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Zero-Knowledge Proofs for Business Processes

Abstract:
Every day the amount of private and sensitive information shared in the Internet
increases. This means that there is also a growing need for solutions to protect this
information. There are various effective technologies used to protect or hide private
and sensitive information, but even better approach would be to reduce the need for
sharing this information through the Internet at all. In many cases, zero-knowledge
proofs could be used, replacing the shared sensitive information with proofs based
on this information. As zero-knowledge proofs have a lot of potential, but they
are not widely used in practical applications yet, this thesis presents a tool that
supports two goals – firstly, making systems more secure and privacy-preserving,
and secondly, bringing zero-knowledge proofs more into practical applications. This
paper describes a tool that allows to prove, based on a description of a system (a
process) expressed as a business process model in BPMN notation, that the system
(a process) has under certain conditions some stated properties, for example, that
there is a flaw in it. For example, one may prove that a purchase process satisfying
certain conditions allows one to receive the product without actually paying for it,
without disclosing how this is achieved. For constructing and verifying the proofs,
the tool uses the zkSNARK protocol provided by libsnark.
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Nullteadmustõestused äriprotsessidele
Lühikokkuvõte:
Iga päev liigub internetis järjest enam privaatset ja tundlikku informatsiooni, mil-
lest tulenevalt kasvab vajadus lahenduste järele, mis aitaksid seda informatsiooni
kaitsta. Privaatse ja tundliku informatsiooni kaitsmiseks või peitmiseks on mitmeid
efektiivseid lahendusi. Veel parem variant oleks aga üldse vähendada vajadust
selliste vahendite järele. Nii mõnelgi juhul pakuks alternatiivi rakendused, mis
kasutavad nullteadmustõestusi. Sellisel juhul saaks tundliku informatsiooni asemel
vahendada läbi interneti hoopis sellel informatsiooni põhjal püstitatud tõestusi.
Nullteadmustõestuste rakendamine pakub kasulikke võimalusi, aga paraku kasu-
tatakse neid praktilistes rakendustes veel vähe. Käesoleva töö oluline eesmärk on
propageerida nullteadmustõestuste rakendamist erinevates rakendustes ja seeläbi
toetada süsteemide turvalisemaks ja enam privaatsust säilitavaks muutmist. Töö
tulemusena valminud tööriist kasutab sisendina BPMN notatsioonis väljendatud
süsteemi kirjeldust. Seades süsteemile kitsendusi, võimaldab tööriist tõestada, et
sellel on teatud omadused, näiteks, et selles leidub viga. Tööriist võimaldab näiteks
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tõestada, et teatud tingimustele vastavas ostuprotsessis on võimalik saada kaup
kätte ilma selle eest maksmata, sealjuures avaldamata viisi, kuidas see saavutati.
Nullteadmustõestuste koostamiseks ja verifitseerimiseks kasutab tööriist libsnark’i
teeki.

Võtmesõnad:
BPM, BPMN, nullteadmustõestus, zkSNARK, libsnark

CERCS: P175 Informaatika, süsteemiteooria

3



Contents
1 Introduction 6

2 Background 8
2.1 Business Process Model and Notation . . . . . . . . . . . . . . . . . 8
2.2 Zero-knowledge proofs . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.1 Interactive proofs . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.2 Zero-knowledge proofs . . . . . . . . . . . . . . . . . . . . . 12

2.3 Libsnark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Problem 18
3.1 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4 Design 21
4.1 Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2 A trace (witness) belongs to the business process semantics . . . . . 25

4.2.1 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.3 A trace (witness) is accepted by an automaton . . . . . . . . . . . . 34

4.3.1 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5 Implementation 40
5.1 Client application . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.1.1 Technologies used . . . . . . . . . . . . . . . . . . . . . . . . 41
5.1.2 Reasons for using selected technologies . . . . . . . . . . . . 42
5.1.3 User roles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.1.4 Overview of the information gathered and processed . . . . . 44
5.1.5 Graphical user-interface . . . . . . . . . . . . . . . . . . . . 49

5.2 Server application . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.2.1 Technologies used . . . . . . . . . . . . . . . . . . . . . . . . 55
5.2.2 Reasons for using selected technologies . . . . . . . . . . . . 55
5.2.3 Node.js server . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.2.4 zkSNARK (generator-prover-verifier) application . . . . . . . 58

6 Results 65
6.1 Example models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
6.2 Benchmarking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4



7 Discussion 75
7.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
7.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

8 Acknowledgement 78

References 81

Appendix 82
I. Attachments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
II. Licence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5



1 Introduction
The amount of information shared across the world increases every day. More
and more people share information about their lives in the Internet. On the one
hand, people get more used to the possibilities of communication that the Internet
provides and they share information more willingly than they would do it in direct
face-to-face communication – the dangers are more difficult to notice in the Inter-
net. On the other hand, as the number of new solutions promising to make lives
easier increases and more and more of the everyday bureaucracy is moved into the
Internet, the more the people are required to share the information about their
lives in general, but also, to do that through public channels. This means that the
need to protect the private or sensitive information becomes more relevant every day.

There are many technologies to protect and hide the private information, but
even better approach would be to replace the need to share the sensitive information
with alternatives that would not require sharing sensitive information through
public channels at all. One possible alternative for many cases would be using
zero-knowledge proofs. Using zero-knowledge proofs, it is possible to make true
statements (and provide proofs of these) about the sensitive information to another
party without revealing any new information. Provided the proof, another party
could verify the alleged statements without receiving any sensitive information
through the process. This way, instead of sharing private information through
public communication channels, proofs could be shared instead. Unfortunately,
without relevant background knowledge, zero-knowledge proofs are not too easy to
comprehend and this means that they are not used very much in practice yet.

This thesis seeks to support the mission of reducing the need to share private
information in different communication channels, and the goal of bringing zero-
knowledge proofs more into use in every-day practical applications. This thesis
does not address the need for practical applications using zero-knowledge proofs
in every-day applications directly by providing an easy to learn useful tool for
everybody to use, but provides a tool that would support designing such, and in
general, more secure applications.

This thesis proposes a tool that allows to prove, based on a description of a
system (or a process) expressed as a business process model (in BPMN notation),
that the system (or a process) has under certain conditions some stated properties,
for example, that there is a flaw in it. Based on these (true) statements, a proof
could be generated and this could be later verified by another party without
disclosing the actual flaw. This would support making different systems more
secure and privacy-preserving, reducing the need to disclose sensitive information
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through public channels. Implementing the proposed tool is the main goal of this
thesis.
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2 Background
The goal of this section is to provide a brief introduction into the concepts and
technologies, through which the main goal of this thesis is achieved. In addition,
introduction to few related works is provided. Following section covers BPMN
language, zero-knowledge proofs and a library called libsnark – these form the basis
of the implementation tool of this thesis.

Note that definitions in this section are not strictly formal as they get more
and more complicated and detailed. For this thesis, all of these details are not
relevant, but still, some details are highlighted to support the understanding of the
following sections.

2.1 Business Process Model and Notation

Business Process Management (BPM) is a discipline about how work in organi-
sations is being done and how to improve it – it seeks to improve the outcome
of the work, and by not focusing on individuals, but rather on whole chains of
events, activities and decisions (these chains are called processes) [DRMR13]. In
order to express, and through that, improve the outcome of the work of different
organisations, there are various ways to model organisation’s processes. One widely
used practice is to use Business Process Model And Notation (BPMN), a standard
developed by the Object Management Group (OMG).

BPMN seeks to provide a notation that is easily understandable and usable
for all business users, including analysts who draft the process models, techni-
cal users (developers, architects, etc.) who implement the technology that ex-
ecutes these processes, and business managers who manage and monitor these
processes [OMG10, OMG11]. BPMN is a language that allows to create detailed
models that show step by step how a process is expected to run. It is meant for a
quite high-level, rather than too low, system level detailed processes [DDO08]. For
the goal of this thesis, systems’ descriptions with these characteristics are sufficient.

As BPMN is widely used, it has various different extensions to make it suit-
able for specific use cases. In terms of this thesis, the approaches that allow to
make (business) processes more secure, are relevant. In the context of BPMN,
this means extensions that allow to include security perspective more into the
models. Examples of this include an extension to model security requirements in
business processes [RFMP07], and an extension to visualise movements of private
information as it is disclosed to participants of these processes – Privacy-Enhanced
Business Process Model And Notation (PE-BPMN) [PMB17, PTMT19].

8



Under Privacy-Enhanced, it is meant that Privacy Enhancing Technologies
are in use, which European Commission [PET07] defines from the perspective of
using technologies at the design state of new systems as follows: The use of PETs
could help to design information and communication systems and services in such a
manner that minimises the collection and use of personal data and supports making
compliance with data protection rules easier. The use of PETs should provide that
making breaches of certain data protection rules is more difficult and should also
help to detect them. Representatives of such technologies would be, for example,
different encryption and secret sharing schemes.

PE-BPMN provides measures to specify privacy enhancing technologies to be
used on process models. Currently, these advances are not yet considered in the
implementation tool of this thesis (hopefully will be in the future), but they support
the same overall goal – making systems more secure, from all kinds of perspectives.

Even without including extensions, BPMN notation includes considerable
amount of different elements and symbols. Only a few of these elements are
important for the current version of the resulting tool of this thesis (see Section 4.1
for details), but for overall background and to support better understanding of the
context of these few elements, we will next describe the core elements of BPMN
(see Figure 1):

Figure 1. Set of BPMN core elements.
[Modified version of the image from

http://www.omg.org/bpmn/Samples/Elements/Core_BPMN_Elements.htm]
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Swimlanes

Pools – the participants of the process – are somewhat the basis for all processes,
as it is common that processes include various associated parties with different
roles. Nevertheless, models without any swimlanes are also used. Lanes within
pools are used to emphasise that specific parts of processes are carried out by
certain roles. These elements do not affect the work of the implementation tool of
this thesis, so they are not restricted to be included in input models.

Flow objects

Flow objects represent the decisions made in the process. In general, there are
three groups of this type of elements:

1. Events illustrate different occurrences or situations in a process. There
are various different event elements in BPMN notation, but in this thesis,
only start (see Figure 4a) and end events (see Figure 4b) are considered –
accordingly representing the beginning and ending of the process;

2. Activities describe the work that is being done in a process. The smallest
atomic activities are represented by tasks (see Figure 4e);

3. Gateways combine and divide flows in a process – stating where flows are
split into two or more branches and also, merging multiple flows into one.
Again, there are many different gateways in BPMN notation, but in this
thesis, only exclusive and parallel gateways are considered;

• Exclusive gateways (see Figure 4c) divide the process flow into one or
more mutually exclusive paths – based on a condition, only one path
can be chosen;

• Parallel gateways (see Figure 4d) represent two concurrent tasks in a
business flow – there is no condition or event evaluated.

Connecting Objects

Connecting objects, such as sequence flows, are used to combine different flow
elements, such as events, tasks, gateways, etc., into sequences. The direction of
sequence flows fixes the order of activities being done in the process. Sequence
flows are relevant for the implementation tool of this thesis – these are important
to combine process steps into paths.
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While (data) associations express information flow between activities in a spe-
cific direction, message flows express message sharing from one participant to
another (in a specific direction). Data associations and message flows are not yet
supported by the implementation tool of this thesis, but these can be included in
input models as these do not directly affect the tool’s work.

Artifacts

Artifacts can be used to include additional information about a process. This
includes information relevant for certain activities – in this case, data objects, that
are used – or just comments or general notes about the model.

In the context of this thesis, BPMN is a way of expressing and visualising
processes – it has a rather supporting role. To use the implementation tool of this
thesis, it is important to have a general understanding of how to model processes,
but detailed specifications of BPMN are not that crucial – this is why only a general
overview of the notation has been given.

2.2 Zero-knowledge proofs

Before describing what are zero-knowledge proofs, a short description of interactive
proofs is given. It introduces the prover-verifier protocol and sets basis for the
following description of zero-knowledge proofs.

