
Embedded Software Solutions for Development of
Marine Navigation Light Systems

ERKKI MOORITS

P R E S S

THESIS ON INFORMATICS AND SYSTEM ENGINEERING C118

TALLINN UNIVERSITY OF TECHNOLOGY
Faculty of Information Technology

Department of Computer Engineering

Dissertation was accepted for the defence of the degree of Doctor of
Philosophy in Computer and System Engineering on May 20, 2016.

Supervisor: Prof. Gert Jervan
Department of Computer Engineering
Tallinn University of Technology, Estonia

Aivar Usk
Cybernetica AS, Estonia

Opponents: Prof. Jean Marc Thiriet
Université Grenoble Alpes, France

Prof. Peter Enoksson
Chalmers University of Technology, Sweden

Defence of the thesis: September 9, 2016

Declaration:
Hereby I declare that this doctoral thesis, my original investigation and
achievement, submitted for the doctoral degree at Tallinn University of
Technology has not been submitted for any academic degree.

/Erkki Moorits/

Copyright: Erkki Moorits, 2016
ISSN 1406-4723
ISBN 978-9949-83-011-4 (publication)
ISBN 978-9949-83-012-1 (PDF)

INFORMAATIKA JA S TEHNIKA C118ÜSTEEMI

Sardtarkvara lahendused valgusnavigatsiooni
s steemide arenduselü

ERKKI MOORITS

TABLE OF CONTENTS

LIST OF PUBLICATIONS..7
LIST OF ABBREVIATIONS...9
1. INTRODUCTION...11

1.1. Motivation..12
1.2. Problem Formulation..15
1.3. Contributions of the Thesis..17
1.4. Organisation of the Thesis..19

2. BACKGROUND...20
2.1. Embedded Systems..20
2.2. Microcontrollers...20
2.3. Programming Languages, Debugging and Development Tools..............27
2.4. Conclusions..37

3. CASE STUDY...39
3.1. Marine Navigation Light Systems..39
3.2. Telematics Module...41
3.3. Standards..48
3.4. Challenges in Telematics Module Software Development.....................50
3.5. Heel Angle Calculation and Buoy Collision Detection...........................53
3.6. Wave Height Calculation by Using Navigational Buoys........................56
3.7. Conclusions..61

4. THE ADVANCES IN EMBEDDED SOFTWARE DEVELOPMENT....62
4.1. Embedded Software Development Processes...62
4.2. Programming Languages – C and C++..68
4.3. Program Structures and Improvements on Testing.................................77
4.4. Multithreaded Programs on Embedded Systems....................................91
4.5. Common Optimisations Methods for Embedded Systems.....................97
4.6. Dynamic Memory..105
4.7. Conclusions..114

5. SUMMARY..116
5.1. Contributions..116
5.2. Conclusions..118

REFERENCES..119

5

ACKNOWLEDGEMENTS..126
ABSTRACT...127
KOKKUVÕTE..128
APPENDIX 1...129
APPENDIX 2...137
APPENDIX 3...143
APPENDIX 4...151
APPENDIX 5...157
CURRICULUM VITAE...163
ELULOOKIRJELDUS...165

6

LIST OF PUBLICATIONS

1. E. Moorits, G. Jervan, "Low resource demanding FOTA method for remote
AtoN site equipment", Proceedings of the OCEANS '10 MTS/IEEE Seattle,
2010, pp. 1 – 5.

2. E. Moorits, A. Usk, "A Numerically Efficient Method for Calculation of the
Angle of Heel of a Navigational Buoy", Proceedings of the 12th Biennial
Baltic Electronic Conference BEC2010: 2010, pp. 357 – 360.

3. E. Moorits, A. Usk, T. Kõuts, "Wave Height Measurement as a Secondary
Function of Navigational Buoys", Proceedings of the OCEANS '11
MTS/IEEE Kona, 2011, pp. 1 – 5.

4. E. Moorits, G. Jervan, "Profiling in Deeply Embedded Systems",
Proceedings of the 13th Biennial Baltic Electronic Conference: 2012 13th
Biennial Baltic Electronics Conference (BEC2012), 2012, pp. 127 – 130.

5. E. Moorits, A. Usk, "Buoy Collision Detection", Proceedings of the 54th
International Symposium Electronics in Marine ELMAR-2012, 2012, pp.
109 – 112.

Author's contribution and objectives of the papers to the publications is as
follows:

1. The objective of the paper was to develop a FOTA method suitable for
AtoN devices, especially for flashers and telematics modules. The paper
describes the FOTA method developed and tested by the author. Author
proposed the idea to use an external buffer memory and also implemented
new bootloader and supporting software for the telematics module. The
author prepared the paper for publications and presented it at the
conference.

2. The objective of the paper was to develop a heel angle measurement
method suitable for AtoN devices, which is used on navigational buoys.
This improvement gave valuable information for development of buoy
onboard light sources and also some information for ships about decreased
visibility range. The paper describes the method, developed and tested by
the author that allows to measure the heel angle of a buoy. The author
proposed mathematical simplifications and algorithms that allows to use
trigonometric functions on 8-bit microcontrollers without significant
overhead. This method is suitable for microcontrollers that require low

7

energy consumption. The author prepared the paper for publications and
presented it at the conference.

3. The objective of the paper was to develop a wave height measurement
method suitable for AtoN buoys. This method used on server side and is
intended to inform ships about decreased visibility range of a buoy light. All
input data is collected and transferred by using buoy onboard telematics
module. The paper describes the algorithm used for navigational buoys for
wave height measuring. Reference wave height data for tests obtained in
collaboration with the Marine Systems Institute at TUT. The author's
contribution in this paper was the development and implementation of the
mathematical solutions and server side software for the wave height
measuring in buoys-server systems. The author prepared the paper for
publications and presented it at the conference.

4. The objective of the paper was to develop a profiling method that can be
used in AtoN systems in software developement. This method was needed
as aid for finding hot spots and bottlenecks in the software of the low-power
Telematics Module. The paper describes solution for profiling embedded
programs, which are running in memory constrained systems. In proposed
solution, which involves slight modification of GNU compiler, is sent
profiling data to external program that capture profiling data. The author's
contribution is the development and testing of the solution, preparation the
paper for publications and presentation it at the conference.

5. The objective of the paper was to develop a collision detection method for
navigational buoys, this improvement allows to trigger an alarm about ship
and buoy collisions. The paper describes the method that allows to detect
collisions with a buoy and other objects. The author developed and tested
the filters and algorithms that are suitable to detect collision by using
acceleration measured by onboard acceleration sensor. The author also
prepared the paper for publications and presented it at the conference.

8

LIST OF ABBREVIATIONS

3G 3rd generation of mobile telecommunications technology

AD Analogue-to-Digital

AES Advanced Encryption Standard

AIS Automatic Identification System

AVR Modified Harvard architecture 8-bit RISC single chip
microcontroller, manufactured by Atmel

AtoN Aid(s) to Navigation, in this thesis it refers to nautical navigation

BDD Behaviour-Driven Development

CISC Complex Instruction Set Computer

CPU Central Processing Unit

DMA Direct Memory Access

DSP Digital Signal Processor

EEPROM Electrically Erasable Programmable Read-Only Memory

EPROM Erasable Programmable Read-Only Memory

FOTA Firmware Over-the-Air

GCC In this thesis it refers mostly to C compiler from GNU Compiler
Collection

GPRS General Packet Radio Service

GPS Global Positioning System, in this thesis it refers to user side
receivers

GSM Global System for Mobile Communication

IC Integrated Circuit

ICE In-Circuit Emulator, in this thesis it refers to debugging hardware
part, typically JTAG

IDE Integrated Development Environment

IO Input/Output

ISP In-System Programming

9

JTAG Joint Test Action Group – standard test access port

LAN Local Area Network

LED Light Emitting Diode

MCU Microcontroller unit – small computer on a single integrated
circuit

MISRA Motor Industry Software Reliability Association

NMT Nordic Mobile Telephony

OCD On-Chip Debugger, in this thesis it refers to debugging software
part, which is on the PC and uses ICE

PC Personal computer, an general purpose computer

RAM Random-Access Memory

RISC Reduced Instruction Set Computer

ROM Read-Only Memory

RS-485 Standard for defining the electrical characteristics of drivers and
receivers for use in balanced digital multipoint systems

SPI Serial Peripheral Interface Bus

SRAM Static Random-Access Memory

TDD Test-Driven Development

TCP/IP Transmission Control Protocol/Internet Protocol

TM Telematics Module

UML Unified Modelling Language

10

1. INTRODUCTION

The progress in the semiconductor industry has been the main reason for
replacing old mechanical devices with electronic analogues. In cars, for
example, many mechanical parts have been replaced by electronic counterparts,
and in aviation, fly-by-wire systems have been used instead mechanical ones for
many decades [28]. In marine navigation light systems, old incandescent light
bulbs that had complex mechanical light bulb replacement systems, heavy
weight reflectors and bulky lenses, have been replaced with relatively reliable
LED's (Light Emitting Diode) with small reflectors and electronic control
systems [41, 42]. While initially electronic analogues were relatively simple
circuits and in some cases it was not even a digital circuit, then in the end of
1970's, several different electronic control and monitoring systems were quite
widely introduced [28]. Recently developed systems had at least one
microprocessor unit. The success of microprocessors is due to the fact that it is
possible and also sometimes much easier to implement several different
functions in software than it is in hardware. This means that less hardware
components has to be used and it reduces power consumption of the device.
One good example of the hardware functionality replacement with software and
then resulting in reduction of hardware complexity is the software-defined radio
(SDR) [56]. All recent mobile phone base stations are based on SDR and it is
possible to extend radio base station functionality mostly by software upgrade.
However, replacing hardware functions with software rises the complexity of
the software.

The amount of transistors in top end microprocessors and microcontrollers is
increasing according to the Moore's law [64], i.e. doubling in every 18 months.
With the increase of number of transistors, also computational power rises
which sometimes, unfortunately, happens at the expense of reliability [16, 97].
Contrary to the rise in the amount of transistor and computational performance,
power consumption and cost decreases. It is not uncommon that performance of
relatively small microcontroller is comparable to or even higher than the 20-
year old computer. Furthermore, it is possible to use microcontrollers, which
have DSP (Digital Signal Processor) extensions, in complex signal processing
applications where the small power consumption is essential, for example, in
medical electronics. Since the mid 1990's, different hardware modules have
been integrated with microcontrollers. For example, most microcontrollers have
at least one configurable serial interface, while other microcontrollers have
internal AD (analogue-to-digital) converters with several input channels. Other
microcontrollers have a real-time clock, hardware for cryptographical encoding
and decoding functions, PWM (Pulse-Width Modulation) modulators and even
on chip voltage regulators. However, in terms of hardware functionality 8, 16
and lower end 32-bit microcontrollers, which are produced in the last decade,
are not significantly different from each other. Lot of them have comparable

11

functionality, as well as power consumption, although the main difference is
performance, mostly in 16 and 32-bit mathematical functions.

Compared to the similar microcontrollers from some decades ago, modern
microcontrollers have more processing power and a lot of additional hardware.
This additional hardware allows to use many different safety providing add-ons
or add additional tasks to the device. It also allows to use much more powerful
microcontrollers in places where it is essential that the device has minimal
power consumption. Higher performance microcontrollers that have many
additional features, in turn, may attract device manufacturers or software
developers to add many different features into existing devices. However,
additional functionality dramatically increases complexity of the
microcontroller firmware and also significantly increases the time required for
firmware testing, and it requires different development tools and testing
methodology [82]. Inevitably, the growth of complexity reduces reliability of
the firmware [21]. While microcontrollers allow to use relatively large and
complex programs, it is very difficult to create such small microcontroller based
systems that would be just as dependable as the large system with many internal
protection mechanisms.

1.1. Motivation

All marine visual navigational aids are heavily dependent on the weather
conditions, which have mostly negative influence to visibility range. Therefore
it is wise to inform users and supporting staff about decreased visibility range,
for this purpose buoys have heel angle [67] and wave heights [69] (by using
server side support) measurement capability. Large number of buoys can also
detect collisions [68]. In addition, several multifunctional modules exists which,
for example, have an integrated TM (Telematics Module) and flasher. However,
these additions and supporting applications increase significantly complexity of
the program and are also potential cause of errors. Due to the increase of the
TM complexity and flasher software, it is not very realistic to expect that tests
that are carried out in the laboratory environment reveal all bugs. Therefore, TM
and flashers have also remote software updating capability [65]. Also the
majority of the AtoN devices are used in the places where power is limited, but
there are requirement for minimal power consumption. Therefore, the best
method to detect code section with high CPU or IO usage, and hence energy
consumption is profiling [66]. Due to the complexity of the AtoN modules
itself, environmental conditions and other limitations, it is necessary to use low
power microcontrollers, different software developement approaches, software
tools and solutions for the microcontroller software which is used in the AtoN
systems.

Due to the limited capabilities of microcontrollers it is not feasible to use
exactly the same programming languages, development tools and testing
methods in embedded systems that are used for software development in
conventional computer programs. Typically, tools and development methods

12

that are used in embedded software development, are in some way limited and
have less functionality and, therefore, it is not possible to use all available
testing methods. Embedded software development has some issues that are
described below.

As any other software, embedded software may contain bugs, some of them
are originating from coding, some are from task formulation, and some are
related to underlying system, like hardware, kernel or libraries. In addition to
hardware bugs or faults the remaining bugs are related with software. The most
difficult bugs to detect and repair belong to the kernel or libraries. To this
category belongs also memory corruption and fragmentation issues. While
memory corruption bugs are relatively common in embedded systems, the
fragmentation is not so common. Memory corruption can happen in two
different ways. First one is caused by invalid pointers, and the second one is
caused by stack overflow, which may happen even during normal program
operation; the last one is quite common for larger embedded software. Pointer
related bugs can be discovered by static code inspection tools, mostly by lint
and its derivatives [31, 110]. Many latest compilers allow some pointer
checking as well. Pointer related bugs can also be found by manual code
inspection. Stack overflows can sometimes be detected by compilers, which
have such capability, however, this is quite new addition to compilers [29]. It is
possible to reduce significantly stack overflow caused effects by adding
additional memory after each thread block [15]. Yet, this approach may mask
stack overflows and work only with kernels that have such support. In
multithreaded environment, it is possible to detect stack overflows before or
after context switch by checking guard (also called “canary”) pattern in stack
area end or by checking stack pointer value and comparing it with maximum
stack address. Both approaches add some overhead to scheduler and require
several bytes of free memory in thread structures [85], nevertheless, these
methods are not usable in non-threaded programs. Without threading or if
threading does not have stack overflow detection capabilities, the stack
overflows are mostly detected manually by trial and error. Manual overflow
detection usually has a great disadvantage, in order to find the exact location of
the bug, some source code modification is needed, however, any source code
modification may cause stack overflow bug to change its place.

Memory fragmentation issues in embedded software are related to non-
regular memory allocations and deallocations. These allocations may even
occur in normal program execution. In multitasking programs, it is difficult to
foresee all fragmentation occasions [28, 71, 72, 82]. Therefore, to avoid
memory fragmentations, it is preferred not to use any dynamic memory at all.
Described issues are quite rare in desktop computers where the kernel is a
protection layer between hardware and higher level software. This layer can
also report and protect faulty memory access by using kernel based memory
fault detection on special hardware such as MMU (Memory Management Unit).
MMU and supporting kernel, however, is absent in smaller microcontrollers.
The absence of such fault detection support causes major problems in embedded

13

software development process and this is the most noticeable shortage on all 8-
bit microcontrollers. This in turn makes the program writing and testing for
smaller microcontrollers quite complex task.

Software testing in embedded systems is also more complicated and time
consuming than it is in desktop computers [28]. In desktop computer software
development relies heavily to automated testing (unit tests) but large number of
small embedded software is tested manually. Unfortunately, this is time
consuming and error prone. The main reason for using manual testing is that it
is difficult to create automated tests for hardware related code. In embedded
systems, it is possible to carry out some testing by using emulators, simulators
and OCDs (On-Chip-Debuggers), but none of them is capable of debugging non
trivial multitasking programs and usually interfere with program real-time
behaviour. On the other hand, debuggers that are used in desktop computer
program development have much less above described side effects and have
more functionality than debuggers that are used in embedded systems.

The differences between development and deployment platforms play a
significant role of the embedded software development. The differences can be
divided into two main categories – differences between the software platforms
and differences between the hardware platforms.

In many cases, the difference between the software platforms is the
difference between kernels, operating systems or libraries. In the best case, the
differences are so small that it is not required to change any program code or are
limited only to some missing functions or headers, which can be detected by
compilers or linkers, and are relatively simple to fix. In the worst case, most
functions are present but may behave slightly different or have different side
effects. Bugs that are caused by lastly mentioned differences are much more
difficult to find and fix. Also software platform differences become important
when it is required to use automated tests; a code that is used by unit tests
should compile on different hardware and software platforms.

Another significant difference between embedded systems and desktop
computer is the hardware access. In embedded systems, it is relatively easy to
access the lower level hardware but in desktop systems, such operations are
limited to privileged users and special functions. This access also includes the
use of hardware based watchdog timers which usually is different on embedded
and on non embedded systems. While embedded systems access directly
watchdog hardware, use non embedded systems special drivers or kernel
functions to access to this hardware. Also embedded systems and desktop
computers have available very different power saving profiles and program
access to these profiles. While most embedded programs take into account
energy consumption and selects most appropriate power profile, but in desktop
computers and their programs, the power consumption is rarely a concern.
Using profile that consume less energy, in turn, affects program structure and
algorithms.

14

In between to the above mentioned hardware and software differences are
such issues that are caused by hardware but play role in software. For example,
when communicating with other devices or computers over the network is the
main problem that difference architectures may have different word length and
byte order (endianness). PC (Personal Computer) usually has 32 or 64-bit word
length, but small embedded systems typically have 8 or 16-bit word length. This
area also includes program optimisations, which depends on underlying
architecture.

Despite the above mentioned issues that are mostly related to the IO
(Input/Output), memory and debugging, the embedded system software
development has several similarities to the desktop computer software
development. These are mainly due to the similarity of standard shared libraries
and programming languages. Most shared libraries have nearly the same base
functionality, although same library in embedded system has usually fewer
functions than in desktop systems, but it is possible to use majority of language
features in embedded software development.

Above mentioned shortcomings and differences are the main sources of
programming errors, and unfortunately most of them do not surface before final
program release. Since most small embedded systems do not have any hardware
or software mechanism to prevent fatal errors, the safest way is to use more
powerful microcontrollers, which have certain fault protection mechanisms.
However, many embedded systems have quite limited power budget and some
of them are installed in remote sites. In these cases it is not reasonable to use
more powerful microcontroller.

1.2. Problem Formulation

Issues described in the previous section are the main contributors for program
errors or bugs. These issues may become critical in places where navigation
light devices are mainly used, mostly on buoys and also in applications which
are the main targets of the published works. Theoretically, it is possible to avoid
large number of bugs by using simulations and static code checking. Although
both significantly reduce overall amount of bugs, they are not capable of
detecting all of them. It is also difficult to develop one unified testing method
for all embedded systems, as the same scale embedded systems may be used in
very different places and have different tasks and interfaces. Another
problematic area is the peculiarities of writing embedded software code.
Initially, small embedded systems were replacements for complicated digital
logic and traditionally, electronic engineers wrote the embedded software but in
most cases they did not have enough knowledge to write and test larger scale
software [28]. Unfortunately, this also applies to quite big number of authors
who write about embedded software and, therefore, there is very little literature
available about larger-scale embedded software projects.

The thesis describes problems that have raised while developing a new
Telematics Module for AtoN (marine Aid to Navigation) systems. It was not

15

possible to resolve the problems that are described in this thesis by the methods
that are used in non-embedded software development. The following six
peculiarities and limitations can be considered as the main contributing cause of
the complexity of TM embedded software writing and testing:

• Large number of embedded systems use battery as the main energy
source, e.g., most marine AtoN systems and therefore, it is essential that
the energy consumption of the device is as small as possible. The main
problem with such low-power and constrained systems, is that
programs which are used in these systems can use only relatively
simple algorithms, also available memory size is limited and in several
cases system responsiveness is limited as well. Due to this, all program
parts should be rather simple, and all complicated data processing
should be done externally on a more powerful computer such as AtoN
monitoring server or on other dedicated computer.

• The main programming languages for embedded software are C and
C++, but initially both were developed for much more powerful
computers (especially C++), and have such language constructs or
contain libraries that are too resource consuming for small embedded
systems, such as AtoN systems. Unit tests also depend on programming
languages; some languages allow to write unit tests more easily. The
main problem is to find such program structures, which allows to write
more easily larger programs, without consuming significant amount of
microcontroller's resources and allowing to use automated testing.

• One of the major problems in embedded software development is
software testing; nearly all embedded programs interact directly with
hardware, but unit tests, which reduce significantly overall testing
efforts, need to run on different hardware, hence needed to emulate or
mock target hardware [33]. Another issue with automated tests is that
these tests require that programs and functions have certain ending or
exit points. Large number of embedded programs are created as super-
loop programs, which are inherently endless programs, and it makes it
difficult to write unit tests for these programs. Normally, in this case,
the test runs forever. In embedded software development large extent
OCD is used for debugging, but OCD might have great impact for
software real-time behaviour. The AtoN devices, which are the main
target of this thesis, have quite high complexity and it is not feasible to
use only OCD. The main problem is to find or create such program
structures that take small amount of microcontroller resource and
allows to create fixtures for automated testing.

• In embedded systems watchdog is used nearly in every program. It is
trivial to use watchdog in super-loop programs. However, in
multithreaded programs where watchdog should monitor several
threads simultaneously, it must also take into account states of all

16

threads and this is not achievable by using common practices. Therefore
the main problem with watchdogs timers, is that no universal method
for using watchdog timers with multitasking programs exists.

• Differences between device registers widths and endianness. The
embedded systems control and configurations software runs mostly on
32- or 64-bit computers and these computers may also have different
endianness. Therefore the main problem is to effectively convert data
between different endianness and different register width. In general,
these conversions are rather simple, but so far no compiler can do it
efficiently enough; these functions are subject to manual optimisation.
Similar issues arise with cryptographical functions.

• In larger systems, such as Linux computers, kernel with special
hardware is responsible for avoiding memory fragmentation. But in
some rare cases, and depending on the application, it is possible that
without memory fragmentation protection, embedded system may
exhaust free memory. Therefore, the main problem is to develop a
mechanism that reduce memory fragmentation as much as possible and
at the same time to be suitable for use in smaller embedded systems.

Due to the above listed peculiarities, software development for embedded
systems is significantly different than for desktop computers. Currently there is
no known specific recommendations or other work for this field, especially for
low power AtoN systems.

1.3. Contributions of the Thesis

The main contributions of this thesis are the methods, improvements and
solutions suitable for development of new generation low-power AtoN systems,
mainly the Telematics Module, which is important component in the navigation
light systems that is used on Estonian costal areas. Developed module has also
low power consumption, which consequently limit memory size and
computational power, but on the other hand provide an capability for long-term
autonomous work. To create firmware for such module, software development
methods that are significantly different from methods that are used for regular
software development have to be used. Software that is based on developed
methods is reused also in other devices, mainly in new generation flashers.
Additionally, the methods that are presented in this thesis allow to add different
functions to TM, like wave height measuring [69], buoy heel angle
calculation [67] and collision detection [68] or when server supports measuring
vibration in fixed navigational structures.

In order to achieve the above described design goals, several new techniques
had to be researched and developed. The main contribution of the thesis are as
follows:

17

• Discussion on how to use effectively program structures that are well
known from C++ (however, not very memory and CPU efficient) but
absent in C language. The main focus in presented examples are on
smaller microcontrollers, which have separated data and program
memories. The presented methods can lead to significant memory
savings, if wisely used. As demonstrated in development of the TM
module.

• Testing methods suitable for software testing in low power embedded
systems. Embedded software for smaller systems is often developed
without any automated tests. Only on larger embedded systems and
desktop computers such tests are used. This thesis proposes program
structures and functions, which consume small amount of processor and
memory resource, and allows to use automated tests. Also workarounds
for code that are not automatically testable are described. Described
methods simplify use of CI (continuous integration) servers for testing
and regression detection. Presented solution also allows to use
lightweight unit tests to test hardware. It is also possible to use such
lightweight hardware test programs with FOTA (Firmware Over-The-
Air) [65] in order to remotely test deployed TM hardware.

• Effective methods for resetting watchdog in non trivial multithreaded
programs. It is possible to reset watchdog timer only by one thread or
process. However, in multi-threaded programs watchdog has to be
shared between tasks and when at least one thread locks, it causes
watchdog to reset. The current thesis describes two different approaches
that can be used with multithreaded programs. Pros and cons about
different schedulers for multithreaded programs that utilise watchdog
timer are also given. Presented methods allows effectively use
watchdog in multithreaded programs, which has least one long running
task. This method was used for wave height measurements [69].

• Code optimisation methods for deeply embedded systems. Although,
most optimisation is carried out by the compiler, still some functions
which are quite often used for simple data manipulation, are not
optimised even by latest compilers. In this thesis several ways of how to
optimise simple data manipulation routines are shown. Also two
optimisation algorithms for AES (Advanced Encryption Standard)
cryptographical functions, which give significant memory savings or
increase processing speed, are described. It is possible to use the
described solutions in such cases when minimal processor or memory
resource consumption is required. At developing the TM, described
methods were used for buoy heel angle [67] and buoy collision
detection [68] and it also gave opportunity to encrypt communication
channel.

18

• Alternative approach for standard dynamic memory handling routines.
This solution uses memory pool and allows to check memory overruns
(writing beyond the end of an allocated block). Although this
improvement is not related to any publication included to this thesis, it
is used at developments of the Telematics Module.

1.4. Organisation of the Thesis

This thesis is organised into 5 chapters. The proposed methods and developed
systems are described and in the publications attached to the thesis.

An introductory Chapter 2 gives a brief overview of microcontrollers and
their history and a short overview of programming languages and other
development tools, which are used in embedded systems design.

Chapter 3 gives an overview about the main usage area of described
improvements and how the methods have been used in development of low
power embedded AtoN systems. The chapter also gives a small historical
overview about AtoN systems, which are used in Estonia, and development of
the AtoN systems; it gives a brief overview of suitable standards and coding
guidelines, which were used at development, and reasons and implementations
of presented improvements.

The main part of this thesis is Chapter 4 that describes the improvements in
development methodologies of embedded systems, discusses suitable
programming languages, highlights different program structures, discusses
about software testing and usage of dynamic memory, and gives a small
optimisation about substitution table (S-Box) calculation in AES cryptographical
algorithm.

In Chapter 5, concluding remarks and summary of the thesis are presented.

19

2. BACKGROUND

The central subjects of this thesis, embedded systems and microcontrollers,
which are used in AtoN devices, are very different from regular computers. As
the AtoN systems have grown steadily into much more complex systems,
simple logic or analog circuits sufficient to control and monitor these devices.
To control such complicated systems, most appropriate is to use programmable
devices, mostly microcontrollers. As the AtoN systems usually operate in
remote places, where minimal power consumption is essential, are also used
microcontrollers that have minimal power consumption and therefore have quite
simple architecture and low performance.

This chapter provides a definition of embedded systems and an overview of
the most widespread microcontroller families, their history and development
tools. While microcontrollers that are used in AtoN systems have also
significantly different development tools, and use different programming
language constructs, then background information of the microcontrollers,
programming languages and development is provided as well.

2.1. Embedded Systems

An embedded system is a computer system designed to perform dedicated
tasks [37]. In many cases embedded system is a part of a larger system, which is
intended to communicate directly with other computers or other embedded
systems [40]. Many embedded systems have also real-time computing
constraints. Physically, embedded systems range from small and power efficient
portable devices like watches, to large stationary installations like factory
controllers. The complexity of embedded systems varies from very low – with a
single microcontroller chip – to high – with multiple computational units. The
common denominator of embedded systems is presence of processing units that
are either microcontrollers, DSPs or general-purpose processors. Typical
embedded system functions as a standalone system with long-term operation.

Current thesis focuses on standalone embedded systems, which have one low
power microcontroller for several concurrent tasks. All specific tasks that may
require a lot of resources, like network communication, have a dedicated MCU
(microcontroller unit); this task partitioning is quite widely spread in low power
systems such as car alarms, telematics systems and also in marine navigation
light systems.

2.2. Microcontrollers

Unlike general processors, microcontrollers contain most of the required
hardware in one IC (Integrated Circuit). Microcontroller has at least a CPU
(Central-Processing-Unit) that includes ALU (Arithmetic and Logic Unit), a

20

control unit, registers, program-memory (generally a flash memory), RAM
(Random-Access Memory), I/O devices and a clock system (Figure 2.1).

Figure 2.1: Minimal MCU

Two different instruction sets exist, which are used in microcontrollers.
While the earlier microcontrollers tend to have a CISC (Complex Instruction
Set Computer) instruction set, the recent microcontrollers have more likely a
RISC (Reduced Instruction Set Computer) instruction set. Microcontrollers with
CISC instruction set have usually more sophisticated architecture; it has
microprograms that allow to execute several base instructions in one instruction.
Due to the more intuitive instructions and to the microprograms, it is much
easier for the programmers to work with CISCs, and the executable programs
tend to be smaller. While the assembly language being the main programming
language in the 1970s, the CISCs had a clear advantage as majority of the
programs were written in this language. Contrary, the RISC instruction set
processor has much simpler architecture, mainly because of the lack of
microprograms and control unit being less complex. For programmers,
programs for RISC instructions tend to be more complex and 30% larger [48].
However, in many cases these programs are a little bit faster than similar
programs for CISC instruction set. The downside of the RISC processors is the
program length; as most processors execute programs from RAM, and for
executing program that has the same functionality as program for CISC
processor it requires more RAM and the same also applies to cache. The RISC
instruction set is quite complicated and therefore it makes it difficult to directly
write assembler programs. However, the instruction set allows to write efficient
compilers, and most RISC instruction set microcontrollers have relatively good
compiler support. The main advantage of the RISC processors is simplicity;
these processors contain less transistors and take less silicon die area, which
makes its power consumption lower than in similar size CISC processors, and
thus makes this instruction set more appropriate for microcontrollers [13, 39].

In addition to different instruction sets, microcontrollers may also differ by
architecture. There are two different architectures available – Harvard
architecture, (Figure 2.2) and von Neumann architecture (Figure 2.3).

21

Figure 2.2: Harvard architecture in programmer's view

Harvard architecture has separate data and instruction busses, and memories,
allowing transfers to be performed simultaneously from both busses. This
architecture does not allow to use simple unified memory. In fact, some
processors and microcontrollers that are Harvard machines by the most rigorous
definition, may have operations to read and/or write program memory as data.
For example, AVR microcontrollers by Atmel have load-program-memory
(LPM instruction) and store-program-memory (SPM instruction) instructions.
Having separate address spaces create certain difficulties for high-level
language compiler and library developers, as most compilers do not support the
notion that read-only data might be in a different address space from normal
writeable data and thus need to be read using different instructions.

On the other hand, von Neumann architecture has only one bus that is used
for both data transfers and instruction fetches. Therefore, on von Neumann
architecture data transfers and instruction fetches must be scheduled; they
cannot be performed at the same time. The von Neumann architecture is a
design model that keeps program and data in same memory and is accessible by
using the same instructions. It has inability to operate simultaneously on both
busses. This inability may slow down microcontroller overall program
execution speed, but it can be compensated by using different caches for data
and program. For this architecture it is relatively simple to make self-modifying
programs or bootloaders1.

At the present time, the majority of smaller microcontrollers have the
Harvard architecture, for example, all the AVR and PIC microcontrollers. The
only exception is the Texas Instruments MSP430, which has the von Neumann
architecture [93]. However, larger ARM based microcontrollers have a modified
Harvard architecture, which in programmer's view is very similar to the von
Neumann architecture. In programmer's view, the major difference between
both architectures is that the Harvard architecture microcontrollers have

1 This is used widely in larger computers where main program is loaded from disk to
RAM.

22

separated program and data memories, and need different instructions for
accessing these memories. As most of the modern compilers and languages are
initially designed for the von Neumann architecture, the compilers usually do
not support access to both Harvard memories. Program parts which need access
to program memory should use separate functions, which are usually not related
to the compiler.

2.2.1. Brief History of Different Microcontrollers Families
The rapid development of microcontrollers began in the early 1970s with the
increased IC integration and development of first 4-bit microcontrollers. Due to
the high degree of integration of microchips it was natural that besides the
microprocessor also additional hardware was added into single crystal. First, the
RAM was added, then timers and input-output ports, and eventually other
peripherals.

In the early 1990's, microcontrollers with electrically erasable memories
such as flash and EEPROM (Electrically Erasable Programmable Read-Only
Memory) became available. These microcontrollers could be erased and
programmed by using only the electrical signals. Prior to the electrically
erasable and programmable memories, microcontrollers often required
specialised erasing and programming hardware – typically ultraviolet light (UV)
source for erasing and higher voltage for programming. Therefore most
microcontrollers before the 1990's had two different variants – one had an UV
erasable EPROM (Erasable Programmable Read-Only Memory) for program
memory, which had a transparent quartz window on the top of the IC package,
and the other was PROM (Programmable Read-Only Memory) variant. These
microcontrollers were one-time programmable (OTP) microcontrollers.
Technically, however, both were the same microcontrollers. It was possible to
reprogram UV erasable microcontrollers twenty to forty times. Due to the IC
packages, UV erasable microcontrollers were much more expensive than their
traditional OTP versions. Microcontrollers with EPROM and OTP program-
memories are not being produced any longer, mostly Flash and FRAM
(Ferroelectric RAM) versions are in production.

4 – bit Microcontrollers: The first microcontroller was developed by Texas
Instruments in 1971: TMS1000 [92]. This microcontroller went to production
three years later, in 1974. Unlike Intel 4004 microprocessor TMS1000 has all
supportive parts in the same silicon die such as RAM, ROM (Read-Only
Memory), counters, timers and I/O interfaces. This microcontroller had very
simple design, it had only two 4-bit general registers, 1-level deep stack, no
interrupts. TMS1000/TMS1200 had 43 instructions and TMS1100/TMS1300 54
instructions. Initially, this microcontroller family had only 6 different
microcontrollers – 28 pin TMS1000, 40 pin TMS1200, TMS1070 and
TMS1270 microcontrollers, which had direct interface for high voltage
displays, and TMS1100 and TMS1300, which had twice more RAM.

23

Besides Texas Instruments, other different manufactures have also produced
4-bit microcontrollers for over 30 years: National – COP400, NEC – μPD75xx,
OKI – MSM84xx, Fujitsu – MB884xx, Panasonic – MN14xx/MN15xx,
Toshiba – TMP/TCP 43xx/46xx/47xx/47Pxxx, Hitachi – HD/HMCS 4x/4xxxx
and Atmel – MACH4.

8 – bit Microcontrollers: In this subsection are listed some 8-bit
microcontroller families, which are widely used or is substantially influenced
the development of microcontrollers.

F8 microprocessor was the predecessor to 8-bit microcontrollers. This
microprocessor was developed in 1975 by Fairchild and it required at least one
external microchip for program storage (F3851 or F3856). In 1977, Mostek
released an MK3870 [70] microcontroller, which was an F8 microcontroller
with integrated memory.

The first widely spread 8-bit microcontroller family was MCS-48 (8048
microcontrollers), it was developed and released by Intel in 1976. This CISC
microcontroller had 96 instructions, 1 kB of program memory, 64 bytes of
RAM, 8-bit timer and 3 I/O ports [46]. MCS-48 was quite widely used in
desktop computers for supportive tasks, for example, IBM used it in the PC
keyboard controller [43]; modern computers have integrated the same chip into
super I/O device.

Another well-known microcontroller, PIC1650, was developed in 1977 by
General Instrument Corporation. This simple RISC microcontroller had 56
instructions, 32 8-bit registers, 512x12-bit program ROM, four I/O ports and
internal clock generator [30]. In 1993, Microchip (spin off from General
Instrument Corporation) introduced PIC16C84. This microcontroller had on-
chip EEPROM for program-memory.

In 1981, Intel introduced new Harvard architecture microcontroller MCS-51,
commonly referred as 8051. This new microcontroller differed significantly
from its predecessor 8048. It has different architecture and instructions. This
MCU has 111 base instructions, 6-source/5-vector interrupt structure, 128 bytes
of RAM, 4 kB of ROM, dual 16-bit address bus, four 8-bit bi-directional I/O
ports, one full duplex serial port, two 16-bit counter/timers and a on chip
oscillator [47]. While Intel no longer manufactures the MCS-51, binary
compatible derivatives are still produced from various manufactures. In
addition, several companies offer MCS-51 derivatives as IP (Semiconductor
Intellectual Property) cores for the use in FPGA (Field-Programmable Gate
Array) or in ASIC (Application-Specific Integrated Circuit) designs.

In the early 1970s, Motorola (now Freescale Semiconductor) started a
project that in 1975 developed their first microprocessor, the MC6800, which
was a base for all MC68XX/MC68HCXX microcontrollers [73]. The MC6800
was a CISC microprocessor with the von Neumann architecture [48]. This
microprocessor has a 16-bit address bus, which could directly access 64 kB
memory, and an 8-bit bi-directional data bus. It has 72 variable length

24

instructions with seven addressing modes for a total of 197 instructions. It has
four interrupt vectors – restart vector, separate no-maskable interrupt (NMI),
software interrupt and hardware interrupts. In 1979, a MC6800 based 8-bit
microcontroller MC6801 [75] and MC6805 [74] were developed. Both had on-
chip RAM, ROM and I/O on a single die. The MC68HCXX was a successors to
MC68XX microcontrollers, this family has several improvements like lower
power consumption, higher performance (MC68HC11) and additional hardware
(MC68HC08 [26, 77]). The MC68XX and MC68HCXX series microcontrollers
were popular in automotive applications.

Atmel developed its first 8-bit microcontroller in 1996. This microcontroller
was AT90S1200; a 8-bit RISC microcontroller, which has slightly modified
Harvard architecture. It has 89 instructions, 32 general purpose registers, 1 kB
of program memory, 64 bytes of EEPROM, one timer, analogue comparator,
on-chip oscillator and 15 programmable I/O lines [2]. Unfortunately, the first
Atmel microcontroller did not have any SRAM (Static Random-Access
Memory), and it had very limited C compiler support2. Soon after the release of
the AT90S1200, a series of different microcontrollers were also released –
AT90S2313, AT90S2323, AT90S2343, AT90S4414, AT90S4434, AT90S8515
and AT90S8535; all of them had SRAM that allows to call virtually unlimited
number of sub functions. Among the other AVR microcontrollers the
AT90S8515 [1] was produced, which was intended to replace 8051
microcontroller. This microcontrollers has a 40-pin DIP (Dual In-line Package)
package with the same pinout as the 8051 microcontrollers, including the
external multiplexed address and data bus. The only difference was the reset
line polarity. In 2008, Atmel released family of new 8/16-bit AVR XMEGA
microcontrollers. These microcontrollers had more memory, DMA (Direct
Memory Access) controllers, event system, cryptographical engine and high
speed AD and DA (Digital-to-Analogue) converter, and also some 16-bit
instructions. All experiments that have been made in the context of this thesis
are carried out on the 8-bit AVR microcontrollers.

16 – bit microcontrollers: The 16-bit microcontrollers are not so widely used
as the 8 and 32-bit microcontrollers, only some 16-bit microcontrollers have
been spread more widely.

In 1982, Intel released its first MC-96 family of microcontrollers that were
widely used in car industry. Another well-known 16-bit microcontroller family
is the Texas Instruments MSP430 [93]. This RISC microcontrollers have the
von Neumann architecture and are designed as measurement controllers and
work on batteries. Besides Intel and Texas Instruments 16-bit microcontroller
families, several other 16-bit microcontrollers families exist:
STMicroelectronics ST10 families, Infineon (former Siemens) C166 family
microcontrollers and Freescale HC12 [25] and HC16 [76].

2 Subroutines use stack to pass parameters and return addresses, therefore, it is quite
complicated to call any subroutine without using RAM.

25

32 – bit Microcontrollers: The best known 32-bit microcontrollers are the
ARM architecture based RISC microcontrollers. This architecture was first
developed in the mid 1980's for personal computers. The ARM uses quite
simple instruction set and therefore these processors have relatively low
transistor count and quite low power dissipation; this makes ARM architecture
well suited in power constrained devices. As of 2016, in terms of quantity, ARM
architecture microprocessors are globally the most widely produced 32-bit
instruction set architecture. The first ARM processor was produced in 1985, and
ever since the ARM has released many different 32-bit processors, from ARM1
to ARM11. In 2004, ARM launched Cortex-M3 core processors. This Cortex-M
family was intended to replace 8- and 16-bit microcontrollers but these are still
not so widely spread as 8- and 16-bit microcontrollers. In 2005, ARM launched
Cortex-A series microprocessors, which were intended to be used in high
performance applications such as tablets and mobile phones. As ARM Holdings
itself does not produce processors, it licenses the processor architecture to chip
manufactures. Many microcontroller manufactures have some ARM versions in
their product portfolio.

Atmel developed its 32-bit microcontrollers in 2006, the AVR32
microcontroller family. This microcontroller family has completely different
architecture than the 8-bit AVR microcontrollers. The AVR32 architecture
consists of two different micro-architectures: the AVR32A and AVR32B. Both
of the microarchitectures provide different performance, have different
registers, peripherals, instruction set, and different power consumption [5]. The
AVR32A microarchitecture targets cost-sensitive, lower-end applications. All
AVR32UC microcontrollers have this microarchitecture. The AVR32A
microarchitecture saves chip area at the expense of slower interrupt handling.
AVR32B, on the other hand, targets applications where more processing power
is needed like ethernet switches. AVR32B microcontrollers had mostly the same
functionality and application areas as ARM microcontrollers, however, starting
from 2013, the whole microcontroller family of AVR32B is not produced any
longer.

