

UNIVERSITY OF TARTU

Institute of Computer Science

Software Engineering Curriculum

Andrei Proskurin

Adapting a Stress Testing Framework to a Multi-
module Security-oriented Spring Application

Master’s Thesis (30 ECTS)

Supervisor(s): Mart Oruaas

Raimundas Matulevicius

Tartu 2017

2

Adapting a Stress Testing Framework to a Multi-module Security-oriented

Spring Application

Abstract:

A multi-component system is being build. Three main components are: backend server (Spring

application), mobile applications (iOS, Android), customer service web portals. Our main concern is

the backend server, because it is the destination of the majority of requests from customer service

web portals and mobile applications. It is a multi-module project where all modules communicate to

each other. The system is going to be used potentially by hundreds thousands of users with tens

thousands of simultaneous usages. Therefore, extensive stress-testing must be conducted.

Unfortunately, stress-testing frameworks in the original state are not suitable for the given system.

Thus a stress-testing framework must be configured and extended to the point it supports the system’s

specific protocols and can test all the system’s components together. There are numerous of stress-

testing frameworks available. Some examples are: Locust, Apache JMeter, Gatling Project. These

frameworks differ in terms of coding language, features and core logic. As it is a commercial project,

the chosen stress-testing framework must also comply with client’s functional and non-functional

requirements. Due to stress-testing being conducted only on the backend server component, the

selected stress-testing framework must be configured/extended to simulate other components and the

required server protocols. The thesis provides a brief comparison of the available stress-testing

frameworks based on their features and written code language and define the one which is going to

be adapted to conduct the stress-testing within the project and how the adaptation is done. The thesis

also points out some of stress-testing frameworks’ limitations with techniques to overcome them.

Finally, the system is tested using the selected testing framework and the results are presented and

validated.

Keywords:

Spring, multi-component, mobile application, concurrency, stress-testing, security, simulation,

personal data, framework, extension, Gatling project, Locust, Apache JMeter, functional and non-

functional requirements.

CERCS:

P175 Informatics, systems theory

3

Koormusetestimise raamistiku kohandamine turvalisusele orienteeritud

mitmemoodulilise Spring rakenduse jaoks

Lühikokkuvõte:

Programmeeritakse mitmekomponendilist süsteemi. Kolm põhikomponenti on järgmised: põhiserver

(Spring rakendus), mobiilirakendused (iOS, Android), klienditeeninduse veebiportaalid. Kõige

tähtsam süsteemi töös on põhiserver, kuna see on enamuse veebiportaalide ning mobiilirakenduste

päringute sihtpunkt. See on mitmemooduliline projekt, kus kõik moodulid suhtlevad omavahel.

Potentsiaalselt hakkab süsteemi kasutama sadu tuhandeid inimesi – kümneid tuhandeid paralleelseid

sessioone. Seetõttu tuleb läbi viia süsteemi ulatuslik koormustestimine. Kahjuks on nii, et

koormustestimise raamistikud oma originaalseisus ei sobi antud süsteemi testimiseks. Seega,

koormustestimise raamistiku tuleb seadistada ning laiendada selleks, et see toetaks antud süsteemi

spetsiifilisi protokolle ja võimaldaks testida kõiki komponente üheskoos. Hetkel on saadaval palju

koormustestimise raamistikke. Mõned nendest on: Locust, Apache JMeter, Gatling Project. Need

raamistikud erinevad üksteisest programmeerimiskeele, eriomaduste ning põhiloogika järgi. Kuna

tegu on kommertsprojektiga, peab valitud koormustestimise raamistik vastama kliendi

funktsionaalsete ja mittefunktsionaalsete nõuetele. Kuna koormustestimist viiakse läbi ainult

põhiserveril, peab seadistama ja laiendama valitud raamistikku, et simuleerida teisi süsteemi

komponente ja server protokolle. See töö annab kiire ülevaadet varem mainitud koormustestimise

raamistikest eriomaduste järgi, valib raamistiku, mida kohandatakse antud projekti raames

koormustestimise läbi viimiseks ning kirjeldab kohandamise protsessi. Samuti toob see töö välja

mõned koormustestimise raamistike piirangud ning kirjeldab meetodeid nende ületamiseks. Viimaks,

süsteemi testitakse valitud raamistiku abil ning esitatakse ja valideeritakse tulemusi.

Võtmesõnad:

Spring, mitmekomponendiline süsteem, rakendus, konkurrentsus, koormustestimine, turvalisus,

simulatsioon, isikuandmed, raamistik, laiendus, Gatling Project, Locust, Apache JMeter,

funktsionaalsed ja mittefunktsionaalsed nõuded.

CERCS:

P175 Informaatika, süsteemiteooria

4

Table of Contents

Table of Contents ... 4

1 Introduction .. 6

1.1 Motivation ... 6

1.2 Scope ... 6

1.3 Research Problem .. 6

1.4 Contribution... 6

1.5 Structure .. 7

2 State of the Art ... 8

2.1 Application and Testing Technology Background .. 8

2.1.1 Spring Framework.. 8

2.1.2 Locust ... 8

2.1.3 Apache JMeter ... 9

2.1.4 Gatling Project ... 9

2.2 Load Testing Principles, Aspects & Guidelines .. 10

2.3 Choosing the Appropriate Tool ... 11

2.4 Monitoring ... 12

2.4.1 Analysing JVM Critical Parameters .. 13

2.4.2 Monitoring Tools ... 14

2.5 Summary ... 15

3 Test Tool Integration .. 16

3.1 Background ... 16

3.2 Description .. 16

3.2.1 Product Perspective .. 16

3.2.2 Product Functions .. 18

3.2.3 Software Expectations.. 19

3.2.4 User Characteristics ... 19

3.2.5 Constraints ... 20

3.3 Requirements ... 20

3.3.1 Protocol Support .. 20

3.3.2 External Interface Requirements .. 21

3.3.3 Functional Requirements ... 21

3.3.4 Non-functional Requirements .. 22

3.4 Summary ... 23

5

4 Test Process Execution .. 24

4.1 Application Testability .. 24

4.2 Tested Application Architecture and Test Design Cross-influence 25

4.3 Test Design and Test Processes Execution Outcome .. 26

4.4 Approach to Test Design and Environment Construction... 27

4.5 Summary ... 28

5 Validation ... 29

5.1 Interview Program ... 29

5.2 Interviews .. 30

5.3 Bottom Line ... 33

5.4 Threats to Validity ... 34

5.5 Summary ... 34

6 Conclusion ... 35

7 References .. 37

Appendix .. 38

I. Glossary .. 38

II. License... 41

6

1 Introduction

In this chapter we are going to provide the motivation for choosing this particular topic (6). Then we

are going to present the scope of the thesis (6). Then we will outline the research problems (6) and

what is going to be our contribution (6). Finally, we will provide the further structure of the thesis

(7).

1.1 Motivation

When designing, developing and testing critical systems it is easy to neglect the quality considerations

in the beginning of a project. However, towards a project completion, when code base has grown

tremendously compared to the beginning of a project, quality itself as well as quality assurance (QA)

can become a serious problem. There are numerous tools available to provide QA aspect and it is

often hard to choose something particular, because of project specifications. Another important point

is that following a certain set of rules / guidelines from the beginning of a project can potentially be

a long-term investment into development and testing quality as well as efficiency.

1.2 Scope

The thesis, first of all, concentrates on comparison of available stress testing frameworks. It provides

an insight of essential principles of load and stress testing. Furthermore, it shows the decision process

of choosing the appropriate framework for a particular project.

In addition to it, the thesis also describes problems, which were encountered during the QA process

of the particular project, specifically a testing framework adaptation to project specifications,

application and test design, documentation, testing and development environment setup. The thesis

also provides the possible solutions to the aforementioned problems and a set of practices to follow

to avoid encountering the concrete problems in the first place.

1.3 Research Problem

As there are numerous free and paid solutions available for complex Spring applications stress and

load testing, it has become a problem to choose a suitable tool. There is little chance, that considering

a project complexity, any out-of-the-box solution will have all required features to execute necessary

QA activities. Therefore, it is required to select the most suitable solution and adapt it to a particular

project’s specifications.

A QA aspect is often neglected in the project beginning, as the code base is only starting to grow and

there is not much functionality to test. However, when a system being developed becomes more

complex, the QA becomes a serious problem for a variety of reasons1. We are going to research what

are the common problems in complex systems’ QA processes and what recommendations can be

applied to avoid them.

1.4 Contribution

First and foremost, we will provide an insight into choosing a suitable automated testing framework.

We will describe and outline the key features of some of the most popular frameworks in the field.

We will define certain criteria, based on which a tool should be chosen. Furthermore, we are going

to provide a comparison of the selected frameworks based on the mentioned criteria and point out the

most suitable tool for our particular case. Finally, we are going to discuss the adaptation process of a

1More information in the chapter 4.