2.2.1 Interactive proofs

An interactive proof system for a language L is a protocol between two algorithms –
a prover P that is computationally unconstrained, and a verifier V with polynomial
running time. The prover and the verifier are both given some instance x and the
prover wants to prove that x ∈ L. In order to prove that, the prover and the ver-
ifier need to communicate with each other back and forth (this makes it interactive).

The prover should be able to prove a true statement and should not be able to
prove false one. In case x ∈ L, it should be possible to prove true statement in a
way that the verifier can verify the proof in polynomial time – an honest prover, fol-
lowing the protocol, should be able to convince the verifier (completeness). If x /∈ L,
it is not possible for the prover, even if it does not follow the protocol, to convince
the verifier of the contrary (soundness) [GMR85]. While the prover can be un-
trusted, it is assumed that the verifier can be always trusted, that it is honest [Fei92].
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Though it was previously mentioned that a prover is computationally uncon-
strained, there are cases, when it is not like that. For example, there are simple
interactive proofs for all languages in the class NP. The prover generates the
witness and hands it over to the verifier. Alternatively, we could think of a set-up,
where the prover has somehow obtained the witness from elsewhere, as the proof
that x ∈ L. In this case, the prover may also be polynomially bounded.

2.2.2 Zero-knowledge proofs

Compared to standard interactive proofs, zero-knowledge proofs have one extra
condition – zero-knowledge – if the statement is true, verifier learns nothing else
than the fact that it is true. An interactive proof system is called zero-knowledge if
it succeeds in proving the given statements, but does not reveal anything else [Fei92].
This means that the prover convinces the verifier of the solution without actually
giving the solution. Zero-knowledge proofs convince and yield nothing else than
that the statement is valid.

Zero-knowledge proof is "for all practical purposes, whatever can be efficiently
computed after interacting with a zero-knowledge prover and can be efficiently
computed when just believing that the assertion it claims is indeed valid. (In
whatever we mean not only the computation of functions but also the generation of
probability distributions.)" [GMW91]. This means that it is possible to "imitate"
interaction between an honest prover and the verifier by just believing that the
statement being proved is true – there exists some sort of a simulator for any
verifier (who has no access to the prover), which can reproduce the communication
between the prover and the verifier.

The difficulty in zero-knowledge proofs is, that it is trivial to prove the posses-
sion of some information by just revealing it, but it is a challenge to prove having
that information without revealing the information itself or anything additional.

In addition to zero-knowledge, there are three main ingredients that make
zero-knowledge proofs different from more traditional proofs – this is stated in the
article Non-interactive zero-knowledge by Blum et al. [BFM88]:

1. Interaction. The prover and the verifier communicate back and forth;

2. Hidden Randomization: There is unpredictability for the prover in what the
verifier does (hidden coin tosses);

3. Computational Difficulty: There is computation difficulty of some other
problem included into the proof.

12



As these ingredients make it difficult to implement zero-knowledge proofs, an
easier to implement approach, non-interactive zero-knowledge proofs have been
proposed. In article Quadratic Span Programs and Succinct NIZKs without
PCPs [GGPR13] (page 21) is given a definition of Non-Interactive Zero Knowledge:

Definition 1. "Non-Interactive Zero Knowledge. Let R be a binary relation which
consists of pairs (u,w), where u is a statement and w is a witness. Let f be a
function such that f(u,w) = 1 iff (u,w) ∈ R. Let L be the language that consists of
statements with valid witnesses for R. A non-interactive zero knowledge argument
for the relation R, or the function f , consists of the triple of polynomial time
algorithms (K,P, V ):

• K takes a security parameter κ as well as the maximum size of a statement
n and outputs a common reference string crs;

• P takes as input the CRS crs, a statement u and a witness w, and outputs
an argument π;

• V takes as input the CRS crs, a statement u and its proof π, and either
accepts or rejects the proof."

The general idea of the defined protocol is visualised in Figure 2. To put it
into the context of the application tool of this thesis, the transition (R) is the
implementation application of this thesis itself – it takes inputs x (in the definition,
u) (instance) and w (witness), which is basically information needed to prove the
statements described in Sections 4.2 and 4.3.

Generator, prover and verifier (in the definition K, P and V ) are three poly-
nomial time algorithms. The generator uses the instance x to produce common
reference string CRS (in the definition, crs), which in the implementation tool of
this thesis is a combination of three keys – a proving key, a verification key and a
processed verification key. The prover uses the instance x, the witness w and the
proving key to generate a proof π. The verifier uses two verification keys and the
proof π to verify the proof. If the verification is successful ((u,w) ∈ R), an accept
(1) is returned, and if not, a reject (0) is returned.

Definition 1 already describes the main idea of the protocol used in the ap-
plication tool of this thesis, but actually there is a more strict protocol in use –
Zero-Knowledge Succinct Non-interactive ARgument of Knowledge (zkSNARK).
While non-interactive zero-knowledge satisfies following properties: completeness,
soundness, zero-knowledge and non-interactivity, the protocol used in the imple-
mentation tool of this thesis satisfies in addition to the listed four, the two following
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Figure 2. What all parties see and produce.

properties: succinctness and proof of knowledge [BCI+13]. Succinctness means
that the proof is short and easily verifiable, and proof of knowledge means that the
prover proves that a statement is true and also knows why it is true [libb].

Also, regarding the difference between zero-knowledge proofs and arguments
of knowledge, it is said in the article Efficient Zero-Knowledge Arguments for
Arithmetic Circuits in the Discrete Log Setting [BCC+16] that "In general proofs can
only have computational zero-knowledge, while arguments may have perfect zero-
knowledge". In terms of soundness, for a proof, it holds against a computationally
unbounded prover, but for an argument, it holds against a polynomially bounded
prover [NOV06].

2.3 Libsnark

In general, libsnark is a C++ library that provides a programming framework
for creating zkSNARK applications. Based on the repository page of libsnark at
https://github.com/scipr-lab/libsnark, the library provides:

• a C++ implementation of seven general-purpose proving systems – for ex-
ample, preprocessing SNARK-s for languages of arithmetic circuits and
Boolean circuits, also, a preprocessing zkSNARK for the NP-complete lan-
guage "R1CS" (Rank-1 Constraint Systems). R1CS is a language similar to
arithmetic circuit satisfiability – this language is relevant for this thesis;
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• two libraries – gadgetlib11 and gadgetlib22, which are used for constructing
R1CS instances using modular "gadget" classes. While the gadgetlib1 is a low-
level library, covering all features of the preprocessing zkSNARK for R1CS,
the gadgetlib2 is a library for constructing systems of polynomial equations
and R1CS instances. In the application tool of this thesis, gadgetlib2 is
used. The gadgetlib2 library provides fewer useful gadgets, but is better
documented. In the application tool of this thesis, the following gadgets are
used (see Section 5.2.4 for more details):

– EqualsConst_Gadget, for checking if a variable has a value of a certain
constant. It returns 1 (true) if the constant is equal to a variable;

– LooseMUX_Gadget, for reading from one array, using indices (index)
from another array (variable). It returns 1 (true) if the index is in the
bounds of the array and the reading is successful, and returns 0 (false)
if the index is not in the bounds of the array;

– Comparison_Gadget, for comparing values of two variables. It returns
information about whether the value of one variable is less than the
value of the other OR whether the value of one variable is less or equal
than the value of the other variable. There are two values returned – 1
or 0 for the "less than" condition and 1 or 0 for the "less or equal than"
condition;

– InnerProduct_Gadget, for multiplying two vectors together, with the
result being a scalar. It takes in two vectors and returns a scalar;

– AND_Gadget, for computing AND of two (or more) variables. It takes
in two or more variables (for example, the (boolean) values returned by
other gadgets) and returns 1 (true) if they are all equal to 1 (true);

– OR_Gadget, for computing OR of two (or more) variables. It takes
in two or more variables and returns 1 (true) if they are all equal to 1
(true). Similary to the AND_Gadget, the inputs can be the (boolean)
values returned by other gadgets.

• examples of applications that use different proving systems, some of which
were mentioned above. Unfortunately, there are not too many of these
examples and they tend to be in a simple form, where, for example, generator,
prover and verifier algorithms are put into one executable, though they should
be run separately.

1https://github.com/scipr-lab/libsnark/tree/master/libsnark/gadgetlib1
2https://github.com/scipr-lab/libsnark/blob/master/libsnark/gadgetlib2
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Based on the libsnark’s description [libb], libsnark uses the preprocessing zk-
SNARK (ppzkSNARK) scheme, which means that using the library requires
following these four steps:

1. Expressing the statements to be proved as R1CS (or any other language
supported);

2. Using libsnark’s generator algorithm to create public parameters (CRS) – this
includes the proving key, the verification key and the processed verification
key;

3. Using libsnark’s prover algorithm to create proofs of true statements about
the satisfiability of the R1CS;

4. Using libsnark’s verifier algorithm to verify the proof of initial statements.

Details about how the implementation tool of this thesis follows these four steps
are described in Section 5.

2.4 Related work

There has been a considerable amount of research done on business processes and
zero-knowledge proofs separately, but not about these two combined. As business
process management is more widely covered, this section focuses on zero-knowledge
related works – more precisely, applications using libsnark, because this is one
of the most mature libraries for creating zero-knowledge proof applications, and
because it is used in the implementation tool of this thesis. Nevertheless, there are
not too many applications using libsnark.

One, maybe the most widely known application that uses libsnark is a Zcash3.
"Zcash is an implementation of the Decentralized Anonymous Payment scheme
Zerocash [BSCG+14], with security fixes and improvements to performance and
functionality. It bridges the existing transparent payment scheme used by Bitcoin4

with a shielded payment scheme secured by zk-SNARK" [HBHW]. This means
that using Zcash, it is possible to make direct transactions between users that does
not disclose the amount, origin or destination.

Differently from, for example, Bitcoin, blockchains of Zcash contain pseudo-
random values, ciphertexts and zero-knowledge proofs – transaction information

3https://z.cash/
4https://bitcoin.org/en/
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contains proofs that can be verified by everybody interested. This is a nice develop-
ment for protecting private information in blockchains, as for example, in European
Union, General Data Protection Regulation (GDPR)5 requires that it must be
possible to take back the private information given out to be processed. This is
not typically possible for most of the blockchains, but the approach of Zcash pre-
vents this kind of problem – it prevents adding private information into blockchains.

Another example of an application using libsnark is a BlockMaze – "an efficient
privacy-preserving account-model blockchain based on zk-SNARKs" [GWY+19].
Similarly to the Zcash, it hides transaction amounts, origins and destination. Block-
Maze seeks to protect account-model blockchains like, for example, Ethereum. In
fact, the implementation of BlockMaze6 has been built on top of libsnark and
Go-Ethereum7 blockchain.

Also, there is one not directly blockchain related application built on top of
libsnark library: ZKlaims. ZKlaims is "a system that allows users to present
attribute-based credentials in a privacy preserving way" [SKSB19]. Attribute-based
credentials are a scheme of authentication mechanism that provides a way to
authenticate different attributes about an object in a privacy preserving manner,
without disclosing any other information about that object [PPO]. Using ZKlaims,
it is possible to prove statements related to credentials issued by third parties,
without verifier seeing the contents of these credentials. The authors of ZKlaims
claim that it could be exchanged via fully decentralised services, for example, peer-
to-peer networks based on distributed hash tables (DHTs) or blockchains [SKSB19].

As there are not too many applications built on top of libsnark or other similar
systems yet, this thesis seeks to contribute to bringing zero-knowledge proofs more
into practice.

5https://gdpr-info.eu/
6https://github.com/Agzs/BlockMaze
7https://github.com/ethereum/go-ethereum
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3 Problem
In general, this section describes the motivation behind this thesis. This includes
three topics – a problem statement to describe what this thesis seeks to achieve; a
motivation stating a simple use case where the implementation tool of this thesis
could be used, together with a list of reasons why this topic is fascinating for the
author of this thesis, and last, but not least, approach describing how the idea is
formed into an implementation tool.