Microchip introduced 32-bit microcontroller family in the end of 2007 –
PIC32MX microcontrollers. The initial device line-up is based on the MIPS32
M4K core [62]. The PIC32MX family is pin-compatible with most of the 16-bit
Microchip PIC24/dsPIC microcontrollers. This microcontroller family has quite
similar functionality as the ARM microcontrollers, and therefore PIC32
microcontrollers are not very widely spread.

64 – bit Microcontrollers: Unlike the 64-bit processors, only a few 64-bit
microcontrollers have been developed. The main argument against the 64-bit
microcontrollers is the high power-consumption. In 2011, ARM Holdings
announced the release of new 64-bit architecture [34] processor's family: the
ARMv8. This family has two different processors: Cortex-A53 and Cortex-A57.
Both are targeted to tablets, smartphones and other mobile devices.

26

Toshiba also developed MIPS based 64-bit microcontroller TX4927 [95] in
2001. This 64-bit microcontroller has 200 MHz clock and PCI (Peripheral
Component Interconnect) interface, SDRAM (Synchronous Dynamic Random
Access Memory) memory controller, DMA controller, interrupt controller with
18 sources, 2 channel UART (Universal Asynchronous Receiver/Transmitter), 3
channel 32-bit timer/counter, and 16-bit bi-directional I/O ports. TX4927 has
relatively low power requirements, it operates at 200 MHz and consumes only
1.5 W [96]. It has the same performance as typical desktop computer.

A brief overview about different microcontroller families was given in the
above sections. While this thesis is focused to embedded software, are also
outlined most significant properties from the programmers point of view. In
programmer's view, the most important properties of microcontrollers are as
follows:

1. Memory protection – the presence or absence of memory protection
unit determines the complexity of a program development.

2. The size of the memory – mostly, the size of the RAM sets the upper
limit for the size and complexity of a program.

3. Registers – having more CPU registers allows to write more efficient
program.

4. CPU clock – for non signal processing or time critical application, in
most cases, CPU frequency does not play significant role. However,
since lower clock frequency gives significant power saving, it is used in
several embedded systems.

5. CPU endianness – it plays role when embedded system need to
communicate with other systems.

2.3. Programming Languages, Debugging and Development Tools

The following section gives a short overview about programming languages,
supporting programs, debugging tools, hardware for program memory
uploading and hardware for simplification of embedded software development.

2.3.1. Programming Languages in Embedded Systems
This section gives a general overview about programming languages, which are
used in embedded software development, together with some programming
languages that had importance in history.

Machine Code
It was quite natural that in the first microcomputers a machine code was used
for programming [79]. Since machine code programs can be written without
using computers, this programming method was also used in the very beginning
of a computer era when there were no computers to write programs. The major
shortcoming of machine code programming was that the program code had to

27

be entered by hand to a program memory or to a device that held a program,
which was time consuming and prone to errors. In 1970's when rapid
development of microcontrollers began, relatively powerful computers were
available, which allowed to use translators or at least had possibilities to write
them. At the present time it is not known that machine code is being used. It is
used only for teaching purposes.

Assembly Language
Assembler was the next step from machine code to higher level programming
languages [38]. The creation of assembler language was greatly motivated by
computers that were able to run translators and larger and more complex
programs.

Unlike the higher level languages, one assembler instruction is also one
machine instruction and translator does not change the order of instructions.
Some translators are able to use preprocessors, it makes possible to use macros
such as GCC (C compiler from GNU Compiler Collection) uses. Assembly
language allows to translate symbolic memory addresses into relative or
absolute addresses. For example, Listing 2.1 presents two instruction infinite
loop, which always jumps one instruction backwards. In this example translator
changes addresses L1 and L2 into real memory addresses, which may be 0x100
for L1 and 0x101 for L2.

1:L1: nop ; no operation
2:L2: jmp L1 ; jump back to nop instruction

Listing 2.1: Example of symbolic addresses.

Depending on the jmp instruction and architecture, the parameter L1 may be
symbolic or absolute address.

Possibility to create functions that are not feasible in higher level languages
is the main advantage of the assembly language. For example, when it is needed
to take maximum performance from a computer, when the compiler does not
support some specific instructions or it needs to create extremely small
programs. In embedded systems use of assembly language several places is not
uncommon. For example, functions that access the AVR program memory use
special program memory read instructions, which are available only in
assembler. Assembler can also be used when it is needed to call no-operation
nop3 instruction.

Another advantage of assembly language is the possibility to access directly
the registers, which in higher level languages is more complicated if possible at
all. Such flexibility gives to a programmer more control over the hardware.

There is a common misconception that assembler programs are always faster
than programs in higher level languages but this is true only for smaller

3 Higher level language usually does not have nop instruction, this instruction is most
likely required for delay loops.

28

programs. Lot of programs that are written in C have similar performance as
similar assembly programs. The argument whether the programs in higher level
language are faster or smaller is true with non-trivial programs – a program
should have at least 500 to 1000 effective lines of code in C, and the compiler
should also use maximum optimisation, and programming language should
allow quite low level hardware access. If all above mentioned conditions are
met, the C program can be as fast as the same program in an assembly language.
This is mainly due to the fact that code reuse and optimisation in a large
assembly language program is more complex, and it is much harder to use
microcontroller registers as effectively as higher level languages do; this is
mainly limited due to human capabilities. Of course, this argument can be
relatively easy to refute but doing so would take a lot of time even for an
experienced programmer.

Due to the availability of higher level programming languages the only
argument for assembly language would be a need to use instructions that are not
supported by a compiler or to create small and extremely fast programs.
However, it is still valuable to know assembly language at some level;
debugging of embedded software is not possible without knowing it.

C, Ada and Other Procedural Higher Level Languages
Higher level languages (procedural languages) were introduced mainly for
achieving the following goals: to speed up the programming process, to reduce
the coding errors, and to get more readable programs. Programs in procedural
languages can be as fast as programs that are written in assembler. However,
developing, debugging and porting are much easier. Some higher level
languages, such as C, have several features that can have side effects or are
implementation defined. Therefore, it is relatively easy to make coding errors,
which are difficult to find, for example, pointer related bugs. Furthermore,
program speed, size and memory footprint are highly dependent on compiler
and optimisation level. Debugging from disassembled code may be difficult:
compilers may eliminate some portions of code, which do not have any visible
effect, like badly written delay loops.

The most commonly used programming language for embedded systems is
C. This language was is created by Dennis Ritchie between 1969 and 1973 at
AT&T Bell Laboratories [35]. One of the first uses of this language was to
rewrite the UNIX operating system, which had previously been written in
assembly language. C language is quite different from other languages. Unlike
many higher level languages it has quite low level access to hardware, but it is
not dependent on underlying hardware, like assembly. The C language design
provides constructs that map efficiently machine instructions to higher level
languages and therefore the language is used in several different applications
that were formerly coded in assembly. It makes C relatively easy to use in
embedded systems, but the downside is that it is quite complicated to create
larger programs, which are not directly related to hardware. However, the C
language allows to use such constructs that have undefined or implementation

29

defined behaviour and it is also possible to use code constructs that are hardly
understandable [35]. Therefore it is difficult, but not impossible, to use the C
programming language in safety critical programs [45]. The main advantage of
C languages is that almost every platform has a C compiler and most
microcontroller vendors have tools and supporting documentation.

For embedded software development, safer programming languages, like
Ada, are used. Ada was originally designed by a team led by Jean Ichbiah of CII
Honeywell Bull under the contract of the United States Department of Defence
(DoD) from 1977 to 1983 in order to supersede many programming languages
used by the DoD. It had built-in language support for explicit concurrency,
offering tasks, synchronous message passing and protected objects. This
language was originally meant for embedded and real-time systems. Ada is not
so widely spread in 8-bit microcontrollers, mostly because of popularity of C
and compiler support limitations. The first Ada port for AVR GCC and its
runtime was released in the mid 2000's. Due to the small number of users who
use Ada programming language on AVR microcontrollers, the development of
Ada compiler was quite slow and currently many features are still missing. It is
quite likely that many features will never be implemented for AVR or similar
microcontrollers. The main reason for missed features is the small memory and
low computational power. Therefore it is not reasonable to use Ada's GCC port
on 8-bit microcontrollers; and using Ada in the context of this thesis was not
even considered.

For smaller, mainly for the 8-bit microcontrollers, the C programming
language is one of the most frequently used languages; and in some extent the
assembler is used. All the other languages, except C++, can be considered as
experimental or too resource demanding.

C++, Ada and Other Translated Object Oriented Languages
Increasing microcontroller performance allows to create more complex
programs, that consequently leads to a need of object-oriented languages. The
most commonly used object-oriented programming language for
microcontrollers is C++; 20% of projects use it [86]. The second widely used
object-oriented language is Ada, which falls within the scope of a several
percent. In larger systems with more powerful microcontrollers, object-oriented
languages are used in much greater extent. Below the functionality of the C++
and Ada, and the usage of those languages in embedded systems are briefly
discussed.

C++ was developed between 1979 and 1983 by Bjarne Stroustrup as an
object oriented improvement to C [89]. While C++ is an object-oriented
improvement to C and contains quite resource demanding functions, it is still
possible to write relatively complex programs that are as fast as C programs,
even by using inheritance. C++ has two features that may cause problems when
using these in embedded systems: dynamic memory allocation and virtual
functions. When using frequent dynamic memory allocation and deallocation,

30

the new and delete operators, it is possible that the memory may fragment,
which consequently introduces quite difficultly detectable bugs, and therefore
using dynamic memory in embedded systems is not recommended [72]. The
second possible source of problems are virtual functions. These functions can be
overridden during program execution. For calling these functions, indirect calls
are used that read function addresses from a table in RAM. As microcontrollers
have limited amount of memory and virtual function table, which is placed into
RAM, makes using this feature in embedded systems problematic. This
shortcoming may not be actual when using newer compilers as it is able to
devirtualize functions. The good side of C++ is that this language has lot of
supporting tools like many different UML (Unified Modelling Language) tools
and unit testing frameworks, which ease the programming significantly.

In embedded systems it is possible to use Ada alongside the C++. The major
downside of Ada is that this language is used in very limited areas and only few
compilers support it. The AVR GCC has also unofficial Ada port [23] but this
has quite limited functionality.

Using object-oriented languages in smaller microcontrollers may not give
significant benefit. The main advantage is in the complex programs, especially
where it is necessary to model some external process or use unit tests. It is
necessary to keep an eye on virtual functions and other resource demanding
functions.

Java and other Interpreted Object Oriented Languages
The interpreted languages have quite big advantage over translated languages.
One program is able to run without re-compilation on different architectures. All
interpreted languages have an interpreter as a middle layer between program
and hardware, and underlying OS. This layer is responsible for program
execution. Besides universal program, the interpreter gives one layer security
between underlying OS and programs; program errors are caught by interpreter.
It also allows to create and test program in one architecture and run on other.
Most widely known interpreted languages are Java and Python and both are
used on larger embedded systems.

Java was developed by James Gosling at Sun Microsystems and first
released in 1995. Unlike many other interpreted languages, Java programs are
compiled to architecture independent Java bytecode and executed by Java
virtual machine (jvm). The main Java drawbacks are that this language requires
quite powerful processor to run and initially it was not intended to be used in
real-time systems. As Java is not designed to perform real-time tasks it has
several functions that have unpredictable timings. The main reason of
unpredictable timings is the stochastic delays, which are caused by garbage
collector. The garbage collector is responsible for unused memory management;
it might start its tasks at an unpredictable time [87]. Some real-time virtual
machines also exist that do not have such drawbacks [32, 44], but these virtual
machines are not very widely used. In soft real-time and non-real-time

31

embedded systems, Java is used in Javelin Stamp microcontrollers and on some
Lego NXT bricks, and also in Android OS.

Another well-known interpreted language is Python [83], which was
developed by Guido van Rossum in 1991. Unlike Java, the Python has a weak
type system; the declared data or variables do not have distinct type. Due to the
weak type system this language is not best suitable for embedded systems.
Weak typing system might create hard-to-detect bugs, for example, it might
change numerical variable to string variable. The compiler is not able to
determine type conflicts during compilation and therefore it is possible bugs,
which are caused by invalid conversion, surface during an exploitation phase;
probably the most well known type conversion error was an Arianne 5
accident [54], although it was not related to weak types. The only known
devices where Python is used are Telit GSM/GPRS/3G (Global System for
Mobile Communication/General Packet Radio Service/3rd generation of mobile
telecommunications technology) modems, like GM862 [91].

Both interpreted languages have similar independence of the underlying
platform. However, if the program was developed on a different architecture, it
might be necessary to carry out additional hardware related testing on a target
hardware. Programs in both languages are not well suitable for hardware
control; programs in Java and Python need some intermediate layer which has
access to hardware. The layer makes hardware access resource consuming.

Other Programming Languages
In addition to the above listed programming languages, there are very few
alternative programming languages for embedded systems. For Programmable
Logic Controllers (PLC), ladder diagrams are used most often, which mostly
describe relay logic and therefore are not suitable for generic programs. Another
alternative for embedded devices is LabVIEW. This is also not very common
among programmers, mostly because of the high price and it uses graphical
dataflow programming language “G” instead of regular text based programming
languages.

2.3.2. Supportive Programs
In order to create executable programs, linkers are needed. These programs take
all compiler generated object files, find missing functions from libraries and put
them together into one executable file. When the linker creates final executable
file, the compiler usually calls it automatically; in most cases, programmers do
not see when linker is called. Even when the user needs to call linker during a
final compilation step, it is still mostly called through compiler. The compiler
has more information about the target system and it recognises the types of
microcontrollers. The linker however needs to know only some of the
microcontroller's family information.

For PC programs the linking is the final step in program compilation. Yet
microcontrollers need one additional step to generate program image from an

32

executable image. A memory image loading is needed because microcontrollers
do not have such resource or operational system to load executable programs,
resolve libraries, and place final executable into the right memory. Therefore it
is required that these steps should be carried out before loading a program into
microcontroller memory. Memory image creation software is typically
distributed within same package with linker. With GNU tools is this program is
part of binutils package.

2.3.3. Standard Libraries
Typically, embedded programs use at least one shared library, but unlike
desktop computers that use dynamic libraries, only static libraries are used.

Programs, which are written in C, most likely use a C standard library: libc.
In embedded systems, this library has quite limited functionality; it has few
resource consuming functions and many string manipulation functions. Quite
often various functions that are related to floating point mathematics or threads
are missing. Typically, every smaller (8 or 16-bit) microcontroller family has its
own architecture specific libc, AVR has avr-libc [99], MSP430 has
msp-libc [103] or newlib [104]. Several different libc implementations are
available For 32-bit microcontrollers, for example, newlib, uClibc [106],
dietlibc [100] and EGLIBC [102]. Libc implementations, which are for smaller
microcontrollers, contain usually some additional functions like delay functions,
checksum calculations and EEPROM access functions.

In addition to libc, some reusable code is included with the compilers. Every
compiler version has its own set of functions and with the release of every new
compiler, additional library functions seem to be added.

2.3.4. Debugging
Testing and debugging in desktop computers usually takes same effort as
coding. In embedded systems, however, testing and debugging can take twice as
much time as coding. This difference is mostly due to the limited development
tools and target hardware. Embedded systems present special problems for
programmers as it usually lacks user interfaces and storage media, which is
available in desktop computers. These shortcomings make simulators, emulators
and in-circuit software debugging tools essential for many common
development tasks. The following section outlines some of the most commonly
used debugging tools.

Simulators and Emulators
For debugging smaller embedded programs, it is possible to use special
programs and hardware that emulates target microcontroller.

One possible option to imitate microcontroller is to use special simulation
software. The simulator uses only software to simulate target hardware and
therefore it is not possible to use it for real-time task simulations. Many

33

simulators are developed by microcontroller manufacturers and are included in
their official IDE (Integrated Development Environment), for example, Atmel
has the AVR simulator in their Atmel Studio (former AVR Studio).

Many open source simulators exist: mspsim for the MSP430 microcontroller
and SimulAVR for AVR microcontrollers. Unfortunately simulators are not very
widely used. The main reason for this is a relatively complex simulation
process: to examine one specific code fragment it might be necessary to input a
lot of different input signals in order to reach the desired state. In most cases it
is done by setting or clearing some graphical interface input fields. This makes
the use of simulators quite ineffective for large programs. It is reasonable to use
simulator only when no real target hardware is available or a test program has
such input values that are impossible in test environment.

More accurate method for debugging a program is to use an emulator: a
device that is connected to PCB (Printed Circuit Board) instead of a
microcontroller. Traditionally, emulator has a plug that inserts into the socket
where the microcontroller chip would normally be placed. Unlike the simulator,
which is pure software, the emulator is a device that imitates very precisely real
hardware. Emulators are usually capable of storing full call trace and therefore
it is possible to retrieve a command sequence that was executed before an error
occurred. An emulator control software is usually integrated into IDE; it is
similar to simulator control software.

As emulators are relatively complicated devices, most of them are produced
by microcontroller manufacture's and have quite high price. Despite the good
properties of the emulators, the recent microcontrollers do not have any
supporting emulators. This is most likely caused by the fact that most recent
microcontrollers have too high clock frequency or have packaging which
contains too many IO lines. This makes it technically difficult to design such
emulator that acts like a real hardware. In newer microcontrollers, which do not
have emulators, it is possible to use an ICE (in-circuit emulator).

JTAG, ICE and OCD
An ICE (in-circuit emulator) is a hardware device that is used to debug a
software of an embedded system by using its onboard microcontroller. This
term covers all hardware debuggers, including debuggers that provide access
using JTAG (Joint Test Action Group – standard test access port) connection to
on-chip debugging hardware on standard production chips.

In most cases, ICE uses JTAG connection, mainly because that JTAG
hardware interface uses only four or five electrical signals and it is able to
access large amount of microcontroller hardware. In addition to debugging, it is
possible to use JTAG as a software uploading tool. Although the JTAG is the
most popular connection type, but microcontrollers may have an alternative to
JTAG; for example, Atmel uses debugWIRE interface, which uses only one
wire, and this alternative interface has the same functionality as the JTAG. The
ICE, which is connected to MCU, are sometimes called in-circuit debuggers

34

(ICD), to distinguish the fact that they do not replicate the functionality of the
MCU but instead control already existing MCU.

In the context of this thesis the OCD4 is the whole debugging system that
includes ICE as the hardware part, and also has debugger as software part. With
the OCD it is possible to control and monitor all microcontroller interfaces,
change values in registers, use microcontroller outputs for controlling real
hardware and execute program step by step. It is also possible to pause program
execution and notify developer in some predefined condition; for example,
when a program counter points to some specific memory address. More
advanced OCDs [84] allow to watch thread states but architecture used in this
thesis does not have such support. Typically IDE's also have quite good support
for OCD; for example, many modern IDE's are capable of binding an ICE sent
data to a source code, and it is possible to watch program behaviour in higher
level language like C, which simplifies debugging significantly.

Other Debugging Methods
In addition to above mentioned debugging tools, two additionally alternative
methods exist. One is to use the microcontroller’s serial port for output of
program states, and another is to toggle general purpose IO pin when some
parameter has changed. Both methods are also described in the Section 4.3.5 –
Debugging and Testing.

Sending microcontrollers output states through serial port is the easiest
debugging method. When the microcontroller has other interfaces for data
outputting, then it is possible to use any other serial interface, like JTAG [7]. In
most cases only one way communication from microcontroller to developer's
computer is used. This testing method uses some text or binary data outputting
command (like printf in C), which may take quite long time and may use some
kernel functions like interrupt handlers. Data outputting is the main bottleneck
of this method and therefore it cannot be used in places that are related to print
functions itself, scheduler, interrupt routines and bootloader. Also, it may have a
big impact to real-time tasks and most likely change inspected memory function
requirements. Most often it is used as ad-hoc debugging tool; print calls are
inserted to find and to remove a bug. Should there be no other more effective
methods for monitoring program behaviour then this method is the most
preferred. This is also used widely in hobby projects.

Second method for monitoring program behaviour is to use one free
microcontroller output pin. The main idea of this method is to change pin output
state when a microcontroller program's internal state changes, for example, a
program executes true branch from if-else sentence. Unlike the other debugging
approaches, this approach has very low overhead; it needs very few instructions
to complete, and mostly does not influence any real-time tasks. However, this
method is usable only for simple programs. Using a proper measuring
equipment, it is possible to monitor some time critical functions like measuring

4 OCD may also refer to software part, which is between debugger and ICE.

35

some process duration or synchronisation [28]. Due to the limitations of this
simple method it is usable only for very simple programs.

2.3.5. Microcontroller Memory Programming
Before using a device, which is fitted with an integrated microcontroller, it
needs to have a software programmed into its program memory. For smaller
microcontrollers, it can be programmed by using four different methods: SPI
(Serial Peripheral Interface Bus), JTAG or similar serial programming, using a
bootloader or a special memory chip programmer.

Most of the smaller microcontrollers have at least one interface to access
program memory, typically, these are SPI interfaces. But it is not uncommon
that some microcontrollers use JTAG interface only, like MSP430. The main
benefit in using serial programming is that it needs little hardware: only three to
five wires to connect from programming adapter to microcontroller. This
method allows to access program memory without needing to physically
remove any memory chip. The only drawback is the requirement for special
programming software and adapter. This programming method is also known as
In-System Programming (ISP).

Another relatively common programming method is using a bootloader. A
bootloader is a small program that is programmed into microcontroller special
memory section to enable reprogramming microcontroller program memory. In
ISP programming mode, the microcontroller acts as an external memory, which
is connected to programmer, but when using bootloader, the microcontroller
acts like ISP programmer. It receives a program from a communication interface
like a serial port, or from an external memory like SD card, and loads it into
microcontroller program memory. In most cases the bootloader can use
microcontroller’s full functionality. The only limitation is the size of the
bootloader's program, which should be some few kilobytes. In some embedded
systems the bootloader supports program loading from encrypted images [3, 4].
In order to use a bootloader, one should have write access to microcontroller
program memory. Before using a bootloader, it is required that a bootloader is
loaded into program memory with methods like SPI or JTAG.

Older microcontrollers, which have external program memory chips, were
programmed by using special programmes for memory chips. For programming
an external memory chip, a memory chip which contained a program, had to be
taken out and then inserted into a programmer. Similar methods are used in
larger embedded systems for transferring program from an external memory
card like SD card or CompactFlash. Lot of smaller microcontrollers have an
internal or external program memory, which is programmable through
programming interface and therefore this method is not used widely on
microcontrollers.

36

2.3.6. Development Boards
During embedded system development, some systems have very limited IO
functionality or do not have suitable hardware for development process. Some
systems do not have required debugging interfaces and some older
microcontrollers have only one time programmable memories. To cope with
these shortcomings, most of the microcontrollers have development or
evaluation boards, which have the interfaces required for debugging and
additional memory. The main difference between a development board and an
end product is that the development boards are intended to be used in laboratory
environment. These boards usually do not have such enclosure that could be
used in outdoor environment and many of them do not have a power supply.

Two different types of development boards exist: generic, and for a specific
product. The generic development boards have less hardware. Generic boards
have typically lots of different onboard IO connections, but have less supportive
hardware. The main drawback of this kind of boards is the difficulty to connect
external high speed hardware; most of the interfaces are unprotected and are
quite sensible to external electrical interferences. These boards are suitable in
the beginning of the product development phase for experimenting with some
isolated function or just for an engineer or for a student who is interested to be
acquainted with the targeted microprocessor and learn how to program it. The
best examples are Atmel 8-bit AVR development boards STK500 [9] and
STK600 [10]. Both boards support most of the AVR microcontrollers.

Another kind of development boards and modules are product specific
boards. These contain most required hardware for specific tasks, and also some
additional hardware for debugging and interfaces for experimenting with other
electronics. In some cases these can be used as prototyping but usually are not
usable outside laboratory environment. The best examples in this category are
the Texas Instruments EZ430, which is a wireless development board, and
Atmel Butterfly, which is mainly an LCD development board. Both have one
microcontroller soldered and the main purpose is to demonstrate one specific
function.

In addition to above listed development boards, third party development
boards exist. These are intended to be used with some simple products, which
do not have very strict environmental requirements, for example, Ethernut
board [51].

2.4. Conclusions

The Chapter 2 gave background information for the current thesis. The first part
described embedded systems in general: systems that has one single purpose.
Different microcontrollers with word lengths of 4, 8, 16, 32 and 64 bits exist.
The 4-bit microcontrollers are mostly historical. A 64-bit microcontroller is still
quite new and not widely used. Currently the most popular microcontroller is
the 32-bit ARM architecture microcontroller, which is used largely in mobile

37

phones and tablets and as well as other electronics. From the energy
consumption view, the 8 and 16-bit microcontrollers have very low power
consumption; however, some later 32-bit microcontrollers have similar
characteristics. Developments and researches that were made within current
thesis are mainly targeting 8-bit microcontrollers.

In embedded systems the most frequently used programming language is C.
The next popular programming language is C++ and all other languages are not
used so often. The C language was initially intended for rewriting UNIX
operational system but it also allows to write quite effectively hardware related
programs. The C++ was created as an improvement for C; this language is
much more complicated but it allows to write object oriented programs for
embedded systems that are as effective as similar programs in C.

Additional programs and hardware such as linkers, debuggers, OCDs and
programmers are also required for embedded software development. Linkers are
programs that take object code and produce the final executable program.
Memory image generation programs are within the same software collection
with linker. It is possible to use OCD, emulators and simulators for debugging
embedded software. Finally, a program and hardware that is needed in
embedded software development is a programmer and its software that allow to
upload final program image into microcontroller’s program memory.

38

3. CASE STUDY

In following sections a brief overview about usage area of developed methods,
improvements and publications, which are related to this thesis are given.
Primarily, initial development stage and later improvements of new generation
AtoN on site Telematics Module (in the following texts are used abbreviation
TM), are described. Many problems, which raised during the TM firmware
development, were not solvable by using commonly known software
development methods. The majority of problems were related to FOTA [65],
buoy onboard heel angle calculations [67] and buoy collision detection [68].
Some issues occurred during the development of wave height measurement
application [69]. To ease the TM software development a lightweight profiling
application [66] was developed. Also, the methods that were used in similar
situations on larger computers did not solve the raised problems. Hence, the
new methods were required, which were quite specific for TM, but fortunately
quite universal in order to use in other similar systems.

3.1. Marine Navigation Light Systems

In this section an overview of microcontroller usage in marine navigation light
systems is given. This section gives a description of Telematics Module. All
improvements in embedded software development described in Chapter 4 are
used for development of this module.

3.1.1. Aid to Navigation and Remote Monitoring Systems
In maritime safety, visual navigation light systems – typically buoys and
lighthouses - play an important role. Several different ship based systems that
utilise GPS (Global Positioning System) and AIS (Automatic Identification
System) are also used. Despite the GPS and AIS based systems, lights based
navigation is very useful in places where ship speed is quite high, in some cases
even over 35 knots. It is also required that all such AtoN devices have higher
reliability characteristics than consumer electronics.

Although AtoN navigation light systems have quite robust hard- and
software, it is not very rare that some devices may have failures or damages
from the environment. Most failures are caused by component failure and can
be repaired by supporting staff. Damages may have several different causes –
damages where humans are involved, like ship and buoy collision or damages,
damages which are caused by animals or birds, like cormorants or seagulls who
can damage electronic equipment, and damages that are caused by natural
phenomena, like storms. All of them are handled like failures and require
supporting staff intervention. Therefore it is essential that such devices have
remote monitoring and control capabilities – AtoN telematics that allows to
inform ships and supporting staff about AtoN device state or faulty AtoN

39

devices. Remote monitoring and control mechanisms also allow supporting staff
to retrieve detailed device information, like battery voltage, buoy heel angle, or
reconfigure device functionality and even update device firmware.

Also other natural phenomena like wind and waves may have quite big
impact to marine safety. Both have similar effect on navigational buoys – they
decrease navigation light visibility range. Decrease of visibility range is related
to the physical dimensions of light source, it has vertically very narrow beam
(mostly because of low energy consumption), and even quite small waves may
have noticeable effect to visible distance. In installation sites where sea is icing
in winter times, it is possible that ice pushes buoy to very high heel angle, or
push it under the ice or drag to another location. Therefore it may be beneficial
to inform supporting staff about sea or buoy conditions that are caused by high
waves or ice.

In AtoN devices GSM based solutions, like SMS (Short Message Service)
messages and GPRS/3G data connections are used for remote monitoring and
controlling. Also, some systems that are too far from shore use satellite or radio
communication. In receiver side there is a monitoring server, which has
typically a database for storing device operational history and have device
controlling capabilities. Depending on devices and communication interfaces
server may have additional tasks, like collecting measurement data from buoys,
calculate wave heights, or update AtoN device firmware. Monitoring server
software is typically quite complicated set of different programs, it has several
isolated programs – one for communicating to AtoN devices (front end part),
another for user interface (back-end part), for database and for complicated
calculations (like wave height processing).

3.1.2. Estonian AtoN System
Typical visual AtoN systems consist of light sources like buoys or lighthouses,
telematics modules, servers, databases and user interfaces. In Figure 3.1 an
AtoN system, which is used in Estonia is described. This system contains also
synthetic AIS radio network. In buoy a light source, flasher, GSM/GPRS
telematics module, GPS and battery packs are installed. Similar systems are
installed to lighthouses, but there instead of a battery pack some other power
source, like solar panel, wind generator or connected to power network is used.
The main tasks of TM in this system is to monitor other devices, compute
distance from installation location to last known location and transfer
monitoring and distance information over GSM/GPRS network to server. Server
collects all messages from different buoys and lighthouses, stores important
information to database and sends buoy operational information to AIS server,
which sends buoy info to AIS transmitter network. The server stores also
acceleration data and forwards it to wave height calculation submodules, which
calculate wave heights and store results to the database.

40

Similar AtoN solutions with synthetic AIS are developed by several
manufactures, like Sealite [109], but solutions from different manufactures are
not compatible with each other.

Also several buoy AtoN electronics manufactures (like Sabik [108],
Tideland [112], Pharos Marine [107], Zeni Lite Buoy [113] and SRT Marine
Technology [111]) have AIS transmitters, which can be installed on a buoy.
Systems that use such transmitter do not need complicated server part, but if
something goes wrong, it is much more difficult to analyse what has happened
with buoy, and most cases it is required to send maintenance staff to check the
buoy. Also such transmitters tend to consume more energy than synthetic AIS
buoys.

3.2. Telematics Module

The most complex part in the described AtoN system is TM (Telematics
Module). This module is responsible for most communications and
synchronisation tasks. As all described improvements in this thesis are related
directly with TM, in following section short overview about this module
evolvement is given.

3.2.1. History of Telematics Module
Estonian made remote control and monitoring capabilities AtoN telematics was
introduced in 1994. First telematics modules had NMT (Nordic Mobile
Telephony) modems and in order to report AtoN status to server, it was needed
to take data call to central phone number. In 1999 NMT network was closed and

41

all modems, which were installed to AtoN devices, were replaced by GSM
modems, and as this change involved only modems, most of the software
remained the same.

Telematics modules with GSM modems were used until 2005. After 2005
telematics modules were updated with GSM/GPRS modems, and 3G modem
support was added in 2011. New GPRS modems are able to communicate by
using a TCP/IP (Transmission Control Protocol/Internet Protocol) connection
instead of using GSM data calls. In new generation TM also all other electronics
were replaced. Most notably new microcontrollers were added that had lower
energy consumption, more computational power and more additional hardware.
Unlike the old microcontrollers, which were programmed only in assembly
language, the new microcontrollers had C and C++ compiler support (GCC
compiler support), therefore, all telematics module software was rewritten, and
also a small kernel was added. Improvements in programming language and
kernel made feasible to add several additional functions such as onboard buoy
heel angle calculation [67], buoy collision detection [68] and also the
FOTA [65] capability. In 2006, a new front-end server was introduced, which
was able to communicate over TCP/IP network with new GPRS modems. The
new server also supported receiving raw acceleration data from telematics
module, which gave it a possibility to calculate wave heights in special server
side program. A wave height calculation software [69] was developed in 2010.
It is a separate server side program that also exports wave height data to a
public web server5.

To solve the problems that were raised during the new TM firmware
development, significant research on embedded software development and
testing methods was required. The results of this research are presented in the
following chapter.

3.2.2. Architecture of an AtoN System
Embedded systems, which are used in above described AtoN system, are
composed of several controllers that are connected to the local area network of
the AtoN site, while one of the controllers is responsible of communication
tasks. This is also a gateway to the Remote Control and Monitoring Systems
(RCMS) central server.

5 Wave heights are computed by the developed method is used by METOC portal,
which is operated by Marine Systems Institute of Tallinn University of Technology,
http://on-line.msi.ttu.ee/metoc/.

42

A typical marine AtoN system interconnection is presented in Figure 3.2
where TM has several communication tasks and acts like a network gateway,
and C1, C2, …, Cn are internal controllers in charge for the AtoN site’s mission.
The main task of a TM is packet forwarding between wireless and local area
interfaces; a TM may also be configured to fulfil some additional tasks like time
synchronisation with GPS, certain measurement tasks or even flashing. Internal
controllers C1, C2, …, Cn may be navigational lantern flashers, smart power
supply system controllers, or measurement controllers.

3.2.3. Hardware Design Considerations of Telematics Module
In the beginning of the TM development it was known a priori that the new
module should at have least the same functionality as previous NMT or GSM
Data based modules. Previous TMs had capability for tracking buoy position by
using GPS, sending module status to central server, communicate to other
devices over LAN (Local Area Network), measure analogue input voltages and
detecting state change on digital inputs. First improvement was using a new
communication channel – previous TM uses GSM data call for transmitting data
to server, new module uses GPRS connection, which has much higher transfer
rate and was much cheaper. The rest of the functionality remains largely the
same – lower levels of LAN communication was not changed, only some
communication command parameters on LAN and GPRS link (formerly GSM
data) were added. In the planning stage it was decided that microcontroller
should have least three serial ports – one for GPS, one for LAN, and one for
GPRS. Therefore it was required also to replace the old HC11 microcontroller

43

with a new AVR family microcontroller, this allows also to use effectively C
programming language as the main language.

As Estonian buoys use batteries as a power source, it was essential that
onboard electronics have low power consumption. Therefore it is required to
use such microcontrollers that have lowest possible power consumption, even if
this means less computational power and hardware capabilities. Typically are 8-
bit microcontrollers suitable for AtoN devices, but also some recent 32-bit
microcontrollers have similar parameters such as ARM Cortex-M0 and smaller
AVR32 microcontrollers. In AtoN system 8-bit AVR microcontrollers are used –
ATMega1280 [7]. The main reason for selection of this microcontroller was that
most of the AtoN devices are developed at least a decade ago, and in that
moment no 32-bit microcontrollers that had comparable power efficiency was
available. Selected microcontroller have 8-kB of internal SRAM, 128 kB of
program memory, 86 programmable input/output lines, 4 programmable serial
ports, 5 timers/counters and 16-channel analogue-to-digital converter.

Figure 3.3 shows relevant subsystems of a TM utilised for acceleration
measurement, inclination angle calculation, digital input, LAN monitoring, and
status/alarm communication tasks, leaving out all parts that are not relevant for
programmers point of view, i.e. power supply. The central part of TM is MCU,
which is ATMega1280. TM has also GSM/GPRS modem, GPS, RS-4856
interface for LAN communication and 4-Mbit external flash memory for storing
firmware images. MCU analogue inputs are connected to 3-axis accelerometer,
temperature sensor and voltage input. This device has also several digital inputs
and outputs. All analogue-to-digital conversions have 10-bit measurement
values representing voltage levels, and all samples are acquired typically with a

6 Standard for defining the electrical characteristics of drivers and receivers for use in
balanced digital multipoint systems.

44

20 ms to 100 ms interval, with sequential delays of 0.2 ms between readings. In
the current system implementation, the GSM/GPRS modem has integrated
TCP/IP stack. 4-Mbit flash memory is needed for firmware updating – data
communication is the slowest and most failure prone phase of the firmware
updating process, and this external memory allows to buffer new firmware
during update.

3.2.4. Telematics Module Software Design Considerations
In complex systems like AtoN systems, tasks are divided in-between
submodules [28]. For this purpose, special message passing methods (different
devices on one network) and shared memory resources (multiple tasks in one
processor) are used. In AtoN systems, both message passing methods are used –
there is at least one flasher and TM in buoys, wich is connected through local
RS-485 network (Figure 3.2). The TM has multiple tasks that communicate by
using shared memory (Figure 3.4). Local devices are connected through TM
and the Internet to front-end server. This network topology is most optimal for
AtoN devices. Only one device has connection to the Internet; this reduces
complexity of flashers and other local area devices.

Every AtoN device, which is connected to local area network, has at least
two different software modules, one for network and another for AtoN specific
tasks. Although two modules are bare minimum, typically at least six modules
are used. For example flasher, which is one of the simplest modules, has one
additional software module for external flash memory and configuration
memory, one for AD converter, one for flasher hardware, one for local area
interface and one for control logic and shared memory (Figure 3.5). All
described modules are connected through control logic modules and all message
passing is realised with shared memory areas. TM has the same architecture but
it has additional GPS and GPRS modules and does not have flasher module.
This modular system is relatively easy to develop and to maintain. Basically all
larger programs have similar architecture. All this communication and task
slicing is possible with kernel, which has hardware abstraction and separation
and has special message passing mechanisms.

45

By using real-time kernel to share processor resource between tasks on a
new TM, it was required to decide which programming language to use. Most
reasonable language for TM was C at that moment. The main reason for C was
that GNU C compiler has quite mature support for AVR microcontrollers.
Assembly language was rejected by experience gained with the older TM; the
old module had nearly same functionality but all software was written in
assembler, and assembler does not give any significant advantage over other
programming languages in such systems. Other programming languages like
C+ + and Ada were not seriously considered at this time – C++ compiler was
not able to compile larger program as effectively as C compiler and Ada did not
have support for chosen microcontroller (GNU Ada compiler and runtime
library for AVR was released several years later, and is still quite experimental).
However, as C++ is grown out from C, it was possible to switch from C to C++
with small efforts. Issues that surfaced by using different programming
languages or migrating from one language to another are described in Section
4.2 – Programming Languages – C and C++.

Due to the experience gained by previous TM development it was known
that TM should perform several different tasks, and all were required to execute
in parallel, nearly in real-time. To accomplish that, a complicated super-loop
program or scheduler was needed, which could share processor resource
between different tasks. The idea of using a super-loop program was not
considered, instead it was reasonable to use a real-time kernel or scheduler. In
public domain several different kernels exist and for described TM several
kernels were nearly suitable. Writing our own kernel from scratch was
considered too time consuming, and this option was ruled out. Several kernels
found in the public domain had quite small memory footprint (FreeRTOS [85])
but had quite limited or no hardware driver layer. In our systems it was required

46

that hardware part is strictly separated from other code. The separation was
needed for testing, because otherwise it is relatively difficult to create test
program either manually or automatically; such programs are discussed in
Section 4.3 – Program Structures and Improvements on Testing. Other kernels
(like eCos [101]) had a well separated driver layer and lot of supporting kernel
functions, but also required relatively powerful microcontrollers – such
microcontrollers have quite high power consumption and relatively long
wakeup time from sleep mode, therefore more powerful microcontrollers or
kernels were not considered for our systems. Some kernels were also certified
for IEC61508 SIL 3 level (SafeRTOS [98]), but are quite similar to FreeRTOS
and target mostly 32-bit microcontrollers. Some microcontroller manufactures
have also their own kernels, like Texas Instruments, which have TIRTOS [94],
but those kernels support mostly their own microcontrollers. If kernel supported
microcontrollers go out of stock then using same source code on other
microcontrollers is difficult as it may have lot of microcontroller specific
functions and certainly need porting (if this is allowed by licence policy).

Kernels that were nearly suitable for AtoN systems had two major
drawbacks – they did not have any automatic power saving support and no
thread safe watchdog handling. As AtoN systems are mostly battery powered
and should consume minimal amount of energy, it is required that
microcontroller enters sleep mode when it has no tasks to perform. But all
events that occurred during sleep mode should be completely processed. For
example, when the serial interface receives any data during sleep mode, it
should be completely received and processed7. Therefore, the only one possible
way to return from low power mode was by disabling it from interrupt handler.
Another problem was entering to the sleep mode – decisions that allows to enter
sleep mode should be based on hardware states; sleep modes are disallowed
when any of the microcontroller communication interfaces is active, for
example when the serial port is sending or receiving data. Therefore, a function
that set microcontroller to sleep mode should be aware about all peripheral
hardware states; when some device is active, it is not allowed to enter sleep
mode.

Another issue with kernels from public domain is lack of support of shared
watchdog control. A watchdog timer is required for resetting microcontroller
when program stays in a state that is not desired, i.e. enters a dead loop after
encountering a program bug. As a microcontroller has only one watchdog and to
reset the watchdog it is required to write into special register or execute
watchdog resetting instruction, it is possible to reset watchdog only in one

7 For this a different communication protocol was required – serial interrupt is
triggered after one byte is received; this first byte is usually received while
microcontroller is in sleep mode, and therefore at least the first byte is lost. To
receive data, the controller should be woken up from sleep mode, therefore at least
one dummy byte should be sent from transmitting side, which then will wake up a
controller.

47

thread, and this thread should take into account other thread states. Suitable
solutions for watchdogs are discussed in Section 4.4.2 – Multitasking Programs
and Watchdog. Above mentioned difficulties made it impossible to use all
known kernels in AtoN devices.

As writing of our own kernel was too time consuming task, the only choice
was to take a kernel that satisfies most of the requirements and write missing
functions. Kernel that satisfies most of our needs was NutOS [51]. This kernel
has all required features and it was relatively small, but it does not support very
well different sleep modes and had only basic watchdog handling functions. It
has also TCP/IP stack and web server and functions for AT command parsing.
Chosen kernel requires only minimal modifications – it was needed only to add
automatic power saving modes, to improve watchdog handling and RS-485
based LAN driver.

In the next step it was required to choose coding standards and development
methodology. While TM is a mission critical device8, it is beneficial to follow as
much as possible best practices in that software development field, including
using coding standards or guidelines. Unfortunately, any coding or any other
software related standards or guidelines for devices that are used in AtoN
hardware part were not available at the beginning of the TM development. But,
in later stages of the initial development it turns out that MISRA C (Motor
Industry Software Reliability Association) coding guideline is nearly suitable
for this product. In Section 3.3 – Standards are given overview about different
standards on TM software.