7

testing framework to a project’s needs by adjusting and expanding its functionality based on the

project's functional and non-functional requirements.

Another important point is presenting the results which we have received by using the selected and

adapted testing framework to provide QA in our particular project. We will discuss what problems

we have encountered during the application architecture and test design phases and how the provided

solutions were organised into a set of recommendations, which are to be followed in order to avoid

these problems in the first place.

1.5 Structure

In the 2nd chapter we will provide an insight into some technologies, which were used during our

particular project as well as the testing and monitoring tools, that were considered to be used. This

chapter will also describe load and stress testing basics and criteria to consider when choosing a stress

testing framework for QA. The 3rd chapter will describe the process of the adaptation of the selected

framework according to a project’s specification. Chapter 4 will provide a set of recommendations /

guidelines to follow during an application and test architecture design phases based on our experience

in the particular project. The goal of chapter 5 is to theoretically validate our results based on the

opinions of experts in the software development, engineering and QA fields. Chapter 6 is going to

provide a summary of the thesis, as well as discuss the results, limitations and potential future work.

8

2 State of the Art

In this chapter we will first of all get familiar with the application’s framework in order to decide and

outline the testing methodology (8). We will also introduce the tools from which we will choose the

stress testing framework to be potentially used for the application testing (8, 9, 9). We will then

determine the approach to the testing process (10) on which basis we are going to select the most

suitable testing tool for our particular case (11). We will finally provide some of the testing framework

limitations as well as system monitoring techniques and tools (12).

2.1 Application and Testing Technology Background

2.1.1 Spring Framework

The Spring Framework is a Java-based platform which provides infrastructure support for Java

application development. It’s features are organized into about 20 modules, which are divided into

groups2. The release of the Spring Framework first version was in the year 2004. Java 8 features were

entirely supported in the Spring framework since the release of version 4.0 in the year 2014.

The Spring Framework allows Java developers to deliver straightforward, portable and adjustable

JVM-based applications which can be deployed as standalone, on a cloud and in an application server

[1]. This is achieved by sharing processes – Spring provides infrastructural support at the application

level and removes dependencies on specific deployment platform which allows development team to

focus on application’s architecture. Every single deployment platform is supported by the Spring

Framework with an extensive programming and configuration architecture which is the key to the

state-of-the-art Java-based enterprise grade application development.

The Spring Framework key features are:

 aspect-oriented Programming including Spring's declarative transaction management

 dependency Injection

 Spring MVC web application and RESTful web service framework

 foundational support for JDBC, JPA, JMS

Since the first version release, the Spring Framework has become a common choice for Java-based

enterprise application development and a mandatory expertise for Java development teams [2].

2.1.2 Locust

The Locust is an open source load and stress testing tool. It allows to simulate millions of concurrent

users’ behavior from a single machine as well as distributed over numerous machines. The major

Locust feature is the support of Python programming language in all test code which is important to

many3 developers [3].

The Locust main objective is to load a web resource (or other system) in order to figure out the number

of simultaneous users that can be handled by it. This is achieved by instrumenting test users (locusts)

to follow a pre-programmed scenario on the given resource. Each step is monitored and can be viewed

in real-time using the Locust application’s web-based user interface.

2Core Container, Data Access/Integration, Web, AOP (Aspect Oriented Programming),

Instrumentation, Messaging, and Test. ADD REFERENCE

3Python is amongst 5 most popular coding languages (TIOBE, IEEE Spectrum, CodeEval).

9

The Locust is an event-based application. However, contrary to the majority of event-based

applications, it utilizes gevent4 library to provide light-weight processes instead of callback usage

which allows the support of thousands of locusts on a single machine. Each Locust test user has its

own process which allows to code comprehensive test scenarios without using callbacks [4].

The Locust Framework key features are:

 writing test scenarios using Python programming language

 support of hundreds of thousands of users

 web-based UI

 hackable

Providing valuable statistics is an important feature, which has to be present in each load testing

framework to allow users to conduct application analysis in order to point out performance

bottlenecks. The Locust statistics are insufficient or absent and do not provide useful information

except for the request response times. Data visualization is non-existent. Furthermore, it is

problematic to retrieve an error response details apart from a response status and perform non-HTTP

/ non-RESTful requests [5].

2.1.3 Apache JMeter

The Apache JMeter is another open-source load and stress testing solution. In contrast to the Locust,

the Apache JMeter is a Java-based framework. Nevertheless, the goal remains the same – to load test

application’s functionality and provide performance analysis. The first version originally supported

testing only web applications, but since its release it has been further developed to test other systems5

[6].

The main purpose of Apache JMeter is to generate extensive load on a server or any other supported

object in order to evaluate performance and detect bottlenecks under various circumstances (e.g.

different load). It also provides data visualization tools (graphs) to conduct performance analysis of

a tested application [7].

Apache JMeter key features are:

 Conduction load, stress and performance testing using the following protocols: HTTP(S),

SOAP, REST, FTP, JDBC, etc.

 Can be used in different environments.

 Implemented completely in Java.

 Enables concurrency by using threads and allows to separate thread groups.

 Careful GUI design allows faster Test Plan building and debugging.

 Test results can be preserved as cache and analyzed or replayed later.

 Core has a high degree of configurability and extendability.

2.1.4 Gatling Project

The Gatling is another flexible and efficient load testing framework. It has user-friendly,

straightforward design and great multi-user performance compared to the Apache JMeter framework.

4A coroutine-based Python networking library that uses greenlet to provide a high-level synchronous

API on top of the libev event loop.

5Webservices (SOAP/REST), Web dynamic languages - PHP, Java, ASP.NET, Files, etc. -, Java

Objects, Data Bases and Queries, FTP Servers.

10

In contrast to the Apache JMeter and the Locust frameworks, the Gatling tests (so-called simulations)

are based on the Scala programming language [8].

The Gatling exceptional HTTP protocol support makes this framework a good choice for HTTP

server load and stress testing. Moreover, the Gatling core engine is flexible and fully supports other

protocols implementation.

The main motivation for Gatling project was having programmable and system resource efficient

tests. Due to the usage of the specified DSL, the test design is user-friendly. As test scenarrios are

written in code, they are highly maintainable and can be handled by a VCS.

In contrast to some other stress testing frameworks (e.g. Apache JMeter), which present virtual users

as threads, Gatling uses a message representaion - each user is a separate message. This approach

provides a better scaling, does not stress the system, on which tests are executed, and allows to

generate excessive amount of load (thousands of concurrent users). In addition to it, Gatling

automatically generates HTML reports in the end of each simulation, unless configured otherwise.

The simulation details, such as a number of failed and passed requests, are presented on-the-fly using

the Graphite protocol, which highly configurable, widely supported and used for system monitoring

and analytics [9].

The Gatling Project key features are:

 Is an open-source software.

 Written in Scala language.

 Concurrency provided by Akka framework.

 Network layer is based on Netty framework.

 Is fast, responsive and light-weight.

 Ability to generate reports in HTML format.

 Ability to record test scenarios using specialized GUI.

 Domain specific language (DSL), which simplifies writing test code.

2.2 Load Testing Principles, Aspects & Guidelines

The main concept of an application load testing is to simulate the actual work and processes that are

going to be executed by the real users with artificial or virtual users. The idea is set a performance

goal and generate an initial (usually low) load on a target system / application and increase it step-

by-step over time until the goal is achieved or the targeted object reaches its limits. The latter means

that a bottleneck was hit. After this point throughput stays on the same level (or decreases), request

response times increase and functional errors appear [10].

During a load testing process, while the load level increases, it is important to monitor critical system

parameters as well as certain load metrics, such as throughput, response times, load test completion.

It is necessary to keep these things in mind in order to understand how the target system behaves

under a particular load. Another important point is to monitor the injector machine (a machine, which

used to inject load on a target system by adding virtual users / threads) performance during load test

execution. This allows to ensure that the injector machine is not a bottleneck factor in our target

system performance. Close to 100% CPU or memory utilization levels indicate that an injector

machine is overloaded and might cause performance test result unreliability.

It is crucial to ensure a target system / application stability before conduction load / performance

testing. The reasons are:

 Despite a target system's functional stability, it might have code / design problems, which can

cause bandwidth limitations.

11

 In case a target system uses relational database (e.g. SQL based), there is a chance that some

SQL procedures / requests are poorly designed and might cause delays.

 An example of bad system design is an excessive amount of conversations between different

system layers, which cause latency and bandwidth problems.

 There is a chance a target system returns obscure under a certain condition. Although a couple

of them may not cause performance issues, considering increasing load of performance

testing, hundreds thousands of these definitely may.

