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1 Introduction

In the Digital Identity Technologies Department of Cybernetica, work has been done to accom-
modate the mobile driver’s licence technology (mDL) [1] to other areas such as fishing [2]. The
application code is based on the code of example applications provided by Google [3].

Together with the Information Security Research Institute of Cybernetica, an attempt is being
made to join mDL technology with zero-knowledge proofs. The mDL standard enables a person
to convince others in having certain rights, but for that, the relevant data must be echtly deliv-
ered to the mDL verifier. The aim of current work is to demonstrate that, using available tools for
zero-knowledge proofs, it is possible to reorganize the authentication procedure in such a way
that the only piece of information the verifier would learn is the person having or not having the
claimed right. This would also enable people to prove more interesting facts than those allowed
by the mDL standard.

This document describes the results of the first phase of the work in this direction. It covers the
core of the zero-knowledge proof part of a prospective protocol, namely, proving that medical
diagnoses a person has do not disqualify him from army service, without actually revealing any
of these diagnoses to the verifier. The mDL standard is modified for asserting diagnoses and
that these have been decided by certified doctors. No communication between mDL technology
and zero-knowledge proof engines is developed yet, and adaptations of mDL to the new needs
are preliminary and subject to change.

In Sect. 2, a brief introduction to zero-knowledge proofs is given and a domain-specific pro-
gramming language ZK-SecreC [4] being developed by the PROVENANCE team in the Informa-
tion Security Research Institute is introduced. In Sect. 3, the medical check scenario assumed
by the ongoing work is described in more details. In Sections 4-5, the architecture of the zero-
knowledge proof for this scenario is described along with its current limits. Section 6 contains
some statistics of performance and the output size and Sect. 7 concludes with outlining the
planned next steps. To understand this document, basic knowledge of the mDL standard and
the CBOR standard for data serialization [S] would be helpful.
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2 Zero-Knowledge Proofs

Zero-knowledge proofs (ZKP) are protocols that allow one party to convince another party in
knowing/owning data with a certain property, in such a way that nothing else about the data is
revealed. The former party is called Prover, the latter party is called Verifier. The property being
proved is known to Verifier, but even a successful ZKP should not help Verifier to find/compute
data with this property themselves.

Proof protocols that feature zero knowledge can be found in everyday life. For example, a person
who knows the password of their user name can prove having this knowledge to others by
inviting them to the login screen and entering the user name and password. A standard login
screen shows the user name while replacing all characters in the password with bullets. Hence, if
the login is successful, the others will be convinced that the person indeed knows the password
of that particular user name while learning nothing that could help them to find out this password
(assuming, of course, that the others could not see which keys were pressed on keyboard). For
another example, a person with normal vision (Prover) can prove a colour-blind person (Verifier)
the additional ability as follows: Let them take two balls that are of different colour but otherwise
indistinguishable; While Prover closes eyes, Verifier either interchanges the balls or not; Prover,
having opened eyes again, can tell if the balls were interchanged or not. A distrustful Verifier
might require repeating the act but, sooner or later, all they will be convinced. Verifier will not
become able to distinguish the balls themselves, no matter of how many rounds of proof have
been performed.

ZKP algorithms for computers have been studied by cryptographers since 1985. ZKP in com-
puters must usually rely on an abstract machine that is trusted by both parties and can thus
compute with data known to Prover, as well as that known to Verifier. A standard choice is a
modular arithmetic circuit which can do integer addition and multiplication modulo a fixed con-
stant and test if a value is zero. The only outcome of a computation in a circuit is a bit that tells
if all tests succeeded or not. A circuit reveals no information about the input values or inter-
mediate results. Every circuit performs ZKP of a particular property. As the property itself, the
corresponding circuit is known to both parties (unlike the data that the circuit computes with).

It would be extremely tedious and error-prone to encode all practical ZKP acts directly as arith-
metic circuits. Therefore, researchers have seeked for ways to specify ZKP procedures in
higher-level languages. The PROVENANCE team of the Information Security Research Institute
is developing ZK-SecreC, a domain-specific programming language designed for specifying ZKP
acts in the form of high-level program code. Its syntax resembles that of Rust [6] and its com-
piler translates the high-level code to SIEVE IR that is a standard under development as a joint
work of several ZKP research teams of the world for expressing modular arithmetic circuits for
ZKP in both text and binary format.

In ZK-SecreC, leaking of Prover’s data to Verifier is excluded by its strong static type system.
Such potentially dangerous leak would be discovered during compilation and the program would
never be executed. ZK-SecreC distinguishes one more domain — Public (besides Prover and
Verifier) — which contains constants whose values are available to the compiler. Values in nei-
ther of the other two domains are let to influence values in Public. In practice, constants in Pub-
lic domain typically represent lengths of lists of values in other domains or their upper bounds.
Branching constructs and loops are not available in circuits since they would alter the duration
of computation and this could reveal information about the input. Hence loops performed in the
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circuit must be unrolled by the compiler and, to be able to do it, the number of repetitions of the
loop body must be in Public. It is up to the algorithm designer if the exact bounds of loops are
assumed to be Public data or some upper bounds are used which would assure better secrecy
while increasing complexity of the algorithm.

