
entropy

Article

DiLizium: A Two-Party Lattice-Based Signature Scheme

Jelizaveta Vakarjuk 1,2,*, Nikita Snetkov 1,2 and Jan Willemson 1

����������
�������

Citation: Vakarjuk, J.; Snetkov, N.;

Willemson, J. DiLizium: A Two-Party

Lattice-Based Signature Scheme.

Entropy 2021, 23, 989. https://

doi.org/10.3390/e23080989

Academic Editors: Amin Sakzad and

Khoa Nguyen

Received: 11 June 2021

Accepted: 28 July 2021

Published: 30 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Cybernetica AS, Mäealuse 2/1, 12618 Tallinn, Estonia; nsnetkov@cyber.ee (N.S.); janwil@cyber.ee (J.W.)
2 STACC OÜ, Narva mnt 20, 51009 Tartu, Estonia
* Correspondence: jelizaveta.vakarjuk@cyber.ee

Abstract: In this paper, we propose DiLizium: a new lattice-based two-party signature scheme. Our
scheme is constructed from a variant of the Crystals-Dilithium post-quantum signature scheme. This
allows for more efficient two-party implementation compared with the original but still derives its
post-quantum security directly from the Module Learning With Errors and Module Short Integer
Solution problems. We discuss our design rationale, describe the protocol in full detail, and provide
performance estimates and a comparison with previous schemes. We also provide a security proof for
the two-party signature computation protocol against a classical adversary. Extending this proof to a
quantum adversary is subject to future studies. However, our scheme is secure against a quantum
attacker who has access to just the public key and not the two-party signature creation protocol.

Keywords: digital signatures; distributed signing; threshold signatures; lattice-based cryptography;
Fiat–Shamir with aborts; post-quantum cryptography

1. Introduction

Ever since Peter Shor proposed an algorithm that was able to efficiently break most of
the classical asymmetric cryptographic primitives such as RSA or ECDSA in the 1990s [1,2],
research has been conducted to find quantum-resistant replacements. This work has
recently been coordinated by the U.S. National Institute of Standards and Technology
(NIST). In 2016, NIST announced an effort to standardise some of the proposed public key
encryption algorithms, key-establishment algorithms, and signature schemes [3].

The primary focus of NIST is to obtain drop-in replacements for the current standard-
ised primitives in order to ease the transition. However, not all of the current application
areas are covered by the standardisation process.

One important class of examples is threshold signatures. In a (t, n)-threshold scheme,
the secret key is shared between n users/devices. To create a valid signature, a subset of t
users/devices should collaborate and use their secret key shares. Over the years, threshold
versions of a number of major cryptographic algorithms including RSA and (EC)DSA have
been studied [4–8]. Recent interest in threshold versions of ECDSA has been influenced
by applications in blockchains. However, our motivation stems more from server-assisted
RSA signatures, as proposed in the scheme by Buldas et al. [9]. This scheme has been
implemented in a Smart-ID mobile application and was recognised as a qualified signature
creation device (QSCD) in November 2018 [10]. In 2021, the number of Smart-ID users in
the Baltic countries was estimated at 2.9 million [11].

In 2019, D. Cozzo and N. Smart analysed a number of NIST post-quantum standardis-
ation candidates and concluded that none of them provide a threshold implementation
that would be comparable in efficiency to threshold RSA or even ECDSA [12].

The goal of this research is to find a suitable version of one of the NIST signature candi-
dates (Crystals-Dilithium) that would allow for a more efficient two-party implementation
but would still provide post-quantum security. From this, we propose a concrete/specific
two-party signature scheme and prove its security in this paper.

Entropy 2021, 23, 989. https://doi.org/10.3390/e23080989 https://www.mdpi.com/journal/entropy

https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0002-1414-2080
https://orcid.org/0000-0002-6290-2099
https://doi.org/10.3390/e23080989
https://doi.org/10.3390/e23080989
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/e23080989
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e23080989?type=check_update&version=2

Entropy 2021, 23, 989 2 of 30

To be able to compute the private key or a signature forgery having access only to the
public key, the attacker would need to solve Module Learning With Errors, Rejected Module
Learning With Errors, and Module Short Integer Solution problems. These are considered
hard even for quantum computers. We present security proof for the two-party signing
protocol itself; however, it only provides security against a classical attacker. Extending the
proof to cover quantum attackers is a task for future work.

Contributions

In this paper, we construct DiLizium, a lattice-based two-party signature scheme
that follows the Fiat–Shamir with Aborts (FSwA) paradigm, and prove the security of
the proposed scheme in the classical random oracle model. The security of the proposed
signature scheme relies on the hardness of solving the Module-LWE and Module-SIS
problems. Our two-party signature protocol is based on the scheme described in the paper
by Kiltz et al., Appendix B [13]. Initially, we attempted to construct a two-party version of
the Crystals-Dilithium digital signature submitted to the NIST PQC completion. However,
we concluded that there are no straightforward approaches for modification thereof to
the distributed version. Solutions require using a two-party computation protocol, which
increases not only the signing time but also the communication complexity. The simplified
version of the Crystals-Dilithium scheme from [13] is easier to work with because there are
no additional bit decomposition algorithms used. Having a bit decomposition protocol
would require an additional secure two-party computation protocol that would allow client
and server to jointly compute high-order bits without revealing their private intermediate
values. That would lead to an increased number of communication rounds and usage of
additional security assumptions.

Additionally, DiLizium scheme does not require sampling from a discrete Gaussian
distribution. We decided to use the scheme with uniform distribution because the Gaussian
distribution is known to be hard to implement securely [14,15]. Our work follows the
approach from [16], but instead of using homomorphic commitments, we decided to use the
homomorphic hash function. We wanted to find an alternative to the commitment scheme
introduced in [16] to increase the computational efficiency of the signature scheme. Due to
the way our scheme is constructed, in the security proof, we rely on rejected Module-LWE,
which is a non-standard security assumption, and it is not used in this work [16].

2. Related Work

In 2020, NIST announced fifteen third-round candidates for the PQC competition, of
which seven were selected as finalists and eight were selected as alternate candidates [17].
The finalists in the digital signature category were Crystals-Dilithium [18], Falcon [19],
and Rainbow [20]. Crystals-Dilithium and Falcon are both lattice-based signature schemes.
Falcon has better performance, signature, and key sizes; however, its implementation
is more complex, as it requires sampling from the Gaussian distribution and it utilises
floating-point numbers to implement an optimised polynomial multiplication [19]. The
performance of a Crystals-Dilithium signature scheme is slightly slower, and the signature
and key sizes are larger than the ones in Falcon; however, the signature scheme itself has a
simpler structure [18]. Rainbow is a multivariate signature scheme with fast signing and
verifying processes. The size of the Rainbow signature is the shortest among the finalists;
however, the public key size is the largest [20].

Due to the interest aroused by the PQC competition, several works were proposed
that introduce lattice-based threshold signatures and lattice-based multisignatures. The
works [21–26] focused on creating multisignatures that followed the FSwA paradigm.
These schemes use rejection sampling, due to which the signing process is repeated until a
valid signature is created. Additionally, intermediate values produced during the signature
generation process need to be kept secret until the rejection sampling has been completed.
There are currently no known techniques to prove the security of FSwA signatures if
intermediate values are published before the rejection sampling is performed [16]. In

Entropy 2021, 23, 989 3 of 30

multisignatures [21–25], intermediate values are published before the rejection sampling is
completed, which leads to incomplete security proofs in these works [16]. The work by
M. Fukumitsu and S. Hasegawa [26] solves the problem with aborted executions of the
protocol by introducing a non-standard hardness assumption (rejected Module-LWE).

In 2019, D. Cozzo and N. Smart analysed the second round NIST PQC competition
signature schemes to determine whether it is possible to create threshold versions of
these signature schemes [12]. The authors proposed a possible threshold version for each
of the schemes using only generic Multiparty Computation (MPC) techniques, such as
linear secret sharing and garbled circuits. As a result, the authors proposed that the most
suitable signature scheme is Rainbow, which belongs to the multivariate family. The
authors described a threshold version of Crystals-Dilithium, which is estimated to take
around 12 s to produce a single signature. The authors explained that the problems with
performance arise from the fact that the signature scheme consists of both linear and
nonlinear operations and that it is inefficient to switch between these representations using
generic MPC techniques. However, the goal of the current work is to focus on the two-party
scenario. This means that some of the difficulties in D. Cozzo and N. Smart paper can
be avoided.

R. Bendlin, S. Krehbiel, and C. Peikert proposed threshold protocols for generat-
ing a hard lattice with trapdoor and sampling from the discrete Gaussian distribution
using the trapdoor [27]. These two protocols are the main building blocks for the Gentry–
Peikert–Vaikuntanathan (GPV) signature scheme (based on hash-and-sign paradigm),
where generating a hard lattice is needed for the key generation and Gaussian sampling
is needed for the signing process. M. Kansal and R. Dutta proposed a lattice-based mul-
tisignature scheme with a single round signature generation that has key aggregation
and signature compression in [28]. The underlying signature scheme follows neither the
hash-and-sign nor FSwA paradigms, which are the main techniques used to construct
lattice-based signature schemes.

In 2020, I. Damgård, C. Orlandi, A. Takahashi, and M. Tibouchi proposed a lattice-
based multisignature and distributed signing protocols that are based on the Dilithium-
G signature scheme [16]. Dilithium-G is a version of the Crystals-Dilithium signature
that requires sampling from a discrete Gaussian distribution [29]. The work contains
complete classical security proofs for the proposed schemes. The work solves the problem
with the aborted executions by using commitments such that, in the case of an abort,
only commitment is published, the intermediate value itself stays secret. The proposed
distributed signature scheme could potentially fit the Smart-ID framework; however, some
questions need to be addressed. More precisely, the scheme is based on a modified version
of Crystals-Dilithium from the NIST PQC competition project and uses Gaussian sampling.
It is known that generating samples from the Gaussian distribution is nontrivial, which
means that the insecure implementation may lead to side-channel attacks [30]. The open
question is whether it is possible to use a version of the scheme more similar to the one
being submitted to the NIST PQC competition.

3. Preliminaries
3.1. Notation

• Let Z be a ring of all integers. Zq = Z/qZ denotes a ring of residue classes modulo q.
Z[x] denotes a ring of polynomials in the variable x with integer coefficients.

• R denotes a quotient ring Z[x]/(xn + 1), where n ∈ N and Rq denotes a quotient ring
Zq[x]/(xn + 1), where n ∈ N.

• Polynomials are denoted in italic lowercase p. p ∈ Rq is a polynomial of degree bound
by n: p = p0 + p1x + . . . + pn−1xn−1. It can also be expressed in a vector notation
through its coefficients (p0, p1, . . . , pn−1).

• Vectors are denoted in bold lowercase v. v ∈ Rn
q is a vector of dimension n: v =

(v0, . . . , vn−1), where each element vi is a polynomial in Rq.

Entropy 2021, 23, 989 4 of 30

• Matrices are denoted in bold uppercase A. A ∈ Rn×m
q is a n×m matrix with elements

in Rq.
• For an even positive integer α and for every x ∈ Z, define x′ = x mod ±α, as x′ in

the range − α
2 < x′ ≤ α

2 such that x′ ≡ x (mod α). For an odd positive integer α and
for every x ∈ Z, define x′ = x mod ±α, as x′ in the range − α−1

2 ≤ x′ ≤ α−1
2 such

that x′ ≡ x (mod α). For any positive integer α, define x′ = x mod α, as x′ in the
range 0 ≤ x′ < α such that x′ ≡ x (mod α).

• For an element p = p0 + p1x + . . . + pn−1xn−1 ∈ Rq, its l2 norm is defined as ||p||2 =

(∑i |pi|2)
1
2 .

• For an element x ∈ Zq, its infinity norm is defined as ||x||∞ = |x mod ±q|, where
|x| denotes the absolute value of the element. For an element p = p0 + p1x + . . . +
pn−1xn−1 ∈ Rq, ||p||∞ = maxi ||pi||∞. Similarly for an element v = (p0, . . . , pn) ∈ Rn

q ,
||v||∞ = maxi ||pi||∞.