Additionally, quality performance testing requires thorough planning and time estimation. Activities

to consider when planning time are:

 test environment setup and configuration

 injector machines setup and configuration

 use cases analysis, identification and scripting

 test data preparation

 problem solving

It is critical to take into account that tests usually depend on a system version - they perform a set of

requests and expect certain responses, which were defined based on an application version available

at the moment of test scripting. An application new version release might change API to a point where

tests completely or partially fail and must be re-scripted from scratch in the worst case scenario. Thus,

it is obviously important to perform load testing on a consistent code release opposed to an actively

developed application.

Moreover, it is necessary to take into account an environment to be used for load testing. The best

solution would be to have the exactly same test environment as on the client's production server, as

it would guarantee test results' reliability. Performance testing accuracy also depends on particular

key performance indicators (KPIs), which are part of non-functional requirements. These are:

 availability / uptime

 concurrency

 throughput

 response time

All performance testing scenarios' workflow derive from use cases, therefore they have to be properly

analysed and identified. They have to represent a target system's critical activities, which are to be

conducted by an average user on a daily basis. The goal of stress testing is not to check whether

application functional requirements have been fulfilled, but to assess it from a "performance under

certain load" viewpoint in order to reveal issues, that are caused by concurrency problems, bandwidth

limitations, slow code segments or poor configuration [11].

2.3 Choosing the Appropriate Tool

Web applications are currently widely spread. Thus, the vast majority of testing tools has HTTP(S)

support. However, client end web design specificity (e.g. extensive use of JavaScript, JSON,

Microsoft Silverlight, etc.) might be a stress testing framework limitation and should be taken into

consideration. Overall things to take into account when choosing a suitable testing tool are:

 Protocol support - a tool must enable the communication between application layers by

supporting protocols, required by a target system.

 Licensing model - a revenue model defined by a tool vendor. These models usually depend

on the amount of generated load and additional features, which a tool supports (e.g. protocols,

plug-ins, monitoring, etc.)

12

 Scripting effort - ease of expanding a tool to support specific features as well as a level of

complexity and team skill, which is required in order to implement test cases.

 Solution versus performance testing tool - a choice between a tool, which is only capable of

generating certain load, and a complete solution, which provides other useful features, such

as monitoring, report generation, logging, etc.

 In-house versus outsources - a choice whether a target system's development team is going to

use, expand and configure a stress testing tool, or another team is planned to be contracted to

execute these processes.

 Alternatives - in case a web application is to be tested, it is worth to consider using a Software

as a Service(SaaS) application instead of a dedicated testing tool.

In case of our project we are also taking into consideration the client’s non-functional requirements

document, which outlines several specifications that a considered load testing tool must follow:

1. Open licensing model – allows unlimited use of the product from the vendor in unlimited

amount.

2. All protocol support – only one testing tool (out of application code layer) must be used

therefore it must support all of the application client protocols.

3. Scripting effort – the testing codebase must be forwarded to the client and should support

straightforward extension and maintenance.

4. Additional features – the testing tool should support the application’s build mechanism,

automatic test report generation, test case execution real-time monitoring.

5. Programming language – the test tool must be run on Java virtual machine (JVM).

JMeter comes with a GUI, which may seem a good feature in terms of the simplification of use case

scripting. However, testing scenarios tend to grow larger and become more complex, thus difficult to

maintain and extend using the point-and-click interface JMeter provides. Secondly, JMeter is thread-

bound. This means that every injected virtual user is a separate application thread. Needless to say,

benchmarking thousands of users on a single machine becomes unfeasible.

Locust solves the mentioned problems and is also capable of running load tests distributed across

multiple injector machines. The testing scenarios are scripted Python. Locust also uses a light-weight

processes approach for virtual user injection, opposed to JMeter resource-heavy threads, which

significantly decreases the load put onto injector machines.

Although Apache JMeter, Locust and Gatling provide similar basic functionality, the included

features and main logic of how virtual users are injected are different. The reasons, which motivated

to use Gatling project the most are based on the criteria presented above. These are:

 Protocol support - basic HTTP(S) client is present, and the core is highly expandable, which

allow additional features implementation.

 Licensing model - Gatling is an open-source stress testing tool with open licensing model,

which allows generating unlimited load.

 Scripting effort - Gatling DSL simplifies test scenarios scripting. As well as that, the scenarios

are self-explanatory and can be handled by VCS as production code.

 Testing solution - Gatling package has a lot of useful features, such as report generation, live

monitoring, jdbc feeder, etc. Gatling also integrates with Jenkins and Gradle with the help of

certain plug-ins.

2.4 Monitoring

Automated testing framework are powerful tools, which can be extended to a certain degree.

However, their functionality has limitations and does not allow monitoring critical system parameters

13

during test executions. This is especially important during load and stress testing when searching for

performance bottlenecks (2.2). This could be overcome by using certain monitoring6 techniques and

tools.

2.4.1 Analysing JVM Critical Parameters

Excessive memory usage is one of the most common Java application problems. It can be caused by

issues within system garbage collection (GC) processes. As a result response times increase as well

as an application becomes instable and unresponsive. Therefore, GC must be monitored in order to

guarantee application stability and performance [12]. It is important to investigate the following

aspects:

 Memory pools (Eden, Survivor, Old) utilization. In most cases, excessive memory usage

causes abnormally high GC activity.

 Increasing application memory usage despite GC indicates a memory leak, which will

eventually cause an application to run out of available memory. To find the leak, a memory

heap analysis is required.

 Long response can be caused by a condition when there is a high number of young collections

and a growing old generation. This usually means that the young generation memory pool

cannot hold such amount of objects.

 The condition of the old generation utilization levels increasing and decreasing, but staying

within the same limits without rising, is usually caused by object being unnecessarily copied

from the young generation to the old generation. This is usually caused by insufficient young

generation memory pool, high churn7 rate, or transactional memory shortage.

 Excessive GC activity levels usually have negative impact on a system CPU usage. This

should not affect response times, unless there are suspensions8. These events must be

monitored taking application response times into account.

Long response times can sometimes be caused by heavyweight method calls. Therefore, we need to

monitor total time spent invoking methods including internal method calls in correlation to the

application response time. It can require methods which do a lot of processing and/or database

communication to be further optimized.

Database connection pool and JMS connection pool figures, such as number of active and idle

connections, also need to be monitored. This can result in identifying connection management issues,

such us leaving unnecessary connections open, which will eventually lead to memory leaks and/or

connection pool shortages.

Large amount of active threads can also result in memory shortages. High amount of active threads

might indicate application thread management issues. Too many threads may slow down the

application as well as the entire server. In this case, a thread dump analysis is required. It is used for

analysing what processes an application threads executed at a certain point and what was the state of

6 System monitoring – retrieving critical system information (e.g. CPU and memory usage) after a

certain time interval (usually configured).

7 Rate of object allocation

8 Stop-the-world events, which stop application threads

14

each thread. Thread dump analysis done in intervals helps to diagnose application execution problems

such as thread deadlocks9.

2.4.2 Monitoring Tools

2.4.2.1 VisualVM

VisualVM is a monitoring tool, which, using the integrated GUI, provides information on multiple

Java applications’ critical parameters while they are running on JVM. Using VisualVM it is possible

to monitor application overall memory utilization as well as GC figures (different memory pools).

We can also use it to check a thread count, view detailed statistics and create thread / heap dumps if

needed. VisualGC plug-in is recommended to monitor GC because it provides all important statistics

combined in one view. These statistics are:

 Metaspace, Old, Eden, Survivor memory pool space status

 GC number, duration, reason

General useful data, such as CPU usage in correlation to GC activity, total heap usage, loaded classes

number and active threads number can be found under the Monitor tab.

We can also use profiling / sampling to get information about time and memory consuming code

segments using profiler / sampler tools respectively. Profiling is more accurate than sampling, but

has a higher performance impact. VisualVM profiler works by “instrumenting” all of the methods of

code. This adds extra bytecode to methods for recording when they are called, and call execution

times. VisualVM sampler, however, takes a dump of all of the threads on a fairly regular basis, and

uses this to work out how roughly how much CPU time each method spends. VisualVM also allows

to create heap and thread dumps as well as use an integrated thread dump analyser. There are various

other tools available for heap and thread dump analysis, such as Memory Analyzer (MAT), IBM

Thread and Monitor dump analyser.

2.4.2.2 Jolokia

Jolokia acts as a bridge between application JMX and HTTP interfaces. It enhances standard JMX

monitoring capabilities and allows to request information on important parameters using HTTP. It

can be used in collaboration with such tools as:

 Curl (or other) simple http GET/POST requests

 HTTP client polling Jolokia and building graphs

 Hawtio dashboard

 Zabbix monitoring server

2.4.2.3 Oracle Internal Tools and P6Spy Framework

Poor database performance is often the cause of low overall application response times. In order to

improve it, SQL queries' statistics have to be collected and analysed. As for collecting the data, there

are numerous tools available such as Oracle system V$SQLAREA table or external frameworks (e.g.