The type system of ZK-SecreC also distinguishes two stages, pre and post. Only the latter stage
contains computations in circuit. In the former stage, the programmer can specify computations
that the parties (Prover and Verifier) should perform in order to help the circuit in its task. (As
the set of available operations in the circuit is very small, not all necessary checks can be done
using circuit operations only. Therefore interaction between the circuit and the parties might be
necessary during ZKP. Of course, all data provided by Prover must be eventually verified in the
circuit.)

ZK-SecreC supports parametric polymorphism that allows programmers to avoid code duplica-
tion if the same functionality has to be implemented for all domains or both stages.

In a longer perspective, the aim of developing high-level tools for ZKP is to make the society able
to bring ZKP into everyday interaction between people and authorities. This requires ability to
build ZKP circuits for complicated relationships and running them for large data that occur in ev-
eryday life. Along with developing ZK-SecreC, the PROVENANCE team has tested its capability
on several conceivable practical use cases such as financial auditing (the bank account owner
wants to prove their income being in conformance with some requirements, without having to
reveal all details of incomes), electronic vehicle subsidies (the electronic vehicle owner wants
to prove being eligible for subsidies offered if the total driving distance within a certain country
has exceeded a certain amount, without revealing the actual data), etc.

Zero-Knowledge Proofs for mDL Authentication 1.0
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3 Medical Check Scenario

3.1 Informal Description

Medical check scenario is historically the first of the practical use cases the PROVENANCE team
implemented in zero knowledge using ZK-SecreC. Now, it is being reworked for integration with
mDL technology.

In this scenario, a military recruit must receive credentials from a certain list of doctors about his
diseases, to be delivered to the Military Entrance Processing Station (MEPS). In order to make
a positive decision, MEPS must check the following:

e Do all the applicant’s diseases enable him to serve in the army or not;
e Are all the doctors who provided the documents recognized by authorities or not;
e Are all the documents valid or not.

For the first check, MEPS has an official set of disqualifying diagnoses. None of the diagnoses
of the recruit may occur there. For the second check, MEPS uses a list of certified health care
providers. All issuers of the delivered documents must occur in that list. For the third check to
be successful, all documents must belong to the particular applicant and none of them may be
out-of-date.

As the recruit does not want the MEPS officials to know his particular diagnoses, ZKP is used for
interaction between the recruit and MEPS, so that MEPS can learn no information beyond that it
needs for making the decision. In this ZKP, Verifier’s input contains information known to MEPS
(lists of disqualifying diagnoses and certified doctors) and Prover’s input contains information
that the recruit wants to hide (the data of credentials issued by doctors).

The particular solution reckons with a possibility that the MEPS officials can make a positive
decision even in the presence of disqualifying diseases on a case-by-case basis. For applying
to an exception, a recruit must reveal all his disqualifying diagnoses. The revealed diagnoses
are added to the Verifier's input and removed from the automatic checklist during the ZKP.

The original solution also included checking of signatures of the doctors which required dealing
with public and private key pairs in zero knowledge. In the solution designed for being inte-
grated with mDL technology, signature checking is assumed to happen outside zero knowledge,
whence signature checking is currently omitted.

Diagnoses, both in the disqualifying list and in the credentials, are assumed to contain up to 7
characters. The small length enables performing occurs checks more efficiently by interpreting
strings as integers with the same bit representation, since such integers are bounded by 2%
and do not overflow in the case of standard circuit moduli. Diagnosis codes in the International
Classification of Diseases (ICD) fit into this limit, hence this assumption is realistic.

Whenever a diagnosis code is a prefix of another diagnosis code, the latter one is assumed to
elaborate on the former one. The set of disqualifying diagnoses is given in the form of a list of
code prefixes; every item in this list forbids all diagnosis codes extending it. So the ZKP must
check not just equality of codes but a code being a prefix of another.

The solution does not address the recruit’s chance to cheat by not delivering the credentials of
disqualifying diagnoses to MEPS or just missing a medical examination. This could be addressed
by other means, e.g., by asking all recognized health care providers to deliver the list of recruits
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whom they have issued credentials that are still valid (without actually sending the credentials
to MEPS). By analyzing these data, MEPS can find out if some recruit has missed a required
medical examination or denying its results.

3.2 Requirements arising from mDL standard

To move towards conforming to mDL standard, the current solution assumes that documents
issued by health care providers consist of a subset of record fields occurring in the mDL data
format (namespace org.is0.18013.5.1) and one additional field for diagnoses which does
not occur in mDL. All fields that are irrelevant in the medical check scenario are currently omit-
ted, even if they are mandatory in mDL. More precisely, the following fields are assumed in our
solution:

Identifier Value CDDL type
family_name Last name of the recruit tstr
given_name First name of the recruit tstr
birth_date Birth date of the recruit tdate
issue_date Date of issue of the document tdate
expiry_date Date of expiry of the document tdate

issuing_authority | Name of the health care provider tstr
diagnoses List of diseases discovered [*tstr]

The last column refers to CDDL types [7]. Recall from CDDL that “uint” denote the type of
unsigned integers, “bstr” and “tstr” denote the byte string and text string types, respectively,
“tdate” denotes the type of dates in the YYYY-MM-DD format, and “[*tstr]” denotes the type of
arrays of text strings.