During the first weeks of new TM development, cowboy coding was used.
After a few weeks agile methodology like development was taken in use,
however, instead using automated testing tools, all testing was done by hand.
This testing methodology largely dominates the entire TM software
development cycle, but later when this product was improved by some
additions, TDD (Test Driven Development) was used in some extent and in one
TM related product BDD (Behaviour Driven Development) was used. Some
extensions were added by using waterfall model. In Section 4.1 – Embedded
Software Development Processes different methods and their suitability for
AtoN device software development are discussed.

3.3. Standards

This section highlights relevant standards for embedded software development,
especially standards that are useful for AtoN device development.

In embedded software development mainly two type of standards are used:
coding style standards (guidelines) and standards that are related to specific
programming languages and their capabilities. Safety critical systems have
additional safety related standards like IEC61508 [45], and in some software

8 By the usage area it may be also safety critical, but similar devices are currently
declared as non safety critical devices.

48

developments, it is beneficial to follow ISO9001 quality management
standard [35]. In the context of this thesis, the IEC61508 standard is not
relevant. Currently it is not required that embedded AtoN systems corresponds
to any safety integrity levels.

3.3.1. Style Guidelines
Coding style guidelines are documents or standards that are used mostly in
larger projects where several developers are involved. These guidelines are
typically related to organisation, developer group or some product. However, no
official coding standard, i.e. ISO standard, exists. The main aim of the coding
standards is to specify coding format so that all developers would write using
the same style. Same coding style is mainly required to ease the software
maintenance – a significant amount (50%-90% [11, 24, 57]) of the lifetime cost
of a software goes to application maintenance, and most of the software is
maintained by several different developers during its lifespan. One of the best
written coding guideline for C is the NASA C coding style guideline [49],
which has a quite detailed description of C source code layout. As embedded
software development is quite a resource consuming task, it is reasonable to
ease this process and use such guidelines when there is more than one
developer.

3.3.2. Coding and Programming Language Standards and Guidelines
Most programming languages and libraries, which are used in embedded
systems, contain several insecure functions or have possibilities to construct
such functions that may have unpredictable side effects [35, 71, 72]. In safety
and mission critical systems or programs where testing and maintenance have
quite large proportion in program's overall development, it is beneficial to
disallow to use such functions. Therefore, industry-wide best practices are
published, written as coding guidelines. But it does not mean that when
following these coding guidelines the resulting program is free of bugs. There is
even no clear evidence that directly following the guidelines reduces the bug
rate significantly [14, 36]. However, it will allow to write more maintainable
programs in less time.

While most AtoN systems have many mission and safety critical
characteristics, there are no known specific guidelines meant for this software
segment. The most suitable guidelines for AtoN software are MISRA C [71]
and MISRA C++ [72]. Both are used in automotive industry. The JSF C++
coding standard [55] is used in Joint Strike Fighter F-35 program and in some
extent, the JPL C coding standard [50] is also used. All listed guidelines
discourage the use of code constructs that produce hard-to-maintain code,
specify naming conventions and commenting style, have rules for complexity
limits. According to MISRA and other guidelines it is not recommended to use
such functions that are able to fail stochastically. One of the most notable
functions of this kind is malloc; it may fail very unexpectedly due to the

49

unavailability of continuous memory. Since MISRA and similar guidelines have
relatively simple rules, there are several programs that are capable to check the
violations of these rules. These programs are mostly lint and its derivatives i.e.,
PCLint. Alternatively, it is possible to detect large number of violations by
setting appropriate compiler flags or even by using simple scripts. The
following section describes several programming methods and also note their
compliance with listed guidelines.

All the programming languages have typically their own standards. For
example, the C language has an ISO/IEC 9899:2011 standard, which is called
C11. There are also C89 and C99 standards. The C++ has ISO/IEC 14882:2011
standard, which is called C++11. These standards describe compiler and several
library functions. Unfortunately, most embedded compilers do not fully support
official language standards and may have their own implementations; it is not
uncommon that some non-significant part from 20 years old standard is not
completely supported. However, above mentioned standards are most effective
in the following cases: when there is a need to create portable program, or when
a program has to meet some other standard like IEC61508. It is elementary that
a portable program source code should meet some common standards; it is quite
rare that two different compilers for different architecture have exactly the same
functionality and types, even the different versions of compilers may have quite
different features. Determination of a language standard increase probability to
detect possible bugs by compiler. In cases when embedded software testing is
carried out on a development computer and the source code contains such
library functions that are available on both architectures, it is required to specify
at least a language standard. Meeting the requirements of a language standard is
also necessary as the program may need to meet some other standards as well.
This requirement arises in certification process, as certification body needs to
use the same environment that was used during the development. In rare cases it
is possible to avoid this requirement but in such cases the decision should be
justified. For example, when some CPU has only one compiler but this compiler
does not meet the standards.

To conclude this subsection we can say that in embedded software
development, it is highly recommended to specify a language standard and to
follow the coding guidelines.

3.4. Challenges in Telematics Module Software Development

This section describes problems, which raised during TM development, and
improvements, which were done during the development of a new TM. Also a
short background information about each improvement is given. The Chapter 4
presents solutions for every problem.

In the beginning of the TM software development process it was expected
that bugs may show up during development process, but it was not clear how
much and how these bugs will affect overall development and program
behaviour. The primary concern was how watchdog behaves when bugs are

50

encountered. It is quite well known how watchdog behaves in super-loop
programs, but we did not have any information on how it behaves and how it
can be controlled in multitasking programs. In first program versions watchdog
was reset in idle loop, and as expected, when TM software freezes by the result
of some bug and program has least one sleep functions in frozen code, then
watchdog was still reset in idle loop and reset did not occur. During the TM
software development it turned out, that in multithreaded programs such
watchdog resetting mechanism was needed which take into account states of all
threads. During development process two different watchdog resetting
mechanism were designed, both are described in Section 4.4.2 – Multitasking
Programs and Watchdog.

In desktop computer program debugging a wide range of different debugging
tools are available. However in majority of cases in embedded software
development, mainly simple OCD is used. It was complicated to use only OCD
based methods in TM software development, the OCD shortcomings show up in
the very beginning of TM software development. Using OCD for program
debugging in software where interrupts are used only few times and running
program is a super-loop type program, makes the use of OCD quite
straightforward and it reduces significantly development time. However, for
more complex programs like multithreaded programs that use periodically at
least one asynchronous interrupt, the OCD debugging becomes quite
complicated or in some situations even impossible. The main reason for it is that
significant amount of bugs show up some time after error occurs, such as, most
stack overflow bugs. When bug shows up some time after it had happened, it is
not possible to detect the cause of the bug by using simply OCD. In order to
find out which process was involved when the last error occurred, it is required
to track writes to specific memory areas. When at least one asynchronous
interrupt is allowed, then after firing it is program counter set to current
interrupt handler. While program counter value does not point to observed
program area, then this in turn it does not allow to use program step-by-step
walk through. Therefore finding a cause of bug in such situations is quite
complicated task. In TM development several above described situations were
encountered. In above described reasons the OCD is used occasionally for
debugging. It is used only in rare situations where it is known that any
asynchronous interrupt can not show up and no threads are started.

To cope with above mentioned OCD shortcomings, two well known methods
for debugging were introduced – first, predefined debugging information
outputting over serial line and second, changing microcontroller output state
depending on program state. Debugging information outputting over serial line
was preferred approach, but when this approach is unsuitable, output state
change monitoring can be used as a backup debugging method. Both are quite
robust and require a lot of developer interactions, like program recompilation
and uploading to microcontroller memory, but unlike OCD it is possible to
watch program states in very different situations. As both debugging aids
require fast communication with hardware, methods were developed that are

51

suitable for this purpose; these are described in Section 4.3.5 – Debugging and
Testing.

The new TM was intended to replace the old HC11 based telematics module
that has different endianness. Therefore it was also required to change byte
order in several places. Mostly this was needed for communication with
monitoring server or configuration software, also byte order change was also
required for FOTA. Changing byte order effectively is described in Section
4.5.4 – Byte Order Manipulation.

As noted in the beginning of this chapter, TM has a lot of different functions
and quite wide variety of supported hardware – this module allows to use three
different modems and two different GPS receivers. When major difference
between GPS receivers was serial interface baud rate, then modems had
completely different AT commands for TCP/IP connection, for entering the
power save mode and for network selection. Program that copes with such
different hardware is most reliable when written using C++. In the beginning of
the development of TM a reliable C++ compiler for AVR was not available and
therefore the only choice was to write all software in C using structures and
functions pointers, which is discussed in Section 4.2 – Programming Languages
– C and C++. Described method is quite well known in non deeply embedded
systems, but in deeply embedded systems it is used quite seldom. Within this
thesis one possible way to use such solution effectively in deeply embedded
systems is given; in this solution, function pointers are placed to different
memory, which allows to reduce microcontroller RAM consumption.

An important improvement in TM software was malloc like function, which
was backed by memory pool. This improvement was required to cope with the
drawbacks of standard malloc – during compilation it is not possible to know
how much free memory the microcontroller has left, and in several cases it can
be discovered when a program was loaded to microcontroller memory and
started. Developed malloc replacement function uses predefined memory pool;
this enhancement allows the compiler, linker and diagnostic tools to analyse
memory requirements before a program is loaded to microcontroller memory.
This improvement is described on Section 4.6 – Dynamic Memory.

During the last development stages when most TM functionality was
implemented, it was important that new functions take minimal amount of
microcontroller RAM and stack. One method for limiting memory consumption
was to use inline functions. While compiler has quite good support for it, this
support is more likely targeted for larger systems – while inlining large
functions, compiler always warns about program growth. As it is not wise
blindly ignore the compiler warnings, small research was carried out about
inline code and its peculiarities. Results of this small research are presented on
Section 4.5.2 – Program Code Inlining.

In later TM versions it turns out that in some TM usage areas it was essential
to encrypt data. As TM has only 8-bit microcontroller, then only feasible and

52

still enough strong encryption is AES. In this thesis two optimisation methods
are presented, which can be used with AES encryption when it is used in small
microcontroller. This work is presented in Section 4.5.5 – Optimisation of AES
Cryptographic Functions.

In TM development it was decided to write TM software as modular as
possible – at least one module is related directly to hardware and another to
control logic; for this case it is reasonable to use different programming
languages for different tasks or modules. Also initial TM software was written
completely in C, but lot of larger improvements were done by using C++. In
this thesis some methods are given that allow to use different programming
languages more effectively in one embedded program; this is described in
Section 4.2 – Programming Languages – C and C++ and in Section 4.3 –
Program Structures and Improvements on Testing.

3.4.1. Later Improvements
Although the initial TM software was quite reliable, still some functions should
have been implemented in different way, or revealed some bugs. To support bug
fixes and improvements on fielded devices, it was required to develop FOTA
capability. To use FOTA with TM it was required to create a new bootloader,
either which allows to directly load software from server or copying program
form external memory to microcontroller program memory. In TM it was
practical to use the second solution – TM has integrated additional flash
memory that stores several memory images and the bootloader uses an image
that has been pointed by configuration [65]. This solution allows to store at least
one working software version and to use it when new version does not work on
this controller. Software rollback was needed in cases when new software
version does not work on some specific controller, or a controller has such
configuration that does not allow to run with new software version. In addition
to bootloader improvements, small research for testing super-loop programs
(Section 4.3.1 – Super Loop Programs) and using watchdog with multithreaded
programs (Section 4.4.2 – Multitasking Programs and Watchdog) was carried
out.

As FOTA is used for firmware updating, it allows to use programs that
contain unit tests to test hardware; this feature turned out to be very useful in
situations where TM had some component failure. To use unit tests on
microcontroller it was required to develop a lightweight unit test framework.
Although the developed framework can be used for testing PC programs, there
are other frameworks, which can be found in public domain that are better
suited for this purpose. Using unit tests in embedded systems development is
discussed in Section 4.3 – Program Structures and Improvements on Testing.

3.5. Heel Angle Calculation and Buoy Collision Detection

Another area where it was possible to use acceleration sensor was heel angle
calculation [67] and buoy collision detection [68] both operations carried out on

53

microcontroller. In collision events, buoy onboard electronics may become
inoperational quite fast and therefore collision detection and reporting should be
as fast as possible.

To detect collisions with a navigational buoy, must continuously monitor
acceleration signals from all three axes. Assuming that this method is used only
with navigational buoys, the sampling period can be set quite low but not below
20 ms. In a typical buoy installation can be assumed that a collision may appear
from any direction and therefore must take into account signals from all three
acceleration axes. To detect a collision event in case of unlimited computational
resources available, one would calculate the acceleration vector length, taking
into account all acceleration values, and base the decision on that vector length.
In our case, the system has rather limited amount of memory and computational
capability, therefore it is not practical to calculate the vector length; instead, it is
possible to achieve almost same results by adding up the acceleration values.
Using only summation, must take into account the fact that during collisions is
returned much higher resulting acceleration than in case of using acceleration
vectors; this is usually the case when an impact comes in between two or three
axes. Due to the specifics of installed TM, it is possible to tolerate errors that
are introduced by higher acceleration values, also it does not need to get very
exact collision values, but it is only required to know when acceleration value
exceeds certain threshold level. Therefore in order to detect collision from total
acceleration the static (DC) component from obtained signal is filtered out. To
filter out the DC component an IIR filter is used. After DC level removal, the
second stage of filtering is applied, which plays a major role in collision
detection system. A collision detection filter should be rather fast, with
acceptable filter delay. In our case of less than 1 second. This filter must be also
quite robust in order to avoid false collision reports. Therefore, it was required
that this filter is partly a pure averaging filter and also a low-pass filter (LP
filter).

Figure 3.6 presents a simulation of buoy collision event. For simplification,
all three acceleration vectors are summed up, and the Earth’s gravitational
acceleration is subtracted. Resulting acceleration signal indicates whether a
collision of the buoy with a ship has been encountered. As is shown in Figure
3.6, with sufficient acceleration it is possible to get collision events in
reasonable time. In that simulation, first event may be recorded 50 ms after the
first acceleration peak and the second one 400 ms after the first acceleration
peak. In addition, several tests were carried out where the TM was mounted to a
heavy object and the test object was hit with another object, i.e. an artificial
collision was created, and the results were comparable to the simulation in
Figure 3.6.

54

Figure 3.6: Simulated collision [68]

Developed solutions utilises an onboard acceleration sensor; for detecting
collision events acceleration from all axes is time filtered, and when the filtered
value exceeds a threshold value, a corresponding alarm is issued.

For heel angle detection autonomous angle calculation was required; when a
buoy is submerged below the ice (Figure 3.7), then flashing of navigational light
is no longer required and it can be stopped, but decision for this can be done
only onboard (when buoy is submerged then is not possible to communicate
with a server).

Figure 3.7: Buoy in Ice [67]

Calculation of the buoy inclination angle based on digitised real-time
acceleration data can be performed by using simple trigonometric functions like
sine or tangent. For systems that have hardware floating point support, the most
elegant and easiest way would be to use tangent. But in 8-bit embedded systems
where all numbers have quite small range, the only feasible option is to use the
sine function. Inclination angle was calculated in two stages: first controller
calculated the intermediate heel angle value, which then was sent to server that
calculated the remaining angle value. This intermediate value can also be used

55

for alarm triggering in TM software. As buoy movement may have great
influence to calculation outcome, it was required to take this also into account,
in this case was used acceleration value averaging.

By developing above mentioned features some research for limiting
functions parameters was required (Section 4.5.1 – Limiting Function
Arguments), unit tests and limiting program dependencies (Section 4.3.2 –
Minimising Relations Between Submodules). Large number of function
argument turns out problems on both calculations – all acceleration calculations
had real-time constraints, these calculations should be carried out in less than 1
ms. As the used microcontroller had only 8 kB of RAM and every thread had
256 to 512 bytes of stack, it was not reasonable to pass acceleration values to
calculation functions by parameter coping; instead structures and pointer
passing were used. Another issue was with testing; it was not possible to make
real buoy collisions or measure real buoy heel angle for testing the developed
methods. Therefore it was required to test in simulated environment, but for
simulation was required to separate hardware functions and limit all other
program dependencies.

3.6. Wave Height Calculation by Using Navigational Buoys

Another research grew out from the additional TM hardware – this module has
onboard triaxial accelerometer, and TM was able to send acceleration values to
central monitoring server. It was quite easy to notice that acquired acceleration
data from buoys have very large periodical component, and this component has
nearly the same period as typical sea waves have. From this observation a
research for wave height detection by using navigational buoys was
initiated [69].

Proposed method allows to use typical steel spar buoys with the with of
roughly 5 tons (Figure 3.8). These buoys are deployed for around the year
operation, capable to withstand ice conditions. Chain moorings are used as
standard, increasing overall buoy weight by 0.5 to 1.5 tons, and also keeping the
buoys from riding the waves freely. Since the primary task of these buoys is to
serve as a source of a navigation light signal, they are designed in a way
allowing only limited wave following.

56

Figure 3.8: Steel spar buoy [69]

To obtain wave height values, a buoy acceleration amplitude is used which is
corrected by peak frequency, taken from FFT (Fast Fourier Transform).
Developed approach is similar to NDBC (National Data Buoy Center) [22]
published approach, except NDBC method uses maximum amplitude and
frequency to find wave height, but the developed method uses average of
acceleration peaks and corrects it by buoy own movement period.

In order to validate the obtained wave height data, the Estonian Maritime
Administration, Cybernetica AS and the Marine Systems Institute at Tallinn
University of Technology have performed trials since late 2008 to establish
feasibility of such wave height measurement network based on navigational
buoys. Even if navigation buoys are not ideal wave following platforms, it is
still possible to calculate a rather close approximation of the actual wave height
based on their acceleration. Tests and validation of the wave height estimation
method were performed in five reference measurement sessions in three
different locations, each lasting at least two weeks. In all cases the reference
sensor was deployed at a distance less than 3 nautical miles from the buoys
under testing (Figure 3.9). Pressure based wave gauge was used for reference
measurements performed by the Marine Systems Institute at Tallinn University
of Technology.

57

Figure 3.9: Location of navigational buoys hosting the
acceleration sensors used in the wave parameter measurement
experiment, and pressure based wave measurement equipment
used for reference measurements shown with triangles [69].

Results of the comparison of reference and calculated wave heights are
good. Measurement periods captured different wind conditions and wave field
realisations. Two datasets fit with each other very well for waves below 2 m,
95% of the resulting wave heights differed from the reference wave heights by
less than 41 cm. In case of wave heights of over 2 m, the maximum difference
was 86 cm (Table 3.1 and Figures 3.10-3.13), although the number of such
larger wave heights was probably not sufficient for drawing a proper statistical
conclusion. Certain errors can be at least partly attributed to the different
measurement and reporting intervals and sometimes short data acquisition
periods, with both due to the fact that the primary task of a navigational buoy is
AtoN signalling. Nevertheless, both errors have almost negligible impact on
measured wave heights. Another issue is natural variability on wave field,

58

which play role if there is distance between navigational buoy and reference
measurement site and always it is.

Percentage of calculation results
within the maximum difference

Maximum difference in calculated significant wave height [m]

Range: 0.0 m to 2.0 m
(21794 reference points)

Range: 2.25 m to 5.0 m
(401 reference points)

68.27% 0.29 0.63

90.00% 0.37 0.78

95.00% 0.41 0.86

95.45% 0.41 0.87

99.73% 0.53 1.10

Table 3.1: Differences between wave height pressure based reference measurement and
calculated results [69]

Figure 3.10: Results of the first test period on buoy NM157
(Sept. 2010) [69]

Figure 3.11: Results of the first test period on buoy NM186
(Sept. 2010) [69]

59

Figure 3.12: Results of the second test period on buoy NM157
(Oct.-Nov 2010) [69]

Figure 3.13: Results of the second test period on buoy NM186
(Oct.-Nov. 2010) [69]

One outcome of this research was wave height calculation program, which
take input data from buoys and send processed wave height to a public METOC
web portal. Wave height calculation program utilises TM as acceleration data
source – TM that is installed to navigational buoy sends measured acceleration
data to central monitoring server with predefined interval. The monitoring
server stores acceleration data and notifies the wave height calculation software
about new data. After receiving message about new acceleration data, the wave
height calculation program retrieves new acceleration data, calculates wave
heights, binds calculated values to geographical location, and sends results to
database and to a third party server.

60

3.7. Conclusions

This chapter provided background information on developed improvements – it
describes systems that are used for marine visual navigation (AtoN systems).
The chapter described mainly problems that raised during development of new
TM. In order to solve these problems, it was required to develop new methods
in embedded software development. This chapter gave a short descriptions
about developed improvements to achieve design goal. The technical
descriptions are in the next chapter. The new module replaces the old
communication module, also a new communication channel was taken in use
and several improvements like buoy heel angle calculation, collision detection
and wave height measurement were implemented.

AtoN systems, which are used in Estonia, contain buoys, lighthouses, central
server and synthetic AIS network. In lighthouses and buoys TM is the main
component; this module is required for transmitting data from AtoN internal
devices to the monitoring server and it is also capable of transmitting some
monitoring information, like acceleration data. Main part of TM is a
microcontroller that is responsible for LAN and GPRS communication; it has
also several analogue inputs and GPS. While TM has several interfaces and
concurrent tasks, a simplest way to control those interfaces and share CPU
resource between tasks is to use a kernel. In TM a heavily modified version of
NutOS is used.

At development of above described module it was required to carry out
research in embedded software development. Therefore, using watchdogs and
OCD in multitasking programs, automated tests, programming languages,
dynamic memory, inline code and optimisation were researched. In addition to
research, methods were developed for buoy collision detection, heel angle
calculation and raw acceleration data transmission to central server for wave
height calculation. All results of described developments and research are
presented in the next chapter.

61

4. THE ADVANCES IN EMBEDDED SOFTWARE
DEVELOPMENT

Chapter 3 outlined problems that surfaced when developing a new TM
firmware. This chapter gives solutions for previously mentioned problems, lists
relevant standards, discusses about the use of different programming languages
and testing methods, and discusses how testing methods depend on a program
structure. The chapter also outlines peculiarities about multithreaded programs,
places where it is possible use such optimisations that are not achievable by
compiler, and finally, the use of dynamic memory. The following section
presents software development processes that are suitable for the use in low-
power microcontrollers. All the presented improvements are developed during
TM and other AtoN devices software development by researching optimal
solutions for the real-time kernel and supporting libraries. All the published
papers use the described solutions as supportive methods and required
improvements. The main field where the described methods best suit are the 8-
bit and smaller 16-bit microcontrollers; although same applies for larger
processors as well.

4.1. Embedded Software Development Processes

This section describes different development processes and outlines the most
appropriate solutions for embedded systems. For desktop computer programs
several different software development processes exist but lot of them have
such properties that make them unsuitable for small embedded systems. The
following sections give an overview about some software development
processes, which are used in AtoN onboard embedded software development. In
addition to description of software processes, a short overview of the use of
UML in small embedded systems is also given. Examples of using main parts of
agile processes are given – the unit or automated tests on small embedded
systems. Presented automated tests require several improvements that are
described in following chapters – unit testable programs should have minimal
amount of relations with other code, test programs are usually written in C++
and unit testable programs tend to require little more resource than programs
that do not support unit tests.

4.1.1. Code and Fix – Cowboy Coding
Code and Fix, also known as Cowboy Coding (as used in the context of this
thesis), is a software development philosophy where programmers have
autonomy over the whole development process – control of the project's
schedule, languages, algorithms, tools, frameworks and coding style [60]. A
cowboy coder is usually a single developer who has very little or no
participation in end-user or management. As this development philosophy has

62

no formal management, it is quite complicated to use it in a commercial
embedded project. However it has also several advantages. In some cases,
mostly in smaller programs, absence of formality significantly reduces the
efforts to develop a program. Therefore it is the most optimal solution for
experimenting with new hardware and for prototyping purposes. However, most
of the prototypes are later rewritten by using some other development
philosophy.

In embedded systems, the Cowboy Coding is used quite widely. It is used
mostly in smaller systems, which are not safety related like hobby or student
projects or even in smaller commercial projects such as small programmable
components that have quite limited functionality like a simple voltage regulator.
It is quite common that this development philosophy is used in early stages of
large software development. In general, programs that are written by using this
philosophy are quite small, less than 500 code lines in C or less than five
function points9.

4.1.2. Unified Modelling Language
UML is a standardised (ISO/IEC 19501:2005), software modelling language, it
provides a set of graphic notation techniques to create visual model of object-
oriented systems. The UML combines several levels of modelling techniques, it
has business modelling, object modelling and component modelling, therefore it
can be used with most processes throughout the software development life
cycle. Although UML is quite universal modelling language, it is not intended
for embedded and real-time domain, but it has several extensions for this.

While UML has several extensions, which allow it to be used in embedded
or real-time systems, using UML in small embedded systems is quite
problematic. The main reason for this is that most UML tools use object-
oriented languages like C++, and such program constructs require a lot of
memory or CPU resources. Therefore, microcontrollers where UML is usable
should have significant amount of RAM and program memory – at least 1 kB of
RAM and 20 kB of program memory. Also programs that are created by using
UML, tend to be little slower than other programs where UML was not used.
Due to the high demand of resources, the UML tools are not widely used in 8-
bit microcontroller software development.

4.1.3. Agile Practices – Test Driven Development and Behaviour
Driven Development

This subsection provides an example for using unit tests in embedded software.
This example shows testing of input and output functionality; to use this

9 Function points [40] give relatively accurate estimates for business type
applications but not for scientific or mathematics applications [90]. Embedded
AtoN systems do not contain complicated mathematics and are more like business
type applications.

63

example in real program, it is also required to use similar methods that are
presented in Section 4.3 – Program Structures and Improvements on Testing.

TDD (Test Driven Development) is a software development process where
tests are written before writing the real code. This process relies on the
repetition of a very short development cycle: first the developer writes an
initially failing test case, which defines a desired improvement, then he
produces the minimum amount of code to pass that test, and finally refactors the
new code. This methodology ensures that the source code is thoroughly unit
tested and eventually leads to modularised, flexible and extensible code. BDD
(Behaviour Driven Development) is similar to software development process
like TDD, but it combines the general techniques and principles of TDD with
ideas from domain-driven design and object-oriented analysis and design. The
principal difference of both methods is the idea who write tests or
specifications, in TDD is developer responsibility to write tests, but in ideal
BDD somebody else should write the specifications like business analysts. In
the following code listing is an example describing one software module, which
counts input changes and after third change toggles the output. In a TDD case,
the following unit test is needed for this described requirement:

1:/* Initialization of the test, reset internal registers. */
2:void FnTest::setUp ()
3:{
4: reset_regs ();
5:}
6:
7:/* Test for six consequentive input changes */
8:void FnTest::six_changes ()
9:{

10: /* Initial state test. */
11: CPPUNIT_ASSERT_EQUAL (0, (int)get_output ());
12:
13: /* Set input value to 1, check output, it should be 0. */
14: update_input_val (0x01);
15: CPPUNIT_ASSERT_EQUAL (0, (int)get_output ());
16:
17: /* Same input condition, output should have same values
18: * as in previous test. */
19: update_input_val (0x01);
20: CPPUNIT_ASSERT_EQUAL (0, (int)get_output ());
21:
22: /* Same input conditon, output shold have value 0. */
23: update_input_val (0x01);
24: CPPUNIT_ASSERT_EQUAL (1, (int)get_output ());
25:
26: /* Same as previous test. */
27: update_input_val (0x01);
28: CPPUNIT_ASSERT_EQUAL (1, (int)get_output ());
29:
30: /* Same as previous test. */
31: update_input_val (0x01);
32: CPPUNIT_ASSERT_EQUAL (1, (int)get_output ());
33:

64

34: /* After setting input value to 1 should output reset
35: * to 0. */
36: update_input_val (0x01);
37: CPPUNIT_ASSERT_EQUAL (0, (int)get_output ());
38:}

Listing 4.1: Simple TDD example.

In the Listing 4.1, the lines 2 to 5 are the internal registers initialisation,
which are required to ensure that all tests start in the same state. When some
other tests have been run before, the register states may be nearly unpredictable.
The rest of the program is test itself (lines 8 to 38): in line 11, initial output state
is tested, after that, the input register value is updated (lines 14, 19, 23, 27, 31
and 36) and lastly an outcome after each change is tested (lines 15, 20, 24, 28,
32 and 37).

While using BDD the following behavioural description needs to be written:

1:/* Behavioural description for imaginary hardware controller. */
2:DESCRIBE(update_input_val, "6 calls to "
3: "update_input_val")
4: /* Reset internal registers, and verify initial
5: * conditions. */
6: reset_regs ();
7: IT ("returns 0 on initial state")
8: SHOULD_EQUAL ((int)get_output (), 0)
9: END_IT

10:
11: /* Do first input update and verify output, least 6
12: * test cycles are required. */
13: update_input_val (0x01);
14: IT ("returns 0 after first input update")
15: SHOULD_EQUAL ((int)get_output (), 0)
16: END_IT
17:
18: update_input_val (0x01);
19: IT ("returns 0 after second input update")
20: SHOULD_EQUAL ((int)get_output (), 0)
21: END_IT
22:
23: update_input_val (0x01);
24: IT ("returns 1 after third input update")
25: SHOULD_EQUAL ((int)get_output (), 1)
26: END_IT
27:
28: update_input_val (0x01);
29: IT ("returns 1 after fourth input update")
30: SHOULD_EQUAL ((int)get_output (), 1)
31: END_IT
32:
33: update_input_val (0x01);
34: IT ("returns 1 after fifth input update")
35: SHOULD_EQUAL ((int)get_output (), 1)
36: END_IT

65

37: update_input_val (0x01);
38: IT ("returns 0 after sixth input update")
39: SHOULD_EQUAL ((int)get_output (), 0)
40: END_IT
41:END_DESCRIBE

Listing 4.2: Simple BDD example.

In Listing 4.2, in lines 2 and 3, the test name and short description of this
specification is described. The specification body is between the lines 4 and 41,
and the line 41 shows the end of the specification. The line 6 shows register
initialisations, and in the lines 7 to 9 initial conditions are verified. The line 7
describes what will be done, the line 8 tests results to given value, and the line 9
is the last line of this test. Same applies to all other lines which are described
between IT and END_IT lines. The only difference between TDD is that before
tested function result are updated input values. The input updating is shown in
the lines 13, 18, 23, 28, 23 and 37.

The above described test and specification corresponds to the following C
source code:

1:/* Variable for output port states. */
2:static uint8_t port_state;
3:
4:/* Counter for tracking input switches. */
5:static uint8_t sw_cnt = 1;
6:
7:/* Reset all internal registers, this should correspond to
8: * microcontroller reset. */
9:void reset_regs (void)

10:{
11: port_state = 0;
12: sw_cnt = 0;
13:}
14:
15:/* Update output and internal counter accordingly
16: * microcontroller input value (function parameter val). */
17:void update_input_val (const uint8_t val)
18:{
19: /* Change output only when microcontroller input pin
20: * has logical high. */
21: if (val == 0x01)
22: {
23: /* Output should toggled after three positive
24: * input tests. */
25: if (sw_cnt >= 2)
26: {
27: /* Toggle output port bit 0, and set switch counter
28: * to 0 (initial state) */
29: port_state ^= 0x01;
30: sw_cnt = 0;
31: }
32: else
33: {
34: /* Increase counter that holds number of positive
35: * input tests. */

66

36: sw_cnt++;
37: }
38: }
39: /* Else not needed.. */
40:}
41:
42:/* Return state of the microcontroller output port. */
43:uint8_t get_output (void)
44:{
45: return port_state;
46:}

Listing 4.3: Program code which corresponds to the previous TDD and BDD examples.

The Listing 4.3 defines in the lines 2 and 5 two static variables, where the
first holds port state and the second is switch counter. The lines 9 to 13 show the
reset function, which set port_state and sw_cnt to initial state and also
corresponds to microcontroller reset. In the lines 17 to 40 are functions, which
were described by test on Listing 4.1 and specifications on Listing 4.2, these
functions update output register states as described on tests or behaviour
description. The lines 43 to 46 show the defined function, which returns port
state to what was changed by update_input_val function.

Unit tests and behavioural descriptions are mainly intended for testing
business or control logic, also both allow to lock down the program behaviour
according to specifications. Unfortunately, both are relatively difficult to be
used in hardware dependent code. Code that is written to be tested automatically
(unit or behaviour tests) should be hardware independent; this allows to run
tests on development computers with different architecture. Above described
tests and testable code can be added to continuous integration server (CI) task
list. This eases significantly finding of regressions, which may be introduced
during the development or bug fix process.

As behaviour descriptions are technically same as unit tests then these
descriptions are not discussed in the following sections.

4.1.4. Sequential Development Processes or Agile Practices
The most effective software development processes in embedded software
development is the sequential processes where requirements are defined before
coding such as Waterfall or V-model [40]. Both are sequential processes where
typically the following phases are followed: the requirements are defined, then
software architecture is designed, then the software is implemented, and after
that follows a verification stage, and finally maintenance. In the V-model every
step has own testing and verification phase. Above described processes allow
using UML diagrams in specification or design stage, and in coding stage the
automated tests can be used to test and lock down requirements.

Above listed sequential processes are well suited for embedded software
development, especially in mission or safety critical cases, but for non-critical
software, it is possible to use agile practices [19] including TDD and BDD. In

67

agile practices the most complicated task is the software functionality
description and documentation writing. A large number of different software
versions may add more maintenance work. However, while using sequential
processes, full specification is required at the beginning of the project. This
approach is also easier for a customer to understand, as it does not require too
frequent communication with a developer and it has less different versions of
programs like agile practices have. The major benefit for using agile practices is
short development time, which is required to complete a software project.

In embedded software development, all above described models and agile
practices can be used. If embedded system is not safety or mission critical, it is
useful to consider the use of agile practices, as in mission or safety critical
systems the software project should be described in high detail. Therefore, it is
difficult to use only agile practices. In mission and safety critical software
development, program behaviour should be modelled and maximally detailed
description should be provided before the real program coding starts. This is
typical for V and waterfall processes. Also, in order to avoid software regression
bugs and decrease the overall development effort, the code should support fully
automated testing (unit tests).

4.2. Programming Languages – C and C++

In every software project it is required to decide which programming language
is going to be used. In this aspect, the embedded systems are not different.
Although it is possible to use low level programming languages like assembler
in embedded systems, but mostly the higher level languages like C or C++ are
used. This section gives the reasons why C or C++ is used and outlines some
problems that might rise from switching from C to C++.

4.2.1. Main Differences Between C and C++
The following section outlines the main differences of C and C++, which are
significant factors in several cases when choosing a programming language for
an embedded system.

In embedded systems development, the C programming language has been
dominating for decades as the main programming language. Nevertheless in last
decade the C++ has been gaining popularity as an alternative language to C.
While C allows to write programs with low level hardware access, then C++
also allows to write low level hardware access programs but adds a possibility
to write object-oriented programs as well. This makes it usable even in small
embedded projects [86]. Back in 2005, the use of C++ compiler was relatively
difficult due to the compiler bugs and inefficient code generation, then by 2016,
there are no significant differences between C and C++ compilers. The C++
compiler from GCC 4.9 package, for example, is capable of producing
programs with nearly the same memory requirements as C compiler. The only
remaining issue with C++ compiler in embedded programs are the virtual
functions – compilers and linkers put these tables to RAM (theoretically it is

68

possible to place these tables into program memory). On the other hand, most of
the embedded programs are quite simple and therefore it is relatively easy to
write programs without virtual functions. With the exception of virtual
functions, programs written in C and C++ have similar memory requirements;
the difference in most of the cases is less than five percent. To illustrate this,
two simple examples in Listing 4.4 and 4.5 are given. A program size without
any optimisation differs roughly 10%; a program that is written in C is 176
bytes and a program that is written in C++ is 196 bytes. The same programs that
are compiled with maximum optimisation, which is typically used in embedded
systems, have exactly the same size: 148 bytes.

1:#include <stdio.h>
2:
3:/* Function that prints only "Hello World!!!" */
4:static void hello (void)
5:{
6: (void)printf ("Hello World!!!\n");
7:}
8:
9:int main (void)

10:{
11: /* Call to function that prints "Hello World!!!" */
12: hello ();
13:
14: return 0;
15:}

Listing 4.4: Simple “Hello World” in C – this program has only one function call
(line 12).

1:#include <stdio.h>
2:
3:/* Simple test class, which is compatible with similar program
4: * written in C. */
5:class HelloWorld
6:{
7:public:
8: /* Method that prints only "Hello World!!!" */
9: void hello ()

10: {
11: (void)printf ("Hello World!!!\n");
12: }
13:};

69

14:
15:int main ()
16:{
17: /* Declare and initalize test class. */
18: HelloWorld hw;
19:
20: /* Call to method that prints "Hello World!!!" */
21: hw.hello ();
22:
23: return 0;
24:}

Listing 4.5: Simple “Hello World” in C++; this program has one class and one method
call (line 21). In this example, printf is used for compatibility with C program, in C++
mostly insertion operator “<<” are used.

As lot of development tools (most notably UML tools) and libraries (unit
testing libraries) have support for C++, however, for C there is no support at all
or it is limited, therefore it is reasonable to write most control logic in C++. It is
reasonable to write program parts that are related to hardware in C, as this
language has several useful additions for embedded programs that lack in C++.
In several cases, it is not possible to write hardware related programs by using
object oriented approach [82], therefore it makes no sense to use C++. For
example in Listing 4.6 there are partial structure initialisations, all structure
elements have value 0xFF, except the elements 1, 3, and 6, which have
respective values of 1, 3, and 0.

1:#define ARRAY_SIZE 8
2:
3:__extension__ uint8_t array_example[ARRAY_SIZE] =
4:{
5: /* Set all array elements to default value 0xff. */
6: [0 ... (ARRAY_SIZE - 1)] = 0xFF,
7:
8: /* Set second element to 0x01. */
9: [0x01] = 0x01,

10:
11: /* Set fourth element to 0x03. */
12: [0x03] = 0x03,
13:
14: /* Set seventh element to 0x00. */
15: [0x06] = 0x00
16:
17: /* All reamining elements have value 0xff. */
18:};

Listing 4.6: Partial structure initialisation.

4.2.2. Using Different Programming Languages In One Software
Project

In larger embedded programs software parts that have different responsibilities
are separated from each other: hardware related code, networking code, control
logic and other submodules are in separated source or packages. The main

70

reason for separation is the reuse of the code and to simplify testing. It also
simplifies using different programming languages within same program.

Currently the best working practice for hardware or kernel related code is to
use the C programming language. For the higher level code or code that is
visible for the user such as program logic, the best solution is to use the C++
programming language. The main reason for doing so is that program parts that
are written in C can be used with C and C++, but doing this in an opposite is
usually much more difficult. This approach makes lower level program code
little more flexible than it would be when written purely in C++. As C is a more
mature programming language, in some circumstances these functions that are
written in C, can be a little faster than C++ counterparts. In situations where it is
needed to use C functions in programs that are written in C++, it is possible to
write wrapper classes for C functions, which can be placed in C++ header files.
The Listing 4.7 shows the wrapper class for C functions, lines 10 and 11 declare
two functions: function_1 and function_2 which are both written in C; both
functions are related and should be used as one C++ class. C++ specific code is
between the lines 17 and 41; those lines define class Functions which have two
methods, cFunction1 (lines 27 to 30) and cFunction2 (lines 33 to 36); both are
inlined methods and contain only calls to corresponding C functions. When this
file is included in C source code the C preprocessor is able to use code between
the lines 10 and 11 and use this file as a regular C header file. When it is
included to C++ source code the preprocessor and compiler is able to use all
definitions, including C functions function_1 and function_2.

1:#ifndef __HEADER_H_
2:#define __HEADER_H_
3:
4:#ifdef __cplusplus
5:extern "C" {
6:#endif
7:
8:/* Functions function_1 and function_2 are C functions that
9: * are realated with hardware or kernel (for example). */

10:extern void function_1 (void);
11:extern void function_2 (void);
12:
13:#ifdef __cplusplus
14:}
15:#endif
16:
17:#ifdef __cplusplus
18:
19:namespace ClassNamespace
20:{
21:
22:/* Class that contains wrappers for C functions. */
23:class Functions
24:{
25:public:
26: /* C++ wrapper for function_1 */
27: void cFunction1 ()
28: {

71

29: function_1 ();
30: }
31:
32: /* C++ wrapper for function_2 */
33: void cFunction2 ()
34: {
35: function_2 ();
36: }
37:};
38:
39:}
40:
41:#endif
42:
43:#endif

Listing 4.7: Mixing C and C++.

Similar language mixing techniques work with other programming
languages like Ada. Generally, mixing programming languages does not
increase significantly program size, and therefore it is well suitable in
embedded systems. This technique is useful in situations where some specific
task is written in another language than the project's main programming
language [82]. But when such language mixing involves assembler, one should
encapsulate and isolate assembler blocks from other source codes (this is also a
rule 2.1 of MISRA C [71] and MISRA C++ rule 7-4-1 to rule 7-4-3 [72]).

4.2.3. Alternative Approach for C++ Virtual Function Table
Virtual functions are functions in C++ whose behaviour can be overridden
within an inheriting class by a function with the same signature. These functions
allow reducing significantly relations between classes and writing less complex
code, which is also much easier to be tested and maintained. The virtual
functions use a special table: a virtual function table (V-table) that stores
function calling addresses. The C language does not have such table but in
several cases, such table would significantly reduce program's complexity. A
similar approach is used in device drivers. In the following Listing 4.8 a simple
example of the use of virtual functions for accessing an imaginary hardware is
shown. A similar approach may be used to write hardware drivers in kernels.