• Sη denotes a set of all elements p ∈ R such that ||p||∞ ≤ η.
• a← A denotes sampling an element uniformly at random from the set A.
• a← χ(A) denotes sampling an element from the distribution χ defined over the set

A.
• dxe denotes mapping x to the least integer greater than or equal to x (e.g., d5.2e = 6).
• The symbol ⊥ is used to indicate a failure or rejection.

3.2. Definitions of Lattice Problems

Definition 1 (Decisional Module-LWE (q, n, m, η, χ)). Let χ be an error distribution, given a
pair (A, t) ∈ (Rn×m

q × Rn
q) decide whether it was generated uniformly at random from Rn×m

q × Rn
q

or it was generated as A← Rn×m
q , (s1, s2)← χ(Sm

η × Sn
η) and t := As1 + s2.

The advantage of adversaryA in breaking decisional Module-LWE for the set of
parameters (q, n, m, η, χ) can be defined as follows:

AdvDec-MLWE
(q,n,m,η,χ) (A) := |Pr[b = 1 : A← Rn×m

q , (s1, s2)← χ(Sm
η × Sn

η), t := As1 + s2, b←
A(A, t)]− Pr[b = 1 : A← Rn×m

q , t← Rn
q , b← A(A, t)]|.

Definition 2 (Computational Module-LWE (q, n, m, η, χ)). Let χ be an error distribution,
given a pair (A, t) ∈ (Rn×m

q × Rn
q), where A ← Rn×m

q , (s1, s2) ← χ(Sm
η × Sn

η), and t :=
As1 + s2 when finding a vector s1.

The advantage of adversary A in breaking computational Module-LWE for the set of
parameters (q, n, m, η, χ) can be defined as follows:

AdvCom-MLWE
(q,n,m,η,χ) (A) := Pr[s1 = s′1 : A← Rn×m

q , (s1, s2)← χ(Sm
η × Sn

η), t := As1 + s2, s′1 ←
A(A, t)].

Definition 3 (Module-SIS (q, n, m, η)). Given a uniformly random matrix A← Rn×m
q , find a

vector x← Rn+m
q such that

[
A|I
]
· x = 0 and 0 < ||x||∞ ≤ η.

The advantage of adversary A in breaking Module-SIS for the set of parameters
(q, n, m, η) can be defined as follows:

AdvMSIS
(q,n,m,η)(A) := Pr[

[
A|I
]
· x = 0 and 0 < ||x||∞ ≤ η : A← Rn×m

q , x← A(A)].

Additionally, we define the rejected Module-LWE assumption adapted from [26].

Definition 4 (Rejected Module-LWE (q, n, m, γ, χ, β)). Let χ be an error distribution, and let
C be a set of all challenges. Let A ← Rn×m

q , s1, s2 ← χ(Sm
η × Sn

η), y1, y2 ← χ(Sm
γ−1 × Sn

γ−1),
and c ← C. Assume that y1 + cs1 ≥ γ− β or y2 + cs2 ≥ γ− β hold. Given (A, w, c), decide
whether w was generated uniformly at random from Rn

q or it was generated as w = Ay1 + y2.

Entropy 2021, 23, 989 5 of 30

The advantage of adversaryA in breaking the rejected Module-LWE for the set of
parameters (q, n, m, γ, χ, β) can be defined as follows:

AdvR-MLWE
(q,n,m,γ,χ,β)(A) := |GameR-MLWE

0 −GameR-MLWE
1 |.

GameR-MLWE
0 := Pr[b = 1 : A ← Rn×m

q , (s1, s2) ← χ(Sm
η × Sn

η), (y1, y2) ← χ(Sm
γ−1 ×

Sn
γ−1), c← C, w := Ay1 + y2, b← A(A, w, c) | y1 + cs1 ≥ γ− β or y2 + cs2 ≥ γ− β]

GameR-MLWE
1 := Pr[b = 1 : A ← Rn×m

q , (s1, s2) ← χ(Sm
η × Sn

η), (y1, y2) ← χ(Sm
γ−1 ×

Sn
γ−1), c← C, w← Rn

q , b← A(A, w, c) | y1 + cs1 ≥ γ− β or y2 + cs2 ≥ γ− β]

3.3. Forking Lemma

The following forking lemma is adapted from [31]. x can be viewed as a public key of
the signature scheme, and h1, . . . , hq can be viewed as replies to the random oracle queries.

Lemma 1 (General forking lemma). Fix an integer q ≥ 1 to be the number of queries. Fix
set C of size |C| ≥ 2. Let B be a randomised algorithm that takes as input x, h1, . . . , hq, where
(h1, . . . , hq) ∈ C, and returns a pair with the first element being index i (integer in the range
{0, . . . , q}) and the second element being side output out. Let IG be a randomised input generation
algorithm. Let the accepted probability of B be denoted as acc. This is the probability that i 6= 0 in
the following experiment:

• x ← IG
• h1, . . . , hq ← C
• (i, out)← B(x, h1, . . . , hq)

The forking algorithm FB connected with B is defined in Algorithm 1.

Algorithm 1 FB(x)

1: Pick random coins ρ for B
2: h1, . . . , hq ← C
3: (i, out)← B(x, h1, . . . , hq; ρ)
4: If i = 0, then return (0,⊥,⊥)
5: Regenerate h′i, . . . , h′q ← C
6: (i′, out′)← B(x, h1, . . . , hi−1, h′i, . . . , h′q; ρ)

7: If i = i′ and hi 6= h′i, then return (1, out, out′)
8: Otherwise, return (0,⊥,⊥)

Let us define the f rk probability as

f rk = Pr[b = 1 : x ← IG; (b, out, out′)← FB(x)].

Then,

f rk ≥ acc ·
(

acc
q
−

1
|C|

)
.

Alternatively,

acc ≤
q
|C|+

√
q · f rk.

3.4. Lattice-Based Signature Scheme

Lattice-based cryptography is a promising candidate for the post-quantum public key
cryptography standards. Among all of the submissions to the NIST PQC competition, the
majority of schemes belong to the lattice-based family [17]. Many lattice-based signatures
are constructed from the identification schemes using the Fiat–Shamir (FS) transform. The

Entropy 2021, 23, 989 6 of 30

FS transform technique introduced in [32] allows for creating a digital signature scheme by
combining an identification scheme with a hash function.

The following definition is adapted from [13].

Definition 5 (Identification scheme). An identification scheme ID is defined as a tuple of
algorithms ID := (IGen, P, C, V).

• The key generation algorithm IGen takes as input system parameters par and returns the
public key and secret key as output (pk, sk). Public key pk defines the set of challenges C, the
set of commitments W, and the set of responses Z.

• The prover algorithm P = (P1, P2) consists of two sub-algorithms. P1 takes as input the secret
key and returns a commitment w ∈ W and a state st. P2 takes as input the secret key, a
commitment, a challenge, and a state and returns a response z ∈ Z ∪ {⊥}.

• The verifier algorithm V takes as input the public key and the conversation transcript and
outputs a decision bit b = 1 (accepted) or b = 0 (rejected).

In the signature scheme that uses FS transform, the signing algorithm generates a
transcript (w, c, z), where a challenge c is derived from a commitment w and the message
to be signed m as follows c := H(w||m). The signature σ = (w, z) is valid if the transcript
(w, c, z) passes the verification algorithm with b = 1. The publication [33] introduced a
generalisation to this technique called Fiat–Shamir, with aborts transformation that takes
into consideration aborting provers.

The following signature scheme (further referred to as the basic scheme) is a slightly
modified version of the scheme [34]; the description below is based on a version described
in [13] (Appendix B). The signature scheme makes use of a hash function, which produces
a vector of size n with elements in {−1, 0, 1} [18]. The hashing algorithm starts with
applying a collision-resistant hash function (e.g., SHAKE-256) to the input to obtain a
vector s ∈ {0, 1}τ from the first τ bits of the hash function’s output. Then, SampleInBall
algorithm (Algorithm 2) is invoked to create a vector c in {−1, 0, 1}n with exactly τ nonzero
elements. In each iteration of the for loop, the SampleInBall algorithm generates an element
j ∈ {0, . . . , i} using the output of a collision-resistant hash function. Then, the algorithm
performs shuffling of the elements in the vector c and takes an element from the vector
s to generate −1 or 1. For an in-depth overview of the algorithm, refer to the original
paper [18].

Algorithm 2 SampleInBall.

1: Initialise c as zero vector of length n
2: for i := n− τ to n− 1

1. j← {0, 1, . . . , i}
2. s← {0, 1}
3. ci := cj
4. cj := (−1)s

3: return c

All of the algebraic operations in the signature scheme are performed over the ring
Rq. A formal definition of the key generation, signing, and verification is presented in
Algorithms 3–5.

Algorithm 3 KeyGen(par).

1: A← Rk×k
q

2: s1, s2 ← Sk
η

3: t := As1 + s2
4: return pk = (A, t), sk = (A, t, s1, s2)

Entropy 2021, 23, 989 7 of 30

Algorithm 4 Sign(sk, m).

1: (z1, z2) = (⊥,⊥)
2: while (z1, z2) = (⊥,⊥) do:

1. y1, y2 ← Sk
γ1−1

2. w := Ay1 + y2
3. c := H0(m||w) ∈ Bτ

4. z1 := y1 + cs1 and z2 := y2 + cs2
5. if ||z1||∞ ≥ γ1 − β or ||z2||∞ ≥ γ1 − β, then (z1, z2) := (⊥,⊥)

3: return σ = (z1, z2, c)

Algorithm 5 Verify(pk, m, σ).

1: w′ := Az1 + z2 − ct
2: if c = H0(m||w′) and ||z1||∞ < γ1 − β and ||z2||∞ < γ1 − β, return 1 (success).
3: else: return 0.

Correctness

Since w = Ay1 + y2, t = As1 + s2, z1 = y1 + cs1. and z2 = y2 + cs2, it holds that

Az1 + z2 − ct = A(y1 + cs1) + (y2 + cs2)− c(As1 + s2) =
Ay1 + Acs1 + y2 + cs2 − cAs1 − cs2 = Ay1 + y2.

Therefore, if a signature was generated correctly, it will successfully pass the verification.

3.5. Homomorphic Hash Function

We decided to use a homomorphic hash function instead of a homomorphic commit-
ment scheme as in [16].

Definition 6 (Homomorphic hash function). Let + be an operation defined over X, and let ⊕
be an operation defined over R. Let x1, x2 ∈ X be any two inputs to the hash function. A hash
function f : X → R is homomorphic if it holds that

f (x1 + x2) = f (x1)⊕ f (x2).

Definition 7 (Regular hash function). Let F = { fa}a∈A, where fa : X → R be a collection
of functions indexed by a set A. A family of hash functions F is called ε-regular if the statistical
distance between its output distribution {(a, fa(x)) : a← A, x ← X} and the uniform distribution
{(a, r) : a← A, r ← R} is at most ε.

One of the homomorphic hash functions available is called SWIFFT; it is a special
case of the function proposed in [35–37]. SWIFFT is a collection of compression functions
that are provably one-way and collision-resistant [38]. Additionally, SWIFFT has several
statistical properties that can be proven unconditionally: universal hashing, regularity,
and randomness extraction. However, due to the linearity, SWIFFT functions are not
pseudorandom. It follows that the function is not a suitable instantiation of a random
oracle [38]. Therefore, in the security proofs of the two-party signature scheme, SWIFFT
is not used as a random oracle. Security proof makes use of such provable properties as
regularity and collision resistance.

4. Proposed Two-Party Signature Scheme (DiLizium)

In the following section, we define and give detailed description of our two-party
signature scheme: DiLizium. We start by defining the distributed signature scheme; the
following definition is adapted from [16].

Definition 8 (Distributed signature protocol). Distributed signature protocol is a protocol
between P1, . . . , Pn parties that consists of the following algorithms:

Entropy 2021, 23, 989 8 of 30

• Generate public parameters par using security parameter λ as input: par ← Setup(1λ).
• Each party Pj generates a key pair consisting of secret key share and a public key using

interactive algorithm and public parameters as input: (sk j, pk) ← KeyGenj(par) for each
j ∈ {1, . . . , n}.

• To sign a message m, each party Pj runs an interactive signing algorithm using secret key
share: (σ)← Signj(sk j, m) for each j ∈ {1, . . . , n}.

• To verify a signature, the verifier needs to check if Verify(pk, m, σ) = 1. If the signature was
generated correctly, verification should always succeed.

4.1. Specification and Overview of DiLizium Signature Scheme

Table 1 describes the parameters used in the two-party signature scheme.