3.1 Problem statement

Every day, different systems use more and more sensitive or private information,
and users of these systems expect that the information is handled very carefully and
disclosed to only relevant parties. For example, in European Union, this is strictly
regulated by the GDPR. Following these rules is required by the law and in theory
users should not need to worry, but in practice, sensitive or private information is
leaked through unsecure systems every day.

Using zero-knowledge proofs in different systems would reduce the need to share
sensitive information over different unsecure or secure communication channels.
Reducing the need to move sensitive information in or between systems, in general,
makes these systems more secure.

Today, there are already some applications using zero-knowledge proofs, but
these are still rather exceptional. Most of these applications are related to mak-
ing cryptocurrencies (and blockchains in the bottom) more secure and privacy
preserving – few examples are mentioned in Section 2.4. Also, there are various
tools to express, plan and simulate systems using business process modelling. Yet,
possibilities and potential of combining zero-knowledge protocols and business
processes – this has not been researched much.

Proposing an approach and developing a tool to connect BPMN models with
zero-knowledge proving systems (with R1CS sequences in between), seeks to carry
forward the research in both, business processes and zero-knowledge proofs, by
bringing in new ideas and showing that there is a value in combining these two.
A goal is to bring zero-knowledge proofs more into practical use in different
technologies and through that – make different systems more secure and privacy
preserving.
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3.2 Motivation

The main motivation for this thesis comes from a certain use case: there is a
security flaw in some system and a person, a white or grey hat hacker for example,
knows the flaw and wishes to prove that, but does not wish to reveal specific details
of the flaw to the owner of the system.

In practice, there are mainly two ways how system owners react to declarations
of finding flaws in their systems. One option is to acknowledge and praise these
persons responsible for finding flaws – there are also monetary prizes (bug bounties)
in many cases. Another option is that persons responsible for finding flaws are
accused of attacking systems, threatened with court cases, and in some cases,
prosecuted.

To make real life systems more secure, specialists (white hat hackers) need to
work on real systems and it would help if there were ways to first prove that one
has found a flaw and if the system appreciates it, only then reveal it, without being
afraid of being prosecuted. This thesis offers one possible approach to support
proving existence of flaws in different systems without actually revealing the flaws.
This approach is described in Section 3.3.

The motivation for choosing this particular approach derives from three follow-
ing aspects.

Firstly, the author of this thesis has worked multiple years on developing systems
(PLEAK8) that seek to detect privacy leakages from systems analysing business
process models describing these systems. This means that the author of this thesis
has interest in detecting flaws in systems and experience in using BPMN notation
models for this purpose.

Secondly, the author of this thesis wishes to research modern cryptography
achievements and support bringing these solutions into practice.

Thirdly, the author of this thesis works as a programmer at a research and
development intensive ICT company Cybernetica AS9, on DARPA10’s project
PROVENANCE under SIEVE program11. One main goal of this project is to

8https://pleak.io
9https://cyber.ee/

10https://www.darpa.mil/
11https://www.darpa.mil/program/securing-information-for-encrypted-verificat

ion-and-evaluation
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develop ways to bring zero-knowledge proofs more into real life practice – the SIEVE
program "seeks to advance the state of the art in ZK proofs to enable complex,
DoD-relevant applications. SIEVE will use ZK proofs to enable the verification of
capabilities relevant to the DoD without revealing the sensitive details associated
with those capabilities" [SIE].

3.3 Approach

Supporting the goals described in Section 3.1, this thesis offers an approach that
offers a way to prove flaws (without actually revealing them) in systems using
BPMN notation models to describe these systems and zero-knowledge proofs to
prove the existence of flaws under certain circumstances.

In more detail, the approach is to use BPMN notation models to describe
systems and different processes, and use regular expressions to describe unwanted
behaviours of the processes – to specify a set of traces made up of the elements
of the process, that are considered bad. For example, fixing that all steps of the
process are allowed to be taken except certain few, or that certain steps must be
taken before others. This helps to represent real life limitations in processes that
sometimes could not be derived from the model by just analysing the structure of it.

A flaw in a system or a business process is demonstrated by a run (a path or a
trace) of a business process that belongs to the language of unwanted runs. More
concretely, a certain flaw in the system is expressed as a string (that is matched by
the regular expression) that describes a certain path (a trace) through the process.
This approach shows that business processes and regular expressions intersect in
the way how they "act" – regular expressions could outline unwanted situations in
business processes.

To prove that a certain run (a trace) belongs to the business process semantics
and is accepted by a nondeterministic finite automaton (described by the regular
expression), zero-knowledge proofs are used. The steps that are required to prove
that a using certain path (certain steps in a specific order) under restrictions
(determined by the regular expression) to pass through the process are described
in Section 4.
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4 Design
For the tool implemented in this thesis to be able to serve its purpose, the inputs
provided by the user need to follow certain requirements. Following subsections
describe the initial requirements for the inputs, and also the principal steps of the
proofs under the implementation tool of this thesis. There are examples provided
next to the two proofs to make it easier to understand, why each step is necessary
and how the steps support the overall goal.

4.1 Prerequisites

In order to understand what is expected to be provided as inputs to implementation
tool of this thesis, following paragraphs define what is here meant by an input
business process and what are the requirements for it. Also, the requirements for
the input nondeterministic finite automaton are listed. Finally, it is described how
the business process and automaton are used together in the proofs under the
implementation tool of this thesis.

For an introduction, an illustration of a business process in the form of a BPMN
model is provided in Figure 3 (note that in terms of this thesis, the content of
this model is not relevant, it is just used as a simple example). The definition and
requirements of a business process in terms of the application tool of this thesis
are following:
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Figure 3. An example of BPMN model.
[Modified version of the model from

https://pleak.io/app/#/view/aPCvSrCZIgwB-vtYo2hO]

A business process consists of Start event, End event, Exclusive gateway,
Parallel gateway and Task elements (see Figure 4 (a, b, c, d, e)), connected by
Sequenceflow elements (see Figure 5).

Figure 4. Vertex elements relevant in this thesis.

Given n ∈ N, we write [n] to mean a set {1, . . . , n}.

Definition 2. We let the business process to be a tuple (V,E, σ, τ, λ,−→p ,←−p ), where

• V is the set of vertices, and E the set of edges of the process;

• σ : E → V and τ : E → V give the starting and ending vertex of an edge;

• λ : V → {task, excl, paral, start, end} gives the type of a vertex;
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Figure 5. Edge element relevant in this thesis.

• −→pv : σ−1(v) → [|σ−1(v)|] and ←−pv : τ−1(v) → [|τ−1(v)|] are defined for those
v ∈ V , where λ(v) = excl, and they fix an ordering on the incoming and
outgoing edges of the vertex v.

In this work, we restrict the business processes so, that they satisfy the following
constraints on the numbers of incoming and outgoing edges of the vertices:

• start event: 0 incoming and 1 outgoing;

• end event: 1 incoming and 0 outgoing;

• task: 1 incoming and 1 outgoing;

• parallel gateway: 1 incoming and 2 outgoing OR 2 incoming and 1 outgoing;

• exclusive gateway: at least 1 incoming and at least 1 outgoing.

Let E → N be a state of a business process. The structural operational seman-
tics (small-step semantics) of a business process is a binary relation on such states,
defining one step of a business process. This means that the binary relation tells
from which state it is possible to get to another state with one step. A state is
considered as a number of tokens on each edge. In the beginning of the business pro-
cess, there is 1 token on the outgoing edge of a start event, the other edges have none.

Considering that every step is related to the changes on token numbers on the
edges of connected vertices, let Σ be the set of all possible token number changes
on the edges of each vertex of a business process.

Σ = {v ∈ V |λ(v) 6= excl}∪ {(i, v, j) | v ∈ λ−1(excl), i ∈ [|σ−1(v)|], j ∈ [|τ−1(v)|]} .

Let there be a public procedure to list the elements of set Σ. This procedure
equates the elements of set Σ with numbers 1, 2, . . . , |Σ|.

The trace semantics of a business process is a language S ⊂ Σ∗. A trace t ∈ Σ∗

is an element of S if and only if changes on token numbers on the edges of connected
vertices are possible in the order specified in t. The t can be a an actual trace (be
an element of S) only if the number of tokens on the edges of connected vertices
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does not become negative.

Note that while processing the trace t, on every step, moving from one vertex to
another, token number changes on the edge connecting two vertices. For example,
assuming that the first element in a trace t is of type start, moving to another
element, the token number on the outgoing edge of the start element is increased
by one. Taking next step, the token number on this edge (outgoing edge of the
start) is decreased by one and increased by one on the outgoing edge(s) of the next
element – it can be understood as taking a token and passing it on.

In general, on every step, the number of tokens on incoming edges of an element
(vertex) is decreased by one and on outgoing edges increased by one. The numbers
of possible (accepted) incoming and outgoing connections for each element were
listed before. Nevertheless, there is one exception – exclusive gateways. For each
exclusive gateway, no matter how many incoming or outgoing edges it has, the
number of tokens changes only on one incoming edge (decreased by one) and on one
outgoing edge (increased by one) at a time. Also, when moving through parallel
gateways, it can be understood as the one token is split into two tokens or two tokens
are merged backed together into one – note that when token is split, there will be
1 + 1 tokens, not 0.5 + 0.5 tokens, and when merged, 1 + 1 tokens becomes 1 token.

Continuing with defining the input automaton, let A be a nondeterministic
finite automaton with:

• the finite set Q of states that we equate with a set {1, 2, . . . , |Q|},

• the set I ⊆ Q of initial states,

• the set F ⊆ Q of accepting states,

• the transition relation δ ⊆ Q× Σ×Q.

A accepts a language L(A), defined by a regular expression, in a standard way,
for example, as described in a book Introduction to Compiler Design [Mog17] (page
2).

Using zero-knowledge, we want to prove following statements. Given some
language L ⊆ Σ∗ accepted by a NFA, we prove statements in the form of L∩S 6= ∅.

In order to prove a statement L ∩ S 6= ∅, we present string JwK as a witness
of the proof and show that JwK ∈ L and JwK ∈ S. We write J·K to mean that w is
private. By private we mean that w is known only to the prover. String JwK is given
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as a sequence of its characters: Jw1K, Jw2K, . . . , Jw|w|K, which are all elements of
set Σ (numbers from set [|Σ]]). We assume that the length of sequence JwK is public.

Showing how JwK belongs to languages S and L is done in Sections 4.2 and 4.3.

4.2 A trace (witness) belongs to the business process seman-
tics

In order to prove that a trace belongs to the business process semantics, a business
process (input as .bpmn model from the user) is required. This business process
(.bpmn model) must be parsed to check if all requirements are met (see Section 4.1)
and to find all vertices (steps) and edges from the model.

Given that the number of incoming and outgoing edges of vertices is limited,
the number of tokens changes on maximum three edges for each step of the business
process.

Let P be an array, indexed by the elements of Σ (numbers 1, 2, . . . , |Σ|). Each
element of P is a triple of the elements of set N , where

N = ({incr, decr} × E) ∪ {nothing} .

An element P [i] shows how and on which edges token numbers are changed when
we "take" step i. The order of the values in a triple is not important.

Given private information:

• string JwK (a trace),

and public information:

• array P ,

• the length of string |w|,

• the number of steps on the model,

• the number of edges on the model,

the proof consists of five following steps, which can be, and are implemented
(see Section 5) using the zkSNARK construction through the libsnark library:

25



Step 1:

Read from the array JP K using indices Jw1K, . . . , Jw|w|K. This reading gives |w|
private values that all belong to set N 3. We consider these values as 3|w| private
values JL#

1 K, . . . , JL#
3|w|K from set N . This means that reading by index Jw1K, we

get values JL#
1 K, JL#

2 K, JL#
3 K, reading by index Jw2K, we get values JL#

4 K, JL#
5 K, JL#

6 K
etc.

This step gives us (groups of) token changes on edges in timely order. We can
see for a moment in time (a step), on which edges, the token number is increased,
and on which, decreased.