1:/* (Virtual)class that contains skeleton for implementation.
2: * All implementations DevXFunction classes should extend to
3: * this virtual class.*/
4:class Functions
5:{
6:public:
7: /* Variable for holding some device related state. */
8: uint8_t state;
9:

10: /* Pure virtual class should have virtual destructor
11: * also. */
12: virtual ~Functions () {};
13:
14: /* Do device specific initialisations. */

72

15: virtual uint8_t init () = 0;
16:
17: /* Operations that are common for all devices but each
18: * device require different implementation. */
19: virtual uint8_t doSomething () = 0;
20:};
21:
22:/* Functions for device nr. 1. This class implements all virtual
23: * functions that are defined in Function base class. */
24:class Dev1Functions : public Functions
25:{
26:public:
27: /* Initialise device 1. */
28: uint8_t init ()
29: {
30: /* ... */
31: return 0;
32: }
33:
34: /* Do device specific operations. */
35: uint8_t doSomething ()
36: {
37: /* ... */
38: return 0;
39: }
40:};
41:
42:/* Functions for device nr. 2. This class implements all virtual
43: * functions that are defined in Function base class. */
44:class Dev2Functions : public Functions
45:{
46:public:
47: /* Initialise device 2. */
48: uint8_t init ()
49: {
50: /* ... */
51: return 0;
52: }
53:
54: /* Do device specific operations. */
55: uint8_t doSomething ()
56: {
57: /* ... */
58: return 0;
59: }
60:};
61:
62:/* Load device handler class by given device number (dev_nr). */
63:Functions *loadFunctions (const uint8_t dev_nr)
64:{
65: Functions *fn;
66:
67: if (dev_nr == 1)
68: {
69: /* Device with index 1 should use device nr 2
70: * functions. */
71: fn = new Dev2Functions ();
72: }
73: else

73

74: {
75: /* All other devices uses device nr 1 functions. */
76: fn = new Dev1Functions ();
77: }
78:
79: return fn;
80:}
81:
82:int main ()
83:{
84: /* Retrive device information from external function,
85: * (device information is stored in database, for
86: * example) */
87: const uint8_t dev_nr = getDevNr ();
88:
89: /* Load device dependent functions, for that purpose is used
90: * factory function. */
91: Functions *dev = loadFunctions (dev_nr);
92:
93: /* Initalize device and call device specific functions. */
94: dev->init ();
95: dev->state = 1;
96: dev->doSomething ();
97: dev->state = 2;
98:
99: /* Finally release memory that holds device structure. */
100: delete dev;
101:
102: return 0;
103:}

Listing 4.8: Original C++ code.

In the example above, in the lines 82 to 103 is the main function, which
retrieves device identification by calling getDevNr (line 87) function.
Identification number is passed to factory function loadFunctions (call on line
91 and function implementation is on line 63 to 80), which returns
corresponding class: Dev1Functions or Dev2Functions; the rest of main
function uses one of the device classes. Classes Dev1Functions (line 24 to 40)
and Dev2Functions (from the line 44 to 60) are derived from abstract base class
Functions (from the line 4 to 20). This base class has two abstract methods, init
and doSomething, and it also has one variable name state.

In the C language it is possible to create a program with the same
functionality by using function pointers and structures: while C does not have
C++ like V-tables, it allows to write similar tables. As function structures do not
change during a program execution, it is possible to place this constant table to
program memory. The following example in the Listing 4.9 illustrates same
program as in the Listing 4.8, but this program is written entirely in C, and uses
function pointers.

74

1:/* Structure that hold device state and pointers to functions,
2: * init and do_something. */
3:struct _functions_s
4:{
5: /* Variable for holding some device related state. */
6: uint8_t state;
7:
8: /* Do device specific initialisations. */
9: int8_t (* init) (void);

10:
11: /* Operations that are common for all devices, but each
12: * device require different implementation. */
13: int8_t (* do_something) (void);
14:};
15:
16:/* Define variable that contains above defined function
17: * structure. */
18:typedef struct _functions_s functions_s;
19:
20:/* Initialise device 1. */
21:static int8_t init_dev_1 (void)
22:{
23: /* ... */
24: return 0;
25:}
26:
27:/* Initialise device 2. */
28:static int8_t init_dev_2 (void)
29:{
30: /* ... */
31: return 0;
32:}
33:
34:/* Do device specific operations. */
35:static int8_t do_something_dev_1 (void)
36:{
37: /* ... */
38: return 0;
39:}
40:
41:/* Do device specific operations. */
42:static int8_t do_something_dev_2 (void)
43:{
44: /* ... */
45: return 0;
46:}
47:
48:/* Load device specific function addresses to variable dest and
49: * initialise state variable. Device is selected by variable
50: * dev_nr. */
51:void load_functions (void *dest, const uint8_t dev_nr)
52:{
53: /* Following two structures can be placeed into program
54: * memory. */
55: static const functions_s dev_1_functions =
56: {
57: 0x00, /* state */
58: init_dev_1, /* init */
59: do_something_dev_1 /* do_something */

75

60: };
61:
62: static const functions_s dev_2_functions =
63: {
64: 0x00, /* state */
65: init_dev_2, /* init */
66: do_something_dev_2 /* do_something */
67: };
68:
69: if (dev_nr == 1)
70: {
71: /* Device with index 1 should use device nr 2
72: * functions. */
73: (void)memcpy (dest, &dev_2_functions,
74: sizeof (functions_s));
75: }
76: else
77: {
78: /* All other devices uses device nr 1 functions. */
79: (void)memcpy (dest, &dev_1_functions,
80: sizeof (functions_s));
81: }
82:}
83:
84:int main (void)
85:{
86: functions_s dev;
87:
88: /* Retrive device information from external function,
89: * (device information is stored in database, for
90: * example). */
91: const uint8_t dev_nr = get_dev_nr ();
92:
93: /* Load device dependent functions, for that purpose is used
94: * factory function. */
95: load_functions (&dev, dev_nr);
96:
97: /* Initalize device and call device specific functions. */
98: dev.init ();
99: dev.state = 1;
100: dev.do_something ();
101: dev.state = 2;
102:
103: /* Unlike C++ example we don not need to free the device
104: * structure, it is placed to the heap and destroyed after
105: * function return. */
106:
107: return 0;
108:}

Listing 4.9: Same program in C.

As in the C++ example, the lines 84 to 108 show the program main function,
which retrieves device identification by calling get_dev_nr (line 91) function.
This identification number is passed in the line 95 to function load_functions (it
is implemented in the lines 51 to 82), which will copy corresponding function
structures (dev_1_functions or dev_2_functions structures) from constant
memory area into dev structure variable. As structures dev_1_functions and

76

dev_2_functions are constant, it is advisable to place these structures in program
memory, this will save quite significant amount of RAM. The rest of main
function, the lines 98 to 101 use one of the device structures without knowing
which dev functions structure it uses.

The program examples described above have considerably different sizes –
example in C language is 112 bytes long and example in C++ is 260 bytes long.
Both lengths are taken before linker. Such variability of program size is caused
by using different functions or operators in the above examples. However,
considering that many similar programs are used on larger devices it is not
essential to have minimal memory footprint. If the size of the memory footprint
is important, it is more convenient to use the C language anyway.

Similar methods, which are presented in Listing 4.9, are used in kernels for
calling hardware dependent program parts; this allows effectively to hide
hardware related code from higher level programs. Although the C++ code has a
similar functionality as the C code, it is not widely used in kernels. The main
reason for this is historical; older C++ compilers did not create same effective
code as C compilers and it did not have any other significant advantage over C
compilers. While new programs, which are written from scratch and use new
C++ compiler, is reasonable to write completely in C++. While both examples
increase code reuse and simplify programs, it is not advisable to use above
described methods intensively in embedded systems as both variants can
consume significant amount of RAM.

4.3. Program Structures and Improvements on Testing

The following sections describe different program structures and required
improvements that are needed when using similar testing methods in embedded
systems than are used in desktop computers. Described methods significantly
simplify automated tests in embedded systems and are grown out from research
such as developing automated testing frameworks for regression and hardware
tests by using FOTA [65].

4.3.1. Super Loop Programs
Super-loop programs (sometimes also called main-loop programs) are programs
where all data processing is done in one loop, which is typically placed into
main function. In these programs the input data is read by using interrupts or by
polling inputs. The main difference between super-loop programs and kernel is
that super-loop programs do not use scheduler and it is typically designed to
perform only one task, while kernel has scheduler that may have several
separated tasks. The Listing 4.10 shows a simple super-loop example: the lines
6 and 9 show the hardware initialisation – PORTB pin 0 is set to output and all
PORTC pins to inputs. The lines 12 to 27 show an infinite loop which reads
input status from PORTC input 0 (line 15) and switches output pin according to
input value. Should the input value be logical 1, the output 0 on PORTB is set to

77

logical 0 (line 19), and should the input value be logical 0, the output 0 on
PORTB is set to logical 1 (line 25).

1:#include <avr/io.h>
2:
3:int main (void)
4:{
5: /* Initialize port B pin 0 to output. */
6: DDRB = (1 << PB0);
7:
8: /* Set all port C pins to inputs. */
9: DDRC = 0x00;

10:
11: /* Enter to infinite loop. */
12: while (1)
13: {
14: /* Test port C pin 0. */
15: if (PINC & (1 << PC0))
16: {
17: /* If port C pin 0 has logial 1, then set port B
18: * pin 0 to logial 0. */
19: DDRB &= ~(1 << PB0);
20: }
21: else
22: {
23: /* If port C pin 0 has logial 0, then set port B
24: * pin 0 to logial 0. */
25: DDRB |= (1 << PB0);
26: }
27: }
28:}

Listing 4.10: Super loop program example.

Typically the writing and testing of a super-loop program is rather simple.
During testing, mostly are manipulated by the inputs and observed the reactions
on the outputs. Same is also possible by using ICE or emulator. The main
drawback of this kind of programs is that the program depends mostly on direct
access to registers, which makes it difficult to create a portable program. Due to
manual testing, maintenance is also complicated: every change in the source
code requires a lot of manual testing.

Due to the high amount of manual testing the super-loop programs are usable
in smaller projects. Typically such programs have less functionality and are
shorter than multithreaded programs; usually less than 5000 lines of code or 50
function points. It is reasonable to use super-loop programs in commercial
products and in projects where specification is available before coding. For
example in simpler sensor and actuator systems. This program type is widely
used in hobby projects.

Automatically Testable Super Loop Programs
Larger programs that are written for PC and are automatically testable have
minimal amount of relations with other software modules [58, 80]. The best
approach for testing super-loop programs is to move body of the main function

78

to separate function, which can be tested independently. Embedded programs
that interact directly with hardware should have minimal or even no direct
hardware relations. This is as a prerequisite for automated testing.

4.3.2. Minimising Relations Between Submodules
In embedded software development, it is possible to use same methods to
decrease software cross dependencies as it are used in desktop computer
software development – every software module should have only one
responsibility. To illustrate this, an example of a program in Listing 4.11 is
given. In this example tasks are separated from different functions:

1:#include <stdint.h>
2:
3:/* Hardware initialization. */
4:static inline void io_init (void)
5:{
6: /* HW specific operations. */
7:}
8:
9:/* AD converter initialization. */

10:static inline void adc_init (void)
11:{
12: /* AD converter (HW) specific operations. */
13:}
14:
15:/* Read one 16 bit sample from AD converter. */
16:static inline uint16_t read_adc (void)
17:{
18: /* HW specific operations. */
19:}
20:
21:/* Filter (IIR) for 'smoothing' input data. 'last_value' is last
22: * output value (from this function call). 'new_value' is input
23: * data from AD converter. This function retuns an filtered ADC
24: * value. */
25:static inline
26:uint16_t iir_filter (const uint16_t last_value,
27: const uint16_t new_value)
28:{
29: /* IIR filter code. */
30:}
31:
32:/* Change microcontroller output value accordingly to parameter
33: * 'v_val'. */
34:static inline void output_ctrl (const uint16_t v_val)
35:{
36: /* HW specific operations. */
37:}
38:
39:int main (void)
40:{
41: /* Raw value from AD converter. */
42: uint16_t ad_val;
43:
44: /* Value that represents voltage which is based on filtered
45: * AD values. */

79

46: uint16_t voltage;
47:
48: /* Do hardware initilaization. */
49: io_init ();
50: adc_init ();
51:
52: while (1)
53: {
54: adc_val = read_adc ();
55: voltage = iir_filter (voltage, ad_val);
56: output_ctrl (voltage);
57: }
58:}

Listing 4.11: AD converter, IIR filter and output control example.

In Listing 4.11, all AD converter functions are isolated (functions adc_init
and read_adc, lines 10 to 19) from filters (function iir_filter, the lines 25 to 30)
and from the output control functions (function output_ctrl, the lines 34 to 37).
The lines 39 to 58 show the main function of this program. While in the lines 49
to 50 the hardware initialisations are called, rest of the program is the main loop
(lines 52 to 57). In main loop, first the AD converter read function is called (line
54), then AD converter value is added to IIR filter (line 55) and finally filtered
voltage value is sent to output function (line 56). This example shows that all
tasks are partitioned to different functions, which is quite elementary in most of
software projects; however, this is widely ignored in embedded systems. The
main reason why the isolation rule is ignored is due to the usage of short calls
inside hardware specific functions; all calls to hardware registers are typically
one line long, which is relatively easy to integrate into calling function. The
major drawback of previous listing is that all hardware dependent functions are
in the compilation unit as hardware-independent code, and this does not allow
to write unit tests.

The following code listings are modified versions of the code from
Listing 4.11. These listings have separated code for hardware dependent
functions, and also separated code for hardware-independent functions; rest of
the code is the same. The Listing 4.12 is a header file, which contains all
hardware dependent function declarations: IO and AD initialisation, AD read
function and output control function. The Listing 4.13 contains hardware
specific function implementations for functions that are declared in the
Listing 4.12. The Listing 4.14 contains the program’s main function, which uses
functions that are declared in the hw.h file.

1:/* Header file for hardware specific functions. */
2:
3:#ifndef __HW_H_
4:#define __HW_H_
5:
6:#include <stdint.h>
7:
8:/* Hardware initialisation function. */
9:extern void io_init (void);

80

10:
11:/* AD converter initialisation function. */
12:extern void adc_init (void);
13:
14:/* Read one 16 bit sample from AD converter. */
15:extern uint16_t read_adc (void);
16:
17:/* Change microcontroller output value accordingly to parameter
18: * 'v_val'. */
19:extern void output_ctrl (const uint16_t v_val);
20:
21:#endif

Listing 4.12: Header file for hardware specific functions “hw.h”.

1:/* Implementation of hardware specific functions. */
2:
3:#include <stdint.h>
4:#include "hw.h"
5:
6:/* Hardware initialization function. */
7:void io_init (void)
8:{
9: /* HW specific operations. */

10:}
11:
12:/* AD converter initialization function. */
13:void adc_init (void)
14:{
15: /* HW specific operations. */
16:}
17:
18:/* Read one 16 bit sample from AD converter. */
19:uint16_t read_adc (void)
20:{
21: /* HW specific operations. */
22:}
23:
24:/* Change microcontroller output value accordingly to parameter
25: * 'v_val'. */
26:void output_ctrl (const uint16_t v_val)
27:{
28: /* HW specific operations. */
29:}

Listing 4.13: File for hardware specific code, “hw.c”, this file has hardware specific
code.

1:/* Rest of the program. */
2:
3:#include <stdint.h>
4:#include "hw.h"
5:
6:/* Filter (IIR) for 'smoothing' input data. 'last_value' is last
7: * output value (from this function call). 'new_value' is input
8: * data from AD converter. This function retuns an filtered ADC
9: * value. */

10:static inline
11:uint16_t iir_filter (const uint16_t last_value,

81

12: const uint16_t new_value)
13:{
14: /* IIR filter code. */
15:}
16:
17:int main (void)
18:{
19: /* Raw value from AD converter. */
20: uint16_t ad_val;
21:
22: /* Value that represents voltage which is based on filtered
23: * AD values. */
24: uint16_t voltage;
25:
26: /* Do hardware initilaization. */
27: io_init ();
28: adc_init ();
29:
30: while (1)
31: {
32: adc_val = read_adc ();
33: voltage = iir_filter (voltage, ad_val);
34: output_ctrl (voltage);
35: }
36:}

Listing 4.14: The Program’s main file (“main.c”) which does not have any hardware
dependent code.

In the listing above, all relations between the main program and the
hardware are now separated; this allows to use unit tests on different hardware
by using mocked hardware. Mocks are created in separate source files and are
not listed in this document. Testing implementation does not have any hardware
dependencies but instead it has only logging and other functions, which are
needed for testing.

Similar functionality separation approach is stated by several different
authors, but none of them mentioned one significant side effect. In most cases,
functionality separation decreases program execution speed and increases
memory footprint, mostly the stack size. Both are caused by function calling
mechanisms and while they are not significant for PC programs, they are
significant for smaller microcontrollers. However, in order to reduce these
effects, all hardware dependent functions should be added into the same
compilation unit (basically the same code as in the Listing 4.11). There is one
possibility to achieve this: define all hardware dependent functions as 'static
inline' and place them into separated header file (the Listing 4.15). 'static inline'
function code is inserted into at the place of each function call and
consequently, inlined functions save the overhead of function call but increase
size of the program memory image. Increasing memory image is typically not
as significant as high RAM usage.

82

In the following header file is the modification from the Listing 4.12; in this
file all hardware specific code is defined as static inline. This modification
allows to compile all functions as inline functions, and hw.c file is redundant.

1:/* Implementation of hardware specific functions. */
2:
3:#ifndef __HW_H_
4:#define __HW_H_
5:
6:#include <stdint.h>
7:
8:/* Hardware IO initialization function. */
9:static inline void io_init (void)

10:{
11: /* HW specific operations. */
12:}
13:
14:/* AD converter initialization function. */
15:static inline void adc_init (void)
16:{
17: /* HW specific operations. */
18:}
19:
20:/* Read one 16 bit sample from AD converter. */
21:static inline uint16_t read_adc (void)
22:{
23: /* HW specific operations. */
24:}
25:
26:/* Change microcontroller output value accordingly to parameter
27: * 'v_val'. */
28:static inline void output_ctrl (const uint16_t v_val)
29:{
30: /* HW specific operations. */
31:}
32:
33:#endif

Listing 4.15: “hw.h” with inline functions.

Above described separation has also one downside. While adding functions
through headers, such functions are also added that are not required in this
compilation unit. This has slight incompatibility with MISRA C (rule 8.5 [71])
and C++ (rule 0-1-10 [72]) rules.

4.3.3. Stateless Functions
The main prerequisite for unit tests is that tested program should be cross
compileable between different architectures, and have hardware dependencies.
To create such program, the most effective way is to follow guidelines with
described methods to achieve high portability. These guidelines are typically
MISRA C, MISRA C++, JSF and strictly following C99 or C++11 standards
adds some portability. Second important aspect is that program does not store its
states internally; it should be stateless [80]. But in embedded software such
stateful functions and variables are used quite widely; mostly these functions

83

are related with EEPROM. Other hardware dependent code parts like interrupt
processing can also be considered as stateful. Stateless functions play also
important role in unit testing. A testing framework may not always guarantee
the same test order, therefore, with stateful functions when tests are not isolated,
sequence of the tests should be taken into account. This section describes how
to separate stateful code (hardware dependent) from stateless code (program
logic part). In the Listing 4.16, is a simplified example of a typical stateful
function. In this example is a function that increases the variable i and stores the
result in the same variable (the line 7). The size of the program in this example
is 20 bytes, in this and the following examples are used maximum optimisation.

1:void fn (void)
2:{
3: /* Variable 'i' is stored to constant location in RAM,
4: * consequently all calls to function fn use "saved"
5: * variable 'i'. */
6: static unsigned int i;
7: i++;
8:
9: /* Do something with 'i'. */

10:}

Listing 4.16: Function with static variable.

It is possible to rewrite a stateful function fn in several different ways
without using internal static variable. In the Listing 4.17 (example in C
language), from the lines 5 to 15 is a function that increases static variable from
static memory area. This variable is passed on function call in the line 19. This
example requires 20 bytes of program memory.

1:/* This variable is placed to fixed address in microcontroller's
2: * memory. */
3:static unsigned int value_x;
4:
5:void fn (unsigned int *p)
6:{
7: /* Increment input value by 1, and store it to temporary
8: * variable. */
9: unsigned int i = *p + 1;

10:
11: /* Do something with i. */
12:
13: /* Store temporary variable to fixed memory location. */
14: *p = i;
15:}
16:
17:/* This function call take memory location as parameter and
18: * stores it's result to same location. */
19:fn (&value_x); /* Function call */

Listing 4.17: Accessing a static variable through pointer.

 In the Listing 4.18 (example in C language), from the lines 7 to 16 is a
function that modifies input parameter val and returns the modified result. In the
line 21 is a call to the function fn; within this call a value is copied from a static

84

variable when the function returns the stored result back to the same variable.
When this is a static function, then the size of this example is four bytes, but
when the same function would be called several times or this function is non
static function, then its size would be probably 20 bytes.

1:/* This variable is placed to fixed address in microcontroller's
2: * memory. */
3:static unsigned int value_x;
4:
5:/* This function only uses input value 'val' and it returns
6: * modified 'val' value, which can used in other places. */
7:unsigned int fn (const unsigned int val)
8:{
9: /* Increment input value by 1, and store it to temporary

10: * variable. */
11: unsigned int i = val + 1;
12:
13: /* Do something with i. */
14:
15: return i;
16:}
17:
18:/* Call function fn. This function take value_x from static
19: * memory location and stores function return value to same
20: * locaion. */
21:value_x = fn (value_x); /* Function call */

Listing 4.18: Parameter passing example.

In the Listing 4.19 (example in C++), from the lines 6 to 16 is the function
that change a value that is passed by reference. The function call with reference
passing is in the line 20. This example is technically similar to the example in
Listing 4.17, except that the reference variable address cannot be changed. As
this example is technically the same as the example in Listing 4.17 then the
program size is 20 bytes.

1:// This variable is placed to fixed address in microcontroller's
2:// memory.
3:static unsigned int value_x;
4:
5:// This function take input reference and modify its value.
6:void fn (unsigned int &p)
7:{
8: // Increment input value by 1, and store it to temporary
9: // variable.

10: unsigned int i = p + 1;
11:
12: // Do something with i.
13:
14: // Store temporary variable to fixed memory location.
15: p = i;
16:}

85

17:
18:// This function call take memory location as parameter
19:// (reference) and stores it's result to same location.
20:fn (value_x); // Function call

Listing 4.19: C++ specific example – changing reference value.

It is possible to write similar functions for EEPROM reading and writing. In
the Listing 4.20 is an example function of reading data from EEPROM area (the
line 5), modifying read value (the line 7) and storing the result back to the same
EEPROM memory location (the line 10). This and all of the following functions
are directly dependent on the size of the integer types that used for specific
microcontroller and functions that access to memory. Therefore it is difficult to
know the exact program size, but the example functions similar to those of the
preceding examples have similar sizes.

1:/* This function stores internal states to EEPROM. */
2:void fn (void)
3:{
4: /* Read value from some predefined EEPROM location. */
5: unsigned int i = read_eeprom ();
6:
7: /* Do something with i. */
8:
9: /* Write modified value back to EEPROM. */

10: write_eeprom (i);
11:}
12:
13:fn (); /* Function call */

Listing 4.20: EEPROM read-modify-write function example.

It is possible to replace above used hard-coded read and write functions
(read_eeprom and write_eeprom) using two following methods: conditional
compilation, and pass pointer to read and write functions.

The program code is the same as in Listing 4.20 when using conditional
compilation, but every architecture and testing implementation has its own
implementation of read_eeprom and write_eeprom functions. sing conditional
compilation is easier to implement - it consumes less memory and processor
resource, but testing and maintenance is more complicated. The major problem
is function implementations that are required for testing. These implementations
may require relatively complicated code for hardware emulation, and this code
should include different input and output functions for testing purposes.
Conditional compilation is preferred in smaller systems where relatively simple
hardware related functions are used, or in cases where program execution speed
or low memory consumption is essential. This approach is most suitable in
interrupt handlers.

It is also possible to use function pointer to isolate stateful code. At first,
read and write function types are defined (Listing 4.21, the lines 6 and 10):

86

1:#ifndef __HEADERS_H_
2:#define __HEADERS_H_ 1
3:
4:/* Type for read function. This function does not take any
5: * parameters, but returns unsigned integer. */
6:typedef unsigned int (*read_fn_t) (void);
7:
8:/* Type for write function. This function take unsigned int as
9: * input parameter and does not return any value. */

10:typedef void (*write_fn_t) (unsigned int i);
11:
12:/* Function that read unsigned int from predefined memory
13: * location. */
14:extern unsigned int eeprom_read (void);
15:
16:/* Function that write unsigned int to predefined memory
17: * location. */
18:extern void eeprom_write (const unsigned int v);
19:
20:#endif

Listing 4.21: Type definitions for the read and write functions.

Then, the read_fn and write_fn functions are implemented in a separate
source file:

1:#include "headers.h"
2:
3:/* Function that read unsigned int from predefined memory
4: * location. */
5:unsigned int eeprom_read (void)
6:{
7: /* Read one byte from predefined EEPROM location. */
8:}
9:

10:/* Function that write unsigned int to predefined memory
11: * location. */
12:void eeprom_write (const unsigned int val)
13:{
14: /* Write one byte to predefined EEPROM location. */
15:}

Listing 4.22: Read and write function implementations.

Finally, in the Listing 4.23 is a function that uses above described read and
write functions and calls to a function that is responsible for changing
EEPROM contents. In the lines 7 to 19 is a function that uses above defined
read and write functions; in the line 23 is a function that is called when it is
needed to modify EEPROM contents.

87

1:#include "headers.h"
2:
3:/* Function that read input value by using function that is
4: * passed by read_fn parameter, modify input value and store
5: * result by using function that is passed by write_fn
6: * parameter. */
7:static void fn (const read_fn_t read_fn,
8: const write_fn_t write_fn)
9:{

10: /* Read input value by using function that is passed by
11: * read_fn parameter. */
12: unsigned int i = read_fn ();
13:
14: /* Do something with i. */
15:
16: /* Write function result by using function that is passed by
17: * write_fn parameter. */
18: write_fn (i);
19:}
20:
21:/* Call function fn and use eeprom_read and eeprom_write
22: * functions for input data reading and save. */
23:fn (eeprom_read, eeprom_write); /* Function call */

Listing 4.23: Calls to read and write functions and final call modifying function.

The modified version allow to write tests quite efficiently; it only requires
different implementation of read and write functions (from the Listing 4.22) on
different architectures but rest of the code remains the same. For testing
purposes, it is possible to inject different hardware mocking functions [80] –
this was not possible using conditional compilation. The downside of the
presented method is that it uses function pointers and it requires more
microcontroller memory and CPU resources – on AVR microcontrollers it uses
at least 4 bytes of stack, and every indirect call with additional memory load
instructions requires several CPU cycles, more than a regular function call.
However, this implementation is preferred for use in such places that have a lot
of relations to different software modules, in non-time-critical sections, and in
functions that contain control logic. Both described approaches are also usable
in places where it is needed to test interrupt handling functions, but it is
preferred to use conditional compilation instead.

Above described approaches allow to use unit tests and behaviour
descriptions in embedded programs. It allows to use methods that are heavily
used in projects that use agile practices. Described program partitioning and
code refactoring, which is presented in above examples, is not strictly related by
automated tests, but it allows to create programs that have high maintainability
and testability. The main downsides of the presented methods are typically
increased CPU or memory resource consumption.

4.3.4. Unit Tests on Target Hardware
It is also possible to run unit tests on target hardware. The main advantage of
this is the absence of modules that emulate hardware. Typically, writing unit

88

tests for target hardware is similar to writing tests for different hardware. The
only difference is that tests that run on target hardware should be as small as
possible and not consume significant microcontroller resources. While testing
on target hardware, tests should send results outside the testing environment,
i.e., the development computer.

The main usage of this method is in detecting such program bugs that are
impossible to detect in a different environment. These tests may be integration
tests as well where a test scenario is previously broadly specified. Generally,
these tests are more like hardware self-tests than normal unit tests. Unit testing
on target hardware is not widely spread and currently only one framework is
known that has support for it – “BSP430 Board Support Package for MSP430
Microcontrollers” [12]. In the context of this thesis, this testing method has
been used several times with FOTA [65] enabled telematics modules; however,
it is not very convenient in a regular embedded software development process.

4.3.5. Debugging and Testing
While it is possible to use unit tests in embedded software development, it is not
possible to debug all embedded software by using only unit tests. Even in
programs where unit testing is heavily used, several different hardware specific
debugging and testing methods are employed. Mostly, OCD is used, but in
smaller extent other manual testing tools like simulators and emulators are used.

For smaller microcontroller software or bootloader development, two
different types of debugging approaches are mostly used. Firstly, manipulation
of hardware inputs and then waiting for some state to change, and observing the
output reaction. Or secondly, using OCD. Both methods require small amount
of memory and CPU resource, they can also be considered as manual debugging
methods and need the direct interaction of a developer. To illustrate one manual
debugging approach, an example code is given in the Listing 4.24. This
example involves tracking output change when some internal condition of a
program changes. Similar approach is described in at least one of the embedded
software related books [28]. In this example, a microcontroller sets its output
PB0 to logical one when input parameter has non null value (lines 6 to 13), and
sets to logical zero when function input value has null value (lines 15 to 21). As
the output value changing rate depends on the function calling rate and function
execution time, then with the lower changing rate it is possible to visually
monitor the output states by using an LED, which is connected to
microcontroller output pin. However, for higher calling rates an oscilloscope or
a logic analyser is required to monitor the microcontroller output.

1:#define MON_PORT PORTB
2:#define MON_PIN PB0
3:
4:void fn_1 (const uint8_t val1)
5:{
6: if (val1)
7: {

89

8: /* Some code here. */
9:

10: /* After executing this brach set monitor pin to
11: * high level (logical one) */
12: MON_PORT |= (1 << MON_PIN);
13: }
14: else
15: {
16: /* Some code here. */
17:
18: /* After executing this brach set monitor pin to
19: * low level (logical zero) */
20: MON_PORT &= ~(1 << MON_PIN);
21: }
22:}

Listing 4.24: Monitor example.

Another option to the above described approach is to use a serial port for
debugging data output. When using a serial port, two aspects should be taken
into account: a program should not change states faster than the hardware is
capable of transmitting, and the receiving side should be able to receive and
process data fast enough so that there would be no loss of data.

It is also possible to use simulators and OCD. A simulator allows to test
programs without using real hardware, which is a clear advantage when using
such microcontrollers where it is technically complicated to upload new
software. To overcome data inputting and outputting problems, OCD is quite
widely used, which is typically connected to microcontrollers by using a JTAG
interface. But OCD has also a noticeable drawback: it may alter the program’s
real-time and asynchronous hardware behaviour [8]. This makes it difficult to
use OCD with larger programs that use a kernel and variety of different
hardware. Nevertheless, for smaller programs without kernel or sophisticated
interrupt system, which generates asynchronous interrupts, there are no
significant problems with OCD.

As every above mentioned method has its own weaknesses and strengths, all
methods are used in different places. Debugging methods that involve lot of
program uploading, like the method that involves output change monitoring, are
not usable in large systems – program loading makes this method too time
consuming. Using a simulator is limited by the number of input states. The main
problem with OCD is asynchronous hardware. All the listed methods have one
thing in common: they all have a lot of operations that should be carried out by
a developer, which in turn increases software development time and are error
prone. With methods described, it is difficult to test programs that are larger
than 50 function points (5000 lines of code in C), even when these programs are
written in a very modular way. Therefore, it is reasonable to use described
testing method only when no other testing method is available. However, if it is
possible to use unit tests, one should write all programs to use unit tests.

90

4.4. Multithreaded Programs on Embedded Systems

Many embedded systems are designed to execute only one task, but also exists
also many embedded systems that have concurrently several tasks. In systems
that are designed for multiple tasks, it is much more complicated to guarantee
correct hardware access and CPU resource sharing. In following sections are
described some problems that show up in multithreaded embedded software,
also are given some solutions for these situations. Described solutions support
wave height measurements in TM side [69] – for wave height measurements, it
is needed that one process is active for a long time and that other processes do
not change its state for the same amount of time. To use such long run process
on TM, the watchdog should not restart microcontroller by only watching non
active threads.

4.4.1. Sharing Processor Resource Between Tasks, Schedulers
Real-time programs typically have different tasks that are separated but run as
parallel processes; such tasks are called threads. Every thread is like a single
super-loop program – it has its own memory area and hardware access. The
only difference in a real super-loop program is that a thread may interact with
other threads. It can send data from one thread to another, but also every thread
is able to interfere with other threads, or may change the state of a shared
hardware resource.

Threads and multitasking depend on one program part – the scheduler. This
program part is responsible for sharing CPU time between different threads.
Small embedded systems have typically two different types of schedulers –
preemptive and cooperative. In most cases, only one type of a scheduler is used,
and this should be selected before program compilation; for example,
FreeRTOS [85] has such option. With powerful CPU, large memory and not
very critical timings (i.e., not hard real-time system), there are no significant
differences between preemptive and cooperative kernels. However, in smaller
microcontrollers it is more difficult to use preemptive kernel. The main
difference in scheduler is the task changing mechanism: a preemptive scheduler
changes tasks automatically after predefined period, a cooperative scheduler
changes tasks by user command (in most cases, a task change command is
hidden to developer; these commands are automatically called by other
functions like printf, which eventually waits for hardware). Due to the
differences in task changing mechanism, preemptive kernels are little bit more
fault tolerant than cooperative kernels and require more resources. Cooperative
schedulers, however, need little more testing, take less microcontroller
resources and are simpler to implement.

A preemptive kernel has two major drawbacks. Firstly, when a kernel is
configured to change tasks too frequently, it may take significant amount of
CPU resources and therefore it may take longer to accomplish some task than
with less frequent task switching; although it may decrease response times.
Secondly, the kernel needs to have some periodical signal to trigger the task

91

change. Typically, in embedded systems a hardware timer is used for that
purpose. Therefore, it requires one hardware timer and one interrupt10.

But a cooperative kernel has the ability to lock the whole CPU for infinite
time, or trigger a watchdog in a normal operation. While developing programs
with cooperative kernel one should take into account that one single task should
not consume all the CPU's resources. Consuming all CPU resources will lock
CPU to one task and other tasks cannot be run; this usually freezes the whole
system. This drawback is the most significant shortcoming, and therefore, this
kernel type is not preferred on desktop computers.

While the desktop computer operational systems allows a preemptive kernel
to avoid situations where one faulty program freezes all other programs, then in
embedded systems this behaviour may not be the optimal solution. It is
preferred in several systems, a full system freeze and reboot from watchdog
when one task locks up. While using a preemptive kernel without complex
thread monitoring, the rest of a system may be operational for long time after
one thread freezes. With cooperative kernel all tasks are blocked and a system
wide watchdog triggers system reboot. In this case, a watchdog may have quite
simple implementation, and watchdog hardware can be reset from an idle task.

4.4.2. Multitasking Programs and Watchdog
Typically, most embedded systems have a watchdog circuit, which is used to
prevent situations where the system may stay in one state for indefinite time.
Using a watchdog in super-loop programs is relatively easy – it should be reset
after all tasks in a loop are completed; the only concern is that these tasks
should not take too long. Using a watchdog timer in multithreaded programs is
much more complicated – it is not possible to monitor several threads by simply
using a single watchdog. In a multithreaded system only one process is allowed
to reset the watchdog timer; the decision about watchdog resetting should be
based on results of monitoring the state of all threads. Depending on scheduler
type, it is possible to use different methods for resetting the watchdog. With
preemptive and cooperative schedulers, it is possible to use watchdog resetting
by monitoring all threads in parallel, or by methods where an unlock token is
passed from thread to thread. With a cooperative scheduler it is possible to use
above mentioned methods and also to reset a watchdog from an idle thread.

For resetting a watchdog by monitoring the threads running in parallel, the
scheduler and some other periodical routines (i.e. timer interrupt11) should check
that the last thread or group of threads have modified some of its parameters
(Figure 4.1), and when no changes are detected then the watchdog resets; an
example program is given in the Listing 4.25. A parameter which is monitored
may be some thread related parameter like a stack pointer or program counter or

10 In some cases it is possible to use real-time clock for this purpose.
11 This method is preferred when it is not possible to use a scheduler for thread

monitoring.

92

similar parameter, but this parameter should change after every context switch.
A similar approach is used in FunkOS [27]; it uses time-out for every task and
all tasks are monitored in a separate process, but this approach requires that all
tasks have predefined periods for activity.

The following program illustrates above described watchdog resetting
method.

1:#define TH1_COMPLETED 0
2:#define TH2_COMPLETED 1
3:#define TH3_COMPLETED 2
4:#define ALL_TREHADS ((1 << TH1_COMPLETED) |
5: (1 << TH2_COMPLETED) |
6: (1 << TH3_COMPLETED))
7:
8:/* Variable that hold lock for watchdog access. */
9:uint8_t wdt_lock = 0;

10:
11:THREAD1
12:{
13: while (1)
14: {
15: /* Task which completion is monitored by wdt_lock. Flag
16: * TH1_COMPLETED set only when task is successfully
17: * completed. */
18: wdt_lock |= (1 << TH1_COMPLETED);
19: }
20:}
21:
22:THREAD2
23:{
24: while (1)
25: {
26: /* Task which completion is monitored by wdt_lock. Flag
27: * TH2_COMPLETED set only when task is successfully
28: * completed. */
29: wdt_lock |= (1 << TH2_COMPLETED);
30: }
31:}
32:

93

33:THREAD3
34:{
35: while (1)
36: {
37: /* Task which completion is monitored by wdt_lock. Flag
38: * TH2_COMPLETED set only when task is successfully
39: * completed. */
40: wdt_lock |= (1 << TH3_COMPLETED);
41: }
42:}
43:
44:WDT_RESET_THREAD
45:{
46: sleep (MONITOR_SLEEP_TIME);
47:
48: /* Test that all tasks have been set completed bit. Watchdog
49: * timer is resetted only when this test returns true. */
50: if (wdt_lock == ALL_TREHADS)
51: {
52: /* All tasks have been completed, reset WDT */
53: wdt_reset ();
54:
55: /* Clear also wdt_lock, now is possbile to recheck
56: * thread states. */
57: wdt_lock = 0;
58: }
59:}

Listing 4.25: Parallel watchdog resetting.

In Listing 4.25, is a example program where are used three threads (lines 11
to 42), these threads are independent from each other. In this listing is also one
thread that monitors the health of other threads, this thread is responsible for
resetting watchdog if no activity is detected (lines 44 to 59). All independent
worker threads perform designated tasks and after task is completed, a complete
THn_COMPLETED bit is set up (lines 18, 29 and 40).
WDT_RESET_THREAD monitors that all threads have set
THn_COMPLETED bit (the line 50). This bit should be set by all threads,
otherwise the watchdog hardware will not reset – the lines 51 to 58 will not be
executed, and hardware watchdog circuit will cause consequent restart. The
downside of this resetting method is the complexity. It requires additional CPU
and memory resources for every thread and it is difficult to implement it in
programs where threads have different activity periods (like communication
threads, which are activated occasionally).

Another method for resetting watchdog is to use tokens that are passed by
work order of threads (Figure 4.2). This implies to clearing of alive bits of the

94

threads – every thread clears its own alive bit and sets next alive bit of the
thread, and finally the watchdog resets when the last thread clears its alive bit.
For example, if it is known that the first thread performs its tasks always before
the second, and the second thread will always run before the third, then a
watchdog should be reset by the third thread when it has cleared the second
thread’s complete bit. But if the second thread does not set alive bit again within
a period that is required for resetting the watchdog, it will trigger a watchdog
reset. The following code example 4.26 illustrates above described watchdog
resetting method.

1:#define TH1_COMPLETED 0
2:#define TH2_COMPLETED 1
3:
4:/* Variable that hold lock for watchdog access. */
5:uint8_t wdt_lock = 0;
6:
7:THREAD_1
8:{
9: while (1)

10: {
11: /* Task which completion is monitored by wdt_lock. Flag
12: * TH1_COMPLETED set only when task is successfully
13: * completed. */
14: wdt_lock |= (1 << TH1_COMPLETED);
15: }
16:}
17:
18:THREAD_2
19:{
20: while (1)
21: {
22: /* Task, which completion is monitored by wdt_lock. Flag
23: * TH2_COMPLETED is set only when task is successfully
24: * completed and also THREAD_1 has set TH1_COMPLETED
25: * flag (i.e. this thread is also successfully completed
26: * its tasks).*/
27: if (wdt_lock & (1 << TH1_COMPLETED))
28: {
29: wdt_lock |= (1 << TH2_COMPLETED);
30:
31: /* Release TH1_COMPLETEF flag. This flag is set by
32: * THREAD_1. */
33: wdt_lock &= ~(1 << TH1_COMPLETED);
34: }
35: }
36:}
37:
38:THREAD_3
39:{
40: while (1)
41: {
42: /* Reset watchdog timer only when THREAD_2 has set
43: * TH2_COMPLETED flag (i.e. this thread is also
44: * successfully completed its tasks). */
45: if (wdt_lock & (1 << TH2_COMPLETED))
46: {
47: /* Reset the watchdog timer. */

95

48: wdt_reset ();
49:
50: /* Release TH2_COMPLETEF flag. This flag is set by
51: * THREAD_2. */
52: wdt_lock &= ~(1 << TH2_COMPLETED);
53: }
54: }
55:}

Listing 4.26: Serial watchdog resetting.

In the listing above is a program example with three independent threads; the
only communication between the treads is a shared variable wdt_lock. The only
requirement for this program is that all threads run sequentially, first runs thread
no. 1 (lines 7 to 16), then no. 2 (lines 18 to 36) and lastly, thread no. 3. (the lines
38 to 55). For resetting watchdog, the following steps are taken: the first thread
completes its tasks and sets the bit TH1_COMPLETED (line 14) in wdt_lock
variable; then second thread completes its tasks and checks that the first thread
has permitted (test that TH1_COMPLETED bit has set) to set the bit
TH2_COMPLETED (lines 27 to 34). Setting the bit TH2_COMPLETED clears
also the TH1_COMPLETED (the line 33) bit. In the last step when the
TH2_COMPLETED bit is set and the third thread has completed all tasks, the
watchdog timer can finally reset (lines 45 to 53). If the TH2_COMPLETED bit
is not set, the watchdog will reset in the next watchdog resetting cycle; this also
clears the TH2_COMPLETED bit (line 52). Presented watchdog resetting
mechanism allows to monitor all threads by using a single hardware watchdog.
Should at least one thread freeze, the reset will be carried out by hardware.