P6Spy). After the slowest (the longest execution time) SQL queries are found, it is possible to analyse

them using Oracle's EXPLAIN PLAN statement.

9 A condition when a process cannot use some resource, because it is used by another process. This

means that the former process cannot proceed with its work and has to wait.

15

P6Spy framework is designed “hijack” a database connection and log incoming / outgoing data

without application code changes. The logging is conducted using the P6Log distribution, which

allows to log Java application JDBC transactions.

Oracle EXPLAIN PLAN statement is used to provide execution plans10 selected by the Oracle

optimizer for SELECT, UPDATE, INSERT, and DELETE statements [13]. It is important to focus

on the following EXPLAIN PLAN metrics:

 Operation – the conducted internal operation name.

 Options - a variation on the operation.

 Object name – table / index name.

 Position – the first output row position value indicates the optimizer’s estimated cost of the

statement execution; other rows show the position relative to the other children of the same

parent.

 CPU cost – estimated CPU cost of the statement execution.

 IO cost – estimated I/O cost of the statement execution.

If an operation has high CPU / IO cost, then it has to be optimized. Object name gives us a hint about

what table the operation was done on. Operations and options help to identify what might a problem

be (e.g. TABLE ACCESS FULL means that the whole table is being scanned for some particular

value and may result in high CPU / IO usage). It might be also required to view an execution plan for

a particular explain plan which provides a more generalized view of the explain plan key points as

well as the SQL query execution plan. After analysing queries explain and execution plans it is clear

whether SQL query code and/or database indexes need to be optimized in order to increase execution

performance.

2.5 Summary

In this chapter we introduced the Spring framework, the backbone of our application, as well as the

stress testing frameworks considered for the application testing – Locust, Apache JMeter and Gatling.

In addition to it, we defined the approach to the load testing process, the guidelines, the considerations

to follow and the metrics to track. We then performed a basic comparison of the chosen stress testing

frameworks and identified the most suitable tool for our particular case. Finally, we discussed some

stress testing frameworks’ limitations and how they can be compensated by using certain monitoring

techniques and tools.

In the next chapter we are going to extend the chosen stress testing framework to support our

application testing. We will then apply the defined testing methodology to our application testing

process and outline the results.

10 A set of actions Oracle performs to run the statement

16

3 Test Tool Integration

In this chapter we are going to provide the background to the system being tested using the chosen

testing framework (3.1). Moreover, we are going describe the testing framework’s functions, users

and expectations (3.2). We will finally describe the adaptation process by providing a set of required

extensions / improvements to the testing framework based on a project’s specifications (3.3).

3.1 Background

Smart-ID application is going to be used for user online authentication, which allows to use

government and bank services on a mobile device. The application is going to be deployed on a

remote server. Mobile applications and self-service portal will send requests and receive responses

from the Smart-ID application.

Figure 1 - Simplified Smart-ID internal architecture and relationships

The application needs to be thoroughly tested in order to determine whether it complies with client’s

functional and non-functional requirements. To perform testing we will take the Gatling testing

framework as a basis and extend it to the point it will comply with the requirements for the application

testing solution.

3.2 Description

This section will give an overview of the application we used for testing in the particular project. It

will describe product perspective and functions, software expectations, user characteristics,

constraints and requirements.

3.2.1 Product Perspective

The product is a testing application based on the Gatling stress testing framework (2.1.4), which main

functionalities are:

 Smart-ID backend server API calls

 test scenarios creation

 test scenarios single execution

 test scenarios parallel execution

17

 test data preparation

 database operations (e.g. read/insert data)

 test report generation

 log generation

Some of the mentioned functions are already integrated in the Gatling framework, such us different

test scenarios operations and report generation. All other required functionality (e.g. complex API

calls) has to be implemented manually as Gatling only provides basic HTTP client functionality. After

the required support has been added, one can start with constructing test simulations11 and scenarios12.

The application requests destination is the main server (Figure 1). Thus, the other system components

(mobile device, relying party, registration authority and customer service portal calls) must be

emulated by the application. The detailed testing application’s internal structure and external entities

relationships can be seen in the Figure 2.

Figure 2 - Detailed testing solution's internal architecture

11 A simulation describes how, possibly several, user populations will run: which scenario they

will execute and how new virtual users will be injected [8].

12 A scenario represents a typical user behavior. It’s a workflow that virtual users will follow

[8].

18

The main users of the application must have programming experience, because tests are programmed

as scripts. However, the Gatling DSL is present, which makes the programming knowledge

requirement secondary.

The application has support for all the Smart-ID application API calls. Therefore, the user must define

which request should be sent. The following request parameters are considered:

 URL

 body

 authentication13

All other required parameters, such as request headers and request type, are set automatically.

3.2.2 Product Functions

Create simulation

The tester creates a new simulation, which describes what scenario/scenarios will be running. The

tester also defines the simulation parameters (e.g. immediate users amount).

Create scenario

The tester creates a new test scenario, which describes what tests will be executed during the scenario

simulation.

Create test

The tester creates a new test which describes what requests will be sent. The tester must choose either

predefined/default requests or provide request bodies and expected output (request response).

Prepare test data

The database is truncated and test data from predefined SQL script is inserted into the database by

the tester.

Run simulation

The tester starts the defined simulation and observes the execution in real-time.

View simulation results

The simulation results are generated in the specified folder and can be analysed by the tester.

13 HTTP Basic authentication.

19

Product expectations

The following table describes what are expected conditions so that the product functionality could be

put in use. These conditions include the user having the application distribution and programming

experience as well as the product having access to the application’s database and server.

Table 1 - Product expectations

ID Statement Description

PE-1 User has the application

distribution

In order to use the application the user must have access to its

distribution

PE-2 User has programming

experience

In order to add new simulations, scenarios and tests the user

must script them

PE-3 Product has access to

application database

In order to interact with database the product needs the

database credentials configured

PE-4 Product has access to

application server

In order to send requests to the application server the product

needs server parameters configured

3.2.3 Software Expectations

The following table describes the environment conditions that are required to run the software. These

conditions include the application being deployed, configured, running, and having access to database

and ActiveMQ JMS service.

Table 2 - Software expectations

ID Statement Description

SE-1 Application is deployed

and running

In order to respond to requests the application must be built,

deployed and started

SE-2 Application has access

to a database

Database must be running in order to interact with the

application

SE-3 Application has access

to ActiveMQ

ActiveMQ must be running so that application could send and

receive messages through its JMS implementation

SE-4 Application is

configured

In order to function the application configuration must be set

up in the database

3.2.4 User Characteristics

The test application has 2 main user roles:

1. Software developer – the developer’s main goal is to adapt the application to a particular

project by implementing required functionality, such as different API calls and messages,

utilities, configurations. In addition to it, a developer can also write and execute tests, as well

as analyse the results.

2. Software tester – the tester’s main goal is to use the application to add new simulations,

scenarios and tests, as well as execute them and observe the test reports.

Both roles are expected to have programming experience to a particular extent. Additional features

implementation requires more knowledge (Scala programming language) than constructing test

simulations using Gatling DSL.

20

3.2.5 Constraints

Since the main goal of any testing software is to assure the final product’s quality, some important

metrics are needed to be taken into consideration during the testing process:

 memory pools utilization

 request response times

 connection pools (e.g. database, JMS)

 active threads

These constraints can be overcome by using certain system monitoring techniques and tools14.

3.3 Requirements

3.3.1 Protocol Support

System modules use 2 different protocols for communication. Both protocols’ support must be

implemented in the testing application in order to be able to send requests to the server and receive

positive responses.

Table 3 - Protocol support

Protocol name Description Specifics

RESTful API Representational state transfer.

It relies on a stateless, client-

server, cacheable

communications protocol -- and

in virtually all cases, the HTTP

protocol is used.

RESTful applications use HTTP requests to

post data (create and/or update), read data

(e.g., make queries), and delete data. Thus,

REST uses HTTP for all four CRUD

(Create/Read/Update/Delete) operations

[14].

JSON-RPC 2.0 JSON-RPC is a stateless, light-

weight remote procedure calls

(RPC) protocol. Primarily this

specification defines several

data structures and the rules

around their processing.

It is transport agnostic in that the concepts

can be used within the same process, over

sockets, over http, or in many various

message passing environments. It uses

JSON as data format [15].

14 This aspect is covered in the chapter 2.4.

21

3.3.2 External Interface Requirements

The following table describes the products external interface support requirements in order to perform

its basic operations. These interfaces are Oracle database and Logback logging framework.

Table 4 - External interface requirements

Interface Description Specifics

Oracle database The system uses Oracle

database in order to persist

the data. The test application

must be able to access the

data to perform basic

operations/checks.

