarks of the service show that doing so is practically feasible.

The development of the service prototype is still ongoing at the time of writing and is
intended to be completed in August 2022. As such the thesis only covers the completed
functionality of the service, which is still missing various key features, such as allowing
multiple users, and has many limitations, such as only being able to process relatively
small datasets due to a lack of optimizations. Cybernetica AS has plans to further develop
the prototype and significant work is required before it could be offered as a commercial
service. Adding support for multiple users and additional data synthesis methods, as well
as optimizing the service, to allow for bigger input and output datasets and to enable
faster training of synthesizer models, are planned as future work.

55

References
[1] General Data Protection Regulation

https://eur-lex.europa.eu/eli/reg/2016/679/oj
(Visited on 17.05.2022)

[2] I. Anati, S. Gueron, S. P. Johnson, V. R. Scarlata. Intel Corporation (2013).
Innovative Technology for CPU Based Attestation and Sealing,
https://www.intel.com/content/www/us/en/developer/articles/technical/
innovative-technology-for-cpu-based-attestation-and-sealing.html
(Visited on 17.05.2022)

[3] J. Katz, Y. Lindell.
Introduction to Modern Cryptography.
CRC Press, 2020

[4] California Consumer Privacy Act of 2018
https://leginfo.legislature.ca.gov/faces/codes_displayText.xhtml?division=3.
&part=4.&lawCode=CIV&title=1.81.5
(Visited on 17.05.2022)

[5] Health Insurance Portability and Accountability Act of 1996
https://aspe.hhs.gov/reports/health-insurance-portability-accountability-act-
1996
(Visited on 17.05.2022)

[6] T. Siil.
Legal status of privacy technologies.
https://courses.cs.ut.ee/LTAT.04.007/2022_spring/uploads/Main/2022-02-16-PET-
course-legal-Triin-Siil.pdf
(Visited on 17.05.2022)

[7] G. W. van Blarkom, J. J. Borking, J. G. E. Olk.
Handbook of Privacy and Privacy-Enhancing Technologies - The case of Intelligent Software Agents.
The Hague, 2003.

[8] Big Data UN Global Working Group.
UN Handbook on Privacy-Preserving Computation Techniques.
https://unstats.un.org/bigdata/task-teams/privacy/UN%20Handbook%20for%
20Privacy-Preserving%20Techniques.pdf
(Visited on 17.05.2022)

[9] K. El Emam, L. Mosquera, R. Hoptroff.
Practical Synthetic Data Generation: Balancing Privacy and the Broad Availability of Data.
1st edition. O’Reilly Media, 2020.

[10] R. Lebaredian.
SYNTHETIC DATA / AI.
https://developer.download.nvidia.com/video/gputechconf/gtc/2019/presentation/
s9943-synthetic-data-will-drive-next-wave-of-business-applications.pdf
(Visited on 17.05.2022)

56

https://eur-lex.europa.eu/eli/reg/2016/679/oj
https://www.intel.com/content/www/us/en/developer/articles/technical/innovative-technology-for-cpu-based-attestation-and-sealing.html
https://www.intel.com/content/www/us/en/developer/articles/technical/innovative-technology-for-cpu-based-attestation-and-sealing.html
https://leginfo.legislature.ca.gov/faces/codes_displayText.xhtml?division=3.&part=4.&lawCode=CIV&title=1.81.5
https://leginfo.legislature.ca.gov/faces/codes_displayText.xhtml?division=3.&part=4.&lawCode=CIV&title=1.81.5
https://aspe.hhs.gov/reports/health-insurance-portability-accountability-act-1996
https://aspe.hhs.gov/reports/health-insurance-portability-accountability-act-1996
https://courses.cs.ut.ee/LTAT.04.007/2022_spring/uploads/Main/2022-02-16-PET-course-legal-Triin-Siil.pdf
https://courses.cs.ut.ee/LTAT.04.007/2022_spring/uploads/Main/2022-02-16-PET-course-legal-Triin-Siil.pdf
https://unstats.un.org/bigdata/task-teams/privacy/UN%20Handbook%20for%20Privacy-Preserving%20Techniques.pdf
https://unstats.un.org/bigdata/task-teams/privacy/UN%20Handbook%20for%20Privacy-Preserving%20Techniques.pdf
https://developer.download.nvidia.com/video/gputechconf/gtc/2019/presentation/s9943-synthetic-data-will-drive-next-wave-of-business-applications.pdf
https://developer.download.nvidia.com/video/gputechconf/gtc/2019/presentation/s9943-synthetic-data-will-drive-next-wave-of-business-applications.pdf