The two examples above are both similar in terms of CPU resource
requirements and program memory or RAM utilisation.

Third and the simplest method is to reset the watchdog without monitoring
all threads directly; instead, an idle thread should be used for resetting the
watchdog. This is usable only with a cooperative kernel – in most situations
where one thread freezes, all CPU resources will be taken and therefore the idle
thread is not able to reset the watchdog timer. The only problem with this
approach is that when a faulty thread has at least one sleep instruction, which
allows the idle thread to regularly reset the watchdog timer, is not possible to
use this method for resetting the system by the watchdog.

To conclude this section, the best watchdog resetting methods are parallel
thread monitoring and sequential monitoring, and in some rare cases where the
program execution order is not defined, it is possible to use a mixture of both
methods. The easiest way to reset a watchdog is to reset it from an idle thread,
which is reasonable to use in smaller programs; in larger programs it is difficult
to use and serial or parallel watchdog resetting is preferred.

96

4.5. Common Optimisations Methods for Embedded Systems

While the compiler technology is constantly advancing, the modern compilers
are able to create very well optimised program code by using several different
optimisation techniques. However, still some special source code constructs
may have significant impact on the program execution speed and size. Code
optimisation by compiler is unfortunately limited by relatively simple methods
like loop optimisation, dead code removing and reordering statements [99].
Generally, the optimisation that has highest net impact to program execution
speed is carried out by the compiler, but some optimisations remain on
developer's responsibility. The following sections describe improvements that
allow to decrease significantly memory, CPU or IO resource consumption.
Described improvements were necessary to enable resource consuming
calculations on a buoy system onboard microcontroller. These calculations
include heel angle calculations [67] and buoy collision detection [68]; also
methods that are used for data outputting when profiling buoy behaviour are
described [66].

4.5.1. Limiting Function Arguments
Data is passed to functions mostly by using parameters, which add overhead to
a program. In most cases registers are used for parameter passing. but also
RAM is used. Both methods consume a noticeable amount of microcontroller
resources. Furthermore, functions that have a large number of parameters have
typically several different responsibilities, which make program testing and
maintaining more complicated; typically, every function parameter adds at least
one test case. Therefore, depending on the coding style, maximum number of
parameters is limited between 3 to 5 [58].

Although functions should have minimal amount of parameters, still many
functions exist that use a large number of parameters. Several functions that
require more than three parameters were used in TM software for acceleration
data processing [65, 67] – three parameters for acceleration values, each
acceleration value was two bytes long, and one parameter for timestamp, which
is a four byte value; all together take up 12 bytes of stack or RAM. However, to
overcome the overhead caused by a large number of parameters, it is possible to
implement parameter passing by structure pointer passing; in case of 8-bit AVR
microcontroller this takes two bytes of memory. In the following example (the
Listing 4.27) is such situation where a function with four parameters is needed.

1:/* Structure for parameters. */
2:typedef struct
3:{
4: uint8_t v1;
5: uint8_t v2;
6: uint8_t v3;
7: uint8_t v4;
8:} params_s;
9:

97

10:/* Function that require several parameters. */
11:void fn (params_s *par)
12:{
13: /* Do something with passed parameters. */
14:}
15:
16:void caller (void)
17:{
18: /* Fill structure that holds parameter values. */
19: params_s par = {1, 2, 3, 4};
20:
21: /* Call function that uses large number of parameters, pass
22: * parameter strucuture by pointer. */
23: fn (&par);
24:}

Listing 4.27: Parameters passed by structure.

In the listing above, first the structure params_s (the lines 2 to 8) is defined
that contains parameters that will all be passed to function fn (the lines 11 to
14). This structure holds four parameters and passing the structure is
implemented as passing a pointer to the structure memory area. On the lines 16
to 24 is a function that calls the function fn, and passes four parameters to fn. If
this example would have been implemented to pass four different variables to
functions fn, the function fn would take four bytes of stack, however, using a
pointer it would take only two bytes.

It is worth to note that in C++ where references are implemented as pointers,
it is recommended to pass objects as references. This is much more effective
than pass by value – a copy constructor [61] is always called when an object is
passed by value.

4.5.2. Program Code Inlining
The best way to decrease usage of microcontroller CPU and stack resource is to
change smaller functions to inline functions. Inline functions are functions that
are copied to places where the call to specified function is located. Such
technique reduces significantly CPU and stack usage and also increases the
program execution speed. Best candidates for inlining are functions that are
only one line long – these functions are typically only several machine
instructions long (Listing 4.28). It is not reasonable to consider these functions
as real functions. In a program example (Listing 4.28), an inline function
set_output is defined (lines 5 to 11), which sets microcontroller’s PORTB state
to logical 0 (line 10) or to logical 1 (line 8), depending on input parameter. This
function was called by two different functions, first by init_output (lines 15 to
22) and secondly by main (lines 24 to 42). When called first time (line 21), it is
possible to optimise this function in such a way that only this code is compiled
that was in a true branch – this function uses a constant parameter and the
compiler allows to ignore the code parts that are not required. If the set_output
function had been written as non-inline function, then in the line 21 the call
instruction would change to real function, which has exactly two branches like

98

in the function on lines 5 to 11. The second call to set_output function is on the
line 40, but in this case, it is not possible to predict which branch is needed and
therefore the whole set_output function is copied to this location.

1:/* Function which change output port state accordingly to input
2: * parameter 'val'. When parameter val is non null then port B
3: * pin 0 is set to high level, when parameter is null then port
4: * B pin 0 is set to low level. */
5:static inline void set_output (const uint8_t val)
6:{
7: if (val)
8: PORTB |= (1 << PB0);
9: else

10: PORTB &= ~(1 << PB0);
11:}
12:
13:/* Initialise output port, and set port B pin initially to low
14: * level. */
15:static inline void init_output (void)
16:{
17: /* Set port B pin 0 to output. */
18: DDRB |= (1 << PB0);
19:
20: /* Set output initially to high. */
21: set_output (1);
22:}
23:
24:int main (void)
25:{
26: /* Variable for temporary output value. */
27: uint8_t output_value;
28:
29: /* Initialise output port. */
30: init_output ();
31:
32: while (1)
33: {
34: /* Some code. */
35:
36: /* get_output_value give new value to output. */
37: output_value = get_output_value ();
38:
39: /* Change output state. */
40: set_output (output_value);
41: }
42:}

Listing 4.28: Using inline functions.

When inlining larger functions, and if these functions are used in several
places, then in most cases, the compiler warns about code growth. In embedded
systems where programs are executed from program memory (typically from
flash memory), the increased program size is irrelevant in most cases. For
example, the ATMega1280 microcontroller has 128 kB of program memory and
8 kB of RAM, and it is not uncommon that programs that take half of the
program memory require most of the target microcontroller RAM. In such
system, it is reasonable to use inline functions as much as possible and it may

99

be necessary to suppress compiler warnings, which notify about program size
growth. The inline functions are copied to a place of calling, and do not use any
stack; compared to regular functions, each inline functions typically save 2...4
bytes of stack. Also the absence of calling and return instructions increases the
speed of program execution.

Although inline functions allow to save significant amount of memory, these
functions may also have some downsides – as inline functions do not exists as
separate functions in program code, it is not possible to take function address. If
it is still tried to take address from an inline function, two possible outcomes
occur. Firstly, the compiler may refuse to compile this source file or function
and secondly, the compiler creates a copy from inline function, and this copy
will not be inlined and the returned address will be this non-inlined function's
address.

The above paragraph described the use of inline functions in C. In most of
the cases, it is applied to C++ as well. The only place where caution should be
taken is when inlining is used in constructors, destructors and templates.
Inlining these program parts may increase the executable program size
significantly [61].

4.5.3. Fast Hardware Access
Interrupts are hardware mechanisms for notifying that new data is present in
some hardware register. When data is available, an interrupt is triggered and the
program continues on interrupt vector and later returns to the site where
program execution was before the interruption. Executing an interrupt routine
usually means that the CPU uses jump instruction to enter an interrupt vector
and when leaving, uses an interrupt return instruction. Typically, jump and
return instructions require several CPU clock cycles. The AVR microcontroller
needs four clock cycles to enter and two cycles to exit. In cases when it is
needed that some program reacts extremely fast to input change, polling can be
used instead of interrupts. Depending on input reading instruction, one input
poll takes two to four clock cycles, which is saving significant time compared to
interrupts.

In the Listing 4.29, is an input polling example for AVR microcontrollers. In
this example a while loop is executed until PB0 input is logical 1; if input goes
to logical 0, the program continues after line 8. As reading from hardware
PORTB is defined as reading from a volatile variable, the compiler does not
optimise the loop body (lines 3 to 8). The nop instruction on line 8 serves as a
placement mark for the Listing 4.30.

1:while (PORTB & (1 << PB0))
2:{
3: /* While loop body. */
4:
5: /* This nop instruction is neccerary for finding exact code
6: * part in disassembled code, it does not have any other

100

7: * purpose in this example. */
8: __asm__ __volatile__ ("nop");
9:}

Listing 4.29: Input polling example.

While disassembling the example above, it is seen that this function is five
CPU clock cycles long when the input is logical 1; and three cycles long when
the input is logical 0 (Listing 4.30).

1:L0: sbis 0x05, 0; skip next instruction when bit 0 is set in
2: ; register 5 (PORTB), 1 clock cycle when false,
3: ; 2 clock cycles when true
4: rjmp L1 ; jump out from loop (jump to label L1), 2 clock
5: ; cycles
6: nop ; placement mark, no operation, 1 clock cycle
7: rjmp L0 ; jump back to beginning of the loop (jump to
8: ; label L0), 2 clock cycles
9:L1:

Listing 4.30: Assembler output for Listing 4.29.

Program example in Listings 4.29 and 4.30 take 6 to 7 instruction when
executed on AVR microcontroller. Both examples take also 7 bytes of program
memory.

A similar program for ATMega1280 that has same functionality but uses
interrupts takes at least five instructions to enter and return [7]. Other
microcontrollers may have different number of clock cycles to enter and return
the interrupt handler but using interrupts is typically not as fast as polling.

4.5.4. Byte Order Manipulation
Many programs need to change the order of bytes, to construct a larger variable
from the set of bytes, or to change order of bytes in a network message. In the
Listing 4.31 is a typical function of this kind. This function constructs a 16-bit
variable from two 8-bit variables. In the line 1, a pointer is passed to constant
array of bytes; this array should be at least two elements long. In line 6, a byte is
taken from buffer element 1 and shifted 8 bits to the left; finally, the result is
added (in this example, adding is logical) to buffer element 2; the result will be
returned when the functions ends.

1:uint16_t change_order_shift (const uint8_t *buf)
2:{
3: /* Shift fist buffer element to left by 8 bits and add
4: * buffer second element to result – i.e. {0xAA, 0xBB} ->
5: * 0xAABB. */
6: return ((buf[0] << 8) | buf[1]);
7:}

Listing 4.31: Using shift to change byte order.

Disassembled code is presented in the Listing 4.32. The AVR GCC version
4.9.0 was used for compiling this example. Disassembled program is 10

101

instructions long (including return instruction) and uses nearly same
instructions, which were required in a source code. In the line 1, the source
memory address is copied to register Z, which is an indirect addressing register.
In line 3, the first byte is read to register 18, and in line 5 cleared register 19.
The registers 18 and 19 are handled as one 16-byte register where the 8-bit
value is placed; in lines 7 and 10, the 8-bit is shifted to right. The second
element of the array is read in line 11 and placed into a temporary register
which then is added to the first variable in line 15. In this example there are
several instructions that are not needed for output – for example, line 5 shows
clearing of the register 19 where several instructions later a new value is
written. Also on lines 13 and 16 are shown redundant movw instructions.

1: movw r30, r24 ; move pointer to indirect addressing
2: ; register
3: ld r18, Z ; load first byte from buffer to temporary
4: ; register
5: ldi r19, 0x00 ; set lower byte to 0x00 in destination
6: ; register pair (unesseray instruction)
7: mov r19, r18 ; move loaded byte to destination register,
8: ; this instruction performs also 8 bit shift
9: ; left

10: eor r18, r18 ; clear temporary register
11: ldd r24, Z+1 ; load second byte from buffer to another
12: ; temporary register
13: movw r20, r18 ; move first register pair to another
14: ; temporary register
15: or r20, r24 ; add lower 8 bits to output register
16: movw r24, r20 ; move register pair to function output
17: ; register
18: ret ; return from this function

Listing 4.32: Listing of the 'change_order_shift' function.

In the Listing 4.33 is a function that constructs same 16-bit variable but uses
union for this purpose. In this example, it is not expected that the compiler uses
optimal instructions for compiling with this function. Instead, exact steps are
specified to change the order of bytes. In line 3, is passed a pointer to constant
array of bytes to the change_order_union function; underlying array should be
at least two elements long. In the lines 6 to 13 a union is defined, which
contains two elements: one array with the length of two bytes (line 9), and one
16 bit variable (line 12). In lines 16 and 19, elements from the input buffer buf
(an array) to union addr_u are copied and the returned 16-bit variable is shown
in line 23.

1:/* Change order of bytes by using union. Array of input bytes is
2: * given by pointer.*/
3:uint16_t change_order_union (const uint8_t *buf)
4:{
5: /* Union for conversion. */
6: union
7: {
8: /* This array contains mapping to the 16-bit element. */
9: uint8_t byte[2];

102

10:
11: /* This element contains 16-bit value. */
12: uint16_t word;
13: } addr_u;
14:
15: /* Copy last buffer element to union first element. */
16: addr_u.byte[0] = buf[1];
17:
18: /* Copy first buffer element to union last element. */
19: addr_u.byte[1] = buf[0];
20:
21: /* Return 16-bit element from union, which has reversed
22: * byte order. */
23: return addr_u.word;
24:}

Listing 4.33: Using union to change byte order.

The Listing 4.34 presents disassembled program code from the Listing 4.33.
AVR GCC version of 4.9.0 was used for compiling this example. This code is 4
instructions long (including the return instruction) and it uses exact instructions
that are required for changing the order of bytes. In line 1 is the source memory
address, copied to register Z (the indirect addressing register). The lines 3 and 5
show code where bytes are copied from memory location and placed to output
register in reversed order. The resulting value has an exact reverse order
compared to the original value.

1: movw r30, r24 ; move pointer to indirect addressing
2: ; register
3: ldd r24, Z+1 ; load second byte into lower half of output
4: ; register pair
5: ld r25, Z ; load first byte into higer half of output
6: ; register pair
7: ret ; return from this function

Listing 4.34: Listing of the 'change_order_union' function.

Using union to change order of bytes makes the resulting machine code
significantly smaller but this function may depend on hardware. It is possible to
port the first function (Listing 4.31) without modifications to different
architectures, but using the second function in a different architecture may
involve conditional compilation.

However, in cases when it is needed to convert an array of bytes to a larger
integer, but the byte order remains the same, conversion is a trivial task. This
can be accomplished simply by casting array elements to a larger type. Such
casting is not compatible with MISRA C rule 11.4 [71].

4.5.5. Optimisation of AES Cryptographic Functions
As embedded systems are used quite widely in control applications, it is
reasonable that in unsecured environment the communication channel shall be
encrypted. Although many new microcontrollers have hardware cryptography
engine [6], the majority of microcontrollers do not have it. In small embedded

103

systems mostly symmetrical key cryptographic algorithms are used, such as
AES, DES (Data Encryption Standard) and XTEA (eXtended Tiny Encryption
Algorithm). It is also possible to use algorithms with asymmetrical keys, but
these algorithms consume significant amount of microcontroller resource;
usually at least one magnitude more than the symmetrical keys, and therefore
the microcontroller is not able to perform other tasks. Currently it is known that
only elliptic curve cryptography (ECC) is usable in 8-bit microcontrollers [88].
Methods that are described in this section are used with the AES algorithm, with
128 bit keys. But it is also possible to use it with 192 or 256 bit keys.

While the AES cryptographic algorithm [78] requires relatively small
amount of processor and memory resources [18], it may still require more
resources than smaller microcontrollers may actually have. It is possible to
optimise processor or memory resource consumption where the substitution
table (S-Box) [78] calculations are performed. It is possible to compute the S-
Box values in three different ways. Firstly, without precomputed S-Box values
all values are calculated when needed [53]. Secondly, the S-Box values are
computed during a program start [4]. Thirdly, the S-Box values are generated
before the compilation – all the values are program memory constants [81]. In
an embedded system, the second method where S-Box values are generated
when program starts, is the least suitable. This method places the generated
values to RAM and either to static or dynamic storage. It is suitable in systems
where there is enough spare memory. Other two methods are suitable for
embedded systems. The first method where the S-Box values are generated
when needed is reasonable for use in such cases where cryptographic functions
are required only few times, and encryption and decryption are not time critical.
This uses quite small amount of memory, both program and RAM, but requires
more CPU resource. Typically, it takes around 100 bytes of program memory
and up to 32 bytes of RAM (short time storage) but it requires several hundreds
of CPU cycles to calculate constants (exact number depends on code inlining
and optimisations). In the Listing 4.35, is a function for S-Box calculation. In
this listing, function body is left out; the main purpose of this listing is to show
the difference between the first and third method (Listing 4.35).

1:/* Function for S-Box calculation, where parameter 'x' is byte
2: * value that has to be mapped to S-Box. */
3:uint8_t rj_sbox (const uint8_t x)
4:{
5: uint8_t rj_sbox_value;
6:
7: /* Calculate rj_sbox_value, this may take significant amount
8: * of CPU resource. */
9:

10: return rj_sbox_value;
11:}

Listing 4.35: Function for S-Box value calculation.

In case of the third method, the S-Box values are generated before the
compilation. This uses more program memory area, it requires at least 256 bytes

104

but not more than 300 bytes of memory for table storage and accessors, but is
nearly same fast as the second one (reading constant values from a program
memory uses some CPU cycles more than reading values from RAM).
However, it does not require any additional RAM for S-Box. In the Listing 4.36
is the S-Box implementation for reading constants from a program memory. The
S-Box values are defined in the lines 2 to 5 and required read function is defined
in line 9.

1:/* Array of precomputed S-Box values. */
2:static const uint8_t PROGMEM sbox[256] =
3:{
4: /* AES S-Box constants */
5:};
6:
7:/* Read S-Box value fom constant array. This macro emulates an
8: * rj_sbox function. */
9:#define rj_sbox(x) pgm_read_byte (&sbox[(x)])

Listing 4.36: Using program memory for AES S-Box.

1:void aes_sub_bytes (uint8_t *buf)
2:{
3: uint8_t i;
4:
5: for (i = 0; i < 16; i++)
6: {
7: /* Fill buffer by S-Box values. These values are
8: * calculated by 'rj_sbox' function or retrieved by
9: * using macro from precalculated array of constants. */

10: buf[i] = rj_sbox (buf[i]);
11: }
12:}

Listing 4.37: Using S-Box constants in AES.

In the Listing 4.37 is a function that can use functions that are described in
the Listings 4.35 and 4.36. In lines 5 to 11 is a function for reading the S-Box
values from program memory, or calculated on the fly; read values are placed
into the output array buf.

4.6. Dynamic Memory

Most of the programs for non-embedded devices use dynamic memory
intensively. Typically, the program asks the kernel for additional memory during
the execution by using special standard library functions. Asking for memory
every time when its needed is much easier than to estimate the exact memory
requirements during development. In some cases, asking for more memory is
the only possible way to handle large data sets. To use dynamic memory, the
first required task is to ask for a memory block. This can be done by using
special command and later, when the memory block is not required any longer,

105

it can be released12. In embedded systems, which have a multithreaded
programs, and several processes using dynamic memory concurrently, without
any mechanisms implemented for prevention of memory fragmentation it is
possible to fragment the entire free memory and eventually it is not available
any continuous free memory with required size; i.e., the memory is exhausted.
In this situation it is possible that the system still has enough free memory,
however, all the memory blocks are too small for the required size, and it can
happen that it is not possible to combine larger blocks by adding several smaller
blocks together. Also, effects of memory fragmentation may surface differently
every time; bugs, which are related to this, may show up in the field but not in
the development environment. Above are described some of the reasons why it
is not advised to use dynamic memory in embedded systems. It is not allowed to
use dynamic memory by MISRA C (rule 20.4 [71]), MISRA C++ (rule
18-4 [72]) and JSF++ (AV Rule 206 [55]). Unlike in embedded systems,
fragmentation is not an issue in desktop computers – there are several hardware
and software mechanisms available to mitigate it. Despite quite a lot of
research [20, 59] has been done in this area, and several memory allocators are
developed (PJSIP Fast Memory Pool [105], which can use stack based pools,
Doug Lea memory allocator – dmalloc [52] and TLSF [17], memory allocators
from Molecular Musings have two different allocation strategies – stack-like
and linear [63]) for small embedded systems only one implementation is
known that uses pool: it is implemented as part of FunkOS [27].

Memory allocation and deallocation functions presented in the current thesis
allow to avoid above described memory exhaustion problems; they are available
for TM as an alternative dynamic memory management and used several times
for debugging purpose. Presented functions also have overrun detection
capability. As the presented solution is quite simple and used in systems where
there is only one type of memory available, therefore it is not possible to use
different pools, for example one for fast access but small blocks and another for
slow access and large blocks. Similar approach is presented in Effective
C++ [61], but the current example has been written for C. Effective C++
allocation functions do not contain any underrun detection, i.e., it does not
detect writing prior the beginning of an allocated block. These occasions are
relatively rare and in most cases are detected by previous block overrun
detection. GCC has also similar protection mechanisms but currently these are
not available for smaller microcontrollers [29]. Presented functions do not take
into account memory alignment and this may cause some issues on larger
computers. Alignment is not an issue in an 8-bit microcontroller where the
memory is typically byte aligned.

The Figure 4.3 presents the main principle of the developed allocator.
Memory blocks are stored in a pool, which is a large two-dimensional array.
The pool size is determined before the compilation. Using a predefined memory

12 Some languages like Java allow to release memory automatically, but some
languages like C require that user releases the unused memory block.

106

pool size allows to determine memory requirements during compilation. In
situations where all pool items are shared out, memory request operation will
block until at least one new block is available.

In the following Listings 4.38, 4.39 and 4.40 is an implementation of
described allocator, which uses memory pool for back end. Presented code is
more flexible than similar functions in the FunkOS source; it is also a drop-in
replacement for regular malloc, and it is capable of detecting memory overrides.
The Listing 4.38 is a header file for the pooled allocator. The line 8 defines pool
element size and the lines 11 to 23 define pool element structure where the
variable is_taken represents pool state (boolean value). An array named data is
a memory area that is returned by pmalloc function, and finally the member
named guard that holds a four byte signature for detecting overflows is defined.
As elements in the structure pool_data_t are 8 and 32-bit wide, this structure
may be padded in 32-bit architectures. Whether it will be padded depends on the
value of ITEM_SIZE, should after division by four the remainder be three, no
padding occurs. When a structure is padded, it is possible to write a number of
padded bytes over data element before overwriting is detected. The lines 29 to
30 show function declarations for registering a new memory pool. The last two
declarations in line 36 and 40 are the replacements for malloc and free
functions.

1:#ifndef __PMALLOC_H_
2:#define __PMALLOC_H_ 1
3:
4:#include <stddef.h>
5:#include <stdint.h>
6:
7:/* Size of single memory element. */
8:#define ITEM_SIZE 128
9:

10:/* Structure for pool information. */
11:typedef struct
12:{

107

13: /* Flag for taken state. */
14: uint_fast8_t is_taken;
15:
16: /* Shared memory area. */
17: uint8_t data[ITEM_SIZE];
18:
19: /* Pattern to detect memory corruption, this should be
20: * always after pool data. */
21: uint32_t guard;
22:}
23:pool_data_t;
24:
25:/* Function for pool registration. Where parameter 'new_pool' is
26: * pointer to memory area that holds pool data. Parameter
27: * 'pool_items' is number of pool elements, which is stored in
28: * 'new_pool'. */
29:extern void register_pool (pool_data_t *new_pool,
30: const unsigned int pool_items);
31:
32:/* Malloc function. Where parameter 'size' is requested memory
33: * size. This function returns allocated memory or NULL when no
34: * free memory is available or requested memory is larger than
35: * single pool element can hold. */
36:extern void *pmalloc (const size_t size);
37:
38:/* The 'pfree' function causes the allocated memory referenced
39: * by 'ptr' to be made available for future allocations. */
40:extern void pfree (void *ptr);
41:
42:#endif

Listing 4.38: Header file for pooled allocator and deallocator.

In the Listing 4.39 is a source code of a pooled allocator. The line 9 defines
pattern for detecting memory overflows, this constant is used as a guard pattern
and is compared against guard element in pool_data_t structure when memory
region is freed. In the lines 11 to 15 are declared holders for memory pool size
information (line 12) and pool data (line 15), in the lines 17 to 20 is
conditionally compiled lock variable, which is used for locking functions when
all memory is shared out. Memory pool registration function is implemented in
the lines 25 to 46. Lines 30 and 35 check that only one pool is defined, and if
more than one pool is defined, it simply ignores the request for new pool
registration. In the lines 38 and 39 the pool and pool information is copied to
local static variables, and in the lines 41 and 45 guard bytes are set. It is
possible to declare a pool by using static pool structure; by leaving these
functions out, it will allow to use pmalloc without initialisation.

In the lines 52 to 91 is an implementation of the pmalloc function. This
function returns a pointer to memory pool, or in case of an error, the NULL
pointer and sets the errno variable to ENOMEM. In the lines 56 to 62,
requested size is tested against maximum element size. When more than a
single pool element can hold is requested, NULL will be returned, which means
an error and errno is the relevant value (ENOMEM). In the lines 64 to 85 a free
pool element is searched. If a free element is found, it will be marked as taken

108

(the line 76) and returned to pointer in this memory area (line 77). If no free
pool elements exist, it will wait until the next free pool element (line 83) is
released and then the pool will be scanned again for free elements. If no waiting
code is present, the lines between 64 to 68 and 81 to 85 are omitted. Without
code for signal waiting and when no free pool element is present, NULL will be
returned and errno value is set to ENOMEM. If event waiting code is present,
the code in the lines 89 and 90 is not executed. However, these lines are
required as this function is declared to return a value and, typically, compilers
refuse to compile functions that are declared to have return value while no
return value is present. Memory releasing is done by pfree function, which is
implemented in the lines 95 to 127. In lines 99 to 126 an address from the
memory pool is searched. If given address is found in the pool (line 104) then
this pool element is marked as free (line 118). A free signal is sent (line 122) to
pmalloc, this signal is caught when pmalloc is waiting for the pool element
release (line 83), and finally, pfree function returns in the line 124. If waiting
code is not present then after a pool element release (line 118) is conditionally
compiled code, which is responsible for sending the “element free” signal to
pmalloc. The pfree function is also responsible checking for memory overflows.
Memory checking functionality is in the lines 109 to 114. When memory
overflow occurs, the guard byte area will be overwritten and it can be detected
by comparing this memory area with known guard bytes (line 109). Should
these bytes and memory area not match, a short error message is printed (lines
111 and 112) and the program is terminated (line 113). Memory error message
printing and program termination could be changed to some other action. In an
embedded system, this is the most reasonable thing to do; after calling the exit
function, a watchdog is typically triggered and the whole program restarts, but
with corrupted memory the program may have unpredictable behaviour.

1:#include <errno.h>
2:#include <stddef.h>
3:#include <stdio.h>
4:#include <stdlib.h>
5:#include <string.h>
6:#include "pmalloc.h"
7:
8:/* Pattern for detecting memory overflows. */
9:#define GUARD_PATTERN 0xDEADBEEF

10:
11:/* Number of pool items. */
12:static unsigned int items = 0;
13:
14:/* Pointer to registred pool. */
15:static pool_data_t *pool = NULL;
16:
17:#ifdef HAS_WAIT_SIGNAL
18:/* Signal for memory release (if it is present). */
19:static signal_t sig_pfree;
20:#endif
21:
22:/* Pool registration. Where parameter 'new_pool' is pointer to
23: * memory area that holds pool data. Parameter 'pool_items' is

109

24: * number of pool elements, which is stored in 'new_pool'. */
25:void register_pool (pool_data_t *new_pool,
26: const unsigned int pool_items)
27:{
28: unsigned int i;
29:
30: if (pool != NULL)
31: {
32: /* If pool is already registred then reuturn
33: * immediately. */
34: return;
35: }
36:
37: /* Store pool pointer and number of pool items. */
38: pool = new_pool;
39: items = pool_items;
40:
41: for (i = 0; i < items; i++)
42: {
43: /* Fill guard area with predefined pattern. */
44: pool[i].guard = GUARD_PATTERN;
45: }
46:}
47:
48:/* Malloc function. Where parameter 'size' is requested memory
49: * size. This function returns allocated memory or NULL when no
50: * free memory is available or requested memory is larger than
51: * single pool element can hold. */
52:void *pmalloc (const size_t size)
53:{
54: unsigned int i;
55:
56: if (size > ITEM_SIZE)
57: {
58: /* Requested size is larger than single pool element can
59: * hold. Return NULL and set error description. */
60: errno = ENOMEM;
61: return NULL;
62: }
63:
64:#ifdef HAS_WAIT_SIGNAL
65: /* Loop for waiting free element. */
66: while (1)
67: {
68:#endif
69: for (i = 0; i < items; i++)
70: {
71: /* Search element that has is_taken field false. */
72: if (pool[i].is_taken == 0)
73: {
74: /* Mark this elemen as taken and return pointer
75: * to this area. */
76: pool[i].is_taken = 1;
77: return &pool[i].data;
78: }
79: }
80:
81:#ifdef HAS_WAIT_SIGNAL
82: /* Wait until least one element is released. */

110

83: wait_signal (&sig_pfree);
84: }
85:#endif
86:
87: /* No free block found. This code is compiled only when
88: * HAS_WAIT_SIGNAL is not defined. */
89: errno = ENOMEM;
90: return NULL;
91:}
92:
93:/* The 'pfree' function causes the allocated memory referenced
94: * by 'ptr' to be made available for future allocations. */
95:void pfree (void *ptr)
96:{
97: unsigned int i;
98:
99: for (i = 0; i < items; i++)
100: {
101: /* Search for pool element by given pointer. It is
102: * possible to free element that is present in pool.
103: * Null pointer is also allowed. */
104: if (ptr == &pool[i].data)
105: {
106: /* Check that guard pattern is valid. If guard
107: * pattern is modified is most reasonable action to
108: * close program. */
109: if (pool[i].guard != GUARD_PATTERN)
110: {
111: fputs ("memory pool guard pattern is "
112: "corrupted\n", stderr);
113: exit (EXIT_FAILURE);
114: }
115:
116: /* Guard patten is OK, we can mark this pool
117: * element as available. */
118: pool[i].is_taken = 0;
119:
120:#ifdef HAS_WAIT_SIGNAL
121: /* Send singal that element is released. */
122: send_signal (&sig_pfree);
123:#endif
124: return;
125: }
126: }
127:}

Listing 4.39: Source code for pooled allocator and deallocator.

The Listing 4.40 shows a test program for the above code. In the line 8 is a
defined number of pool elements and in the line 11 type definition for void
pointer, which is used with pointer arrays. The main function of the program is
in the lines 13 to 88. The line 16 defines memory back-end pool and on the lines
17 to 19 are the variables, which hold pointer that is returned by pmalloc. The
line 22 ensures that all memory pool elements have null value; this is required
only for taken variable in pool_data_t structure; this variable should be initially
null. In the line 23 is initialised memory pool. The lines 26 to 58 show a test for
the situation when all memory is shared out and no free memory remains. The

111

lines 62 and 66 release all the memory, which was taken in the previous test
(lines 26 to 58). Finally, the lines 70 to 85 is a test case for memory corruption
by overwriting last four bytes (lines 79 to 85). In 8-bit microcontrollers it is
required to overwrite one byte but in 32 and 64-bit computers the memory
alignment is different, and due to the padding, the guard element may have an
offset up to three bytes.

1:#include <errno.h>
2:#include <stddef.h>
3:#include <stdio.h>
4:#include <string.h>
5:#include "pmalloc.h"
6:
7:/* Number of elements in memory pool. */
8:#define ELEMENTS 8
9:

10:/* Type for void pointer (useful for casting). */
11:typedef void * void_ptr_t;
12:
13:int main (void)
14:{
15: unsigned int i;
16: pool_data_t new_pool[ELEMENTS];
17: void_ptr_t data[ELEMENTS + 2];
18: void_ptr_t data_tmp = NULL;
19: void_ptr_t data_last = NULL;
20:
21: /* Set all pool elements to 0 and register new pool. */
22: memset (new_pool, 0x00, sizeof (new_pool));
23: register_pool (new_pool, ELEMENTS);
24:
25: /* Test for element allocation. */
26: puts ("Allocate\n");
27: for (i = 0; i < (ELEMENTS + 2); i++)
28: {
29: /* Request new memory. */
30: data_tmp = pmalloc (ITEM_SIZE - 8 + i);
31:
32: if (data_tmp == NULL)
33: {
34: /* Error: no memory returned, either requested size
35: * is larger than single pool element can hold or no
36: * pool elements are available. */
37: printf ("%02d\t%s\n", i, strerror (errno));
38: }
39: else if (data_last == NULL)
40: {
41: /* First test run, previous pointer is not yet
42: * stored. */
43: printf ("%02d\tPool: %p; diff (NA)\n",
44: i, data_tmp);
45: }
46: else
47: {
48: /* Print pool element info and address difference
49: * between pointers. */
50: printf ("%02d\tPool: %p; diff %ld\n", i, data_tmp,
51: (ptrdiff_t)(data_tmp – data_last));

112

52: }
53:
54: /* Store allocated memory to array. This array allows to
55: * release previously allocated memory. */
56: data_last = data_tmp;
57: data[i] = data_tmp;
58: }
59:
60: /* Test for element deallocation. */
61: puts ("\nFree\n");
62: for (i = 0; i < ELEMENTS; i++)
63: {
64: /* Free all elements that has stored to array. */
65: pfree (data[i]);
66: }
67:
68: /* Test for data corruption. */
69: printf ("\nData corruption test\n");
70: data_tmp = pmalloc (ITEM_SIZE);
71: if (data_tmp == NULL)
72: {
73: /* Failed allocate to memory, either no pool elements
74: * are available or requested size was larger that
75: * single element can hold. */
76: printf ("%02d\t%s\n", i, strerror (errno));
77: }
78: else
79: {
80: /* Fill memory with 0xFF also overwrite guard bytes. */
81: memset (data_tmp, 0xFF, ITEM_SIZE + 4);
82:
83: /* This call shold detect error and close program. */
84: pfree (data_tmp);
85: }
86:
87: return -1;
88:}

Listing 4.40: Example usage and test for pooled allocator and deallocator.

Above described function simplifies also debugging – when the memory size
and memory contents placement is known, it is quite easy to check the
overflows and find possible candidate that may cause it.

Program example in Listing 4.40 takes roughly the same amount of program
memory than a similar application that is created for using dynamic memory.
This example is as fast or faster than similar application that uses dynamic
memory.

As a final note, when memory requirements during program development
are known it is possible to reserve free memory before compilation. Therefore it
is not required to use dynamic memory at all. Also in embedded systems it is
not reasonable to use dynamic memory in such processes that do not release
memory during program execution. Most of the buffers in drivers do not release
memory, and in this case, it is possible to estimate required memory size before
compilation.

113

4.7. Conclusions

The current chapter handles improvements that were directly or indirectly
required to develop new TM. The first section outlines a software development
process that can be used in embedded software development and gives
examples for using hardware related automated tests. The following processes
are handled in this section – Code and Fix, using UML as part of other
processes, agile practices (TDD and BDD) and sequential processes (V-model
and waterfall). In embedded software development, it is most difficult to use
agile practices when Code and Fix is appropriate for experimenting and
prototyping, and sequential processes for safety or mission critical software.
Agile practices are too time consuming for experimenting and are not
appropriate for mission or safety critical systems. It is also possible to use UML
for modelling embedded software, but due to the higher resource requirements
of the resulting program, it is usable only in larger embedded systems.

The second section concentrates on the use of different programming
languages within one project. In that section the use of C and C++ programming
languages is observed. The first part gives the main reasons for language
choice: it is best to use C for smaller microcontrollers, older compilers and
creating kernel related code, and C++ is best to be used for creating program
logic. However, there is no limitation of usage of C++ with recent compilers.
The second part of that section describes how to use several higher level
languages within one software project. The main reason for using different
languages in one project is that some tasks are best suited for one language
while other tasks for another language. Also several examples are given on how
to use program structures in C that are known from C++. This might be useful
in situations where it is required to use virtual table like approach but due to the
compiler or memory limitations it is not possible to use C++.

The third section concentrates on program structures and the influence of
program structure in testing. The first part of this section handles super-loop
programs. As this kind of programs are tightly coupled with hardware, methods
are given for reducing hardware dependencies. It is also shown how to create
functions that do not store states internally. Typically such functions are related
to EEPROM reading and writing, and are inherently very difficult to test
automatically. The following part focuses on hardware testing, and this is
accomplished by using unit tests. For this testing is uploaded new test program
to microcontroller memory. The last part of that section focuses on the use of
OCD, on the limitations of OCD, on situations where it is not possible to test a
program by using OCD, and on using one spare IO pin to monitor system states.

The fourth section deals with different type of schedulers and watchdogs. On
conventional computers it is reasonable to use a preemptive scheduler, but in
embedded systems where a watchdog is also used, it is worth to consider using
only a cooperative scheduler. When one thread is stuck with a preemptive
scheduler, all other threads may still work normally, including the thread that is

114

responsible for resetting the watchdog. When a program is stuck with a
cooperative kernel, it causes the whole system freeze, including the watchdog's
control task, which consequently triggers the watchdog to reset. The second part
of that section describes different methods for the use of a single hardware
watchdog in programs where all threads are active in predefined order, or in
situations where threads are active at the same time. When there is a predefined
order, it is required to reset the watchdog's pass lock from one thread to another.
When threads are active at same time, then it is required to have one monitoring
process that has access to all states of threads.

The fifth section describes methods of optimising several program
constructs. First, methods are shown for limiting function arguments; instead of
using parameters that are passed by value, pointers can be used for passing data
structures. Secondly, function inlining is considered; while inlining large
functions is not recommended in conventional computers, in smaller
microcontrollers software relatively large functions can be safely inlined. This
is due to the fact that conventional computers execute program from RAM (or
from cache) but microcontrollers execute program directly from separate
memory and therefore do not have similar cache effects like conventional
computer have. As well, most of the microcontrollers have a reasonable amount
of program memory. After that are given examples of how and when it is
possible to use input polling instead of interrupts. Mostly, input polling is used
when it is required to react extremely fast to input change. The chapter also
describes the change of byte order, which is typically related to programs that
interact with external hardware or programs. In order to change the byte order,
shifts in C are typically used, but to use unions is more effective. This section
also shows two optimisation methods for the AES algorithm: S-Box value
calculation on the fly, and the use of pre-generated S-Box values, which are
stored in the program memory.

The last section describes alternative approach for malloc and free. Regular
memory allocation functions, which are used in embedded systems, may
significantly fragment RAM, therefore it is possible that free memory can be
exhausted. Memory exhaustion by fragmentation is rare in conventional
computers but, in embedded systems, this may happen quite frequently. This is
one of the reasons why MISRA does not allow to use dynamic memory. The
current thesis presents a memory allocation method that uses user supplied
memory pool as back-end, and hence makes it impossible to fragment the
memory. Presented allocation and deallocation functions are also capable of
checking the memory overruns.

This chapter described methods and improvements that are completely or
partly applied and tested on TM. Although described solutions are TM specific,
they can still be used in other similar devices.

115

5. SUMMARY

This thesis concentrates on software development improvements and solutions
for embedded systems that have small computational power and limited amount
of memory, namely marine aid to navigation (AtoN) systems.

More precisely, all research, improvements and solutions that are described
in this thesis were required for a Telematics Module of AtoN systems; without
these improvements development the product itself and its additional features
would have been much more complicated to implement or failed completely. In
this thesis the reasons why this research was required were discussed: coping
with problems that arise when developing a new AtoN device, or adding some
additional functionality. Main focus was on the following six issues:

1. Functions and methods that are described and investigated in this thesis
should have low memory and processor utilisation, which make them
suitable for use in low power AtoN devices, namely Telematics Module.

2. Mixing source code that is written in different programming languages,
namely C and C++. Effective function pointers usage on structures and
automated tests.

3. Software testing methods for small embedded systems, including using
unit tests for hardware testing.

4. Watchdog hardware handling in multithreaded programs with
monitoring all threads simultaneously.

5. Optimisation of code parts that are used quite widely in embedded
systems but are not optimised by compiler.

6. Dynamic memory handling that does not fragment memory, is
lightweight, and suitable for use in AtoN devices.

All publications that are related to this thesis, use described improvements
directly or indirectly. All described improvements are tested and used
successfully in AtoN telematics module or similar system software.

The next section outlines the main contributions of this thesis.

5.1. Contributions

The main contributions of the thesis are:

1. The choice of programming language that is usable in embedded AtoN
systems.

Several decades ago, the main programming language for embedded
systems was assembler; now there are numerous programming
languages available, but mostly C and C++ are being used. In this thesis

116

pros and cons of both languages and methods how it is possible to mix
both languages in embedded AtoN systems to get the best result are
shown.

2. Different program structures and improvements on embedded software
testing.

In embedded systems mostly two different program structures are used:
super-loop programs and multithreaded programs. Super-loop programs
have less functionality than multithreaded programs but use hardware
resources more effectively. Multithreaded programs may have a lot of
different functionalities but require a lot of CPU and memory resources
and are not as efficient as super-loop programs. In both cases it is
possible to use similar testing methods, but testing of super-loop
programs is more complicated than it is in multithreaded programs,
mainly because of the program structure, which is more related to
hardware and therefore requires more hardware writing mocks.