Table 1. Parameters for the two-party protocol.

Parameter Description

n degree bound of the polynomials in the ring

q modulus

(k, k) dimension of matrix and vectors used in the scheme

γ size bound of the coefficients in the masking vector share

γ2 size bound of coefficients in the composed masking vector

η size bound of coefficients in the secret key share

τ number on nonzero elements in the output of special hash function H0

β
maximum possible coefficient of the client’s and server’s shares of csi, where
i ∈ {1, 2}

β2 maximum possible coefficient of csi, where i ∈ {1, 2}

(a, b, p) parameters for the homomorphic hash function: a · b is the input length, b is
the output length, and p is the modulus

4.1.1. Parameter Setup

Let us assume that, before starting the key generation and signing protocols, the
parties invoke a Setup(1λ) function that, based on the security parameter λ, outputs a set
of public parameters par that are described in Table 1.

4.1.2. Key Generation

H1 and H2 are some collision-resistant hash functions. The key generation protocol
is parametrised by the set of public parameters par. The client begins the key generation
process by sampling a share of matrix Ac and by sending out the commitment to this share
hkc = H1(Ac). The server generates its matrix share As and sends commitment hks to
the client. Upon receiving commitments, the client and server exchange matrix shares
and check if the openings for the commitments were correct. If openings are successfully
verified, the client and server locally compute composed matrix A = Ac + As.

The client proceeds by generating two secret vectors (sc
1, sc

2) and by computing its
share of the public key tc = Asc

1 + sc
2. The client sends out a commitment to the public

key share comkc = H2(tc). The server samples its secret vectors (ss
1, ss

2) and uses them to
compute its public key share ts. Next, the server sends commitment to the public key share
comks to the client.

Once the client and server have received commitments from each other, the client and
server exchange public key shares. Next, the client and server both locally check if the
commitments were opened correctly. If these checks succeed, the client and server locally
compute the composed public key t = tc + ts. The final public key consists of composed
matrix A and vector t.

Entropy 2021, 23, 989 9 of 30

It is necessary to include the server’s public key share ts to the client’s secret key skc
and vice versa. During the signing process, the client needs to use the server’s public key
share to verify the correctness of a commitment.

Protocol 1 describes two-party key generation between the parties in a more formal
way. Instructions of the protocol are the same for the client and server. Therefore, Protocol 1
presents the behavior of the nth party, n ∈ {c, s}.

4.1.3. Signing

HomH is a homomorphic hash function from the SWIFFT family. H0 is a hash function
that outputs a vector of length n with exactly τ coefficients being either −1 or 1 and the
rest being 0 as described in Algorithm 2. H3 is a collision-resistant hash function.

The client starts the signing process by generating its shares of masking vectors (yc
1, yc

2)
and by computing a share of w. Next, the client uses a homomorphic hash function to
compute comc = HomH(wc) and hashes it using some collision-resistant hash function
hc = H3(comc). The composed output of the homomorphic hash function com = comc +
coms is later used to derive a challenge. Therefore, it is crucial to ensure that comc, coms
have not been chosen maliciously. Thus, before publishing these shares, the client and
server should exchange commitments to the shares hc, hs.

The server, in turn, generates its shares of masking vectors (ys
1, ys

2), computes its
share of w, and sends commitment to coms = HomH(ws). After receiving commitments
hc, hs from each other, the client and server open the commitments by sending out shares
coms, comc.

The client proceeds by checking if the server opened its commitment correctly. If the check
succeeds, the client computes com = comc + coms and derives challenge c = H0(m||com).
Next, the client computes potential signature shares (zc

1, zc
2) and performs rejection sampling.

If all of the conditions in rejection sampling are satisfied, the client sends its signature share to
the server.

The server checks if the client opened its commitment correctly. If the check succeeds,
the server computes composed com and derives challenge c. Next, the server computes its
potential signature shares (zs

1, zs
2) and performs rejection sampling. If all of the conditions

in rejection sampling are satisfied, the server sends its signature share to the client.
Finally, the client performs verification if coms indeed contains ws. The client re-

constructs ws as Azs
1 + zs

2 − cts and checks if it is a valid opening for coms. If the check
succeeds, the client computes the final signature (z1, z2). The server performs the same
verification that comc indeed contains wc using (zc

1, zc
2) and tc. If the check succeeds, the

server computes and outputs the final signature.
Protocol 2 describes the two-party signing process in the more formal way.

4.1.4. Verification

Verification is almost the same as in the original scheme except the verifier needs to
apply homomorphic hash function on the reconstructed w′ in order to check the correctness
of challenge. Algorithm 6 describes verification in the more formal way.

4.1.5. Correctness

Since w = Ay1 + y2, t = As1 + s2, z1 = y1 + cs1 and z2 = y2 + cs2 it holds that:
Az1 + z2 − ct = A(y1 + cs1) + (y2 + cs2)− c(As1 + s2) = Ay1 + Acs1 + y2 + cs2 −

cAs1 − cs2 = Ay1 + y2.
Furthermore, by triangle inequality, it holds that if ||zs

1||∞ < γ− β and ||zc
1||∞ < γ− β,

then ||z1||∞ = ||zs
1 + zc

1||∞ < ||zs
1||∞ + ||zc

1||∞ = 2γ− 2β. The same holds for the second
signature component z2. This means that γ2 can be defined as γ2 = 2γ and β2 = 2β.
Therefore, if a signature was generated correctly, verification always succeed.

Entropy 2021, 23, 989 10 of 30

Protocol 1: KeyGenn(par);

1. First message:

(a) An ← Rk×k
q , send out hkn := H1(An).

2. Second message:

(a) Upon receiving hki, send out An.

3. Third message

(a) Upon receiving Ai, verify if H1(Ai) = hki. Send out ABORT message if equality
does not hold.

(b) A := An + Ai.
(c) sn

1 , sn
2 ← Sk

η .
(d) tn := Asn

1 + sn
2 , send out comkn := H2(tn).

4. Fourth message

(a) Upon receiving comki, send out tn.

5. Verification

(a) Upon receiving ti, verify if H2(ti) = comki. Send out ABORT message if equality
does not hold.

(b) t := tn + ti.

6. Output

(a) Client’s share of secret key skc = (A, ts, sc
1, sc

2).
(b) Server’s share of secret key sks = (A, tc, ss

1, ss
2).

(c) Final public key pk = (A, t).

Protocol 2: Signn(skn, m);

1. First message

(a) yn
1 , yn

2 ← Sk
γ−1.

(b) wn := Ayn
1 + yn

2 .
(c) comn := HomH(wn), send out hn := H3(comn).

2. Second message

(a) Upon receiving hi, send out comn.

3. Third message

(a) Upon receiving comi, verify if H3(comi) = hi. Send out ABORT message if equality
does not hold.

(b) com := comn + comi, c ∈ Bτ := H0(m||com).
(c) zn

1 := yn
1 + csn

1 , zn
2 := yn

2 + csn
2 .

(d) Perform rejection sampling:
if ||zn

1 ||∞ ≥ γ− β or ||zn
2 ||∞ ≥ γ− β, then send out RESTART message.

else:
(e) Send out (zn

1 , zn
2).

4. Verification

(a) Upon receiving (zi
1, zi

2), reconstruct wi := Azi
1 + zi

2 − cti.
(b) Check if HomH(wi) = comi and send out ABORT message if check fails.
(c) Compute final signature on message m as z1 := zn

1 + zi
1 and z2 := zn

2 + zi
2,

σ = (z1, z2, c).

5. Upon receiving RESTART message

(a) Client and server start signing process again from the beginning.

Entropy 2021, 23, 989 11 of 30

Algorithm 6 Verify(pk, σ, m)

1: Compute w′ := Az1 + z2 − ct.
2: if c = H(m||HomH(w′)) and ||z1||∞ < γ2 − β2 and ||z2||∞ < γ2 − β2: return 1 (success).
3: else: return 0.

Security

Definition 9 (Existential Unforgeability under Chosen Message Attack). The distributed
signature protocol is Existentially Unforgeable under Chosen Message Attack (DS-UF-CMA) if,
for any probabilistic polynomial time adversary A, its advantage of creating successful signature
forgery is negligible. The advantage of adversary is defined as the probability of winning in the
experiment ExpDS-UF-CMA:

AdvDS-UF-CMA(A) := Pr[ExpDS-UF-CMA(A)→ 1].

Experiment 1: ExpDS-UF-CMA(A);

1. M← ∅
2. kgen← f alse
3. par ← Setup(1λ)

4. (m∗, σ∗)← AKeyGenO(.,.), SignO(.,.)(par)
5. b← Verify(m∗, σ∗, pk)
6. if b = 1 and m∗ /∈ M: return 1
7. otherwise, return 0

Oracle 1: KeyGenO(par, sid, msg);

The oracle is initialised with the set of public parameters par generated by the Setup(1λ)
algorithm.

1. Upon receiving (0, msg) if the flag kgen = true, then return ⊥.
2. Upon receiving query with sid = 0 for the first time,

(a) Initialise a machine M0. M0 uses the instructions of the party Pn in the key
generation protocol KeyGen(par).

(b) If Pn sends the first message according to the key generation protocol, then oracle
returns this message.

3. If machineM0 has been already initialised,

(a) Oracle gives the next incoming message msg to theM0.
(b) Oracle returns reply that was received fromM0.
(c) IfM0 finished the protocol with a local output (skn, pk), then oracle sets the flag

kgen = true.

Entropy 2021, 23, 989 12 of 30

Oracle 2: SignO(sid, msg);

1. Upon receiving (sid, msg), if the flag kgen = f alse and sid 6= 0, then return ⊥.
2. Upon receiving query with sid for the first time,

(a) Parse incoming message msg as message to be signed m.
(b) Initialise a machineMsid.Msid uses the instructions of the party Pn in the signing

protocol Sign(par, skn, pk, m).
(c) The message m is included in the set of all queried messagesM.
(d) If Pn sends the first message according to the signing protocol, then oracle returns

this message.

3. If machineMsid has been already initialised,

(a) Oracle gives the next incoming message msg to theMsid.
(b) Oracle returns the reply that was received fromMsid.
(c) IfMsid finished the protocol with a local output σ, then the oracle returns this

output.

Theorem 1. Assume a homomorphic hash function HomH : {0, 1}a·b → Zb
p is provably collision-

resistant and ε-regular then for any probabilistic polynomial time adversary A that makes a single
query to the key generation oracle; qs queries to the signing oracle; and qh queries to the random
oracles H0, H1, H2, and H3, the distributed signature protocol is DS-UF-CMA secure in the random
oracle model under Module-LWE, rejected Module-LWE, and Module-SIS assumptions.

This section presents the main idea for the security proof of the proposed scheme; the
full proof is given in Appendix A. The proof considers only the classical adversary and
relies on the forking lemma. The idea of the proof is, given an adversary A that succeeds in
creating forgeries for the distributed signature protocol, to construct an algorithm around
it that can be used to solve Module-SIS problem or to break the collision resistance of the
homomorphic hash function. The idea of our proof relies on the proofs from [7,16,31,39].

The proof consists of two major steps. In the first step, we construct a simulator B.
Algorithm B is constructed such that it fits all of the assumptions of the forking lemma. B
simulates the behavior of a single honest party Pn without using its actual secret key share.
In the second step, the forking algorithm is invoked to obtain two forgeries with distinct
challenges and the same commitments.

4.1.6. Simulation

In the key-generation process, we need to simulate the way the matrix share An and
the public vector share tn are constructed. Due to the use of random oracle commitments,
once the simulator obtains the adversary’s commitment hki, it can extract the matrix share
Ai. Next, the simulator computes its matrix share An := A−Ai using a resulting random
matrix A ∈ Rk×k

q and programs random oracle H1(An) := hkn.
Due to the Module-LWE assumption, the public vector share of the honest party tn

is indistinguishable from the uniformly random vector sampled from the ring Rk
q. Using

the same strategy as that for the matrix share, the simulator sets it public vector share
tn := t − ti after seeing the adversary’s commitment and programs the random oracle
H2(tn) := comkn.

