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1. INTRODUCTION

The  progress  in  the  semiconductor  industry  has  been  the  main  reason  for 
replacing  old  mechanical  devices  with  electronic  analogues.  In  cars,  for 
example, many mechanical parts have been replaced by electronic counterparts, 
and in aviation, fly-by-wire systems have been used instead mechanical ones for 
many decades  [28]. In marine navigation light systems, old incandescent light 
bulbs  that  had  complex  mechanical  light  bulb  replacement  systems,  heavy 
weight reflectors and bulky lenses, have been replaced with relatively reliable  
LED's  (Light  Emitting  Diode)  with  small  reflectors  and  electronic  control 
systems  [41,  42].  While  initially  electronic  analogues were relatively simple 
circuits and in some cases it was not even a digital circuit, then in the end of  
1970's, several different electronic control and monitoring systems were quite 
widely  introduced  [28].  Recently  developed  systems  had  at  least  one 
microprocessor unit. The success of microprocessors is due to the fact that it is 
possible  and  also  sometimes  much  easier  to  implement  several  different 
functions  in  software  than  it  is  in  hardware.  This  means that  less  hardware 
components has to be used and it reduces power consumption of the device. 
One good example of the hardware functionality replacement with software and 
then resulting in reduction of hardware complexity is the software-defined radio 
(SDR) [56]. All recent mobile phone base stations are based on SDR and it is 
possible to extend radio base station functionality mostly by software upgrade. 
However, replacing hardware functions with software rises the complexity of 
the software.

The amount of transistors in top end microprocessors and microcontrollers is 
increasing according to the Moore's law [64], i.e. doubling in every 18 months. 
With  the  increase  of  number  of  transistors,  also  computational  power  rises 
which sometimes, unfortunately, happens at the expense of reliability [16, 97]. 
Contrary to the rise in the amount of transistor and computational performance, 
power consumption and cost decreases. It is not uncommon that performance of 
relatively small microcontroller is comparable to or even higher than the 20-
year old computer.  Furthermore, it is possible to use microcontrollers,  which 
have DSP (Digital Signal Processor) extensions, in complex signal processing 
applications where the small power consumption is essential, for example, in 
medical  electronics.  Since  the  mid  1990's,  different  hardware  modules  have 
been integrated with microcontrollers. For example, most microcontrollers have 
at  least  one  configurable  serial  interface,  while  other  microcontrollers  have 
internal AD (analogue-to-digital) converters with several input channels. Other 
microcontrollers have a real-time clock, hardware for cryptographical encoding 
and decoding functions, PWM (Pulse-Width Modulation) modulators and even 
on chip voltage regulators. However, in terms of hardware functionality 8, 16 
and lower end 32-bit microcontrollers, which are produced in the last decade, 
are not significantly different from each other. Lot of them have comparable 
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functionality, as well as power consumption, although the main difference is 
performance, mostly in 16 and 32-bit mathematical functions.

Compared to the similar microcontrollers from some decades ago, modern 
microcontrollers have more processing power and a lot of additional hardware.  
This additional hardware allows to use many different safety providing add-ons 
or add additional tasks to the device. It also allows to use much more powerful  
microcontrollers  in  places  where  it  is  essential  that  the  device  has  minimal 
power  consumption.  Higher  performance  microcontrollers  that  have  many 
additional  features,  in  turn,  may  attract  device  manufacturers  or  software 
developers  to  add  many  different  features  into  existing  devices.  However, 
additional  functionality  dramatically  increases  complexity  of  the 
microcontroller firmware and also significantly increases the time required for 
firmware  testing,  and  it  requires  different  development  tools  and  testing 
methodology  [82]. Inevitably, the growth of complexity reduces reliability of 
the  firmware  [21].  While  microcontrollers  allow to  use  relatively  large  and 
complex programs, it is very difficult to create such small microcontroller based 
systems that would be just as dependable as the large system with many internal 
protection mechanisms.

1.1. Motivation

All  marine  visual  navigational  aids  are  heavily  dependent  on  the  weather 
conditions, which have mostly negative influence to visibility range. Therefore 
it is wise to inform users and supporting staff about decreased visibility range,  
for this purpose buoys have heel angle  [67] and wave heights  [69] (by using 
server side support) measurement capability. Large number of buoys can also 
detect collisions [68]. In addition, several multifunctional modules exists which, 
for example, have an integrated TM (Telematics Module) and flasher. However, 
these additions and supporting applications increase significantly complexity of 
the program and are also potential cause of errors. Due to the increase of the 
TM complexity and flasher software, it is not very realistic to expect that tests  
that are carried out in the laboratory environment reveal all bugs. Therefore, TM 
and  flashers  have  also  remote  software  updating  capability [65].  Also  the 
majority of the AtoN devices are used in the places where power is limited, but 
there  are  requirement  for  minimal  power  consumption.  Therefore,  the  best 
method to detect code section with high CPU or IO usage, and hence energy 
consumption  is  profiling  [66].  Due  to  the  complexity  of  the  AtoN modules 
itself, environmental conditions and other limitations, it is necessary to use low 
power microcontrollers, different software developement approaches, software 
tools and solutions for the microcontroller software which is used in the AtoN 
systems.

Due to the limited capabilities of microcontrollers it is not feasible to use 
exactly  the  same  programming  languages,  development  tools  and  testing 
methods  in  embedded  systems  that  are  used  for  software  development  in 
conventional  computer  programs.  Typically,  tools  and  development  methods 
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that are used in embedded software development, are in some way limited and 
have  less  functionality  and,  therefore,  it  is  not  possible  to  use  all  available 
testing  methods.  Embedded  software  development  has  some  issues  that  are 
described below.

As any other software, embedded software may contain bugs, some of them 
are  originating from coding,  some are  from task formulation,  and  some are 
related to underlying system, like hardware, kernel or libraries. In addition to 
hardware bugs or faults the remaining bugs are related with software. The most  
difficult  bugs  to  detect  and  repair  belong to  the  kernel  or  libraries.  To  this 
category  belongs  also  memory  corruption  and  fragmentation  issues.  While 
memory  corruption  bugs  are  relatively  common  in  embedded  systems,  the 
fragmentation  is  not  so  common.  Memory  corruption  can  happen  in  two 
different ways. First one is caused by invalid pointers, and the second one is  
caused  by  stack  overflow,  which  may  happen  even  during  normal  program 
operation; the last one is quite common for larger embedded software. Pointer 
related bugs can be discovered by static code inspection tools, mostly by  lint 
and  its  derivatives  [31,  110].  Many  latest  compilers  allow  some  pointer 
checking  as  well.  Pointer  related  bugs  can  also  be  found  by  manual  code 
inspection.  Stack overflows can sometimes be detected by compilers,  which 
have such capability, however, this is quite new addition to compilers [29]. It is 
possible  to  reduce  significantly  stack  overflow  caused  effects  by  adding 
additional memory after each thread block  [15]. Yet, this approach may mask 
stack  overflows  and  work  only  with  kernels  that  have  such  support.  In 
multithreaded environment,  it  is  possible to detect  stack overflows before or 
after context switch by checking guard (also called “canary”) pattern in stack 
area end or by checking stack pointer value and comparing it with maximum 
stack address.  Both approaches add some overhead to scheduler and require  
several  bytes  of  free  memory  in  thread  structures  [85],  nevertheless,  these 
methods  are  not  usable  in  non-threaded  programs.  Without  threading  or  if 
threading  does  not  have  stack  overflow  detection  capabilities,  the  stack 
overflows are mostly detected manually by trial  and error.  Manual  overflow 
detection usually has a great disadvantage, in order to find the exact location of 
the bug, some source code modification is needed, however, any source code 
modification may cause stack overflow bug to change its place.

Memory  fragmentation  issues  in  embedded  software  are  related  to  non-
regular  memory  allocations  and  deallocations.  These  allocations  may  even 
occur in normal program execution. In multitasking programs, it is difficult to 
foresee  all  fragmentation  occasions  [28,  71,  72,  82].  Therefore,  to  avoid 
memory fragmentations, it is preferred not to use any dynamic memory at all.  
Described  issues  are  quite  rare  in  desktop  computers  where  the  kernel  is  a  
protection layer between hardware and higher level  software.  This layer can 
also report and protect faulty memory access by using kernel based memory 
fault detection on special hardware such as MMU (Memory Management Unit). 
MMU and supporting kernel,  however, is absent in smaller microcontrollers. 
The absence of such fault detection support causes major problems in embedded 
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software development process and this is the most noticeable shortage on all 8-
bit  microcontrollers.  This in turn makes the program writing and testing for 
smaller microcontrollers quite complex task.

Software testing in embedded systems is also more complicated and time 
consuming than it is in desktop computers [28]. In desktop computer software 
development relies heavily to automated testing (unit tests) but large number of 
small  embedded  software  is  tested  manually.  Unfortunately,  this  is  time 
consuming and error prone. The main reason for using manual testing is that it 
is difficult to create automated tests for hardware related code.  In embedded 
systems, it is possible to carry out some testing by using emulators, simulators 
and OCDs (On-Chip-Debuggers), but none of them is capable of debugging non 
trivial  multitasking  programs  and  usually  interfere  with  program  real-time 
behaviour.  On the other  hand,  debuggers  that  are  used in  desktop computer 
program development have much less above described side effects and have 
more functionality than debuggers that are used in embedded systems.

The  differences  between  development  and  deployment  platforms  play  a 
significant role of the embedded software development. The differences can be 
divided into two main categories – differences between the software platforms 
and differences between the hardware platforms.

In  many  cases,  the  difference  between  the  software  platforms  is  the 
difference between kernels, operating systems or libraries. In the best case, the 
differences are so small that it is not required to change any program code or are 
limited only to some missing functions or headers, which can be detected by 
compilers or linkers, and are relatively simple to fix. In the worst case, most  
functions are present but may behave slightly different or have different side 
effects.  Bugs that are caused by lastly mentioned differences are much more 
difficult to find and fix. Also software platform differences become important  
when it  is  required to use automated tests;  a code that  is  used by unit  tests 
should compile on different hardware and software platforms.

Another  significant  difference  between  embedded  systems  and  desktop 
computer is the hardware access.  In embedded systems, it is relatively easy to 
access the lower level hardware but  in desktop systems, such operations are 
limited to privileged users and special functions. This access also includes the 
use of hardware based watchdog timers which usually is different on embedded 
and  on  non  embedded  systems.  While  embedded  systems  access  directly 
watchdog  hardware,  use  non  embedded  systems  special  drivers  or  kernel 
functions  to  access  to  this  hardware.  Also  embedded  systems  and  desktop 
computers  have  available  very  different  power  saving  profiles  and  program 
access  to  these  profiles.  While  most embedded  programs  take  into  account 
energy consumption and selects most appropriate power profile, but in desktop 
computers  and  their  programs,  the  power consumption  is  rarely  a  concern. 
Using profile that consume less energy, in turn, affects program structure and 
algorithms.
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In between to the above mentioned hardware and software differences are 
such issues that are caused by hardware but play role in software. For example,  
when communicating with other devices or computers over the network is the 
main problem that difference architectures may have different word length and 
byte order (endianness). PC (Personal Computer) usually has 32 or 64-bit word 
length, but small embedded systems typically have 8 or 16-bit word length. This 
area  also  includes  program  optimisations,  which  depends  on  underlying 
architecture.

Despite  the  above  mentioned  issues  that  are  mostly  related  to  the  IO 
(Input/Output),  memory  and  debugging,  the  embedded  system  software 
development  has  several  similarities  to  the  desktop  computer  software 
development. These are mainly due to the similarity of standard shared libraries 
and programming languages. Most shared libraries have nearly the same base 
functionality,  although  same  library  in  embedded  system has  usually  fewer 
functions than in desktop systems, but it is possible to use majority of language 
features in embedded software development.

Above  mentioned  shortcomings  and  differences  are  the  main  sources  of 
programming errors, and unfortunately most of them do not surface before final 
program release. Since most small embedded systems do not have any hardware 
or software mechanism to prevent fatal errors, the safest way is to use more 
powerful  microcontrollers,  which  have  certain  fault  protection  mechanisms. 
However, many embedded systems have quite limited power budget and some 
of them are installed in remote sites. In these cases it is not reasonable to use  
more powerful microcontroller.

1.2. Problem Formulation

Issues described in the previous section are the main contributors for program 
errors or bugs. These issues may become critical in places where navigation 
light devices are mainly used, mostly on buoys and also in applications which 
are the main targets of the published works. Theoretically, it is possible to avoid 
large number of bugs by using simulations and static code checking. Although 
both  significantly  reduce  overall  amount  of  bugs,  they  are  not  capable  of 
detecting all of them. It is also difficult to develop one unified testing method 
for all embedded systems, as the same scale embedded systems may be used in 
very  different  places  and  have  different  tasks  and  interfaces.  Another 
problematic  area  is  the  peculiarities  of  writing  embedded  software  code. 
Initially,  small  embedded systems were replacements  for complicated digital 
logic and traditionally, electronic engineers wrote the embedded software but in 
most cases they did not have enough knowledge to write and test larger scale 
software  [28]. Unfortunately, this also applies to quite big number of authors 
who write about embedded software and, therefore, there is very little literature 
available about larger-scale embedded software projects.

The  thesis  describes  problems  that  have  raised  while  developing  a  new 
Telematics Module for AtoN (marine Aid to Navigation) systems. It  was not 
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possible to resolve the problems that are described in this thesis by the methods 
that  are  used  in  non-embedded  software  development.  The  following  six 
peculiarities and limitations can be considered as the main contributing cause of 
the complexity of TM embedded software writing and testing:

• Large number  of  embedded systems use  battery  as  the  main energy 
source, e.g., most marine AtoN systems and therefore, it is essential that 
the energy consumption of the device is as small as possible. The main 
problem  with  such  low-power  and  constrained  systems,  is  that 
programs  which  are  used  in  these  systems  can  use  only  relatively 
simple algorithms, also available memory size is limited and in several 
cases system responsiveness is limited as well. Due to this, all program 
parts  should  be  rather  simple,  and  all  complicated  data  processing 
should be done externally on a more powerful computer such as AtoN 
monitoring server or on other dedicated computer.

• The main programming languages for embedded software are C and 
C++,  but  initially  both  were  developed  for  much  more  powerful 
computers  (especially  C++),  and  have  such  language  constructs  or 
contain libraries that are too resource consuming for small embedded 
systems, such as AtoN systems. Unit tests also depend on programming 
languages; some languages allow to write unit  tests more easily. The 
main problem is to find such program structures, which allows to write 
more easily larger programs, without consuming significant amount of 
microcontroller's resources and allowing to use automated testing.

• One  of  the  major  problems  in  embedded  software  development  is 
software testing; nearly all  embedded programs interact directly with 
hardware,  but  unit  tests,  which  reduce  significantly  overall  testing 
efforts, need to run on different hardware, hence needed to emulate or 
mock target hardware  [33]. Another issue with automated tests is that 
these tests require that programs and functions have certain ending or 
exit points. Large number of embedded programs are created as super-
loop programs, which are inherently endless programs, and it makes it 
difficult to write unit tests for these programs. Normally, in this case, 
the test runs forever. In embedded software development large extent 
OCD is  used  for  debugging,  but  OCD might  have  great  impact  for 
software real-time behaviour. The AtoN devices,  which are the main 
target of this thesis, have quite high complexity and it is not feasible to 
use only OCD. The main problem is to find or create such program 
structures  that  take  small  amount  of  microcontroller  resource  and 
allows to create fixtures for automated testing.

• In embedded systems watchdog is used nearly in every program. It is 
trivial  to  use  watchdog  in  super-loop  programs.  However,  in 
multithreaded  programs  where  watchdog  should  monitor  several 
threads  simultaneously,  it  must  also  take  into  account  states  of  all  
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threads and this is not achievable by using common practices. Therefore 
the main problem with watchdogs timers, is that no universal method 
for using watchdog timers with multitasking programs exists.

• Differences  between  device  registers  widths  and  endianness.  The 
embedded systems control and configurations software runs mostly on 
32- or 64-bit computers and these computers may also have different  
endianness. Therefore the main problem is to effectively convert data 
between different endianness and different register width. In general, 
these conversions are rather simple, but so far no compiler can do it 
efficiently enough; these functions are subject to manual optimisation. 
Similar issues arise with cryptographical functions.

• In  larger  systems,  such  as  Linux  computers,  kernel  with  special 
hardware  is  responsible  for  avoiding  memory  fragmentation.  But  in 
some rare cases, and depending on the application, it is possible that 
without  memory  fragmentation  protection,  embedded  system  may 
exhaust  free  memory.  Therefore,  the  main  problem is  to  develop  a 
mechanism that reduce memory fragmentation as much as possible and 
at the same time to be suitable for use in smaller embedded systems.

Due to the above listed peculiarities,  software development for embedded 
systems is significantly different than for desktop computers. Currently there is  
no known specific recommendations or other work for this field, especially for 
low power AtoN systems.

1.3. Contributions of the Thesis

The  main  contributions  of  this  thesis  are  the  methods,  improvements  and 
solutions suitable for development of new generation low-power AtoN systems, 
mainly the Telematics Module, which is important component in the navigation 
light systems that is used on Estonian costal areas. Developed module has also 
low  power  consumption,  which  consequently  limit  memory  size  and 
computational power, but on the other hand provide an capability for long-term 
autonomous work. To create firmware for such module, software development 
methods that are significantly different from methods that are used for regular 
software development have to be used. Software that is  based on developed 
methods is  reused also in  other  devices,  mainly in  new generation flashers.  
Additionally, the methods that are presented in this thesis allow to add different 
functions  to  TM,  like  wave  height  measuring  [69],  buoy  heel  angle 
calculation [67] and collision detection [68] or when server supports measuring 
vibration in fixed navigational structures.

In order to achieve the above described design goals, several new techniques 
had to be researched and developed. The main contribution of the thesis are as 
follows:
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• Discussion on how to use effectively program structures that are well 
known from C++ (however, not very memory and CPU efficient) but 
absent  in C language.  The main focus in presented examples are on 
smaller  microcontrollers,  which  have  separated  data  and  program 
memories.  The  presented  methods  can  lead  to  significant  memory 
savings,  if  wisely used.  As demonstrated in  development  of the  TM 
module.

• Testing methods suitable for software testing in low power embedded 
systems.  Embedded software for  smaller  systems is  often  developed 
without  any  automated tests.  Only on larger  embedded systems and 
desktop computers such tests are used. This thesis proposes program 
structures and functions, which consume small amount of processor and 
memory resource, and allows to use automated tests. Also workarounds 
for code that  are not  automatically  testable  are  described.  Described 
methods simplify use of CI (continuous integration) servers for testing 
and  regression  detection.  Presented  solution  also  allows  to  use 
lightweight unit tests to test hardware. It is also possible to use such 
lightweight hardware test programs with FOTA (Firmware Over-The-
Air) [65] in order to remotely test deployed TM hardware.

• Effective methods for resetting watchdog in non trivial multithreaded 
programs. It is possible to reset watchdog timer only by one thread or 
process.  However,  in  multi-threaded  programs  watchdog  has  to  be 
shared  between  tasks  and  when  at  least  one  thread  locks,  it  causes 
watchdog to reset. The current thesis describes two different approaches 
that  can be used  with  multithreaded programs.  Pros  and cons  about 
different  schedulers for multithreaded programs that  utilise watchdog 
timer  are  also  given.  Presented  methods  allows  effectively  use 
watchdog in multithreaded programs, which has least one long running 
task. This method was used for wave height measurements [69].

• Code optimisation methods for  deeply embedded systems.  Although, 
most optimisation is carried out by the compiler, still some functions 
which  are  quite  often  used  for  simple  data  manipulation,  are  not  
optimised even by latest compilers. In this thesis several ways of how to 
optimise  simple  data  manipulation  routines  are  shown.  Also  two 
optimisation  algorithms  for  AES  (Advanced  Encryption  Standard) 
cryptographical  functions,  which give significant  memory savings or 
increase  processing  speed,  are  described.  It  is  possible  to  use  the 
described solutions in such cases when minimal processor or memory 
resource  consumption  is  required.  At  developing  the  TM,  described 
methods  were  used  for  buoy  heel  angle  [67] and  buoy  collision 
detection  [68] and it also gave opportunity to encrypt communication 
channel.
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• Alternative approach for standard dynamic memory handling routines. 
This solution uses memory pool and allows to check memory overruns 
(writing  beyond  the  end  of  an  allocated  block).  Although  this 
improvement is not related to any publication included to this thesis, it 
is used at developments of the Telematics Module.

1.4. Organisation of the Thesis

This thesis is organised into 5 chapters. The proposed methods and developed 
systems are described and in the publications attached to the thesis.

An introductory Chapter  2 gives a brief overview of microcontrollers and 
their  history  and  a  short  overview  of  programming  languages  and  other 
development tools, which are used in embedded systems design.

Chapter  3 gives  an  overview  about  the  main  usage  area  of  described 
improvements and how the methods have been used in development of low 
power  embedded  AtoN  systems.  The  chapter  also  gives  a  small  historical 
overview about AtoN systems, which are used in Estonia, and development of 
the AtoN systems; it gives a brief overview of suitable standards and coding 
guidelines, which were used at development, and reasons and implementations 
of presented improvements.

The main part of this thesis is Chapter 4 that describes the improvements in 
development  methodologies  of  embedded  systems,  discusses  suitable 
programming  languages,  highlights  different  program  structures,  discusses 
about  software  testing  and  usage  of  dynamic  memory,  and  gives  a  small 
optimisation about substitution table (S-Box) calculation in AES cryptographical 
algorithm.

In Chapter 5, concluding remarks and summary of the thesis are presented.
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2. BACKGROUND

The  central  subjects  of  this  thesis,  embedded  systems  and  microcontrollers, 
which are used in AtoN devices, are very different from regular computers. As 
the  AtoN  systems  have  grown  steadily  into  much  more  complex  systems,  
simple logic or analog circuits sufficient to control and monitor these devices. 
To control such complicated systems, most appropriate is to use programmable 
devices,  mostly  microcontrollers.  As  the  AtoN  systems  usually  operate  in 
remote places, where minimal power consumption is essential,  are also used 
microcontrollers that have minimal power consumption and therefore have quite 
simple architecture and low performance.

This chapter provides a definition of embedded systems and an overview of 
the most  widespread microcontroller  families,  their  history and development 
tools.  While  microcontrollers  that  are  used  in  AtoN  systems  have  also 
significantly  different  development  tools,  and  use  different  programming 
language  constructs,  then  background  information  of  the  microcontrollers, 
programming languages and development is provided as well.

2.1. Embedded Systems

An  embedded  system  is  a  computer  system  designed  to  perform  dedicated 
tasks [37]. In many cases embedded system is a part of a larger system, which is 
intended  to  communicate  directly  with  other  computers  or  other  embedded 
systems  [40].  Many  embedded  systems  have  also  real-time  computing 
constraints. Physically, embedded systems range from small and power efficient 
portable  devices  like  watches,  to  large  stationary  installations  like  factory 
controllers. The complexity of embedded systems varies from very low – with a 
single microcontroller chip – to high – with multiple computational units. The 
common denominator of embedded systems is presence of processing units that 
are  either  microcontrollers,  DSPs  or  general-purpose  processors.  Typical 
embedded system functions as a standalone system with long-term operation.

Current thesis focuses on standalone embedded systems, which have one low 
power microcontroller for several concurrent tasks. All specific tasks that may 
require a lot of resources, like network communication, have a dedicated MCU 
(microcontroller unit); this task partitioning is quite widely spread in low power 
systems such as car alarms, telematics systems and also in marine navigation 
light systems.