Health care providers are assumed to pack their credentials into a mobile security object (MSO).
The current solution does not support the MSO field devicekey required in the standard. So, MSO
in the current solution is of the following form:

Identifier Value CDDL type
digestAlgorithm The algorithm used for finding digests tstr
docType Document type tstr
validityInfo Information about validity of the document ValidityInfo
valueDigests Digests of mDL fields in the issued document | ValueDigests

In the current solution, SHA-256 is used as the algorithm for finding digests and org.iso.
18013.5.1.mDL is used as document type. The table refers to CDDL types “Validitylnfo” and
“ValueDigests” that match those defined in the mDL standard; the definitions are recalled below.

Firstly, “ValidityIlnfo” is the type of maps of the following form:

Zero-Knowledge Proofs for mDL Authentication 1.0
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Identifier Value CDDL type
signed Date of signing the document tdate
validFrom | The first day of validity of the document tdate
validuntil | The last day of validity of the document tdate

The value of validrrom of “Validitylnfo” must not be earlier than the value of issue_date of mDL.
Likewise, the value of validuntil of “Validitylnfo” must not be later than the value of expiry_date
of mDL.

Secondly,

ValueDigests = { nameSpaces: { +(tstr = { +(uint = bstr) }) } }

In words, a value of type “ValueDigest” is a map that takes the key nameSpaces to a new non-
empty map that takes keys of text string type to non-empty maps that, in turn, take digest
identifiers in the form of integers to digests in the form of byte strings.

To compute digests of fields of an mDL document, each field is first converted to a separate
object of type “IssuerSignedltem” of the following form:

Identifier Value CDDL type
digestID Number of the current field uint
random Random value ensuring uniform distribution of digests bstr
elementIdentifier The key of the encoded field tstr
elementValue The value in the encoded field any

This object is represented in CBOR and the resulting byte string is hashed using the SHA-256
algorithm to obtain the digest of the field. In examples provided in [1], digest identifiers are
consecutive integers starting from 1. Our solution does not rely on this convention but a fixed
set of digest identifiers associated to mDL fields is assumed however.

All objects are ultimately represented in CBOR. The representation of each field is chosen ac-
cording to the specified CDDL type. Fields that contain dates are represented as CBOR data of
major type 6 and tag 18013 (after the number of the mDL standard), whereby the tagged part is
of major type 3 (text string).

MEPS will obtain neither the credentials in mDL format nor the mobile security objects. Never-
theless, each health care provider reveals the hash of the CBOR representation of the mobile
security object. This enables anyone who has access to a real mobile security object to ascer-
tain its validity by checking if it is the original of the hash.

Zero-Knowledge Proofs for mDL Authentication 1.0
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4 Parsing CBOR

The solution under development assumes offline retrieval mode of mDL. In this mode, data are
expressed in the CBOR format. In order to conform to this, parsing data in the CBOR format
in zero knowledge was implemented as a significant part of the solution. The implementation
recognizes data of both integral and string types, arrays and maps, and also tagged dates.
Other tagged data, floating-point numbers and simple data types without content are currently
not recognized. Support for these types will be added during later phases if necessary. All data
are required to be in definite-length form.

Zero knowledge does not enable transforming an input in the CBOR format to some delimited
representation reflecting its semantic structure since the sizes of subtrees and the number of
them are not necessarily known. Parsing data in the CBOR format therefore means representing
them internally in a way that enables the user to extract their meaningful contents. For example,
given an array in the CBOR format, one can lookup its elements via indices; if the element is
itself a compound object then one can next query its consitutents, etc. All direct and indirect
constituents are accessible via pointers that refer to starting points of these constituents in
the whole input. Operations are defined to be able to, given the pointer, read data from the
respective constituent.

Data in the CBOR format are internally represented in the form of the following ZK-SecreC struct:

pub struct Cbor[N : Nat, $S, @D]
{ config: CborConfig

, arrays: CborArrays[N, $S, @D]
, stores: ChorStores[N, $S, @D]
}

Here N, $s and @b are type level parameters, denoting the modulus of the circuit (a natural num-
ber), a stage, and a domain (a stage always starts with dollar and a domain always starts with
at). The value of the config field is a record in the following form:

pub struct CborConfig

{ total_len: uint $pre @public // the number of bytes

, val_len: uint S$pre @public // the number of values encoded (nested included)

, max_strlen: uint $pre @public // maximal byte or text string length

, max_sublen: uint $pre @public // maximum number of items in array or pairs in map

, max_dep: uint $pre @public // maximal depth of nesting

}

The meaning of every field is described in code comments. The field val_len counts all val-
ues occurring in the CBOR representation, which coincides the number of initial bytes occurring
throughout the CBOR representation. For example, consider a map consisting of 3 key-value
pairs where keys are text strings “A”, “B”, “C” and the corresponding values are an array of inte-
gers 1, 2, 3, 4, 5, an array of integers 6, 7, 8, 9, 10 and an array of integers 11, 12, 13, 14, 15. The
CBOR encoding is

A3 61 41 85 01 02 03 04 05 61 42 85 06 07 08 09 OA 61 43 85 0B 0C 0D OE OF

which contains 25 bytes, hence the value of total_lenis 25. The value of val_len is 22 since the
whole text encompasses 1 map, 3 strings, 3 arrays and 15 integersand 1 + 3+ 3 + 15 = 22.