Step 2:

Define L, an array of pairs, with 3|w|+ |E| elements. For the first 3|w| elements,
let the left component of JLiK be JL#

i K and the right component of JLiK be i. For
the last |E| elements, let the left component of JL3|w|+iK be (init, i) and the right
component of JL3|w|+iK be 0.

In this step, we start to group the token changes by edges. "init" values are
added (for each edge) to mark the beginning of the change in the number of to-
kens for an edge. The right component of some JLiK still denotes the time of change.

Step 3:

Sort array JLK based on the following order:

((_, e1), i1) ≤ ((_, e2), i2) if e1 < e2 OR e1 = e2 ∧ i1 ≤ i2

(nothing, i1) ≤ (nothing, i2) if i1 ≤ i2

_ ≤ (nothing,_) .

In this step token changes are sorted in a way that all changes for one edge are
grouped and preceded by "init" value (denoting the beginning of the change in the
number of tokens for an edge).

Step 4:

Remove unnecessary information from an array JLK: let JL′K be an array (with
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the same length as the array JLK), where each element belongs to set Z ∪ {init}:

L′i =


1, if Li = ((incr,_),_)

−1, if Li = ((decr,_),_)

0, if Li = (nothing,_)

init, if Li = ((init,_),_)

Step 5:

Find the prefixsum of the array JL′K, where addition of integers is defined as
usual. In addition, let x + init = init and init + x = x for each x. Let the array
JMK be the prefixsum of JL′K. Verify that there are no negative values in the array
JMK.

In this step, by finding prefixsums based on these conditions, we calculate
(prefix sums) the sum of token changes for each edge – this means that if token
number on one edge is increased (+1) and then decreased (-1), the prefixsum is 0.
In case the sum is negative, there have been (at least) two non-consecutive (on the
model) steps made or some step is missing. For example, when taking a step from
one task (the number of tokens on the incoming edge is decreased and the number
of tokens on the outgoing edge is increased – like moving the token from one edge
to another) to another task, the sum of token changes for the edge between these
two tasks should be 0 – in case it is not, an incorrect (not allowed) step has been
taken. For another example, in case of exclusive or parallel gateway steps when
there are multiple incoming and/or outgoing connections, but one or more required
steps have not been taken, the sum of token changes becomes invalid.

In case following all previous steps has been successful, we have proved that a
trace (witness) belongs to the business process semantics.

4.2.1 Example

In order to make the previously listed steps more understandable, based on the
example model in Figure 3, let the input information be following:

• let the trace JwK be a string "a,f,e,d,g,c,b" (note that all steps of the model
are included in the trace, this is just used for a simple example);

• let the array P be listed in Table 2.

• and let the indices Jw1K, . . . , Jw|w|K, based on trace JwK and array P , be listed
in Table 1.
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Table 1. Indices Jw1K, . . . , Jw|w|K based on the trace JwK.

0 5 4 3 6 2 1

Table 2. P – a set of vectors of token changes on the edges of vertices on the model.

1 0 0 -1 0 -1
-1 2 0 -1 0 -1
-1 5 1 2 0 -1
-1 3 1 1 0 -1
-1 4 1 6 0 -1
-1 0 1 3 1 4
-1 1 -1 6 1 5

In Table 2 are listed the token changes for the edges of vertices on the example
model (see Figure 3). One line of a table contains information about maximum
three edges (three pairs) as for each vertex of the model, token numbers can
change on maximum three connected edges. The number of possible incoming and
outgoing connections (edges) for each type of element (vertex) was listed before (see
Section 4.1). In case the number of incoming and outgoing connections combined
for an element is less than three, "placeholders" are added to always have three
pairs – these "empty" token changes are marked with pairs (0,-1). This means
that, as in the first row of the table, there are pairs (1,0),(0,-1),(0,-1), the last two
pairs are "empty".

With the exception of the "empty" pair, the first component of a pair shows
whether the number of tokens is increased by one (1) or decreased by one (-1). The
second component is an identifier on an edge. Knowing that only for elements of
type start and end, as there are no other connections than the one incoming or
outgoing connection, we can say that the first row of the table describes token
number changes on start element (as it has only one outgoing edge and on outgoing
edges token numbers are increased). How the numbers of tokens on the edges of
model elements change was described earlier in Section 4.1.

Continuing, the second row describes token changes on the edges of an element
of type end, as two of the pairs are again "empty" and the first component of the
first pair describes decrease (which describes an incoming connection). Continuing
the same logic, we can see for each row, whether it describes token changes on start,
end, task, excl or paral type of element. For easier understanding, all edges on the
example model (see Figure 3) are numbered as their identifiers appear in the pairs in
Table 2. Note that these identifiers do not appear in the table in any relevant order,
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as the values represent internal identifiers of these elements in the client application.

Based on the input information (indices Jw1K, . . . , Jw|w|K and set P ), the expla-
nations and results of proof steps are following:

Step 1:

The result of reading from the array JP K using indices Jw1K, . . . , Jw|w|K is listed
in Table 3. These are token changes on edges of vertices (steps) in timely order.
This means that we can see for a moment in time (a step), on which edges the
token number is increased, and on which, decreased.

Table 3. Elements read from P using indices Jw1K, . . . , Jw|w|K from the trace JwK.

1 0 0 -1 0 -1
-1 0 1 3 1 4
-1 4 1 6 0 -1
-1 3 1 1 0 -1
-1 1 -1 6 1 5
-1 5 1 2 0 -1
-1 2 0 -1 0 -1

Step 2:

In this step, we start to group the token changes by edges. The six values
in a row are divided into pairs and these pairs are numbered. Also, "init" (here
represented with numbers 999999999) values are added (for each edge) to mark the
beginning of the change in the number of tokens for an edge. The result of this
step, L, is listed in Table 4.
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Table 4. The set L.

1 0 1
0 -1 2
0 -1 3
-1 0 4
1 3 5
1 4 6
-1 4 7
1 6 8
0 -1 9
-1 3 10
1 1 11
0 -1 12
-1 1 13
-1 6 14
1 5 15
-1 5 16
1 2 17
0 -1 18
-1 2 19
0 -1 20
0 -1 21

999999999 0 0
999999999 1 0
999999999 2 0
999999999 3 0
999999999 4 0
999999999 5 0
999999999 6 0
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Step 3:

As already stated before, in this step the token changes are sorted in a way
that all changes for one edge are grouped and preceded by "init" (999999999) value
(denoting the beginning of the change in the number of tokens for an edge). Here
we can see that there are seven "init" values, as there are seven edges in the model,
and token changes for edges are following these "init" values. The result of this
step is listed in Table 5.

Table 5. A sorted version of set L.

999999999 0 0
1 0 1
-1 0 4

999999999 1 0
1 1 11
-1 1 13

999999999 2 0
1 2 17
-1 2 19

999999999 3 0
1 3 5
-1 3 10

999999999 4 0
1 4 6
-1 4 7

999999999 5 0
1 5 15
-1 5 16

999999999 6 0
1 6 8
-1 6 14
0 -1 2
0 -1 3
0 -1 9
0 -1 12
0 -1 18
0 -1 20
0 -1 21
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Step 4:

In this step we remove unnecessary information, as at this point only the token
changes are relevant. In this part of the proof, we do not need to know any more
on which edges specifically these changes are taking place. The result of this step
is listed in Table 6.

Table 6. Unnecessary information removed from the set L, only token changes left.

999999999
1
-1

999999999
1
-1

999999999
1
-1

999999999
1
-1

999999999
1
-1

999999999
1
-1

999999999
1
-1
0
0
0
0
0
0
0
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Step 5:

In this step, by finding prefixsums (based on conditions stated before, in Sec-
tion 4.2 (step 5)), we calculate (prefixsums) the sum of token changes for each edge
– this means that if token number on one edge is increased (+1) and then decreased
(-1), the prefix sum is 0. If there were negative values, something would have been
wrong. As we can see in the result Table 7, there are only non-negative values in
the list and that means that all (required) steps were made consecutively and we
have proved that the trace (witness) belongs to the business process semantics.

Table 7. Prefixsums of the set listed in Table 6.

999999999
1
0

999999999
1
0

999999999
1
0

999999999
1
0

999999999
1
0

999999999
1
0

999999999
1
0
0
0
0
0
0
0
0
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How this proof has been implemented in the result tool of this thesis is explained
in Section 5.2.4.

4.3 A trace (witness) is accepted by an automaton

In order to prove that a trace is accepted by an automaton, a regular expression
string (input from the user) is required. This string must be converted into a non-
deterministic finite automaton (A) where ε-transitions are removed (ε-transitions
are not supported by this tool).

δ ⊆ Q × Σ × Q being the transition relation of a nondeterministic finite au-
tomaton A, let ∆ be an array listing the elements of δ, where every element is a
triple of state, character, state (three numbers). We write ∆1

i , ∆2
i , ∆3

i to mean
three components of an element on position i in ∆.

To find how JwK (a trace) is accepted by an automaton A, prover needs to
find indices Jk1K, . . . , Jk|w|K ∈ [|δ|] in such a way that when processing a character
of JwK on position i, a transition J∆[ki]K is used. This means that there must
exist (and the prover has to find it) such a sequence of transitions (with indices
Jk1K, . . . , Jk|w|K ∈ [|δ|]) that all characters of the trace are consecutively read by the
automaton, leading the automaton to an accepting state.

Given private information:

• string JwK,

• indices Jk1K, . . . , Jk|w|K,

and public information:

• the length of string |w|,

• the number of transitions of an automaton A,

• |Q|, the number of states of an automaton A,

• I, initial states of an automaton A,

• ∆, the transition relation of an automaton A (triples),

• F , accepting states of the automaton A,
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the proof consists of five following steps:

Step 1:

Reading from the array J∆K (see Table 9) using indices Jk1K, . . . , Jk|w|K. This
reading gives us values JK1K, . . . , JK|w|K – each value being of the same type (a
triple) as the elements of J∆K.

Step 2:

Verify that JK1
1K belongs to set I.

Step 3:

Verify that JK3
|w|K belongs to set F , where the superscript 1 denotes the first

component of the triple.

Step 4:

Verify that for each i ∈ [|w| − 1], JK3
i K = JK1

i+1K.

Step 5:

Verify that for each i ∈ [|w]], JK2
i K = JwiK.

In case all previous steps have been successful, we have proved that a trace
(witness) is accepted by an automaton.

4.3.1 Example

In order to make the previously listed steps more understandable, based on the
example model in Figure 3, let the input information be following:

• let the trace JwK be string "a,f,e,d,g,c,b" (note that all steps of the model are
included in the trace, this is just used for a simple example);

• let the automaton A be constructed from a regular expression "(a|b|c|d|e|f|g)*"
(note that in the regular expression all steps of the business process are allowed,
this is just used for a simple example; also, this is not the smallest automaton
for this regular expression, but it serves its purpose) and visualised in Figure 6;
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• let the transition relation ∆ of A be listed in Table 9 (Note that here the
first and the last value of triples express states of an automaton A. In
general, the middle value of a transition expresses accepted character for a
transition, but here in this list the values have been replaced with identifiers
of transitions, as the indices Jk1K, . . . , Jk|w|K are already in accordance with
the characters needed to be accepted by transitions. These indices already
represent the suitable transitions accepting characters specified in the trace
JwK (see Section 5.1.4 for more information);

• let the initial states of A be I = {0};

• let the accepting states of A be F = {0, 1, ..., 7};

• and let the indices Jk1K, . . . , Jk|w|K, based on trace JwK and transition relation
∆, be listed in Table 8.

Based on the input information, the result of Step 1 is listed in Table 10 and it
is easy to verify that it meets the requirements of Steps 2, 3, 4 and 5 and we have
proved that the trace (witness) is accepted by an automaton. How this proof has
been implemented in the result tool of this thesis is explained in Section 5.2.4.