[11] D. A. Reynolds.
A Gaussian Mixture Modeling Approach to Text-Independent Speaker Identification.
PhD thesis, Georgia Institute of Technology, 1992.

[12] M. Y. Liu, X. Huang, J. Yu, T. C. Wang, A. Mallya.
Generative Adversarial Networks for Image and Video Synthesis: Algorithms and Applications.
In Proceedings of the IEEE, vol. 109, no. 5, pp. 839-862, 2021.

[13] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, Y.
Bengio.
Generative Adversarial Nets.
Advances in Neural Information Processing Systems, vol. 27, 2014.

[14] B. S. Everitt, D. J. Hand.
Finite Mixture Distributions.
Chapmann and Hall, 1981.

[15] W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery
Numerical Recipes: The Art of Scientific Computing (3rd ed.).
New York: Cambridge University Press, 2007.

[16] Intel Corporation.
Intel® Software Guard Extensions Developer Guide
https://download.01.org/intel-sgx/sgx-linux/2.16/docs/Intel_SGX_Developer_
Guide.pdf
(Visited on 17.05.2022)

[17] V. Costan and S. Devadas.
Intel SGX Explained,
IACR Cryptol. ePrint Arch., 2016, 86.

[18] S. Gueron.
A Memory Encryption Engine Suitable for General Purpose Processors.
Cryptology ePrint Archive, Report 2016/204.

[19] Intel Corporation.
Intel Xeon Scalable Platform Built for Most Sensitive Workloads
https://www.intel.com/content/www/us/en/newsroom/news/xeon-scalable-platform-
built-sensitive-workloads.html#gs.x4jyrv
(Visited on 17.05.2022)

[20] Intel Corporation.
Intel® Total Memory Encryption White Paper
https://www.intel.com/content/dam/www/central-libraries/us/en/documents/white-
paper-intel-tme.pdf
(Visited on 17.05.2022)

[21] Intel Corporation.
Intel® SGX Data Center Attestation Primitives
https://download.01.org/intel-sgx/latest/dcap-latest/linux/docs/DCAP_ECDSA_
Orientation.pdf
(Visited on 17.05.2022)

57

https://download.01.org/intel-sgx/sgx-linux/2.16/docs/Intel_SGX_Developer_Guide.pdf
https://download.01.org/intel-sgx/sgx-linux/2.16/docs/Intel_SGX_Developer_Guide.pdf
https://www.intel.com/content/www/us/en/newsroom/news/xeon-scalable-platform-built-sensitive-workloads.html#gs.x4jyrv
https://www.intel.com/content/www/us/en/newsroom/news/xeon-scalable-platform-built-sensitive-workloads.html#gs.x4jyrv
https://www.intel.com/content/dam/www/central-libraries/us/en/documents/white-paper-intel-tme.pdf
https://www.intel.com/content/dam/www/central-libraries/us/en/documents/white-paper-intel-tme.pdf
https://download.01.org/intel-sgx/latest/dcap-latest/linux/docs/DCAP_ECDSA_Orientation.pdf
https://download.01.org/intel-sgx/latest/dcap-latest/linux/docs/DCAP_ECDSA_Orientation.pdf

[22] Systems Software & Security Lab, Georgia Institute of Technology.
SGX 101.
https://sgx101.gitbook.io/sgx101/sgx-bootstrap/overview
(Visited on 17.05.2022)

[23] S. Laur.
MTAT.07.003 Cryptology II, Sigma Protocols
https://courses.cs.ut.ee/MTAT.07.003/2021_fall/uploads/Main/lecture-ix.pdf
(Visited on 17.05.2022)

[24] J. Randmets.
An Overview of Vulnerabilities and Mitigations of Intel SGX Applications
Cybernetica research report D-2-116, 2021.