A database client must be implemented in

the application using Scala. It must support

4 CRUD operations.

Logback

framework

The test application must be

able to use Logback

framework to do all the

logging during the

simulation execution.

The test application must log all outgoing

requests, incoming responses, database

operations, session variables.

3.3.3 Functional Requirements

Table 5 - Functional requirements describes what functionality must be implemented in the testing

solution in order to perform basic operations. The framework must support calls to mobile devices,

relying parties, registration authorities and customer server portals. Additionally, it must be capable

of test data preparation and insertion into database tables, test report generation, concurrent test

execution and basic operations’ logging.

22

Table 5 - Functional requirements

ID Statement Description

FR-1 Mobile device API calls The application must be able to send requests to mobile

device server API and receive responses.

FR-2 Relying party API calls The application must be able to send requests to relying

party API and receive responses.

FR-3 Registration authority API

calls

The application must be able to send requests to

registration authority API and receive responses.

FR-4 Customer service API calls The application must be able to send requests to

customer service API and receive responses.

FR-5 Database test data preparation The application must be able to take SQL scripts as input

and execute the provided scripts to the given database

tables.

FR-6 Test report generation The application must be able to generate a final report in

the end of each test simulation with the following

statistics: number and percentage of failed /succeeded

requests, minimum / maximum / average response

times.

FR-7 Logging The application must be able to log each incoming and

outgoing request’s header and body objects.

FR-8 Test parallel execution The application must be able to execute tests

concurrently.

3.3.4 Non-functional Requirements

The following table describes the testing solution’s non-functional requirements that have to be

fulfilled in order to increase its quality. These requirements cover maintainability, portability,

performance, adaptability, stability, usefulness and documentation aspects.

23

Table 6 - Non-functional requirements

ID Statement Description

NFR-1 Maintainability The application must be easy to maintain.

NFR-2 Portability The application must be portable to our systems at least

partly (the most used functions).

NFR-3 Performance The application must be able to generate load while not

stressing the machine it is being executed on with the

exception of operations, which require much computing

power.

NFR-4 Adaptability The application must be adaptable in case of target API

changes.

NFR-5 Stability The application must be stable during the test simulation

executions.

NFR-5 Usefulness The application must meet relevant needs as regression

and stress / load testing tool.

NFR-6 Documentation The application must be self-explanatory to use or

contain sufficient descriptive information.

NFR-7 Source code All source files must be in English.

3.4 Summary

In this chapter we provided the tested application’s structure. Additionally, we have outlined the

testing framework’s structure and usage patterns (functions, users, pre-conditions). Finally, we

described the adaptation process by indicating the required protocols support, which had to be

implemented, as well as the functional and non-functional requirements, which had to be complied

with.

In the next chapter we are going to provide the results of using the selected testing framework for QA

in the mentioned project. We will discuss the encountered problems and provide possible solutions.

24

4 Test Process Execution

In this chapter we will present and discuss our approach to the test processes execution. We will first

debate on influence of the application testing on its architecture (4.1). Then we will take on the testing

design in details (4.2) and the testing implementation outcome / lessons learned (4.3). We will finally

discuss on how one must approach the task of test and test environment design construction (4.4).

4.1 Application Testability

Application testability stands for testing the maximum possible percentage of application codebase

with the maximum possible amount of input with the minimum resources. In simple terms it could

be defined as a system characteristic of how easy it can be tested. The degree of ease must take the

following aspects into account:

 time used to design and implement test code

 required professional skill to extend a used testing framework to cover all important

application aspects

The higher level testing is needed, the more expensive the tests are in terms of the aforementioned

resources. Testing an application on functional and object level with unit tests is usually trivial and

cheap. Injecting as much dependencies as possible into unit tests increases their overall usefulness

and functionality coverage. Although unit tests do not guarantee that the application is fail-proof,

functional nor stable, they provide immediate feedback, which allows to make the changes to code

faster. Faster feedback is achieved with the system components simulation or dependency injection

such as:

 In-memory database with automated database schema creation – it is faster than applying a

database schema to a standalone instance and clearing it up after each test.

 Simulated network – unit tests have to operate offline and provide fast feedback, thus, proper

design avoids using network protocols and simulates application internal calls.

 Simulated time – there is no point in waiting for a timeout if we can simulate it and move on

with following requests.

 External interfaces – as network protocols are avoided and the speed is the number one factor

it is also important to simulate external interfaces, or in other terms write mock

implementations. It is not as reliable as testing against a real interface, but it is not the external

interface that we are testing. Our main goal is to receive feedback of how our application units

are functioning and whether the output is as expected.

In addition to speed prioritization it is also critical to avoid non-determinisms in the test design such

as multi-threading or random generators. Non-determinism, in terms of software testing, can be

defined as non-predictable outcome of unit tests, which is completely against the goal of unit testing

– ensuring the predicted output is received.

What is more important, writing unit tests beforehand, also known as Test Driven Development

(TDD), forces to provide clear design of the components to the application with each separable task

in mind. Unit tests assist with designing the application code – instead of writing the implementation

first, they force a developer to outline all code conditions, possible input and expected output.

Application automated test suites take focus on different aspects, such as providing overall picture of

the application functionality and stability as well as feedback on its interfaces separately. As opposed

to the unit tests, automated regression tests do not use application code directly, thus the different

codebase is needed, which requires additional code design. As a result, automated tests are more

expensive compared to unit tests. The automated test code has to follow the same quality requirements

25

as the application code itself. With the application complexity growth, it becomes even more

important (4.3).

A specialized test framework, running the automated test suite, is a completely different project apart

from the application and does not use its resources directly. Therefore, the whole ecosystem has to

be configured to accept test requests:

 Standalone database with applied application database schema – a test database schema has

to be updated along with an application server schema update.

 Test data – keys, configurations, personal data has to be inserted before test execution.

 Java messaging queues (JMS) – JMS framework needs to be configured so that a test

framework could send messages to queues and listen from them.

 Periodical workers – these are responsible for clean-up and resubmission threads.

 External interfaces – they have to be configured in order to perform basic operations and

workflows with a test framework. In our particular project, these include certificate and

relying party authorities, HSM15.

Automated tests force to design application interfaces architecture with different aspects in mind, in

contrast to unit tests. First of all, the process of automated test execution need to be simplified as

much as possible, which involves automatic test environment setup from scratch (4.4). In addition to

it, an application must be flexible to increase its testability, which is a major factor for automated test

execution. In simpler terms, this means that the most of application variables (e.g. JMS queue names,

timeouts, keys, etc.) have to be made configurable on-the-fly. Finally, to construct proper automated

tests, the application behaviour needs to be considered on API level which means designing the

communication between modules and describing each module possible request along with the output

with the values, which need to be persisted, taken into account. All in all, the application must be

designed with testability taken into consideration in order to increase the quality of both the

application and the test code.

4.2 Tested Application Architecture and Test Design Cross-influence

We have previously briefly introduced the definition of application testability. We have focused

mainly on unit tests and automated tests design processes as well as how the different test construction

forces to provide better application design, when the tests are taken into consideration beforehand. In

reality, this is a double-sided connection. This means that the application, taken its concrete and

specific design, can as well assist the test process execution.

Taking our specific project as an example, the automated test suite does contribute to providing all

application modules quality assurance upon each application code update. With the current state, the

modified Gatling testing framework executes overall more than 2000 requests within roughly 10

minutes. These numbers have grown over past year as the application complexity and functionality

evolved. All the requests are executed sequentially, which has become a problem with the current test

suite size. However, Gatling is asynchronous, which allows to send concurrent requests. Given our

Spring application’s natural parallelism, the tests in the test suite can be redesigned to be able to run

concurrently, which will decrease the complete suite execution times, depending on the execution

times of tests being run. In theory, when all tests in the suite are executed concurrently, the entire test

suite execution duration decreases to the longest test of the suite.

15 Hardware security module

26

This step requires additional time and resources allocation. However, it would benefit on the later

stages of development as the application codebase continues to grow. The main redesign problem

would be test data usage as all the tests use the same predefined data which is inserted before test

execution. One possible solution would be to use an application itself to provide test data dynamically

on the fly and holding key session data in a test framework’s memory. This way automated tests

would benefit from different aspects:

 Avoid race conditions when 2 or more tests are accessing the same data.

 Test data maintenance is no more needed.

 Faster feedback is provided due to test execution concurrency.

Let us return to a topic of non-deterministic design of system components. How does this problem

actually influence the test design? The main idea is to develop a deterministic approach to testing

non-deterministic system components. We can take the account registration module as the example -

specifically - the asynchronous CSR (Certificate signing request) resubmission worker. In order to

complete the registration process, an account is obliged to receive valid certificates from an

authorized certificate authority (CA). If such authority is not available at the moment of registration,

then it falls into the pending state and the CA request has to be repeated periodically. This operation

is autonomous and cannot be triggered manually, which makes it difficult to test.