The signature share generation starts with choosing a random challenge c ∈ C from the
set of all possible challenges. Then, the simulator proceeds with randomly sampling two
signature shares from the set of all possible signature shares zn

1 , zn
2 ← Sk

γ−β−1. The share of
vector w is computed from the signature shares, public vector share, and challenge as wn =
Azn

1 + zn
2 − ctn. Then, the simulator extracts value comi from the adversary’s commitment

hi, computes the composed value com, and programs random oracle H0(com||m) := c.

Entropy 2021, 23, 989 13 of 30

4.1.7. Forking Lemma

The combined public key consists of matrix A uniformly distributed in Rk×k
q and

vector t uniformly distributed in Rk
q. We want to replace it with the Module-SIS instance[

A′|I
]
, where A′ ∈ Rk×(k+1)

q . The view of adversary does not change if we set A′ =
[
A|t
]
.

In order to conclude the proof, we need to invoke the forking lemma to receive
two valid forgeries from the adversary that are constructed using the same commitment
com = com′ but different challenges c 6= c′. Using these forgeries, it is possible to find a
solution to the Module-SIS problem on input A′ =

[
A|t
]

or to break the collision resistance
of the homomorphic hash function.

As both forgeries out = (com, c, z1, z2, m) and out′ = (com′, c′, z′1, z′2, m′) are valid, it
holds that

HomH(Az1 + z2 − ct) = com = com′ = HomH(Az′1 + z′2 − c′t)

If Az1 + z2 − ct 6= Az′1 + z′2 − c′t, then we found a collision for the homomorphic
hash function. If Az1 + z2 − ct = Az′1 + z′2 − c′t, then it can be rearranged as Az1 −Az′1 +
z2 − z2 − ct + c′t = 0 and this in turn leads to

[
A|I|t

]z1 − z′1
z2 − z′2
c′ − c

 = 0

Considering that
[
A|I|t

]
is an instance of Module-SIS problem, we found a solution

for Module-SIS with parameters (q, k, k + 1, ξ), where ξ ≤ 2(γ2 − β2).

5. Performance

In this section, we analyse the performance of our scheme according to the follow-
ing metrics:

• Number of communication rounds in key generation and signing protocols,
• Keys and signature sizes, and
• Number of rejection sampling rounds.

It should be noted that this section does not present the exact parameter choice
for the scheme and does not argue the bit security of the scheme for these parameters.
The parameter choice presented in this section is illustrative and is given to provide
performance estimations of the proposed scheme. Choosing correct parameters for post-
quantum schemes is a nontrivial multidimensional optimisation task as parameters should
be chosen such that the scheme has the small signature and key sizes while having enough
bits of security and an optimal number of communication rounds. Additionally, the
security of the proposed scheme relies on rejected Module-LWE, which is not a well-
studied assumption, and therefore, it is difficult to estimate the bit security of the proposed
scheme. The parameters presented in Table 2 are chosen based on parameters proposed in
Crystals-Dilithium [18] so that the expected number of repetitions of the signing process
is practical.

5.1. Number of Rejection Sampling Rounds

To estimate the number of rejection sampling rounds in the signing process, it is
necessary to compute the probability that the following holds for both parties: ||zn

1 ||∞ <
γ− β and ||zn

2 ||∞ < γ− β. Let σ be a coefficient of csn
i . If coefficients of yn

i are in the range
{−γ + β + 1− σ, . . . , γ− β− 1− σ}, then the corresponding coefficients of zn

i are in the
range {−γ + β + 1, . . . , γ− β− 1}. Therefore, the size of the correct coefficient range for
yn

i is 2(γ− β)− 1 and the coefficients of yn
i have 2γ− 1 possibilities. Then, the probability

that every coefficient of yn
i in the correct range is as follows:(

2(γ− β)− 1
2γ− 1

)n·k

Entropy 2021, 23, 989 14 of 30

As the client and server sample vectors yn
i independently in the beginning of the

signing protocol, the probability that the check succeeds for both signature components on
the client and server side is the following:

Pr[success] =

(
2(γ− β)− 1

2γ− 1

)n·k·4

The expected number of repetitions can be estimated as E = 1/Pr[success].

5.2. Signature and Key Sizes

The public key consists of two components: matrix A ∈ Rk×k
q and vector t ∈ Rk

q.
The matrix A can be generated out of 256-bit seed using an extendable output function,
as proposed in the Crystals-Dilithium signature scheme [18]. While using this approach,
only the seed used to generate the matrix needs to be stored. As both parties need to
generate their matrix share, two seeds should be stored to represent matrix A. Each seed is
converted to the matrix form using an extendable output function; after that, two matrix
shares can be added together. The size of the public key in bytes is as follows:

2 · 256 + n · k · dlog(q)e
8

.

The secret key of the party Pn consists of two vectors sn
1 , sn

2 ∈ Sk
η , matrix A, and vector

ti ∈ Rk
q. It should be noted that vectors sn

1 , sn
2 may contain negative values as well, so one

bit should be reserved for each coefficient to indicate the sign. Therefore, the size of the
secret key in bytes can be computed as follows:

2 · n · k · (dlog(η)e+ 1) + 2 · 256 + n · k · dlog(q)e
8

=

n · k · (2 · (dlog(η)e+ 1) + dlog(q)e) + 2 · 256
8

.

Finally, a signature consists of three components: z1, z2 ∈ Sk
γ2−β2−1, and c ∈ {0, 1}n

with exactly τ coefficients being either −1 or 1 and the rest being 0. All of the components
may contain negative values, so for each coefficient of z1, z2, c one bit should be reserved
to indicate the sign. With regard to storing c, it is possible to store only the positions of −1
and 1 in c. Therefore, the size of the signature in bytes can be computed as

2 · n · k · (dlog(γ2 − β2 − 1)e+ 1) + τ · (dlog(n)e+ 1)
8

.

In order to better understand key and signature sizes, let us assume the choice of
parameters defined in Table 2. The key and signature sizes corresponding to this choice of
parameters are listed in Table 3.

Table 2. Illustrative parameters.

Parameters Sizes

n 256
q 8,380,417

(k, k) (5, 5)
γ 219

γ2 220

η 2
τ 60
β 120
β2 240

(a, b, p) (64, 16, 257)

Entropy 2021, 23, 989 15 of 30

Table 3. Key and signature sizes and expected number of repetitions of the signing protocol.

Values Sizes

Public key pk 3744 bytes
Secret key share ski 4384 bytes

Signature σ 6788 bytes
Expected number of repetitions 3.23

5.3. Communication between Client and Server

In order to generate a key pair, four rounds of communication between the client and
server are needed. Table 4 shows the sizes of messages that are exchanged between the
client and server during the key generation process using illustrative parameters from
Table 2. The first message is output of a hash function (commitment to matrix Ai), which
consists of 256 bits. The second message contains not the matrix share itself but the seed
of 256 bits that was use to generate it. The third message is output of a hash function
(commitment to vector ti), which consists of 256 bits. The fourth message is the share of

public key ti, the size of which is
n · k · dlog(q)e

8
bytes.

The number of communication rounds during the signing process depends on the
number of rejections E. If there are no rejections, the signature generation process re-
quires three rounds of communication between the client and server. For E rejections, the
number of communication rounds equals to 2E + 1. Table 5 shows the sizes of messages
exchanged between the client and server during the signing process using illustrative
parameters from Table 2. The first message is output of a hash function (commitment to
comi), which consists of 256 bits. The size of the second message in the signing process
comi is caused by the structure of SWIFFT hash function. To calculate HomH(wi), the
vector wi that consists of nk elements is divided into 15 input blocks of 256 bytes each. The
output produced by the homomorphic hash function consists of 15 blocks of 128 bytes
each. The third message consists of the signature shares (zi

1, zi
2), the size of which is

2 · n · k · (dlog(γ2 − β2 − 1)e+ 1)
8

bytes.

Table 4. Message sizes in the key generation process.

Messages Sizes

First message hki 256 bits
Second message Ai (as seed) 256 bits

Third message comki 256 bits
Fourth message ti 3680 bytes

Table 5. Message sizes in the signing process.

Messages Sizes

First message (hi) 256 bits
Second message comi 1920 bytes
Third message (zi

1, zi
2) 6080 bytes

6. Comparison to Prior Work

Table 6 presents the comparison of our scheme DiLizium with other lattice-based
threshold signature schemes [16,27,40]. Column “Rounds” shows the number of communi-
cation rounds in signing protocol; for the schemes with rejection sampling, it is assumed
that the rejection sample passes from the first attempt. We also provide a more detailed com-
parison with [16], due to the fact both works are based on variants of Crystals-Dilithium
and have a similar structure. We leave out the comparison with publications [21–26] as
these discuss multisignatures instead of threshold.

Entropy 2021, 23, 989 16 of 30

Table 6. Comparison with prior work.

Functionality Paradigm Rounds Security

Bendlin et al. [27] t-out-of-n Hash-and-Sign 1 Gentry et al. [41]
Boneh et al. [40] t-out-of-n Any (Universal Thresholdizer) 1 LWE

Dåmgard et al. [16] DS2 n-out-of-n FSwA 2 MLWE
Dåmgard et al. [16] DS3 n-out-of-n FSwA 3 MLWE, MSIS
Our protocol (DiLizium) 2-out-of-2 FSwA 3 MLWE, MSIS, R-MLWE

The threshold signature schemes from [16] are based on Dilithium-G, which is a
version of Crystals-Dilithium that uses sampling from a discrete Gaussian distribution for
the generation of secret vectors. The usage of Gaussian distribution helps to decrease the
number of rejections in signature schemes that follow the FSwA paradigm [16]. However,
the implementation of sampling from a discrete Gaussian distribution in a manner secure
against side-channel attacks is considered difficult. Therefore, in our scheme, we decided
to use sampling from a uniform distribution.

Due to the structure of our scheme, we use a non-standard security assumption that
was introduced in [26]. In future work, we aim to modify security proof such that it will
no longer be needed to rely on rejected Module-LWE. The security of threshold signature
scheme from [16] relies only on standard problem: Module-LWE and Module-SIS.

Additionally, we compare the message sizes of Dåmgard et al. [16] DS3 with our
scheme. Since this paper [16] does not provide an instantiation of parameters, we use
the recommended parameters for Dilithium-G from [29] for the signature scheme. We
only changed the modulus q, since by Theorem 4 [16], q should satisfy q = 5 mod 8.
We selected parameters for the homomorphic commitment scheme based on the third
parameter set from Baum et al. [42] (Table 2) such that the conditions from Lemma 5 and
Lemma 7 are satisfied. Tables 7 and 8 present parameters that are needed to compute
message sizes. We only provide a comparison of messages sent during the signing process
because messages exchanged during the key generation process are similar in both schemes
(Table 9).

The first message is the output of a hash function (commitment to comn), which
consists of 256 bits. The second message is a commitment comn. The homomorphic com-
mitment scheme defined in Dåmgard et al. [16] (Figure 7) describes a commitment to a
single ring element w ∈ Rq. In order to commit to a vector w ∈ Rk

q, it is proposed to
commit to each vector element separately. Therefore, the byte size of the second mes-

sage can be computed as
ksig · N · (m + kcom) · dlog(qcom)e

8
. The third message consists of

a signature share zn and an opening for the commitment rn. We know that, for a valid
signature share, it holds that ||zn||2 ≤ Bsig and we know that ||x||∞ ≤ ||x||2. The signa-
ture share may contain negative values, so for each coefficient of zn, one bit should be
reserved to indicate the sign. Therefore, the approximate byte size of the signature share

is
n · (l + ksig) · (dlog(Bsig)e+ 1)

8
. For a valid opening, it holds that ||rn||2 ≤ Bcom. The

value rn also may contain negative values, so for each coefficient of rn, one bit should be
reserved to indicate the sign. The approximate byte size of the commitment opening is
ksig · N ·m′ · (dlog(Bcom)e+ 1)

8
.

Entropy 2021, 23, 989 17 of 30

Table 7. Illustrative parameters for Dåmgard et al. DS3 [16].

Parameters for Signature Scheme Description Sizes

n The degree bound of the polynomials in the ring 256
qsig Modulus 8,380,781

(ksig, l) Dimension of matrix and vectors (4, 4)
η Size bound of coefficients in the secret key share 5
τ Number on non-zero elements in the output of hash function H0 60

σsig Standard deviation of the Gaussian distribution ≈17,900
Bsig The maximum l2 norm of signature share zj ∈ R

l+ksig
qsig

≈990,000

Table 8. Illustrative parameters for Dåmgard et al. [16] statistically binding commitment scheme.