Table 8. Indices Jk1K, . . . , Jk|w|K based on the trace JwK.

0 12 46 38 34 51 22
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Table 9. ∆ – transitions of a deterministic finite automaton A (divided into four
columns).

0 0 1 2 14 1 4 28 1 6 42 1
0 1 2 2 15 2 4 29 2 6 43 2
0 2 3 2 16 3 4 30 3 6 44 3
0 3 4 2 17 4 4 31 4 6 45 4
0 4 5 2 18 5 4 32 5 6 46 5
0 5 6 2 19 6 4 33 6 6 47 6
0 6 7 2 20 7 4 34 7 6 48 7
1 7 1 3 21 1 5 35 1 7 49 1
1 8 2 3 22 2 5 36 2 7 50 2
1 9 3 3 23 3 5 37 3 7 51 3
1 10 4 3 24 4 5 38 4 7 52 4
1 11 5 3 25 5 5 39 5 7 53 5
1 12 6 3 26 6 5 40 6 7 54 6
1 13 7 3 27 7 5 41 7 7 55 7
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Figure 6. A deterministic finite automaton constructed from a regular expression
"(a|b|c|d|e|f|g)*". 38



Table 10. K – elements read from transitions ∆ using indices Jk1K, . . . , Jk|w|K from
the trace JwK.

0 0 1
1 12 6
6 46 5
5 38 4
4 34 7
7 51 3
3 22 2

This section has explained the logic behind the proposed implementation tool
of this thesis and the two principal proofs under it. The following section describes
how this logic and proofs have been implemented in practice.
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5 Implementation
This section describes how the main idea behind this thesis is brought into practice.
It provides details about how the implementation tool of this thesis is built up
– which are the components and technologies in use, including why and how are
these used.

The overall structure of the tool implemented in this thesis is illustrated in
Figure 7. There are two main applications – the client application and the server
application, which both contain a Node.js server that provides a basis for the inner
applications and allows the two main applications to communicate.

Figure 7. The structure of the implementation tool of this thesis.

The client application serves a graphical user-interface that makes the whole
tool easier to use. The server application provides a gateway between client and
server applications and contains the generator-prover-verifier zkSNARK application
that allows to prepare, prove and verify the two principal proofs (see Section 4)
under the tool implemented in this thesis.

The source code of both applications is available as an attachment to this thesis
document, see Appendix I for details.
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5.1 Client application

Following subsections and paragraphs describe the user-facing web application
of the tool implemented in this thesis. The client (web) application provides a
graphical user interface for easier use. It is described how to use this interface,
what are the possibilities, how and why the input information is processed, and
what the user cannot see – what is happening in the background.

5.1.1 Technologies used

The client application (user interface) of the tool implemented in this thesis is an
Angular12 web-application built on a standard @angular-cli (version 7.1.4)13 project.
Graphical user-interface is based on HTML14 and JavaScript15 using Bootstrap
(version 3.4.1)16 open-source toolkit and JQuery (version 3.5.1)17 JavaScript library
in addition. Bootstrap provides styled responsive templates for forms, buttons etc.
JQuery supports making forms interactive.

The visualization of XML18-format BPMN models is served by an open-source
BPMN 2.0 rendering toolkit Bpmn-js (version 6.4.1)19 provided by Camunda Ser-
vices GmbH20.

A regular expression input parsing is done using few functions from the Cy-
berZHG’s toolbox21 (direct functions and sources of these are referenced in the
source code (see Appendix I) of the client application). These functions provide a
deterministic finite automaton.

The front-end Angular application is served to the user using JavaScript runtime
Node.js22.

12https://angular.io/
13https://cli.angular.io/
14https://www.w3.org/html/
15https://www.javascript.com/
16https://getbootstrap.com/docs/3.4/
17https://jquery.com/
18https://www.w3.org/XML/
19https://bpmn.io/toolkit/bpmn-js/
20https://camunda.com/
21https://github.com/CyberZHG/toolbox
22https://nodejs.org/en/
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5.1.2 Reasons for using selected technologies

For the technologies to be used in the client application, different candidates were
considered. The reasoning behind why these technologies were chosen is following:

Angular, HTML, CSS, JavaScript, JQuery, Bootstrap and Node.js

These technologies were selected because of two main reasons:

1. The author of this thesis is already familiar with these technologies and based
on the previous experience, decision was made that these are suitable;

2. It is possible that the application tool of this thesis will be integrated into
the PLEAK toolset. PLEAK uses the same technologies, so the integration
would be smoother than with other possible technologies.

Bpmn-js

There are four reasons why the Bpmn-js was chosen:

1. Bpmn-js is a well maintained and regularly improved open-source tool with
great community behind it;

2. It is easy to use it in Angular projects;

3. The author of this thesis has multiple years of experience in using it, so it is
familiar;

4. There are no good alternatives with comparable functionality.

CyberZHG’s toolbox

The first condition for choosing a tool that would parse regular expressions and
construct automatons based on it was that it must run on JavaScript. The hope
behind that condition was that it would require less work in the server application.
Unfortunately, it turned out that all found suitable candidates have their own
problems.

The first choice was Automata.js23 and it got integrated into the tool as it seemed
to serve its purpose. It worked well for the small example model (see Figure 3), but
when the medium-sized model (see Figure 16) was used, the constructed automaton
had flaws in it – there were states missing. For example, if a regular expression was

23https://github.com/hokein/automata.js/
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in a form (a|b|c|d|...)* then there was always missing a state accepting the character
on index 3 (d). Also in order to construct an automaton for the medium-sized and
big example models (see Figure 17), a large amount of memory was required – it
froze the web browser for a while. Due to these issues, another tool had to be found.

The second choice (that is currently in use ) was to use some functions from
CyberZHG’s toolbox ,as the full toolbox was not needed and it would have been not
too easy to integrate it into the implementation tool of this thesis in its original form.

These functions serve their purpose very well – automatons from acceptable
regular expressions are built quickly and there are no apparent mistakes in these.
Unfortunately, the regular expression parser reads characters one by one so it is
possible to use only one-character short names to connect the regular expression
with a trace and a business process model (see Section 5.1.4 for more details).
Fortunately, UTF-8 is supported, so there is a long list of suitable characters for
short names.

Hoping to keep the server application simpler, a wrong choice was made, as it
turned out that there are no good options for JavaScript regular expression parsers
known that would construct suitable automatons from these. The rest of the chosen
technologies serve their purpose well.

5.1.3 User roles

The overall purpose of the tool implemented in this thesis is to prove that it is pos-
sible to follow a certain described path under specific limitations (restrictions) in a
business process. As this proof must be also verifiable, the user interface provides a
choice of three roles to generate the keys for the proving process, run the proving pro-
cess and later verify the proof. These roles are named generator, prover and verifier.

In general, the generator prepares proving and verification processes and cre-
ates proving and verification keys for prover and verifier accordingly (keys can
be downloaded after successful generator process). The prover runs the proving
process (using proving key from generator) and provides a proof if it was success-
ful (proof file can be downloaded after successful proving process). The verifier
verifies the proof (from prover) using two different verification keys (from generator).

Although all three roles are related to the same proving-verification process,
the requirements for input information are different for each role, dependent on the
amount of information available. General overview of the required input information
is provided in Section 5.1.4, detailed lists of required information for each role is
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provided in Section 5.1.5.

5.1.4 Overview of the information gathered and processed

The client side part of the tool implemented in this thesis plays mainly a supportive,
user input formatting role, in addition to providing graphical user-interface. The
input information required for the tool to serve its purpose is asked from the user
in three forms:

1. XML-format BPMN (.bpmn) model24 through open file dialog;

2. numerical and textual inputs through text field inputs;

3. key- and proof files through file upload inputs.

Details about how the front-end application handles and formats the input data
(BPMN model and numerical and textual inputs) for later use in the back-end part
of the application are described in following paragraphs.

Business process

After user of the tool has opened (loaded in) a BPMN (.bpmn) model, it is
parsed by the Bpmn-js renderer which provides a JavaScript object that describes
the full model and has functions to read different details, trigger events on the
model and manipulate it. These functionalities are used to gather and prepare
information that is required for the tool to serve its purpose.

The front-end application gathers information from the model about the follow-
ing vertex-type (step) elements:

• Task elements,

• Start event elements,

• End event elements,

• Parallel gateways,

• Exclusive gateways.
24Suitable models can be created in Bpmn.io: https://bpmn.io/ or Pleak.io: https:

//pleak.io/.
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Previously listed elements are considered as steps that are taken when follow-
ing different paths through the process. There are functions implemented to get
JavaScript objects describing all of these elements.

In addition, information about edge-type elements is gathered – more precisely,
about Sequence flow elements.

As described in Section 4.1, there are different requirements (such as a number
of incoming and outgoing sequence flows for an exclusive gateway) for the elements
in the business process for it to be usable in the tool. To check the details about
the business process and its elements, there are following supporting functions
implemented:

• A function to get a type of an element (Task, Start event, End event, Exclusive
gateway, Parallel gateway, Sequence flow);

• A function to get all vertex-type elements;

• A function to get all edge-type elements (currently only sequence flows);

• A function to get all incoming connections of elements – this covers all
different types of edge-type elements, including sequence flows;

• A function to get all outgoing connections of elements – this covers all different
types of edge-type elements, including sequence flows;

• A function to get all vertex-type elements that are connected to the input of
a given edge-type element (Sequence flow);

• A function to get all vertex-type elements that are connected to the output
of a given edge-type element (Sequence flow).

In addition, there are functions to check if all model elements meet the require-
ments listed in Section 4.1. There are the following checks to guarantee that the
input model is suitable for the tool:

1. Is there at least one start event?

2. Is there at least one end event?

3. Do start events and end events have correct number of incoming and outgoing
connections?

4. Do all task elements have exactly one incoming and one outgoing connection?
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5. In case exclusive gateways are used, is there exactly one incoming and one
or more outgoing connections OR one or more incoming and exactly one
outgoing connection for each exclusive gateway? Note that here (in the actual
implementation) the requirements for exclusive gateways are stricter than in
the BPMN model requirements listed in Section 4.1, because it was easier to
implement it this way.

6. In case parallel gateways are used, are there exactly one incoming and two
outgoing OR two incoming and one outgoing connections for each parallel
gateway?

In case one or more of these checks fail, the user is alerted with related error
message dialogs.

In case all checks succeed, using previously listed functions, a set of all (ac-
cepted) vertex (step) elements of the model is created. This is described as set
V in Section 4.1. The set V is converted into a set P (described in Section 4.2),
containing triples of pairs that describe for each vertex whether on each connected
edge (by edge ID) the number of tokens is increased (denoted by a string "incr") or
decreased (denoted by a string "decr"). If a vertex has altogether less than three
incoming or outgoing connections, a string "nothing" is used instead of a pair to
mark "empty" token changes. Also, the triple is not ordered.

For all vertices there is at least one triple describing token changes on the edges
connected to it. As exclusive gateways in principle describe that (based on some
condition) one or another (or another, etc.) incoming or outgoing edge is chosen,
these gateways have multiple different possibilities for token changes (in case there
are more than one incoming or outgoing connection) on its edges. This means that
for exclusive gateways there can be multiple triples, as tokens are considered to
change only on one incoming and one outgoing edge at the same time. How to fix
which edges should be considered when describing a path through the process (a
trace), is described later in the same section.

An simple example of a triple describing token changes on the connected edges
for one vertex could be [("decr", 5), ("incr", 2) , "nothing"], where for the first
pair, on edge with an ID 5, the number of tokens is decreased (by one).

To make the set P easier to use in the back-end application, it is further for-
matted into a set, where each element is a set of six numbers – a triple of pairs
is merged into one set. String "incr" is replaced with an integer 1, string "decr"
with an integer "-1" and string "nothing" with a pair of integers (0, -1). The
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previously mentioned example becomes following: [-1, 5, 1, 2, 0, -1] - see Table 2
for an example of a full set P based on the example model in Figure 3.