One of the possible solutions would be to design and implement additional APIs on an application

server that would be specific to test executions. In our particular case, we implemented triggers for

asynchronous workers, that allow us to activate them on-demand and check the request results on-

the-fly.

Another solution would be to design specific tests using the test framework. However, one should

refrain from the common “send request - check response” logic and take an application’s behaviour

and entities' statuses into consideration. Returning to our registration process example, we can design

a test, which would limit communication between the registration module and CA. As a result, we

should receive several retry requests (depending on application configuration) and registration status

changing from pending in the test beginning to complete in the end.

4.3 Test Design and Test Processes Execution Outcome

Our application regression testing process fully relies on Gatling test simulations. The initial thought

was that Gatling own DSL would simplify the test design and construction processes by making the

programming knowledge requirement secondary. However, it stands true only in case if no additional

extensions to the framework are required. In other words, if a framework's default functionality

package does not satisfy testing needs, then the framework requires additional extensions. As test and

application code quality have to be on par with each other, test framework extensions development

relies on a developer's time as well as programming knowledge.

It is also important to notice that during test design and scripting processes one must take into

consideration the constantly growing and significantly changing nature of some of an application's

APIs. Poorly written tests eventually require refactoring, which is time consuming, depending on the

test codebase size. But how can we deal with the problem of constantly evolving application API

during the test design?

First let us compare two simple functions A and B from an application API. The function A requires

2 String type arguments while the function B requires only 1 numeric argument. The simplest

approach would be to write 2 separate custom test functions - a test function for each API function.

But what happens if we need to add another API function to a test code? We implement another

custom test function manually. What if the function A requirements’ list changes? We refactor the

27

custom test function we have previously written. But what if there are tens or hundreds of functions,

which are called from each other, and they are constantly changing? In this case, the test code

maintenance becomes a serious problem.

The solution to this problem is automation. It is important to automate every single part of the test

framework which can be automated. First of all, the input given to test functions must be minimal in

order to provide the output (this concerns the application design as well). Returning to our example,

the most logical solution would be to write one general test function for all similar API functions

which by the number of the variables and their type would automatically refer to the required

resource. This solves the main problem of designing tests for constantly evolving application – future

API changes would require minimum additional test functions implementation / refactoring. As a

result, the number of test functions is decreased and the test code is better structured. Thus, the code

maintenance would consume less time.

4.4 Approach to Test Design and Environment Construction

A tested application must first of all be designed. The design process must be thoroughly documented

and a resulting document well-structured. In case of an API design document (system description)

well-structured means that the document is split into straightforward, clear and understandable pieces.

This results in a better test quality, as the documentation pieces can also be applied to the test design

process. But what are those document pieces and based on which criteria a document should be split?

It is very important that a document structure corresponds to an application structure and a test

structure and the other way around. The major pieces which are important to differentiate between:

 Modules - major application parts that can be deployed separately if necessary.

 Controllers - the module interfaces that are responsible for taking input and providing output.

 Services / components - the parts that provide the main functionality which is used by the

controllers.

 Utility functions - single functions that are required by the application services.

The differentiation between these pieces allows to structure application and test code appropriately.

It also assists in understanding how different modules communicate to each other - both the

application and the test framework. This integrity guarantees overall code quality - it becomes easy

to differentiate between different system pieces and debug them.

Another important aspect that should follow concepts of integrity is source versioning. Usually

project sources are a combination of the following components:

 Source code

o Application code

o Test code

o Different utilities and setup scripts

 Documentation

o Application overview, structure and API documentation

o Installation and configuration guide

Whether project source code and documentation are stored together (in the same repository) or not,

it is important to properly version them in the way that their versions conform to each other. In our

company’s ecosystem documentation and source code are stored separately in 2 different repositories.

When a new software version is to be released the latest states of the repositories are checked out to

28

a new release branch which is then forwarded to a customer. This preserves the application sources

integrity and provides access to all released versions with corresponding documentation and source

code in case of need (version specific software bugs and fixes).

Tests have to be designed against a particular test environment, preferably the same that is used for

the tested application. This guarantees test process relevance - the used test environment is not

abstract and tests actually output the same results as the production system would. However, as

application grows and becomes more complex - additional dependencies appear - environment also

evolves. What can be done in order to preserve test execution and environment setup simplicity?

As it was mentioned previously, everything that can be should be automated. This concept concerns

test environment setup process as well. In our case test environment setup process includes the

following components configuration:

1. application server - Tomcat

2. database node - Oracle

3. database schema and test data - a list of SQL commands

4. application modules - a set of .war containers

Manual setup process is time consuming and should be automated in order to save resource in long-

term16. This is another example of a long-term resource investment in development procedures -

environment setup automation drastically decreases the time spent on configuration and maintenance

as well as the chance of causing errors during a setup process.

4.5 Summary

In this chapter we covered such topics as application architecture design, test framework and tests

design, automated environment setup, documentation. We have discussed the importance of these

topics and the problems we encountered, and how they were solved. In the next chapter we are going

to validate the outcome against the experts’ opinion in their particular fields.

16 Chef is one of such frameworks which allow to build, deploy and manage infrastructure and

applications fast, efficiently, and with far less risk compared to manual management (learn more).

https://www.chef.io/chef/

29

5 Validation

In the previous chapter we pointed out the key points of the following processes / topics:

1. Test framework design.

2. Test environment setup.

3. Unit and regression test design.

4. Application design with testability in mind.

In this chapter we are going to validate the before mentioned key points against the experts’ opinion

in their mastered fields:

 software engineering

 system architecture design

 software quality engineering

The validation is going to be conducted by a series of head-to-head interviews in which the

participants are presented with the interview program, the outline of the key points and the

recommended practices. The participants are encouraged to provide their personal expert opinions on

the topic as well as previous experiences.

5.1 Interview Program

The main point of the interview is to validate the provided development key points and

recommendations in terms of usability which is usually a combination of 2 things [16]:

 Fit of use – Are the provided claims useful and do they cover important aspects of tests and

application architecture design.

 Ease of use – What amount of time, programming knowledge and resources does the

implementation of the provided claims approximately take and how efficient are they in the

day-to-day work.

When referring to the ease of use aspect of the interview it is important to address the following

topics:

1. Ease of learning – How easy it is to learn how to apply the provided recommendations in a

particular project for various users’ groups.

2. Task efficiency – How efficient the provided claims are to a frequent user.

3. Ease of remembering – How easy it is to remember the instructions.

4. Subjective satisfaction – How satisfying it is to follow the recommendations.

5. Understandability – How easy it is to understand the recommendations on a deeper level (why

it is important to follow them and how they affect a target system).

The task of the interviewed expert is to provide his/her opinion on the recommendations and

guidelines provided in the previous chapter with usability components17 taken in mind. The

interviewee is also encouraged to provide additional feedback:

 Do You plan to / already use the claims mentioned?

 Is there other important topic that is important to be take into consideration, but is not covered?

17 Fit of use and ease of use definitions are provided in 5.1.

30

5.2 Interviews

Software engineer, Informatics undergraduate

Fit of use:

The recommendations provided are useful and definitely are worth considering. All important aspects

are covered. The only thing that comes to mind is that when discussing the application and test design

sometimes the decisions are based on whether there are existing solutions and utilities that can be

used to fulfil the requirements. In this way we decrease the resources needed for the tool adaption.

However, such decisions are project specific.

Ease of use:

It is easy to understand the concepts and the reasons for implementation. The implementation itself,

on the other hand, is a more complex and resources demanding activity. The major thing to consider

is a development speed against the quality (different recommendations aim to improve different

metrics). Again, the decisions must be made according to the specific project requirements.

The instructions are easy to remember to follow, unless they are completely ignored. In other words,

the activity of complying with the recommendations has to become a development process routine.

The decision depends on whether the development team considers this activity valuable.

Generally, following the recommendations bring a great degree of personal satisfaction. First of all,

the development process becomes more complex, but brings a feeling of completion – important

project parts are automated (configuration, setup, testing, etc.). Furthermore, some development

aspects, as testing and environment setup, become verifiable – it is possible to run a script and receive

an immediate result.

As mentioned before, the complying with the recommendations is a project specific decision. In order

to understand the necessity of following the provided guidelines, it is important to analyse a concrete

project’s functional and non-functional requirements.

Software developer, Informatics bachelor’s degree

Fit of use:

The recommendations do cover the targeted scope. The results, which in theory can be achieved by

following the mentioned practices should increase overall product’s quality and in a company that

develops critical systems it is important. One of the topics, which could also be taken into

consideration is use case prioritization. Usually, it is important to target a system’s critical

functionality first when designing automated tests. The critical functionality is often derived from a

use case document, which is created by a collaboration between an analytic and a client. Another

thing, that could be kept in mind, is that it might be too complicated to write automated tests for some

specific functionality and manual testing could be used instead. But again, this is a specific decision,

based on a project’s goal, team size and used technologies.