2.2. Microcontrollers

Unlike  general  processors,  microcontrollers  contain  most  of  the  required 
hardware in  one IC (Integrated Circuit).  Microcontroller  has at  least  a CPU 
(Central-Processing-Unit)  that  includes  ALU (Arithmetic  and Logic  Unit),  a 
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control  unit,  registers,  program-memory  (generally  a  flash  memory),  RAM 
(Random-Access Memory), I/O devices and a clock system (Figure 2.1).

Figure 2.1: Minimal MCU

Two  different  instruction  sets  exist,  which  are  used  in  microcontrollers. 
While the earlier microcontrollers tend to have a CISC (Complex Instruction 
Set Computer) instruction set, the recent microcontrollers have more likely a 
RISC (Reduced Instruction Set Computer) instruction set. Microcontrollers with 
CISC  instruction  set  have  usually  more  sophisticated  architecture;  it  has 
microprograms that allow to execute several base instructions in one instruction. 
Due to the more intuitive instructions and to the microprograms,  it  is  much 
easier for the programmers to work with  CISCs, and the executable programs 
tend to be smaller. While the assembly language being the main programming 
language in  the  1970s,  the  CISCs had a clear  advantage as  majority  of  the 
programs  were  written  in  this  language.  Contrary,  the  RISC  instruction  set 
processor  has  much  simpler  architecture,  mainly  because  of  the  lack  of  
microprograms  and  control  unit  being  less  complex.  For  programmers, 
programs for RISC instructions tend to be more complex and 30% larger [48]. 
However,  in  many  cases  these  programs  are  a  little  bit  faster  than  similar 
programs for CISC instruction set. The downside of the RISC processors is the 
program  length;  as  most  processors  execute  programs  from  RAM,  and  for  
executing  program  that  has  the  same  functionality  as  program  for  CISC 
processor it requires more RAM and the same also applies to cache. The RISC 
instruction set is quite complicated and therefore it makes it difficult to directly 
write assembler programs. However, the instruction set allows to write efficient 
compilers, and most RISC instruction set microcontrollers have relatively good 
compiler  support.  The main advantage of the RISC processors is  simplicity; 
these processors contain less transistors and take less silicon die area, which 
makes its power consumption lower than in similar size CISC processors, and 
thus makes this instruction set more appropriate for microcontrollers [13, 39].

In addition to different instruction sets, microcontrollers may also differ by 
architecture.  There  are  two  different  architectures  available  –  Harvard 
architecture, (Figure  2.2) and von Neumann architecture (Figure 2.3).
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Figure 2.2: Harvard architecture in programmer's view

Harvard architecture has separate data and instruction busses, and memories, 
allowing  transfers  to  be  performed  simultaneously  from  both  busses.  This 
architecture  does  not  allow  to  use  simple  unified  memory.  In  fact,  some 
processors and microcontrollers that are Harvard machines by the most rigorous 
definition, may have operations to read and/or write program memory as data. 
For  example,  AVR  microcontrollers  by  Atmel  have  load-program-memory 
(LPM instruction) and store-program-memory (SPM instruction) instructions. 
Having  separate  address  spaces  create  certain  difficulties  for  high-level 
language compiler and library developers, as most compilers do not support the 
notion that read-only data might be in a different address space from normal  
writeable data and thus need to be read using different instructions.

On the other hand, von Neumann architecture has only one bus that is used 
for  both  data  transfers  and  instruction  fetches.  Therefore,  on  von Neumann 
architecture  data  transfers  and  instruction  fetches  must  be  scheduled;  they 
cannot  be  performed at  the  same time.  The  von Neumann architecture  is  a 
design model that keeps program and data in same memory and is accessible by 
using the same instructions. It has inability to operate simultaneously on both 
busses.  This  inability  may  slow  down  microcontroller  overall  program 
execution speed, but it can be compensated by using different caches for data 
and program. For this architecture it is relatively simple to make self-modifying 
programs or bootloaders1.

At  the  present  time,  the  majority  of  smaller  microcontrollers  have  the 
Harvard architecture, for example, all the AVR and PIC microcontrollers. The 
only exception is the Texas Instruments MSP430, which has the von Neumann 
architecture [93]. However, larger ARM based microcontrollers have a modified 
Harvard architecture, which in programmer's view is very similar to the von 
Neumann  architecture.  In  programmer's  view,  the  major  difference  between 
both  architectures  is  that  the  Harvard  architecture  microcontrollers  have 

1 This is used widely in larger computers where main program is loaded from disk to 
RAM.
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separated  program  and  data  memories,  and  need  different  instructions  for 
accessing these memories. As most of the modern compilers and languages are 
initially designed for the von Neumann architecture, the compilers usually do 
not support access to both Harvard memories. Program parts which need access 
to program memory should use separate functions, which are usually not related 
to the compiler.

2.2.1. Brief History of Different Microcontrollers Families
The rapid development of microcontrollers began in the early 1970s with the 
increased IC integration and development of first 4-bit microcontrollers. Due to 
the  high degree  of  integration of  microchips  it  was natural  that  besides  the 
microprocessor also additional hardware was added into single crystal. First, the 
RAM  was  added,  then  timers  and  input-output  ports,  and  eventually  other 
peripherals.

In  the  early  1990's,  microcontrollers  with  electrically  erasable  memories 
such as flash and EEPROM (Electrically Erasable Programmable Read-Only 
Memory)  became  available.  These  microcontrollers  could  be  erased  and 
programmed  by  using  only  the  electrical  signals.  Prior  to  the  electrically 
erasable  and  programmable  memories,  microcontrollers  often  required 
specialised erasing and programming hardware – typically ultraviolet light (UV) 
source  for  erasing  and  higher  voltage  for  programming.  Therefore  most 
microcontrollers before the 1990's had two different variants – one had an UV 
erasable EPROM (Erasable  Programmable Read-Only Memory) for  program 
memory, which had a transparent quartz window on the top of the IC package, 
and the other was PROM (Programmable Read-Only Memory) variant. These 
microcontrollers  were  one-time  programmable  (OTP)  microcontrollers. 
Technically, however, both were the same microcontrollers. It was possible to 
reprogram UV erasable microcontrollers twenty to forty times. Due to the IC 
packages, UV erasable microcontrollers were much more expensive than their 
traditional  OTP versions.  Microcontrollers  with EPROM and OTP program-
memories  are  not  being  produced  any  longer,  mostly  Flash  and  FRAM 
(Ferroelectric RAM) versions are in production.

4 – bit Microcontrollers: The first  microcontroller was developed by Texas 
Instruments in 1971: TMS1000  [92]. This microcontroller went to production 
three years later, in 1974. Unlike Intel 4004 microprocessor TMS1000 has all  
supportive  parts  in  the  same  silicon  die  such  as  RAM,  ROM  (Read-Only 
Memory),  counters,  timers and I/O interfaces.  This microcontroller  had very 
simple design, it  had only two 4-bit  general registers,  1-level deep stack, no 
interrupts. TMS1000/TMS1200 had 43 instructions and TMS1100/TMS1300 54 
instructions.  Initially,  this  microcontroller  family  had  only  6  different 
microcontrollers  –  28  pin  TMS1000,  40  pin  TMS1200,  TMS1070  and 
TMS1270  microcontrollers,  which  had  direct  interface  for  high  voltage 
displays, and TMS1100 and TMS1300, which had twice more RAM.
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Besides Texas Instruments, other different manufactures have also produced 
4-bit microcontrollers for over 30 years: National – COP400, NEC – μPD75xx, 
OKI  –  MSM84xx,  Fujitsu  –  MB884xx,  Panasonic  –  MN14xx/MN15xx, 
Toshiba – TMP/TCP 43xx/46xx/47xx/47Pxxx, Hitachi – HD/HMCS 4x/4xxxx 
and Atmel – MACH4.

8  –  bit  Microcontrollers: In  this  subsection  are  listed  some  8-bit 
microcontroller families, which are widely used or is substantially influenced 
the development of microcontrollers.

F8  microprocessor  was  the  predecessor  to  8-bit  microcontrollers.  This 
microprocessor was developed in 1975 by Fairchild and it required at least one 
external  microchip for  program storage (F3851 or  F3856).  In  1977,  Mostek 
released an MK3870  [70] microcontroller,  which was an F8 microcontroller 
with integrated memory.

The  first  widely  spread  8-bit  microcontroller  family  was  MCS-48  (8048 
microcontrollers), it was developed and released by Intel in 1976. This CISC 
microcontroller  had  96  instructions,  1  kB of  program memory,  64  bytes  of 
RAM,  8-bit  timer  and 3  I/O ports  [46].  MCS-48 was  quite  widely  used  in 
desktop computers for supportive tasks, for example, IBM used it  in the PC 
keyboard controller [43]; modern computers have integrated the same chip into 
super I/O device.

Another well-known microcontroller, PIC1650, was developed in 1977 by 
General  Instrument  Corporation.  This  simple  RISC  microcontroller  had  56 
instructions, 32 8-bit registers, 512x12-bit program ROM, four I/O ports and 
internal  clock  generator  [30].  In  1993,  Microchip  (spin  off  from  General 
Instrument  Corporation)  introduced PIC16C84.  This  microcontroller  had on-
chip EEPROM for program-memory.

In 1981, Intel introduced new Harvard architecture microcontroller MCS-51, 
commonly  referred  as  8051.  This  new microcontroller  differed  significantly 
from its predecessor 8048. It has different architecture and instructions. This 
MCU has 111 base instructions, 6-source/5-vector interrupt structure, 128 bytes 
of RAM, 4 kB of ROM, dual 16-bit address bus, four 8-bit bi-directional I/O 
ports,  one  full  duplex  serial  port,  two  16-bit  counter/timers  and  a  on  chip 
oscillator  [47].  While  Intel  no  longer  manufactures  the  MCS-51,  binary 
compatible  derivatives  are  still  produced  from  various  manufactures.  In 
addition,  several  companies  offer  MCS-51 derivatives  as  IP (Semiconductor 
Intellectual  Property)  cores  for  the  use  in  FPGA (Field-Programmable  Gate 
Array) or in ASIC (Application-Specific Integrated Circuit) designs.

In  the  early  1970s,  Motorola  (now  Freescale  Semiconductor)  started  a 
project that in 1975 developed their first microprocessor, the MC6800, which 
was a base for all MC68XX/MC68HCXX microcontrollers [73]. The MC6800 
was  a  CISC  microprocessor  with  the  von  Neumann  architecture  [48].  This 
microprocessor has a 16-bit  address bus,  which could directly access 64 kB 
memory,  and  an  8-bit  bi-directional  data  bus.  It  has  72  variable  length 
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instructions with seven addressing modes for a total of 197 instructions. It has 
four interrupt  vectors – restart  vector,  separate no-maskable interrupt (NMI), 
software  interrupt  and  hardware  interrupts.  In  1979,  a  MC6800  based  8-bit 
microcontroller MC6801 [75] and MC6805 [74] were developed. Both had on-
chip RAM, ROM and I/O on a single die. The MC68HCXX was a successors to 
MC68XX microcontrollers,  this  family has  several  improvements  like  lower 
power consumption, higher performance (MC68HC11) and additional hardware 
(MC68HC08 [26, 77]). The MC68XX and MC68HCXX series microcontrollers 
were popular in automotive applications.

Atmel developed its first 8-bit microcontroller in 1996. This microcontroller 
was  AT90S1200;  a  8-bit  RISC microcontroller,  which  has  slightly  modified 
Harvard architecture. It has 89 instructions, 32 general purpose registers, 1 kB 
of program memory, 64 bytes of EEPROM, one timer, analogue comparator,  
on-chip oscillator and 15 programmable I/O lines  [2]. Unfortunately, the first 
Atmel  microcontroller  did  not  have  any  SRAM  (Static  Random-Access 
Memory), and it had very limited C compiler support2. Soon after the release of 
the  AT90S1200,  a  series  of  different  microcontrollers  were  also  released  – 
AT90S2313,  AT90S2323,  AT90S2343,  AT90S4414,  AT90S4434,  AT90S8515 
and AT90S8535; all of them had SRAM that allows to call virtually unlimited 
number  of  sub  functions.  Among  the  other  AVR  microcontrollers  the 
AT90S8515  [1] was  produced,  which  was  intended  to  replace  8051 
microcontroller. This microcontrollers has a 40-pin DIP (Dual In-line Package) 
package  with  the  same  pinout  as  the  8051  microcontrollers,  including  the 
external multiplexed address and data bus. The only difference was the reset 
line polarity. In 2008,  Atmel released family of new 8/16-bit  AVR XMEGA 
microcontrollers.  These  microcontrollers  had  more  memory,  DMA (Direct 
Memory Access)  controllers,  event  system,  cryptographical  engine  and high 
speed  AD  and  DA (Digital-to-Analogue)  converter,  and  also  some  16-bit 
instructions. All experiments that have been made in the context of this thesis  
are carried out on the 8-bit AVR microcontrollers.

16 – bit microcontrollers: The 16-bit microcontrollers are not so widely used 
as the 8 and 32-bit  microcontrollers,  only some 16-bit  microcontrollers have 
been spread more widely.

In 1982, Intel released its first MC-96 family of microcontrollers that were 
widely used in car industry. Another well-known 16-bit microcontroller family 
is the Texas Instruments MSP430  [93]. This RISC microcontrollers have the 
von Neumann architecture  and are  designed as  measurement  controllers  and 
work on batteries. Besides Intel and Texas Instruments 16-bit microcontroller 
families,  several  other  16-bit  microcontrollers  families  exist: 
STMicroelectronics  ST10  families,  Infineon  (former  Siemens)  C166  family 
microcontrollers and Freescale HC12 [25] and HC16 [76].

2 Subroutines use stack to pass parameters and return addresses, therefore, it is quite 
complicated to call any subroutine without using RAM.
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32 –  bit  Microcontrollers: The  best  known 32-bit  microcontrollers  are  the 
ARM  architecture  based  RISC  microcontrollers.  This  architecture  was  first 
developed  in  the  mid  1980's  for  personal  computers.  The  ARM  uses  quite 
simple  instruction  set  and  therefore  these  processors  have  relatively  low 
transistor count and quite low power dissipation; this makes ARM architecture 
well suited in power constrained devices. As of 2016, in terms of quantity, ARM 
architecture  microprocessors  are  globally  the  most  widely  produced  32-bit 
instruction set architecture. The first ARM processor was produced in 1985, and 
ever since the ARM has released many different 32-bit processors, from ARM1 
to ARM11. In 2004, ARM launched Cortex-M3 core processors. This Cortex-M 
family was intended to replace 8- and 16-bit microcontrollers but these are still 
not so widely spread as 8- and 16-bit microcontrollers. In 2005, ARM launched 
Cortex-A series  microprocessors,  which  were  intended  to  be  used  in  high 
performance applications such as tablets and mobile phones. As ARM Holdings 
itself does not produce processors, it licenses the processor architecture to chip 
manufactures. Many microcontroller manufactures have some ARM versions in 
their product portfolio.

Atmel  developed  its  32-bit  microcontrollers  in  2006,  the  AVR32 
microcontroller  family.  This  microcontroller  family  has  completely  different 
architecture  than  the  8-bit  AVR  microcontrollers.  The  AVR32  architecture 
consists of two different micro-architectures: the AVR32A and AVR32B. Both 
of  the  microarchitectures  provide  different  performance,  have  different 
registers, peripherals, instruction set, and different power consumption [5]. The 
AVR32A microarchitecture  targets  cost-sensitive,  lower-end applications.  All 
AVR32UC  microcontrollers  have  this  microarchitecture.  The  AVR32A 
microarchitecture saves chip area at the expense of slower interrupt handling. 
AVR32B, on the other hand, targets applications where more processing power 
is needed like ethernet switches. AVR32B microcontrollers had mostly the same 
functionality and application areas as ARM microcontrollers, however, starting 
from 2013, the whole microcontroller family of AVR32B is not produced any 
longer.

Microchip introduced 32-bit  microcontroller  family in the  end of 2007 – 
PIC32MX microcontrollers. The initial device line-up is based on the MIPS32 
M4K core [62]. The PIC32MX family is pin-compatible with most of the 16-bit 
Microchip PIC24/dsPIC microcontrollers. This microcontroller family has quite 
similar  functionality  as  the  ARM  microcontrollers,  and  therefore  PIC32 
microcontrollers are not very widely spread.

64 –  bit  Microcontrollers: Unlike  the 64-bit  processors,  only  a  few 64-bit 
microcontrollers have been developed. The main argument against the 64-bit 
microcontrollers  is  the  high  power-consumption.  In  2011,  ARM  Holdings 
announced the release of new 64-bit  architecture  [34] processor's family: the 
ARMv8. This family has two different processors: Cortex-A53 and Cortex-A57. 
Both are targeted to tablets, smartphones and other mobile devices.
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Toshiba also developed MIPS based 64-bit microcontroller TX4927 [95] in 
2001.  This  64-bit  microcontroller  has  200  MHz  clock  and  PCI  (Peripheral 
Component Interconnect) interface, SDRAM (Synchronous Dynamic Random 
Access Memory) memory controller, DMA controller, interrupt controller with 
18 sources, 2 channel UART (Universal Asynchronous Receiver/Transmitter), 3 
channel 32-bit timer/counter,  and 16-bit bi-directional I/O ports.  TX4927 has 
relatively low power requirements, it operates at 200 MHz and consumes only 
1.5 W [96]. It has the same performance as typical desktop computer.

A brief overview about different microcontroller families was given in the 
above sections.  While  this  thesis  is  focused to  embedded software,  are  also 
outlined most  significant  properties from the programmers  point  of  view. In 
programmer's  view, the  most  important  properties  of microcontrollers  are  as 
follows:

1. Memory protection – the presence or absence of  memory protection 
unit determines the complexity of a program development.

2. The size of the memory – mostly, the size of the RAM sets the upper 
limit for the size and complexity of a program.

3. Registers – having more CPU registers allows to write more efficient 
program.

4. CPU clock – for non signal processing or time critical application, in 
most  cases,  CPU frequency does not  play significant  role.  However, 
since lower clock frequency gives significant power saving, it is used in 
several embedded systems.

5. CPU  endianness  –  it  plays  role  when  embedded  system  need  to 
communicate with other systems.

2.3. Programming Languages, Debugging and Development Tools

The following section gives a short overview about programming languages, 
supporting  programs,  debugging  tools,  hardware  for  program  memory 
uploading and hardware for simplification of embedded software development.

2.3.1. Programming Languages in Embedded Systems
This section gives a general overview about programming languages, which are 
used  in  embedded  software  development,  together  with  some  programming 
languages that had importance in history.

Machine Code
It was quite natural that in the first microcomputers a machine code was used 
for programming  [79]. Since machine code programs can be written without 
using computers, this programming method was also used in the very beginning 
of a computer era when there were no computers to write programs. The major 
shortcoming of machine code programming was that the program code had to 
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be entered by hand to a program memory or to a device that held a program, 
which  was  time  consuming  and  prone  to  errors.  In  1970's  when  rapid 
development  of  microcontrollers  began,  relatively  powerful  computers  were 
available, which allowed to use translators or at least had possibilities to write 
them. At the present time it is not known that machine code is being used. It is 
used only for teaching purposes.

Assembly Language
Assembler was the next step from machine code to higher level programming 
languages  [38]. The creation of assembler language was greatly motivated by 
computers  that  were  able  to  run  translators  and  larger  and  more  complex 
programs.

Unlike  the  higher  level  languages,  one  assembler  instruction  is  also  one 
machine instruction and translator does not  change the order of instructions. 
Some translators are able to use preprocessors, it makes possible to use macros 
such as  GCC (C compiler  from GNU Compiler  Collection)  uses.  Assembly 
language  allows  to  translate  symbolic  memory  addresses  into  relative  or 
absolute addresses. For example, Listing  2.1 presents two instruction infinite 
loop, which always jumps one instruction backwards. In this example translator 
changes addresses L1 and L2 into real memory addresses, which may be 0x100 
for L1 and 0x101 for L2.

1:L1: nop       ; no operation
2:L2: jmp L1    ; jump back to nop instruction

Listing 2.1: Example of symbolic addresses.

Depending on the jmp instruction and architecture, the parameter L1 may be 
symbolic or absolute address.

Possibility to create functions that are not feasible in higher level languages 
is the main advantage of the assembly language. For example, when it is needed 
to take maximum performance from a computer, when the compiler does not 
support  some  specific  instructions  or  it  needs  to  create  extremely  small 
programs. In embedded systems use of assembly language several places is not 
uncommon. For example, functions that access the AVR program memory use 
special  program  memory  read  instructions,  which  are  available  only  in 
assembler. Assembler can also be used when it is needed to call no-operation 
nop3 instruction.

Another advantage of assembly language is the possibility to access directly 
the registers, which in higher level languages is more complicated if possible at 
all. Such flexibility gives to a programmer more control over the hardware.

There is a common misconception that assembler programs are always faster 
than  programs  in  higher  level  languages  but  this  is  true  only  for  smaller 

3 Higher level language usually does not have nop instruction, this instruction is most 
likely required for delay loops.
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programs. Lot of programs that are written in C have similar performance as  
similar assembly programs. The argument whether the programs in higher level 
language are faster or smaller is true with non-trivial programs – a program 
should have at least 500 to 1000 effective lines of code in C, and the compiler  
should  also  use  maximum  optimisation,  and  programming  language  should 
allow quite low level hardware access. If all above mentioned conditions are 
met, the C program can be as fast as the same program in an assembly language. 
This  is  mainly  due  to  the  fact  that  code  reuse  and  optimisation  in  a  large 
assembly language  program is  more  complex,  and  it  is  much harder  to  use 
microcontroller  registers  as  effectively  as  higher  level  languages  do;  this  is 
mainly  limited  due  to  human  capabilities.  Of  course,  this  argument  can  be 
relatively easy to  refute  but  doing so would take a  lot  of  time even for  an 
experienced programmer.

Due  to  the  availability  of  higher  level  programming  languages  the  only 
argument for assembly language would be a need to use instructions that are not 
supported  by  a  compiler  or  to  create  small  and  extremely  fast  programs. 
However,  it  is  still  valuable  to  know  assembly  language  at  some  level; 
debugging of embedded software is not possible without knowing it.

C, Ada and Other Procedural Higher Level Languages
Higher  level  languages  (procedural  languages)  were  introduced  mainly  for 
achieving the following goals: to speed up the programming process, to reduce 
the coding errors, and to get more readable programs. Programs in procedural 
languages can be as fast as programs that are written in assembler. However, 
developing,  debugging  and  porting  are  much  easier.  Some  higher  level 
languages, such as C, have several features that can have side effects or are 
implementation defined. Therefore, it is relatively easy to make coding errors,  
which  are  difficult  to  find,  for  example,  pointer  related  bugs.  Furthermore, 
program speed, size and memory footprint are highly dependent on compiler 
and optimisation level.  Debugging from disassembled code may be difficult: 
compilers may eliminate some portions of code, which do not have any visible 
effect, like badly written delay loops.

The most commonly used programming language for embedded systems is 
C. This language was is created by Dennis Ritchie between 1969 and 1973 at  
AT&T Bell  Laboratories  [35]. One of the first  uses of this  language was to 
rewrite  the  UNIX  operating  system,  which  had  previously  been  written  in 
assembly language. C language is quite different from other languages. Unlike 
many higher level languages it has quite low level access to hardware, but it is 
not dependent on underlying hardware, like assembly. The C language design 
provides  constructs  that  map efficiently  machine instructions  to  higher  level 
languages and therefore the language is used in several different applications 
that  were formerly coded in assembly.  It  makes C relatively easy to  use  in 
embedded systems, but the downside is that it is quite complicated to create 
larger programs, which are not directly related to hardware. However, the C 
language allows to use such constructs that have undefined or implementation 
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defined behaviour and it is also possible to use code constructs that are hardly 
understandable  [35]. Therefore it is difficult, but not impossible, to use the C 
programming language in safety critical programs [45]. The main advantage of 
C  languages  is  that  almost  every  platform  has  a  C  compiler  and  most 
microcontroller vendors have tools and supporting documentation.