3. Methods for resetting watchdog timers is non-trivial in multithreaded
programs.

In multithreaded systems it is possible to choose between several
different schedulers – cooperative or preemptive. A preemptive
scheduler allows to create such programs that do not hang when one
thread hangs. However, programs with a cooperative scheduler tend to
hang completely when at least one thread hangs. In embedded systems
it is possible to take advantage of the hanging of the whole cooperative
kernel. This excludes the situations where a system stays partially in
working condition but is not able to perform its tasks. Another
important aspect while writing embedded multithreaded programs is the
watchdog resetting mechanism. Most hardware watchdogs require that
only one thread is responsible for resetting the watchdog and, therefore,
all threads should send alive messages to one thread or function that is
responsible for handling the watchdog. For this purpose, it is possible to
use two different methods; all threads send alive messages to one
monitor thread, or all threads pass alive message from one thread to
another.

4. Optimisation methods for embedded system software.

In some cases, the compiler is not able to generate the most optimal
code, e.g., does not automatically inline functions that are one line long
or functions that are called only once. Also the compiler is not able to
optimise program parts that are responsible for byte order manipulation.
When using AES cryptographical functions, it is possible to use two
different substitution table calculation methods. One of the methods
uses less memory but is slower, another one uses more memory but is
significantly faster.

117

5. Alternatives for dynamic memory.

Using dynamic memory in embedded systems contains several risks,
however, it is possible to replace traditional dynamic memory functions
with memory pools. While using a memory pool, it is possible to set
dynamic memory size before compilation and also monitor RAM
usage.

5.2. Conclusions

This thesis concentrates on software development and testing methods of AtoN
embedded systems. These systems are mainly designed to work in remote
places like buoys or lighthouses or in other similar navigational applications.
Described improvements and methods were required for developing new
generation Telematics Module (TM) and are currently used in navigation light
systems around Estonian coastal area and on the larger rivers and lakes. The
proposed methods and improvements in this thesis enable to achieve low
microcontroller CPU and memory consumption. Despite simplicity the methods
are also quite robust to allow them to be used successfully in other similar
systems which require long-term autonomous work, low power consumption,
and where it is not essential to have high computational power. Although
described methods and improvements are TM specific, they can be also used in
other similar embedded systems.

This thesis discussed also programming languages that are suitable for use in
smaller embedded systems. Different testing methods which can be used in
various situations in embedded software developement were presented.
Watchdogs that are used with multitasking kernels and different schedulers were
also discussed. Several ways how to optimise embedded programs is shown –
changing the order of bits in larger data word, using inlining and also some
techniques for using cryptographic functions on smaller embedded systems.
And finally the replacement for standard memory allocation and deallocations
functions is presented, which allows to reduce memory fragmentation.

The main conclusion of this thesis is that it is possible to use above
described methods, improvements and solutions on different AtoN systems that
require low energy consumption long autonomy and high reliability. All
described improvements have been in use in the deployed AtoN systems in
Estonian and abroad. These improvements were made feasible to measure wave
heights with navigational buoys, allows to detect buoy heel angle and buoy
collisions with other objects.

The thesis presents also a short overview about Estonian AtoN systems and
an overview of problems that raised during new TM development.

118

References

[1] "AT90S8515 - 8-bit AVR Microcontroller with 8K Bytes In-System
Programmable Flash", Atmel Corporation, 2001.

[2] "AT90S1200", Atmel Corporation, 2002.

[3] "AVR230: DES Bootloader", Atmel Corporation, 2005.

[4] "AVR231: AES Bootloader", Atmel Corporation, 2006.

[5] "AVR32 Architecture Document", Atmel Corporation, 2011.

[6] "8/16-bit Atmel XMEGA A3BUMicrocontroller ATxmega256A3BU",
Atmel Corporation, 2013.

[7] "ATMega640/1280/1281/2560/2561", Atmel Corporation, 2014.

[8] "JTAGICE mkII Special Considerations",
http://www.atmel.no/webdoc/jtagicemkii/jtagicemkii.special_consideration
s_mega_debugwire.html, 2014.05.25.

[9] "STK500", http://www.atmel.com/tools/STK500.aspx, 2014.09.24.

[10] "STK600", http://www.atmel.com/tools/STK600.aspx, 2014.09.24.

[11] R. D. Banker, G. B. Davis and S. A. Slaughter, "Software development
practices, software complexity, and software maintenance performance: A
field study" - Management science, 1998, vol. 44, pp. 433-450.

[12] "BSP430 Board Support Package for MSP430 Microcontrollers",
http://pabigot.github.io/bsp430, 2014.05.10.

[13] E. Blem, J. Menon and K. Sankaralingam. "Power struggles: Revisiting the
RISC vs. CISC debate on contemporary ARM and x86 architectures" -
High Performance Computer Architecture (HPCA2013), 2013 IEEE 19th
International Symposium on, pp. 1-12, 2013.

[14] C. Boogerd and L. Moonen. "Assessing the value of coding standards: An
empirical study" - Software Maintenance, 2008. ICSM 2008. IEEE
International Conference on, pp. 277-286, 2008.

[15] Q. Cao, X. Wang, H. Qi and T. He. "r-Kernel: An operating system
foundation for highly reliable networked embedded systems" -

119

INFOCOM, 2011 Proceedings IEEE, pp. 2507-2515, 2011.

[16] C. Constantinescu, "Trends and challenges in VLSI circuit reliability" -
Micro, IEEE, 2003, vol. 23, pp. 14-19.

[17] "TLSF Memory Allocator Implementation", http://tlsf.baisoku.org,
2014.11.30.

[18] J. Daemen and V. Rijmen, "AES Proposal: Rijndael", 1999.

[19] D. Dahlby, "Applying agile methods to embedded systems development" -
Embedded Software Design Resources, 2004, vol. 41, pp. 1014123.

[20] D. Dhurjati, S. Kowshik, V. Adve and C. Lattner, "Memory safety without
garbage collection for embedded applications" - Trans. on Embedded
Computing Sys., 2005, vol. 4, pp. 73-111.

[21] "Toyota's killer firmware: Bad design and its consequences",
http://www.edn.com/design/automotive/4423428/Toyota-s-killer-
firmware--Bad-design-and-its-consequences, 2015.10.16.

[22] M. D. Earle, "Nondirectional and directional wave data analysis
procedures", NDBC, 1996.

[23] "AVR-Ada", http://sourceforge.net/projects/avr-ada, 2014.11.30.

[24] F. P. Engelbertink and H. H. Vogt, "How to save on software maintenance
costs", 2010.

[25] "M68HC12B Family Data Sheet", Freescale Semiconductors, 2005.

[26] "HC08", http://www.freescale.com/webapp/sps/site/taxonomy.jsp?
code=HC08FAMILY, 2014.11.09.

[27] "FunkOS", http://funkos.sourceforge.net, 2014.11.30.

[28] J. Ganssle, "The Art of Designing Embedded Systems", Elsevier Science,
2008.

[29] "GCC, the GNU Compiler Collection", https://gcc.gnu.org, 2014.11.30.

[30] "PIC Series Microcomputer", General Instrument Corporation, 1977.

[31] "PC-lint for C/C++", http://www.gimpel.com/html/pcl.htm, 2015.10.16.

[32] "JamaicaVM", https://www.aicas.com/cms/en/JamaicaVM, 2014.12.03.

[33] J. W. Grenning, "Test-driven development for embedded C", Pragmatic
Bookshelf, 2011.

[34] R. Grisenthwaite, "ARMv8 Technology Preview", 2011.

120

[35] L. Hatton, "Safer C: Developing Software for in High-Integrity and Safety-
Critical Systems", McGraw-Hill, 1995.

[36] L. Hatton, "Safer language subsets: an overview and a case history, MISRA
C" - Information and Software Technology, 2004, vol. 46, pp. 465 - 472.

[37] S. Heath, "Embedded Systems Design", Elsevier Science, 2002.

[38] H. Henderson, "Encyclopedia of computer science and technology",
Infobase Publishing, 2009.

[39] "The final ISA showdown: Is ARM, x86, or MIPS intrinsically more power
efficient?", http://www.extremetech.com/extreme/188396-the-final-isa-
showdown-is-arm-x86-or-mips-intrinsically-more-power-efficient,
2014.11.02.

[40] B. Hughes and M. Cotterell, "Software Project Management", McGraw-
Hill, 2006.

[41] "Use of Modern Light Sources in Traditional Lighthouse Optics", IALA,
2007.

[42] "Light Sources used in Visual Aids to Navigation", IALA, 2011.

[43] "Technical Reference: Personal Computer, Personal Computer Hardware
Reference Library", IBM, 1984.

[44] "WebSphere Real Time", http://www.ibm.com/software/products/en/real-
time, 2014.09.24.

[45] IEC, "61508 Functional safety of electrical/electronic/programmable
electronic safety-related systems", The International Electrotechnical
Commission, 1998.

[46] "MCS-48 Microcomputer User's Manual", Intel, 1978.

[47] "MCS 51 Microcontroller Family Users's Manual", Intel, 1994.

[48] T. Jamil, "RISC versus CISC" - Potentials, IEEE, 1995, vol. 14, pp. 13-16.

[49] J. V. Jerry Doland, "C Style Guide", NASA, 1994.

[50] "JPL Institutional Coding Standard for the C Programming Language", Jet
Propulsion Laboratory, California Institute of Technology, 2009.

[51] "Ethernut Project", http://www.ethernut.de, 2014.09.22.

[52] "A Memory Allocator", http://gee.cs.oswego.edu/dl/html/malloc.html,
2014.06.01.

[53] "A byte-oriented AES-256 implementation",

121

http://www.literatecode.com/aes256, 2014.05.25.

[54] J.-L. Lions and others, "Ariane 5 flight 501 failure", 1996.

[55] "C++ Coding Standards for the System Development and Demonstration
Program", Lockheed Martin Corporation, 2007.

[56] D. Markus, M. Kambiz and A. Nancy, "Software Defined Radio:
Architectures, Systems and Functions", John Wiley & Sons, 2005.

[57] P. Marounek, "Simplified approach to effort estimation in software
maintenance" - Journal of systems integration, 2012, vol. 3, pp. 51-63.

[58] R. C. Martin, "Clean Code: A handbook of agile software craftsmanship",
Prentice Hall, 2009.

[59] M. Masmano, I. Ripoll, P. Balbastre and A. Crespo, "A constant-time
dynamic storage allocator for real-time systems" - Real-Time Systems,
2008, vol. 40, pp. 149-179.

[60] S. McConnell, "Rapid Development: Taming Wild Software Schedules",
Microsoft Press, 1996.

[61] S. Meyers, "Effective C++: 55 Specific Ways to Improve Your Programs
and Designs", Pearson Education, 2005.

[62] "PIC32MX Family Data Sheet", Microchip, 2008.

[63] "Memory allocation strategies: a stack-like (LIFO) allocator",
http://blog.molecular-matters.com/2012/08/27/memory-allocation-
strategies-a-stack-like-lifo-allocator/, 2015.09.15.

[64] G. E. Moore, "Cramming More Components onto Integrated Circuits" -
Electronics, 1965, vol. 38, pp. 114-117.

[65] E. Moorits and G. Jervan. "Low resource demanding FOTA method for
remote AtoN site equipment" - OCEANS 2010, pp. 1-5, 2010.

[66] E. Moorits and G. Jervan. "Profiling in deeply embedded systems" -
Electronics Conference (BEC), 2012 13th Biennial Baltic, pp. 127-130,
2012.

[67] E. Moorits and A. Usk. "A numerically efficient method for calculation of
the angle of heel of a navigational buoy" - Electronics Conference (BEC),
2010 12th Biennial Baltic, pp. 357-360, 2010.

[68] E. Moorits and A. Usk. "Buoy collision detection" - ELMAR, 2012
Proceedings, pp. 109-112, 2012.

[69] E. Moorits, A. Usk and T. Kouts. "Wave height measurement as a
secondary function of navigational buoys" - OCEANS 2011, pp. 1-5, 2011.

122

[70] "Microcomputer 3870/F8 Data Book", Mostek, 1978.

[71] Motor Industry Software Reliability Association and others, "MISRA-C:
2004 Guidelines for the Use of the C Language in Critical Systems",
MIRA Limited, 2004.

[72] Motor Industry Software Reliability Association and others, "MISRA-C++:
2008 Guidelines for the Use of the C++ Language in Critical Systems",
MIRA Limited, 2008.

[73] "M6804 MCU Manual", Motorola, 1984.

[74] "MC68(7)05P Series", Motorola, 1984.

[75] "MC6801 MC6803", Motorola, 1984.

[76] "MC68HC16Y1 16-Bit Modular Microcontroller", Motorola, 1992.

[77] "MC68HC08AB16A HCMOS Microcontroller Unit", Motorola, 2000.

[78] National Institute of Standards and Technology, "FIPS 197" - National
Institute of Standards and Technology, November, 2001, vol. , pp. 1-51.

[79] O'Regan, G. "History of Programming Languages". In: (Ed.), A Brief
History of Computing, Springer London, 2012.

[80] R. Osherove, "The Art of Unit Testing: With Examples in .Net", Manning
Publications Co., 2009.

[81] "AVR-Crypto-Lib/en", http://www.das-labor.org/wiki/AVR-Crypto-Lib/en,
2014.05.25.

[82] B. O’Connor, "NASA Software Safety Guidebook", NASA, 2004.

[83] "Python Programming Language – Official Website",
http://www.python.org, 2014.09.24.

[84] "Open On-Chip Debugger", http://openocd.sourceforge.net, 2014.09.27.

[85] "FreeRTOS", http://www.freertos.org, 2014.11.30.

[86] "Unexpected trends", http://www.embedded.com/electronics-
blogs/programming-pointers/4372180/Unexpected-trends, 2014.09.24.

[87] F. Siebert. "The impact of realtime garbage collection on realtime Java
programming" - Object-Oriented Real-Time Distributed Computing, 2004.
Proceedings. Seventh IEEE International Symposium on, pp. 33-40, 2004.

[88] "Opencryptotoken - Atmel's AVR based usb crypto device using Elliptic
Curves Cryptography", https://code.google.com/p/opencryptotoken,
2014.01.26.

123

[89] "When was C++ invented?",
http://www.stroustrup.com/bs_faq.html#invention, 2014.09.24.

[90] C. R. Symons, "Function point analysis: difficulties and improvements" -
Software Engineering, IEEE Transactions on, 1988, vol. 14, pp. 2-11.

[91] "GM862 Product Description", Telit Communications S.p.A., 2006.

[92] "TMS1000 Series Data Manual", Texas Instruments, 1976.

[93] "MSP430x1xx Family Users's Guide", Texas Instruments, 2006.

[94] "TI-RTOS: Real-Time Operating System (RTOS)",
http://www.ti.com/tool/ti-rtos, 2014.09.27.

[95] "64-Bit MIPS-Based Microcontroller With PCI Interface",
http://www.toshiba.co.uk/innovation/jsp/news.do?
service=UK&year=NONE&ID=00000005a4, 2014.09.20.

[96] "Product Brief TMPR4927ATB–200 (TX4927) 64-Bit RISC Processor",
Toshiba, 2003.

[97] "Scaled CMOS technology reliability users guide", M. White, 2010.

[98] "SafeRTOS", http://www.freertos.org/FreeRTOS-
Plus/Safety_Critical_Certified/SafeRTOS.shtml, 2014.09.27.

[99] "AVR Libc", http://www.nongnu.org/avr-libc, 2014.11.02.

[100] "diet libc", http://www.fefe.de/dietlibc, 2014.11.02.

[101] "eCos", http://ecos.sourceware.org, 2014.11.30.

[102] "Embedded GLIBC (EGLIBC)", http://www.eglibc.org, 2014.04.19.

[103] "GCC toolchain for MSP430",
http://sourceforge.net/projects/mspgcc/files/msp430-libc, 2014.04.19.

[104] "Newlib", http://sourceware.org/newlib, 2014.04.19.

[105] "PJSIP", http://www.pjsip.org, 2014.11.30.

[106] "Uclibc", http://www.uclibc.org, 2014.04.19.

[107] "Pharos Marine Automatic Power Inc.", http://www.automaticpower.com,
2015.03.22.

[108] "Sabik", http://www.sabik.com, 2015.03.22.

[109] "Sealite", http://www.sealite.com.au, 2015.03.22.

[110] "Splint", http://www.splint.org, 2015.10.16.

124

[111] "SRT Marine Technology", http://www.srt-marine.com, 2015.04.24.

[112] "Tideland", http://www.tidelandsignal.com, 2015.03.22.

[113] "Zeni Lite Buoy Co., Ltd", http://www.zenilite.co.jp/english, 2015.03.22.

125

ACKNOWLEDGEMENTS

This thesis is based on my work done during the last ten years in the field of
marine navigation light systems.

I would like to express my gratitude to my supervisors Prof. Gert Jervan and
Aivar Usk for the valuable guidance during my studies. I also wish to thank all
my colleagues in Cybernetica AS for support and help.

Finally, I want to thank my family for the encouragement and support that
helped me though the difficult task of writing this thesis.

This work were supported by European Social Fund’s Doctoral Studies and
Internationalisation Programme DoRa, which is carried out by Foundation
Archimedes, Tiger University Program of the Information Technology
Foundation for Education and the Estonian Doctoral School in Information and
Communication Technology.

Erkki Moorits,
Tallinn, May 2016

126

ABSTRACT

In recent decades, along with the development of microcontrollers, embedded
systems are increasingly frequently used in areas designed for long-term
autonomous operation. In addition, many of these systems are installed in hard
to access areas for support personnel and also require very low power
consumption. This thesis handles the software component of the new generation
marine navigation light systems, problems that araised during the development
of the embedded software, solutions for these problems and also tools and
methods for testing embedded software.

The main objectives of the thesis are methods, technical solutions, and
recommendations of using existing embedded software developement methods
for development highly constrained embedded systems. In this thesis are
described methods and technical solutions, which are used in the marine
navigation light systems. These methods have low memory and processor
resources consumption, which is in many cases more important than accuracy
of the mathematical functions. This thesis also handles briefly programming
languages, which suits for embedded system development. Also are described
different ways to develop automatically testable embedded software and are
presented methods which allows to simplify testing of embedded systems,
including using automated tests with continuous integration servers. The thesis
provides recommendations and discuss disadvantages of various schedulers as
well as proposes the preferred scheduler for small embedded systems. Both co-
operative and preemptive schedulers are discussed, also was pointed out the
possible performance and memory bottlenecks, which have influence on smaller
embedded systems. Various approaches to resetting the watchdog resulting from
the characteristics of multitasking programs are presented. Described methods
are suitable for different schedulers and program structures. Optimisations for
function calls, effectively changing the sequence of bytes, and some
recommendations of using the AES cryptographic functions were given.
Optimised functions are mainly targeted for smaller embedded systems
allowing to reduce the use of memory and CPU consumption. An alternative
approach to the use of dynamic memory, which is mostly designed for using in
smaller embedded systems is presented, this approach can also be used in larger
computers as well. The developed solution also allows to take into account the
memory requirements when compiling the program.

All of the above-mentioned methods, techniques and solutions have been
applied in AS Cybernetica marine navigation light systems.

127

KOKKUVÕTE

Viimastel kümnenditel on koos mikrokontrollerite arenguga hakatud erinevaid
sardsüsteeme kasutama ka sellistes kohtades kus on ette nähtud ilma tugiisikute
sekkumiseta pikemaajaline autonoomne töö. Lisaks, on veel ka paljud sellised
süsteemid paigutatud kohtadesse, mis on teenindavale personaalile raskesti
ligipääsetavad ja samas nõuavad ka väga väikest energiatarvet. Käesolev
väitekiri käsitlebki uue generatsiooni AtoN seadmete tarkvara osa, tarkvara ja
lisafunktsioonide loomisel tekkinud probleeme ja sobilikke lahendusi ning
tarkvara loomisel ja testimisel kasutatavaid tööriistu ja meetodeid.

Väitekirja peamisteks väljunditeks on meetodid, tehnilised lahendused ja
soovitused olemasolevate sardtarkvara arendamise meetodite ja praktikate
kasutamiseks piiratud võimalustega sardsüsteemides. Kõikide kirjeldatud
meetodite juures on oluline see, et nende mälu tarbimine oleks minimaalne ja
samas võtaksid ka minimaalselt protsessori ressurssi, mis on ka paljudel
juhtudel olulisem kui matemaatiliste funktsioonide täpsus. Töös on välja toodud
sobilikud programmerimiskeeled, kirjeldatud erinevaid lähenemisi ja
programmi struktuure mis võimaldavad lihtsustada sardsüsteemides automaatset
testimist, mis omakorda annab võimaluse kasutada automatiseeritud teste koos
pideva integratsiooni serveritega. On toodud soovitused erinevate planeerijate
kasutamiseks ja ka puudused mis võivad avaldada mõju programmide
ülesehitusele. Planeerijate juures on käsitletud co-operative ja preemptive
planeerijaid, arvestades seejuures ka võimaliku jõudluse ja mälu vajaduse
piiranguid. Kirjeldatud multitegur programmide eripäradest tulenevad
lähenemisi valvetaimeri nullimisele, töös on ka kirjeldatud meetodeid
valvetaimeri nullimiseks mis on sobilikud kasutamiseks erinevate planeerijatega
ja programmi struktuuridega. Kirjeldatud peamiselt väiksemate sardsüsteemide
spetsiifilised optimeerimised funktsioonide väljakutsumisele, efektiivsemaid
meetodideid baitide järjekorra manipuleerimieks ja mõned soovitused AES
krüptograafiliste funktsioonide kasutamisel. Optimeeritud funktsioonid
võimaldavad vähendada mälu või protsessori ressursi kasutamist. On ka
näidatud alternatiivne lähenemine dünaamilise mälu hõivamisele ja
vabastamisele. Näidatud lahendus on eelkõige mõeldud kasutamiseks
väiksematel sardsüteemidel, kuid sobilik kasutada ka suurematel arvutitel.
Väljatöötatud lahendus võimaldab võtta arvesse ka vajaliku mälu suurust juba
programmi kompileerimisel.

Kõik eelpool mainitud meetodid, tehnikad ja lahendused on realiseeritud AS
Cybernetica mere navigatsioonitulesüsteemides.

128

APPENDIX 1

E. Moorits, G. Jervan, "Low resource demanding FOTA method for remote
AtoN site equipment", Proceedings of the OCEANS '10 MTS/IEEE Seattle,
2010, pp. 1 – 5.

129

Low Resource Demanding FOTA Method For
Remote AtoN Site Equipment

Erkki Moorits1,2, Gert Jervan2

erkki.moorits@cyber.ee, gert.jervan@pld.ttu.ee

1Department of Navigation Systems
Cybernetica AS
Tallinn, Estonia

2Department of Computer Engineering
Tallinn University of Technology

Tallinn, Estonia

Abstract — This paper presents a method for firmware
update in memory constrained low-power controllers used in
marine aids to navigation (AtoN) and telematics systems. The
developed method allows carrying out firmware updates
regardless of the communication channel used. This approach
differs from other similar methods mainly by its low
requirements to hardware and high flexibility; hence it is
applicable to relatively small microcontrollers. The paper is
concluded with experimental results performed on operational
marine buoys.

I. INTRODUCTION

Like many recently developed embedded products, flashers
and telematics modules employed in marine AtoN systems are
relatively complicated devices with complex firmware. For
example, a typical navigational buoy or a lighthouse is
equipped with at least two microcontrollers (in addition to
modems). Depending on the application specifics, each
microcontroller may have quite a complex program, typically
between 20 kB and 100 kB of program code which is roughly
7,000 to 40,000 lines of code. Also it is not uncommon that
functional requirements to firmware of already deployed units
change over the time, necessitating several updates during
product’s usable lifetime. In some rare cases, the already
deployed firmware may need to be updated due to
programming errors in some functions that have passed the
initial testing and surface only when certain set of conditions
appear. Usually, in such cases it is required to undertake a
field trip either to retrieve a controller to the depot, or to
perform the firmware upgrading process at the remote site
since direct physical connection to the system is needed. This
becomes costly in case of systems which have numerous
devices distributed over a wide geographic area, or even if a
few devices are located at places not easily accessible – like
marine buoys. A solution for such cases (for devices capable
to communicate wirelessly) is to use firmware update over the
air (FOTA). Currently, firmware updates over the air are
mainly used in automobiles, cellular phones and various smart
sensor solutions. Taking into account the constantly
decreasing mobile data communication prices (for example
GPRS, 3G and beyond), firmware updating over the air is
clearly the most cost effective method for AtoN and telematics
systems.

A wide range of FOTA capable systems exist, mainly in
mobile communication [1], [2] and automotive electronics [3]
domains. The latter systems are somewhat similar to marine
AtoN systems – all modern cars have at least one internal
network and several devices are connected to this local
network. But in-car electronic systems usually differ from
marine AtoN systems by having significantly higher power
consumption. FOTA applications for automotive electronics
and mobile phones can typically update firmware of fairly
large microcontrollers as it is possible to use data compression
and encryption. Unfortunately, these methods are much too
resource demanding for low power AtoN controllers and
cannot be used in autonomous marine AtoN systems. On the
other hand, many memory and power efficient firmware
updating methods have been recently developed for smart
sensors and similar systems [4]. Most of these methods suffer
from one drawback – they cannot update firmware on other
devices connected to the remote controller over its local wired
network (LAN). While marine AtoN systems typically consist
of several programmable devices operating in a local wired
network that lack the ability to communicate directly with a
FOTA server, they would benefit from such indirect FOTA
capability. Some firmware updating methods proposed in [4]
would almost be suitable, but these approaches are tied too
closely to certain specific smart sensor kernel or toolflow, thus
not being suitable for our development environment.

In order to carry out firmware updating over the air for
remote marine systems we developed a new method especially
suitable to our AtoN systems. The method is designed to be
reliable and enables over the air updates while providing also
support for external devices connected to a local wired
network of the remote AtoN, i.e. the method supports medium
independent firmware updating. Beside medium independent
firmware updating, another requirement for AtoN systems is
power and memory efficiency (small memory footprint). In
our telematics module the described method requires
approximately 3.2 kB of program-memory and 280 bytes of
RAM. Such low memory requirements make it suitable for
small microcontrollers which have certain program sections
where it is possible to use self-programming instructions.

It is also anticipated that the communication channel might
not be fully reliable and may occasionally have high failure
probability, i.e. it may not be possible to transfer the new

firmware in full during a single communication session.
Therefore a fault tolerant procedure is foreseen, allowing
transferring only certain program parts at a time. In case of
transmission faults, or partially corrupted program memory, it
is possible to save several firmware backups inside the
controller’s backup memory. Most notably, this firmware
updating method with previously downloaded firmware image
interrupts the normal operation of the system for up to 15
seconds only, performing all preparations in the background.
Due to the properties above described, this method is well
suited for application in mission critical AtoN systems,
including buoy systems subject to synthetic Automatic
Identification System (AIS) reporting, and lighthouse systems.

This paper highlights the design considerations which are
used in our new firmware updating system. Section 2 gives a
brief overview of our current system. The firmware updating
method itself is described in section 3. Section 4 outlines the
results of experimental testing that was performed. Section 5
gives an overview of the impact of firmware updating to the
operation of a buoy tasked with synthetic AIS reporting
mission, and finally, the concluding remarks are presented in
Section 6.

II. CURRENT SYSTEM OVERVIEW

Embedded systems which are used in marine AtoN systems
are often composed of several controllers which are connected
to the local area network of the AtoN site while one of the
controllers acts as a Telematics Module (TM) – a gateway to
the Remote Control and Monitoring Systems (RCMS) central
server. A typical marine AtoN system is presented in Fig. 1
where TM is a communication controller (network gateway),
and C1, C2, …, Cn are internal controllers in charge for the
AtoN site’s mission. The main task of a telematics module is
packet forwarding between wireless and local area interfaces;
a TM may also be configured to fulfill some additional tasks
like time synchronization with GPS or certain measurement
tasks. Internal controllers C1, C2, …, Cn may be navigational
lantern flashers, smart power supply system controllers, or
certain measurement controllers.

Since data communication is the slowest phase of the
firmware updating process and the firmware updating should
not interrupt the normal operation of a marine AtoN (typically,

a buoy or a lighthouse) for a significant period of time, then
the only possible way to minimize the interrupts caused by
firmware updating would be to buffer the new firmware into
external buffer or backup memory. For fast firmware copying,
it is necessary that each controller shall have such a buffer
memory since the internal AtoN network can be either too
slow or have too high probability of errors to load the
firmware directly into the program memory of a
microcontroller connected to the site LAN. Firmware
buffering must not interfere with the normal operation of the
system. Figure 2 presents a block diagram of such a node
which allows firmware buffering. The MCU (microcontroller
unit) is an 8-bit Atmel AVR family (ATmega1280)
microcontroller that has program memory in two sections – a
boot section and an application section – where the application
section is writable from the boot section, but the boot section
is writable only from the boot section itself. In our current
design, the boot section is a read-only section. CI1 and CI2 are
communication interfaces – CI1 is a GR64 GSM/GPRS
modem with integrated TCP/IP stack and CI2 is an RS-485
interface. Currently, the interfaces C1 and C2 are nearly equal
– all commands can be passed from one interface to another
and all commands are in the same format.

In systems with significant computational power and
memory, the most widely spread communication protocol is
TCP/IP – typically incoming connections are TCP/IP based
and the LAN may also be TCP/IP based. Although it is
possible to run TCP/IP stack in 8 bit microcontrollers then in
most of the cases it is too resource demanding for low power
microcontrollers. Therefore, it is preferable to use some
lightweight communication protocol on such 8-bit devices. In
our communication controller it is used two level
communication stack where the second level is common for
LAN and GSM/GPRS and the first level is GSM/GPRS
specific. In the LAN side the first level is underlying on RS-
485 link and the GSM/GPRS is underlying on modem
integrated TCP/IP link. All commands on the second level are
the same.

Figure 2 presents a telematics module that can store several
different working firmware versions to external memory,
including a backup version which may have minimal
functionality but has been exhaustively tested. For reliable
firmware updating, controller’s ability to hold a previous and a
backup firmware version in external memory is essential. In Figure 1: AtoN internal network

Figure 2: Telematics module

the worst case where communication fails or firmware
corrupts during transmission it is always possible to roll back
to a previous or a backup firmware version. Firmware
corruption during communication is quite rare on GSM/GPRS
link but quite common on LAN, which has our proprietary
protocol on RS-485 link. Minimal capacity of external
memory should be not less than twice the size of the writable
program memory of the controller, but the optimal size is three
times the controller's memory size. This external buffer
memory is a prerequisite for our firmware updating method.

Inside the microcontroller all program code is situated in the
boot section and strictly isolated from any other program code.
The boot section also holds a self contained program which is
responsible for copying the firmware from the external
memory into the controller program memory.

III. FIRMWARE UPDATING

Our firmware updating method is basically a three step
process:

1. First, the new firmware image is transferred over a
GSM/GPRS link or over LAN to the external memory of the
controller.

2. After successful firmware loading to the external memory
a firmware copying program is started. This program will
verify the 32-bit checksum of the firmware in the external
memory and after successful checksum verification initiates
loading of the new firmware into the program memory of the
controller.

3. The main program of the controller is started after
successful firmware loading into program memory. Once the
firmware update is successfully completed, a self-test function
is started. In a situation where the self-test fails, the old or
backup firmware is loaded back. If the self-test succeeded, the
main program clears the self-test flags and the controller starts
operating using the new firmware.

As was mentioned earlier our system has common
command format for all interfaces. For firmware updating this
is important as commands should not depend on what
communication interface is used during the updating process.
Such common command acceptance is needed for the
firmware updating service to be capable of extension to any
compatible locally connected devices. Should the commands
or command formats be different for each interface then the
telematics module would need to be equipped with command
translation capability which may become overly resource
demanding. A common command format makes also the
whole system design simpler.

While the external memory should store several different
firmware versions, it is necessary to use a strictly specified
memory layout. Since the external memory can be accessed
only from special interfaces that all have their own read and
write commands, it does not need to have any special file
system. Without any file system utilized, it is only necessary
to segment the memory properly. Figure 3 presents an external
memory layout with all segments of same size as the

controller’s program memory. Since it is not possible to write
to the boot loader section of the microcontroller, the area in
external memory that contains the boot loader section
addresses does not need to hold any program code and
therefore can hold image block checksum values. Block
checksums are necessary to track corrupted firmware, and in
partial update mode, non matching parts in external memory.
The difference between two checksums is that block
checksums are taken from a block of 256 bytes while the 32-
bit checksum is taken for whole program image, excluding the
block checksum area. Block checksums are optional in the
loading process; the only purpose of those checksums is
aiding the detection of corrupt firmware part locations in
external memory, or indicating mismatching parts between
two different firmware versions. Block checksums are
calculated by the controller after special calculation request
from the FOTA server. An incorrect block checksum itself
does not interrupt the firmware loading process.

The first step of firmware updating process is to load the
new firmware image into the external memory, which can be
performed by loading fragments of code into specified
memory regions, i.e. loading only updates, or by transfer of a
new image in full. New loadable firmware image is generated
by GNU Binutils, and may be either in binary, IHEX, SREC,
or preferably, in the ELF format, but all formats must contain
32-bit firmware checksum information. Firmware loading can
take place either using a wired connection over LAN, or a
wireless (GSM/GPRS) connection. Since the firmware
updating method supports both partial and full firmware
uploading modes, it is reasonable to use partial firmware
upload mode when communication link failures exceeding a
single session break are expected during firmware updating.
Expected communication link failures in one session can be
found as follows:

p fail×d s≥1 (1)

where pfail is byte failure probability e.g. one failure per ten
kilobytes, and ds is transferred data size. In case of deployed
devices it is reasonable to transfer the firmware over
GSM/GPRS in one continuous part during one continuous

Figure 3: Memory allocation in external memory

session, while over LAN it can be accomplished by
transferring several parts in one or several sessions. Both
transfer methods are the same for the controller side, but in
case of using the partial update mode the server has to ask for
block checksums, to verify these, and to start a new transfer in
a case a faulty block checksum was detected. Also, both
transfer methods do not inflict any interference upon the
operation of the whole remote AtoN site system.

Two alternatives are available for tracking faulty firmware:
using block checksums and whole program memory checksum
(32-bit checksum). While it is possible to use block
checksums to track faulty firmware data, it is not necessary to
compute block checksums after transfer when the new
firmware has been transferred within one session. In such
case, it is more efficient to make the controller to calculate a
single long checksum and if this checksum does not match to
re-initiate the transfer of the new image in whole. In case of
partial image loading, it is necessary to check block
checksums after each 256 byte block is transferred; in case
that a controller computed block checksum does not match
with a block checksum computed at the server side, retransfer
of only the faulty block of the new firmware image is
required.

Once the firmware transfer into external memory is
completed, a non-critical moment from the system mission’s
point of view is awaited to start up a small firmware copying
program which will copy the new firmware from the external
memory into the program memory of the microcontroller as
fast as possible. This firmware copying program is basically
part of the boot loader, being responsible for correct firmware
copying from external memory to microcontroller’s program
memory. The copying program also has two EEPROM regions
which are designated for signaling system self-test functions
when the firmware is updated. One of the EEPROM regions
holds a successive firmware update counter and another region
holds a new firmware and a faulty checksum flag. Before the
firmware copying process is started, the 32-bit firmware
checksums are checked; if these do not match, a faulty
checksum flag is set and a system reset is initiated. If
checksums are correct then firmware copying from the
external memory to microcontroller program memory is
started. After the firmware copying process is completed, the
successive firmware update counter is incremented and the
new firmware flag is set. Thereafter a system reset is initiated,
starting up the operation with newly loaded firmware.

As soon as the new firmware is started up, a check of the
flags set is performed. In case when the new firmware flag is
set, a self-test shall be initiated. If the new firmware does not
succeed completing the self-test within a specified timeframe,
the operation is discontinued and a previous or backup version
of the firmware is loaded back into the program memory of
the controller. In case that a faulty checksum flag is set, the
controller sends a failure indication message to the FOTA
server in the first communication session and no self-test is
started. The firmware copying program with successive

firmware update counter and new firmware flag can also track
cases where new firmware is unable to operate at all and is
therefore immediately terminated by a watchdog (WD) reset.
When more than three WD resets occur, the old or backup
firmware will be loaded back into the controller program
memory. The successive firmware update counter and new the
firmware flag are both cleared when the controller has
successfully completed the self-test.

IV. EXPERIMENTAL RESULTS

The above described method has been successfully
implemented in our AtoN telematics module. Since the new
firmware updating method must be compatible with our
legacy boot loader software, it contains a quite large portion of
the wired boot loader program code. Despite the compatibility
with our legacy boot loader, the new boot loader with
firmware copying code needs only 3.2 kB of program
memory, and approximately 280 bytes of RAM to operate.
The firmware copying code itself needs approximately 1 kB of
program memory.

The laboratory tests with our new boot loader and FOTA
server showed that the previously described method can copy
firmware from the external buffer memory to main memory in
about 8 seconds, and the interruption of the main program
operation lasts less than 15 seconds. Firmware update was
tried with two different remote control and monitoring system
(RCMS) servers – our test server and an actual AtoN RCMS
server. The following test results are taken from the test
server; the only difference between a test server and a full
RCMS server was the upload speed where the test server was
roughly two times faster. Firmware updating over the
GSM/GPRS data link was tested with two different firmware
images: one of 71.634 kB of program code, and another of
79.021 kB of program code. Firmware loading over
GSM/GPRS data link to the controller’s external memory is
quite slow: loading of a 71.634 kB firmware image takes
typically 52 sec to 56 sec, and loading of a 79.021 kB image
55 sec to 60 sec. Such a low firmware downloading speed is
mainly caused by slow internal connections between the
external buffer memory, the microcontroller, and its
GSM/GPRS modem. In theory, it is possible to increase the
downloading speed, but this is not practical.

In the laboratory, roughly 95% of firmware transferring
attempts into the external memory over GSM/GPRS
succeeded in the first attempt and 5% of the failures were
largely caused by GSM/GPRS communication failures; all
repeated attempts for firmware transferring were successful
already at the second trial. Most GSM/GPRS failures were
caused by network delays which were over 15 seconds long,
resulting in server timeout.

Firmware updating was also tested on deployed devices
within the operational AtoN infrastructure and as was
anticipated, the results displayed slightly lower first-time
success rate than in the laboratory: roughly 90% of firmware
transferring attempts into the external memory succeeded in

the first attempt, 5% in the second attempt and remaining 5%
of transfers succeeded within ten attempts. Transfer failures
were caused by long transfer delays or connection loss, where
both are quite common at remote AtoN sites operating in the
conditions of low GSM field strength.

In addition to GSM/GPRS transmission trials, tests were
carried out to investigate server side failures: the server was
shut down during an active communication session, resulting
in a new connection to the server to be established after a 15
seconds timeout; the new firmware was downloaded again
without unwanted effects on the remote AtoN system
operation.

Since the integrity of the firmware is protected by a fairly
long checksum value, a faulty firmware image was never
copied into controller’s program memory. When the new
firmware was found to be faulty, the controller never tried to
copy it into the program memory; therefore in such cases the
program memory remained unchanged. In case when both, the
program memory and the new image were corrupt, the
controller always copied the last-known-to-work or backup
firmware back to program memory. When a faulty firmware
image with a correct checksum value was copied to
microcontroller’s program memory, it could never pass the
self-test and after a while a working firmware version was
loaded back.

V. FIRMWARE UPDATING IN SYNTHETIC AIS REPORTING MISSION

AtoN device firmware updating over the air may have
certain impact on continuity of the synthetic AIS reporting
mission of a buoy system. AtoN devices subject to synthetic
AIS reporting are expected to broadcast their status
information typically at a three minute interval while the data
sent to the RCMS remain valid only for one minute.
Therefore, it is necessary that an AtoN device in synthetic AIS
configuration can update the firmware within about two
minutes. Typically, an AtoN telematics module needs about 15
seconds for its measuring tasks and tests, but following a reset
event it takes roughly another 30 seconds for registration into
the GSM/GPRS communications network. If the firmware
update and controller reset is completed within less than three
minutes of time from the moment when the controller
submitted its regular synthetic AIS report to the RCMS server,
the firmware updating process will have no impact to the AIS
mission, presenting a negligible impact to the availability of
the navigational signal.

While our AtoN controller currently cannot send AtoN
status information while receiving new firmware update from
the RCMS server, a gap in forwarding the synthetic AIS
messages into the AIS shore infrastructure for broadcasting is
inevitable. Although such communication gap will be present
during the firmware loading process, the AtoN controller will
continue the operation with its regular tasks during this time.
This communication gap can be avoided by two different
methods: the first option would be a faster data transmission
between the server and the telematics module, and the second
option would be data transmission in smaller firmware parts
which are transmitted over a longer period. The faster data
transmission is in principle possible, but it requires some
modifications in the firmware architecture of the existing
controller, and is currently not practical. The second option
where the firmware is transmitted in several parts is currently
possible on controller side, but would require several
modifications in the existing RCMS server software.

VI. CONCLUSION

The objective of the current work was to develop a reliable
method for remote firmware updating in embedded AtoN
controllers with minimum impact on operational availability.
The developed method differs from other similar methods
mainly by short program interruption time, which is very
important in case of synthetic AIS reporting mission of
targeted telematics modules; the above described firmware
updating method has negligible impact upon AIS mission.
Furthermore, it enables updating of the firmware even in
programmable equipment units with the AtoN site system that
are connected to the local area network of the AtoN site. This
firmware updating method also features a roll back capability
allowing reverting to previous known-to-work firmware in
case of transmission faults of the firmware, or partially
corrupting program memory. The method has been
successfully implemented and deployed in our buoy telematics
electronic systems with all firmware tests both in the
laboratory conditions and at the sea environment successful.