Ease of use:

All recommendations provide useful outcome when used (less errors, time saved on routine tasks,

etc.). However, some of the are not as easy to learn to use as the other, e.g. unit testing versus

application testability. The former is a trivial process, the latter requires more analytical and overall

development knowledge.

It is easy to remember to follow the recommendations. However, it must be done routinely.

Otherwise, they will be neglected.

31

Task efficiency is a complex topic. Overall, proper application testing and processes’ automation

certainly increases efficiency if by efficiency we mean the speed of development. One might think

that focus on quality could slow it down, but providing that systems have bugs, we potentially save

time, which would be spent on refactoring code and fixing errors.

Important processes automation saves time from doing the routine work iteratively and automated

tests bring a verification factor to an application development (test can always be run and check

whether there are no critical errors). These are preconditions for a personal satisfaction, and it can be

guaranteed by following the recommendations.

It is easy to understand why the provided guidelines should be followed, as they are not particularly

complex. Overall the recommendations are important to follow and provide improvements18 .

However, they are often not taken into consideration, as it is a project specific decision, especially in

case of large companies.

QA engineer, Computer science master’s degree

Fit of use:

In general, the most of the recommendations mentioned are important to follow as they help to receive

immediate feedback and improve a product quality. However, some aspects are covered briefly – test

concurrency and system state preparation is a critical topic. Some of the recommendations could not

be applied because test data preparation could be a very resource (CPU, memory, time) demanding

operation, which should not be repeated for each separate test instance. Overall, the provided

guidelines are project specific, as different systems’ input and output may vary. The recommendations

are focused on one concrete example and sometimes do not provide a good insight into a bigger

picture.

Ease of use:

Obviously, depending on a previous experience, it might be hard to learn to use the recommendations

for the first time. Another important point, is that if a person is trained to follow completely different

practices, it will be even more difficult to apply the given recommendations. Nevertheless, most of

the recommendations are basic and should be ease to learn.

Task efficiency depends greatly on a system size. It is usually low in the beginning of a project and

grows high with the project complexity and codebase. The usage of the given practices should be

referred to as a long-term resources investment.

It is actually easy to remember to use the recommendations if they were applied in terms of a concrete

project and worked well.

Having a highly testable API and an ability to quickly find critical problems within a system definitely

bring satisfaction. Moreover, when taking documentation into consideration, reading a well written

and structured document is always a pleasant experience.

The recommendations are easy to understand to some degree. However, without a context or more

specific examples it is not as trivial and some of them may seem simplified. Again, it is a project

specific issue.

18 Mentioned before, e.g. code quality improvements, increase in development speed, time saved.

32

Software developer, Informatics master’s degree

Fit of use:

Generally, the recommendations are important to follow. Moreover, in the majority of projects some

of them (e.g. documentation and source code integrity) are considered essential and are thoroughly

controlled. Most of the recommendations are only applicable in case of a large-scale projects, as the

scope says. These guidelines are not suitable for smaller projects. In this case suitability means that

long-term resource investments (for example, scripting automatic environment setup) are not

profitable due to the shorter nature of such projects. Finally, some examples, provided in the text,

were not clear and require more context.

Ease of use:

It is easy to learn how to apply the presented recommendations. However, the implementation process

itself can be difficult and time demanding, depending on for how long the project has been going.

Usually, the more complex the project is, the harder it is to change the application and tests on design

and architecture levels.

If our main goal is assuring an application’s quality, then the recommendations increase the work

efficiency. However, if we focus on the development process and providing new implementations as

fast as possible then the provided guideline can slow the processes down.

If the person is motivated to follow the recommendations, then it will be easy to remember them. The

claims need to be forced to be used and become a routine in order to be taken into account.

Automated processes in software development always provide a high degree of satisfaction as they

aim at removing time-consuming routine jobs (e.g. environment setup / configuration, test data

generation, etc.) and enable developers to spend their time on more important issues.

It is easy to understand why the claims provided are important for an experienced user. Without

meaningful experience (1-2 projects depending on size and duration) the recommendations may seem

hard to comprehend.

33

5.3 Bottom Line

The table below describes the results of the conducted interviews – all fields refer to the opinions on

the presented recommendations. Answers have been simplified and grouped by fit and ease of use

factors. The latter is a combination of 5 topics: ease of learning, task efficiency, ease of remembering,

subjective satisfaction and understandability.

Table 7 - Interview results

 Fit of use Ease of

learning

Task efficiency Ease of

remembering

Subjective

satisfaction

Understandability

1 useful; all

important

aspects are

covered

easy concepts;

implementation

is complex

decrease speed

of development;

increase product

quality

easy if not

ignored

completion due to

verification

provides

satisfaction

depends on a

specificity of a

project; requires

analysis

2 cover the

scope; some

claims are

specific to a

project

complexity

varies (unit

testing - low

complexity

versus testability

– high

complexity)

automation

increases

efficiency

easy if

followed

routinely

recommendations

provide

verification which

brings satisfaction

recommendations

are not complex

3 help to

receive

feedback;

improve

product

quality;

some

aspects are

covered

briefly;

context

specific

hard for first

time; easy and

basic for

experienced user

grows with

system size

easy if were

already

applied in a

project

highly testable

API and well

written

documentation

provide

satisfaction

easy to understand

to some degree; are

not trivial without

context

4 important to

follow;

project

specific;

project size

is an

important

factor; long-

term

investment

easy to learn

basics; the

implementation

itself is

complex;

depends on

project

increase product

quality;

decrease

implementation

speed in some

cases

easy to

remember if

there is

motivation

automation

provides

satisfaction

comes with

experience

All of the interviewees agreed that the provided recommendations mostly cover the targeted scope as

well as the most important application and test design aspects, and should be taken into consideration.

Despite the fact, that these guidelines were described using a concrete project as an example, it is not

safe to assume that they can be applied and provide the same outcome when used in other projects.

This decision is project specific and heavily relies on a client, who is providing resources for a product

development. This also explains why the recommendations do not cover all possible aspects and

might be simplified in some cases.

34

It is also clear that the recommendations are not complex and can be learned to apply easily

(depending on a previous experience). However, the implementation process can be complicated and

resource demanding, and should be treated as a long-term investment. In order to remember to follow

the provided guidelines, it is important to make the considered activity a routine and do not neglect

it. A personal satisfaction factor is also important, as following the provided practices gives a feeling

of completion, saves time, removes iterative activities and brings a certain degree of verification to

application development process. Finally, it is easy to understand why the recommendations should

be followed, but again, when taking projects’ diversity and specificity into account, it might be needed

to conduct further analysis19.

5.4 Threats to Validity

We identified that one of the possible threats to validity is the specificity of the resulted set of

recommendations. Although they derived from an enterprise grade Spring application and should

apply to similar systems, it might be the case that due to some particular project specificity20 it would

be impossible.

The another threat could be the insufficient feedback collected. Although each of the experts had a

different real-life experience within software development processes and the participants were

interviewed excessively21, the total amount of 4 reviews may seem lacking. However, due to the

interview program topics, the systematic approach to the feedback collection is problematic as well

as time consuming.

5.5 Summary

In this chapter we described the technique we used for validating our test processes execution

outcome – a series of interviews with experts in their particular fields. Moreover, we presented the

interview program as well as the interview results. Finally, we have summarised the interview results

and outlined the final verdict.

In the next chapter we will discuss the work completed, as well as the encountered problems and

limitations. Finally, we are going to summarise the thesis and provide an insight on what future work

might theoretically be completed to improve the results.

19 One of such documents, which provide an insight into what practices must be applied, is a project’s

functional and non-functional requirements document.

20 In the interview with QA engineer it was mentioned that in some cases test data generation is an

extremely demanding process, and running it multiple times should be avoided at all costs. Again, it

was a system specific claim.

21 Each discussion on fit / ease of use topics lasted 2 hours on average.

35

6 Conclusion

In this paper we introduced a number of stress testing frameworks – Locust, Apache JMeter and

Gatling project. One of our goals was to understand which of the selected frameworks suits best for

our particular project. We have completed this task by describing the basic principles of load and

stress testing and provided selection criteria based on which a comparison was made and the tool was

selected. We also briefly discussed the selected testing frameworks limitations and how they can be

compensated by certain system monitoring techniques. Furthermore, we have provided a tested

application background, as well as particular requirements and pre-conditions set to the testing

framework. We have also showed the framework extension process by describing the protocols

support and functional / non-functional requirements, which had to be complied with. Finally, we

have described the test execution process, outlined the results and validated them against the experts’

opinion through a series of head-to-head interviews. We conclude our study by discussing the

limitation factors and answering our main research questions.