For  embedded  software  development,  safer  programming  languages,  like 
Ada, are used. Ada was originally designed by a team led by Jean Ichbiah of CII 
Honeywell Bull under the contract of the United States Department of Defence 
(DoD) from 1977 to 1983 in order to supersede many programming languages 
used by  the  DoD.  It  had  built-in  language  support  for  explicit  concurrency, 
offering  tasks,  synchronous  message  passing  and  protected  objects.  This 
language was originally meant for embedded and real-time systems. Ada is not 
so widely spread in 8-bit microcontrollers, mostly because of popularity of C 
and  compiler  support  limitations.  The  first  Ada  port  for  AVR GCC and its 
runtime was released in the mid 2000's. Due to the small number of users who 
use Ada programming language on AVR microcontrollers, the development of 
Ada compiler was quite slow and currently many features are still missing. It is 
quite likely that many features will never be implemented for AVR or similar 
microcontrollers. The main reason for missed features is the small memory and 
low computational power. Therefore it is not reasonable to use Ada's GCC port 
on 8-bit microcontrollers; and using Ada in the context of this thesis was not 
even considered.

For  smaller,  mainly  for  the  8-bit  microcontrollers,  the  C  programming 
language is one of the most frequently used languages; and in some extent the 
assembler is used. All the other languages, except C++, can be considered as 
experimental or too resource demanding.

C++, Ada and Other Translated Object Oriented Languages
Increasing  microcontroller  performance  allows  to  create  more  complex 
programs, that consequently leads to a need of object-oriented languages. The 
most  commonly  used  object-oriented  programming  language  for 
microcontrollers is C++; 20% of projects use it  [86]. The second widely used 
object-oriented  language  is  Ada,  which  falls  within  the  scope  of  a  several  
percent. In larger systems with more powerful microcontrollers, object-oriented 
languages are used in much greater extent. Below the functionality of the C++ 
and Ada,  and the usage of those languages in embedded systems are briefly 
discussed.

C++ was developed between 1979 and 1983 by  Bjarne Stroustrup as  an 
object  oriented  improvement  to  C  [89].  While  C++  is  an  object-oriented 
improvement to C and contains quite resource demanding functions, it is still 
possible to write relatively complex programs that are as fast as C programs,  
even by using inheritance. C++ has two features that may cause problems when 
using  these  in  embedded  systems:  dynamic  memory  allocation  and  virtual 
functions. When using frequent dynamic memory allocation and deallocation, 
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the  new and  delete operators,  it  is  possible  that  the  memory may fragment, 
which consequently introduces quite difficultly detectable bugs, and therefore 
using dynamic memory in embedded systems is not recommended  [72].  The 
second possible source of problems are virtual functions. These functions can be 
overridden during program execution. For calling these functions, indirect calls 
are used that read function addresses from a table in RAM. As microcontrollers 
have limited amount of memory and virtual function table, which is placed into 
RAM,  makes  using  this  feature  in  embedded  systems  problematic.  This 
shortcoming may not  be actual  when using newer compilers as it  is  able to 
devirtualize functions. The good side of C++ is that this language has lot of 
supporting tools like many different UML (Unified Modelling Language) tools 
and unit testing frameworks, which ease the programming significantly.

In embedded systems it is possible to use Ada alongside the C++. The major 
downside of Ada is that this language is used in very limited areas and only few 
compilers support it. The AVR GCC has also unofficial Ada port  [23] but this 
has quite limited functionality.

Using object-oriented languages in smaller  microcontrollers may not  give 
significant benefit. The main advantage is in the complex programs, especially 
where it  is necessary to model some external  process or use unit  tests.  It  is  
necessary to keep an eye on virtual functions and other resource demanding 
functions.

Java and other Interpreted Object Oriented Languages
The interpreted languages have quite big advantage over translated languages. 
One program is able to run without re-compilation on different architectures. All 
interpreted languages have an interpreter as a middle layer between program 
and  hardware,  and  underlying  OS.  This  layer  is  responsible  for  program 
execution. Besides universal program, the interpreter gives one layer security 
between underlying OS and programs; program errors are caught by interpreter. 
It also allows to create and test program in one architecture and run on other.  
Most widely known interpreted languages are Java and Python and both are 
used on larger embedded systems.

Java  was  developed  by  James  Gosling  at  Sun  Microsystems  and  first 
released in 1995. Unlike many other interpreted languages, Java programs are 
compiled  to  architecture  independent  Java  bytecode  and  executed  by  Java 
virtual machine (jvm). The main Java drawbacks are that this language requires 
quite powerful processor to run and initially it was not intended to be used in 
real-time systems.  As Java is  not  designed to perform real-time tasks  it  has 
several  functions  that  have  unpredictable  timings.  The  main  reason  of 
unpredictable  timings is  the  stochastic  delays,  which are  caused by garbage 
collector. The garbage collector is responsible for unused memory management; 
it  might  start  its  tasks at  an unpredictable time  [87].  Some real-time virtual 
machines also exist that do not have such drawbacks [32, 44], but these virtual 
machines  are  not  very  widely  used.  In  soft  real-time  and  non-real-time 
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embedded systems, Java is used in Javelin Stamp microcontrollers and on some 
Lego NXT bricks, and also in Android OS.

Another  well-known  interpreted  language  is  Python  [83],  which  was 
developed by Guido van Rossum in 1991. Unlike Java, the Python has a weak 
type system; the declared data or variables do not have distinct type. Due to the 
weak type  system this  language  is  not  best  suitable  for  embedded systems. 
Weak typing system might  create  hard-to-detect  bugs,  for example,  it  might 
change  numerical  variable  to  string  variable.  The  compiler  is  not  able  to 
determine type conflicts during compilation and therefore it is possible bugs, 
which are caused by invalid conversion, surface during an exploitation phase;  
probably  the  most  well  known  type  conversion  error  was  an  Arianne  5 
accident [54],  although  it  was  not  related  to  weak  types.  The  only  known 
devices  where  Python is  used  are  Telit  GSM/GPRS/3G (Global  System for 
Mobile Communication/General Packet Radio Service/3rd generation of mobile 
telecommunications technology) modems, like GM862 [91].

Both  interpreted  languages  have  similar  independence  of  the  underlying 
platform. However, if the program was developed on a different architecture, it 
might be necessary to carry out additional hardware related testing on a target  
hardware.  Programs  in  both  languages  are  not  well  suitable  for  hardware 
control; programs in Java and Python need some intermediate layer which has 
access to hardware. The layer makes hardware access resource consuming.

Other Programming Languages
In  addition  to  the  above  listed  programming  languages,  there  are  very  few 
alternative programming languages for embedded systems. For Programmable 
Logic Controllers (PLC), ladder diagrams are used most often, which mostly 
describe relay logic and therefore are not suitable for generic programs. Another 
alternative for embedded devices is LabVIEW. This is also not very common 
among programmers, mostly because of the high price and it  uses graphical  
dataflow programming language “G” instead of regular text based programming 
languages.

2.3.2. Supportive Programs
In order to create executable programs, linkers are needed. These programs take 
all compiler generated object files, find missing functions from libraries and put 
them together into one executable file. When the linker creates final executable 
file, the compiler usually calls it automatically; in most cases, programmers do 
not see when linker is called. Even when the user needs to call linker during a 
final compilation step, it is still mostly called through compiler. The compiler 
has more information about  the target  system and it  recognises the types of  
microcontrollers.  The  linker  however  needs  to  know  only  some  of  the 
microcontroller's family information.

For PC programs the linking is the final step in program compilation. Yet 
microcontrollers need one additional step to generate program image from an 
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executable image. A memory image loading is needed because microcontrollers 
do not have such resource or operational system to load executable programs, 
resolve libraries, and place final executable into the right memory. Therefore it 
is required that these steps should be carried out before loading a program into 
microcontroller  memory.  Memory  image  creation  software  is  typically 
distributed within same package with linker. With GNU tools is this program is 
part of binutils package.

2.3.3. Standard Libraries
Typically,  embedded  programs  use  at  least  one  shared  library,  but  unlike 
desktop computers that use dynamic libraries, only static libraries are used.

Programs, which are written in C, most likely use a C standard library: libc. 
In embedded systems,  this  library has quite limited functionality;  it  has few 
resource consuming functions and many string manipulation functions. Quite 
often various functions that are related to floating point mathematics or threads 
are missing. Typically, every smaller (8 or 16-bit) microcontroller family has its 
own  architecture  specific  libc,  AVR  has  avr-libc [99],  MSP430  has 
msp-libc [103] or  newlib [104].  Several  different  libc implementations  are 
available  For  32-bit  microcontrollers,  for  example,  newlib,  uClibc [106], 
dietlibc [100] and EGLIBC [102]. Libc implementations, which are for smaller 
microcontrollers, contain usually some additional functions like delay functions, 
checksum calculations and EEPROM access functions.

In addition to libc, some reusable code is included with the compilers. Every 
compiler version has its own set of functions and with the release of every new 
compiler, additional library functions seem to be added.

2.3.4. Debugging
Testing  and  debugging  in  desktop  computers  usually  takes  same  effort  as 
coding. In embedded systems, however, testing and debugging can take twice as 
much time as coding. This difference is mostly due to the limited development 
tools  and  target  hardware.  Embedded  systems  present  special  problems  for 
programmers as  it  usually  lacks user interfaces and storage media,  which is 
available in desktop computers. These shortcomings make simulators, emulators 
and  in-circuit  software  debugging  tools  essential  for  many  common 
development tasks. The following section outlines some of the most commonly 
used debugging tools.

Simulators and Emulators
For  debugging  smaller  embedded  programs,  it  is  possible  to  use  special 
programs and hardware that emulates target microcontroller.

One possible option to imitate microcontroller is to use special simulation 
software.  The simulator  uses  only  software  to  simulate  target  hardware  and 
therefore  it  is  not  possible  to  use  it  for  real-time  task  simulations.  Many 
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simulators are developed by microcontroller manufacturers and are included in 
their official IDE (Integrated Development Environment), for example, Atmel 
has the AVR simulator in their  Atmel Studio (former AVR Studio). 

Many open source simulators exist: mspsim for the MSP430 microcontroller 
and SimulAVR for AVR microcontrollers. Unfortunately simulators are not very 
widely  used.  The  main  reason  for  this  is  a  relatively  complex  simulation 
process: to examine one specific code fragment it might be necessary to input a  
lot of different input signals in order to reach the desired state. In most cases it  
is done by setting or clearing some graphical interface input fields. This makes 
the use of simulators quite ineffective for large programs. It is reasonable to use 
simulator only when no real target hardware is available or a test program has 
such input values that are impossible in test environment.

More accurate method for debugging a program is to use an emulator:  a 
device  that  is  connected  to  PCB  (Printed  Circuit  Board)  instead  of  a 
microcontroller. Traditionally, emulator has a plug that inserts into the socket 
where the microcontroller chip would normally be placed. Unlike the simulator, 
which is pure software, the emulator is a device that imitates very precisely real 
hardware. Emulators are usually capable of storing full call trace and therefore 
it is possible to retrieve a command sequence that was executed before an error  
occurred.  An emulator  control  software  is  usually  integrated  into  IDE;  it  is 
similar to simulator control software.

As emulators are relatively complicated devices, most of them are produced 
by microcontroller manufacture's and have quite high price. Despite the good 
properties  of  the  emulators,  the  recent  microcontrollers  do  not  have  any 
supporting emulators. This is most likely caused by the fact that most recent 
microcontrollers  have  too  high  clock  frequency  or  have  packaging  which 
contains too many IO lines. This makes it technically difficult to design such 
emulator that acts like a real hardware. In newer microcontrollers, which do not 
have emulators, it is possible to use an ICE (in-circuit emulator).

JTAG, ICE and OCD
An  ICE (in-circuit  emulator)  is  a  hardware  device  that  is  used  to  debug  a 
software of  an embedded system by using its  onboard microcontroller.  This 
term covers all  hardware debuggers, including debuggers that provide access 
using JTAG (Joint Test Action Group – standard test access port) connection to 
on-chip debugging hardware on standard production chips.

In  most  cases,  ICE  uses  JTAG  connection,  mainly  because  that  JTAG 
hardware interface uses  only four  or  five  electrical  signals  and it  is  able  to 
access large amount of microcontroller hardware. In addition to debugging, it is 
possible to use JTAG as a software uploading tool. Although the JTAG is the 
most popular connection type, but microcontrollers may have an alternative to 
JTAG; for  example,  Atmel  uses  debugWIRE interface,  which uses  only  one 
wire, and this alternative interface has the same functionality as the JTAG. The 
ICE, which is connected to MCU, are sometimes called in-circuit  debuggers 
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(ICD), to distinguish the fact that they do not replicate the functionality of the 
MCU but instead control already existing MCU.

In the context of this thesis the OCD4 is the whole debugging system that 
includes ICE as the hardware part, and also has debugger as software part. With 
the OCD it  is  possible to control  and monitor all  microcontroller  interfaces,  
change  values  in  registers,  use  microcontroller  outputs  for  controlling  real 
hardware and execute program step by step. It is also possible to pause program 
execution  and  notify  developer  in  some  predefined  condition;  for  example, 
when  a  program  counter  points  to  some  specific  memory  address.  More 
advanced OCDs [84] allow to watch thread states but architecture used in this 
thesis does not have such support. Typically IDE's also have quite good support 
for OCD; for example, many modern IDE's are capable of binding an ICE sent  
data to a source code, and it is possible to watch program behaviour in higher 
level language like C, which simplifies debugging significantly.

Other Debugging Methods
In addition to above mentioned debugging tools,  two additionally alternative 
methods  exist.  One  is  to  use  the  microcontroller’s  serial  port  for  output  of 
program states,  and another is  to toggle general  purpose IO pin when some 
parameter has changed. Both methods are also described in the Section 4.3.5 – 
Debugging and Testing.

Sending  microcontrollers  output  states  through  serial  port  is  the  easiest 
debugging  method.  When  the  microcontroller  has  other  interfaces  for  data 
outputting, then it is possible to use any other serial interface, like JTAG [7]. In 
most cases only one way communication from microcontroller to developer's 
computer is used. This testing method uses some text or binary data outputting 
command (like printf in C), which may take quite long time and may use some 
kernel functions like interrupt handlers. Data outputting is the main bottleneck 
of this method and therefore it cannot be used in places that are related to print  
functions itself, scheduler, interrupt routines and bootloader. Also, it may have a 
big impact to real-time tasks and most likely change inspected memory function 
requirements. Most often it  is used as ad-hoc debugging tool;  print calls are 
inserted to find and to remove a bug. Should there be no other more effective 
methods  for  monitoring  program  behaviour  then  this  method  is  the  most 
preferred. This is also used widely in hobby projects.

Second  method  for  monitoring  program  behaviour  is  to  use  one  free 
microcontroller output pin. The main idea of this method is to change pin output 
state when a microcontroller program's internal state changes, for example, a 
program executes true branch from if-else sentence. Unlike the other debugging 
approaches, this approach has very low overhead; it needs very few instructions 
to complete, and mostly does not influence any real-time tasks. However, this  
method  is  usable  only  for  simple  programs.  Using  a  proper  measuring 
equipment, it is possible to monitor some time critical functions like measuring 

4 OCD may also refer to software part, which is between debugger and ICE.
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some process duration or synchronisation  [28]. Due to the limitations of this 
simple method it is usable only for very simple programs.

2.3.5. Microcontroller Memory Programming
Before  using a  device,  which  is  fitted with  an  integrated microcontroller,  it  
needs to have a software programmed into its program memory. For smaller 
microcontrollers, it can be programmed by using four different methods: SPI 
(Serial Peripheral Interface Bus), JTAG or similar serial programming, using a 
bootloader or a special memory chip programmer.

Most of the smaller microcontrollers have at least one interface to access 
program memory, typically, these are SPI interfaces. But it is not uncommon 
that some microcontrollers use JTAG interface only, like MSP430. The main 
benefit in using serial programming is that it needs little hardware: only three to 
five  wires  to  connect  from  programming  adapter  to  microcontroller.  This 
method  allows  to  access  program  memory  without  needing  to  physically 
remove any memory chip. The only drawback is the requirement for special  
programming software and adapter. This programming method is also known as 
In-System Programming (ISP).

Another relatively common programming method is using a bootloader. A 
bootloader is a small program that is programmed into microcontroller special 
memory section to enable reprogramming microcontroller program memory. In 
ISP programming mode, the microcontroller acts as an external memory, which 
is  connected to  programmer,  but  when using bootloader,  the  microcontroller 
acts like ISP programmer. It receives a program from a communication interface 
like a serial port, or from an external memory like SD card, and loads it into 
microcontroller  program  memory.  In  most  cases  the  bootloader  can  use 
microcontroller’s  full  functionality.  The  only  limitation  is  the  size  of  the 
bootloader's program, which should be some few kilobytes. In some embedded 
systems the bootloader supports program loading from encrypted images [3, 4]. 
In order to use a bootloader, one should have write access to microcontroller 
program memory. Before using a bootloader, it is required that a bootloader is 
loaded into program memory with methods like SPI or JTAG.

Older microcontrollers, which have external program memory chips, were 
programmed by using special programmes for memory chips. For programming 
an external memory chip, a memory chip which contained a program, had to be 
taken out  and then inserted into a programmer. Similar methods are used in 
larger embedded systems for transferring program from an external  memory 
card like SD card or CompactFlash. Lot of smaller microcontrollers have an 
internal  or  external  program  memory,  which  is  programmable  through 
programming  interface  and  therefore  this  method  is  not  used  widely  on 
microcontrollers.
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2.3.6. Development Boards
During  embedded system development,  some systems have  very  limited  IO 
functionality or do not have suitable hardware for development process. Some 
systems  do  not  have  required  debugging  interfaces  and  some  older 
microcontrollers have only one time programmable memories.  To cope with 
these  shortcomings,  most  of  the  microcontrollers  have  development  or 
evaluation  boards,  which  have  the  interfaces  required  for  debugging  and 
additional memory. The main difference between a development board and an 
end product is that the development boards are intended to be used in laboratory 
environment. These boards usually do not have such enclosure that could be 
used in outdoor environment and many of them do not have a power supply.

Two different types of development boards exist: generic, and for a specific 
product. The generic development boards have less hardware. Generic boards 
have typically lots of different onboard IO connections, but have less supportive 
hardware. The main drawback of this kind of boards is the difficulty to connect 
external high speed hardware; most of the interfaces are unprotected and are 
quite sensible to external electrical interferences. These boards are suitable in  
the beginning of the product development phase for experimenting with some 
isolated function or just for an engineer or for a student who is interested to be 
acquainted with the targeted microprocessor and learn how to program it. The 
best  examples  are  Atmel  8-bit  AVR  development  boards  STK500  [9] and 
STK600 [10]. Both boards support most of the AVR microcontrollers.

Another  kind  of  development  boards  and  modules  are  product  specific 
boards. These contain most required hardware for specific tasks, and also some 
additional hardware for debugging and interfaces for experimenting with other 
electronics. In some cases these can be used as prototyping but usually are not  
usable outside laboratory environment. The best examples in this category are  
the  Texas  Instruments  EZ430,  which  is  a  wireless  development  board,  and 
Atmel Butterfly, which is mainly an LCD development board. Both have one 
microcontroller soldered and the main purpose is to demonstrate one specific 
function.

In  addition  to  above  listed  development  boards,  third  party  development 
boards exist. These are intended to be used with some simple products, which 
do  not  have  very  strict  environmental  requirements,  for  example,  Ethernut 
board [51].

2.4. Conclusions

The Chapter 2 gave background information for the current thesis. The first part 
described embedded systems in general: systems that has one single purpose.  
Different microcontrollers with word lengths of 4, 8, 16, 32 and 64 bits exist. 
The 4-bit microcontrollers are mostly historical. A 64-bit microcontroller is still  
quite new and not widely used. Currently the most popular microcontroller is 
the 32-bit ARM architecture microcontroller, which is used largely in mobile 
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phones  and  tablets  and  as  well  as  other  electronics.  From  the  energy 
consumption  view,  the  8  and  16-bit  microcontrollers  have  very  low  power 
consumption;  however,  some  later  32-bit  microcontrollers  have  similar 
characteristics.  Developments  and  researches  that  were  made  within  current 
thesis are mainly targeting 8-bit microcontrollers.

In embedded systems the most frequently used programming language is C. 
The next  popular programming language is C++ and all other languages are not 
used  so  often.  The  C  language  was  initially  intended  for  rewriting  UNIX 
operational system but it also allows to write quite effectively hardware related 
programs.  The C++ was created as  an improvement  for  C;  this  language is 
much more complicated  but  it  allows  to  write  object  oriented  programs for 
embedded systems that are as effective as similar programs in C.

Additional programs and hardware such as linkers, debuggers, OCDs and 
programmers are also required for embedded software development. Linkers are 
programs  that  take  object  code  and  produce  the  final  executable  program. 
Memory image generation programs are within the same software collection 
with linker. It is possible to use OCD, emulators and simulators for debugging 
embedded  software.  Finally,  a  program  and  hardware  that  is  needed  in 
embedded software development is a programmer and its software that allow to 
upload final program image into microcontroller’s program memory.
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3. CASE STUDY

In following sections a brief overview about usage area of developed methods, 
improvements  and  publications,  which  are  related  to  this  thesis  are  given. 
Primarily, initial development stage and later improvements of new generation 
AtoN on site Telematics Module (in the following texts are used abbreviation 
TM),  are  described.  Many problems,  which  raised  during  the  TM firmware 
development,  were  not  solvable  by  using  commonly  known  software 
development methods. The majority of problems were related to FOTA [65], 
buoy onboard heel angle calculations  [67] and buoy collision detection  [68]. 
Some issues  occurred  during  the  development  of  wave  height  measurement 
application [69]. To ease the TM software development a lightweight profiling 
application  [66] was developed. Also, the methods that  were used in similar 
situations on larger computers did not solve the raised problems. Hence, the 
new methods were required, which were quite specific for TM, but fortunately 
quite universal in order to use in other similar systems.

3.1. Marine Navigation Light Systems

In this section an overview of microcontroller usage in marine navigation light  
systems is given. This section gives a description of Telematics Module. All  
improvements in embedded software development described in Chapter  4 are 
used for development of this module. 

3.1.1. Aid to Navigation and Remote Monitoring Systems
In  maritime  safety,  visual  navigation  light  systems  –  typically  buoys  and 
lighthouses - play an important role. Several different ship based systems that 
utilise  GPS  (Global  Positioning  System)  and  AIS  (Automatic  Identification 
System) are also used. Despite the GPS and AIS based systems, lights based 
navigation is very useful in places where ship speed is quite high, in some cases 
even over 35 knots. It is also required that all such AtoN devices have higher 
reliability characteristics than consumer electronics.

Although  AtoN  navigation  light  systems  have  quite  robust  hard-  and 
software, it is not very rare that some devices may have failures or damages  
from the environment. Most failures are caused by component failure and can 
be repaired by supporting staff. Damages may have several different causes –
damages where humans are involved, like ship and buoy collision or damages, 
damages which are caused by animals or birds, like cormorants or seagulls who 
can  damage  electronic  equipment,  and  damages  that  are  caused  by  natural 
phenomena,  like  storms.  All  of  them  are  handled  like  failures  and  require 
supporting staff intervention. Therefore it  is essential that such devices have 
remote monitoring and control  capabilities  –  AtoN telematics  that  allows to 
inform  ships  and  supporting  staff  about  AtoN  device  state  or  faulty  AtoN 
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devices. Remote monitoring and control mechanisms also allow supporting staff 
to retrieve detailed device information, like battery voltage, buoy heel angle, or 
reconfigure device functionality and even update device firmware.