Detailed requirements for the business process and its elements are described in
the Section 4.1.

Regular expression and nondeterministic finite automaton

To set limitations, whether taking certain steps or following certain paths in the
business process is allowed or disallowed, the user of the tool implemented in this
thesis is required to insert a regular expression string. This string is parsed by using
few functions from the CyberZHG’s toolbox project. Due to the limitations of the
CyberZHG’s toolbox project, not all regular expressions are accepted. Currently,
only regular expressions supported by the following grammar (where r, s, t are
regular expressions and a is a character) are supported:

r ::= (s) | st | s|t | s ∗ | s+ | s? | ε.

See the page25 of the original project for more details.

The functions from CyberZHG’s toolbox provide a JavaScript object describing
deterministic finite automaton (DFA). This DFA contains information about the
number of states, initial state, accepted states and possible transitions.

Possible transitions are formatted into a list of triplets (∆, as described in
Section 4.3), containing state ID, accepted character and following state ID. State
ID-s are here automaton-specific, while accepted characters are the characters
from the trace, separated by commas. Using these transitions, the tool finds out
how the automaton accepts the input string (trace) and creates a new trace that
contains consecutively identifiers of the transitions that accept (consecutively)
each character of the trace. After that, characters in triples are replaced with
transition ID-s. Finally, when the list of transitions and the new trace are sent to
the server application, there are no characters in these structures any more, only in-
tegers – see Table 9 for an example of set ∆ based on the example model in Figure 3.

Trace

To describe a certain path (being proved by the tool implementation of this
thesis to exist) on the model, the user is required to insert a trace, a string contain-
ing short names (short name is expected to be a one-character UTF-8 identifier

25https://cyberzhg.github.io/toolbox/regex2nfa
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that can be fixed in element’s name between parentheses) of vertex (step) elements
(separated by commas) in a specific order.

In case the trace contains an exclusive gateway element and there are more than
one incoming or outgoing connections, user needs to specify which incoming or
outgoing connection (edge) should be considered. This specification can be done by
naming or numbering these incoming or outgoing connections (logic is the same as
for naming vertex elements – the short name should be fixed between parentheses –
except that it can be longer that one character) on the model and then specifying
selected connection in the trace by adding the short name of the connection next
to the short name of the exclusive gateway into parentheses. For example, if an
exclusive gateway with a short name "x" has two outgoing connections, with short
names 1 and 2, and connection 1 is chosen, it should be written as "x(1)" in the trace.

The inserted trace string is split into elements’ short names and compared
against the set of all model vertex element names. In case there is a short name of
an edge in parentheses next to the element’s name in the trace, the short name
of an edge is considered when calculating token changes on certain edges. To be
precise, the short names are compared to the elements’ names in the set of all
model vertex element names to connect these short names to real elements, but in
order to consider certain paths (fixed in parentheses next to step names), correct
elements from set P have to be found. The short name of the element from trace
must match the name of the element in set P , but also the short name of the edge
from trace must match an element that describes token changes on this edge. A
new ordered set is created, where element names are replaced with corresponding
ID-s of the elements from the set P (set of vectors of token changes for each edge
connected to certain vertex elements of the model).

Other information

In addition to the information mentioned in previous paragraphs, to serve its
purpose, the back-end part of the tool implemented in this thesis requires also the
number of edge elements on the model.

In case not all of the information mentioned in previous paragraphs is available,
it could be replaced by the numbers of model vertex (step) elements, model edge
elements, automaton transitions and automaton transitions. Also, the length of the
trace is required. These numbers can replace the information mentioned in previous
paragraphs when using the generator user role, prover and verifier roles require
more input information. The list of the user roles is provided in Section 5.1.3 and
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lists of the required input information for each case is described in Section 5.1.5.

5.1.5 Graphical user-interface

In general, the graphical user-interface (a part of the front-end application) of
the tool implemented in this thesis provides a user-friendly, easy to use way to
interact with the zero-knowledge proving system, the main part of the back-end
application. Communication between the front-end and back-end application is
done using REST26 API (a part of the back-end application).

The graphical user-interface can be divided into two parts – the left side for the
BPMN model input and visualization, and the right side for the user role choice
and role-specific inputs. User role can be selected in the upper right corner of the
panel.

Instructions on how to use the graphical user-interface and required input
information for each role is described in following three paragraphs.

Generator

Running the tool as a generator, there are two principal options:

1. to run the generator process knowing all information about the business
process (having access to the BPMN model), knowing input regular expression
and trace strings (see Figure 8). In this case, user is required to load in
BPMN (.bpmn) model (using "Open model" button (see Figure 9) and insert
regular expression and trace strings;

26https://restfulapi.net/
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Figure 8. Inputs for the generator role, knowing all necessary information about
the business process, regular expression and trace (pre-filled values are based on
the medium-sized example model in Figure 16).

Figure 9. Active "Open model" button, to load in the BPMN (.bpmn) model.
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2. to run the generator process without having access to the model, but knowing
certain details about the business process and knowing details about the
nondeterministic finite automaton (constructed from the regular expression
input) (see Figure 10). In this case, user cannot load in a BPMN model
("Open model" button is inactive – see Figure 11), but is required to insert
numerical details about the business process – the number of steps (accepted
vertex elements) and the number of edges (sequence flows). In addition,
information about the NFA is required – numbers of transitions and states.
Also, trace length is needed. These values are calculated and provided to the
user when running the application in prover role.

Figure 10. Inputs for the generator role, not knowing all details about the business
process, but knowing some numerical values about the business process, DFA and
trace.
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Figure 11. Inactive "Open model" button – in case running as generator and not
having access to the BPMN (.bpmn) model.

After inserting all required details and clicking "Run" button, there are two
possible outcomes:

• In case the generator process fails, a red "Generator process unsuccessful!"
message appears;

• In case the generator process is successful, a green "Generator process suc-
cessful!" message is shown and it is possible to download keys required for
proving and verification processes (see Figure 12).

Figure 12. Generator process has been finished successfully, keys for proving and
verification processes can be downloaded.

After downloading these three keys, it is possible to continue with the proving
process.

Prover

In order to run the tool as a prover, the user needs to have access to the same
amount of information as a generator (in case having access to the BPMN (.bpmn)
model). The user is required to load in BPMN (.bpmn) model (using "Open model"
button (see Figure 9) and insert regular expression and trace strings. In addition,
proving key provided by generator is required. All required inputs can be seen in
Figure 13.
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Figure 13. Inputs for the prover role.

Before clicking the "Run" button and starting the proving process, proving key
needs to be uploaded to the server – this means that the user needs to select the
proving key (pk.bin) file from his / her computer and click "Upload" button. There
are two possible outcomes after clicking the upload button:

• In case the upload process fails, a red message "Upload failed!" appears;

• In case the upload process is successful, a green message "Prover key up-
loaded!" with a remark "Click ’Run’ to run proving process" is shown.

In addition to two possible upload-related messages, information required (see
Figure 10) in the generator process (when running the process without using BPMN
(.bpmn) model as an input) is provided. This contains the numbers of model steps,
model edges, automaton (DFA) transitions and automaton states, also, length of
the trace.

In case the proving process fails, a red "Proving unsuccessful!" message appears.
In case it is successful, a green "Proving successful!" message is shown and it is
possible to download the proof file (proof.bin). This proof can be later verified in
the verification process.
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Verifier

To use the tool as a verifier (to verify a proof), the user is required to load in a
BPMN (.bpmn) model (using "Open model" button (see Figure 9) and insert a
regular expression. Instead of a trace, the length of the trace string is required. In
addition, the proof provided by prover and two verification keys – verification key
(vk.bin) and processed verification key (pvk.bin) – are required. All required inputs
can be seen in Figure 14.

Figure 14. Inputs for the verifier role.

Before starting the verification process, the proof and verification keys have to
be uploaded to the server. There are two possible outcomes after selecting required
files and clicking the upload button:

• In case the upload process fails, a red message "Upload failed!" appears;

• In case the upload process is successful, a green message "Proof, verification
key and processed verification key uploaded!" with a remark "Click ’Run’ to
run verification process" is shown.
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In case the verification process fails, a red "Verification unsuccessful!" message
appears. In case it is successful, a green "Verification successful!" message is shown
and the proof about initial statements has been verified.

5.2 Server application

Following subsections and paragraphs describe the part where the actual goal of
this thesis is achieved – the generator-prover-verifier zkSNARK application that
allows to prove whether it is possible to take a certain path in a business process
under stated conditions. It is explained what technologies are used and why, how
the application is built up and how the proving process takes place in practice.

5.2.1 Technologies used

The server application of the tool implemented in this thesis consists of two main
components – a Node.js server and a generator-prover-verifier C++ application.

In general, the Node.js server provides a REST API for the client application to
communicate with the generator-prover-verifier application. In addition, it provides
functions for preparing compilation files and API endpoints for file upload, cleaning
directories, preparing compiling and executing generator-prover-verifier application.

The generator-prover-verifier application is a set of zkSNARK applications com-
piled from one C++ source code, but using different inputs for generator, prover and
verifier roles. The application uses a slightly modified version of libsnark-tutorial27

project as a basis that provides a CMake28 compilation framework. The libsnark-
tutorial project contains libsnark library that "implements zkSNARK schemes,
which are a cryptographic method for proving / verifying, in zero knowledge, the
integrity of computations" [libb]. Libsnark provides a Groth16 [Gro16] zkSNARK
protocol that is comprised of setup (generator), proving and verification phases.

5.2.2 Reasons for using selected technologies

Compared to the client application, the conditions for the technologies to be used
in the server application were slightly different. The reasoning behind why these
technologies were chosen is the following:

27https://github.com/howardwu/libsnark-tutorial
28https://cmake.org/
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Node.js

As the developing of the client application of the application tool of this thesis
began first, it was a logical choice to use the same server technology in the server
application as well. Also, the author of this thesis hoped to get more experience in
using Node.js in this way.

Libsnark and C++

The libsnark library was chosen because it is the most mature and widely
known tool for building zero-knowledge proof applications. Also, DIZK29, a Java
library for distributed zero knowledge proof systems, was considered, but lib-
snark seemed to be more suitable for our needs. As the libsnark is a C++ library,
it was a logical choice to build the server application using the libsnark also in C++.

Libsnark-tutorial project was selected as a basis for the generator-prover-verifier
application as it already contained tools and files for building libsnark example
applications – this made taking libsnark into use a lot easier.

All technologies selected for the server application seem to serve their purpose
well as there have been no unsolvable problems so far.

5.2.3 Node.js server

The Node.js server part of the server application provides a gateway between the
client application and the generator-prover-verifier application that is running
in the background of the server application. It makes it possible for these two
applications to communicate. Following paragraphs describe the REST API that
is used for the communication, and generator-prover-verifier application that does
the heavy part – preparing proving and verification keys, running the proving and
verifying processes, that are the vital parts of achieving the goal of this thesis.

Compilation of the generator-prover-verifier application

The Node.js server contains three functions to prepare the compilation of
generator-prover-verifier application based on the inputs from the client application:

• Firstly, there is a function to overwrite the default CMakeLists.txt file (in
./libsnark-tutorial/src directory) of libsnark-tutorial project. The libsnark-

29https://github.com/scipr-lab/dizk
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tutorial project creates one executable for all three (generator, prover, verifi-
cation) phases described in example application’s program file. In this thesis,
running these three phases (roles) is divided into three executables – one for
each role. This function is used, so there is no need to manually change the
CMakeLists.txt file in the libsnark-tutorial project submodule;

• Secondly, there is a function to write the input data from client application
into the source file of the generator-prover-verifier application. Each time a
generator, proving or verification process is started, this function is used to
make sure that the application uses the latest input data;

• Thirdly, there is a function to compile (using the latest input data from client
server) and execute generator-prover-verifier application. This function is
used each time a generator, proving or verification process is started.

These three functions are called through POST requests to the REST API
endpoints – these endpoints are listed in Section 5.2.3).