The value of the field arrays in struct cbor has the form of the following ZK-SecreC struct:

Zero-Knowledge Proofs for mDL Authentication 1.0
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struct CborArrays[N : Nat, $S, @D]
{ raw_data: list[uint[N] $S @] // The original text followed by placeholder bytes
, val_ptrs: list[uint[N] $S @] // Indices of initial bytes in the original text
, typs: list[uint[N] $S @D] // Types of data items
, vals: list[uint[N] $S @D] // Values 1in data items
, val_wids: list[uint[N] $S @D] // Byte numbers in values (initial byte included)
, up_ptrs: list[uint[N] $S @D] // Indices (in val_ptrs) of immediate parents
, arg_lsts: list[uint[N] $S @D] // Indices (in val_ptrs) of immediate children,
// grouped by the parent
, arg_bgns: list[uint[N] $S @D] // Indices (in arg_lsts) of the first children
, key_inds: list[uint[N] $S @D] // Flags (0/1) indicating if the data item is a key

(Dots stand for two additional fields that are not discussed in this document.) The values of
all fields in this record are arrays of integers. The length of each array equals the value of the
field val_1en in the configuration record, except for fields raw_data and arg_1sts. The length of
the array in the field arg_1sts is 1 less since the whole text is not a child of any other data item.
Elements of the array in the field raw_data are bytes of the text under consideration, converted
to integers. The length of this array is larger than the value of the field total_len in the configu-
ration record because placeholder bytes are added to the end of the original text for achieving
robustness of loops with an imprecise limit.

Elements in val_ptrs are ordered increasingly. For instance, in the case of the CBOR represen-
tation considered above, val_ptrs reads as

0,1,3,4,5,6,7,8,9,11,12,13, 14, 15, 16,17, 19, 20, 21, 22, 23, 24.

Numbers 2, 10 and 18 are skipped because bytes at these positions are not initial bytes of any
data item (they are string bytes ‘A, ‘B’, ‘C’). Elements in array typs are CBOR types in the form
of integers between 0 and 6 (7 is not allowed as data of that type are not supported). In the
example considered, typs reads as

5,3,4,0,0,0,0,0,3,4,0,0,0,0,0,3,4,0,0,0,0,0.

Elements in array vals are CBOR values occurring in the corresponding data item. In the case
of types 0 and 1 (integers), the value coincides with the corresponding data item; in the case of
types 2 and 3 (strings), the value equals the length of the string; and in the case of types 4 and 5
(compound structures), the value equals the length of the array or the map whose serialization
starts at that point. In the same example as before, vals reads as

3,1,5,1,2,3,4,5,1,5,6,7,8,9,10,1,5, 11,12, 13, 14, 15.

Elements in array val_wids store widths of the values, i.e., the number of bytes each value oc-
cupies. Only the value parts of data items are taken into account; in the case of strings for
instance, bytes of the string are not counted. In our example case, val_wids reads as

1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, 1.

In the array of parent pointers, up_ptrs, parent of the root points to the root itself. In our example
case, up_ptrs reads as

0,0,0,2,2,2,2,2,0,0,9,9,9,9,9,0,0, 16, 16, 16, 16, 16.

Zero-Knowledge Proofs for mDL Authentication 1.0
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The array arg_1sts in the example case reads as
1,2,8,9,15,16,3,4,5,6,7,10,11,12,13,14,17, 18,19, 20, 21

i.e., the children of 0 are listed in increasing order, followed by children of 2 in increasing or-
der, followed by children of 9 in increasing order, followed by children of 16 in increasing order.
Other data items do not have children. The array arg_bgns consisting of the starting positions of
corresponding children segments in arg_lsts reads as

0,6,6,11,11,11,11,11,11,11, 16, 16, 16, 16, 16, 16, 16, 21,21, 21,21, 21

That s, the children segment of a data item starts immediately after the previous segment ends,
regardless of the data item having children or not. Finally, key_inds in the example case reads
as

0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0.

The value of the last field stores in struct cbor contains a similar set of fields with the same
contentasin arrays butin the form of stores. Stores emulate list-like data structures with access
by index within circuit computations. Duplication of the data structures is useful for reducing
time complexity of operations since reading arrays works faster than loading from stores but
arrays can be accessed only if the index is in pre stage.

During initialization, the configuration record, as well as arrays and stores, are filled with correct
data. Conformance of the input text to the CBOR standard and the extra restrictions imposed by
the current solution is also checked during this phase. Tasks that required most of programming
effort are the following:

e Computing the contents of up_ptrs. For that, relative depth of every data item is computed
at first in pre stage using a straightforward recursive algorithm. Relative depth measures
depth w.r.t. the previous data item; it can be 1 (if the current data item is the first in an array
or a map oris a tagged item), 0 (if the current data item is a sibling of the previous one in the
parse tree) or negative (if the previous data item was the last in an array or a map or a tagged
item). Note that 1 is the only possible positive relative depth since every compound data
structure starts with an initial byte marking down the base depth level of that data structure,
while negative relative depths of any magnitude can in principle occur since no end markers
are used. Secondly, entries of up_ptrs are computed in the circuit in the left-to-right order by
firstly computing a chain of length max_dep of parent pointers starting from the current data
item (the parent of 0 is defined to be 0) and then looking up the item at the relative depth
in the chain. Thirdly, the entries of up_ptrs are checked in the circuit. This is needed since
computing the entries make use of relative depths computed outside the circuit. It can be
proven mathematically that, due to the way the entries are computed, it is enough to check
correctness of the number of occurrences of every value as a parent pointer. The correct
numbers of occurrences are available in the circuit as they are encoded in the CBOR input as
values associated to data items of types 4 and 5 (in the case of supported tagged items, the
number of occurrences must always be 1). Equality of the expected number of occurrences
and their actual number is checked by introducing two polynomials whose roots are the
parent pointers, taking into account their multiple occurrences (expected resp. actual), and
checking that values that these polynomials produce equal at sufficiently many points to
conclude that these polynomials are equal. The argument points are generated randomly in
order to reduce the number of checks needed.

e Computing the contents of arg_1sts. The entries of arg_lsts are also computed in pre
stage. The circuit then computes the array of parents of the corresponding data items using
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up_ptrs. Finally, correctness of entries of both arrays are checked in the circuit. For that,
the circuit checks that the entries in the array of parents are in non-decreasing order and,
within any segment of equal parents, the corresponding entries of arg_1sts occur in strictly
increasing order. This establishes non-repetition of child-parent pairs. Finally, it is checked
that the first entry of arg_1sts is non-zero. Altogether, success of these checks implies that
all the correct child-parent pairs and only these are present.

e Checking uniqueness of keys of every map. For that, the list of triples consisting of the
being-a-key flag, the parent pointer and the value corresponding of the same data item is
sorted lexicographically, using standard sorting techniques of zero knowledge. Thereby,
the value of every data item of string type is replaced with the polynomial value at a fixed
argument using bytes in the string as coefficients. Then the circuit checks that, for all data
items that are keys of some map, it differs from the next in the lexicographic order item by
either the parent pointer or the value. The argument of the polynomial is asked from Prover
who has to choose it in such a way that all strings that occur as keys of the same map will
be distinguished. In addition, it is checked that every map uses only keys of the same type.
Therefore cases with a key of integral type and another key of string type of the same map
having equal values are not allowed.

The library of CBOR parsing provides functions which, given a cbor struct along with an index
(of the array val_ptrs), can find the type, the value or the string contents of the data item at the
given position of the given CBOR input. Other library functions can find the index (in val_ptr) of
an element of an array or that of a value associated to a given key in a map at a given position
of a given CBOR input. The element of the array is referred to by its serial number whereas keys
of maps are referred to by their value (in the case of integral keys) or content (in the case of
strings). Finally, there are functions that, given a cbor struct and its index (in val_ptr), extracts
the date that is encoded in the tagged item if the given index is that of a tagged date. Most
of these functions are easy to define, only map lookups are somewhat complicated since the
right value must be found out via multiplexing over all data items, out of which all except the one
corresponding to the given key in the particular map must be eliminated. (The word ‘multiplexing’
refers to the way of performing an integer array lookup in circuit by creating another array of the
same length containing 1 at position where the element in the original array must be read and 0
in every other position and then computing the scalar product of the original and the new array.
In the case of map lookup, things are more complicated because of other maps with possibly
the same keys occurring in the input text, keys being strings rather than integers etc.)

Most library functions have two versions, one that performs checks that the arguments form
a well-defined query (e.g., that the given index indeed points to a data item of expected type)
and another without these checks. Some functions also have different versions for being applied
with arguments in different stages.

Here are the signatures of some of the CBOR library functions:
pub fn cbor_get_typ[N : Nat, $S, @D](ref cbor : Cbor[N, $S, @D], ptr : uint[N] $S @) ->
uint[N] $S @D where Finite[N]

pub fn cbor_get_val[N : Nat, $S, @D](ref cbor : Cbor[N, $S, @], ptr : uint[N] $S @D) ->
uint[N] $S @D where Finite[N]

pub fn cbor_get_str_pre[N : Nat, $S, @D](ref cbor : Cbor[N, $S, @D], idx : uint $pre
@public) -> String[$S, @, N] where Finite[N]

pub fn cbor_get_str[N : Nat, $S, @D](ref cbor : Cbor[N, $S, @D], ptr : uint[N] $S @) ->
String[$S, @, N] where Finite[N]
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uint[N] S$S

pub fn cbor_lookup_map_strkey[N : Nat, $S, @D](ref cbor : Cbor[N, $S, @D], ptr : uint[N]
$S @D, str : list[uint[N] $S @D]) -> uint[N] $S @D where Finite[N]
pub fn cbor_lookup_map_intkey[N : Nat, $S, @D](ref cbor : Cbor[N, $S, @], ptr : uint[N]
$S @D, key : uint[N] $S @D) -> uint[N] $S @D where Finite[N]
pub fn cbor_lookup_tagged[N : Nat, $S, @D](ref cbor : Cbor[N, $S, @], ptr : uint[N] $S
@) -> uint[N] $S @D where Finite[N]
pub fn cbor_get_date_with_check[N : Nat, $S, @D](ref cbor : Cbor[N, $S, @D], ptr :
uint[N] $S @D) -> Date[$S, @D, N] where Finite[N]
Zero-Knowledge Proofs for mDL Authentication 1.0
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5 Implementing Medical Check

5.1 Input data

ZK-SecreC assumes a separate input in every domain. In the ZKP terminology, Prover’s and
Verifier's inputs are called witness and instance, respectively. Input in the public domain, also
allowed in ZK-SecreC, enables one to define constants that the ZK-SecreC compiler can use
when translating the source code to circuit (instead of defining them directly in the ZK-SecreC
source code).