Parameters for Commitment Scheme Description Sizes

N The degree bound of the polynomials in the ring 1024
qcom Modulus ≈255

(m, m′, kcom) Dimension of matrices and vectors (6, 9, 1)
σcom Standard deviation of the Gaussian distribution ≈46,000

Bcom = 4σcom
√

m′N The maximum l2 of commitment opening rj ∈ Rm′
qcom

≈17,664,000

Table 9. Illustrative comparison of DiLizium and Dåmgard et al. DS3 message sizes.

Messages DiLizium Dåmgard et al. DS3

First message 256 bits 256 bits
Second message 1920 bytes 197,120 bytes
Third message 6080 bytes 125,184 bytes

From Table 9, we can see that the size of the second and the third messages in
Dåmgard et al.’s DS3 scheme is much larger than that in DiLizium. The reason is that
scheme DS3 Dåmgard et al. uses lattice-based homomorphic commitments. For the sig-
nature scheme to be secure, it was required to have statistical binding. Parameters that
guarantee statistical binding are not very practical; however, there may exist optimal
parameter choice.

Currently, it is not possible to provide a more detailed comparison of the efficiency of
these schemes. The main reason is that neither of the works have a reference implementa-
tion yet. Therefore, we leave the implementation of the proposed scheme and a detailed
comparison for future research.

7. Conclusions

Nowadays, threshold signature schemes have a variety of practical applications. There
are several efficient threshold versions of the RSA and (EC)DSA signature schemes that are
used in practice. However, threshold instantiations of post-quantum signature schemes
are less researched. Previous researches have demonstrated that creating threshold post-
quantum signatures is a highly non-trivial task. Some of the proposed schemes yield
inefficient implementation, while others have incomplete security proofs.

In this work, we presented a new lattice-based two-party signature scheme: DiLizium.
Our construction uses the SWIFFT homomorphic hash function to compute commitment
in the signing process. We provide security proof for our scheme in the classical random
oracle model under the Module-LWE, rejected Module-LWE, and Module-SIS assumptions.
The proposed scheme can potentially substitute distributed RSA and ECDSA signature
schemes in authentication applications such as Smart-ID [11]. This would allow for using
these applications even in the quantum computing era.

Compared with the scheme proposed in [16], this work does not use sampling from the
discrete Gaussian distribution and does not use a lattice-based homomorphic commitment

Entropy 2021, 23, 989 18 of 30

scheme. In the key generation and signing processes, our scheme uses uniform sampling,
which facilitates secure implementations in the future.

The security proof of the proposed scheme is based on non-standard security as-
sumption: rejected Module-LWE. Removing this assumption from the security proof is an
important part of future work. Furthermore, the concept of homomorphic hash functions
is new and has not been properly studied yet. We aim to research the properties and usage
of homomorphic hash functions more deeply in future work. The implementation of the
proposed scheme and the exact choice of parameters for this implementation is left for
future research, which may also involve optimisation of the size of keys and signature, and
security proof against the quantum adversary.

Author Contributions: Conceptualisation, J.V.; formal analysis and scheme design, J.V. and N.S.;
security proof, J.V.; performance analysis, J.V. and N.S.; writing—original draft preparation, J.V. and
N.S.; writing—review and editing, J.V., N.S. and J.W.; visualisation, J.V.; supervision, J.W.; project
administration, J.W.; funding acquisition, J.W. All authors have read and agreed to the published
version of the manuscript.

Funding: This paper has been supported by the Estonian Personal Research grant number 920 and
European Regional Development Fund through the grant number EU48684.

Acknowledgments: The authors are grateful to Ahto Buldas and Alisa Pankova for their support
throughout the process of research.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

RSA Rivest–Shamir–Adleman cryptosystem
DSA Digital Signature Algorithm
ECDSA Elliptic Curve Digital Signature Algorithm
NIST National Institute of Standards and Technology
PQC Post-Quantum Cryptography
QSCD Qualified Electronic Signature Creation Device
LWE Learning with Errors
SIS Short Integer Solution
FSwA Fiat–Shamir with Aborts
MPC Multiparty Computation
GPV Gentry–Peikert–Vaikuntanathan
FS Fiat-Shamir
SHAKE Secure Hash Algorithm and KECCAK
DS-UF-CMA Distributed Signature Unforgeability Against Chosen Message Attacks
naHVZK no-abort Honest-Verifier Zero-Knowledge

Appendix A. Full Security Proof

This section presents detailed security proof for the two-party signature scheme.

Definition A1 (no-abort Honest-Verifier Zero-Knowledge). An identification scheme is said
to be εZK-naHVZK if there exists a probabilistic expected polynomial-time algorithm Sim that is
given only the public key pk and that outputs (w, c, z) such that the following holds:

• The distribution of the simulated transcript produced by Sim ((w, c, z) ← Sim(pk)) has a
statistical distance at most εZK from the real transcript produced by the transcript algorithm
(w′, c′, z′)← Trans(sk).

• The distribution of c from the output (w, c, z)← Sim(pk) conditioned on c 6=⊥ is uniformly
random over the set C.

Entropy 2021, 23, 989 19 of 30

Theorem A1. Assume a homomorphic hash function HomH : {0, 1}a·b → Zb
p is provably

collision-resistant and ε-regular; then for any probabilistic polynomial time adversary A that makes
a single query to the key generation oracle, qs queries to the signing oracle, and qh queries to the
random oracles H0, H1, H2, H3, the distributed signature protocol is DS-UF-CMA secure in the
random oracle model under Module-LWE, rejected Module-LWE, and Module-SIS assumptions.

Proof. Given an adversary A that succeeds in breaking the distributed signature protocol
with advantage AdvDS-UF-CMA(A), a simulator B is constructed. B simulates the behaviour
of the single honest party without using honestly generated secret keys for the computation.
Algorithm B is constructed such that it fits all the assumptions of the forking lemma. By the
definition of forking algorithm, it was required that B is given a public key and a random
oracle query replies as input. B simulates the behaviour of the honest party Pn, and the
party Pi is corrupted by the adversary. The algorithm B is defined in Algorithm A1.

Algorithm A1 B(pk, h1, . . . , hqh+qs+1).

1: Create empty hash tables HTi for i ∈ {0, . . . , 3}.
2: Create a set of queried messagesM = ∅.
3: Simulate the honest party oracle as follows:

• Upon receiving a query from A of the form (sid, msg), reply to the query as described in
SimOKeyGen (Oracle A1) and SimOSign (Oracle A2).

• If one of the oracles terminates with output of the form (0,⊥), then B also terminates with
the same output (0,⊥).

4: Simulate random oracles as follows:

• Upon receiving a query from A to the random oracle, reply to the query as described in
Algorithm A2.

5: Upon receiving a forgery σ = (z1, z2, c) on message m′ from A:

• If m′ ∈ M, then B terminates with output (0,⊥).
• Compute com′ := HomH(Az1 + z2 − ct).
• Make query c′ ← H0(m′||com′).
• If c 6= c′ or ||z1||∞ ≥ γ2 − β2 or ||z2||∞ ≥ γ2 − β2, then B terminates with output (0,⊥).
• Find index i f ∈ [qh + qs + 1] such that c′ = hi f

. B terminates with the output (i f , out =
(com′, c′, z1, z2, m′))

Oracle A1: SimOKeyGen(par, sid, msg);

The oracle is initialised with the set of public parameters par generated by Setup(1λ) algorithm.

1. Upon receiving (0, msg), if the flag kgen = true, then return ⊥.
2. Upon receiving query with sid = 0 for the first time,

(a) Initialise a machineM0.M0 uses the instructions of SimKeyGen(par, A, t)
(Algorithm A10).

(b) If Pn sends the first message according to the key generation protocol, then oracle
returns this message.

3. If machineM0 has been already initialised,

(a) Oracle gives the next incoming message msg to theM0.
(b) Oracle returns reply that was received fromM0.
(c) IfM0 finished the protocol with a local output (tn, pk), then oracle sets the flag

kgen = true.

Entropy 2021, 23, 989 20 of 30

Oracle A2: SimOSign(sid, msg);

1. Upon receiving (sid, msg), if the flag kgen = f alse and sid 6= 0, then return ⊥.
2. Upon receiving query with sid for the first time,

(a) Parse incoming message msg as message to be signed m.
(b) Initialise a machine Msid. Msid uses the instructions of SimSign(sid, tn, pk, m)

(Algorithm A7).
(c) The message to be signed m is included in the set of all queried messagesM.
(d) If Pn sends the first message according to the signing protocol, then oracle returns

this message.

3. If machineMsid has been already initialised,

(a) Oracle gives the next incoming message msg to theMsid.
(b) Oracle returns reply that was received fromMsid.
(c) IfMsid finished the protocol with a local output σ, then the oracle returns this

output.

Appendix A.1. Random Oracle Simulation

There are several random oracles that need to be simulated:

1. H0 : {0, 1}∗ → C
[C is a set of all vectors in {−1, 0, 1}n with exactly τ nonzero elements]

2. H1 : {0, 1}∗ → {0, 1}l1

3. H2 : {0, 1}∗ → {0, 1}l2

4. H3 : {0, 1}∗ → {0, 1}l3

All of the random oracles are simulated as described in Algorithm A2. Additionally,
there is a searchHash(HT, h) algorithm for searching entries from the hash table defined in
Algorithm A3.

Algorithm A2 Hi(x).
HTi is a hash table that is initially empty.

1: On a query x, return element HTi[x] if it was previously defined.
2: Otherwise, sample output y uniformly at random from the range of Hi and return HTi[x] := y

Algorithm A3 searchHash(HT, h)

1: For value h, find its preimage m in the hash table such that HT[m] = h.
2: If preimage of value h does not exist, set flag alert and set preimage m =⊥.
3: If for value h more than one preimage exists in hash table HT, set flag bad.
4: Output: (m, alert, bad)

Simulators for the key generation and signing processes were constructed using
several intermediate games. The goal was to remove the usage of the actual secret key
share of the party Pn from both processes. Let Pr[Gi] denote the probability that B does
not output (0,⊥) in the game Gi. This means that the adversary must have created a
valid forgery (as defined in Algorithm A1). Then, Pr[G0] = AdvDS-UF-CMA(A). In Game
0, B simulates the honest party behaviour using the same instructions as in the original
KeyGenn(par) and Signn(skn, m) protocols.

Appendix A.2. Game 1

In Game 1, only signing process is changed with respect to the previous game. The
simulator for the signing process in Game 1 is described in Algorithm A4. Challenge c
is now sampled uniformly at random, and the signature shares are computed without
communicating with the adversary. Changes with respect to the previous game are
highlighted .

Entropy 2021, 23, 989 21 of 30

Algorithm A4 SimSign(skn, pk, m).

1: c← C.
2: yn

1 , yn
2 ← Sk

γ−1.
3: wn := Ayn

1 + yn
2 .

4: zn
1 := yn

1 + csn
1 and zn

2 := yn
2 + csn

2 .
5: comn ← HomH(wn), send out hn ← H3(comn).
6: Upon receiving hi, search for (comi, alert, bad7)← searchHash(HT3, hi).
7: If the flag bad7 is set, then simulation fails with output (0,⊥).

If the flag alert is set, then send out comn.
8: com := comn + comi.
9: Program random oracle H0 to respond queries (m||com) with c.

Set HT0[(m||com)] := c. If HT0[(m||com)] has been already set, set flag bad8
and the simulation fails with output (0,⊥).

10: Send out comn. Upon receiving comi:

• if H3(comi) 6= hi: send out ABORT.
• if the flag alert is set and H3(comi) = hi: set the flag bad9 and the simulation fails

with output (0,⊥).
11: Otherwise, run rejection sampling, if it did not pass: send out RESTART and go to the step 1.
12: Otherwise, send out (zn

1 , zn
2). Upon receiving RESTART, go to step 1.

13: Upon receiving (zi
1, zi

2), reconstruct wi := Azi
1 + zi

2 − cti and check that HomH(wi) = comi, if
not: send out ABORT.

14: Otherwise, set z1 := zn
1 + zi

1, z2 := zn
2 + zi

2 and output composed signature σ := (z1, z2, c).