REST API

The Node.js server in the server application provides following endpoints to
make generator-prover-verifier application usable for the user:

#POST /cleanUploadDirectory

Removes all files in the upload directory (./libsnark-tutorial/upload), where
the user of the client application has uploaded key and proof files when running
the application as a prover or a verifier. This endpoint is used each time before
uploading new files to the server.

#POST /cleanDownloadDirectory

Removes all files in the download directory (./libsnark-tutorial/download), where
all the keys and proof files generated by generator and proving processes are stored
and can be downloaded by the user of the application.

#POST /proverFileUpload

Uploads a proving key file used in prover process into .libsnark-tutorial/upload
directory and renames it to pk.bin.
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#POST /verifierProofFileUpload

Uploads a proof file used in verification process into .libsnark-tutorial/upload
directory and renames it to proof.bin.

#POST /verifierVKFileUpload

Uploads a verification key file used in verification process into .libsnark-tutorial/upload
directory and renames it to vk.bin.

#POST /verifierPVKFileUpload

Uploads a processed verification key file used in verification process into .libsnark-
tutorial/upload directory and renames it to pvk.bin.

#POST /exec

Prepares compilation files for the generator-prover-verifier application, writes
input data from the client application into the application’s source file (./tem-
plate.cpp), compiles and executes one of the three executables (generator, prover or
verifier in ./libsnark-tutorial/build/src directory), based on the user role provided
as one input from the client server.

5.2.4 zkSNARK (generator-prover-verifier) application

The generator-prover-verifier application in the tool implemented in this thesis is
a zkSNARK application that uses Groth16 [Gro16] zkSNARK protocol provided
by libsnark. The protocol includes three phases – generator (setup), prover and
verification. In setup phase, public parameters (used by prover and verifier) are
constructed. In the proving phase, using public parameters and public and private
inputs, succinct proof is generated. In verification phase, the proof is verified, using
verification key, public input and the proof.

In more detail, used scheme is a preprocessing zkSNARK (ppzkSNARK)30. As
explained in the description of the libsnark library [libb], this means that first the
size / circuit / system representing proved NP statements are decided and then a
generator algorithm is used to create corresponding public parameters. The public
parameters include the (long) proving key, the (short) verification key and the
(short) processed verification key. After that, the prover uses the proving key and

30https://github.com/scipr-lab/libsnark/tree/master/libsnark/zk_proof_systems
/ppzksnark
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input data to generate a proof, which, together with verification keys, is used by
the verifier to verify the statements of the proof.

In this application, the ppzkSNARK uses bn128 elliptic curves – this is used by
default in libsnark-tutorial project. As stated in libff library [liba], bn128 is "an
instantiation based on a Barreto-Naehrig curve, providing 128 bits of security. The
underlying curve implementation is [ate-pairing], which has incorporated our patch
that changes the BN curve to one suitable for SNARK applications".

After generator, libsnark’s prover algorithm creates proofs of true statements
about the satisfiability of the R1CS and libsnark’s verifier algorithm checks proofs
for declared statements.

In the zkSNARK application of this thesis, different statements to be proved
as R1CS are constructed and linked together with libsnark in multiple steps of
two proof constructions (see Section 5.2.4). Currently, these two constructions are
not used as two separate proofs to be proved by libsnark’s prover algorithm, but
instead, are considered as parts of one aggregated proof. The primary input for
this aggregated proof consists of specific inputs of both smaller proofs.

Different statements to be proved as R1CS are constructed using libsnark’s pro-
toboard, which stores information and allows to add constraints to this information
– through gadgets (in this case, from libsnark’s gadgetlib2, a library to construct
R1CS instances) and directly, using specific functions.

The first information stored into the protoboard is considered by libsnark as
the primary input for the proof – the amount is fixed by setting value to the
primary_input_size property of the R1CS constraint system of the protoboard.
This information is available for both – prover and verifier. The rest of the stored
information is considered as an auxiliary input – this is available only for the prover.
Generator knows dimensions of input vectors and matrices, but not the contents of
these.

Following are provided details about the implementation of two proofs in this
generator-prover-verifier application.
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A trace (witness) belongs to the business process semantics

The primary input (available for prover and verifier) for this proof (based on
the Section 4.2) is a set of vectors of token changes (set P ) for each edge connected
to certain vertex elements of the model. Elements of the set P are vectors of six
integers (see Section 5.1.4 for details). The private input (available only for the
prover) is the trace (trace, also a vector of integers) and public input is the number
of edges (numberOfEdges) in the model.

As stated in Section 4.2 (step 1), the first step of this proof is reading values
from P using values from vector trace. This is done in function ParallelRead
using gadget LooseMUX_Gadget (from gadgetlib2). The function is divided into
three parts:

1. As the gadget LooseMUX_Gadget does not allow to read vectors from a
set, but requires numerical values to be read, the set P is transposed from
rows into columns. This is done by generator, prover and verifier;

2. To read values from trace and from each column of P , there is a separate
gadget used. This means that six gadgets are used for each row. Here, prover
generates witness for each gadget and generator, prover and verifier all add
constraints to state that all these reading processes must be successful;

3. The result of the previous step is transposed back into rows. Specific values
here are known (and returned by the function) only for the prover. For
generator and verifier, the values are all zeros.

An example of an output of function ParallelRead based on the example model
in Figure 3 is listed in Table 3.

The second step (see Section 4.2 (step 2)) is covered by a function CreateL.
Here integer 999999999 is used instead of string "init". All value assignments from
the result of the previous function into the result of this function (set L) are done
only by the prover. Fixing constraints, stating which values from the input set must
be equal to which values in the output set of this function, are done by generator,
prover and verifier.

An example of an output of function CreateL is listed in Table 4.

The third step of the proof requires sorting the set L. This is covered by a
function Sort, which is divided into four parts:
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1. The set L (set of triples) is sorted – vector R (vector of triples) is produced.
The sorting based on conditions stated in Section 4.2 (step 3)) is done only
by the prover. For generator and verifier, the dimensions of the vector R are
known, but all values in each triple are zeros;

2. A a permutation matrix is created while sorting L. After that, a function
AssertPermutation is used to check if the permutation matrix is correct.
All values of the matrix are enforced to be boolean and constraints are added
to state that sums of the values of each column and each row must be one –
each row and each column of the matrix contains exactly one value of one,
the rest are zeros. This is done by generator, prover and verifier;

3. The set L (set of triples) and vector R (vector of triples) are both divided into
three columns. A functionMatV ecMult is used on each column of L to make
sure that the result of multiplying the column with permutation matrix is
the same as each corresponding column of vector R. Function MatV ecMult
uses gadget InnerProduct_Gadget for this purpose. Generator, prover and
verifier generate constraints for this gadget, but only prover generates a
witness;

4. A function AssertSorted is used to check if L is sorted correctly. In this
function, thirteen gadgets are used to check if all sorting requirements are
met. These gadgets are based on the graph in Figure 15, illustrating the
thirteen condition and their combination nodes (derived from the sorting
conditions in Section 4.2 (step 3)) and how they are related. These gadgets
include Comparison_Gadget, EqualsConst_Gadget, AND_Gadget and
OR_Gadget. Generator, prover and verifier all generate constraints for these
gadgets, but only prover generates witnesses.
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Figure 15. Sorting conditions used in the proof "A trace (witness) belongs to the
business process semantics".

An example of an output of function Sort is listed in Table 5.

The fourth step of the proof (see Section 4.2 (step 4)) is covered by a func-
tion RewriteL. Everything in this function is done by generator, prover and verifier.

An example of an output of function RewriteL is listed in Table 6.

The fifth step of the proof contains finding prefixsum of the result set of the
previous function and verifying that there are no negative values in the result. This
is covered by the function PrefixSum. This function is divided into three parts:

1. The first value of the result set is assigned only by the prover. Constraint
to state that the first value of the result set must be equal to the first value
of the result set of the previous function is added by generator, prover and
verifier;

2. Based on conditions in Section 4.2 (step 5), prover calculates prefixsums.
Also, prover checks if any of the calculated values is negative;

3. Two EqualsConst_Gadget-s and one OR_Gadget are used to compare
values in order to calculate prefixsums, following the same conditions as used
in previous step. Constraints for these gadgets are generated by generator,
prover and verifier, only prover generates witnesses. In addition, a rank 1
constraint is added (by generator, prover and verifier) to state, which value
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must be used when calculating the prefix sum (in case one of the values is
999999999).

An example of an output of function PrefixSum is listed in Table 7.

In case running previously listed steps raises no errors, program continues with
the proof described in the next section.

A trace (witness) is accepted by an automaton

The primary input (available for prover and verifier) for this proof is a set of
transitions (transitions) and a vector of accept states (acceptStates) of the DFA
constructed from the regular expression input. The private input (available only for
the prover) is the trace (trace) and public input is the initial state of the previously
mentioned DFA.

As stated in Section 4.3 (step 1), the first step of this proof is reading values
from set transitions using values from vector trace. This is done in function
ParallelRead2 in the same way as described in the first step of the proof in Sec-
tion 5.2.4 – the only difference is that instead of six gadgets, three are used (see
Section 5.1.4 for details about the dimensions and contents of set transitions).

An example of an output of function ParallelRead2 is listed in Table 10.

The second, third, fourth and fifth steps of the proof are covered by function
CheckK. This function is divided into three parts:

1. EqualsConst_Gadget gadget is used to check if the first state (the first value
of the first triple of the result vector) of the result vector of the previous
function (K) equals to the initial state of the DFA. Constraint is generated
for this gadget by generator, prover and verifier. Witness is generated only
by the prover;

2. LooseMUX_Gadget and EqualsConst_Gadget gadgets are used to check
if the final state (the last value of the last triple of vector K) of vector K
is in the vector of accept states (acceptStates) of the DFA. acceptStates is
a boolean vector containing ones and zeros. The length of the vector is the
number of states in DFA. Ones in the vector denote whether a state in this
position is an accept state. Checking if the the last value of the last triple of
vector K is in accept states means comparing whether the value in accept
states in the position of the value of the last state (last value of the last triple)
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is one. Constraints for both gadgets are generated by generator, prover and
verifier, witness is generated only by the prover;

3. EqualsConst_Gadget is used to check if the first value minus second value
equals to zero – these cover the checks required in Section 4.3 (steps 4 and 5).
Here, constraints are generated by generator, prover and verifier, but witness
is generated only by the prover.

In case running previously listed steps raises no errors, program continues with
libsnark’s generator, proving or verifier algorithms, based on the user role being
used.
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6 Results
The main result of this thesis is the implemented generator-prover-verifier zkSNARK
application and the proof of the concept that it is possible to implement the
previously stated idea – to combine business processes with zero-knowledge proofs
and through that receive new value. As Sections 4 and 5 already describe the
design principles and implementation of the tool thoroughly, this section describes
the three example models that were designed together with the tool and also
benchmarking results of the tool using these three models. These models and
benchmarking results give a little overview of what this tool is capable of.

6.1 Example models

Together with the implementation tool of this thesis, three models were designed
(see Appendix I). Firstly, these models were needed to test if the tool implemented
in this thesis works at all. Secondly, these models are provided in order to show
how the tool is able to handle models with different sizes.

The first (smallest) model

The first model, used as an example in Section 4.1 existed already before, it
just happens that it meets all the requirements for an input BPMN model of this
tool. In terms of this thesis, the meaning of the contents of the model is not relevant.

The input regular expression used with the model is following:

(a|b|c|d|e|f|g)*

As this model is used only as a simple example to explain step-by-step how the
proofs are built up, there are no limitations added, all steps are allowed.

The trace used with the model is following:

a,f,e,d,g,c,b

The second (medium-sized) model

The second example model (see Figure 16) was specially designed for this tool
by Pille Pullonen. Firstly, it has been designed to illustrate a close to real-life
process in which it is possible to show a flaw. Secondly, it has been designed to be
big enough so processing it would require work that is already not that trivial or
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comfortable to do on paper, at least compared to the smaller model.