Input for each domain must be located in a different file. The file names can be passed to the
compiler as command line arguments. Each input file, regardless of the domain, must be in JSON
format and consist of exactly one JSON object, values of which are strings or arrays of strings
or arrays of arrays of strings etc. All strings occurring in values (unlike keys) must represent
integers (keys can be any strings).

To conform to these restrictions, any integer input must be encoded as a string whose con-
tent is the integer, whereas string inputs must be encoded as lists of bytes, each byte being
represented as a string whose content is the numeric value of the byte.

In the following, we specify CDDL types of inputs of all parties like we did in Subsect. 3.2 but
note that now all data are ultimately represented in JSON (following the conventions described
in the previous paragraphs) rather than CBOR.

In the current solution, Prover’s input contains the credentials obtained by the recruit from health
care providers and also their mobile security objects that contain fieldwise hashes of the cre-
dentials. More precisely, Prover’s input contains the following two fields:

Identifier Value CDDL type
hrs List of health reports | [+[+(bstr .cbor IssuerSigneditem)]]
msos List of MSOs [+(bstr .cbor MobileSecurityObject)]

The value of hrs is in the form of array of arrays. Each inner array contains credentials issued
by one health care provider. Each element of an inner array is a CBOR encoding of an “Issuer-
Signedltem” object. The value of msos is an array of CBOR encodings of “MobileSecurityObject”
objects, each corresponding to one health care provider. The arrays in fields hrs and msos con-
tain the same number of elements, which equals the number of health care providers that have
issued documents to the recruit, and the elements at the same position correspond to the same
health care provider.

Verifier's input and public input do not use CBOR encoding. Verifier’s input contains data known
to MEPS, i.e., the list of disqualifying diagnoses, the list of recognized health care providers and
the hashes of mobile security objects obtained from the health care providers that have issued
credentials to the recruit. Verifier’s input also includes data revealed by the recruit, i.e., the list
of existing disqualifying diagnoses. More precisely, Verifier’s input contains the following four
fields:

Zero-Knowledge Proofs for mDL Authentication 1.0
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Identifier Value CDDL type
bad_diagnoses List of disqualifying diagnoses [+tstr]
good_provider_npis | List of recognized health care providers [+tstr]
mso_hashes List of hashes of MSOs [+bstr]
revealed_diagnoses | List of diagnoses revealed by the recruit [+tstr]

Finally, public input contains technical parameters and upper bounds necessary for computa-
tion. The complete list follows:

Identifier Value CDDL type
dob Date of birth of the recruit tstr
family_name Last name of the recruit tstr
given_name First name of the recruit tstr
lens_msos List of lengths of MSOs [+uint]
lenss_hr_fields List of lists of lengths of health report fields [+[+uint]]
maxlen_diagnosis Maximum length of a diagnosis uint
maxlen_npi Maximum length of nhame of health care provider uint
num_bad_diagnoses Number of disqualifying diagnoses uint
num_good_providers Number of recognized health care providers uint
num_hr_fields Number of health report fields uint
num_hrs Number of health reports the recruit has uint
num_isi_fields Number of fields in “IssuerSignedltem” uint
num_mso_fields Number of fields in “MobileSecurityObject” uint
num_revealed_diagnoses Number of diagnoses revealed by the recruit uint
nums_diagnoses List of numbers of diagnoses issuerwise [+uint]
today Today'’s date tstr

Patient’s date of birth and name are part of public input as MEPS has to know whose record they
are considering. Alternatively, these data could be part of the instance (as it is not necessary
that personal data were available to the compiler) but then the lengths of the first and last names
would still have to be encoded as public input.

The value of lens_msos contains the lengths of CBOR representations of MSOs in Prover’s input
field msos. Similarly, the value of 1enss_hr_fields contains the lengths of CBOR representations
of health report fields in Prover’s input field hrs, in the corresponding order and grouped issuer-
wise.
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5.2 Computation

The following ZK-SecreC struct types are used for internal representation of the input data:

struct Person[$S, @D]

{ family_name: String[$S, @public, N61]

, given_name: String[s$S, @public, N61]

, birth_date: Date[$S, @public, N61]

, revealed_diagnoses: list[String[$S, @D, N61]]
}

struct Restrictions[$S, @D]

{ bad_diagnoses: list[String[$S, @D, N61]]

, good_provider_npis: list[String[$S, @D, N61]]
, maxlen_diagnosis : uint $pre @public

, maxlen_npi : uint $pre @public

struct MDL[S$S, @D]

{ family_name: String[$S, @D, N61]

, given_name: String[$S, @D, N61]

, birth_date: Date[$S, @D, N61]

, issue_date: Date[S$S, @D, N61]

, expiry_date: Date[$S, @D, N61]