Game 0→ Game 1:

The difference between Game 0 and Game 1 can be expressed using the bad events
that can happen with the following probabilities:

• Pr[bad7] is the probability that at least one collision occurs during at most qh + 2qs
queries to the random oracle H3 made by adversary or simulator. This means that
two values comj 6= com′j were found such that HT3[comj] = HT3[com′j]. As all of

the responses of H3 are chosen uniformly at random from {0, 1}l3 and there are at
most qh + 2qs queries to the random oracle H3, the probability of at least one collision

occurring can be expressed as

(
(qh + 2qs)(qh + 2qs + 1)

)
/2

2l3
≤

(qh + 2qs + 1)2

2l3+1 , where

l3 is the length of H3 output.
• Pr[bad8] is the probability that programming random oracle H0 fails at least once

during qs queries. This event can happen in the following two cases: H3(comn) was
previously queried by the adversary or it was not queried by the adversary:

– Case 1: H3(comn) has been already asked by adversary during at most qh + 2qs
queries to H3. This means that the adversary knows com and may have queried
H0(m||com) before. This event corresponds to guessing the value of comn.
Let the uniform distribution over Zb

p be denoted as X and the distribution of
HomH output be denoted as Y. As HomH is ε-regular (for some negligibly small
ε), it holds that SD(X, Y) ≤ ε. Then, for any subset T of Zb

p, by definition of
statistical distance, it holds that Pr[X ∈ T] ≤ Pr[Y ∈ T] + ε. Therefore, for a

uniform distribution X, the probability of guessing Y by T is bounded by
1
|Zb

p|
+ ε.

Since comn was produced byB in the beginning of the signing protocol completely

independently fromA, the probability thatA queried H3(comn) is at most
1
|Zb

p|
+

ε for each query.
– Case 2: HT0[m||com] has been set by adversary or simulator by chance during at

most qh + qs prior queries to the H0. Since A has not queried H3(comn) before,
adversary does not know comn and the view of A is completely independent

Entropy 2021, 23, 989 22 of 30

from com. The probability that com occurred by chance in one of the previous

queries to H0 is at most (qh + qs)

(
1
|Zb

p|
+ ε

)
.

• Pr[bad9] is the probability that the adversary predicted at least one of two outputs of
the random oracle H3 without making a query to it. In this case, there is no record
in the hash table HT3 that corresponds to the preimage comj. This can happen with

probability at most
2

2l3
for each signing query.

Therefore, the difference between two games is

|Pr[G1]− Pr[G0]| ≤ Pr[bad7] + Pr[bad8] + Pr[bad9] ≤
(qh + 2qs + 1)2

2l3+1 + qs

(
(qh + 2qs)

(
1
|Zb

p|
+ ε

)
+ (qh + qs)

(
1
|Zb

p|
+ ε

)
+

2
2l3

)
=

(qh + 2qs + 1)2

2l3+1 + qs

((
1
|Zb

p|
+ ε

)
· (2qh + 3qs) +

2
2l3

)
.

Appendix A.3. Game 2

In Game 2, when the signature share gets rejected, simulator commits to a uniformly
random vector wn from the ring Rq instead of committing to a vector computed as Ayn

1 + yn
2 .

The simulator for the signing process in Game 2 is described in Algorithm A5.

Game 1→ Game 2:

The difference between Game 1 and Game 2 can be expressed with the probability that
the adversary can distinguish simulated commitment with random wn from the real one
when the rejection sampling algorithm does not pass. If the signature shares are rejected, it
means that zn

1 ≥ γ− β or zn
2 ≥ γ− β.

Let us assume that there exists an adversary D who succeeds in distinguish simulated
commitment with random wn from the real one with nonnegligible probability:

Adv(D) = Pr[b = b′ : A← Rk×k
q , s1, s2 ← Sk

η−1,c← C, y1, y2 ← Sk
γ−1,

w0 ← Ay1 + y2, w1 ← Rk
q, b← {0, 1}, hb ← HomH(wb), b′ ← D(A, hb, c)

| y1 + cs1 ≥ γ− β or y2 + cs2 ≥ γ− β].

Then, the adversaryD can be used to construct an adversaryAR−MLWE who solves the
rejected Module-LWE for parameters (q, k, k, γ, U, β), where U is the uniform distribution.
The adversary AR−MLWE is defined in Algorithm A6.

Entropy 2021, 23, 989 23 of 30

Algorithm A5 SimSign(skn, pk, m).

1: c← C.
2: yn

1 , yn
2 ← Sk

γ−1.
3: zn

1 := yn
1 + csn

1 and zn
2 := yn

2 + csn
2 .

4: Run rejection sampling; if it does not pass, proceed as follows:

1. wn ← Rk
q.

2. comn ← HomH(wn), send out hn ← H3(comn).
3. Upon receiving hi, search for (comi, alert, bad7)← searchHash(HT3, hi).
4. If the flag bad7 is set, then simulation fails with output (0,⊥). If the flag alert is set, then

send out comn.
5. com := comn + comi.
6. Program random oracle H0 to respond queries (m||com) with c. Set HT0[(m||com)] := c.

If HT0[(m||com)] has been already set, set flag bad8 and the simulation fails with output
(0,⊥).

7. Send out comn. Upon receiving comi:

• if H3(comi) 6= hi: send out ABORT.
• if the flag alert is set and H3(comi) = hi: set the flag bad9 and the simulation fails

with output (0,⊥).
8. Otherwise, send out RESTART and go to step 1.

5: If rejection sampling passes, proceed as follows:

1. wn := Ayn
1 + yn

2 .
2. comn ← HomH(wn), send out hn ← H3(comn).
3. Upon receiving hi, search for (comi, alert, bad7)← searchHash(HT3, hi).
4. If the flag bad7 is set, then simulation fails with output (0,⊥). If the flag alert is set, then

continue.
5. com := comn + comi.
6. Program random oracle H0 to respond queries (m||com) with c. Set HT0[(m||com)] := c.

If HT0[(m||com)] has been already set, set flag bad8 and the simulation fails with output
(0,⊥).

7. Send out comn.Upon receiving comi:

• if H3(comi) 6= hi: send out ABORT.
• if the flag alert is set and H3(comi) = hi: set the flag bad9 and the simulation fails

with output (0,⊥).
8. Otherwise, send out (zn

1 , zn
2). Upon receiving RESTART, go to step 1.

9. Upon receiving (zi
1, zi

2), reconstruct wi := Azi
1 + zi

2 − cti and check that HomH(wi) =
comi, if not: send out ABORT.

10. Otherwise, set z1 := zn
1 + zi

1, z2 := zn
2 + zi

2 and output composed signature σ := (z1, z2, c).

Algorithm A6 AR−MLWE(A, wb, c).

1: hb ← HomH(wb)
2: b′ ← D(A, hb, c)
3: return b′

As a consequence, the difference between the two games is bounded by the following:

|Pr[G2]− Pr[G1]| ≤ qs ·AdvR-MLWE
(q,k,k,γ,U,β)

Appendix A.4. Game 3

In Game 3, the simulator does not generate the signature shares honestly and thus
does not perform rejection sampling honestly. Rejection sampling is simulated as follows:

• Rejection case: with probability 1−
(

1−
|Sk

γ−β−1|
|Sk

γ−1|

)2

simulator generates commit-

ment to the random wn as in the previous game.
• Otherwise, sample signature shares from the set Sγ−β−1 and compute wn out of it.

Entropy 2021, 23, 989 24 of 30

The simulator for the signing process in Game 3 is described in Algorithm A7.

Game 2→ Game 3:

The signature shares generated in Algorithm A7 are indistinguishable from the
real ones because of the εZK-naHVZK property of the underlying identification scheme
from [13], appendix B. Therefore, the difference between Game 2 and Game 3 can be
defined as follows:

|Pr[G3]− Pr[G2]| ≤ εZK

According to the proof from [13], εZK = 0 for the underlying identification scheme.

Algorithm A7 SimSign(tn, pk, m).

1: With probability 1−
(

1−
|Sk

γ−β−1|
|Sk

γ−1|

)2

, proceed as follows:

1. c← C.
2. wn ← Rk

q.
3. comn ← HomH(wn), send out hn ← H3(comn).
4. Upon receiving hi, search for (comi, alert, bad7)← searchHash(HT3, hi).
5. If the flag bad7 is set, then simulation fails with output (0,⊥). If the flag alert is set, then

send out comn.
6. com := comn + comi.
7. Program random oracle H0 to respond queries (m||com) with c. Set HT0[(m||com)] := c.

If HT0[(m||com)] has been already set, set flag bad8 and the simulation fails with output
(0,⊥).

8. Send out comn. Upon receiving comi:

• if H3(comi) 6= hi: send out ABORT.
• if the flag alert is set and H3(comi) = hi: set the flag bad9 and the simulation fails

with output (0,⊥).
9. Otherwise, send out RESTART and go to step 1.

2: Otherwise, proceed as follows:

1. c← C.
2. zn

1 ← Sk
γ−β−1 and zn

2 ← Sk
γ−β−1.

3. wn := Azn
1 + zn

2 − ctn.
4. comn ← HomH(wn), send out hn ← H3(comn).
5. Upon receiving hi, search for (comi, alert, bad7)← searchHash(HT3, hi).
6. If the flag bad7 is set, then simulation fails with output (0,⊥). If the flag alert is set, then

continue.
7. com := comn + comi.
8. Program random oracle H0 to respond queries (m||com) with c. Set HT0[(m||com)] := c.

If HT0[(m||com)] has been already set, set flag bad8 and the simulation fails with output
(0,⊥).

9. Send out comn. Upon receiving comi:

• if H3(comi) 6= hi: send out ABORT.
• if the flag alert is set and H3(comi) = hi: set the flag bad9 and the simulation fails

with output (0,⊥).
10. Otherwise, send out (zn

1 , zn
2). Upon receiving RESTART, go to step 1.

11. Upon receiving (zi
1, zi

2), reconstruct wi := Azi
1 + zi

2 − cti and check that HomH(wi) =
comi, if not: send out ABORT.

12. Otherwise, set z1 := zn
1 + zi

1, z2 := zn
2 + zi

2 and output composed signature σ := (z1, z2, c).

Appendix A.5. Game 4

Now, the signing process does not rely on the actual secret key share of the honest
party Pn. In the next games, the key generation process is changed so that it does not
use secret keys as well. In this game, the simulator is given a predefined uniformly

Entropy 2021, 23, 989 25 of 30

random matrix A ← Rk×k
q , and the simulator defines its own matrix share out of it. By

definition, the algorithm B (Algorithm A1) receives a pre-generated public key pk as the
input. Therefore, the simulator in Game 4 is given a predefined matrix A, and in the
later games, the simulator is changed so that it receives the entire public key and uses it
to compute its shares An, tn. The simulator for the key generation process in Game 4 is
described in Algorithm A8.

Algorithm A8 SimKeyGen(par, A).

1: Send out hkn ← {0, 1}l1 .
2: Upon receiving hki:

• search for (Ai, alert, bad1)← searchHash(HT1, hki).
• if the flag bad1 is set, then simulation fails with output (0,⊥).
• if the flag alert is set, then sample An ← Rk×k

q .
Otherwise, define An := A−Ai.

3: Program random oracle H1 to respond queries An with hkn. Set HT1[An] := hkn. If HT1[An]
has been already set, then set the flag bad2 and the simulation fails with output (0,⊥).

4: Send out An. Upon receiving Ai:

• if H1(Ai) 6= hki: send out ABORT.
• if the flag alert is set and H1(Ai) = hki: set the flag bad3 and the simulation fails

with output (0,⊥).
5: (sn

1 , sn
2)← Sk

η × Sk
η .

6: tn := Asn
1 + sn

2 , send out comkn := H2(tn).
7: Upon receiving comki, send out tn.
8: Upon receiving ti, check that H2(ti) = comki. If not: send out ABORT.
9: Otherwise, t := tn + ti, pk := (A, t) and sk := (A, ti, sn, s′n).

Game 3→ Game 4:

The distribution of public matrix A does not change between Game 3 and Game 4.
The difference between Game 3 and Game 4 can be expressed using bad events that happen
with the following probabilities:

• Pr[bad1] is the probability that at least one collision occurs during at most qh queries
to the random oracle H1 made by adversary or simulator. This can happen with

probability at most
qh(qh + 1)/2

2l1+1 , where l1 is the length of H1 output.