In terms of this thesis, this model has already a meaning. The model describes
a process of ordering a product. It begins from the point where an order for some
product comes in and is going to be processed, it ends with cancelling the order or
sending out the product. In between, there are different activities, including a step
where it is being checked whether the payment has cleared. Based on this, we want
to show that it is possible to achieve, that the product is being sent out without
actually paying for it. For this, we set a constraint that all steps are allowed to be
taken, except the one requiring to wait until the payment is done ("Wait until the
payment is done (i)") and the final (goal) step is the "Send out the product (w)"
step. The regular expression is the following:

(a|b|c|d|e|f|g|h|j|k|l|m|n|o|p|q|r|s|t|u|v|x|y)*w

A trace describing such a path in the model where paying is not required, but
the product is sent out, is following:

a,b,c,d,e,f,g,h,j,k(2),m,t(1),w

In this trace, we have fixed certain paths to be taken in decision points (exclusive
gateways). The names (numbers) of these paths are marked in parentheses following
the short name (one-character identifier between parentheses) of a step. It can be
seen in Figure 16 that, for example, after step with the short name "k", we have
chosen to continue to the step with the short name "m" – here the number 2 in
parentheses after "k" lets the application know that on step "k", token changes
should be considered for the incoming edge and the outgoing edge with the short
name "2".
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The third (large) model

The third example model (see Figure 17) was also specially designed for this
tool, by Peeter Laud, – it is based on the model31 by Sara Belluccini [BND+20].
This example model has been designed to test if the tool can handle that size of a
model and the set of transitions of the automaton constructed from the regular
expression setting limitations to this model. In terms of this thesis, the contents of
this model is also not too relevant, we just want to show that it is possible to take
two bad steps (reach to points named "First bad place to reach (1)" and "Second
bad place to reach (I)") on the model.

The input regular expression used with the model is following (split onto two
lines):

(a|b|c|d|e|f|g|h|i|j|k|l|m|n|o|p|q|r|s|t|u|v|w|x|y|z|õ|ä|ö|ü|A|B|C|D|E|F|G|H|J|K|L|M|N|
O|P|Q|R|S|T|U|V|W|X|Y|Z|Õ|Ä|Ö|Ü|0|2|3|4|5|6|7|8|9|@|AC|¢| c©| R©)*1I

The trace used is following:

a,c,b,d,e,g,h,i,m,r,z,s(2),ä,C,k,o,v,ü(2),l,q,x,A,E,H,J,N,R,W(2),y,S,Y,3,p,w,1,I

Similarly to the the trace of the medium-sized example model, we have fixed
here paths to be taken when going through exclusive gateways (namely the exclusive
gateways with short names "s", "ü" and "W").

31https://pleak.io/pe-bpmn-editor/viewer/XSKNlq2-dwJV_jQAem2r/
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For all three models, using described input information, it is possible to show
that the trace belongs to the semantics of the business process and that trace is
accepted by the automaton constructed from the regular expression – meaning
that the path described by the trace is a part of the business process and it has no
conflict with the limitations stated by the automaton. With these inputs, all three
steps – generator process, proving process and verification process – are successful.

6.2 Benchmarking

In order to provide information whether the execution times of different parts of
the tool implemented in this thesis are reasonable and whether the execution times
are consistent for multiple consecutive executions, here are benchmarking results
for six different activities – three in the client application and three in the server
application. In Table 11 some details about the input models and the automatons
used with the models are provided. Also, Table 12 lists information about the keys
used in benchmarking activities.

Table 11. Details about the example models and automatons used with the models.

Model Vertices Edges Elements Length States Transitions
in P of trace in A in A

Small 7 7 7 7 8 56
Medium 24 28 30 13 25 576
Big 71 90 75 36 76 5477

Table 12. Key sizes for all three example models (PK – proving key, VK – verification
key, PVK – processed verification key).

Model PK VK PVK
Small 2.7 MB 8.8 kB 110 kB
Medium 11.5 MB 76.7 kB 177,9 kB
Big 105.4 MB 684.6 kB 785.8 kB

The size of proof files for all three models is 312 bytes.

For benchmarking, execution times were measured ten times for six different
activities – the activities were the following:
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In client application:

• A = preparing all inputs for the generator process to be sent to the server
application;

• B = parsing regular expression, constructing an automaton and preparing all
inputs for the proving process to be sent to the server application;

• C = parsing regular expression, constructing an automaton and preparing all
inputs for the verification process to be sent to the server application.

In server application:

• D = compiling the executable and running generator process;

• E = compiling the executable and running proving process;

• F = compiling the executable and running verification process.

Table 13. Measurements of activities A, B, C, D, E and F using the small example
model (milliseconds).

# A B C D E F
1 1 27 3 9680 8324 5862
2 0 33 3 9535 8372 5787
3 0 52 3 9536 8349 5780
4 1 21 3 9528 8372 5698
5 1 31 3 9450 8245 5723
6 1 36 3 9427 8305 5730
7 1 31 4 9652 8325 5876
8 0 40 4 9512 8367 5805
9 1 25 2 9546 8403 5740
10 1 38 3 9652 8392 5719
Avg. 1 33 3 9552 8345 5772
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Table 14. Measurements of activities A, B, C, D, E and F using the medium-sized
example model (milliseconds).

# A B C D E F
1 4 72 32 14110 11218 6621
2 3 69 34 14130 11261 6744
3 3 53 38 14060 11169 6723
4 3 84 36 14246 11179 6755
5 4 51 35 14166 11225 6712
6 3 56 35 14200 11203 6727
7 2 64 32 14061 11195 6839
8 3 72 32 14056 11206 6773
9 4 51 33 14194 11184 6740
10 3 64 32 13991 11188 6728
Avg. 3 64 34 14121 11203 6736

Table 15. Measurements of activities A, B, C, D, E and F using the big example
model (milliseconds).

# A B C D E F
1 15 1074 606 66471 51705 31757
2 16 1164 599 66160 51771 31957
3 13 1058 592 66605 51645 31593
4 14 1015 604 66321 51508 31833
5 19 1019 612 66415 51804 31547
6 15 1006 602 66274 51493 31891
7 17 1112 608 66079 51263 32013
8 13 1064 603 65811 51688 31985
9 15 1017 596 66445 52019 31407
10 14 1057 598 66437 51977 31911
Avg. 15 1059 602 66302 51687 31789

To summarise the measurement results in Tables 13, 14 and 15, the average
execution times for activities A, B and C for all three example models are illustrated
in Figure 18 and for the activities D, E and F in Figure 19.
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Figure 18. Average execution times for activities A, B and C.

Figure 19. Average execution times for activities D, E and F.

As the client application runs in the user’s web browser, it is difficult to draw
any conclusions about the execution times of the activity A, B and C (current
measurements of the client side application were done using a computer with
16GB of RAM and CPU Intel R© CoreTM i5-6300U CPU @ 2.40GHz × 4). Yet,
as expected, we can see that the bigger the model, the longer are the execution times.

It is also difficult to draw conclusions whether the execution times for activities
D, E and F in server application are reasonable, but as expected, we can see that
similarly to the client application activities, the bigger the model, the longer the
execution times. Also, we can see that verification processes take reasonably less
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time than proving processes as the proving key is much longer than verification keys
(see Table 12). Measurements of the activities running in the server application
were done in a virtual machine on OpenNebula32 platform with 12GB of RAM and
1 CPU with 2 VCPU-s.

32https://opennebula.io/
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7 Discussion
This section concludes the work and describes what has been achieved with this
thesis. Also, known limitations of the result tool of this thesis are listed, and for
these, solutions as a future work are suggested. In addition, some new ideas of how
the tool could be improved even more are provided.

7.1 Conclusion

The main goal of this thesis was to implement a prototype that would consist of two
main parts – firstly, a user interface that would allow the user of the tool to load in
a business process (BPMN) model and state certain information about this model,
and secondly, a zkSNARK application that would, in case the statements about
the business process model were true, provide a proof of these true statements and
provide a way to verify the proof.

As a result of this thesis, the author of this work has implemented a web
application that meets the initial requirements. The application provides the user
of the tool a web-based graphical user interface. Using this interface it is possible
to load in a BPMN model, insert a description of a certain path in this model and
add some constraints to the model using regular expressions. Based on these inputs,
the tool verifies if the provided path belongs to the business process semantics and
is accepted by an automaton constructed from the regular expression. If these
verifications succeed, the tool provides a proof of these statements. Provided with
a proof, another user of this tool can verify the proof.

In addition to the tool, three example BPMN models of different size were
designed. Firstly, these models are used as examples of how the input to the tool
should look like. Secondly, these models provide a brief insight into what this tool
is capable of.

Also, as a result, it has been shown that there is a way to connect business
processes with zero-knowledge proofs and receive a value from it. This work could
introduce new ideas for the researchers working on topics related to zero-knowledge
or business processes.

Finally, the tool implemented in this thesis contributes to the goal of bringing
zero-knowledge proofs more into use in practical applications.

Details regarding limitations of the the result tool of this thesis and future work
are described in the next section.

75



7.2 Future work

In the current version of the tool implemented in this thesis, there are four main
known limitations:

Firstly, the tool supports currently only six different BPMN elements in a
business processes. This means that many of the already created business process
models have to be redesigned to meet these requirements. Note that this does
not mean that using other elements is not allowed, it just means that these other
elements are not taken into account. Currently, the tool is not yet modular enough
so introducing a new BPMN element requires an individual approach.

Secondly, the regular expression parser supports only a short list of grammars
and as it processes the regular expression one character at a time, it sets another
limitation for the tool implemented in this thesis – unique identifiers of model
elements (short names) can be only one character long, fortunately, UTF-8 is
supported, making the list of possible characters not too short.

Thirdly, the generator-prover-verifier application is currently recompiled with
new input information each time when running a generator, proving or verification
processes. Due to this, the execution time of these processes is longer.

Fourthly, in case something goes wrong, the graphical user interface does not
always give enough feedback to the user about what went wrong and how to solve
the problem, currently only main use cases are covered with feedback.

In order to improve the tool implemented in this thesis, there are six ideas for
the future work:

Firstly, introducing new BPMN elements would help to make the tool more
useful and easier to use. For example, introducing message flow and data object ele-
ments would allow to specify different participants in the business process and would
allow to take information flow into account when describing statements to be proved.

Secondly, replacing the current regular expression parser with another more
advanced tool would allow to support new grammars and remove the one-character
limitation for the short names of elements in business process, making the tool
much easier to use.

Thirdly, improving the graphical user interface in a way that the user of the
tool would not have to insert the path (trace) input as a text, but could select
the elements (vertices and edges) just by clicking on them, would improve the

76



user experience considerably, especially in cases the input BPMN contains many
elements.

Fourthly, integrating the tool into PLEAK would allow to introduce the tool
to a wider audience and through this, receive constructive feedback to improve
the tool even more. Also, wider audience would not just bring new ideas, but
would help to find issues in the code of the tool more easily, including the missing
feedback messages in cases of errors.

Fifthly, adding a support for PE-BPMN models would make it possible to set
constraints for the business process regarding different privacy-preserving technolo-
gies. Also, it would allow to consider in the proof statements the movements and
disclosure of private (encrypted) information.

Finally, replacing different components with more optimal alternatives would re-
duce the execution times of different processes of the tool. For example, replacing the
current solution for parallel reading with Waksman permutation networks [Wak68]
would increase the speed of the process.
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Appendix

I. Attachments
There are two directories and three files attached to this document:

• bpmnzk-client/ – the source code of the client application of the implemented
tool of this thesis. Installation instructions are in the README.md file
(./bpmnzk-client/README.md);

• bpmnzk-server/ – the source code of the server application of the implemented
tool of this thesis. Installation instructions are in the README.md file
(./bpmnzk-client/README.md);

• example_small.bpmn – the small example model;

• example_medium.bpmn – the medium-sized example model;

• example_big.bpmn – the big example model.
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