, issuing_authority: String[$S, @D, N61]
, diagnoses: list[String[$S, @D, N61]]

struct MSO[S$S, @D]

{ signed: Date[$S, @D, N61]
valid_from: Date[$S, @D, N61]

, valid_until: Date[$S, @D, N61]

, value_digests: list[list[u6l $S @D]]

Here, string and Date are struct types defined in ZK-SecreC standard library. Structs of type
String consist of a byte array and string length, whereby the string length, as well as the bytes in
the array, can be values in the circuit. The length of the byte array must be $pre @public which
means that, in general, the number of bytes in the array is greater than the string length. In
this case, bytes beyond the string length are considered as not belonging to the string. Dates
represented as structs of type pate support comparison in the chronological order. Types N61,
uel and be1 are defined by

type N61 : Nat = Ox1FFFFFFFFFFFFFFF;

type u6l : Unqualified = uint[N61];

type b61 : Unqualified = bool[N61];

That means, N61 is the Mersenne prime 261 —1 and us1 and be1 are the integer and boolean types
in circuit that computes modulo this prime.

Extracting data from public and Verifier's input is straightforward. Extracting data from Prover’s
input is done by functions extract_mbLs and extract_msos Which must exploit the CBOR parsing
library introduced in Sect. 4 and are therefore more complicated (especially extract_mbLs be-
cause values of different fields are located in different “IssuerSigneditems”). As the details are
uninteresting, we present the signatures only:

fn extract_mDLs(input : list[list[list[u6l $post @prover]]], person : Person[$post,

@verifier], nums_diagnoses : list[uint $pre @public], maxlen_npi : uint $pre @public,
digest_ids : list[u6l $post @public]) -> list[MDL[$post, @prover]]
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fn extract_msos(input : list[list[u6l $post @prover]], digest_ids : list[u6l $post
@public], num_mso_fields : uint $pre @public, len_hash: uint $pre @public) ->
list[MSO[$post, @prover]]

Three kinds of checks are performed. Firstly, it is checked that the credentials are issued to the
right person and currently valid:

fn check_names_dates(person : Person[$post, @verifier], mDLs : list[MDL[$post, @prover]],
mobile_security_objects : list[MSO[$post, @prover]], today : Date[$post, @public,
N617)
{ let today_post = date_to_prover (today)
; for i in 0 .. length(mDLs)
{ string_assert_eq(string_to_prover (person.family_name), mDLs[i].family_name,
person.family_name.len as $pre as uint)
; string_assert_eq(string_to_prover(person.given_name), mDLs[i].given_name,
person.given_name.len as $pre as uint)
; date_assert_eq(date_to_prover(person.birth_date), mDLs[1i].birth_date)
; assert(date_le(mDLs[i].7ssue_date, mobile_security_objects[i].valid_from))
; assert(date_le(mobile_security_objects[i].valid_from, today_post))
; assert(date_le(today_post, mobile_security_objects[i].valid_until))
; assert(date_le(mobile_security_objects[i].valid_until, mDLs[i].expiry_date))

The code is mostly self-explaining. The library function date_le returns a boolean telling if the
first argument date is before or equal to the second argument date.

Secondly, it is checked that all issuers of credentials are recognized health care providers and
every disease discovered by any of the issuers is either confessed by the recruit or not disqual-

ifying:

fn check_business_logic(person : Person[$post, @verifier], restrictions
Restrictions[$post, @verifier], mDLs : list[MDL[$post, @prover]], maxlen_diagnosis :
uint $pre @public)
{ let issuing_authorities = for i in 0 .. length(mDLs) { mDLs[i].issuing_authority }
let diagnoses = concat_non_rectangle(for i in 0 .. length(mDLs) { mDLs[i].diagnoses })
[...] // complicated computation details omitted from the report
; let dis_bad_diagnosis : list[b61 $post @prover] = [...] // computation details omitted
; let dis_revealed_diagnosis : list[b61 $post @prover] = [...] // computation details
omitted
; let provider_validities : list[b61 $post @prover] = [...] // computation details omitted
; assert_true_cnt(is_revealed_diagnosis, length(person.revealed_diagnoses) * 2)
; for i in 0 .. length(diagnoses)
{ let is_revealed = is_revealed_diagnosis[length(person.revealed_diagnoses) + 1]
; let is_bad = is_bad_diagnosis[length(restrictions.bad_diagnoses) + 1]
; let is_valid = provider_validities[i]
; assert(is_valid)
; assert(is_revealed | !dis_bad)

}

..

The ZK-SecreC library function concat_non_rectangle concatenates a list of list, so diagnoses is a
single list containing all diagnoses insisted by all health care providers. Thelists is_bad_diagnosis
and is_revealed_diagnosis of Booleans are computed as characteristic vectors that enable one
to check by lookup if a certain diagnosis is bad or revealed or not. Due to the way these lists are
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computed, they contain also values corresponding to the list of reference (i.e., the list whose
membership is the criterion for deciding between true and false) in the beginning (so they start
with a certain number of trues). The list provider_validities is similarly a characteristic vector
but without the extra trues. The library function assert_true_cnt asserts that the number of true
values in the given list equals the given number. In our case, success of this assertion implies
that all diseases confessed by the recruit are indeed discovered by the health care providers
(assuming that the list of diagnoses is without repetitions). Finally, the for loop computes, for
every diagnosis, if it is revealed, if it is bad and if its issuer is valid, and asserts the required
statements.