Also  other  natural  phenomena  like  wind and  waves  may  have  quite  big 
impact to marine safety. Both have similar effect on navigational buoys – they 
decrease navigation light visibility range. Decrease of visibility range is related 
to the physical dimensions of light source, it has vertically very narrow beam 
(mostly because of low energy consumption), and even quite small waves may 
have noticeable effect to visible distance. In installation sites where sea is icing 
in winter times, it is possible that ice pushes buoy to very high heel angle, or 
push it under the ice or drag to another location. Therefore it may be beneficial 
to inform supporting staff about sea or buoy conditions that are caused by high 
waves or ice.

In AtoN devices GSM based solutions, like SMS (Short Message Service) 
messages and GPRS/3G data connections are used for remote monitoring and 
controlling. Also, some systems that are too far from shore use satellite or radio 
communication.  In  receiver  side  there  is  a  monitoring  server,  which  has 
typically  a  database  for  storing  device  operational  history  and  have  device 
controlling capabilities.  Depending on devices and communication interfaces 
server may have additional tasks, like collecting measurement data from buoys, 
calculate  wave  heights,  or  update  AtoN device  firmware.  Monitoring  server 
software is typically quite complicated set of different programs, it has several  
isolated programs – one for communicating to AtoN devices (front end part),  
another  for  user  interface (back-end part),  for  database and for  complicated 
calculations (like wave height processing).

3.1.2. Estonian AtoN System
Typical visual AtoN systems consist of light sources like buoys or lighthouses, 
telematics  modules,  servers,  databases  and user  interfaces.  In  Figure  3.1 an 
AtoN system, which is used in Estonia is described. This system contains also 
synthetic  AIS  radio  network.  In  buoy  a  light  source,  flasher,  GSM/GPRS 
telematics module,  GPS and battery packs are installed.  Similar  systems are 
installed to lighthouses, but there instead of a battery pack some other power 
source, like solar panel, wind generator or connected to power network is used. 
The  main tasks  of  TM in  this  system is  to  monitor  other  devices,  compute 
distance  from  installation  location  to  last  known  location  and  transfer 
monitoring and distance information over GSM/GPRS network to server. Server 
collects  all  messages  from different  buoys  and lighthouses,  stores  important 
information to database and sends buoy operational information to AIS server,  
which  sends  buoy  info  to  AIS  transmitter  network.  The  server  stores  also 
acceleration data and forwards it to wave height calculation submodules, which 
calculate wave heights and store results to the database.
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Similar  AtoN  solutions  with  synthetic  AIS  are  developed  by  several 
manufactures, like Sealite [109], but solutions from different manufactures are 
not compatible with each other.

Also  several  buoy  AtoN  electronics  manufactures  (like  Sabik  [108], 
Tideland [112], Pharos Marine  [107], Zeni Lite Buoy  [113] and SRT Marine 
Technology  [111]) have AIS transmitters,  which can be installed on a buoy. 
Systems that use such transmitter do not need complicated server part, but if  
something goes wrong, it is much more difficult to analyse what has happened 
with buoy, and most cases it is required to send maintenance staff to check the 
buoy. Also such transmitters tend to consume more energy than synthetic AIS 
buoys.

3.2. Telematics Module

The  most  complex  part  in  the  described  AtoN  system  is  TM  (Telematics 
Module).  This  module  is  responsible  for  most  communications  and 
synchronisation tasks. As all described improvements in this thesis are related 
directly  with  TM,  in  following  section  short  overview  about  this  module 
evolvement is given.

3.2.1. History of Telematics Module
Estonian made remote control and monitoring capabilities AtoN telematics was 
introduced  in  1994.  First  telematics  modules  had  NMT  (Nordic  Mobile 
Telephony) modems and in order to report AtoN status to server, it was needed 
to take data call to central phone number. In 1999 NMT network was closed and 
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all  modems,  which  were  installed  to  AtoN devices,  were  replaced by GSM 
modems,  and  as  this  change  involved  only  modems,  most  of  the  software 
remained the same.

Telematics modules with GSM modems were used until 2005. After 2005 
telematics modules were updated with GSM/GPRS modems, and 3G modem 
support was added in 2011. New GPRS modems are able to communicate by 
using a TCP/IP (Transmission Control  Protocol/Internet  Protocol)  connection 
instead of using GSM data calls. In new generation TM also all other electronics 
were replaced. Most notably new microcontrollers were added that had lower 
energy consumption, more computational power and more additional hardware. 
Unlike  the  old  microcontrollers,  which  were  programmed only  in  assembly 
language,  the  new microcontrollers  had C and C++ compiler  support  (GCC 
compiler support), therefore, all telematics module software was rewritten, and 
also a small kernel  was added.  Improvements in programming language and 
kernel made feasible to add several additional functions such as onboard buoy 
heel  angle  calculation  [67],  buoy  collision  detection  [68] and  also  the 
FOTA [65] capability. In 2006, a new front-end server was introduced, which 
was able to communicate over TCP/IP network with new GPRS modems. The 
new  server  also  supported  receiving  raw  acceleration  data  from  telematics 
module, which gave it a possibility to calculate wave heights in special server  
side program. A wave height calculation software [69] was developed in 2010. 
It  is  a separate server  side program that  also exports wave height  data to a  
public web server5.

To  solve  the  problems  that  were  raised  during  the  new  TM  firmware 
development,  significant  research  on  embedded  software  development  and 
testing methods was required. The results of this research are presented in the 
following chapter.

3.2.2. Architecture of an AtoN System
Embedded  systems,  which  are  used  in  above  described  AtoN  system,  are 
composed of several controllers that are connected to the local area network of 
the AtoN site,  while one of  the controllers  is  responsible of communication 
tasks. This is also a gateway to the Remote Control and Monitoring Systems 
(RCMS) central server.

5 Wave heights are computed by the developed method is used by METOC portal, 
which is operated by Marine Systems Institute of Tallinn University of Technology, 
http://on-line.msi.ttu.ee/metoc/.
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A typical  marine AtoN system interconnection is  presented in Figure  3.2 
where TM has several communication tasks and acts like a network gateway, 
and C1, C2, …, Cn are internal controllers in charge for the AtoN site’s mission. 
The main task of a TM is packet forwarding between wireless and local area 
interfaces; a TM may also be configured to fulfil some additional tasks like time 
synchronisation with GPS, certain measurement tasks or even flashing. Internal 
controllers C1, C2, …,  Cn may be navigational lantern flashers, smart power 
supply system controllers, or measurement controllers.

3.2.3. Hardware Design Considerations of Telematics Module
In the beginning of the TM development it was known a priori that the new 
module should at have least the same functionality as previous NMT or  GSM 
Data based modules. Previous TMs had capability for tracking buoy position by 
using  GPS,  sending  module  status  to  central  server,  communicate  to  other 
devices over LAN (Local Area Network), measure analogue input voltages and 
detecting state change on digital inputs.  First  improvement was using a new 
communication channel – previous TM uses GSM data call for transmitting data 
to server, new module uses GPRS connection, which has much higher transfer 
rate and was much cheaper. The rest of the functionality remains largely the  
same  –  lower  levels  of  LAN communication  was  not  changed,  only  some 
communication command parameters on LAN and GPRS link (formerly GSM 
data)  were  added.  In  the  planning stage  it  was  decided  that  microcontroller 
should have least three serial ports – one for GPS, one for LAN, and one for  
GPRS. Therefore it was required also to replace the old HC11 microcontroller  
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with a new AVR family microcontroller, this allows also to use effectively C 
programming language as the main language.

As  Estonian buoys use  batteries  as  a  power  source,  it  was essential  that 
onboard electronics have low power consumption. Therefore it is required to 
use such microcontrollers that have lowest possible power consumption, even if 
this means less computational power and hardware capabilities. Typically are 8-
bit  microcontrollers  suitable  for  AtoN devices,  but  also  some  recent  32-bit 
microcontrollers have similar parameters such as ARM Cortex-M0 and smaller 
AVR32 microcontrollers. In AtoN system 8-bit AVR microcontrollers are used – 
ATMega1280 [7]. The main reason for selection of this microcontroller was that 
most  of  the  AtoN devices  are  developed at  least  a  decade  ago,  and  in  that  
moment no 32-bit microcontrollers that had comparable power efficiency was 
available.  Selected microcontroller  have 8-kB of internal  SRAM, 128 kB of 
program memory, 86 programmable input/output lines, 4 programmable serial 
ports, 5 timers/counters and 16-channel analogue-to-digital converter.

Figure  3.3 shows  relevant  subsystems  of  a  TM  utilised  for  acceleration 
measurement, inclination angle calculation, digital input, LAN monitoring, and 
status/alarm communication tasks, leaving out all parts that are not relevant for 
programmers point of view, i.e. power supply. The central part of TM is MCU, 
which  is  ATMega1280.  TM  has  also  GSM/GPRS  modem,  GPS,  RS-4856 
interface for LAN communication and 4-Mbit external flash memory for storing 
firmware images. MCU analogue inputs are connected to 3-axis accelerometer,  
temperature sensor and voltage input. This device has also several digital inputs 
and  outputs.  All  analogue-to-digital  conversions  have  10-bit  measurement 
values representing voltage levels, and all samples are acquired typically with a 

6 Standard for defining the electrical characteristics of drivers and receivers for use in 
balanced digital multipoint systems.
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20 ms to 100 ms interval, with sequential delays of 0.2 ms between readings. In 
the  current  system  implementation,  the  GSM/GPRS  modem  has  integrated 
TCP/IP stack.  4-Mbit flash memory is  needed for firmware updating – data 
communication is  the slowest  and most  failure prone phase of the firmware 
updating  process,  and  this  external  memory  allows  to  buffer  new firmware 
during update.

3.2.4. Telematics Module Software Design Considerations
In  complex  systems  like  AtoN  systems,  tasks  are  divided  in-between 
submodules [28]. For this purpose, special message passing methods (different 
devices on one network) and shared memory resources (multiple tasks in one 
processor) are used. In AtoN systems, both message passing methods are used – 
there is at least one flasher and TM in buoys, wich is connected through local  
RS-485 network (Figure 3.2). The TM has multiple tasks that communicate by 
using shared memory (Figure  3.4).  Local devices are connected through TM 
and the Internet to front-end server. This network topology is most optimal for  
AtoN devices.  Only  one  device  has  connection  to  the  Internet;  this  reduces 
complexity of flashers and other local area devices.

Every AtoN device, which is connected to local area network, has at least 
two different software modules, one for network and another for AtoN specific 
tasks. Although two modules are bare minimum, typically at least six modules 
are used. For example flasher, which is one of the simplest modules, has one 
additional  software  module  for  external  flash  memory  and  configuration 
memory,  one for AD converter,  one for flasher hardware,  one for local  area 
interface  and  one  for  control  logic  and  shared  memory  (Figure  3.5).  All 
described modules are connected through control logic modules and all message 
passing is realised with shared memory areas. TM has the same architecture but  
it has additional GPS and GPRS modules and does not have flasher module.  
This modular system is relatively easy to develop and to maintain. Basically all 
larger  programs  have  similar  architecture.  All  this  communication  and  task 
slicing is possible with kernel, which has hardware abstraction and separation 
and has special message passing mechanisms.
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By using real-time kernel to share processor resource between tasks on a 
new TM, it was required to decide which programming language to use. Most 
reasonable language for TM was C at that moment. The main reason for C was 
that  GNU  C  compiler  has  quite  mature  support  for  AVR  microcontrollers.  
Assembly language was rejected by experience gained with the older TM; the 
old  module  had  nearly  same  functionality  but  all  software  was  written  in 
assembler,  and assembler does not give any significant advantage over other 
programming languages in such systems.  Other programming languages like 
C+ + and Ada were not seriously considered at this time – C++ compiler was 
not able to compile larger program as effectively as C compiler and Ada did not  
have  support  for  chosen  microcontroller  (GNU  Ada  compiler  and  runtime 
library for AVR was released several years later, and is still quite experimental). 
However, as C++ is grown out from C, it was possible to switch from C to C++ 
with  small  efforts.  Issues  that  surfaced  by  using  different  programming 
languages or migrating from one language to another are described in Section 
4.2 – Programming Languages – C and C++.

Due to the experience gained by previous TM development it was known 
that TM should perform several different tasks, and all were required to execute 
in parallel,  nearly in real-time. To accomplish that,  a complicated super-loop 
program  or  scheduler  was  needed,  which  could  share  processor  resource 
between  different  tasks.  The  idea  of  using  a  super-loop  program  was  not 
considered, instead it was reasonable to use a real-time kernel or scheduler. In 
public  domain  several  different  kernels  exist  and  for  described  TM several 
kernels  were  nearly  suitable.  Writing  our  own  kernel  from  scratch  was 
considered too time consuming, and this option was ruled out. Several kernels 
found in the public domain had quite small memory footprint (FreeRTOS  [85]) 
but had quite limited or no hardware driver layer. In our systems it was required 
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that  hardware part  is  strictly separated from other code.  The separation was 
needed  for  testing,  because  otherwise  it  is  relatively  difficult  to  create  test  
program  either  manually  or  automatically;  such  programs  are  discussed  in 
Section 4.3 – Program Structures and Improvements on Testing. Other kernels 
(like eCos [101]) had a well separated driver layer and lot of supporting kernel 
functions,  but  also  required  relatively  powerful  microcontrollers  –  such 
microcontrollers  have  quite  high  power  consumption  and  relatively  long 
wakeup time from sleep mode,  therefore more powerful microcontrollers or  
kernels were not considered for our systems. Some kernels were also certified 
for IEC61508 SIL 3 level (SafeRTOS [98]), but are quite similar to FreeRTOS 
and target mostly 32-bit microcontrollers. Some microcontroller manufactures 
have also their own kernels, like Texas Instruments, which have TIRTOS [94], 
but those kernels support mostly their own microcontrollers. If kernel supported 
microcontrollers  go  out  of  stock  then  using  same  source  code  on  other 
microcontrollers  is  difficult  as  it  may  have  lot  of  microcontroller  specific 
functions and certainly need porting (if this is allowed by licence policy).

Kernels  that  were  nearly  suitable  for  AtoN  systems  had  two  major 
drawbacks – they did not  have any automatic  power saving support  and no 
thread safe watchdog handling. As AtoN systems are mostly battery powered 
and  should  consume  minimal  amount  of  energy,  it  is  required  that 
microcontroller enters  sleep mode when it  has no tasks to perform. But all 
events that occurred during sleep mode should be completely processed. For  
example,  when  the  serial  interface  receives  any  data  during  sleep  mode,  it  
should be completely received and processed7. Therefore, the only one possible 
way to return from low power mode was by disabling it from interrupt handler. 
Another problem was entering to the sleep mode – decisions that allows to enter 
sleep mode should be based on hardware states; sleep modes are disallowed 
when  any  of  the  microcontroller  communication  interfaces  is  active,  for 
example when the serial port is sending or receiving data. Therefore, a function 
that  set  microcontroller  to  sleep mode should  be aware about  all  peripheral 
hardware states; when some device is active, it is not allowed to enter sleep 
mode.

Another issue with kernels from public domain is lack of support of shared 
watchdog control.  A watchdog timer is required for resetting microcontroller 
when program stays in a state that is not desired, i.e. enters a dead loop after 
encountering a program bug. As a microcontroller has only one watchdog and to 
reset  the  watchdog  it  is  required  to  write  into  special  register  or  execute 
watchdog resetting  instruction,  it  is  possible  to  reset  watchdog  only  in  one 

7 For  this  a  different  communication  protocol  was  required  –  serial  interrupt  is 
triggered  after  one  byte  is  received;  this  first  byte  is  usually  received  while 
microcontroller is  in sleep mode, and therefore at  least  the first  byte is  lost.  To 
receive data, the controller should be woken up from sleep mode, therefore at least 
one dummy byte should be sent from transmitting side, which then will wake up a 
controller.
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thread,  and this thread should take into account other thread states.  Suitable 
solutions for watchdogs are discussed in Section 4.4.2 – Multitasking Programs
and  Watchdog.  Above  mentioned  difficulties  made  it  impossible  to  use  all 
known kernels in AtoN devices.

As writing of our own kernel was too time consuming task, the only choice 
was to take a kernel that satisfies most of the requirements and write missing 
functions. Kernel that satisfies most of our needs was NutOS [51]. This kernel 
has all required features and it was relatively small, but it does not support very 
well different sleep modes and had only basic watchdog handling functions. It 
has also TCP/IP stack and web server and functions for AT command parsing. 
Chosen kernel requires only minimal modifications – it was needed only to add 
automatic  power  saving  modes,  to  improve  watchdog handling  and RS-485 
based LAN driver.

In the next step it was required to choose coding standards and development 
methodology. While TM is a mission critical device8, it is beneficial to follow as 
much as possible best practices in that software development field, including 
using coding standards or guidelines. Unfortunately, any coding or any other 
software  related  standards  or  guidelines  for  devices  that  are  used  in  AtoN 
hardware part were not available at the beginning of the TM development. But, 
in later  stages of the initial  development it  turns out  that  MISRA C (Motor 
Industry Software Reliability Association) coding guideline is nearly suitable 
for this product. In Section 3.3 – Standards are given overview about different 
standards on TM software.

During the first weeks of new TM development, cowboy coding was used. 
After  a  few  weeks  agile  methodology  like  development  was  taken  in  use, 
however, instead using automated testing tools, all testing was done by hand. 
This  testing  methodology  largely  dominates  the  entire  TM  software 
development  cycle,  but  later  when  this  product  was  improved  by  some 
additions, TDD (Test Driven Development) was used in some extent and in one 
TM related product  BDD (Behaviour Driven Development)  was used.  Some 
extensions were added by using waterfall model. In Section  4.1 –  Embedded
Software  Development  Processes different  methods  and  their  suitability  for 
AtoN device software development are discussed.

3.3. Standards

This section highlights relevant standards for embedded software development, 
especially standards that are useful for AtoN device development.

In embedded software development mainly two type of standards are used: 
coding style standards  (guidelines) and standards  that  are  related to  specific 
programming  languages  and  their  capabilities.  Safety  critical  systems  have 
additional safety related standards like IEC61508  [45], and in some software 

8 By the usage area it may be also safety critical, but similar devices are currently 
declared as non safety critical devices.
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developments,  it  is  beneficial  to  follow  ISO9001  quality  management 
standard [35].  In  the  context  of  this  thesis,  the  IEC61508  standard  is  not 
relevant. Currently it is not required that embedded AtoN systems corresponds 
to any safety integrity levels.

3.3.1. Style Guidelines
Coding style  guidelines  are  documents  or  standards  that  are  used mostly in 
larger  projects  where  several  developers  are  involved.  These  guidelines  are 
typically related to organisation, developer group or some product. However, no 
official coding standard, i.e. ISO standard, exists. The main aim of the coding 
standards is to specify coding format so that all developers would write using 
the  same  style.  Same  coding  style  is  mainly  required  to  ease  the  software 
maintenance – a significant amount (50%-90% [11, 24, 57]) of the lifetime cost 
of  a  software goes  to  application maintenance,  and most  of  the  software is 
maintained by several different developers during its lifespan. One of the best 
written  coding  guideline  for  C is  the  NASA C coding  style  guideline  [49], 
which has a quite detailed description of C source code layout. As embedded 
software development is quite a resource consuming task, it  is reasonable to 
ease  this  process  and  use  such  guidelines  when  there  is  more  than  one 
developer.

3.3.2. Coding and Programming Language Standards and Guidelines
Most  programming  languages  and  libraries,  which  are  used  in  embedded 
systems,  contain several  insecure  functions or  have possibilities to construct 
such functions that may have unpredictable side effects  [35, 71, 72]. In safety 
and mission critical systems or programs where testing and maintenance have 
quite  large  proportion  in  program's  overall  development,  it  is  beneficial  to 
disallow  to  use  such  functions.  Therefore,  industry-wide  best  practices  are 
published,  written  as  coding  guidelines.  But  it  does  not  mean  that  when 
following these coding guidelines the resulting program is free of bugs. There is 
even no clear evidence that directly following the guidelines reduces the bug 
rate significantly  [14, 36]. However, it will allow to write more maintainable 
programs in less time.

While  most  AtoN  systems  have  many  mission  and  safety  critical 
characteristics, there are no known specific guidelines meant for this software 
segment. The most suitable guidelines for AtoN software are MISRA C  [71] 
and MISRA C++  [72].  Both are used in automotive industry.  The JSF C++ 
coding standard [55] is used in Joint Strike Fighter F-35 program and in some 
extent,  the  JPL C  coding  standard  [50] is  also  used.  All  listed  guidelines 
discourage  the  use  of  code  constructs  that  produce  hard-to-maintain  code, 
specify naming conventions and commenting style, have rules for complexity 
limits. According to MISRA and other guidelines it is not recommended to use 
such  functions  that  are  able  to  fail  stochastically.  One  of  the  most  notable 
functions  of  this  kind  is  malloc;  it  may  fail  very  unexpectedly  due  to  the 
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unavailability of continuous memory. Since MISRA and similar guidelines have 
relatively simple rules, there are several programs that are capable to check the 
violations of these rules. These programs are mostly lint and its derivatives i.e., 
PCLint.  Alternatively,  it  is  possible  to  detect  large  number  of  violations  by 
setting  appropriate  compiler  flags  or  even  by  using  simple  scripts.  The 
following section describes several programming methods and also note their 
compliance with listed guidelines.

All  the  programming  languages  have  typically  their  own  standards.  For 
example, the C language has an ISO/IEC 9899:2011 standard, which is called 
C11. There are also C89 and C99 standards. The C++ has ISO/IEC 14882:2011 
standard, which is called C++11. These standards describe compiler and several 
library functions. Unfortunately, most embedded compilers do not fully support 
official language standards and may have their own implementations; it is not 
uncommon that  some non-significant  part  from 20 years old standard is  not 
completely supported. However, above mentioned standards are most effective 
in the following cases: when there is a need to create portable program, or when 
a program has to meet some other standard like IEC61508. It is elementary that 
a portable program source code should meet some common standards; it is quite 
rare that two different compilers for different architecture have exactly the same 
functionality and types, even the different versions of compilers may have quite 
different features. Determination of a language standard increase probability to 
detect possible bugs by compiler. In cases when embedded software testing is 
carried  out  on  a  development  computer  and  the  source  code  contains  such 
library functions that are available on both architectures, it is required to specify 
at least a language standard. Meeting the requirements of a language standard is 
also necessary as the program may need to meet some other standards as well.  
This requirement arises in certification process, as certification body needs to 
use the same environment that was used during the development. In rare cases it  
is possible to avoid this requirement but in such cases the decision should be 
justified. For example, when some CPU has only one compiler but this compiler 
does not meet the standards. 

To  conclude  this  subsection  we  can  say  that  in  embedded  software 
development, it is highly recommended to specify a language standard and to 
follow the coding guidelines.

3.4. Challenges in Telematics Module Software Development

This  section describes  problems,  which raised during TM development,  and 
improvements, which were done during the development of a new TM. Also a 
short background information about each improvement is given. The Chapter 4 
presents solutions for every problem.