• Pr[bad2] is the probability that programming random oracle H1 fails, which happens
if H1(An) has been previously asked by adversary during at most qh queries to the
random oracle H1. This event corresponds to guessing random An, for each query the

probability of this event is bounded by
1

qn·k·k.

• Pr[bad3] is the probability that adversary predicted at least one of two outputs of the
random oracle H1 without making a query to it. This can happen with probability at

most
2

2l1
.

Therefore, the difference between the two games is

|Pr[G4]− Pr[G3]| ≤ Pr[bad1] + Pr[bad2] + Pr[bad3] ≤
(qh + 1)qh

2l1+1 +
qh

qn·k·k +
2

2l1

Appendix A.6. Game 5

In Game 5, the simulator picks public key share tn randomly from the ring instead of
computing it using secret keys. The simulator for the key generation process in Game 5 is
described in Algorithm A9.

Entropy 2021, 23, 989 26 of 30

Algorithm A9 SimKeyGen(par, A).

1: Send out hkn ← {0, 1}l1 .
2: Upon receiving hki:

• search for (Ai, alert, bad1)← searchHash(HT1, hki).
• if the flag bad1 is set, then simulation fails with output (0,⊥).
• if the flag alert is set, then sample An ← Rk×k

q . Otherwise, define An := A−Ai.

3: Program random oracle H1 to respond queries An with hkn. Set HT1[An] := hkn. If HT1[An] has
been already set, then set the flag bad2 and the simulation fails with output (0,⊥).

4: Send out An. Upon receiving Ai:

• if H1(Ai) 6= hki: send out ABORT.
• if the flag alert is set and H1(Ai) = hki: set the flag bad3 and the simulation fails with

output (0,⊥).
5: tn ← Rk

q, send out comkn = H2(tn).
6: Upon receiving comki, send out tn.
7: Upon receiving ti, check that H2(ti) = comki. If not: send out ABORT.
8: Otherwise, t := tn + ti, pk := (A, t).

Game 4→ Game 5:

In Game 5, public key share tn is sampled uniformly at random from Rk
q instead of

computing it as Asn
1 + sn

2 , where sn
1 , sn

2 are random elements from Sk
η . As matrix A follows

the uniform distribution over Rk×k
q , if adversary can distinguish between Game 3 and Game

4, this adversary can be used as a distinguisher that breaks the decisional Module-LWE
problem for parameters (q, k, k, η, U), where U is the uniform distribution.

Therefore, the difference between two games is bounded by the advantage of adver-
sary in breaking decisional Module-LWE:

|Pr[G5]− Pr[G4]| ≤ AdvDec-MLWE
(q,k,k,η,U)

Appendix A.7. Game 6

In Game 6, the simulator uses as input a random resulting public key t ∈ Rk
q to

compute its own share tn. The simulator for the key generation process in Game 6 is
described in Algorithm A10.

Game 5→ Game 6:

The distributions of t, tn do not change with respect to Game 5. The difference between
Game 5 and Game 6 can be expressed using bad events that happen with the following
probabilities:

• Pr[bad4] is the probability that at least one collision occurs during at most qh queries
to the random oracle H2 made by adversary or simulator. This can happen with

probability at most
qh(qh + 1)/2

2l2+1 , where l2 is the length of H2 output.

• Pr[bad5] is the probability that programming random oracle H2 fails, which happens
if H2(tn) was previously asked by adversary during at most qh queries to the random
oracle H2. This event corresponds to guessing a uniformly random tn ∈ Rk

q, for each

query the probability of this event is bounded by
1

qn·k.

• Pr[bad6] is the probability that adversary predicted at least one of two outputs of the
random oracle H2 without making a query to it. This can happen with probability at

most
2

2l2
.

Therefore, the difference between the two games is

Entropy 2021, 23, 989 27 of 30

|Pr[G6]− Pr[G5]| ≤ Pr[bad4] + Pr[bad5] + Pr[bad6] ≤
(qh + 1)qh

2l2+1 +
qh

qn·k +
2

2l2

Algorithm A10 SimKeyGen(par, A, t).

1: Send out hkn ← {0, 1}l1 .
2: Upon receiving hki:

• search for (Ai, alert, bad1)← searchHash(HT1, hki).
• if the flag bad1 is set, then simulation fails with output (0,⊥).
• if the flag alert is set, then sample An ← Rk×k

q . Otherwise, define An := A−Ai.

3: Program random oracle H1 to respond queries An with hkn. Set HT1[An] := hkn. If HT1[An] has
been already set, then set the flag bad2 and the simulation fails with output (0,⊥).

4: Send out An. Upon receiving Ai:

• if H1(Ai) 6= hki: send out ABORT.
• if the flag alert is set and H1(Ai) = hki: set the flag bad3 and the simulation fails with

output (0,⊥).
5: Send out comkn ← {0, 1}l2 .
6: Upon receiving comki, search for (ti, alert, bad4)← searchHash(HT2, comki).
7: If the flag bad4 is set, then simulation fails with output (0,⊥).
8: Compute public key share:

• If the flag alert is set, tn ← Rk
q.

• Otherwise, tn := t− ti.

9: Program random oracle H2 to respond queries tn with comkn. Set HT2[tn] := comkn.
If HT2[tn] has been already set, set flag bad5 and the simulation fails with output (0,⊥).

10: Send out tn. Upon receiving ti:

• if H2(ti) 6= comki: send out ABORT.
• if the flag alert is set and H2(ti) = comki: set the flag bad6 and simulation

fails with output (0,⊥).
11: Otherwise, t := tn + ti, pk := (A, t).

Appendix A.8. Forking Lemma

Now, both key generation and signing do not rely on the actual secret key share of the
honest party Pn. In order to conclude the proof, it is needed to invoke forking lemma to
receive two valid forgeries that are constructed using the same commitment com = com′

but different challenges c 6= c′.
Currently, the combined public key consists of matrix A uniformly distributed in

Rk×k
q and vector t uniformly distributed in Rk

q. We want to replace it with Module-SIS

instance
[
A′|I

]
, where A′ ∈ Rk×(k+1)

q . The view of adversary will not be changed if we set
A′ =

[
A|t
]
.

Let us define an input generation algorithm IG such that it produces the following
input: (A, t) for the FB. Now, let us construct B′ around the previously defined simulator
B. B′ invokes the forking algorithm FB on the input (A, t).

As a result, with probability f rk two valid forgeries out = (com, c, z1, z2, m) and
out′ = (com′, c′, z′1, z′2, m′) are obtained. Here, by the construction of FB, it holds that
c 6= c′, com = com′, m = m′. The probability f rk satisfiesollowing:

Pr[G6] = acc ≤
qh + qs + 1
|C| +

√
(qh + qs + 1) · f rk

Since both signatures are valid, it holds that

HomH(Az1 + z2 − ct) = com = com′ = HomH(Az′1 + z′2 − c′t)

Let us examine the following cases:

Entropy 2021, 23, 989 28 of 30

Case 1: Az1 + z2 − ct 6= Az′1 + z′2 − c′t, and B′ is able to break the collision resistance
of the hash function (that is hard under the worst-case difficulty of finding short vectors in
cyclic/ideal lattices), as was proven in [35,36].

Case 2: Az1 + z2 − ct = Az′1 + z′2 − c′t. It can be rearranged as Az1 − Az′1 + z2 −
z2 − ct + c′t = 0, and this, in turn, leads to

[
A|I|t

]z1 − z′1
z2 − z′2
c′ − c

 = 0

Now, recall that
[
A|I|t

]
is an instance of Module-SIS problem; this means that we

found a solution for Module-SIS with parameters (q, k, k + 1, ξ), where ξ ≤ 2(γ2 − β2).
Therefore, the probability f rk is the following:

f rk ≤ AdvMSIS
(q,k,k+1,ξ) + AdvCR

Finally, taking into account that the underlying identification scheme has perfect
naHVZK (i.e., εZK = 0), the advantage of the adversary is bounded by the following:

AdvDS-UF-CMA(A) ≤
(qh + 2qs + 1)2

2l3+1 + qs ·
((

1
|Zb

p|

)
· (2qh + 3qs) +

2
2l3

)
+

qs ·AdvR-MLWE
(q,k,k,γ,U,β) +

(qh + 1)qh

2l1+1 +
qh

qn·k·k +
2

2l1
+ AdvDec-MLWE

(q,k,k,η,U) +

(qh + 1)qh

2l2+1 +
qh

qn·k +
2

2l2
+

qh + qs + 1
|C| +

√
(qh + qs + 1) ·

(
AdvMSIS

(q,k,k+1,ξ) + AdvCR
)

References
1. Shor, P.W. Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer. SIAM J.

Comput. 1997, 26, 1484–1509. [CrossRef]
2. Shor, P.W. Algorithms for quantum computation: Discrete logarithms and factoring. In Proceedings of the 35th Annual

Symposium on Foundations of Computer Science, Santa Fe, NM, USA, 20–22 November 1994; pp. 124–134. [CrossRef]
3. Chen, L.; Jordan, S.; Liu, Y.K.; Moody, D.; Peralta, R.; Perlner, R.; Smith-Tone, D. Report on Post-Quantum Cryptography; Technical

Report; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2016; [CrossRef]
4. Shoup, V. Practical Threshold Signatures. In Proceedings of the International Conference on the Theory and Applications of Cryptographic

Techniques; Springer: Berlin/Heidelberg, Germany, 2000; Volume 1807, pp. 207–220. [CrossRef]
5. Damgård, I.; Koprowski, M. Practical Threshold RSA Signatures without a Trusted Dealer. In International Conference on the Theory

and Applications of Cryptographic Techniques; Springer: Berlin/Heidelberg, Germany, 2001; Volume 2045, pp. 152–165. [CrossRef]
6. MacKenzie, P.D.; Reiter, M.K. Two-party generation of DSA signatures. Int. J. Inf. Sec. 2004, 2, 218–239. [CrossRef]
7. Lindell, Y. Fast Secure Two-Party ECDSA Signing. In Proceedings of theAnnual International Cryptology Conference; Katz, J., Shacham,

H., Eds.; Springer: Berlin/Heidelberg, Germany, 2017; Volume 10402, pp. 613–644. [CrossRef]
8. Doerner, J.; Kondi, Y.; Lee, E.; Shelat, A. Secure Two-party Threshold ECDSA from ECDSA Assumptions. In Proceedings of the

2018 IEEE Symposium on Security and Privacy, San Francisco, CA, USA, 20–24 May 2018; pp. 980–997. [CrossRef]
9. Buldas, A.; Kalu, A.; Laud, P.; Oruaas, M. Server-Supported RSA Signatures for Mobile Devices. In Proceedings of the Computer

Security– ESORICS 2017, Oslo, Norway, 11–15 September 2017; pp. 315–333.
10. SK ID Solutions. eID Scheme: SMART-ID; Public Version, 1.0. 2019. Available online: https://www.ria.ee/sites/default/files/

content-editors/EID/smart-id_skeemi_kirjeldus.pdf (accessed on 29 July 2021).
11. Solutions, S.I. Smart-ID Is a Smart Way to Identify Yourself. 2021. Available online: https://www.smart-id.com/ (accessed on 15

April 2021).
12. Cozzo, D.; Smart, N.P. Sharing the LUOV: Threshold Post-quantum Signatures. In Proceedings of the Cryptography and

Coding—17th IMA International Conference, IMACC 2019, Oxford, UK, 16–18 December 2019; Volume 11929, pp. 128–153.
[CrossRef]

13. Kiltz, E.; Lyubashevsky, V.; Schaffner, C. A Concrete Treatment of Fiat-Shamir Signatures in the Quantum Random-Oracle Model.
Cryptology ePrint Archive, Report 2017/916. 2017. Available online: https://eprint.iacr.org/2017/916 (accessed on 29 July 2021).

http://doi.org/10.1137/S0097539795293172
http://dx.doi.org/10.1109/SFCS.1994.365700
http://dx.doi.org/10.6028/nist.ir.8105
http://dx.doi.org/10.1007/3-540-45539-6_15
http://dx.doi.org/10.1007/3-540-44987-6_10
http://dx.doi.org/10.1007/s10207-004-0041-0
http://dx.doi.org/10.1007/978-3-319-63715-0_21
http://dx.doi.org/10.1109/SP.2018.00036
https://www.ria.ee/sites/default/files/content-editors/EID/smart-id_skeemi_kirjeldus.pdf
https://www.ria.ee/sites/default/files/content-editors/EID/smart-id_skeemi_kirjeldus.pdf
https://www.smart-id.com/
http://dx.doi.org/10.1007/978-3-030-35199-1_7
https://eprint.iacr.org/2017/916

Entropy 2021, 23, 989 29 of 30

14. Bruinderink, L.G.; Hülsing, A.; Lange, T.; Yarom, Y. Flush, Gauss, and Reload—A Cache Attack on the BLISS Lattice-Based
Signature Scheme. In Proceedings of the Cryptographic Hardware and Embedded Systems—CHES 2016—18th International
Conference, Santa Barbara, CA, USA, 17–19 August 2016; Volume 9813, pp. 323–345. [CrossRef]

15. Espitau, T.; Fouque, P.; Gérard, B.; Tibouchi, M. Side-Channel Attacks on BLISS Lattice-Based Signatures: Exploiting Branch
Tracing against strongSwan and Electromagnetic Emanations in Microcontrollers. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, CCS 2017, Dallas, TX, USA, 30 October–3 November 2017; pp. 1857–1874.
[CrossRef]

16. Damgård, I.; Orlandi, C.; Takahashi, A.; Tibouchi, M.Two-round n-out-of-n and Multi-Signatures and Trapdoor Commitment
from Lattices. Cryptology ePrint Archive, Report 2020/1110. 2020. Available online: https://eprint.iacr.org/2020/1110 (accessed
on 29 July 2021).