During our research we have encountered a few limitations, which have had affected our results. First

of all, the testing framework has been selected based on the project specifications, requirements and

our personal preference. The selection was made of 3 particular frameworks. However, there are

much more available tools which were out of our scope. Additionally, the final set of

recommendations was based on our current project. As a result, they are not applicable to every other

project with its own specifics (e.g. resource demanding test data generation). Lastly, the collected

feedback might have been insufficient. Although the interviews were as thorough and complete as

possible, we have collected reviews from only 4 experts, which may be not enough to form a final

opinion.

As a result, we have selected the Gatling project as our test automation framework for the following

reasons:

 Test scenarios are readable, maintainable and can be handled by the version control system

(Git).

 It is supported by the continuous delivery tool (Jenkins) through the plugin.

 Gatling tests can be run through Gradle build tool.

 It provides real-time test execution monitoring and report generation.

Overall, the Gatling occurred to be a highly configurable platform and complied with the client’s non-

functional requirements, such as running on a JVM and having a good performance (generating high

load on a target server while not stressing the injector machine where it is being run).

During the test processes execution within the project our team has encountered a series of problems

such as slow test execution, low maintainability of the test code, insufficient application testability

and more. As a result, we concluded a set of considerations22 for application and test design:

 Tests have to provide as fast feedback as possible. There are certain techniques to achieve

that23. Tests’ and test framework code quality is an important issue. Test functions should take

the least possible amount of input to be maintainable. Test code should avoid non-

determinisms.

22 The listed recommendations derive from more specific examples and solutions presented in the

chapter 4.

23 In case of unit tests these are, for example, using in-memory database and simulating network,

time, external interfaces.

36

 Writing (or at least designing) tests before writing implementations helps to create better

application structure.

 Application concurrency, configurability and well written / structured documentation help

with testing when tests are designed properly.

 Application non-determinisms can be tested using a certain system design and testing

approach. In case of asynchronous processes, the particular triggers can be implemented in

order to allow calls within test functions. It is also possible to design tests with non-

deterministic approach.

 Automatic test and development environment setup saves a lot of worktime in long term,

especially in case of complex projects.

 Documentation plus source code structure and versioning should conform to each other. This

results in a more efficient development, testing and debugging activities.

Considering the limitations our team has encountered, the results can be improved. As future work,

we, first of all, must overcome the following difficulties:

 Recommendations specificity – the current set of guidelines derives from the particular project

experience. We must try to follow them during the other projects as well to see how well they

comply with different functional / non-functional requirements and clients’ needs.

 Feedback collection – the interview format presented in the chapter 5 limited us with the

amount of information we could collect. It would be possible to collect the feedback from a

wider audience if the format is changed to an online survey type. It would allow to collect

more information in a faster way. However, when designing the survey, questions require

exquisite attention to detail.

We believe that completing these steps will improve the results presented in this paper as well as the

validity of the research.

37

7 References

[1] C. Walls, Spring in Action, Fourth Edition, NY: Manning Publications Co., 2014.

[2] Pivotal Software, "Spring Framework Reference Documentation," 2017. [Online]. Available:

http://docs.spring.io/spring/docs/current/spring-framework-reference/html/.

[3] J. Heyman, C. Byström, J. Hamrén and H. Heyman, "Locust," 2017. [Online]. Available:

http://locust.io/.

[4] A. Jones, "Load Testing with Locust," 15 August 2014. [Online]. Available: https://andrew-

jones.com/blog/load-testing-with-locust/.

[5] D. Ingram, "Load Testing with Locust," Promptworks, 2 June 2016. [Online]. Available:

https://www.promptworks.com/blog/load-testing-with-locust.

[6] Apache Software Foundation, "Apache JMeter™," 2016. [Online]. Available:

http://jmeter.apache.org/.

[7] E. H. Halili, Apache JMeter, Birmingham: Packt Publishing Ltd., 2008.

[8] Gatling Corp, "Gatling Project, Stress Tool," 2016. [Online]. Available: http://gatling.io/#/.

[9] R. Tolledo, "Gatling: Take Your Performance Tests to the Next Level," 12 May 2014.

[Online]. Available: https://www.thoughtworks.com/insights/blog/gatling-take-your-

performance-tests-next-level.

[10] B. Wescott, Every Computer Performance Book, CreateSpace Independent Publishing

Platform, 2013.

[11] I. Molyneaux, The Art of Application Performance Testing, Sebastopol: O’Reilly Media,

2014.

[12] A. Reitbauer, K. Enzenhofer, A. Grabner and M. Kopp, "Analyzing the Performance impact

of Memory Utilization and Garbage Collection," in Java Enterprise Performance, Dynatrace.

[13] Oracle, "Oracle9i Database Performance Tuning Guide and Reference," 2000, 2002. [Online].

Available: https://docs.oracle.com/cd/B19306_01/server.102/b14211/ex_plan.htm#g42231.

[14] D. M. Elkstein, "Learn REST: A Tutorial," February 2008. [Online]. Available:

http://rest.elkstein.org/2008/02/what-is-rest.html.

[15] JSON-RPC Working Group, "JSON-RPC 2.0 Specification," 4 January 2013. [Online].

Available: http://www.jsonrpc.org/specification.

[16] S. Lauesen, in Software Requirements: Styles and Techniques, Pearson Education Limited,

2002.

[17] S. &. K. Penchikala, "Software Testing With Spring Framework," 12 November 2007.

[Online]. Available: https://www.infoq.com/articles/testing-in-spring.

[18] M. Wacker, "Just Say No to More End-to-End Tests," Google, April 2015. [Online].

Available: https://testing.googleblog.com/2015/04/just-say-no-to-more-end-to-end-tests.html.

38

Appendix

I. Glossary

Spring Framework

Application framework, which supports dependency injection, built for Java platform..

Locust

Open-source stress testing framework written in Python.

Apache JMeter

Open-source Java application used to conduct systems’ load, stress and performance

testing.

Gatling

Open-source stress testing framework written in Scala.

Java, Scala, Python

Object-oriented computer programming languages.

JavaScript

High-level, dynamic, untyped, and interpreted programming language.

JSON

JavaScript Object Notation, a format of data.

Microsoft Silverlight

Application framework designed for .NET platform.

Akka

Framework written in Scala, designed to build concurrent and distributed systems .

Netty

Network application framework.

JVM

Java virtual machine, which runs Java programs.

MVC

Model–View–Controller, a pattern of software design.

REST

Representational state transfer, state information management architecture.

API

Application programming interface.

JDBC

Java Database Connectivity, Java API, designed to provide database access.

39

JPA

Java Persistence API, relational data management specification on Java platform.

JMS

Java Message Service, Java service, designed to send messages.

J2EE

Java Platform, Enterprise Edition / Java EE, enterprise grade systems’ programming

platform.

(G)UI

(Graphical) user interface.

HTTP

Hypertext Transfer Protocol, standard protocol, which enables to distribute information

over the web.

HTTPS

HTTP protocol extension designed to improve security.

SOAP

Simple Object Access Protocol, message exchange protocol.

FTP

File Transfer Protocol, standard client-server network protocol.

DSL

Domain-specific language, system specific programming language.

CPU

Central processing unit, a piece of electronics executing machine instructions.

SQL

Structured Query Language, DSL designed for relational databases.

KPI

Key performance indicator.

Maven

Build manager designed for Java based projects

Gradle

Open-source tool design to automate application build process.

Garbage Collection (GC)

Form of automatic memory management.

Young generation

Describes GC, newly created objects, consists of 1 Eden space and 2 Survivor spaces.

40

Old generation

Describes GC, objects that survived from the young generation.

Coroutine

Application component, which provides flexibility (multiple entry points, execution

pause and resume).

Greenlet

Package, written in Python, designed to support concurrency by adding micro-threads.

Libev

Package, event loop.

Appendix 1 - Used terms glossary

41

II. License

Non-exclusive licence to reproduce thesis and make thesis public

I, Andrei Proskurin,

(author’s name)

1. herewith grant the University of Tartu a free permit (non-exclusive licence) to:

1.1. reproduce, for the purpose of preservation and making available to the public, including for

addition to the DSpace digital archives until expiry of the term of validity of the copyright,

and

1.2. make available to the public via the web environment of the University of Tartu, including

via the DSpace digital archives until expiry of the term of validity of the copyright,

of my thesis

Adapting a Stress Testing Framework to a Multi-module Security-oriented Spring Application,

(title of thesis)

supervised by Mart Oruaas and Raimundas Matulevicius,

(supervisor’s name)

2. I am aware of the fact that the author retains these rights.

3. I certify that granting the non-exclusive licence does not infringe the intellectual property rights or

rights arising from the Personal Data Protection Act.

Tartu, 18.05.2017