As a technical subtlety, the truth values in the characteristic vectors reflect containing a prefix in
the reference list in the case of disqualifying diagnoses, in order to allow MEPS to specify whole
families of diagnoses as disqualifying via including their common prefix in the list. In the case
of revealed diagnoses and valid providers, characteristic vectors reflect equality to an element
of the reference list.

Thirdly, it is checked that all hashes of “IssuerSigneditems” occurring in MSOs originate from the
separate “IssuerSignedlitems” in Prover’s input and that the hashes of MSOs in Verifier’s input
originates from the MSOs in Prover’s input. The following function is used for this task:

fn check_hash[@D] (str : Tlist[u6l $post @prover], hsh : list[u6l $post @D])

{ let n = length(str)

; Llet m = length(hsh)

; let bitss = bitextract_array(str, 8)

; let rev_bitss = for i in 0@ .. n { reverse(bitss[i]) }

; let inter = sha256(concat(rev_bitss))

; let grouped_inter = group(inter, 8)

; let computed_hash = for i in 0@ .. m { bits_to_uint(reverse(grouped_inter[i])) }
; for i in 0 .. m { assert_zero(computed_hash[i] - hsh[i] as @prover) }

}

The library function bitextract_array represents each element of an array in binary, in the form
of list of bits. As the library function produces little-endian representations but the SHA256
algorithm assumes big-endian input, the order of bits in every byte must be reversed. The
result of hashing is then grouped into bytes of 8 bits, the order is reversed in every byte and the
library function bits_to_uint is applied in order to obtain integers. Finally, the result is compared
to the expected hash value.
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6 Performance

A performance test family was created with three varying parameters: the number of health
reports, the number of diagnoses in each report, and the number of disqualifying diagnoses
and recognized health care providers. The number of disqualifying diagnoses and recognized
health care providers are not related in the problem statement but they were chosen to be equal
in all our tests. Likewise, each health report contained the same number of diagnoses in our tests
although the implemented solution works well also if the number of diagnoses in health reports
varies. These decisions were made in order to reduce the number of variables.

A Haskell program was written that automatically generates necessary input files for any given
triple of parameter values. Among other features, the program supports converting data struc-
tures to CBOR and to the restricted JSON with conventions described in Subsect. 5.1. For com-
puting hashes, the program uses the non-standard cryptohash-sha256 package available in
Hackage.

The compiler was run on tests with 36 different triples of parameter values. In the following, we
present the total numbers of gates in the resulting circuits. Different 3 x 3 tables correspond
to different numbers of health reports which was 1 and 2 in the topmost row and 4 and 8 in
the bottommost row. In each table, lines correspond to numbers of diagnoses in each health
report (2, 4 and 8, resp.) while columns correspond to numbers of disqualifying diagnoses and
recognized health care providers (10, 100 and 1000, resp.).

1 10 100 1000 2 10 100 1000
2 || 4.48M | 4.89M | 9.01M 2 || 8.92M | 9.34M | 13.5M
4 || 4.52M | 4.93M | 9.04M 4 || 8.99M | 9.40M | 13.5M
8 || 4.60M | 5.01M | 9.27M 8 || 9.29M | 9.84M | 13.7M
4 10 100 1000 8 10 100 1000
2 || 17.8M | 18.2M | 22.3M 2 || 35.6M | 36.0M | 40.1M
4 || 17.9M | 18.3M | 22.5M 4 || 35.8M | 36.2M | 40.4M
8 || 18.7M | 18.9M | 22.9M 8 || 37.2M | 37.6M | 41.7M

The table shows that the number of health reports has the largest among the parameters im-
pact to the performance, whereby the number of gates depends nearly linarly on it. Both other
parameters have a relatively small impact, although the number of disqualifying diagnoses and
recognized health care providers has much larger variation within our tests.

The running time was moderate (approximately 17 sec. in the case of the test with the largest
parameter values) whence we omit the exact figures.
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/7 Future Work

In the current state of the art, the solution described in this document enables one to test the
ZKP part of a prospective software tool that joins mDL technology with zero knowledge. To use
the current solution, input ready-to-use by ZK-SecreC compiler has to be prepared separately
and the output must be interpreted using other means.

In the future, this part of the work must be integrated into real software that works with mDL
technology, so that the ZKP part gets its input in real time and the output of ZK-SecreC compiler
would be possibly executed by other technologies developed (not in Cybernetica) for running
ZKPs, such as the EMP toolkit. It is likely that also the ZKP part will have to be enhanced con-
siderably in order to conform to all specific requirements of standards that are used by mDL
technology. Some problems are concerning the capacity of the tools for performing ZKPs that
currently existin the world. Standardization of the SIEVE IR language in which the modular arith-
metic circuit output by the ZK-SecreC compiler is represented is a work in progress yet. The
current version of its standard does not support Verifier challenges that is a very useful tech-
nique to create ZKPs and used also in our solution. This implies that running our solution with
other ZKP tools may require Verifier challenges to be replaced with more inefficient alternatives.

The next step towards the aims would be creating a simple prototype that, at least to some
extent, could run ZKP within the protocol used in mDL technology for authentication.
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