[25] J. V. Bulck, F. Piessens, R. Strackx.
Nemesis: Studying microarchitectural timing leaks in rudimentary CPU interrupt logic.
ACM Conference on Computer and Communications Security, pp. 178–195, 2018.

[26] Z. Chen, G. Vasilakis, K. Murdock, E. Dean, D. Oswald, F. D. Garcia.
VoltPillager: Hardware-based fault injection attacks against Intel SGX enclaves using the SVID
voltage scaling interface.
30th USENIX Security Symposium (USENIX Security 21), Vancouver, B.C., 2021.

[27] Cybernetica AS (2022).
Sharemind HI White Paper.
https://cyber.ee/uploads/sharemind_hi_white_paper_ec24e8189a.pdf
(Visited on 17.05.2022)

[28] Cybernetica AS (2022).
Sharemind HI Overview.
Internal document.

[29] Financial Conduct Authority Synthetic data to support financial services innovation.
https://www.fca.org.uk/publication/call-for-input/synthetic-data-to-support-
financial-services-innovation.pdf
(Visited on 17.05.2022)

[30] Embedded Rust documentation
https://docs.rust-embedded.org/
(Visited on 17.05.2022)

[31] M. Freudenthal, M. Oruaas.
Secure Programming Techniques - Software Integrity, Supply Chain security.
https://courses.cs.ut.ee/MTAT.07.015/2022_spring/uploads/Main/
secureprogramming-04-software-integrity-supply-chain.pdf
(Visited on 17.05.2022)

58

https://sgx101.gitbook.io/sgx101/sgx-bootstrap/overview
https://courses.cs.ut.ee/MTAT.07.003/2021_fall/uploads/Main/lecture-ix.pdf
https://cyber.ee/uploads/sharemind_hi_white_paper_ec24e8189a.pdf
https://www.fca.org.uk/publication/call-for-input/synthetic-data-to-support-financial-services-innovation.pdf
https://www.fca.org.uk/publication/call-for-input/synthetic-data-to-support-financial-services-innovation.pdf
https://docs.rust-embedded.org/
https://courses.cs.ut.ee/MTAT.07.015/2022_spring/uploads/Main/secureprogramming-04-software-integrity-supply-chain.pdf
https://courses.cs.ut.ee/MTAT.07.015/2022_spring/uploads/Main/secureprogramming-04-software-integrity-supply-chain.pdf

A BPMN
This appendix provides a detailed overview, in the form of Business Process Model and
Notation (BPMN) diagrams, of each step in the main flow of the PoC privacy-preserving
data synthesis service developed as a part of this thesis. The main flow consists of four
separate steps:

• an end-user uploading a CSV file to Sharemind HI (Figure 15),

• training a synthesizer model using the uploaded CSV file as training data (Fig-
ure 16),

• synthesizing data using the synthesizer model (Figure 17), and

• downloading the synthesized data to the end-user’s local file system (Figure 18).

All of the distinct data items involved in the service are listed in Table 3. The table
also shows which party involved in the service can access each of the data items. The
ID and Name columns in the table match the names shown on the BPMN diagrams,
allowing to easily cross-reference between the table and diagrams. For each data item, a
“+” symbol in the corresponding row in the table, shows that a given party, as indicated
by the column header, has access to and visibility of the data item.

For example, the first data item listed in the table, the “End-user’s CSV file”, can only
be seen and accessed by the end-user and the web application. At no point in the service
is the CSV file in its raw form accessed or seen by any of the other parties. However the
serialized format of the CSV file, named “Serialized CSV file” in the table, is seen and
accessed by the web application, the Sharemind HI client, and the Model encalve, but is
never accessed by the end-user. While they both encode the same information, they are
viewed as separate items and are accessed separately.