In the beginning of the TM software development process it was expected 
that bugs may show up during development process, but it was not clear how 
much  and  how  these  bugs  will  affect  overall  development  and  program 
behaviour.  The primary concern was how watchdog behaves when bugs are 
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encountered.  It  is  quite  well  known  how  watchdog  behaves  in  super-loop 
programs, but we did not have any information on how it behaves and how it 
can be controlled in multitasking programs. In first program versions watchdog 
was reset in idle loop, and as expected, when TM software freezes by the result 
of some bug and program has least one sleep functions in frozen code, then 
watchdog was still reset in  idle loop and reset did not occur. During the TM 
software  development  it  turned  out,  that  in  multithreaded  programs  such 
watchdog resetting mechanism was needed which take into account states of all 
threads.  During  development  process  two  different  watchdog  resetting 
mechanism were designed, both are described in Section  4.4.2 –  Multitasking
Programs and Watchdog.

In desktop computer program debugging a wide range of different debugging 
tools  are  available.  However  in  majority  of  cases  in  embedded  software 
development, mainly simple OCD is used. It was complicated to use only OCD 
based methods in TM software development, the OCD shortcomings show up in 
the  very  beginning  of  TM software  development.  Using  OCD for  program 
debugging in software where interrupts are used only few times and running 
program  is  a  super-loop  type  program,  makes  the  use  of  OCD  quite 
straightforward  and it  reduces  significantly  development  time.  However,  for 
more complex programs like multithreaded programs that use periodically at 
least  one  asynchronous  interrupt,  the  OCD  debugging  becomes  quite 
complicated or in some situations even impossible. The main reason for it is that 
significant amount of bugs show up some time after error occurs, such as, most 
stack overflow bugs. When bug shows up some time after it had happened, it is 
not possible to detect the cause of the bug by using simply OCD. In order to  
find out which process was involved when the last error occurred, it is required 
to  track  writes  to  specific  memory  areas.  When  at  least  one  asynchronous 
interrupt  is  allowed,  then  after  firing  it  is  program  counter  set  to  current 
interrupt  handler.  While  program  counter  value  does  not  point  to  observed 
program area, then this in turn it does not allow to use program step-by-step 
walk  through.  Therefore  finding  a  cause  of  bug  in  such  situations  is  quite 
complicated task. In TM development several above described situations were 
encountered.  In  above  described  reasons  the  OCD is  used  occasionally  for 
debugging.  It  is  used  only  in  rare  situations  where  it  is  known  that  any 
asynchronous interrupt can not show up and no threads are started.

To cope with above mentioned OCD shortcomings, two well known methods 
for  debugging  were  introduced  –  first,  predefined  debugging  information 
outputting over serial  line and second,  changing microcontroller  output  state 
depending on program state. Debugging information outputting over serial line 
was  preferred  approach,  but  when  this  approach  is  unsuitable,  output  state 
change monitoring can be used as a backup debugging method. Both are quite 
robust and require a lot of developer interactions, like program recompilation 
and uploading to  microcontroller  memory,  but  unlike OCD it  is  possible  to 
watch  program  states  in  very  different  situations.  As  both  debugging  aids 
require fast communication with hardware, methods were developed that are 
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suitable for this purpose; these are described in Section 4.3.5 – Debugging and
Testing.

The new TM was intended to replace the old HC11 based telematics module 
that  has  different  endianness.  Therefore  it  was also required to  change byte 
order  in  several  places.  Mostly  this  was  needed  for  communication  with 
monitoring server or configuration software, also byte order change was also 
required for  FOTA.  Changing byte  order  effectively is  described in  Section 
4.5.4 – Byte Order Manipulation.

As noted in the beginning of this chapter, TM has a lot of different functions 
and quite wide variety of supported hardware – this module allows to use three 
different  modems  and  two  different  GPS  receivers.  When  major  difference 
between  GPS  receivers  was  serial  interface  baud  rate,  then  modems  had 
completely  different  AT commands  for  TCP/IP connection,  for  entering  the 
power  save  mode  and for  network  selection.  Program that  copes  with  such 
different hardware is most reliable when written using C++. In the beginning of 
the development of TM a reliable C++ compiler for AVR was not available and 
therefore the only choice was to write all software in C using structures and 
functions pointers, which is discussed in Section 4.2 – Programming Languages
– C and C++. Described method is quite well known in non deeply embedded 
systems, but in deeply embedded systems it is used quite seldom. Within this 
thesis one possible way to use such solution effectively in deeply embedded 
systems  is  given;  in  this  solution,  function  pointers  are  placed  to  different  
memory, which allows to reduce microcontroller RAM consumption.

An important improvement in TM software was malloc like function, which 
was backed by memory pool. This improvement was required to cope with the 
drawbacks of standard  malloc – during compilation it is not possible to know 
how much free memory the microcontroller has left, and in several cases it  can 
be  discovered  when  a  program was  loaded  to  microcontroller  memory  and 
started. Developed malloc replacement function uses predefined memory pool; 
this  enhancement allows the compiler,  linker and diagnostic tools to analyse 
memory requirements before a program is loaded to microcontroller memory. 
This improvement is described on Section 4.6 – Dynamic Memory.

During  the  last  development  stages  when  most  TM  functionality  was 
implemented,  it  was  important  that  new functions  take  minimal  amount  of 
microcontroller RAM and stack. One method for limiting memory consumption 
was to use inline functions. While compiler has quite good support for it, this 
support  is  more  likely  targeted  for  larger  systems  –  while  inlining  large 
functions,  compiler  always  warns  about  program growth.  As  it  is  not  wise 
blindly  ignore  the  compiler  warnings,  small  research  was  carried  out  about 
inline code and its peculiarities. Results of this small research are presented on 
Section 4.5.2 – Program Code Inlining.

In later TM versions it turns out that in some TM usage areas it was essential 
to encrypt data. As TM has only 8-bit microcontroller, then only feasible and 
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still enough strong encryption is AES. In this thesis two optimisation methods 
are presented, which can be used with AES encryption when it is used in small  
microcontroller. This work is presented in Section 4.5.5 – Optimisation of AES
Cryptographic Functions.

In TM development  it  was decided to  write  TM software as  modular  as 
possible – at least one module is related directly to hardware and another to 
control  logic;  for  this  case  it  is  reasonable  to  use  different  programming 
languages for different tasks or modules. Also initial TM software was written 
completely in C, but lot of larger improvements were done by using C++. In 
this thesis some methods are given that  allow to use different  programming 
languages  more  effectively  in  one  embedded  program;  this  is  described  in 
Section  4.2 –  Programming Languages  –  C  and C++ and in  Section  4.3 – 
Program Structures and Improvements on Testing.

3.4.1. Later Improvements
Although the initial TM software was quite reliable, still some functions should 
have been implemented in different way, or revealed some bugs. To support bug 
fixes and improvements on fielded devices, it was required to develop FOTA 
capability. To use FOTA with TM it was required to create a new bootloader, 
either which allows to directly load software from server or copying program 
form  external  memory  to  microcontroller  program  memory.  In  TM  it  was 
practical  to  use  the  second  solution  –  TM  has  integrated  additional  flash 
memory that stores several memory images and the bootloader uses an image 
that has been pointed by configuration [65]. This solution allows to store at least 
one working software version and to use it when new version does not work on 
this  controller.  Software  rollback  was  needed  in  cases  when  new  software 
version does  not  work on some specific  controller,  or  a  controller  has  such 
configuration that does not allow to run with new software version. In addition 
to  bootloader  improvements,  small  research  for  testing  super-loop programs 
(Section 4.3.1 – Super Loop Programs) and using watchdog with multithreaded 
programs (Section  4.4.2 –  Multitasking Programs and Watchdog) was carried 
out.

As  FOTA is  used  for  firmware  updating,  it  allows  to  use  programs that 
contain unit tests to test hardware; this feature turned out to be very useful in 
situations  where  TM  had  some  component  failure.  To  use  unit  tests  on 
microcontroller it was required to develop a lightweight unit test framework. 
Although the developed framework can be used for testing PC programs, there 
are  other  frameworks,  which  can  be found in public  domain that  are  better 
suited for this purpose. Using unit tests in embedded systems development is 
discussed in Section 4.3 – Program Structures and Improvements on Testing.

3.5. Heel Angle Calculation and Buoy Collision Detection

Another area where it was possible to use acceleration sensor was heel angle 
calculation [67] and buoy collision detection [68] both operations carried out on 
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microcontroller.  In  collision  events,  buoy  onboard  electronics  may  become 
inoperational quite fast and therefore collision detection and reporting should be 
as fast as possible.

To detect  collisions with a  navigational  buoy,  must  continuously monitor 
acceleration signals from all three axes. Assuming that this method is used only 
with navigational buoys, the sampling period can be set quite low but not below 
20 ms. In a typical buoy installation can be assumed that a collision may appear 
from any direction and therefore must take into account signals from all three 
acceleration axes. To detect a collision event in case of unlimited computational 
resources available, one would calculate the acceleration vector length, taking 
into account all acceleration values, and base the decision on that vector length. 
In our case, the system has rather limited amount of memory and computational 
capability, therefore it is not practical to calculate the vector length; instead, it is 
possible to achieve almost same results by adding up the acceleration values.  
Using only summation, must take into account the fact that during collisions is 
returned much higher resulting acceleration than in case of using acceleration 
vectors; this is usually the case when an impact comes in between two or three 
axes. Due to the specifics of installed TM, it is possible to tolerate errors that  
are introduced by higher acceleration values, also it does not need to get very 
exact collision values, but it is only required to know when acceleration value 
exceeds certain threshold level. Therefore in order to detect collision from total 
acceleration the static (DC) component from obtained signal is filtered out. To 
filter out the DC component an IIR filter is used. After DC level removal, the  
second  stage  of  filtering  is  applied,  which  plays  a  major  role  in  collision 
detection  system.  A  collision  detection  filter  should  be  rather  fast,  with 
acceptable filter delay. In our case of less than 1 second. This filter must be also 
quite robust in order to avoid false collision reports.  Therefore, it was required 
that this filter is partly a pure averaging filter and also a low-pass filter (LP 
filter). 

Figure 3.6 presents a simulation of buoy collision event. For simplification, 
all  three  acceleration  vectors  are  summed  up,  and  the  Earth’s  gravitational  
acceleration  is  subtracted.  Resulting  acceleration  signal  indicates  whether  a 
collision of the buoy with a ship has been encountered. As is shown in Figure 
3.6,  with  sufficient  acceleration  it  is  possible  to  get  collision  events  in 
reasonable time. In that simulation, first event may be recorded 50 ms after the 
first acceleration peak and the second one 400 ms after the first acceleration 
peak. In addition, several tests were carried out where the TM was mounted to a  
heavy object and the test object was hit with another object, i.e.  an artificial 
collision  was  created,  and  the  results  were  comparable  to  the  simulation  in 
Figure 3.6.
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Figure 3.6: Simulated collision [68]

Developed solutions utilises an onboard acceleration sensor;  for  detecting 
collision events acceleration from all axes is time filtered, and when the filtered 
value exceeds a threshold value, a corresponding alarm is issued. 

For heel angle detection autonomous angle calculation was required; when a 
buoy is submerged below the ice (Figure 3.7), then flashing of navigational light 
is no longer required and it can be stopped, but decision for this can be done 
only onboard (when buoy is submerged then is not possible to communicate 
with a server).

Figure 3.7: Buoy in Ice [67]

Calculation  of  the  buoy  inclination  angle  based  on  digitised  real-time 
acceleration data can be performed by using simple trigonometric functions like 
sine or tangent. For systems that have hardware floating point support, the most 
elegant and easiest way would be to use tangent. But in 8-bit embedded systems 
where all numbers have quite small range, the only feasible option is to use the  
sine function.  Inclination angle  was calculated in  two stages:  first  controller 
calculated the intermediate heel angle value, which then was sent to server that  
calculated the remaining angle value. This intermediate value can also be used 
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for  alarm  triggering  in  TM  software.  As  buoy  movement  may  have  great 
influence to calculation outcome, it was required to take this also into account, 
in this case was used acceleration value averaging.

By  developing  above  mentioned  features  some  research  for  limiting 
functions  parameters  was  required  (Section  4.5.1 –  Limiting  Function
Arguments),  unit  tests  and  limiting  program  dependencies  (Section  4.3.2 – 
Minimising  Relations  Between  Submodules).  Large  number  of  function 
argument turns out problems on both calculations – all acceleration calculations 
had real-time constraints, these calculations should be carried out in less than 1 
ms. As the used microcontroller had only 8 kB of RAM and every thread had 
256 to 512 bytes of stack, it was not reasonable to pass acceleration values to 
calculation  functions  by  parameter  coping;  instead  structures  and  pointer 
passing were used. Another issue was with testing; it was not possible to make 
real buoy collisions or measure real buoy heel angle for testing the developed 
methods. Therefore it was required to test in simulated environment, but for 
simulation  was  required  to  separate  hardware  functions  and  limit  all  other 
program dependencies.

3.6. Wave Height Calculation by Using Navigational Buoys

Another research grew out from the additional TM hardware – this module has 
onboard triaxial accelerometer, and TM was able to send acceleration values to 
central monitoring server. It was quite easy to notice that acquired acceleration 
data from buoys have very large periodical component, and this component has 
nearly  the  same period  as  typical  sea  waves  have.  From this  observation  a 
research  for  wave  height  detection  by  using  navigational  buoys  was 
initiated [69].

Proposed method allows to use typical  steel  spar buoys with the with of 
roughly  5  tons  (Figure  3.8).  These  buoys  are  deployed for  around the  year 
operation,  capable  to  withstand ice  conditions.  Chain  moorings  are  used  as 
standard, increasing overall buoy weight by 0.5 to 1.5 tons, and also keeping the 
buoys from riding the waves freely. Since the primary task of these buoys is to 
serve  as  a  source  of  a  navigation  light  signal,  they  are  designed  in  a  way 
allowing only limited wave following.
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Figure 3.8: Steel spar buoy [69]

To obtain wave height values, a buoy acceleration amplitude is used which is 
corrected  by  peak  frequency,  taken  from  FFT  (Fast  Fourier  Transform). 
Developed approach is  similar  to  NDBC (National  Data  Buoy  Center)  [22] 
published  approach,  except  NDBC  method  uses  maximum  amplitude  and 
frequency  to  find  wave  height,  but  the  developed  method  uses  average  of 
acceleration peaks and corrects it by buoy own movement period.

In order to validate the obtained wave height data, the Estonian Maritime 
Administration,  Cybernetica  AS and the  Marine Systems Institute  at  Tallinn 
University  of  Technology have performed trials  since  late  2008 to establish 
feasibility  of  such wave height  measurement  network based on navigational 
buoys. Even if  navigation buoys are not ideal wave following platforms, it is  
still possible to calculate a rather close approximation of the actual wave height 
based on their acceleration. Tests and validation of the wave height estimation 
method  were  performed  in  five  reference  measurement  sessions  in  three 
different locations, each lasting at least two weeks. In all cases the reference  
sensor was deployed at a distance less than 3 nautical miles from the buoys 
under testing (Figure  3.9). Pressure based wave gauge was used for reference 
measurements performed by the Marine Systems Institute at Tallinn University 
of Technology.
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Figure 3.9: Location of navigational buoys hosting the  
acceleration sensors used in the wave parameter measurement  
experiment, and pressure based wave measurement equipment  
used for reference measurements shown with triangles [69].

Results  of  the  comparison  of  reference  and  calculated  wave  heights  are 
good. Measurement periods captured different wind conditions and wave field 
realisations. Two datasets fit with each other very well for waves below 2 m, 
95% of the resulting wave heights differed from the reference wave heights by 
less than 41 cm. In case of wave heights of over 2 m, the maximum difference 
was 86 cm (Table  3.1 and Figures  3.10-3.13),  although the number  of such 
larger wave heights was probably not sufficient for drawing a proper statistical 
conclusion.  Certain  errors  can  be  at  least  partly  attributed  to  the  different 
measurement  and  reporting  intervals  and  sometimes  short  data  acquisition 
periods, with both due to the fact that the primary task of a navigational buoy is  
AtoN signalling.  Nevertheless,  both errors  have almost  negligible impact  on 
measured  wave  heights.  Another  issue  is  natural  variability  on  wave  field, 
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which play role if there is distance between navigational buoy and reference 
measurement site and always it is.

Percentage of calculation results 
within the maximum difference

Maximum difference in calculated significant wave height [m]

Range: 0.0 m to 2.0 m
(21794 reference points)

Range: 2.25 m to 5.0 m
(401 reference points)

68.27% 0.29 0.63

90.00% 0.37 0.78

95.00% 0.41 0.86

95.45% 0.41 0.87

99.73% 0.53 1.10

Table 3.1: Differences between wave height pressure based reference measurement and 
calculated results [69]

Figure 3.10: Results of the first test period on buoy NM157 
(Sept. 2010) [69]

Figure 3.11: Results of the first test period on buoy NM186 
(Sept. 2010) [69]
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Figure 3.12: Results of the second test period on buoy NM157 
(Oct.-Nov 2010) [69]

Figure 3.13: Results of the second test period on buoy NM186 
(Oct.-Nov. 2010) [69]

One outcome of this research was wave height calculation program, which 
take input data from buoys and send processed wave height to a public METOC 
web portal. Wave height calculation program utilises TM as acceleration data 
source – TM that is installed to navigational buoy sends measured acceleration 
data  to  central  monitoring  server  with  predefined  interval.  The  monitoring 
server stores acceleration data and notifies the wave height calculation software 
about new data. After receiving message about new acceleration data, the wave 
height  calculation  program retrieves  new acceleration  data,  calculates  wave 
heights, binds calculated values to geographical location, and sends results to 
database and to a third party server.
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3.7. Conclusions

This chapter provided background information on developed improvements – it 
describes systems that are used for marine visual navigation (AtoN systems).  
The chapter described mainly problems that raised during development of new 
TM. In order to solve these problems, it was required to develop new methods 
in  embedded  software  development.  This  chapter  gave  a  short  descriptions 
about  developed  improvements  to  achieve  design  goal.  The  technical 
descriptions  are  in  the  next  chapter.  The  new  module  replaces  the  old 
communication module, also a new communication channel was taken in use 
and several improvements like buoy heel angle calculation, collision detection 
and wave height measurement were implemented.

AtoN systems, which are used in Estonia, contain buoys, lighthouses, central 
server and synthetic AIS network. In lighthouses and buoys TM is the main 
component; this module is required for transmitting data from AtoN internal 
devices to the monitoring server and it  is  also capable of transmitting some 
monitoring  information,  like  acceleration  data.  Main  part  of  TM  is  a 
microcontroller that is responsible for LAN and GPRS communication; it has 
also several  analogue inputs and GPS. While TM has several  interfaces and 
concurrent  tasks,  a  simplest  way to control  those interfaces  and share  CPU 
resource between tasks is to use a kernel. In TM a heavily modified version of 
NutOS is used.

At  development  of  above  described  module  it  was  required  to  carry  out 
research in embedded software development. Therefore, using watchdogs and 
OCD  in  multitasking  programs,  automated  tests,  programming  languages, 
dynamic memory, inline code and optimisation were researched. In addition to 
research,  methods  were  developed  for  buoy  collision  detection,  heel  angle 
calculation and raw acceleration data transmission to central server for wave 
height  calculation.  All  results  of  described  developments  and  research  are 
presented in the next chapter.
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4. THE ADVANCES IN EMBEDDED SOFTWARE 
DEVELOPMENT

Chapter  3 outlined  problems  that  surfaced  when  developing  a  new  TM 
firmware. This chapter gives solutions for previously mentioned problems, lists 
relevant standards, discusses about the use of different programming languages 
and testing methods, and discusses how testing methods depend on a program 
structure. The chapter also outlines peculiarities about multithreaded programs, 
places where it  is possible use such optimisations that are not achievable by 
compiler,  and  finally,  the  use  of  dynamic  memory.  The  following  section 
presents software development processes that are suitable for the use in low-
power microcontrollers. All the presented improvements are developed during 
TM  and  other  AtoN  devices  software  development  by  researching  optimal 
solutions  for  the  real-time kernel  and supporting libraries.  All  the  published 
papers  use  the  described  solutions  as  supportive  methods  and  required 
improvements. The main field where the described methods best suit are the 8-
bit  and  smaller  16-bit  microcontrollers;  although  same  applies  for  larger 
processors as well.

4.1. Embedded Software Development Processes

This section describes different development processes and outlines the most 
appropriate solutions for embedded systems. For desktop computer programs 
several  different  software development  processes  exist  but  lot  of  them have 
such properties that make them unsuitable for small embedded systems. The 
following  sections  give  an  overview  about  some  software  development 
processes, which are used in AtoN onboard embedded software development. In 
addition to description of software processes, a short overview of the use of 
UML in small embedded systems is also given. Examples of using main parts of 
agile  processes  are  given  –  the  unit  or  automated  tests  on  small  embedded 
systems.  Presented  automated  tests  require  several  improvements  that  are 
described in following chapters – unit testable programs should have minimal 
amount of relations with other code, test programs are usually written in C++ 
and unit testable programs tend to require little more resource than programs 
that do not support unit tests.

4.1.1. Code and Fix – Cowboy Coding
Code and Fix, also known as Cowboy Coding (as used in the context of this 
thesis),  is  a  software  development  philosophy  where  programmers  have 
autonomy  over  the  whole  development  process  –  control  of  the  project's 
schedule,  languages,  algorithms,  tools,  frameworks and coding style  [60].  A 
cowboy  coder  is  usually  a  single  developer  who  has  very  little  or  no 
participation in end-user or management. As this development philosophy has 
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no  formal  management,  it  is  quite  complicated  to  use  it  in  a  commercial 
embedded  project.  However  it  has  also  several  advantages.  In  some  cases,  
mostly  in  smaller  programs,  absence  of  formality  significantly  reduces  the 
efforts  to  develop  a  program.  Therefore  it  is  the  most  optimal  solution  for  
experimenting with new hardware and for prototyping purposes. However, most 
of  the  prototypes  are  later  rewritten  by  using  some  other  development 
philosophy.

In embedded systems, the Cowboy Coding is used quite widely. It is used 
mostly in smaller systems, which are not safety related like hobby or student 
projects or even in smaller commercial projects such as small programmable 
components that have quite limited functionality like a simple voltage regulator. 
It is quite common that this development philosophy is used in early stages of 
large software development. In general, programs that are written by using this 
philosophy are  quite  small,  less  than  500 code  lines  in  C or  less  than  five 
function points9.

4.1.2. Unified Modelling Language
UML is a standardised (ISO/IEC 19501:2005), software modelling language, it 
provides a set of graphic notation techniques to create visual model of object-
oriented systems. The UML combines several levels of modelling techniques, it 
has business modelling, object modelling and component modelling, therefore it 
can  be  used  with  most  processes  throughout  the  software  development  life 
cycle. Although UML is quite universal modelling language, it is not intended 
for embedded and real-time domain, but it has several extensions for this.

While UML has several extensions, which allow it to be used in embedded 
or  real-time  systems,  using  UML  in  small  embedded  systems  is  quite 
problematic.  The  main  reason  for  this  is  that  most  UML tools  use  object-
oriented  languages  like  C++,  and  such  program constructs  require  a  lot  of 
memory or CPU resources. Therefore, microcontrollers where UML is usable 
should have significant amount of RAM and program memory – at least 1 kB of 
RAM and 20 kB of program memory. Also programs that are created by using 
UML, tend to be little slower than other programs where UML was not used. 
Due to the high demand of resources, the UML tools are not widely used in 8-
bit microcontroller software development.