17. Moody, D.; Alagic, G.; Apon, D.C.; Cooper, D.A.; Dang, Q.H.; Kelsey, J.M.; Liu, Y.K.; Miller, C.A.; Peralta, R.C.; Perlner, R.A.;
et al. Status Report on the Second Round of the NIST Post-Quantum Cryptography Standardization Process; Technical Report; National
Institute of Standards and Technology: Gaithersburg, MD, USA 2020. [CrossRef]

18. Lyubashevsky, V.; Ducas, L.; Kiltz, E.; Lepoint, T.; Schwabe, P.; Seiler, G.; Stehle, D.; Bai, S. CRYSTALS-Dilithium. Algorithm Spec-
ifications and Supporting Documentation. 2020. Available online: https://csrc.nist.gov/projects/post-quantum-cryptography/
round-3-submissions (accessed on 29 July 2021).

19. Prest, T.; Fouque, P.A.; Hoffstein, J.; Kirchner, P.; Lyubashevsky, V.; Pornin, T.; Ricosset, T.; Seiler, G.; Whyte, W.; Zhang, Z.
Falcon: Fast-Fourier Lattice-Based Compact Signatures over NTRU. 2020. Available online: https://csrc.nist.gov/projects/post-
quantum-cryptography/round-3-submissions (accessed on 29 July 2021).

20. Ding, J.; Chen, M.S.; Petzoldt, A.; Schmidt, D.; Yang, B.Y.; Kannwischer, M.; Patarin, J. Rainbow—Algorithm Specification and
Documentation. The 3rd Round Proposal. 2020. Available online: https://csrc.nist.gov/projects/post-quantum-cryptography/
round-3-submissions (accessed on 29 July 2021).

21. Bansarkhani, R.E.; Sturm, J. An Efficient Lattice-Based Multisignature Scheme with Applications to Bitcoins. In Proceedings
of the Cryptology and Network Security—15th International Conference, CANS 2016, Milan, Italy, 14–16 November 2016;
Volume 10052, pp. 140–155. [CrossRef].

22. Fukumitsu, M.; Hasegawa, S. A Tightly-Secure Lattice-Based Multisignature. In Proceedings of the 6th on ASIA Public-Key
Cryptography Workshop, APKC@AsiaCCS 2019, Auckland, New Zealand, 8 July 2019; pp. 3–11. [CrossRef]

23. Tso, R.; Liu, Z.; Tseng, Y. Identity-Based Blind Multisignature From Lattices. IEEE Access 2019, 7, 182916–182923. [CrossRef]
24. Ma, C.; Jiang, M. Practical Lattice-Based Multisignature Schemes for Blockchains. IEEE Access 2019, 7, 179765–179778. [CrossRef]
25. Toluee, R.; Eghlidos, T. An Efficient and Secure ID-Based Multi-Proxy Multi-Signature Scheme Based on Lattice. Cryptology

ePrint Archive, Report 2019/1031. 2019. Available online: https://eprint.iacr.org/2019/1031 (accessed on 29 July 2021).
26. Fukumitsu, M.; Hasegawa, S. A Lattice-Based Provably Secure Multisignature Scheme in Quantum Random Oracle

Model. In Proceedings of the Provable and Practical Security—14th International Conference, ProvSec 2020, Singapore,
29 November–1 December 2020; Volume 12505, pp. 45–64. [CrossRef]

27. Bendlin, R.; Krehbiel, S.; Peikert, C. How to Share a Lattice Trapdoor: Threshold Protocols for Signatures and (H)IBE. In
Proceedings of the Applied Cryptography and Network Security—11th International Conference, ACNS 2013, Banff, AB, Canada,
25–28 June 2013; Volume 7954, pp. 218–236. [CrossRef]

28. Kansal, M.; Dutta, R. Round Optimal Secure Multisignature Schemes from Lattice with Public Key Aggregation and Signature
Compression. In Proceedings of the Progress in Cryptology—AFRICACRYPT 2020—12th International Conference on Cryptology
in Africa, Cairo, Egypt, 20–22 July 2020, Volume 12174, pp. 281–300. [CrossRef]

29. Ducas, L.; Lepoint, T.; Lyubashevsky, V.; Schwabe, P.; Seiler, G.; Stehle, D. CRYSTALS—Dilithium: Digital Signatures from Module
Lattices. Cryptology ePrint Archive, Report 2017/633. 2017. Available online: https://eprint.iacr.org/2017/633 (accessed on 29
July 2021).

30. Pessl, P.; Bruinderink, L.G.; Yarom, Y. To BLISS-B or not to be: Attacking strongSwan’s Implementation of Post-Quantum
Signatures. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, CCS 2017, Dallas,
TX, USA, 30 October–3 November 2017; pp. 1843–1855. [CrossRef]

31. Bellare, M.; Neven, G. Multi-signatures in the plain public-key model and a general forking lemma. In Proceedings of the 13th
ACM Conference on Computer and Communications Security—CCS’06, Alexandria, VA, USA, 30 October–3 November 2006.
[CrossRef]

32. Fiat, A.; Shamir, A. How to Prove Yourself: Practical Solutions to Identification and Signature Problems. In Proceedings of the
Advances in Cryptology—CRYPTO’86, Santa Barbara, CA, USA, 11–15 August 1986; Voloume 263, pp. 186–194. [CrossRef]

33. Lyubashevsky, V. Fiat-Shamir with Aborts: Applications to Lattice and Factoring-Based Signatures. In Proceedings of the
Advances in Cryptology—ASIACRYPT 2009, 15th International Conference on the Theory and Application of Cryptology and
Information Security, Tokyo, Japan, 6–10 December 2009; Volume 5912, pp. 598–616.

34. Güneysu, T.; Lyubashevsky, V.; Pöppelmann, T. Practical Lattice-Based Cryptography: A Signature Scheme for Embedded
Systems. In Proceedings of the Cryptographic Hardware and Embedded Systems—CHES 2012—14th International Workshop,
Leuven, Belgium, 9–12 September 2012; Volume 7428, pp. 530–547. [CrossRef]

http://dx.doi.org/10.1007/978-3-662-53140-2_16
http://dx.doi.org/10.1145/3133956.3134028
https://eprint.iacr.org/2020/1110
http://dx.doi.org/10.6028/nist.ir.8309
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
http://dx.doi.org/10.1007/978-3-319-48965-0_9
http://dx.doi.org/10.1145/3327958.3329542
http://dx.doi.org/10.1109/ACCESS.2019.2959943
http://dx.doi.org/10.1109/ACCESS.2019.2958816
https://eprint.iacr.org/2019/1031
http://dx.doi.org/10.1007/978-3-030-62576-4_3
http://dx.doi.org/10.1007/978-3-642-38980-1_14
http://dx.doi.org/10.1007/978-3-030-51938-4_14
https://eprint.iacr.org/2017/633
http://dx.doi.org/10.1145/3133956.3134023
http://dx.doi.org/10.1145/1180405.1180453
http://dx.doi.org/10.1007/3-540-47721-7_12
http://dx.doi.org/10.1007/978-3-642-33027-8_31

Entropy 2021, 23, 989 30 of 30

35. Lyubashevsky, V.; Micciancio, D. Generalized Compact Knapsacks Are Collision Resistant. In Proceedings of the Automata, Lan-
guages and Programming, 33rd International Colloquium, ICALP 2006, Venice, Italy, 10–14 July 2006; Volume 4052, pp. 144–155.
[CrossRef]

36. Micciancio, D. Generalized Compact Knapsacks, Cyclic Lattices, and Efficient One-Way Functions from Worst-Case Complexity
Assumptions. In Proceedings of the 43rd Symposium on Foundations of Computer Science (FOCS 2002), Vancouver, BC, Canada,
16–19 November 2002; pp. 356–365. [CrossRef]

37. Peikert, C.; Rosen, A. Efficient Collision-Resistant Hashing from Worst-Case Assumptions on Cyclic Lattices. In Proceedings
of the Theory of Cryptography, Third Theory of Cryptography Conference, TCC 2006, New York, NY, USA, 4–7 March 2006;
Volume 3876, pp. 145–166. [CrossRef]

38. Lyubashevsky, V.; Micciancio, D.; Peikert, C.; Rosen, A. SWIFFT: A Modest Proposal for FFT Hashing. In Proceedings of the
Fast Software Encryption, 15th International Workshop, FSE 2008, Lausanne, Switzerland, 10–13 February 2008, Volume 5086,
pp. 54–72. [CrossRef]

39. Bellare, M.; Neven, G. New Multi-Signature Schemes and a General Forking Lemma. 2005. Available online: https://soc1024.ece.
illinois.edu/teaching/ece498ac/fall2018/forkinglemma.pdf (accessed on 29 July 2021).

40. Boneh, D.; Gennaro, R.; Goldfeder, S.; Jain, A.; Kim, S.; Rasmussen, P.M.R.; Sahai, A. Threshold Cryptosystems from Threshold
Fully Homomorphic Encryption. In Proceedings of the Advances in Cryptology—CRYPTO 2018, Santa Barbara, CA, USA, 19–23
August 2018; pp. 565–596.

41. Gentry, C.; Peikert, C.; Vaikuntanathan, V. Trapdoors for Hard Lattices and New Cryptographic Constructions. Cryptology
ePrint Archive, Report 2007/432. 2007. Available online: https://eprint.iacr.org/2007/432 (accessed on 29 July 2021).

42. Baum, C.; Damgård, I.; Lyubashevsky, V.; Oechsner, S.; Peikert, C. More Efficient Commitments from Structured Lattice
Assumptions. In Security and Cryptography for Networks; Catalano, D., De Prisco, R., Eds.; Springer International Publishing:
Cham, Switzerland, 2018; pp. 368–385.

http://dx.doi.org/10.1007/11787006_13
http://dx.doi.org/10.1109/SFCS.2002.1181960
http://dx.doi.org/10.1007/11681878_8
http://dx.doi.org/10.1007/978-3-540-71039-4_4
https://soc1024.ece.illinois.edu/teaching/ece498ac/fall2018/forkinglemma.pdf
https://soc1024.ece.illinois.edu/teaching/ece498ac/fall2018/forkinglemma.pdf
https://eprint.iacr.org/2007/432

	Introduction
	Related Work
	Preliminaries
	Notation
	Definitions of Lattice Problems
	Forking Lemma
	Lattice-Based Signature Scheme
	Homomorphic Hash Function

	Proposed Two-Party Signature Scheme (DiLizium)
	Specification and Overview of DiLizium Signature Scheme
	Parameter Setup
	Key Generation
	Signing
	Verification
	Correctness
	Simulation
	Forking Lemma

	Performance
	Number of Rejection Sampling Rounds
	Signature and Key Sizes
	Communication between Client and Server

	Comparison to Prior Work
	Conclusions
	Full Security Proof
	Random Oracle Simulation
	Game 1
	Game 2
	Game 3
	Game 4
	Game 5
	Game 6
	Forking Lemma

	References