It is important to note, that the table does not include whether or not a given party
can derive some data item from the information they can access. Clearly the end-user
could serialize their CSV file to the same format as is used by the Model enclave and see
the data item, but they do not access the data item directly using the service.

59

Figure 15. BPMN diagram of the upload process.

60

Figure 16. BPMN diagram of the Model task.

61

Figure 17. BPMN diagram of the Synthesis task.

62

Figure 18. BPMN diagram of the download process.

63

ID Name End-user
Web
application

Sharemind
HI client

Sharemind
HI server

Model
enclave

Synthesis
enclave

D01 End-user’s CSV file + +
D02 Serialized CSV file + + +
D03 Preprocessing info + +

D04
Encrypted
preprocessing info + +

D05 Preprocessing topic +
D06 Preprocessing ID + + + + + +
D07 CSV’s secret metadata + + +

D08
Encrypted CSV’s
secret metadata + +

D09 Metadata topic +

D10
CSV’s secret
metadata ID + + + +

D11
Encrypted serialized
CSV file + + +

D12
Input’s public
metadata + + + + + +

D13 InputData topic +
D14 Input ID + + + + + +

D15
Model’s secret
metadata + + +

D16
Encrypted model’s
secret metadata + +

D17
Model’s secret
metadata ID + + + + + +

D18 Model task inputs + + + + +
D19 Parsed input data +
D20 Model + +

D21
Model’s public
metadata + + + + + +

D22 Model topic +
D23 Model ID + + + + + +

D24
Synthetic data’s
secret metadata + + +

D25
Encrypted synthetic
data’s secret metadata + +

D26
Synthetic data’s
secret metadata ID + + + + +

D27 Synthesis task inputs + + + + +
D28 Synthetic data + + + +

D29
Synthetic data’s
public metadata + + + + +

D30 Encrypted synthetic data + + +
D31 SyntheticData topic +
D32 Synthetic data ID + + + + +

Table 3. List of all data objects involved in the process and who can access them.

64

Licence

Non-exclusive licence to reproduce thesis and make thesis public
I, Karl Hannes Veskus,

1. herewith grant the University of Tartu a free permit (non-exclusive licence) to

reproduce, for the purpose of preservation, including for adding to the DSpace
digital archives until the expiry of the term of copyright,

Privacy-Preserving Data Synthesis using Trusted Execution Environments,

supervised by Liina Kamm and Sven Laur.

2. I grant the University of Tartu a permit to make the work specified in p. 1 available
to the public via the web environment of the University of Tartu, including via
the DSpace digital archives, under the Creative Commons licence CC BY NC
ND 3.0, which allows, by giving appropriate credit to the author, to reproduce,
distribute the work and communicate it to the public, and prohibits the creation of
derivative works and any commercial use of the work until the expiry of the term
of copyright.

3. I am aware of the fact that the author retains the rights specified in p. 1 and 2.

4. I certify that granting the non-exclusive licence does not infringe other persons’
intellectual property rights or rights arising from the personal data protection
legislation.

Karl Hannes Veskus
17/05/2022

65

	Introduction
	Preliminaries
	Data protection
	Information security
	Privacy-enhancing technologies
	Data synthesis
	Synthesis methods
	The Gaussian mixture modeling method

	Intel® SGX
	Enclaves
	Attestation
	Data sealing
	Security

	Sharemind HI
	Access controls and dataflow configuration.
	Architecture
	Security

	Privacy-preserving data synthesis service
	Use cases and motivation
	Design of the service
	Stakeholders and roles
	Components
	Access rights and the dfc
	Service lifecycle
	User interface

	Service Architecture
	Server-side architecture
	Data synthesis library
	Model task enclave
	Synthesis task enclave
	Adding support for the Rust language

	Client-side architecture
	CSV processing library
	User interface
	Public metadata

	Security of the service
	Service performance and benchmarks
	Conclusion
	References
	BPMN