4.1.3. Agile Practices – Test Driven Development and Behaviour 
Driven Development

This subsection provides an example for using unit tests in embedded software. 
This  example  shows  testing  of  input  and  output  functionality;  to  use  this 

9 Function  points  [40] give  relatively  accurate  estimates  for  business  type 
applications  but  not  for  scientific  or  mathematics  applications  [90].  Embedded 
AtoN systems do not contain complicated mathematics and are more like business 
type applications.

63



example in  real  program,  it  is  also required to use similar  methods that  are 
presented in Section 4.3 – Program Structures and Improvements on Testing.

TDD (Test Driven Development) is a software development process where 
tests  are  written  before  writing  the  real  code.  This  process  relies  on  the 
repetition  of  a  very  short  development  cycle:  first  the  developer  writes  an 
initially  failing  test  case,  which  defines  a  desired  improvement,  then  he 
produces the minimum amount of code to pass that test, and finally refactors the 
new code. This methodology ensures that the source code is thoroughly unit 
tested and eventually leads to modularised, flexible and extensible code. BDD 
(Behaviour Driven Development)  is similar  to software development process 
like TDD, but it combines the general techniques and principles of TDD with 
ideas from domain-driven design and object-oriented analysis and design. The 
principal  difference  of  both  methods  is  the  idea  who  write  tests  or 
specifications, in TDD is developer responsibility to write tests,  but  in ideal 
BDD somebody else should write the specifications like business analysts. In 
the following code listing is an example describing one software module, which 
counts input changes and after third change toggles the output. In a TDD case,  
the following unit test is needed for this described requirement:

1:/* Initialization of the test, reset internal registers. */
2:void FnTest::setUp ()
3:{
4:    reset_regs ();
5:}
6:
7:/* Test for six consequentive input changes */
8:void FnTest::six_changes ()
9:{

10:    /* Initial state test. */
11:    CPPUNIT_ASSERT_EQUAL (0, (int)get_output ());
12:    
13:    /* Set input value to 1, check output, it should be 0. */
14:    update_input_val (0x01);
15:    CPPUNIT_ASSERT_EQUAL (0, (int)get_output ());
16: 
17:    /* Same input condition, output should have same values
18:     * as in previous test. */
19:    update_input_val (0x01);
20:    CPPUNIT_ASSERT_EQUAL (0, (int)get_output ());
21: 
22:    /* Same input conditon, output shold have value 0. */
23:    update_input_val (0x01);
24:    CPPUNIT_ASSERT_EQUAL (1, (int)get_output ());
25: 
26:    /* Same as previous test. */
27:    update_input_val (0x01);
28:    CPPUNIT_ASSERT_EQUAL (1, (int)get_output ());
29: 
30:    /* Same as previous test. */
31:    update_input_val (0x01);
32:    CPPUNIT_ASSERT_EQUAL (1, (int)get_output ());
33: 
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34:    /* After setting input value to 1 should output reset
35:     * to 0. */
36:    update_input_val (0x01);
37:    CPPUNIT_ASSERT_EQUAL (0, (int)get_output ());
38:}

Listing 4.1: Simple TDD example.

In the Listing  4.1, the lines 2 to 5 are the internal registers initialisation, 
which are required to ensure that all tests start in the same state. When some 
other tests have been run before, the register states may be nearly unpredictable. 
The rest of the program is test itself (lines 8 to 38): in line 11, initial output state  
is tested, after that, the input register value is updated (lines 14, 19, 23, 27, 31 
and 36) and lastly an outcome after each change is tested (lines 15, 20, 24, 28, 
32 and 37).

While using BDD the following behavioural description needs to be written:

1:/* Behavioural description for imaginary hardware controller. */
2:DESCRIBE(update_input_val, "6 calls to "
3:                           "update_input_val")
4:    /* Reset internal registers, and verify initial
5:     * conditions. */
6:    reset_regs ();
7:    IT ("returns 0 on initial state") 
8:        SHOULD_EQUAL ((int)get_output (), 0) 
9:    END_IT 

10: 
11:    /* Do first input update and verify output, least 6
12:     * test cycles are required. */
13:    update_input_val (0x01);
14:    IT ("returns 0 after first input update") 
15:        SHOULD_EQUAL ((int)get_output (), 0) 
16:    END_IT
17:
18:    update_input_val (0x01); 
19:    IT ("returns 0 after second input update") 
20:        SHOULD_EQUAL ((int)get_output (), 0) 
21:    END_IT
22:
23:    update_input_val (0x01);
24:    IT ("returns 1 after third input update") 
25:        SHOULD_EQUAL ((int)get_output (), 1) 
26:    END_IT
27:
28:    update_input_val (0x01);
29:    IT ("returns 1 after fourth input update") 
30:        SHOULD_EQUAL ((int)get_output (), 1) 
31:    END_IT
32:
33:    update_input_val (0x01);
34:    IT ("returns 1 after fifth input update") 
35:        SHOULD_EQUAL ((int)get_output (), 1) 
36:    END_IT
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37:    update_input_val (0x01);
38:    IT ("returns 0 after sixth input update") 
39:        SHOULD_EQUAL ((int)get_output (), 0) 
40:    END_IT
41:END_DESCRIBE

Listing 4.2: Simple BDD example.

In Listing  4.2, in lines 2 and 3, the test name and short description of this  
specification is described. The specification body is between the lines 4 and 41, 
and the line 41 shows the end of the specification. The line 6 shows register 
initialisations, and in the lines 7 to 9 initial conditions are verified. The line 7 
describes what will be done, the line 8 tests results to given value, and the line 9 
is the last line of this test. Same applies to all other lines which are described  
between IT and END_IT lines. The only difference between TDD is that before 
tested function result are updated input values. The input updating is shown in 
the lines 13, 18, 23, 28, 23 and 37.

The above described test and specification corresponds to the following C 
source code:

1:/* Variable for output port states. */
2:static uint8_t port_state;
3: 
4:/* Counter for tracking input switches. */
5:static uint8_t sw_cnt = 1;
6: 
7:/* Reset all internal registers, this should correspond to
8: * microcontroller reset. */
9:void reset_regs (void)

10:{
11:    port_state = 0;
12:    sw_cnt = 0;
13:}
14: 
15:/* Update output and internal counter accordingly
16: * microcontroller input value (function parameter val). */
17:void update_input_val (const uint8_t val)
18:{
19:    /* Change output only when microcontroller input pin
20:     * has logical high. */
21:    if (val == 0x01)
22:    {
23:        /* Output should toggled after three positive
24:         * input tests. */
25:        if (sw_cnt >= 2)
26:        {
27:            /* Toggle output port bit 0, and set switch counter
28:             * to 0 (initial state) */
29:            port_state ^= 0x01;
30:            sw_cnt = 0;
31:        }
32:        else
33:        {
34:            /* Increase counter that holds number of positive
35:             * input tests. */
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36:            sw_cnt++;
37:        }
38:    }
39:    /* Else not needed.. */
40:}
41: 
42:/* Return state of the microcontroller output port. */
43:uint8_t get_output (void)
44:{
45:    return port_state;
46:}

Listing 4.3: Program code which corresponds to the previous TDD and BDD examples.

The Listing 4.3 defines in the lines 2 and 5 two static variables, where the 
first holds port state and the second is switch counter. The lines 9 to 13 show the 
reset  function,  which  set  port_state and  sw_cnt to  initial  state  and  also 
corresponds to microcontroller reset. In the lines 17 to 40 are functions, which 
were described by test on Listing  4.1 and specifications on Listing  4.2, these 
functions  update  output  register  states  as  described  on  tests  or  behaviour  
description. The lines 43 to 46 show the defined function, which returns port 
state to what was changed by update_input_val function.

Unit  tests  and  behavioural  descriptions  are  mainly  intended  for  testing 
business or control logic, also both allow to lock down the program behaviour 
according  to  specifications.  Unfortunately,  both  are  relatively  difficult  to  be 
used in hardware dependent code. Code that is written to be tested automatically 
(unit  or behaviour tests)  should be hardware independent; this allows to run 
tests  on development computers with different  architecture.  Above described 
tests and testable code can be added to continuous integration server (CI) task 
list. This eases significantly finding of regressions, which may be introduced 
during the development or bug fix process.

As  behaviour  descriptions  are  technically  same  as  unit  tests  then  these 
descriptions are not discussed in the following sections.

4.1.4. Sequential Development Processes or Agile Practices
The  most  effective  software  development  processes  in  embedded  software 
development is the sequential processes where requirements are defined before 
coding such as Waterfall or V-model [40]. Both are sequential processes where 
typically the following phases are followed:  the requirements are defined, then 
software architecture is designed, then the software is implemented, and after 
that follows a verification stage, and finally maintenance. In the V-model every 
step has own testing and verification phase. Above described processes allow 
using UML diagrams in specification or design stage, and in coding stage the 
automated tests can be used to test and lock down requirements.

Above  listed sequential  processes  are  well  suited for  embedded software 
development, especially in mission or safety critical cases, but for non-critical  
software, it is possible to use agile practices [19] including TDD and BDD. In 
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agile  practices  the  most  complicated  task  is  the  software  functionality 
description and documentation writing.  A large number of different  software 
versions may add more maintenance work.  However,  while  using sequential 
processes,  full  specification is  required at  the beginning of the project.  This  
approach is also easier for a customer to understand, as it does not require too 
frequent communication with a developer and it has less different versions of 
programs like agile practices have. The major benefit for using agile practices is  
short development time, which is required to complete a software project.

In embedded software development, all above described models and agile 
practices can be used. If embedded system is not safety or mission critical, it is 
useful  to  consider the  use of agile  practices,  as  in  mission or  safety critical 
systems the software project should be described in high detail. Therefore, it is 
difficult  to  use  only  agile  practices.  In  mission  and  safety  critical  software 
development, program behaviour should be modelled and maximally detailed 
description should be provided before the real program coding starts. This is 
typical for V and waterfall processes. Also, in order to avoid software regression 
bugs and decrease the overall development effort, the code should support fully 
automated testing (unit tests).

4.2. Programming Languages – C and C++

In every software project it is required to decide which programming language 
is  going to be used.  In  this aspect,  the  embedded systems are not  different. 
Although it is possible to use low level programming languages like assembler 
in embedded systems, but mostly the higher level languages like C or C++ are 
used. This section gives the reasons why C or C++ is used and outlines some 
problems that might rise from switching from C to C++.

4.2.1. Main Differences Between C and C++
The following section outlines the main differences of C and C++, which are 
significant factors in several cases when choosing a programming language for 
an embedded system.

In embedded systems development, the C programming language has been 
dominating for decades as the main programming language. Nevertheless in last  
decade the C++ has been gaining popularity as an alternative language to C.  
While C allows to write programs with low level hardware access, then C++ 
also allows to write low level hardware access programs but adds a possibility 
to write object-oriented programs as well. This makes it usable even in small 
embedded projects [86]. Back in 2005, the use of C++ compiler was relatively 
difficult due to the compiler bugs and inefficient code generation, then by 2016, 
there are no significant differences between C and C++ compilers.  The C++ 
compiler  from  GCC  4.9  package,  for  example,  is  capable  of  producing 
programs with nearly the same memory requirements as C compiler. The only 
remaining  issue  with  C++  compiler  in  embedded  programs  are  the  virtual  
functions – compilers and linkers put these tables to RAM (theoretically it is 
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possible to place these tables into program memory). On the other hand, most of 
the embedded programs are quite simple and therefore it is relatively easy to 
write  programs  without  virtual  functions.  With  the  exception  of  virtual 
functions, programs written in C and C++ have similar memory requirements;  
the difference in most of the cases is less than five percent. To illustrate this,  
two simple examples in Listing 4.4 and 4.5 are given. A program size without 
any optimisation differs roughly 10%; a program that  is  written in C is  176 
bytes and a program that is written in C++ is 196 bytes. The same programs that 
are compiled with maximum optimisation, which is typically used in embedded 
systems, have exactly the same size: 148 bytes.

1:#include <stdio.h>
2:
3:/* Function that prints only "Hello World!!!" */
4:static void hello (void)
5:{
6:    (void)printf ("Hello World!!!\n");
7:}
8:
9:int main (void)

10:{
11:    /* Call to function that prints "Hello World!!!" */
12:    hello ();
13:
14:    return 0;
15:}

Listing 4.4: Simple “Hello World” in C – this program has only one function call 
(line 12).

1:#include <stdio.h>
2:
3:/* Simple test class, which is compatible with similar program
4: * written in C. */
5:class HelloWorld
6:{
7:public:
8:    /* Method that prints only "Hello World!!!" */
9:    void hello ()

10:    {
11:         (void)printf ("Hello World!!!\n");
12:    }
13:};
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14:
15:int main ()
16:{
17:    /* Declare and initalize test class. */
18:    HelloWorld hw;
19: 
20:    /* Call to method that prints "Hello World!!!" */
21:    hw.hello ();
22:
23:    return 0;
24:}

Listing 4.5: Simple “Hello World” in C++; this program has one class and one method 
call (line 21). In this example, printf is used for compatibility with C program, in C++ 
mostly insertion operator “<<” are used.

As lot of development tools (most notably UML tools) and libraries (unit 
testing libraries) have support for C++, however, for C there is no support at all 
or it is limited, therefore it is reasonable to write most control logic in C++. It is 
reasonable  to  write  program parts  that  are  related to  hardware in  C,  as  this 
language has several useful additions for embedded programs that lack in C++. 
In several cases, it is not possible to write hardware related programs by using 
object  oriented approach  [82],  therefore  it  makes no sense to  use  C++.  For 
example in  Listing  4.6 there  are  partial  structure  initialisations,  all  structure 
elements  have  value  0xFF,  except  the  elements  1,  3,  and  6,  which  have 
respective values of 1, 3, and 0.

1:#define ARRAY_SIZE 8
2:
3:__extension__ uint8_t array_example[ARRAY_SIZE] =
4:{ 
5:    /* Set all array elements to default value 0xff. */
6:    [0 ... (ARRAY_SIZE - 1)] = 0xFF,
7:
8:    /* Set second element to 0x01. */
9:    [0x01] = 0x01,

10:
11:    /* Set fourth element to 0x03. */
12:    [0x03] = 0x03,
13:
14:    /* Set seventh element to 0x00. */
15:    [0x06] = 0x00
16:
17:    /* All reamining elements have value 0xff. */
18:};

Listing 4.6: Partial structure initialisation.

4.2.2. Using Different Programming Languages In One Software 
Project

In larger embedded programs software parts that have different responsibilities 
are separated from each other: hardware related code, networking code, control 
logic  and other  submodules  are  in  separated  source  or  packages.  The  main 
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reason for separation is the reuse of the code and to simplify testing. It also 
simplifies using different programming languages within same program.

Currently the best working practice for hardware or kernel related code is to 
use the  C programming language.  For  the  higher level  code or code that  is 
visible for the user such as program logic, the best solution is to use the C++ 
programming language. The main reason for doing so is that program parts that 
are written in C can be used with C and C++, but doing this in an opposite is  
usually much more difficult. This approach makes lower level program code 
little more flexible than it would be when written purely in C++. As C is a more 
mature programming language, in some circumstances these functions that are 
written in C, can be a little faster than C++ counterparts. In situations where it is  
needed to use C functions in programs that are written in C++, it is possible to 
write wrapper classes for C functions, which can be placed in C++ header files.  
The Listing 4.7 shows the wrapper class for C functions, lines 10 and 11 declare 
two functions: function_1 and  function_2 which are both written in C; both 
functions are related and should be used as one C++ class. C++ specific code is  
between the lines 17 and 41; those lines define class Functions which have two 
methods, cFunction1 (lines 27 to 30) and cFunction2 (lines 33 to 36); both are 
inlined methods and contain only calls to corresponding C functions. When this 
file is included in C source code the C preprocessor is able to use code between 
the lines  10 and 11 and use this  file  as a regular  C header file.  When it  is 
included to C++ source code the preprocessor and compiler is able to use all 
definitions, including C functions function_1 and function_2.

1:#ifndef __HEADER_H_
2:#define __HEADER_H_
3:
4:#ifdef __cplusplus
5:extern "C" {
6:#endif
7: 
8:/* Functions function_1 and function_2 are C functions that
9: * are realated with hardware or kernel (for example). */

10:extern void function_1 (void);
11:extern void function_2 (void);
12:
13:#ifdef __cplusplus
14:}
15:#endif
16:
17:#ifdef __cplusplus
18:
19:namespace ClassNamespace
20:{
21: 
22:/* Class that contains wrappers for C functions. */
23:class Functions
24:{
25:public:
26:    /* C++ wrapper for function_1 */
27:    void cFunction1 ()
28:    {
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29:        function_1 ();
30:    }
31: 
32:    /* C++ wrapper for function_2 */
33:    void cFunction2 ()
34:    {
35:        function_2 ();
36:    }
37:};
38:
39:}
40:
41:#endif
42:
43:#endif

Listing 4.7: Mixing C and C++.

Similar  language  mixing  techniques  work  with  other  programming 
languages  like  Ada.  Generally,  mixing  programming  languages  does  not 
increase  significantly  program  size,  and  therefore  it  is  well  suitable  in 
embedded systems. This technique is useful in situations where some specific 
task  is  written  in  another  language  than  the  project's  main  programming 
language [82]. But when such language mixing involves assembler, one should 
encapsulate and isolate assembler blocks from other source codes (this is also a 
rule 2.1 of MISRA C [71] and MISRA C++ rule 7-4-1 to rule 7-4-3 [72]).

4.2.3. Alternative Approach for C++ Virtual Function Table
Virtual  functions  are  functions  in  C++  whose  behaviour  can  be  overridden 
within an inheriting class by a function with the same signature. These functions 
allow reducing significantly relations between classes and writing less complex 
code,  which  is  also  much  easier  to  be  tested  and  maintained.  The  virtual 
functions  use  a  special  table:  a  virtual  function  table  (V-table)  that  stores 
function calling addresses.  The C language does  not  have such table  but  in 
several cases, such table would significantly reduce program's complexity. A 
similar approach is used in device drivers. In the following Listing 4.8 a simple 
example of the use of virtual functions for accessing an imaginary hardware is 
shown. A similar approach may be used to write hardware drivers in kernels.

1:/* (Virtual)class that contains skeleton for implementation.
2: * All implementations DevXFunction classes should extend to
3: * this virtual class.*/
4:class Functions
5:{
6:public:
7:    /* Variable for holding some device related state. */
8:    uint8_t state;
9:    

10:    /* Pure virtual class should have virtual destructor 
11:     * also. */
12:    virtual ~Functions () {};
13:
14:    /* Do device specific initialisations. */
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15:    virtual uint8_t init () = 0;
16:     
17:    /* Operations that are common for all devices but each
18:     * device require different implementation. */
19:    virtual uint8_t doSomething () = 0;
20:};
21: 
22:/* Functions for device nr. 1. This class implements all virtual
23: * functions that are defined in Function base class. */
24:class Dev1Functions : public Functions
25:{
26:public:
27:    /* Initialise device 1. */
28:    uint8_t init ()
29:    {
30:        /* ... */
31:        return 0;
32:    }
33:    
34:    /* Do device specific operations. */
35:    uint8_t doSomething ()
36:    {
37:        /* ... */
38:        return 0;
39:    }
40:};
41: 
42:/* Functions for device nr. 2. This class implements all virtual
43: * functions that are defined in Function base class. */
44:class Dev2Functions : public Functions
45:{
46:public:
47:    /* Initialise device 2. */
48:    uint8_t init ()
49:    {
50:        /* ... */
51:        return 0;
52:    }
53:     
54:    /* Do device specific operations. */
55:    uint8_t doSomething ()
56:    {
57:        /* ... */
58:        return 0;
59:    }
60:};
61: 
62:/* Load device handler class by given device number (dev_nr). */
63:Functions *loadFunctions (const uint8_t dev_nr)
64:{
65:    Functions *fn;
66:
67:    if (dev_nr == 1)
68:    {
69:        /* Device with index 1 should use device nr 2 
70:         * functions. */
71:        fn = new Dev2Functions ();
72:    }
73:    else
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74:    {
75:        /* All other devices uses device nr 1 functions. */
76:        fn = new Dev1Functions ();
77:    }
78:
79:    return fn;
80:}
81:
82:int main ()
83:{
84:    /* Retrive device information from external function,
85:     * (device information is stored in database, for
86:     * example) */
87:    const uint8_t dev_nr = getDevNr ();
88: 
89:    /* Load device dependent functions, for that purpose is used
90:     * factory function. */
91:    Functions *dev = loadFunctions (dev_nr);
92:    
93:    /* Initalize device and call device specific functions. */
94:    dev->init ();
95:    dev->state = 1;
96:    dev->doSomething ();
97:    dev->state = 2;
98: 
99:    /* Finally release memory that holds device structure. */
100:    delete dev;
101:
102:    return 0;
103:}

Listing 4.8: Original C++ code.

In the example above, in the lines 82 to 103 is the main function, which 
retrieves  device  identification  by  calling  getDevNr (line  87)  function. 
Identification number is passed to factory function loadFunctions (call on line 
91  and  function  implementation  is  on  line  63  to  80),  which  returns 
corresponding  class:  Dev1Functions or Dev2Functions;  the  rest  of  main 
function uses one of the device classes. Classes Dev1Functions (line 24 to 40) 
and Dev2Functions (from the line 44 to 60) are derived from abstract base class 
Functions (from the line 4 to 20). This base class has two abstract methods, init 
and doSomething, and it also has one variable name state.

In  the  C  language  it  is  possible  to  create  a  program  with  the  same 
functionality by using function pointers and structures: while C does not have 
C++ like V-tables, it allows to write similar tables. As function structures do not 
change during a program execution, it is possible to place this constant table to 
program memory.  The following example in  the Listing  4.9 illustrates  same 
program as in the Listing 4.8, but this program is written entirely in C, and uses 
function pointers.
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1:/* Structure that hold device state and pointers to functions,
2: * init and do_something. */
3:struct _functions_s
4:{
5:    /* Variable for holding some device related state. */
6:    uint8_t state;
7: 
8:    /* Do device specific initialisations. */
9:    int8_t (* init) (void);

10: 
11:    /* Operations that are common for all devices, but each
12:     * device require different implementation. */
13:    int8_t (* do_something) (void);
14:};
15: 
16:/* Define variable that contains above defined function
17: * structure. */
18:typedef struct _functions_s functions_s;
19: 
20:/* Initialise device 1. */
21:static int8_t init_dev_1 (void)
22:{
23:    /* ... */
24:    return 0;
25:}
26: 
27:/* Initialise device 2. */
28:static int8_t init_dev_2 (void)
29:{ 
30:    /* ... */ 
31:    return 0; 
32:} 
33: 
34:/* Do device specific operations. */
35:static int8_t do_something_dev_1 (void) 
36:{
37:    /* ... */
38:    return 0;
39:}
40: 
41:/* Do device specific operations. */
42:static int8_t do_something_dev_2 (void)
43:{
44:    /* ... */
45:    return 0;
46:}
47: 
48:/* Load device specific function addresses to variable dest and
49: * initialise state variable. Device is selected by variable
50: * dev_nr. */
51:void load_functions (void *dest, const uint8_t dev_nr)
52:{
53:    /* Following two structures can be placeed into program
54:     * memory. */
55:    static const functions_s dev_1_functions =
56:    {
57:        0x00,               /* state */
58:        init_dev_1,         /* init */
59:        do_something_dev_1  /* do_something */
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60:    };
61:    
62:    static const functions_s dev_2_functions =
63:    {
64:        0x00,               /* state */
65:        init_dev_2,         /* init */
66:        do_something_dev_2  /* do_something */
67:    };
68:    
69:    if (dev_nr == 1)
70:    { 
71:       /* Device with index 1 should use device nr 2 
72:        * functions. */
73:        (void)memcpy (dest, &dev_2_functions,
74:                      sizeof (functions_s));
75:    }
76:    else
77:    {   
78:        /* All other devices uses device nr 1 functions. */
79:        (void)memcpy (dest, &dev_1_functions,
80:                      sizeof (functions_s));
81:    }
82:}
83:
84:int main (void)
85:{ 
86:    functions_s dev;
87:
88:    /* Retrive device information from external function,
89:     * (device information is stored in database, for 
90:     * example). */
91:    const uint8_t dev_nr = get_dev_nr ();
92:    
93:    /* Load device dependent functions, for that purpose is used
94:     * factory function. */
95:    load_functions (&dev, dev_nr);
96:     
97:    /* Initalize device and call device specific functions. */
98:    dev.init ();
99:    dev.state = 1;
100:    dev.do_something ();
101:    dev.state = 2;
102:    
103:    /* Unlike C++ example we don not need to free the device
104:     * structure, it is placed to the heap and destroyed after
105:     * function return. */
106:
107:    return 0;
108:}

Listing 4.9: Same program in C.