REFERENCES

[1] Innopath, “Understanding Firmware over the Air-FOTA”,
http://www.innopath.com/pdf/fota.pdf, 2010

[2] Red Bend, “Firmware Updates”,
http://www.redbend.com/solutions/firmware-updates.asp, 2010

[3] Moshe Shavit, Andrew J. Gryc, Radovan Miucic. “Firmware Update
Over The Air (FOTA) for Automotive Industry”. Technical Report 2007-
01-3523, SAE 2007

[4] Jonathan Hui, “Deluge: TinyOS Network Programming”,
http://www.cs.berkeley.edu/~jwhui/deluge/index.html, 2010

APPENDIX 2

E. Moorits, A. Usk, "A Numerically Efficient Method for Calculation of the
Angle of Heel of a Navigational Buoy", Proceedings of the 12th Biennial Baltic
Electronic Conference BEC2010: 2010, pp. 357 – 360.

137

A Numerically Efficient Method for Calculation of the Angle of Heel of a
Navigational Buoy

E. Moorits1, A. Usk2

1Cybernetica AS, 12618 Tallinn, Estonia, E-mail: erkki.moorits@cyber.ee
2Cybernetica AS, 12618 Tallinn, Estonia, E-mail: aivar.usk@cyber.ee

ABSTRACT: This paper presents a numerically efficient
method developed for obtaining heel angle information on
navigational buoys by the use of onboard low power
embedded controllers equipped with solid state acceleration
sensors, focusing on the signal processing principles
employed. Calculation of the buoy heel (tilt angle or
inclination) is based on continuous measurement of
acceleration of the buoy in all three planes of movement,
accomplished using a 3-axial solid state accelerometer (g-
sensor) with the maximum range of ±3 g. The sensor is
integrated with an Aid to Navigation (AtoN) telematics
module that is subject to low power consumption
requirements and size restrictions resulting in limited
computational capability. Results of tests performed on
operational marine buoys are presented at the end of the
article.

1 Introduction
Despite the widespread use of mature electronic
technologies for marine navigation, visual light
navigation stations remain an indispensable part of marine
navigation safety infrastructure for foreseeable future.
While the navigational buoys are widely used for
generating light signals of strictly specified visibility
range and flashing character, the environmental effects
like wave action, winds, tidal currents and ice may
adversely affect both by tilting the buoy, introducing
either a dynamic or a static heel angle, or a combination
of both. This may introduce significant reduction of the
visibility range and parasitic modulation of the light
signal as described in [1], therefore timely awareness of

the relevant authorities of the typical and critical angles of
heel of deployed navigational buoys can be considered a
precondition for provision of a high quality light
navigation service. In addition, specifics of the Nordic
region introduce a problem that goes undetectable by a
traditional AtoN remote monitoring system: a buoy may
be on station (within the limits of the assigned and GPS
monitored geographical position), but stuck in the ice at a
significant heel angle making the navigation light to fail
in most of directions (Figure 1). The above situations can
introduce significant navigational hazards due to the fact
that buoy lanterns often use rather narrow vertical beam
profiles (divergence) providing only five to fifteen
degrees full width at half of maximum intensity.

Most of such buoy light signal visibility problems
could be avoided by using buoy lanterns with a light
source that is either always horizontally aligned by
mechanical means (gimballed), or equipped with a light
source and optics that guarantee a sufficient vertical beam
width for any environmental conditions encountered. In
practice, such solutions are too expensive to manufacture,
too bulky and power consuming for most applications.
With many buoys at critical stations equipped with remote
monitoring (telematics) equipment featuring low power
embedded controllers, a feasible alternative to reducing
the navigational risks associated with excessive buoy heel
angles is tilt monitoring in conjunction with reporting of
critical heel angles to the operations centre, allowing to
issue navigational warnings and to take appropriate action
as necessary. The same setup provides efficient means for
service quality control (statistics) as well as for
researching the behaviour of specific buoys deployed at
specific locations in order to determine sufficiency of the
stability provided by the buoy platform selected, and to
decide upon required minimum vertical divergence of the
buoy lantern to be employed.

The most cost effective of contemporary methods for
inclination measurement is achieved by application of a
programmable microcontroller equipped with a three-
axial micromechanical accelerometer sensor (a solid state
g-sensor – a Micro-Electro-Mechanical System (MEMS))
that can measure acceleration levels on all three axes
simultaneously, including the static component of
gravitational acceleration distributed over the sensor axes Figure 1: Buoy in Ice

depending on inclination of the controller carrying the
sensor. Similar angle detection methods have been
developed for directional drilling systems [2] and
monitoring of patient’s head position during a post-
operative period after vitreoretinal surgery [3]. Some
MEMS g-sensor manufacturers have published certain
application notes describing tilt measurement and
calculation [4], but none of the published material
reviewed offered angle calculation methods suitable for
dynamic environment. In addition, most of the suggested
methods require powerful microcontrollers for
implementation of complex algorithms while
implementing of autonomous heel angle calculation
capability onboard a buoy is only feasible when using a
simple algorithm.

The rest of this paper is organized as follows: Section
2 provides a brief overview of the developed heel angle
measurement system; Sections 3 and 4 describe the
proposed heel angle calculation method; Section 5
outlines results of experiments and tests performed in
both laboratory and marine environment; the concluding
remarks are given in Section 6.

2 Remote Monitoring and Acceleration
Measurement System Overview

While AtoN remote control and monitoring systems
(RCMS) of varying degrees of sophistication have been
around for decades, measurement of buoy heel angles has
not been widely used due to complexity and cost - in an
autonomous system that needs to provide reliable
operation from primary batteries for years, spending of
every mA of current must be well substantiated. Our
concept foresaw integration of a single new hardware
component (3-axial g-sensor) with the existing telematics
module (TM) used for remote monitoring of navigational
buoys, and accomplishment of heel angle calculation and
monitoring tasks using the available ADC ports and spare
computational capacity of the existing microcontroller. In
a typical application, the TM is installed inside a
protective enclosure together with a flasher module and
an LED array, and mounted on a buoy superstructure,
typically 2 to 4.5 meters above the sea level.
Communication protocols of the TM that serves primarily
as a communications gateway between the remote site
equipment and the RCMS centre server were updated to
accommodate heel angle information and associated
alarms.

A TM is performing acceleration data acquisition in
blocks where each block consists of three 10-bit
acceleration measurement values representing
acceleration levels sampled from three axes of the g-
sensor. All samples in one block are separated from each
other by 0.6ms in time. Block sampling period is user
selectable, typically set to 100ms considering the
dynamics of the buoy platform. Due to the fact that
acceleration data acquisition is not the primary task for
the TM, under certain circumstances the acceleration data

blocks may be sampled at slightly uneven intervals due to
coinciding higher priority tasks of the processor: at most
0.33% of blocks may be delayed by 10% to 20% of
configured sampling interval. Due to the considerably
slow movement of a buoy, with a typical buoy moving
cycle between 2s and 10s, and the considerably high
sampling rate used, such occasional uneven sampling
does not have any significant detrimental impact on
autonomous heel angle calculation.

Figure 2 shows relevant subsystems of a TM utilized
for acceleration measurement, inclination angle
calculation and status/alarm communication tasks, leaving
out all parts which are not involved in the process. The
MCU used is an 8-bit AVR microcontroller, performing
analog to digital conversion of g-sensor output data, heel
angle calculations, angle value monitoring, maintaining
statistics and initiating communications when necessary.
When a heel angle value exceeding a pre-configured level
is detected, the MCU initiates a communications session
with the RCMS centre server using the communications
interface (CI) to report a critical heel angle. In the current
system implementation, the CI is a GSM/GPRS modem
with integrated TCP/IP stack. The acceleration sensor
utilized is an ADXL330 by Analog Devices [5] which is
connected directly to the analog input channels of the
MCU, allowing reducing the power consumption
compared to the situation where a smart digital g-sensor
would be used.

It is still possible to calculate the heel angle at the
server side, but this is practical only in special cases
focusing on a more detailed research of buoy movements
since transmission of raw acceleration data to the RCMS
would be required. For example, in case of a 100ms
sampling period, nearly 1MB of raw data has to be
transmitted to the RCMS server hourly. In addition to
direct communication costs, other factors limiting the
utilization of server side data processing are increased
power consumption of the TM due to the systematic
transmissions over the open communication channel and,
last but not least, inability of immediate local decision
making due to the calculation results being available only
at the remote operations centre.

3 Buoy Heel Angle Calculation
Calculation of the inclination angle based on digitized
real-time acceleration data can be performed by using

Figure 2: TM Block Diagram

simple trigonometric functions like sine or tangent. For
systems that have hardware floating point support, the
most elegant and easiest way would be to use tangent. In
8-bit embedded systems where all numbers have quite
small range, the only feasible option is to use the sine
function. 8-bit systems cannot use tangent because
tangent have infinite value when the angle is 90 degrees,
and it is very inefficient to use fixed point variables to
store such values. When using the sine function for angle
calculation, it is necessary to use an additional hypotenuse
calculation; this is not a problem in all systems with
sufficient available computational power. This additional
calculation makes all data processing a little more
resource consuming and may introduce small
inaccuracies, making this approach not suitable for raw
acceleration data processing on the server side.

It is possible to simplify the rest of calculations by
finding the length of the vector in the X-Y plane, and
using it as a single value describing the horizontal plane.
This simplification is possible due to the absence of
directional data in the horizontal plane of the buoy.

Length of the horizontal acceleration vector:
c= x2

 y2 (1)
where x and y are acceleration values from X and Y

axis outputs of the sensor.
Sine function also needs the hypotenuse:

h=c2z2 (2)
where c is the length of the horizontal acceleration

vector and z is acceleration value from the Z axis output
of the sensor.

The inclination angle (buoy heel angle) can be
calculated using the following formula:

=arcsin c
h

 (3)

In actual marine environment, the acceleration values
obtained from the acceleration sensor are changing
continuously which can cause certain errors in short term
calculations. However, it is possible to perform a long
term calculation that averages all input data and thus
eliminates most errors caused by the continuously
changing acceleration. Averaging is possible because
buoy movement is mainly symmetrical to all axes and
averaging provides a central value without short term
excessive acceleration peaks.

4 Algorithm Implementation in Telematics
Module Firmware

The most important limitation at using the inclination
angle calculation algorithm directly in TM firmware is the
absence of square root, hardware floating point support
and fast trigonometric functions. These functions can only
be used in the server side applications. Inclination angle
calculation algorithm for TM is based on the following
simplification that results in a metavariable that is directly
proportional to the inclination angle, allowing taking
actions at detecting certain threshold angles when
necessary.

First, the squares of catheti and hypotenuse are
calculated:

c2
=x2

 y2 (4)

h2
=c2

z2 (5)
The inclination angle metavariable is calculated as

follows:

=216⋅
c2

h2 (6)

The result of formula 6 is a value that holds enough
information to unambiguously determine the inclination
angle of the buoy from the vertical axis. It can be
averaged locally, or forwarded to the server side inside
corresponding messages of the TM for use by other
systems.

Due to the limitations of the TM hardware, it is
possible to use only fixed point values; therefore, all
values shall be in 16 bit range, which will cause some
errors in our heel angle calculation. Hence the worst case
accuracy δ is calculated as follows:

=216⋅sin2 (7)

=∣−arcsin

216∣ (8)

where the variable θ is rounded down to a nearest
integer.

Worst case accuracy can then be found by inserting
angle values between 0º and 90º into formulas 7 and 8,
resulting in heel angle calculation errors as shown in
detail on graphs in Figure 3.

Resultantly, the worst case computational accuracy at
determining the heel angle of a TM is 0.220º in the range
of 0º to 2º and 88º to 90º, and 0.010º in the range of 2º to
88º.

Implementation of the average inclination algorithm in
TM firmware is accomplished as follows. First, the
average square of the catheti and the hypotenuse is
calculated:

c2
= 1n∑i=1

n

x i
2

 1n∑i=1

n

y i
2

(9)

h2
=c2

1n∑i=1

n

z i
2

 (10)

The average inclination angle over the averaging
period is calculated as shown in formula 11:

=216⋅
c2

h2
=

=216
⋅

1n∑i=1

n

x i
2

 1n∑i=1

n

y i
2

1n∑i=1

n

xi
2

 1n∑i=1

n

y i
2

1n∑i=1

n

zi
2=

=216
⋅

∑
i=1

n

xi
2

∑
i=1

n

y i
2

∑
i=1

n

xi
2

∑
i=1

n

y i
2

∑
i=1

n

zi
2

 (11)

As seen in formula 11, angle averaging can be
accomplished without division, simplifying the
calculations.

Decoding of instantaneous or average angle values
from the metavariables received from a TM on the server
side is accomplished as follows (the angle α is given in
radians):

=arcsin

216 (12)

where θ is a coded angle metavariable received from a
telematics module.

5 Test Results
Inclination angle calculation tests were carried out both
on our in-house rotating test bench and on the
navigational buoys deployed in actual marine
environment. Table 1 presents the results of our
laboratory tests.

Angle Average angle, measured by controller Error
0.0º 1.0º 1.0º
1.0º 0.7º 0.3º
2.0º 1.7º 0.3º
3.0º 2.3º 0.7º
5.0º 4.6º 0.4º
10.0º 9.6º 0.4º
20.0º 19.9º 0.1º
30.0º 30.2º 0.2º
45.0º 45.1º 0.1º

Table 1: Test results

As seen in Table 1, all values that are measured by
TM are quite close to actual inclination angles of the TM;
the average error over the tested range was below 0.5º.
Only two cases exhibited larger errors – 0º and 3º, where
the first one was caused by the controller and second error
was caused by test bench, but both errors were below 1º
which is acceptable for a device that is not intended for
precise angle measurement.

In addition to laboratory tests, our method was
verified in actual operational environment of the
navigational buoys (Figure 1). The angle reported by TM
based on autonomous calculations was consistent both
with the visually identified buoy angle as well as the
results of server side calculations based on raw
acceleration data. When observing the static heel angle of

a buoy frozen in an ice field over a longer period it is
clearly seen that heel angle changes remain below one
degree as expected (Figure 4).

6 Conclusions
The objective of the current work was to develop a low
resource demanding heel angle calculation method that is
feasible for application on navigational buoys. The
developed method is suitable for low power marine AtoN
embedded systems with an integrated 3-axis acceleration
sensor with analog output. This method is capable of
carrying out heel angle calculations in real time with an
error levels of up to 0.220° in the range 0°…2° and 88°…
90° and 0.01° in the range 2°…88°. The method was
successfully tested in our laboratory as well as in
expected operational environment at the sea; all test
results were in accordance with actual heel angles while
the errors were neglectable considering the intended use.

References

[1] “IALA Guideline No. 1065 On Aids to Navigation
Signal Light Beam Vertical Divergence.” Edition 1,
May 2009. Publication of the International
Association of Marine Aids to Navigation and
Lighthouse Authorities.

[2] Jian Kang, BoXiong Wang, ZhongXiang Hu, Rui
Wang and Tao Liu, "Study of Drill Measuring
System Based on MEMS Accelerative and
Magnetoresistive Sensor". In Proc. 9th International
Conference on Electronic Measurement &
Instruments (ICEMI 2009, Beijing, Aug. 2009), pp
2-112 – 2-116.

[3] Jirí Dlouhý, Martin Cízek, Igor Vícha, Jirí Rozman,̌
“MEMS Technology in Head Tilt Monitoring after
Vitreoretinal Surgery”. In Proc. : Radioelektronika,
2008 18th International Conference, pp 1 – 4.

[4] Freescale Semiconductor, “AN3107 - Measuring
Tilt with Low-g Accelerometers”, Rev 0, 05/2005

[5] Analog Devices, Inc. “ADXL330: Small, Low
Power, 3-Axis ±3g iMEMS® Accelerometer”, 2007

Figure 4
Figure 3: Heel angle calculation errors over the full

range of 0º to 90º.

APPENDIX 3

E. Moorits, A. Usk, T. Kõuts, "Wave Height Measurement as a Secondary
Function of Navigational Buoys", Proceedings of the OCEANS '11 MTS/IEEE
Kona, 2011, pp. 1 – 5.

143

Wave Height Measurement as a Secondary Function
of Navigational Buoys

Erkki Moorits1, Aivar Usk2

Department of Navigation Systems
Cybernetica AS
Tallinn, Estonia

erkki.moorits@cyber.ee1, aivar.usk@cyber.ee2

Tarmo Kõuts
Marine Systems Institute

Tallinn University of Technology
Tallinn, Estonia

tarmo.kouts@sea.ee

Abstract — This paper presents a method for measuring wave
height with navigational buoys which are equipped with an
acceleration sensor. The developed method differs from other
similar methods by the ability to measure wave height with buoys
which are not perfect wave followers – typical in case of
navigational buoys. The paper summarizes the experimental
study performed using operational marine navigational buoys as
sources of wave data, in comparison with wave measurements
performed with pressure based wave height and period gauges.
Comparative measurements were made in variable forcing
conditions and results show good agreement between those two
datasets. Some differences that occur mainly during rapid
changes of wave parameters, such as during build up and decay
of the wave field, can be explained by physical properties of
navigational buoys (shape and weight).

Keywords: wave height measurement, navigational buoys

I. INTRODUCTION

Wave height is one of the key factors influencing the
navigational conditions on any waterways. Wave field is a
result of a complex set of factors; active, forcing factors (wind
strength, direction and duration), and passive factors (depth
profile, topography of the sea bottom, coastline configuration,
etc). In fluid dynamics, wind-generated waves are surface
waves that occur on the free surface of the water bodies.

Since the wave regime in a certain sea area can have
remarkable spatial and temporal variability, in-situ wave height
measurements with results made available to the mariners in
real time are needed for the purposes of navigational decision
support. Wave measurement with dedicated equipment is still
costly while emerging satellite based solutions are not well
suited for on-line provision of localized wave height
information. At the same time, numerous navigational buoys
are floating around in almost all navigable waters, waiting to be
tasked with wave height measurement.

Main limitation at developing of technological solutions for
enabling the navigational buoys with wave height measurement
functionality is the restricted power availability: to avoid
interfering with the primary mission of the buoys, any added
equipment must draw insignificant amount of power in
comparison with on-board AtoN light signaling, measurement
and radio systems. Other issues involve platform specific
calibration, data quality control and broadcasting methods.

II. SYSTEM OVERVIEW

The key to cost efficiency of a wave measurement network
based on navigational buoys lays in the fact that it utilizes the
telematics equipment and GSM/GPRS cellular data links
already present on the buoys for the purposes of aid to
navigation (AtoN) remote control and monitoring. Targeted
buoys are equipped with telematics modules with integrated
three-axial accelerometers which are used as sensors for wave
height measurements. In our case, the module had
computational capabilities sufficient for acceleration based
calculation of buoy heel angle. Designed for lowest achievable
power consumption and certain AtoN specific communications
tasks, the telematics module cannot offer sufficient data
processing capability to perform complex computations of
wave heights in-situ. Instead, it will periodically transmit buoy
acceleration data to a shore side wave height calculation server
which can broadcast the results to the mariners using the shore
side Universal Automated Identification System (AIS)
network. This research is ongoing, therefore it is too early to
say whether a computationally more efficient wave height
measurement algorithm could be developed for utilization
directly on-board a navigational buoy using the current
embedded hardware.

III. WAVE HEIGHT MEASUREMENT METHOD

Wave measurement by the means of acceleration sensors is
not brand new: the method was introduced in 1950-s and
commercial products are available, e.g. Datawell Waverider. In
our case the navigational buoys serve as measurement
platforms – typical steel spar buoys with the weight of roughly
5 tons (Fig 1). These buoys are deployed for around the year
operation, capable to withstand ice conditions. Chain moorings
are used as standard, increasing overall buoy weight by 0.5 to
1.5 tons, and also keeping the buoys from riding the waves
freely. Since the primary task of these buoys is to serve as a
source of a navigation light signal, they are designed in a way
allowing only limited wave following. Due to buoy hull design
specifics and the mooring, each buoy has its own individual up
and down movement period that does not depend significantly
on the weather or wave motions: Figures 2 and 3 compare
acceleration measurement results in calm and stormy weather
that demonstrate matching wave periods. Figure 3 shows
noticeable differences between two acceleration spectrum
magnitude peaks, but the period of the higher peak remains
almost the same with waves which are higher than 1.2 meters.

Therefore we can conclude that the navigational buoy platform
used is not dynamic enough for successful utilization of
common or straightforward wave height estimation algorithms
(e.g. FFT based methods [1]).

To obtain wave height values, we have analyzed buoy
acceleration data and found a good correlation between values
of acceleration and wave heights measured nearby by reference
sensor for this particular type of navigation buoy. During the
pilot study we also noticed that behavior of different navigation
buoys differ from place to place and that’s not only because of
differences in buoy shape and weight mentioned above, but
also due to local peculiarities of wave field defined by bottom
topography and local wind condition – which makes of course
our task even more complicated. Method of calculation of the
wave parameters based on the movements of a navigational
buoy introduced here is based on finding the maximum
acceleration values during certain time periods and correcting
these with expected wave period value (buoy up-down
movement period). Currently, the method provides significant
wave height as output and we have compared obtained data
with reference wave measurements.

The main problem for this method of wave height
estimation lies in the filtering of the wave-induced buoy
motions and leaving the buoy’s own motion aside. To solve
this problem and estimate wave heights from motions of
navigational buoys, we have developed an empirical method
described below.

In case of ideal waves and measuring equipment, most
developed waves can be considered quite sine like with same
maximum (crest) and minimum (through) values of
acceleration. To find the amplitude of acceleration aw in such
simplest case, we only need to find the maximum and
minimum values from the acceleration signal and subtract them
from each other:

aw=max A−min A (1)

In the Equation 1, is parameter A an array of acceleration
values. In this simple case we can also obtain maximum and
minimum values just collecting highest and lowest signal
values over a period of time in interest, which is a relatively
simple operation for accomplishing in software.

With a constantly changing signal, finding of maximum
and minimum values becomes a much more complex task. The
main challenge is to minimize the weight of the values which
are close to the maximum and minimum values. One possible
solution in such case is to sort all accelerations in decreasing
order and to construct an array of differences between
maximum and minimum values (using the same method as in
Equation 1) and averaging the highest N values.

aw=
1
N
∑
i=1

N

 Ai (2)

where ΔAi is array of decreasing differences between the
maximum and minimum of acceleration data. The parameter N
is found by trial and error, but when setting the parameter N
correctly, one can obtain a rather precise result by such
calculation. For example, in our collected data set we may have
every 30th wave height as a real significant wave height, every
wave is approximately 20 samples long and the acceleration
signal from a real significant wave is two times higher than the
acceleration signal caused by the normal buoy up and down
movement. With a signal 30 wave periods long, we shall set N
to 3, resulting in acceleration value which is 96.7% of real
significant wave height acceleration value. This calculation

Figure 1: Steel spar buoy

Figure 2: Acceleration signal packages recorded in stormy (02/sept/2010) and
calm weather (01/sept/2010)

Figure 3: Acceleration spectrums calculated from data of stormy
(02/sept/2010) and calm weather (01/sept/2010)

method has proven to provide statistically relevant results with
acceleration signals where the dominating frequency is not the
actual wave frequency but certain occasional jumps may carry
the correct wave height information.

In order to calculate the significant wave height, we need to
convert the acceleration values to wave height values. For the
simplicity we can assume that the analysed waveform is a good
approximation of a sinusoidal wave. This allows to calculate
the amplitude of the waveform using the double differentiation
of sinusoidal acceleration function, resulting in the following
formula:

D=
aw

22 f 2

(3)

where aw is the amplitude of the acceleration, f is the frequency
of oscillation and D is the actual displacement.

To increase the accuracy of measurements, we also need to
consider the buoy up and down movement frequency to correct
the calculation results. The fact that most navigational buoys
are located in the area with vessel traffic may cause significant
short term measurement errors due to the wakes of ships hitting
the buoys; this is particularly noticeable in calm weather. In
case of long term calculations, the wake waves do not change
the buoy up and down movement period to such extent which
would degrade the precision of wave measurement
significantly. To take the buoy movement frequency into
account, we need to perform FFT analysis of the acceleration
data set and to insert the main up-down movement frequency
into Equation 3.

Before the calculated wave heights are saved or forwarded
to other software, each wave height measurement result is
corrected using a look-up-table; if necessary, the wave heights
will be further interpolated with cubic spline to 10-minute
interval data segments and calculated a 2-hour running average
wave height after the initial correction. The need for correction
of the acceleration measurement results is due to the fact that
the constant N in Equation 2 is based on average wave heights,
but with this equation it may not result in correct wave heights
when the waves are higher or lower than average. This
correction could remove or at least reduce the caused effect by
using double-pass wave height calculation, where in first pass
the wave heights are calculated and a new N value is found,
while in the second pass the correct wave heights are calculated
using the new N value obtained in the first pass. The wave
height compensation is carried out by using a look-up-table,
where values are taken from reference measurements for a
specific navigational buoy. The main drawback of this wave
height measurement method is the need for reference
measurement for every buoy type used.

Interpolation of wave heights to 10 minute periods is
needed for two reasons: firstly, the acceleration data
transmission is accomplished using GSM/GPRS radio network
which may have quite many connection breaks during one
measuring session in stormy weather. Secondly, the
acceleration measurement is not a priority task for the onboard
electronic system of a navigational buoy and therefore it may
become interrupted any time, thus the measuring sessions may
be of unequal duration. In both cases the data transmission
periods are of unpredictable length and therefore we could not
calculate any average wave height without using interpolation.

IV. TESTS

In order to develop the wave analysis algorithm and
validate the obtained wave data, the Estonian Maritime
Administration, Cybernetica AS and the Marine Systems
Institute at Tallinn University of Technology have performed
trials since late 2008 to establish feasibility of such wave height
measurement network based on navigational buoys. Even if
navigation buoys are not ideal wave following platforms, it is
still possible to calculate a rather close approximation of the
actual wave height based on their acceleration. Tests and
validation of the wave height estimation method were
performed in five reference measurement sessions in three
different locations, each lasting at least two weeks. In all cases
the reference sensor was deployed at a distance less than 3
nautical miles from the buoys under testing (Fig. 4). Pressure
based wave gauge was used for reference measurements
performed by the Marine Systems Institute at Tallinn
University of Technology.

Two wave recorders were used during experiments, the
working principle of which is based on measurement of
pressure at fixed position of the probe with absolute pressure
sensor (Keller Ltd.). Anchored instruments were deployed 5 to
8m below sea surface and the measured pressure is converted
into height of water column with 4Hz sampling rate, while
water temperature variations are automatically compensated by

Figure 4: Location of navigational buoys hosting the acceleration sensors used
in the wave parameter measurement experiment, and pressure based wave

measurement equipment used for reference measurements shown with
triangles.

sensor electronics. All data as raw pressure values are recorded
on internal memory (an SD type card). Wave parameters are
calculated from raw pressures after return of the recorder to
shore and readout of the data from the instrument. This
instrument has proved itself well in the past, most important
raw data for wave calculation is available and if needed,
several different methods of wave calculation could be used. In
our case here the hydrostatic pressure is measured and
following conversation procedure is applied to get wave
parameters out of raw data series [2]. Sub-surface pressure
transducers measure the instantaneous pressure that is the sum
of air pressure, hydrostatic pressure and wave-induced dynamic
pressure. If air pressure and hydrostatic pressure are assumed to
remain constant at least during the wave period, the dynamic
pressure under water is expressed with equations derived from
the linear wave theory [3].

That pressure is a function of three parameters: the height
of the pressure sensor from the seabed, wave frequency, and
water depth. At an intermediate water depth, the pressure
decreases hyperbolically with depth, therefore a sub-surface
attenuation coefficient has to be applied in order to get a
realistic picture of wave height.

First the pressure time-series (units of pressure) are
converted to a subsurface elevation time series (units of height
). Then the time series is divided into five-minute sections
called wave packets. Additionally, the packets are de-averaged
and de-trended. The mean value is used in order to calculate
gauge depth, which is needed for the calculation of the
attenuation coefficient. Further on, the power spectral density is
estimated by using the Welch method, and a Hanning window
is applied to smoothen the spectrum. The obtained subsurface
elevation spectra Ssη are converted to surface elevation spectra
(Sη) using the linear wave theory:

Sη=Ssη cosh kd
cosh k dz

2

 (4)

with k denoting the wave-number calculated from the linear
dispersion equation, d water depth, and z elevation of the
pressure gauge relative to the mean water surface (negative
downwards).

From the surface elevation spectrum, two important
characteristics are derived: significant wave height and the
period corresponding to the first moment of the spectrum.
Significant wave height is defined as follows:

H s=4∫ Sη f df (5)

The period corresponding to the first moment reads:

T 01=
∫ S η f df

∫ fS η f df
 (6)

Time series of measured wave parameters were conditioned
same way for each of the measurement locations and periods,
stored in ASCII files and used for further analysis and
comparison with wave parameters from navigational buoys.

Results of the comparison of two datasets are good.
Measurement periods captured different wind conditions and
wave field realizations. Two datasets fit with each other very

well for waves below 2m, 95% of the resulting wave heights
differed from the reference wave heights by less than 41cm. In
case of wave heights of over 2m, the maximum difference was
86 cm (Table 1 and figures 5-8), although the number of such
larger wave heights was probably not sufficient for drawing a
proper statistical conclusion. Therefore, future development of
the wave calculation algorithm would be focused on storm
situations with larger wave heights that are more important for
navigation. Wave field variability parameters could be
estimated using wave modeling methods, e.g. SWAN that gives
general background for wave parameters, providing specific
benefits on coastal sea where morphometry of the coastline is
as complicated as the wave field itself.

TABLE 1: DIFFERENCES BETWEEN WAVE HEIGHT PRESSURE BASED REFERENCE
MEASUREMENT AND CALCULATED RESULTS

Percentage of
calculation results

within the maximum
difference

Maximum difference in calculated significant
wave height [m]

Range: 0.0 m to 2.0 m
(21794 reference points)

Range: 2.25 m to 5.0 m
(401 reference points)

68.27% 0.29 0.63

90.00% 0.37 0.78

95.00% 0.41 0.86

95.45% 0.41 0.87

99.73% 0.53 1.10

Figure 5: Results of first test period on buoy NM157 (Sept. 2010)

Figure 6: Results of first test period on buoy NM186 (Sept. 2010)

Certain errors can be at least partly attributed to the different
measurement and reporting intervals and sometimes short data
acquisition periods, with both due to the fact that the primary
task of a navigational buoy is AtoN signaling. Nevertheless,
both errors have almost negligible impact on measured wave
heights. Another issue is natural variability on wave field
which play role if there is distance between navigational buoy
and reference measurement site and always it is. Wave
parameters vary both in global scale in the Baltic Sea [4] as
well local scale [5]. In both cases seasonal variability has
important role, which we took into account planning
comparisons in at least two seasons. Main driving force for
waves is wind and for future developments we can take into
account the fact of anisotropy of wind field over the Baltic Sea
[6] (defines the well more probable wind situations, also most
extremes, and accordingly the realization of the wave field in
certain sea area). Utilizing this fact improves planning of which
navigational buoys to use for wave measurements to get better
situational awareness of navigation conditions on sea routes.

Once the information from a large number of calibrated
wave height sensors is available to the shore side server
application that maintains sea state awareness over the whole
monitored area, utilization of it for provision of an e-
Navigation service to aid the mariner becomes feasible and the
system currently in trial state is brought to full operational
capability.

V. CONCLUSIONS

A method is developed to use navigational buoys equipped
with acceleration sensors for estimation of wave parameters.
The method is implemented and validated with independent
measurements with pressure sensors. Low to medium wave
heights are quite well captured by heavy navigation buoys. Two
algorithm verification tests were carried out at two different
navigational buoy deployment sites, with both tests two weeks
long. The differences between the measured and reference wave
heights were typically in few tens of centimeters for waves
below 2 meters. Problems with higher wave heights are caused
both by instrumental reasons, failure of data transmission during
stormy weather, and by natural variability in wave field in sea
areas with complicated bottom topography what is typically the
case nearby the navigational buoys. The main advantage of the
developed method is that parameters of the wave field could be
measured in situ in open sea conditions –there are very few
operational wave data sources in the Baltic Sea and the current
development is a step forward. The experiments showed that
reference wave height measurements in different forcing
conditions are needed for obtaining buoy specific wave height
calibration coefficients. Once such calibration effort is done,
wave data from extensive sea area is operationally available to
support navigation on sea routes.

REFERENCES

[1] National Data Buoy Center, Nondirectional and Directional Wave
 Data Analysis Procedures, NDBC Technical Document 96-01, Stennis
 Space Center [Available on-line at:
http://www.ndbc.noaa.gov/wavemeas.pdf]

[2] Alari, Victor; Raudsepp, Urmas. (2010). Depth induced breaking of
wind generated surface gravity waves in Estonian coastal waters. Boreal
Environment Research, 15, 295 – 300.

[3] C.H. Tsai, M.C. Huang, F.J. Young, Y.C. Lin and H.W. Li. On the
recovery of surface wave by pressure transfer function. Ocean Eng., vol.
32, pp. 1247-1259, 2005.

[4] Jönsson, A., Broman, B., Rahm, L. 2002. Variations in the Baltic Sea
wave fields. Ocean Engineering, 30, 107-126.

[5] Räämet, A., Soomere, T. 2010. The wave climate and its seasonal
variability in the northeastern Baltic Sea. Estonian Journal of Earth
Sciences, 59(1), 100 – 113.

[6] Soomere, T. 2003. Anisotropy of wind and wave regimes in the Baltic
Proper. J. Sea Res. 49, 305-316.

Figure 8: Results of second test period on buoy NM186 (Oct.-Nov. 2010)

Figure 7: Results of second test period on buoy NM157 (Oct.-Nov 2010)

APPENDIX 4

E. Moorits, G. Jervan, "Profiling in Deeply Embedded Systems", Proceedings
of the 13th Biennial Baltic Electronic Conference: 2012 13th Biennial Baltic
Electronics Conference (BEC2012), 2012, pp. 127 – 130.

151

Profiling in Deeply Embedded Systems

E. Moorits1, G. Jervan2

1Department of Navigation Systems, Cybernetica AS, Tallinn, Estonia, E-mail: erkki.moorits@cyber.ee
2Department of Computer Engineering, Tallinn University of Technology, Tallinn, Estonia, E-mail:

gert.jervan@pld.ttu.ee

ABSTRACT: During the software development stage, every
developer observes the program behaviour by using
assertions, traces or other debugging methods, but most
program bottlenecks and some bugs may surface only
during program profiling. Software profiling in desktop
systems is a relatively simple task, but unlike in desktop
systems, profiling of deeply embedded systems is quite
complicated task. In this paper we present a profiling
approach for deeply embedded systems which uses GNU
toolchain – GCC C compiler for code instrumentation and
GProf tool for analysing output data. While we use code
instrumentation and transmit profiling data immediately
without any buffering, we lose only small amount of
program performance.

1 Introduction
Software profiling plays a crucial role in the software
development cycle. It can reveal many bottlenecks and in
some circumstances even a few bugs in a program. In
desktop or server applications profiling is relatively
simple task, but in embedded or deeply embedded
systems, which may be 8 bit systems with very limited
amount of RAM, lack of writeable storage media and
sometimes no kernel at all, profiling may be quite a
challenging task.

The main driving force for this research was lack of
profiling tools, capable to profile deeply embedded
systems. Most integrated development environments –
(IDE's – e.g. AVR Studio, Code Composer Studio) have
simulators but none of them were capable to collect
accurately profiling data. Although some CPU-level
simulators [1],[2] are capable to collect profiling data,
none of those simulators can handle programs which have
lot of interaction with the real environment. Therefore, the
only feasible way to profile deeply embedded systems is
to use compiler assisted profiling methods where profiling
is switched on during the program compilation stage and
only for interested source files.

In this paper we describe a method for profiling
deeply embedded systems. The rest of this paper is
organized as follows: Section 2 provides a brief overview
of different profiling methods; Section 3 describes the
proposed profiling method; Section 4 outlines results of
the experiments and performed tests; the concluding
remarks are given in Section 5.

2 Profiling Methods
Four different profiling methods exist – manual
instrumentation, hardware or kernel assisted methods,
automated methods, and simulation based methods.
Manual instrumentation is the simplest instrumentation
method, which can also give quite good overview about
the program behaviour in some sections, but this method
is too labour-intensive method, thus it is not usable in our
work. Although, one variation of manual instrumentation
is used in real time kernels, where instrumentation
counters are hard-coded into device drivers, and those
counters are accessible through special functions.

CPU-level Simulation
Profiling by using CPU-level simulation is carried out by
using special simulator which can record hardware states,
events or subroutine calls. Data collected during the
simulation can be analyzed typically after simulation [1]-
[3], but it should be possible to monitor the program
status during simulation. This method is good for
analyzing systems which have limited range of input data
or very limited interaction with the environment. But it is
quite useless in larger systems where it is needed to
describe all input states over long period of time. Such
system may have so many input states that we can not
describe all input combinations and therefore we can not
simulate such system. In addition, it is possible, but quite
rare, that we need to simulate such situations where some
hardware failures or some other hardware related issues,
like faulty contacts, fast temperature rise or supply
voltage change, etc. might occur. In such special cases we
can modify simulator so that it gives output like we want,
but this modification is usually too time consuming. In
our case we do not expect that we have all input data and
want to profile program on the final hardware with all
other components in extreme environment conditions, like
maximum and minimum operational temperature.

Sampling
Another profiling method is based on periodical program
counter sampling [4],[5]. This method is most commonly
used in larger systems, like desktop or server systems but
sometimes also in embedded systems. Sampling mode
profiling has two main advantages – it does not need
compiler support and it usually has negligible impact to a
program execution. However, this profiling method has

some drawbacks as well. First, as data is collected in
regular intervals it may not be so accurate as other
profiling methods. Usually this is not a big issue because
programs or routines which are monitored several times
are statistically correct. Secondly, this method needs
typically special kernel driver which is responsible for
program counter sampling or kernel which supports
program counter sampling for other programs. Therefore
in deeply embedded systems it is not possible to use such
method because at hardware level this method is too
resource consuming – it needs one spare timer and also
quite a lot of RAM space. In addition, it may be too
complicated to implement because of lack of supporting
kernel and/or hardware. Thus, this method is a good
choice in larger systems, mostly in Linux based systems,
but not for deeply embedded systems.

Instrumentation
Profiling by code instrumentation is the most accurate
method and easiest to implement but it has usually quite a
big impact to program execution speed – it may cause
longer delays in quite unexpected places.

Several different instrumentation-based profiling
methods exist: 1) automatic source level instrumentation
(e.g. [6]) 2) compiler assisted (e.g. GCC [7]), 3) binary
translated, 4) runtime instrumentation (e.g. Pin [8] and
Valgrind [9]) and runtime injection (e.g. Paradyn/Dyninst
[10]). As deeply embedded systems do not have such
computation or hardware resources to modify program
code – then we can not use binary translated, runtime
instrumentation and runtime injection methods.
Therefore, we have only two possible profiling methods –
automatic source level instrumentation and compiler
assisted. Both methods have eventually the same result,
but GCC (GNU Compiler Collection) has a support for
compiler assisted instrumentation and we need to rewrite
only some small part of GCC which is much easier than
to implement full automatic source level instrumentation.
Therefore we have chosen compiler assisted
instrumentation.

In compiler assisted instrumentation compiler adds
profiling function calls to every subroutine call and,
depending on the profiling method, to every subroutine
return. Profiling functions usually increase call counters
by one or in some rare cases can perform some other task,
i.e. to send entry or exit event to a capturing host. And
collected profiling data is usually stored to “gmon.out”
file by mcleanup function as the program exits. Mcleanup
function also disables all further profiling and adds file
headers to the output file. While this method is relatively
easy to implement, it has highest impact from all profiling
methods to program execution speed and also consumes
quite a lot of processor and memory resources. Therefore,
we can not assume that the processor has the same
resources when profiling is enabled – we lose some
performance during profiling as we get back some
profiling information. As long as the impact of profiling

data collection to the system functionality is acceptable,
we can use it in our development.

For profiling deeply embedded systems we can
transmit all subroutine entry and exit calls immediately to
the capturing PC instead of storing profiling data into a
RAM. This kind of modification of a typical profiling
method makes it possible to profile deeply embedded
systems without a simulator. But it may not work in
systems which have very critical timing sequences or no
suitable communication interface.

3 Implementation
The basic principle of our profiling method is to send all
instrumentation data out to a capturing system, which
have significant amount of memory and processing power
i.e. to a desktop PC. This capturing system collects and
analyzes the data. For profiling in deeply embedded
software we need to generate instrumented firmware,
which also have profiling data transmission functions,
load this new firmware into targeted microcontroller and
start programs which are responsible of collecting
profiling data in capturing side. After specified time or
functions entry/exit calls, capturing program translates
collected information to gmon statistics format which can
be later analyzed with GProf.

In our current work we have tested this method with a
GCC C compiler, linker from GNU binutils package and
AVR microcontrollers, ATtiny2313, ATmega64 and
ATmega1280 [11]. All targeted microcontrollers have 16-
bit program counters, but the developed method is
suitable for an arbitrary microcontroller regardless of the
program counter width.

Compiling, Linking and Instrumentation
In order to produce instrumented firmware we can use
two different methods to add instrumentation code into
the final program.

The first method is based on compiler mcount function
(_mcount or __mcount, depending on the OS and
compiler) which can be switched on during the
compilation phase with the -pg command line option. On
most architectures GCC have working instrumentation
functions, but for deeply embedded systems (e.g. 8 bit
AVR family microcontrollers) GCC usually does not have
working instrumentation functions. The main reason for
absence of the working instrumentation functions is the
lack of writable storage media on microcontroller. To add
profiling capability to GCC we need to modify GCC in
some extent. Most important is to add the right references
to mcount function – a function which is responsible for
capturing profiling data from the microcontroller side, and
we also need to provide our mcount function. While
calling any function the processor stores call site
information to a stack, thus we can read this call site
information directly from the stack and transfer it to a
capturing PC. In order to place instrumentation function
(mcount function) calls before the real function is called,

i.e. calls are placed before function prologue, we need to
define PROFILE_BEFORE_PROLOGUE macro in GCC
source (in config/avr/avr.h). This defined macro allows us
to read both call site addresses from stack – function
which calls the mcount function and the function before
that. Also, we have modified FUNCTION_PROFILER
macro in GCC source (in config/avr/avr.h) to add call or
rcall (relative call to subroutine) instruction for calling
mcount function. In addition, AVR GCC is shipped with
such mcount function that has empty body and returns
immediately after its calling, so we need to add our
mcount function which transfers data out to a capturing
host. To add our own mcount function we have to change
the called mcount function reference to a weak reference
– if we do not provide any mcount function then linker
adds automatically an empty mcount which is shipped
with GCC.