As in the C++ example, the lines 84 to 108 show the program main function, 
which retrieves device identification by calling  get_dev_nr (line 91) function. 
This identification number is passed in the line 95 to function load_functions (it 
is implemented in the lines 51 to 82), which will copy corresponding function 
structures  (dev_1_functions or  dev_2_functions structures)  from  constant 
memory area  into  dev structure  variable.  As  structures  dev_1_functions and 
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dev_2_functions are constant, it is advisable to place these structures in program 
memory,  this  will  save  quite  significant  amount  of  RAM.  The rest  of  main 
function, the lines 98 to 101 use one of the device structures without knowing 
which dev functions structure it uses.

The program examples described above have considerably different sizes – 
example in C language is 112 bytes long and example in C++ is 260 bytes long. 
Both lengths are taken before linker. Such variability of program size is caused 
by  using  different  functions  or  operators  in  the  above  examples.  However, 
considering that  many similar  programs are  used on larger  devices  it  is  not 
essential to have minimal memory footprint. If the size of the memory footprint 
is important, it is more convenient to use the C language anyway.

Similar methods, which are presented in Listing 4.9, are used in kernels for 
calling  hardware  dependent  program  parts;  this  allows  effectively  to  hide 
hardware related code from higher level programs. Although the C++ code has a 
similar functionality as the C code, it is not widely used in kernels. The main 
reason for this is historical; older C++ compilers did not create same effective 
code as C compilers and it did not have any other significant advantage over C 
compilers. While new programs, which are written from scratch and use new 
C++ compiler, is reasonable to write completely in C++. While both examples 
increase code reuse and simplify programs,  it  is  not  advisable to use  above 
described  methods  intensively  in  embedded  systems  as  both  variants  can 
consume significant amount of RAM.

4.3. Program Structures and Improvements on Testing

The  following  sections  describe  different  program  structures  and  required 
improvements that are needed when using similar testing methods in embedded 
systems than are used in desktop computers. Described methods significantly 
simplify automated tests in embedded systems and are grown out from research 
such as developing automated testing frameworks for regression and hardware 
tests by using FOTA [65].

4.3.1. Super Loop Programs
Super-loop programs (sometimes also called main-loop programs) are programs 
where all data processing is done in one loop, which is typically placed into 
main function. In these programs the input data is read by using interrupts or by 
polling inputs. The main difference between super-loop programs and kernel is  
that super-loop programs do not use scheduler and it is typically designed to 
perform  only  one  task,  while  kernel  has  scheduler  that  may  have  several 
separated tasks. The Listing 4.10 shows a simple super-loop example: the lines 
6 and 9 show the hardware initialisation – PORTB pin 0 is set to output and all  
PORTC pins to inputs. The lines 12 to 27 show an infinite loop which reads 
input status from PORTC input 0 (line 15) and switches output pin according to 
input value. Should the input value be logical 1, the output 0 on PORTB is set to 
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logical 0 (line 19), and should the input value be logical 0, the output 0 on  
PORTB is set to logical 1 (line 25).

1:#include <avr/io.h>
2:
3:int main (void)
4:{
5:    /* Initialize port B pin 0 to output. */
6:    DDRB = (1 << PB0);
7:    
8:    /* Set all port C pins to inputs. */
9:    DDRC = 0x00;

10:    
11:    /* Enter to infinite loop. */
12:    while (1)
13:    {   
14:        /* Test port C pin 0. */
15:        if (PINC & (1 << PC0))
16:        {   
17:            /* If port C pin 0 has logial 1, then set port B 
18:             * pin 0 to logial 0. */
19:            DDRB &= ~(1 << PB0);
20:        }
21:        else
22:        {
23:            /* If port C pin 0 has logial 0, then set port B 
24:             * pin 0 to logial 0. */
25:            DDRB |= (1 << PB0);
26:        }
27:    }
28:}

Listing 4.10: Super loop program example.

Typically the writing and testing of a super-loop program is rather simple. 
During testing, mostly are manipulated by the inputs and observed the reactions 
on  the  outputs.  Same is  also  possible  by  using  ICE or  emulator.  The  main 
drawback of this kind of programs is that the program depends mostly on direct  
access to registers, which makes it difficult to create a portable program. Due to 
manual testing, maintenance is also complicated: every change in the source 
code requires a lot of manual testing.

Due to the high amount of manual testing the super-loop programs are usable 
in  smaller  projects.  Typically  such programs have less  functionality  and are 
shorter than multithreaded programs; usually less than 5000 lines of code or 50 
function  points.  It  is  reasonable  to  use  super-loop  programs  in  commercial 
products  and in  projects  where specification  is  available  before  coding.  For 
example in simpler sensor and actuator systems. This program type is widely 
used in hobby projects.

Automatically Testable Super Loop Programs
Larger programs that  are written for PC and are automatically testable have 
minimal amount of relations with other software modules  [58, 80]. The best 
approach for testing super-loop programs is to move body of the main function 
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to separate function, which can be tested independently. Embedded programs 
that  interact  directly  with  hardware  should  have  minimal  or  even no  direct 
hardware relations. This is as a prerequisite for automated testing.

4.3.2. Minimising Relations Between Submodules
In  embedded  software  development,  it  is  possible  to  use  same  methods  to 
decrease  software  cross  dependencies  as  it  are  used  in  desktop  computer 
software  development  –  every  software  module  should  have  only  one 
responsibility.  To illustrate  this,  an example of a program in Listing  4.11 is 
given. In this example tasks are separated from different functions:

1:#include <stdint.h>
2: 
3:/* Hardware initialization. */
4:static inline void io_init (void)
5:{
6:    /* HW specific operations. */
7:}
8: 
9:/* AD converter initialization. */

10:static inline void adc_init (void)
11:{
12:    /* AD converter (HW) specific operations. */
13:}
14: 
15:/* Read one 16 bit sample from AD converter. */
16:static inline uint16_t read_adc (void)
17:{
18:    /* HW specific operations. */
19:}
20: 
21:/* Filter (IIR) for 'smoothing' input data. 'last_value' is last
22: * output value (from this function call). 'new_value' is input
23: * data from AD converter. This function retuns an filtered ADC
24: * value. */
25:static inline
26:uint16_t iir_filter (const uint16_t last_value,
27:                     const uint16_t new_value)
28:{
29:    /* IIR filter code. */
30:}
31: 
32:/* Change microcontroller output value accordingly to parameter
33: * 'v_val'. */
34:static inline void output_ctrl (const uint16_t v_val)
35:{
36:    /* HW specific operations. */
37:}
38:
39:int main (void)
40:{ 
41:    /* Raw value from AD converter. */
42:    uint16_t ad_val;
43:    
44:    /* Value that represents voltage which is based on filtered
45:     * AD values. */
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46:    uint16_t voltage;
47:     
48:    /* Do hardware initilaization. */
49:    io_init ();
50:    adc_init ();
51:    
52:    while (1)
53:    {
54:        adc_val = read_adc ();
55:        voltage = iir_filter (voltage, ad_val);
56:        output_ctrl (voltage);
57:    }
58:}

Listing 4.11: AD converter, IIR filter and output control example.

In Listing  4.11, all AD converter functions are isolated (functions  adc_init 
and read_adc, lines 10 to 19) from filters (function iir_filter, the lines 25 to 30) 
and from the output control functions (function output_ctrl, the lines 34 to 37). 
The lines 39 to 58 show the main function of this program. While in the lines 49 
to 50 the hardware initialisations are called, rest of the program is the main loop 
(lines 52 to 57). In main loop, first the AD converter read function is called (line 
54), then AD converter value is added to IIR filter (line 55) and finally filtered 
voltage value is sent to output function (line 56). This example shows that all  
tasks are partitioned to different functions, which is quite elementary in most of  
software projects; however, this is widely ignored in embedded systems. The 
main reason why the isolation rule is ignored is due to the usage of short calls 
inside hardware specific functions; all calls to hardware registers are typically 
one line long, which is relatively easy to integrate into calling function. The 
major drawback of previous listing is that all hardware dependent functions are 
in the compilation unit as hardware-independent code, and this does not allow 
to write unit tests.

The  following  code  listings  are  modified  versions  of  the  code  from 
Listing 4.11.  These  listings  have  separated  code  for  hardware  dependent 
functions, and also separated code for hardware-independent functions; rest of 
the  code  is  the  same.  The  Listing  4.12 is  a  header  file,  which  contains  all 
hardware dependent function declarations: IO and AD initialisation, AD read 
function  and  output  control  function.  The  Listing  4.13 contains  hardware 
specific  function  implementations  for  functions  that  are  declared  in  the 
Listing 4.12. The Listing 4.14 contains the program’s main function, which uses 
functions that are declared in the hw.h file.

1:/* Header file for hardware specific functions. */
2:
3:#ifndef __HW_H_
4:#define __HW_H_
5:
6:#include <stdint.h>
7: 
8:/* Hardware initialisation function. */
9:extern void io_init (void); 
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10: 
11:/* AD converter initialisation function. */
12:extern void adc_init (void);
13:
14:/* Read one 16 bit sample from AD converter. */
15:extern uint16_t read_adc (void);
16:
17:/* Change microcontroller output value accordingly to parameter 
18: * 'v_val'. */
19:extern void output_ctrl (const uint16_t v_val);
20:
21:#endif

Listing 4.12: Header file for hardware specific functions “hw.h”.

1:/* Implementation of hardware specific functions. */
2:
3:#include <stdint.h>
4:#include "hw.h"
5:
6:/* Hardware initialization function. */
7:void io_init (void)
8:{
9:    /* HW specific operations. */

10:}
11: 
12:/* AD converter initialization function. */
13:void adc_init (void)
14:{
15:    /* HW specific operations. */
16:}
17: 
18:/* Read one 16 bit sample from AD converter. */
19:uint16_t read_adc (void)
20:{
21:    /* HW specific operations. */
22:}
23: 
24:/* Change microcontroller output value accordingly to parameter
25: * 'v_val'. */
26:void output_ctrl (const uint16_t v_val)
27:{
28:    /* HW specific operations. */
29:}

Listing 4.13: File for hardware specific code, “hw.c”, this file has hardware specific 
code.

1:/* Rest of the program. */
2:
3:#include <stdint.h>
4:#include "hw.h"
5: 
6:/* Filter (IIR) for 'smoothing' input data. 'last_value' is last
7: * output value (from this function call). 'new_value' is input
8: * data from AD converter. This function retuns an filtered ADC
9: * value. */

10:static inline
11:uint16_t iir_filter (const uint16_t last_value,
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12:                     const uint16_t new_value)
13:{
14:    /* IIR filter code. */
15:}
16:
17:int main (void)
18:{
19:    /* Raw value from AD converter. */
20:    uint16_t ad_val;
21:
22:    /* Value that represents voltage which is based on filtered
23:     * AD values. */
24:    uint16_t voltage;
25: 
26:    /* Do hardware initilaization. */
27:    io_init ();
28:    adc_init ();
29:
30:    while (1)
31:    {
32:        adc_val = read_adc ();
33:        voltage = iir_filter (voltage, ad_val);
34:        output_ctrl (voltage);
35:    }
36:}

Listing 4.14: The Program’s main file (“main.c”) which does not have any hardware 
dependent code.

In  the  listing  above,  all  relations  between  the  main  program  and  the 
hardware are now separated; this allows to use unit tests on different hardware 
by using mocked hardware. Mocks are created in separate source files and are 
not listed in this document. Testing implementation does not have any hardware 
dependencies but  instead it  has only logging and other functions,  which are 
needed for testing.

Similar  functionality  separation  approach  is  stated  by  several  different 
authors, but none of them mentioned one significant side effect. In most cases,  
functionality  separation  decreases  program  execution  speed  and  increases 
memory footprint, mostly the stack size. Both are caused by function calling 
mechanisms  and  while  they  are  not  significant  for  PC  programs,  they  are 
significant  for  smaller  microcontrollers.  However,  in  order  to  reduce  these 
effects,  all  hardware  dependent  functions  should  be  added  into  the  same 
compilation unit (basically the same code as in the Listing 4.11). There is one 
possibility to achieve this:  define all  hardware dependent  functions as 'static  
inline' and place them into separated header file (the Listing 4.15). 'static inline' 
function  code  is  inserted  into  at  the  place  of  each  function  call  and 
consequently, inlined functions save the overhead of function call but increase 
size of the program memory image.  Increasing memory image is typically not 
as significant as high RAM usage.
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In the following header file is the modification from the Listing 4.12; in this 
file  all  hardware  specific  code  is  defined  as  static  inline.  This  modification 
allows to compile all functions as inline functions, and hw.c file is redundant.

1:/* Implementation of hardware specific functions. */
2:
3:#ifndef __HW_H_
4:#define __HW_H_
5:
6:#include <stdint.h>
7: 
8:/* Hardware IO initialization function. */
9:static inline void io_init (void)

10:{
11:    /* HW specific operations. */
12:}
13: 
14:/* AD converter initialization function. */
15:static inline void adc_init (void)
16:{
17:    /* HW specific operations. */
18:}
19: 
20:/* Read one 16 bit sample from AD converter. */
21:static inline uint16_t read_adc (void)
22:{
23:    /* HW specific operations. */
24:}
25: 
26:/* Change microcontroller output value accordingly to parameter 
27: * 'v_val'. */
28:static inline void output_ctrl (const uint16_t v_val)
29:{
30:    /* HW specific operations. */
31:}
32:
33:#endif

Listing 4.15: “hw.h” with inline functions.

Above described separation has also one downside. While adding functions 
through headers,  such functions  are  also added that  are  not  required in  this 
compilation unit. This has slight incompatibility with MISRA C (rule 8.5 [71]) 
and C++ (rule 0-1-10 [72]) rules.

4.3.3. Stateless Functions
The  main  prerequisite  for  unit  tests  is  that  tested  program should  be  cross 
compileable between different architectures, and have hardware dependencies. 
To create such program, the most effective way is to follow guidelines with 
described methods to achieve high portability.  These guidelines are typically 
MISRA C, MISRA C++, JSF and strictly following C99 or C++11 standards 
adds some portability. Second important aspect is that program does not store its 
states internally;  it  should be stateless  [80].  But  in embedded software such 
stateful functions and variables are used quite widely; mostly these functions 
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are related with EEPROM. Other hardware dependent code parts like interrupt 
processing  can  also  be  considered  as  stateful.  Stateless  functions  play  also 
important role in unit testing. A testing framework may not always guarantee 
the same test order, therefore, with stateful functions when tests are not isolated, 
sequence of the tests should be taken into account. This section describes how 
to separate stateful  code (hardware dependent)  from stateless code (program 
logic part).  In the Listing  4.16,  is  a simplified example of a typical  stateful 
function. In this example is a function that increases the variable i and stores the 
result in the same variable (the line 7). The size of the program in this example  
is 20 bytes, in this and the following examples are used maximum optimisation.

1:void fn (void)
2:{
3:    /* Variable 'i' is stored to constant location in RAM,
4:     * consequently all calls to function fn use "saved"
5:     * variable 'i'. */
6:    static unsigned int i;
7:    i++;
8:
9:    /* Do something with 'i'. */

10:}

Listing 4.16: Function with static variable.

It  is  possible  to  rewrite  a  stateful  function  fn in  several  different  ways 
without  using  internal  static  variable.  In  the  Listing  4.17 (example  in  C 
language), from the lines 5 to 15 is a function that increases static variable from 
static memory area. This variable is passed on function call in the line 19. This  
example requires 20 bytes of program memory.

1:/* This variable is placed to fixed address in microcontroller's
2: * memory. */
3:static unsigned int value_x;
4:
5:void fn (unsigned int *p)
6:{   
7:    /* Increment input value by 1, and store it to temporary
8:     * variable. */
9:    unsigned int i = *p + 1;

10:
11:    /* Do something with i. */
12: 
13:    /* Store temporary variable to fixed memory location. */
14:    *p = i;
15:}
16: 
17:/* This function call take memory location as parameter and
18: * stores it's result to same location. */
19:fn (&value_x); /* Function call */

Listing 4.17: Accessing a static variable through pointer.

 In the Listing  4.18 (example in C language), from the lines 7 to 16 is a 
function that modifies input parameter val and returns the modified result. In the 
line 21 is a call to the function fn; within this call a value is copied from a static 
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variable when the function returns the stored result back to the same variable.  
When this is a static function, then the size of this example is four bytes, but  
when the same function would be called several times or this function is non 
static function, then its size would be probably 20 bytes.

1:/* This variable is placed to fixed address in microcontroller's
2: * memory. */
3:static unsigned int value_x;
4:
5:/* This function only uses input value 'val' and it returns
6: * modified 'val' value, which can used in other places. */
7:unsigned int fn (const unsigned int val)
8:{ 
9:    /* Increment input value by 1, and store it to temporary

10:     * variable. */
11:    unsigned int i = val + 1;
12:
13:    /* Do something with i. */
14:
15:    return i;
16:}
17:
18:/* Call function fn. This function take value_x from static
19: * memory location and stores function return value to same
20: * locaion. */
21:value_x = fn (value_x); /* Function call */

Listing 4.18: Parameter passing example.

In the Listing 4.19 (example in C++), from the lines 6 to 16 is the function 
that change a value that is passed by reference. The function call with reference 
passing is in the line 20. This example is technically similar to the example in 
Listing 4.17, except that the reference variable address cannot be changed. As 
this example is technically the same as the example in Listing  4.17 then the 
program size is 20 bytes.

1:// This variable is placed to fixed address in microcontroller's
2:// memory.
3:static unsigned int value_x; 
4:
5:// This function take input reference and modify its value.
6:void fn (unsigned int &p)
7:{ 
8:    // Increment input value by 1, and store it to temporary
9:    // variable.

10:    unsigned int i = p + 1;
11:
12:    // Do something with i.
13: 
14:    // Store temporary variable to fixed memory location.
15:    p = i;
16:}
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17:
18:// This function call take memory location as parameter
19:// (reference) and stores it's result to same location.
20:fn (value_x); // Function call

Listing 4.19: C++ specific example – changing reference value.

It is possible to write similar functions for EEPROM reading and writing. In 
the Listing 4.20 is an example function of reading data from EEPROM area (the 
line 5), modifying read value (the line 7) and storing the result back to the same 
EEPROM memory location (the line 10). This and all of the following functions 
are directly dependent on the size of the integer types that  used for specific 
microcontroller and functions that access to memory. Therefore it is difficult to 
know the exact program size, but the example functions similar to those of the 
preceding examples have similar sizes.

1:/* This function stores internal states to EEPROM. */
2:void fn (void)
3:{
4:    /* Read value from some predefined EEPROM location. */
5:    unsigned int i = read_eeprom ();
6:
7:    /* Do something with i. */
8: 
9:    /* Write modified value back to EEPROM. */

10:    write_eeprom (i);
11:}
12:
13:fn (); /* Function call */

Listing 4.20: EEPROM read-modify-write function example.

It  is  possible  to  replace above used hard-coded read and write  functions 
(read_eeprom and  write_eeprom)  using  two  following  methods:  conditional 
compilation, and pass pointer to read and write functions.

The program code is  the same as in Listing  4.20 when using conditional 
compilation,  but  every  architecture  and  testing  implementation  has  its  own 
implementation of  read_eeprom and  write_eeprom functions. sing conditional 
compilation is easier to implement - it consumes less memory and processor 
resource, but testing and maintenance is more complicated. The major problem 
is function implementations that are required for testing. These implementations 
may require relatively complicated code for hardware emulation, and this code 
should  include  different  input  and  output  functions  for  testing  purposes. 
Conditional compilation is preferred in smaller systems where relatively simple 
hardware related functions are used, or in cases where program execution speed 
or  low memory consumption is  essential.  This  approach is  most  suitable  in 
interrupt handlers.

It is also possible to use function pointer to isolate stateful code. At first, 
read and write function types are defined (Listing 4.21, the lines 6 and 10):
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1:#ifndef __HEADERS_H_ 
2:#define __HEADERS_H_ 1 
3: 
4:/* Type for read function. This function does not take any
5: * parameters, but returns unsigned integer. */
6:typedef unsigned int (*read_fn_t) (void); 
7:
8:/* Type for write function. This function take unsigned int as
9: * input parameter and does not return any value. */

10:typedef void (*write_fn_t) (unsigned int i); 
11: 
12:/* Function that read unsigned int from predefined memory
13: * location. */
14:extern unsigned int eeprom_read (void); 
15: 
16:/* Function that write unsigned int to predefined memory
17: * location. */
18:extern void eeprom_write (const unsigned int v); 
19:
20:#endif

Listing 4.21: Type definitions for the read and write functions.

Then,  the  read_fn and  write_fn functions  are  implemented  in  a  separate 
source file:

1:#include "headers.h"
2: 
3:/* Function that read unsigned int from predefined memory
4: * location. */
5:unsigned int eeprom_read (void)
6:{
7:    /* Read one byte from predefined EEPROM location. */
8:}
9: 

10:/* Function that write unsigned int to predefined memory
11: * location. */
12:void eeprom_write (const unsigned int val)
13:{
14:    /* Write one byte to predefined EEPROM location. */
15:}

Listing 4.22: Read and write function implementations.

Finally, in the Listing 4.23 is a function that uses above described read and 
write  functions  and  calls  to  a  function  that  is  responsible  for  changing 
EEPROM contents. In the lines 7 to 19 is a function that uses above defined 
read and write functions; in the line 23 is a function that is called when it is  
needed to modify EEPROM contents.
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1:#include "headers.h"
2: 
3:/* Function that read input value by using function that is
4: * passed by read_fn parameter, modify input value and store
5: * result by using function that is passed by write_fn
6: * parameter. */
7:static void fn (const read_fn_t read_fn,
8:                const write_fn_t write_fn)
9:{ 

10:    /* Read input value by using function that is passed by
11:     * read_fn parameter. */
12:    unsigned int i = read_fn ();
13:
14:    /* Do something with i. */
15: 
16:    /* Write function result by using function that is passed by
17:     * write_fn parameter. */
18:    write_fn (i);
19:}
20: 
21:/* Call function fn and use eeprom_read and eeprom_write
22: * functions for input data reading and save. */
23:fn (eeprom_read, eeprom_write); /* Function call */

Listing 4.23: Calls to read and write functions and final call modifying function.

The modified version allow to write tests quite efficiently; it only requires 
different implementation of read and write functions (from the Listing 4.22) on 
different  architectures  but  rest  of  the  code  remains  the  same.  For  testing 
purposes, it is possible to inject different hardware mocking functions  [80] – 
this  was  not  possible  using  conditional  compilation.  The  downside  of  the 
presented  method  is  that  it  uses  function  pointers  and  it  requires  more 
microcontroller memory and CPU resources – on AVR microcontrollers it uses 
at least 4 bytes of stack, and every indirect call with additional memory load 
instructions  requires  several  CPU cycles,  more  than  a  regular  function  call.  
However, this implementation is preferred for use in such places that have a lot 
of relations to different software modules, in non-time-critical sections, and in 
functions that contain control logic. Both described approaches are also usable 
in  places  where  it  is  needed  to  test  interrupt  handling  functions,  but  it  is  
preferred to use conditional compilation instead.