Second profiling method is to use
__cyg_profile_func_enter and
__cyg_profile_func_exit functions. Both functions
execute pre-defined routines when function is called or
when it returns. But __cyg_profile_func_enter and
__cyg_profile_func_exit functions behave a little
bit differently from mcount function. When mcount
functions are added after optimization then
__cyg_profile_func_enter and
__cyg_profile_func_exit are added before
optimization. Therefore, both cyg_profile functions are
added to all static inline functions. Usually many libraries
have defined many static inline functions, therefore it is
quite difficult to use above two functions as compiler
have inserted those into the final code, and the profiling
functions take too many resources. To overcome this it is
possible to redefine function headers by adding an
attribute which do not allow compiler to add cyg_profile
function to inline function. Unfortunately, this approach is
quite error borne and also may not work in all compilers
in the same way. In addition to the above, when program
calls __cyg_profile_func_enter function then AVR
GCC usually does not return correct call site address.
Instead it will return some faulty data from the stack, and
therefore it is possible to use the function's own address,
but not the call site data.

Currently we have implemented in assembly-language
our own mcount function which is 84 instructions long
and does not use any additional memory to save profiling
data. Therefore, no additional RAM is taken by this
method, but it needs some additional program memory
(Stotal):

S total=Scall nfunctions+ Sprofiling function (1)

where Scall is the size of a call instruction in bytes, (for
AVR microcontroller 2 bytes), nfunctions is the number of
called functions and Sprofiling function is the size of the
profiling function, in current system it is 168 bytes (84
instructions). For example, systems where ten functions
are instrumented it is needed only 188 bytes more
program memory storage.

Data Transmission
The easiest and the most cost effective method to transfer
profiling data to a capturing PC is to use serial interface.
In our system where microcontroller with a 16-bit
program counter is used, we need to transfer in every
function call at least four bytes of data – two bytes for call
site address and two bytes for called function address.
The same also applies for cases when returned from
calling function. While synchronizing the target and host
systems we need to add some negotiation packets or to
use special input data format. Negotiation packets are
suitable in such cases where systems do not lose
synchronization during data transmission. In our case we
expect that the host PC and microcontroller stays in
synchronization for all the time and therefore we have
included one byte constant synchronization header to
every profiling packet. Therefore, for every function call
we need to transfer five bytes of data – one byte for
header, two bytes for call site and two bytes for caller –
and the number of function entry and exit calls per one
second (Nfn) would be:

N fn=
BR

2 N b
 (2)

where Nb is the number of bits for one function exit or
entry call and BR is the data link baud rate. For example,
when we use standard serial interface with speed
115200 b/s, 5 bytes of data, and 2 stop bits then we can
have 1152 function calls per second. Also, with special
hardware it is possible to use 9 bit (standard PC does not
support 9 bit serial data) transmission which eliminates
the need for the packet header – we can use ninth bit for a
header. In such case, with one stop bit, we can have 1440
function calls per second. Calling mcount function gives
also a small overhead – for 84 cycle long function with
call, return and with five internal branches it takes at least
88 CPU cycles. Compared with serial throughput it does
not add any significant impact to the overall speed. To
increase data throughput it is also possible to use JTAG,
but in our current work we have not considered this
because on current architecture passing data through
JTAG is technically quite complicated and all targeted
microcontrollers does not support JTAG.

Data collection and Output
At the capturing PC side all function calls are counted and
saved to “gmon.out” statistics file. In our case, where
controller has 16-bit program counter, we can store all
function call counts into big array which is saved to gmon
file after a certain number of collected entry/exit calls or
after certain amount of time. Capturing program also
examines the call address of the called subroutine, the
return address to the calling subroutine and compares
them with addresses which are decoded from the ELF
(Executable and Linkable Format) file. If capturing
program finds any discrepancy between calling subroutine
or called subroutine with decoded program then all
captured data are saved and capturing program exits. In

our current work our capturing program counts only
function calls and does not hold function call graph. For
statistics output we used BSD profiling file format, which
is easiest to implement but does hold only very basic
profiling data. Generated statistics file, which holds
profiling information, can be analyzed with most profiling
tools that can read BSD profiling format. In our case we
used GProf.

4 Test Results
We have carried out three different profiling tests. In the
first test we used ATtiny2313 microcontroller with
4 MHz CPU clock. The test program was simple super-
loop program which toggles microcontroller output pin in
one second period. We also did not use any interrupts for
precise timing. In this test, profiling code increased
program by 184 bytes, which is nearly 9% from all
program memory. This test was carried out with two
different baud rates – 38400 b/s and 115200 b/s. To
compare with non instrumented code all cycles were
delayed by 8 ms at the first baud rate, but at the second
baud rate we did not detect any significant delay in
program execution. This test shows quite well the
limitations of this method – it is quite difficult to
instrument simple super-loop real-time programs without
introducing extra delays. Therefore, the current method
quite likely violates real-time constraints in real-time
super-loop programs.

Second test was simple super-loop program which
writes its current up-time to one serial port. In this test we
used ATmega64 microcontroller with 8 MHz CPU clock.
After instrumenting the program, its size was increased by
222 bytes, which is less than 1% of total program
memory. Compared with non instrumented program, all
uptime writing to serial port were delayed only by 40 ms
with baud rate of 38400 b/s. This delay corresponds to 14
calls of mcount function.

The third test was carried out in with ATmega1280
microcontroller which, was clocked at 7.3728 MHz,
instrumentation interface baud rate was 115200 b/s and a
RTOS was used. In this test we instrumented some of the
test programs and RTOS functions, leaving out time-
critical functions and interrupt service routines (ISR's).
After instrumentation the whole program size increased
by 2 kB which is less than 2% of the total program
memory. Instrumented programs wrote its up-time to a
serial port and answered queries from RS-485 line. In
comparison with non instrumented program we did not
detect any significant delay during program execution.
The main reason why we did not see any significant delay
or other effects from the instrumentation is that we
instrumented only those parts of the program which
worked only on user request or were not time critical.
With interrupt driven programs we may expect to have
the same behavior as in tests with RTOS.

To summarize the performed tests – in most tests
profiling slowed the program execution only a little but

with lower transmission baudrate it may slow down the
whole program execution speed significantly. With RTOS
it is quite easy to separate the time critical and ISR
subroutines from the user programs, which makes the
whole profiling much easier than it is in super-loop
programs.

5 Conclusions
The objective of this work was to develop a profiling
method which is suitable for deeply embedded systems.
The developed method is capable of profiling programs in
systems which have as low as two bytes of free RAM and
at least 170 bytes of free program memory and one free
serial interface. Developed method uses compiler assisted
instrumentation and stores all collected data to a host
computer. The host computer analyses the collected data
and writes results to a file in BSD profiling file format.
The method was successfully tested with three different
AVR microcontrollers, where one test was with RTOS
and two tests with simple super-loop programs. Two tests
showed that this method has minor problems with super-
loop real-time programs, but with RTOS or interrupt
driven programs this method has negligible effect on
program execution.

References

[1] Avrora; http://compilers.cs.ucla.edu/avrora; 2012

[2] MSPSim; http://www.sics.se/project/mspsim; 2012

[3] Ben L. Titzer, Jens Palsberg; "Nonintrusive
precision instrumentation of microcontroller
software", LCTES 2005; pp. 59-68; June 2005

[4] Liu Fagui, Li Shengwen, Xie Ran, Luo Chunwei;
"A low-overhead method of embedded software
profiling", Computing, Communication, Control,
and Management, 2009. CCCM 2009. ISECS
International Colloquium on; vol. 4, pp. 436-439;
August 2009

[5] Oprofile; http://oprofile.sourceforge.net; 2012

[6] Quan Sun, Hui Tian; "A flexible automatic source-
level instrumentation framework for dynamic
program analysis"; Software Engineering and
Service Science (ICSESS), 2011 IEEE 2nd
International Conference; pp. 401-404; July 2011

[7] GCC, the GNU Compiler Collection;
http://gcc.gnu.org; 2012

[8] Pin; http://www.pintool.org; 2012

[9] Valgrind; http://valgrind.org; 2012

[10] Paradyn/Dyninst; http://www.dyninst.org; 2012

[11] Atmel AVR 8- and 32-bit Microcontrollers;
http://www.atmel.com/products/microcontrollers/av
r/default.aspx; 2012

APPENDIX 5

E. Moorits, A. Usk, "Buoy Collision Detection", Proceedings of the 54th
International Symposium Electronics in Marine ELMAR-2012, 2012, pp.
109 – 112.

157

Buoy Collision Detection
Erkki Moorits, Aivar Usk

Cybernetica AS, Akadeemia Tee 21, Tallinn, Estonia
erkki.moorits@cyber.ee

Abstract - This paper presents a method developed for collision
detection on navigational buoys by the use of onboard low power
embedded controllers equipped with solid state acceleration sensors,
focusing on the signal processing principles employed. Detection of a
collision of a vessel with a buoy is based on continuous monitoring
of the acceleration profile of the buoy in all three planes of
movement, accomplished using a 3-axial solid state accelerometer (g-
sensor) with the maximum range of ±3 g. The sensor is integrated
with a marine Aid to Navigation (AtoN) telematics module that is
subject to low power consumption requirements and size restrictions
resulting in limited computational capability. Initial operational
testing was performed on navigational buoys in actual marine
environment, including sea ice conditions. The results have validated
the usability of the method, although no ship-to-buoy collisions have
been encountered.

Keywords – real-time collision monitoring; ship-to-buoy collision;
navigational buoy

I. INTRODUCTION

Despite the widespread use of mature electronic
technologies for marine navigation, visual light navigation
stations remain an indispensable part of marine navigation
safety infrastructure for foreseeable future. Availability of the
light signalling service provided by the fleet of floating aids of
any responsible maritime authority depends in part on
awareness of collision events that may breach the integrity of
the floating platform and result in failure of the light signal.

Several crash detection methods have been developed
during last decades for control of automotive airbag
deployment; all of these utilize acceleration sensors and use
very fast and robust filtering methods on high acceleration
peaks. In case of ship-to-buoy collisions, absolute acceleration
levels are expected to remain rather low, therefore existing
methods that are developed for ground transport systems are
not suitable. We have not found any information on previous
published works in this particular field which may be due to
the facts that establishing a collision reporting system may
require a long time to earn the investment to the end user, and
most buoys are not equipped with sensors that are capable of
detecting the collision events. However, buoy collision events
are not encountered very often, mostly because of rather low
collision probability [1]. According to ship/platform collision
incident database [2], only a few accidents relate to buoys, but
most likely many collision events of smaller magnitude are
either not reported to relevant authorities, or remain completely
unnoticed while possibly causing latent failure of the platform
or equipment. Receiving an immediate notification about
collision events exceeding a pre-set criticality threshold is
necessary not only for timely re-establishment of the AtoN
signal when needed, but also for reduction of pollution risks
and identifying the particular vessel responsible for the

damages by correlating the collision event time stamp with
external vessel movement information sources (AIS or VTS
databases).

The most cost effective of contemporary methods for
detection of collision of a buoy with other floating objects is
achieved by application of an embedded microcontroller
equipped with a three-axial micromechanical accelerometer
sensor (a solid state g-sensor – a Micro-Electromechanical
System (MEMS)) that can measure acceleration levels on all
three axes simultaneously. While collision detection methods
based on acceleration measurement have been developed for
car crash detection systems, mainly for activating airbag
inflation, such methods are based on detection of high
acceleration levels occurring in a very short timeframe. In case
of floating AtoN collisions, the event profile is rather different,
displaying typical acceleration levels even below 5g with the
duration of up to several seconds.

This paper presents a collision detection method which is
suitable for implementation on navigational buoys. Previously
we have implemented a method for in-situ determination of
heel (inclination) angle of navigational buoys [3] based on
same embedded telematics hardware; the subject collision
detection method is a second component of the floating
platform status monitoring subsystem.

II. CURRENT SYSTEM OVERVIEW

While AtoN remote control and monitoring systems
(RCMS) of varying degrees of sophistication have been around
for decades, collision detection has not been widely used due
to complexity and cost - in an autonomous system that needs to
provide reliable operation from primary batteries for years,
spending of every mA of current must be well substantiated.
Our concept foresaw integration of a single new hardware
component (3-axial g-sensor) with the existing telematics
module (TM) used for remote monitoring of navigational
buoys, and accomplishment of collision detection as well as
heel angle calculation [3] and monitoring tasks using the
available ADC ports and spare computational capacity of the
existing embedded microcontroller. In a typical application, the
TM is installed inside a protective enclosure together with a
flasher module and an LED array, and mounted on a buoy
superstructure, typically 2 to 4.5 meters above the sea level.
Communication protocols of the TM that serves primarily as a
communications gateway between the remote site equipment
and the RCMS centre server were updated to accommodate
support for collision detection alarms.

A TM is performing continuous acceleration data
acquisition of three 10-bit acceleration measurement values
representing acceleration levels sampled from three axes of the
g-sensor. All samples are acquired with a 20 ms interval, with

sequential delays of 0.2 ms between readings acquired from x-,
y-, and z-axes that in practice can be considered simultaneous
sampling due to the slow progress of acceleration events. Since
acceleration data acquisition is not the primary task for the
TM, under certain circumstances the acceleration data may be
sampled at slightly uneven intervals due to coinciding higher
priority tasks of the processor. Due to the considerably long
typical acceleration signal duration of 5 to 20 seconds, such
occasional uneven sampling does not have any significant
detrimental impact on collision detection.

Fig. 1 shows relevant subsystems of a TM utilized for
acceleration measurement, collision detection and heel angle
calculation and status/alarm communication tasks, leaving out
all parts which are not involved in the process. The MCU used
is an 8-bit AVR microcontroller, performing analog-to-digital
conversion of g-sensor output data, collision detection, heel
angle calculations and initiating communications with the
monitoring centre when necessary. When a collision event of
significant magnitude is detected, the MCU initiates a
communications session with the RCMS centre server using
the communications interface (CI) to report a collision event.
In the current system implementation, the CI is a GSM/GPRS
modem. Collision event reporting, which includes collision
event detection, time-stamping and connection to the RCMS
typically takes 5 seconds, which is quite acceptable in most
cases. The acceleration sensor utilized is an ADXL330 by
Analog Devices [4] which is connected directly to the analog
input channels of the MCU.

III. COLLISION DETECTION

To detect collisions with a navigational buoy, we must
continuously monitor acceleration signals from all three axes.
Assuming that we use this method only with navigational
buoys, the sampling period can be set quite low but not below
20 ms. In a typical buoy installation we may assume that a
collision may appear from any direction and therefore we must
take into account signals from all three acceleration axes. To
detect a collision event in case of unlimited computational
resources available, one would calculate the acceleration
vector length, taking into account all acceleration values, and
base the decision on that vector length. In our case, the system
has rather limited amount of memory and computational
capability, therefore it is not practical to calculate the vector
length; instead, we can achieve almost same results by adding
up the acceleration values. Using only such summation, we
must take into account the fact that during collisions we get
much higher resulting acceleration than in case of using
acceleration vectors; this is usually the case when an impact
comes in between two or three axes. Due to the specifics of our

application, we can tolerate errors which are introduced by
higher acceleration values since we do not need very exact
values, but we need to know when maximum acceleration
value exceeds certain threshold level.

Therefore, we can sum up the axial components for total
acceleration:

A=A x+ A y+A z (1)

where Ax, Ay and Az are acceleration measurement values
read directly from the g-sensor.

In order to detect collision from total acceleration A, we
should filter out the static (DC) component from obtained
signal. To filter out the DC component, we can use the
following IIR filter:

y1n=a10⋅x1n+a11⋅x1n−1+b11⋅y1n−1 (2)

where a10 is IIR filter polynomial multiplier value 0.4844,
a11 is multiplier value -0.4844 (a10 = -a11), b11 is feedback
polynomial multiplier with value 0.9375, x1n is the last input
value, x1n-1 is the previous input value, y1n is the current output
value and y1n-1 the last output value. Multipliers a10, a11 and
b11 are found as follows:

a10=(1+ xt)/2 (3)

a11=−(1+xt)/2=−a10 (4)

b11=xt (5)

where xt is a frequency-dependent constant:

xt=e−2π f c (6)

where fc is the normalized filter cut-off frequency.

In case of the particular buoy platforms used in operational
testing of this method, we have chosen 0.5135 Hz for the DC
cut-off frequency; this allows to filter out most of the
acceleration related to wave action. Other buoy types may
require a different DC cut-off frequency. With this cut-off
frequency, the normalized cut-off frequency for the 20 ms
sampling period is 0.01027 fsampl

Values a10 and a11 that are found using formula 3 and 4
both have two times higher values than those values which are
inserted into formula 2. Mostly this dividing by two is needed
for preventing overflow of the next filter stage, while smaller
values are also easier to process in 8 bit microcontrollers than
original values.

A filter described by formula 2 with values a10 and a11

forms a differential stage that may provide a negative output
signal y10, but negative accelerations do not have any meaning
in this collision detection system. Therefore, we can square the
y10:

x2n=y1n
2 (7)

where x2n is an input value to the next stage. To eliminate
negative values from y1n, we can also use absolute value, but
taking a square also reduces smaller values which are mostly
noise or signal changes which do not carry any significant
information for collision detection.

Figure 1. TM Block Diagram

After DC level removal, we apply the second stage of
filtering which plays a major role in our collision detection
system. A collision detection filter should be rather fast, with
acceptable filter delay in our case of less than 1 second; this
filter must be quite robust as well to avoid false collision
reports. Therefore, we need to make this filter partly a pure

averaging filter and also a low-pass filter (LP filter). Such a
filter can be described using the following polynomial:

y2n=a20(x2n+x2n−1+x2n−2)+b21⋅y2n−1 (8)

where a20 is a polynomial multiplier value 0.2188, b21 is a
feedback value 0.7812, x2n is an input value, x2n-1 and x2n-2

previous input values, y2n an output value and y2n-2 the last
output value. a20 is also an input signal multiplier value. Both
constants a20 and b21 are found as follows (where g is the input
signal gain):

a20=(1−xt)⋅g (9)

b21=xt (10)

The value y2n holds enough noise free averaged
acceleration information to detect collision with an object. In
the last step we only compare series of y2n values to the pre-
configured collision threshold value; when y2n are successively
higher than the collision threshold value during a predefined
timeframe, we register a collision event.

A. Algorithm stability and transfer functions

The filters described above (formulae 2 and 8) are stable
when |b11| < 1 and |b21| < 1. When using formula 6 to calculate
the constants b11 and b21, the condition fc > 0 should be true.
To ensure that above mentioned condition is maintained, all
poles must be inside a unit circle (Fig. 2).

Note that the signal in Fig. 4 is three times higher than it
should be; this is caused by adding up the acceleration values
from all three axes. In our application where the second filter
is an integrator, it is not necessary for this filter to be very
precise.

B. Crash detection algorithm adaptation to a 8 bit MCU

To use the above described methods on an 8-bit embedded
microcontroller, we need to convert all constants to fixed point
or integer values. This introduces one additional division
operation in every filter. After introducing additional division
operation into formula 2 we arrive at the following equation:

y1n=
1

b10

(a10⋅x1n+a11⋅x1n−1+b11⋅y1n−1) (11)

where a10 is an IIR filter polynomial multiplier with value
62, a11 is a multiplier with value -62 (a10 = -a11), b10 is a
feedback polynomial multiplier with value 128, and b11 is a
feedback polynomial multiplier with value 120.

To find value x2n, we need to square y1n and scale it down:

x2n=
y1n

2

256
(12)

After changing the second filter (formula 8) to fixed point
values we get following formula:

y2n=
1

b20

(a20(x2n+x2n−1+x2n−2)+b21⋅y2n−1) (13)

where a20 is a polynomial multiplier value 56, b20 is the
feedback value 256 and b21 is the feedback value 200. Since
all results are stored in 8-bit variables, we need to check before

Figure 3: Transfer function of the first filter

Figure 4: Transfer function of the second filter

Figure 2: Poles and zeros of the first stage of crash detection filter

storing the result that the computations ended with a value with
a maximum of 255; higher values have to be coerced to 255.

C. Detected crash values

Since we use IIR filters, we cannot directly link certain
input values to output values. Table 1 and Fig. 5 presents
results of testing of our filter with one typical crash signal:

TABLE I. Y2N VALUE VS TOTAL ACCELERATION

Total acceleration [g] y2n
0.5 1
1.0 10
1.5 23
2.0 43
2.5 69
3.0 99
3.5 135
4.0 178
4.5 226
>4.7 255

IV. SIMULATIONS AND TESTS

We have carried out several simulations and tests to verify
our method, but (fortunately) none of over 100 buoys fitted
with this technology have registered any real collisions with a
vessel yet.

Fig. 6 presents a typical simulation. For simplification, all
three acceleration vectors are summed up, and the Earth’s
gravitational acceleration is subtracted. Resulting acceleration
signal is the signal that we expect to get when a collision of the
buoy with a ship is encountered. As is shown in Fig. 6, with
sufficient acceleration we can get our collision events quite
fast. In that simulation, first event may be recorded 50 ms after
the first acceleration peak and the second one 400 ms after the
first acceleration peak. We have also carried out several tests
where we mounted the TM to a heavy object and tried to hit
this object with another object, i.e. make an artificial collision,
and the results were comparable to the simulation in Fig. 6.

In last two years we have tested this method on actual
navigational buoys but have not registered any ship-to-buoy
collision events. Nevertheless, we have registered two
interesting events – first, when the ice moved over the buoy

and second, when the mooring was too short for the current
buoy’s deployment site, causing significant deceleration pulls
in wind gusts and wave action (Fig. 7).

V. CONCLUSIONS

The objective of the current work was to develop a low
resource demanding collision detection method that is feasible
for application on navigational buoys. The developed method
is suitable for low power marine AtoN based embedded
systems with an integrated 3-axis MEMS acceleration sensor.
This method is capable of collision detection in real time even
with rather low acceleration signals. The method was
successfully simulated and tested in our laboratory as well as
in expected operational environment; all simulation results
were in line with our expectations, although no real ship-to-
buoy collision events have been detected at seas by this time.

REFERENCES

[1] Margaret Loudon Flohberger, “Suggested Improvements For Ship-
Installation Collision Risk Models To Reflect Current Collision
Avoidance Systems”, University of Stavanger, Faculty of Science and
Technology, 2010, pp. 3-5

[2] Serco Assurance, “Ship/platform collision incident database (2001)”,
Research report 053, HSE Books, 2003, pp. 70-96

[3] E. Moorits, A. Usk, “A Numerically Efficient Method for Calculation of
the Angle of Heel of a Navigational Buoy”, 2010 Biennial Baltic
Electronics Conference (BEC2010), October 2010, pp. 357-360

[4] Analog Devices, Inc. “ADXL330: Small, Low Power, 3-Axis ±3g
iMEMS® Accelerometer”, 2007

Figure 6: Simulated collision

Figure 7: Collision reports from Estonian AtoN No. 861 due to short mooring
pull during a buildup of north winds that started approximately at noon of

2011-12-15 and sustained speeds in gusts in excess of 12 m/s to 19 m/s. Wind
speed dropped below 8 m/s and started to change the direction at 06:00

(UTC) the next day.

Figure 5: Output value vs acceleration

CURRICULUM VITAE

Personal data

Name: Erkki Moorits

Date and place of birth: 01 October 1981

Nationality: Estonian

Contact information

Address: Tildri 17-17, Tallinn, Estonia

Telephone: +3725215577

E-mail address: erkki.moorits@mail.ee, erkki.moorits@cyber.ee

Education

2006 – 2008 M.Sc. in Electronics engineering, TUT

2001 – 2005 B.Sc. in Electronics and biomedical engineering,
TUT

1997 – 2001 Telecommunication, Tallinna Polütehnikum

Career

2006 – present Cybernetica AS , Programmer

2001 – 2005 Artvali OÜ, Security Equipment Specialist

2000 Eesti Telefon (Connecto), Telecom Specialist

Defended theses

2008 Hardware Means for Provision of High
Availability Operation of a Server Component in a
Mission Critical Remote Monitoring System

163

2005 Remote Vibration Sensor With Integrated
Programmable LED Matrix Display

Main areas of scientific work/current research topics

Deeply embedded systems for AtoN devices

164

ELULOOKIRJELDUS

Isikuandmed

Ees- ja perekonnanimi: Erkki Moorits

Sünniaeg ja -koht: 01 oktoober 1981

Kodakondsus: Eesti

Kontaktandmed

Aadress: Tildri 17-17, Tallinn, Eesti

Telefon: +3725215577

E-posti aadress: erkki.moorits@mail.ee, erkki.moorits@cyber.ee

Hariduskäik

2006 – 2008 tehnikateaduste magister (elektroonika), Tallinna
Tehnikaülikool

2001 – 2005 tehnikateaduse bakalaureus (elektroonika ja
biomeditsiinitehnika), Tallinna Tehnikaülikool

1997 – 2001 telekommunikatsioon, Tallinna Polütehnikum

Teenistuskäik

2006 – veel töötan Cybernetica AS, Programmeerija

2001 – 2005 Artvali OÜ, Elektroonik/Turvaseadmete spetsialist

2000 Eesti Telefon (Connecto),
Telekommunikatsiooniseadmete spetsialist

Kaitstud lõputööd

2008 Missioonikriitilise kaugseiresüsteemi

165

serverkomponendi kõrgkäideldavuse tagamine
riistvaraliste vahenditega

2005 Integreeritud programmeeritava
valgusdioodmaatriksnäidikuga vibratsiooni
kaugandur

Teadustöö põhisuunad

Valgusnavigatsioonis kasutatavad sardsüsteemid

166

DISSERTATIONS DEFENDED AT
TALLINN UNIVERSITY OF TECHNOLOGY ON

INFORMATICS AND SYSTEM ENGINEERING

1. Lea Elmik. Informational Modelling of a Communication Office. 1992.

2. Kalle Tammemäe. Control Intensive Digital System Synthesis. 1997.

3. Eerik Lossmann. Complex Signal Classification Algorithms, Based on the
Third-Order Statistical Models. 1999.

4. Kaido Kikkas. Using the Internet in Rehabilitation of People with Mobility
Impairments – Case Studies and Views from Estonia. 1999.

5. Nazmun Nahar. Global Electronic Commerce Process: Business-to-Business.
1999.

6. Jevgeni Riipulk. Microwave Radiometry for Medical Applications. 2000.

7. Alar Kuusik. Compact Smart Home Systems: Design and Verification of Cost
Effective Hardware Solutions. 2001.

8. Jaan Raik. Hierarchical Test Generation for Digital Circuits Represented by
Decision Diagrams. 2001.

9. Andri Riid. Transparent Fuzzy Systems: Model and Control. 2002.

10. Marina Brik. Investigation and Development of Test Generation Methods for
Control Part of Digital Systems. 2002.

11. Raul Land. Synchronous Approximation and Processing of Sampled Data
Signals. 2002.

12. Ants Ronk. An Extended Block-Adaptive Fourier Analyser for Analysis and
Reproduction of Periodic Components of Band-Limited Discrete-Time Signals.
2002.

13. Toivo Paavle. System Level Modeling of the Phase Locked Loops: Behavioral
Analysis and Parameterization. 2003.

14. Irina Astrova. On Integration of Object-Oriented Applications with Relational
Databases. 2003.

15. Kuldar Taveter. A Multi-Perspective Methodology for Agent-Oriented
Business Modelling and Simulation. 2004.

16. Taivo Kangilaski. Eesti Energia käiduhaldussüsteem. 2004.

17. Artur Jutman. Selected Issues of Modeling, Verification and Testing of Digital
Systems. 2004.

18. Ander Tenno. Simulation and Estimation of Electro-Chemical Processes in
Maintenance-Free Batteries with Fixed Electrolyte. 2004.

167

19. Oleg Korolkov. Formation of Diffusion Welded Al Contacts to Semiconductor
Silicon. 2004.

20. Risto Vaarandi. Tools and Techniques for Event Log Analysis. 2005.

21. Marko Koort. Transmitter Power Control in Wireless Communication
Systems. 2005.

22. Raul Savimaa. Modelling Emergent Behaviour of Organizations. Time-Aware,
UML and Agent Based Approach. 2005.

23. Raido Kurel. Investigation of Electrical Characteristics of SiC Based
Complementary JBS Structures. 2005.

24. Rainer Taniloo. Ökonoomsete negatiivse diferentsiaaltakistusega astmete ja
elementide disainimine ja optimeerimine. 2005.

25. Pauli Lallo. Adaptive Secure Data Transmission Method for OSI Level I. 2005.

26. Deniss Kumlander. Some Practical Algorithms to Solve the Maximum Clique
Problem. 2005.

27. Tarmo Veskioja. Stable Marriage Problem and College Admission. 2005.

28. Elena Fomina. Low Power Finite State Machine Synthesis. 2005.

29. Eero Ivask. Digital Test in WEB-Based Environment 2006.

30. Виктор Войтович. Разработка технологий выращивания из жидкой фазы
эпитаксиальных структур арсенида галлия с высоковольтным p-n переходом и
изготовления диодов на их основе. 2006.

31. Tanel Alumäe. Methods for Estonian Large Vocabulary Speech Recognition.
2006.

32. Erki Eessaar. Relational and Object-Relational Database Management Systems
as Platforms for Managing Softwareengineering Artefacts. 2006.

33. Rauno Gordon. Modelling of Cardiac Dynamics and Intracardiac Bio-
impedance. 2007.

34. Madis Listak. A Task-Oriented Design of a Biologically Inspired Underwater
Robot. 2007.

35. Elmet Orasson. Hybrid Built-in Self-Test. Methods and Tools for Analysis and
Optimization of BIST. 2007.

36. Eduard Petlenkov. Neural Networks Based Identification and Control of
Nonlinear Systems: ANARX Model Based Approach. 2007.

37. Toomas Kirt. Concept Formation in Exploratory Data Analysis: Case Studies
of Linguistic and Banking Data. 2007.

38. Juhan-Peep Ernits. Two State Space Reduction Techniques for Explicit State
Model Checking. 2007.

168

39. Innar Liiv. Pattern Discovery Using Seriation and Matrix Reordering:
A Unified View, Extensions and an Application to Inventory Management. 2008.

40. Andrei Pokatilov. Development of National Standard for Voltage Unit Based
on Solid-State References. 2008.

41. Karin Lindroos. Mapping Social Structures by Formal Non-Linear Information
Processing Methods: Case Studies of Estonian Islands Environments. 2008.

42. Maksim Jenihhin. Simulation-Based Hardware Verification with High-Level
Decision Diagrams. 2008.

43. Ando Saabas. Logics for Low-Level Code and Proof-Preserving Program
Transformations. 2008.

44. Ilja Tšahhirov. Security Protocols Analysis in the Computational Model –
Dependency Flow Graphs-Based Approach. 2008.

45. Toomas Ruuben. Wideband Digital Beamforming in Sonar Systems. 2009.

46. Sergei Devadze. Fault Simulation of Digital Systems. 2009.

47. Andrei Krivošei. Model Based Method for Adaptive Decomposition of the
Thoracic Bio-Impedance Variations into Cardiac and Respiratory Components.
2009.

48. Vineeth Govind. DfT-Based External Test and Diagnosis of Mesh-like
Networks on Chips. 2009.

49. Andres Kull. Model-Based Testing of Reactive Systems. 2009.

50. Ants Torim. Formal Concepts in the Theory of Monotone Systems. 2009.

51. Erika Matsak. Discovering Logical Constructs from Estonian Children
Language. 2009.

52. Paul Annus. Multichannel Bioimpedance Spectroscopy: Instrumentation
Methods and Design Principles. 2009.

53. Maris Tõnso. Computer Algebra Tools for Modelling, Analysis and Synthesis
for Nonlinear Control Systems. 2010.

54. Aivo Jürgenson. Efficient Semantics of Parallel and Serial Models of Attack
Trees. 2010.

55. Erkki Joasoon. The Tactile Feedback Device for Multi-Touch User Interfaces.
2010.

56. Jürgo-Sören Preden. Enhancing Situation – Awareness Cognition and
Reasoning of Ad-Hoc Network Agents. 2010.

57. Pavel Grigorenko. Higher-Order Attribute Semantics of Flat Languages. 2010.

58. Anna Rannaste. Hierarcical Test Pattern Generation and Untestability
Identification Techniques for Synchronous Sequential Circuits. 2010.

169

59. Sergei Strik. Battery Charging and Full-Featured Battery Charger Integrated
Circuit for Portable Applications. 2011.

60. Rain Ottis. A Systematic Approach to Offensive Volunteer Cyber Militia.
2011.

61. Natalja Sleptšuk. Investigation of the Intermediate Layer in the Metal-Silicon
Carbide Contact Obtained by Diffusion Welding. 2011.

62. Martin Jaanus. The Interactive Learning Environment for Mobile
Laboratories. 2011.

63. Argo Kasemaa. Analog Front End Components for Bio-Impedance
Measurement: Current Source Design and Implementation. 2011.

64. Kenneth Geers. Strategic Cyber Security: Evaluating Nation-State Cyber
Attack Mitigation Strategies. 2011.

65. Riina Maigre. Composition of Web Services on Large Service Models. 2011.

66. Helena Kruus. Optimization of Built-in Self-Test in Digital Systems. 2011.

67. Gunnar Piho. Archetypes Based Techniques for Development of Domains,
Requirements and Sofware. 2011.

68. Juri Gavšin. Intrinsic Robot Safety Through Reversibility of Actions. 2011.

69. Dmitri Mihhailov. Hardware Implementation of Recursive Sorting Algorithms
Using Tree-like Structures and HFSM Models. 2012.

70. Anton Tšertov. System Modeling for Processor-Centric Test Automation.
2012.

71. Sergei Kostin. Self-Diagnosis in Digital Systems. 2012.

72. Mihkel Tagel. System-Level Design of Timing-Sensitive Network-on-Chip
Based Dependable Systems. 2012.

73. Juri Belikov. Polynomial Methods for Nonlinear Control Systems. 2012.

74. Kristina Vassiljeva. Restricted Connectivity Neural Networks based
Identification for Control. 2012.

75. Tarmo Robal. Towards Adaptive Web – Analysing and Recommending Web
Users` Behaviour. 2012.

76. Anton Karputkin. Formal Verification and Error Correction on High-Level
Decision Diagrams. 2012.

77. Vadim Kimlaychuk. Simulations in Multi-Agent Communication System.
2012.

78. Taavi Viilukas. Constraints Solving Based Hierarchical Test Generation for
Synchronous Sequential Circuits. 2012.

170

79. Marko Kääramees. A Symbolic Approach to Model-based Online Testing.
2012.

80. Enar Reilent. Whiteboard Architecture for the Multi-agent Sensor Systems.
2012.

81. Jaan Ojarand. Wideband Excitation Signals for Fast Impedance Spectroscopy
of Biological Objects. 2012.

82. Igor Aleksejev. FPGA-based Embedded Virtual Instrumentation. 2013.

83. Juri Mihhailov. Accurate Flexible Current Measurement Method and its
Realization in Power and Battery Management Integrated Circuits for Portable
Applications. 2013.

84. Tõnis Saar. The Piezo-Electric Impedance Spectroscopy: Solutions and
Applications. 2013.

85. Ermo Täks. An Automated Legal Content Capture and Visualisation Method.
2013.

86. Uljana Reinsalu. Fault Simulation and Code Coverage Analysis of RTL
Designs Using High-Level Decision Diagrams. 2013.

87. Anton Tšepurov. Hardware Modeling for Design Verification and Debug.
2013.

88. Ivo Müürsepp. Robust Detectors for Cognitive Radio. 2013.

89. Jaas Ježov. Pressure sensitive lateral line for underwater robot. 2013.

90. Vadim Kaparin. Transformation of Nonlinear State Equations into Observer
Form. 2013.

92. Reeno Reeder. Development and Optimisation of Modelling Methods and
Algorithms for Terahertz Range Radiation Sources Based on Quantum Well
Heterostructures. 2014.

93. Ants Koel. GaAs and SiC Semiconductor Materials Based Power Structures:
Static and Dynamic Behavior Analysis. 2014.

94. Jaan Übi. Methods for Coopetition and Retention Analysis: An Application to
University Management. 2014.

95. Innokenti Sobolev. Hyperspectral Data Processing and Interpretation in
Remote Sensing Based on Laser-Induced Fluorescence Method. 2014.

96. Jana Toompuu. Investigation of the Specific Deep Levels in p-, i- and n-
Regions of GaAs p+-pin-n+ Structures. 2014.

97. Taavi Salumäe. Flow-Sensitive Robotic Fish: From Concept to Experiments.
2015.

98. Yar Muhammad. A Parametric Framework for Modelling of Bioelectrical
Signals. 2015.

99. Ago Mõlder. Image Processing Solutions for Precise Road Profile
Measurement Systems. 2015.

171

100. Kairit Sirts. Non-Parametric Bayesian Models for Computational
Morphology. 2015.

101. Alina Gavrijaševa. Coin Validation by Electromagnetic, Acoustic and Visual
Features. 2015.

102. Emiliano Pastorelli. Analysis and 3D Visualisation of Microstructured
Materials on Custom-Built Virtual Reality Environment. 2015.

103. Asko Ristolainen. Phantom Organs and their Applications in Robotic Surgery
and Radiology Training. 2015.

104. Aleksei Tepljakov. Fractional-order Modeling and Control of Dynamic
Systems. 2015.

105. Ahti Lohk. A System of Test Patterns to Check and Validate the Semantic
Hierarchies of Wordnet-type Dictionaries. 2015.

106. Hanno Hantson. Mutation-Based Verification and Error Correction in High-
Level Designs. 2015.

107. Lin Li. Statistical Methods for Ultrasound Image Segmentation. 2015.

108. Aleksandr Lenin. Reliable and Efficient Determination of the Likelihood of
Rational Attacks. 2015.

109. Maksim Gorev. At-Speed Testing and Test Quality Evaluation for High-
Performance Pipelined Systems. 2016.

110. Mari-Anne Meister. Electromagnetic Environment and Propagation Factors
of Short-Wave Range in Estonia. 2016.

111. Syed Saif Abrar. Comprehensive Abstraction of VHDL RTL Cores to ESL
SystemC. 2016.

112. Arvo Kaldmäe. Advanced Design of Nonlinear Discrete-time and Delayed
Systems. 2016.

113. Mairo Leier. Scalable Open Platform for Reliable Medical Sensorics. 2016.

114. Georgios Giannoukos. Mathematical and Physical Modelling of Dynamic
Electrical Impedance. 2016.

115. Aivo Anier. Model Based Framework for Distributed Control and Testing of
Cyber-Physical Systems. 2016.

116. Denis Firsov. Certification of Context-Free Grammar Algorithms. 2016.

172

	List of Publications
	List of Abbreviations
	1. Introduction
	1.1. Motivation
	1.2. Problem Formulation
	1.3. Contributions of the Thesis
	1.4. Organisation of the Thesis

	2. Background
	2.1. Embedded Systems
	2.2. Microcontrollers
	2.2.1. Brief History of Different Microcontrollers Families

	2.3. Programming Languages, Debugging and Development Tools
	2.3.1. Programming Languages in Embedded Systems
	2.3.2. Supportive Programs
	2.3.3. Standard Libraries
	2.3.4. Debugging
	2.3.5. Microcontroller Memory Programming
	2.3.6. Development Boards

	2.4. Conclusions

	3. Case Study
	3.1. Marine Light Navigation Systems
	3.1.1. Aid to Navigation and Remote Monitoring Systems
	3.1.2. Estonian AtoN System

	3.2. Telematics Module
	3.2.1. History of Telematics Module
	3.2.2. Architecture of an AtoN System
	3.2.3. Hardware Design Considerations of Telematics Module
	3.2.4. Telematics Module Software Design Considerations

	3.3. Standards
	3.3.1. Style Guidelines
	3.3.2. Coding and Programming Language Standards and Guidelines

	3.4. Challenges in Telematics Module Software Development
	3.4.1. Later Improvements

	3.5. Heel Angle Calculation and Buoy Collision Detection
	3.6. Wave Height Calculation by Using Navigational Buoys
	3.7. Conclusions

	4. The Advances in Embedded Software Development
	4.1. Embedded Software Development Processes
	4.1.1. Code and Fix – Cowboy Coding
	4.1.2. Unified Modelling Language
	4.1.3. Agile Practices – Test Driven Development and Behaviour Driven Development
	4.1.4. Sequential Development Processes or Agile Practices

	4.2. Programming Languages – C and C++
	4.2.1. Main Differences Between C and C++
	4.2.2. Using Different Programming Languages In One Software Project
	4.2.3. Alternative Approach for C++ Virtual Function Table

	4.3. Program Structures and Improvements on Testing
	4.3.1. Super Loop Programs
	4.3.2. Minimising Relations Between Submodules
	4.3.3. Stateless Functions
	4.3.4. Unit Tests on Target Hardware
	4.3.5. Debugging and Testing

	4.4. Multithreaded Programs on Embedded Systems
	4.4.1. Sharing Processor Resource Between Tasks, Schedulers
	4.4.2. Multitasking Programs and Watchdog

	4.5. Common Optimisations Methods for Embedded Systems
	4.5.1. Limiting Function Arguments
	4.5.2. Program Code Inlining
	4.5.3. Fast Hardware Access
	4.5.4. Byte Order Manipulation
	4.5.5. Optimisation of AES Cryptographic Functions

	4.6. Dynamic Memory
	4.7. Conclusions

	5. Summary
	5.1. Contributions
	5.2. Conclusions

	References
	Acknowledgements
	Abstract
	Kokkuvõte
	Appendix 1
	Appendix 2
	Appendix 3
	Appendix 4
	Appendix 5
	Curriculum Vitae
	Elulookirjeldus