Above  described  approaches  allow  to  use  unit  tests  and  behaviour 
descriptions in embedded programs. It allows to use methods that are heavily 
used in projects that use agile practices. Described program partitioning and 
code refactoring, which is presented in above examples, is not strictly related by 
automated tests, but it allows to create programs that have high maintainability 
and  testability.  The  main  downsides  of  the  presented  methods  are  typically 
increased CPU or memory resource consumption.

4.3.4. Unit Tests on Target Hardware
It is also possible to run unit tests on target hardware. The main advantage of 
this is the absence of modules that emulate hardware. Typically, writing unit 
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tests for target hardware is similar to writing tests for different hardware. The  
only difference is that tests that run on target hardware should be as small as  
possible and not consume significant microcontroller resources. While testing 
on target hardware, tests should send results outside the testing environment, 
i.e., the development computer.

The main usage of this method is in detecting such program bugs that are 
impossible to detect in a different environment. These tests may be integration 
tests as well where a test scenario is previously broadly specified. Generally,  
these tests are more like hardware self-tests than normal unit tests. Unit testing 
on target hardware is not widely spread and currently only one framework is  
known that has support for it – “BSP430 Board Support Package for MSP430 
Microcontrollers”  [12].  In  the  context  of  this  thesis,  this  testing method has 
been used several times with FOTA [65] enabled telematics modules; however, 
it is not very convenient in a regular embedded software development process.

4.3.5. Debugging and Testing
While it is possible to use unit tests in embedded software development, it is not 
possible  to  debug  all  embedded  software  by  using  only  unit  tests.  Even in 
programs where unit testing is heavily used, several different hardware specific  
debugging and testing methods are  employed.  Mostly,  OCD is  used,  but  in 
smaller extent other manual testing tools like simulators and emulators are used.

For  smaller  microcontroller  software  or  bootloader  development,  two 
different types of debugging approaches are mostly used. Firstly, manipulation 
of hardware inputs and then waiting for some state to change, and observing the 
output reaction. Or secondly, using OCD. Both methods require small amount 
of memory and CPU resource, they can also be considered as manual debugging 
methods and need the direct interaction of a developer. To illustrate one manual 
debugging  approach,  an  example  code  is  given  in  the  Listing  4.24.  This 
example involves tracking output  change when some internal  condition of a 
program changes. Similar approach is described in at least one of the embedded 
software related books  [28]. In this example, a microcontroller sets its output 
PB0 to logical one when input parameter has non null value (lines 6 to 13), and 
sets to logical zero when function input value has null value (lines 15 to 21). As 
the output value changing rate depends on the function calling rate and function 
execution  time,  then  with  the  lower  changing rate  it  is  possible  to  visually 
monitor  the  output  states  by  using  an  LED,  which  is  connected  to 
microcontroller output pin. However, for higher calling rates an oscilloscope or 
a logic analyser is required to monitor the microcontroller output.

1:#define MON_PORT PORTB
2:#define MON_PIN PB0
3:
4:void fn_1 (const uint8_t val1)
5:{
6:    if (val1)
7:    {
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8:        /* Some code here. */
9:

10:        /* After executing this brach set monitor pin to
11:         * high level (logical one) */
12:        MON_PORT |= (1 << MON_PIN);
13:    }
14:    else
15:    {
16:        /* Some code here. */
17:
18:        /* After executing this brach set monitor pin to
19:         * low level (logical zero) */
20:        MON_PORT &= ~(1 << MON_PIN);
21:    }
22:}

Listing 4.24: Monitor example.

Another option to the above described approach is to use a serial port for 
debugging data output. When using a serial port, two aspects should be taken 
into account: a program should not change states faster than the hardware is 
capable of transmitting, and the receiving side should be able to receive and 
process data fast enough so that there would be no loss of data.

It  is also possible to use simulators and OCD. A simulator allows to test 
programs without using real hardware, which is a clear advantage when using 
such  microcontrollers  where  it  is  technically  complicated  to  upload  new 
software. To overcome data inputting and outputting problems, OCD is quite 
widely used, which is typically connected to microcontrollers by using a JTAG 
interface. But OCD has also a noticeable drawback: it may alter the program’s  
real-time and asynchronous hardware behaviour  [8]. This makes it difficult to 
use  OCD  with  larger  programs  that  use  a  kernel  and  variety  of  different  
hardware. Nevertheless, for smaller programs without kernel or sophisticated 
interrupt  system,  which  generates  asynchronous  interrupts,  there  are  no 
significant problems with OCD.

As every above mentioned method has its own weaknesses and strengths, all 
methods are used in different places. Debugging methods that involve lot of 
program uploading, like the method that involves output change monitoring, are 
not  usable  in  large systems –  program loading  makes this  method too time 
consuming. Using a simulator is limited by the number of input states. The main 
problem with OCD is asynchronous hardware. All the listed methods have one 
thing in common: they all have a lot of operations that should be carried out by 
a developer, which in turn increases software development time and are error 
prone. With methods described, it is difficult to test programs that are larger 
than 50 function points (5000 lines of code in C), even when these programs are 
written in  a  very modular  way.  Therefore,  it  is  reasonable  to  use  described 
testing method only when no other testing method is available. However, if it is 
possible to use unit tests, one should write all programs to use unit tests.
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4.4. Multithreaded Programs on Embedded Systems

Many embedded systems are designed to execute only one task, but also exists 
also many embedded systems that have concurrently several tasks. In systems 
that are designed for multiple tasks, it is much more complicated to guarantee  
correct hardware access and CPU resource sharing. In following sections are 
described some problems that show up in multithreaded embedded software, 
also are given some solutions for these situations. Described solutions support 
wave height measurements in TM side [69] – for wave height measurements, it 
is needed that one process is active for a long time and that other processes do 
not change its state for the same amount of time. To use such long run process 
on TM, the watchdog should not restart microcontroller by only watching non 
active threads.

4.4.1. Sharing Processor Resource Between Tasks, Schedulers
Real-time programs typically have different tasks that are separated but run as 
parallel processes; such tasks are called threads. Every thread is like a single  
super-loop program – it  has its own memory area and hardware access. The 
only difference in a real super-loop program is that a thread may interact with  
other threads. It can send data from one thread to another, but also every thread 
is  able  to  interfere  with other  threads,  or  may change the state  of  a  shared 
hardware resource.

Threads and multitasking depend on one program part – the scheduler. This 
program part  is responsible for sharing CPU time between different threads.  
Small  embedded systems have typically  two different  types  of  schedulers  – 
preemptive and cooperative. In most cases, only one type of a scheduler is used, 
and  this  should  be  selected  before  program  compilation;  for  example, 
FreeRTOS [85] has such option. With powerful CPU, large memory and not 
very critical timings (i.e., not hard real-time system), there are no significant 
differences between preemptive and cooperative kernels. However, in smaller 
microcontrollers  it  is  more  difficult  to  use  preemptive  kernel.  The  main 
difference in scheduler is the task changing mechanism: a preemptive scheduler 
changes tasks  automatically  after  predefined period,  a  cooperative scheduler 
changes tasks  by user  command (in  most  cases,  a  task change command is 
hidden  to  developer;  these  commands  are  automatically  called  by  other 
functions  like  printf,  which  eventually  waits  for  hardware).  Due  to  the 
differences in task changing mechanism,  preemptive kernels are little bit more 
fault tolerant than cooperative kernels and require more resources. Cooperative 
schedulers,  however,  need  little  more  testing,  take  less  microcontroller 
resources and are simpler to implement.

A preemptive kernel  has  two major  drawbacks.  Firstly,  when a  kernel  is  
configured to change tasks too frequently, it  may take significant amount of  
CPU resources and therefore it may take longer to accomplish some task than 
with  less  frequent  task  switching;  although it  may decrease  response  times. 
Secondly, the kernel needs to have some periodical signal to trigger the task 
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change.  Typically,  in  embedded  systems  a  hardware  timer  is  used  for  that 
purpose. Therefore, it requires one hardware timer and one interrupt10.

But a cooperative kernel has the ability to lock the whole CPU for infinite 
time, or trigger a watchdog in a normal operation. While developing programs 
with cooperative kernel one should take into account that one single task should 
not consume all the CPU's resources. Consuming all CPU resources will lock 
CPU to one task and other tasks cannot be run; this usually freezes the whole 
system. This drawback is the most significant shortcoming, and therefore, this 
kernel type is not preferred on desktop computers.

While the desktop computer operational systems allows a preemptive kernel 
to avoid situations where one faulty program freezes all other programs, then in 
embedded  systems  this  behaviour  may  not  be  the  optimal  solution.  It  is 
preferred in several systems, a full  system freeze and reboot from watchdog 
when one task locks  up.  While  using a  preemptive  kernel  without  complex 
thread monitoring, the rest of a system may be operational for long time after 
one thread freezes. With cooperative kernel all tasks are blocked and a system 
wide watchdog triggers system reboot. In this case, a watchdog may have quite 
simple implementation, and watchdog hardware can be reset from an  idle task.

4.4.2. Multitasking Programs and Watchdog
Typically, most embedded systems have a watchdog circuit, which is used to 
prevent situations where the system may stay in one state for indefinite time.  
Using a watchdog in super-loop programs is relatively easy – it should be reset 
after  all  tasks  in  a loop are  completed;  the  only concern is  that  these tasks 
should not take too long. Using a watchdog timer in multithreaded programs is 
much more complicated – it is not possible to monitor several threads by simply 
using a single watchdog. In a multithreaded system only one process is allowed 
to reset the watchdog timer; the decision about watchdog resetting should be 
based on results of monitoring the state of all threads. Depending on scheduler 
type, it is possible to use different methods for resetting the watchdog. With 
preemptive and cooperative schedulers, it is possible to use watchdog resetting 
by monitoring all threads in parallel, or by methods where an unlock token is 
passed from thread to thread. With a cooperative scheduler it is possible to use 
above mentioned methods and also to reset a watchdog from an idle thread.

For resetting a watchdog by monitoring the threads running in parallel, the 
scheduler and some other periodical routines (i.e. timer interrupt11) should check 
that the last thread or group of threads have modified some of its parameters 
(Figure  4.1), and when no changes are detected then the watchdog resets; an 
example program is given in the Listing 4.25. A parameter which is monitored 
may be some thread related parameter like a stack pointer or program counter or 

10 In some cases it is possible to use real-time clock for this purpose.
11 This  method is  preferred  when  it  is  not  possible  to  use  a  scheduler  for  thread 

monitoring.
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similar parameter, but this parameter should change after every context switch. 
A similar approach is used in FunkOS [27]; it uses time-out for every task and 
all tasks are monitored in a separate process, but this approach requires that all 
tasks have predefined periods for activity.

The  following  program  illustrates  above  described  watchdog  resetting 
method.

1:#define TH1_COMPLETED 0
2:#define TH2_COMPLETED 1
3:#define TH3_COMPLETED 2
4:#define ALL_TREHADS ((1 << TH1_COMPLETED) |
5:                     (1 << TH2_COMPLETED) |
6:                     (1 << TH3_COMPLETED))
7: 
8:/* Variable that hold lock for watchdog access. */
9:uint8_t wdt_lock = 0;

10:
11:THREAD1
12:{
13:    while (1)
14:    {
15:        /* Task which completion is monitored by wdt_lock. Flag
16:         * TH1_COMPLETED set only when task is successfully
17:         * completed. */
18:        wdt_lock |= (1 << TH1_COMPLETED);
19:    }
20:}
21:
22:THREAD2
23:{
24:    while (1)
25:    {
26:        /* Task which completion is monitored by wdt_lock. Flag
27:         * TH2_COMPLETED set only when task is successfully
28:         * completed. */
29:        wdt_lock |= (1 << TH2_COMPLETED);
30:    }
31:}
32:
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33:THREAD3
34:{
35:    while (1)
36:    {
37:        /* Task which completion is monitored by wdt_lock. Flag
38:         * TH2_COMPLETED set only when task is successfully
39:         * completed. */
40:        wdt_lock |= (1 << TH3_COMPLETED);
41:    }
42:}
43:
44:WDT_RESET_THREAD
45:{
46:    sleep (MONITOR_SLEEP_TIME);
47: 
48:    /* Test that all tasks have been set completed bit. Watchdog
49:     * timer is resetted only when this test returns true. */
50:    if (wdt_lock == ALL_TREHADS)
51:    {
52:        /* All tasks have been completed, reset WDT */
53:        wdt_reset ();
54: 
55:        /* Clear also wdt_lock, now is possbile to recheck
56:         * thread states. */
57:        wdt_lock = 0;
58:    }
59:}

Listing 4.25: Parallel watchdog resetting.

In Listing 4.25, is a example program where are used three threads (lines 11 
to 42), these threads are independent from each other. In this listing is also one 
thread that monitors the health of other threads, this thread is responsible for 
resetting watchdog if no activity is detected (lines 44 to 59). All independent  
worker threads perform designated tasks and after task is completed, a complete 
THn_COMPLETED bit  is  set  up  (lines  18,  29  and  40). 
WDT_RESET_THREAD  monitors  that  all  threads  have  set 
THn_COMPLETED bit  (the  line  50).  This  bit  should be  set  by  all  threads, 
otherwise the watchdog hardware will not reset – the lines 51 to 58 will not be 
executed,  and  hardware  watchdog circuit  will  cause  consequent  restart.  The 
downside of this resetting method is the complexity. It requires additional CPU 
and memory resources for every thread and it  is  difficult  to implement it  in 
programs where  threads  have  different  activity  periods  (like  communication 
threads, which are activated occasionally).

Another method for resetting watchdog is to use tokens that are passed by 
work order of threads (Figure 4.2). This implies to clearing of alive bits of the 
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threads – every thread clears its  own alive bit  and sets next  alive bit  of  the  
thread, and finally the watchdog resets when the last thread clears its alive bit.  
For example, if it is known that the first thread performs its tasks always before 
the  second,  and  the  second  thread  will  always  run  before  the  third,  then  a 
watchdog should be reset by the third thread when it  has cleared the second 
thread’s complete bit. But if the second thread does not set alive bit again within 
a period that is required for resetting the watchdog, it will trigger a watchdog 
reset. The following code example  4.26 illustrates above described watchdog 
resetting method.

1:#define TH1_COMPLETED 0
2:#define TH2_COMPLETED 1 
3: 
4:/* Variable that hold lock for watchdog access. */
5:uint8_t wdt_lock = 0;
6:
7:THREAD_1
8:{
9:    while (1)

10:    {
11:        /* Task which completion is monitored by wdt_lock. Flag
12:         * TH1_COMPLETED set only when task is successfully
13:         * completed. */
14:        wdt_lock |= (1 << TH1_COMPLETED);
15:    }
16:}
17:
18:THREAD_2
19:{
20:    while (1)
21:    {
22:        /* Task, which completion is monitored by wdt_lock. Flag
23:         * TH2_COMPLETED is set only when task is successfully
24:         * completed and also THREAD_1 has set TH1_COMPLETED
25:         * flag (i.e. this thread is also successfully completed
26:         * its tasks).*/
27:        if (wdt_lock & (1 << TH1_COMPLETED))
28:        {
29:            wdt_lock |= (1 << TH2_COMPLETED);
30:            
31:            /* Release TH1_COMPLETEF flag. This flag is set by
32:             *  THREAD_1. */
33:            wdt_lock &= ~(1 << TH1_COMPLETED);
34:        }
35:    }
36:}
37:
38:THREAD_3
39:{
40:    while (1)
41:    {
42:        /* Reset watchdog timer only when THREAD_2 has set
43:         * TH2_COMPLETED flag  (i.e. this thread is also
44:         * successfully completed its tasks). */
45:        if (wdt_lock & (1 << TH2_COMPLETED))
46:        {
47:            /* Reset the watchdog timer. */
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48:            wdt_reset ();
49:
50:            /* Release TH2_COMPLETEF flag. This flag is set by
51:             * THREAD_2. */
52:            wdt_lock &= ~(1 << TH2_COMPLETED);
53:        }
54:    }
55:}

Listing 4.26: Serial watchdog resetting.

In the listing above is a program example with three independent threads; the 
only communication between the treads is a shared variable wdt_lock. The only 
requirement for this program is that all threads run sequentially, first runs thread 
no. 1 (lines 7 to 16), then no. 2 (lines 18 to 36) and lastly, thread no. 3. (the lines  
38 to 55). For resetting watchdog, the following steps are taken: the first thread 
completes its tasks and sets the bit TH1_COMPLETED (line 14) in  wdt_lock 
variable; then second thread completes its tasks and checks that the first thread 
has  permitted  (test  that  TH1_COMPLETED  bit  has  set)  to  set  the  bit 
TH2_COMPLETED (lines 27 to 34). Setting the bit TH2_COMPLETED clears 
also  the  TH1_COMPLETED  (the  line  33)  bit.  In  the  last  step  when  the 
TH2_COMPLETED bit is set and the third thread has completed all tasks, the 
watchdog timer can finally reset (lines 45 to 53). If the TH2_COMPLETED bit  
is not set, the watchdog will reset in the next watchdog resetting cycle; this also 
clears  the  TH2_COMPLETED  bit  (line  52).  Presented  watchdog  resetting 
mechanism allows to monitor all threads by using a single hardware watchdog. 
Should at least one thread freeze, the reset will be carried out by hardware.

The  two  examples  above  are  both  similar  in  terms  of  CPU  resource 
requirements and program memory or RAM utilisation.

Third and the simplest method is to reset the watchdog without monitoring 
all  threads  directly;  instead,  an  idle thread  should  be  used  for  resetting  the 
watchdog. This is usable only with a cooperative kernel – in most situations 
where one thread freezes, all CPU resources will be taken and therefore the idle 
thread  is  not  able  to  reset  the  watchdog timer.  The  only  problem with  this 
approach is that when a faulty thread has at least one sleep instruction, which 
allows the  idle thread to regularly reset the watchdog timer, is not possible to 
use this method for resetting the system by the watchdog.

To conclude this section, the best watchdog resetting methods are parallel 
thread monitoring and sequential monitoring, and in some rare cases where the 
program execution order is not defined, it is possible to use a mixture of both 
methods. The easiest way to reset a watchdog is to reset it from an idle thread, 
which is reasonable to use in smaller programs; in larger programs it is difficult 
to use and serial or parallel watchdog resetting is preferred.
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4.5. Common Optimisations Methods for Embedded Systems

While the compiler technology is constantly advancing, the modern compilers 
are able to create very well optimised program code by using several different  
optimisation  techniques.  However,  still  some  special  source  code  constructs 
may have significant impact on the program execution speed and size. Code 
optimisation by compiler is unfortunately limited by relatively simple methods 
like  loop  optimisation,  dead  code  removing  and  reordering  statements  [99]. 
Generally, the optimisation that has highest net impact to program execution 
speed  is  carried  out  by  the  compiler,  but  some  optimisations  remain  on 
developer's responsibility. The following sections describe improvements that 
allow  to  decrease  significantly  memory,  CPU  or  IO  resource  consumption. 
Described  improvements  were  necessary  to  enable  resource  consuming 
calculations  on  a  buoy  system  onboard  microcontroller.  These  calculations 
include  heel  angle  calculations  [67] and  buoy  collision  detection  [68];  also 
methods that are used for data outputting when profiling buoy behaviour are 
described [66].

4.5.1. Limiting Function Arguments
Data is passed to functions mostly by using parameters, which add overhead to 
a  program.  In most  cases  registers  are  used for  parameter  passing.  but  also 
RAM is used. Both methods consume a noticeable amount of microcontroller 
resources. Furthermore, functions that have a large number of parameters have 
typically  several  different  responsibilities,  which  make  program  testing  and 
maintaining more complicated; typically, every function parameter adds at least 
one test case. Therefore, depending on the coding style, maximum number of 
parameters is limited between 3 to 5 [58].

Although functions should have minimal amount of parameters, still many 
functions exist that use a large number of parameters.  Several functions that  
require more than three parameters were used in TM software for acceleration 
data  processing  [65,  67] –  three  parameters  for  acceleration  values,  each 
acceleration value was two bytes long, and one parameter for timestamp, which 
is a four byte value; all together take up 12 bytes of stack or RAM. However, to 
overcome the overhead caused by a large number of parameters, it is possible to 
implement parameter passing by structure pointer passing; in case of 8-bit AVR 
microcontroller this takes two bytes of memory. In the following example (the 
Listing 4.27) is such situation where a function with four parameters is needed.

1:/* Structure for parameters. */
2:typedef struct
3:{
4:    uint8_t v1;
5:    uint8_t v2;
6:    uint8_t v3;
7:    uint8_t v4;
8:} params_s;
9: 
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10:/* Function that require several parameters. */
11:void fn (params_s *par)
12:{
13:    /* Do something with passed parameters. */
14:}
15:
16:void caller (void)
17:{
18:    /* Fill structure that holds parameter values. */
19:    params_s par = {1, 2, 3, 4};
20: 
21:    /* Call function that uses large number of parameters, pass
22:     * parameter strucuture by pointer. */
23:    fn (&par);
24:}

Listing 4.27: Parameters passed by structure.

In the listing above, first the structure params_s (the lines 2 to 8) is defined 
that contains parameters that will all be passed to function  fn (the lines 11 to 
14).  This  structure  holds  four  parameters  and  passing  the  structure  is  
implemented as passing a pointer to the structure memory area. On the lines 16 
to 24 is a function that calls the function fn, and passes four parameters to fn. If 
this example would have been implemented to pass four different variables to 
functions  fn, the function fn would take four bytes of stack, however, using a 
pointer it would take only two bytes.

It is worth to note that in C++ where references are implemented as pointers, 
it is recommended to pass objects as references. This is much more effective 
than pass by value – a copy constructor [61] is always called when an object is 
passed by value.

4.5.2. Program Code Inlining
The best way to decrease usage of microcontroller CPU and stack resource is to 
change smaller functions to inline functions. Inline functions are functions that 
are  copied  to  places  where  the  call  to  specified  function  is  located.  Such 
technique reduces  significantly  CPU and stack  usage  and also  increases  the 
program execution speed.  Best  candidates for inlining are functions  that  are 
only  one  line  long  –  these  functions  are  typically  only  several  machine 
instructions long (Listing 4.28). It is not reasonable to consider these functions 
as  real  functions.  In  a  program  example  (Listing  4.28),  an  inline  function 
set_output is defined (lines 5 to 11), which sets microcontroller’s PORTB state 
to logical 0 (line 10) or to logical 1 (line 8), depending on input parameter. This 
function was called by two different functions, first by init_output (lines 15 to 
22) and secondly by main (lines 24 to 42). When called first time (line 21), it is 
possible to optimise this function in such a way that only this code is compiled 
that  was in a  true branch – this function uses a  constant  parameter and the 
compiler allows to ignore the code parts that are not required. If the set_output 
function had been written as non-inline function, then in the line 21 the call  
instruction would change to real function, which has exactly two branches like 
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in the function on lines 5 to 11. The second call to set_output function is on the 
line 40, but in this case, it is not possible to predict which branch is needed and 
therefore the whole set_output function is copied to this location.

1:/* Function which change output port state accordingly to input
2: * parameter 'val'. When parameter val is non null then port B
3: * pin 0 is set to high level, when parameter is null then port
4: * B pin 0 is set to low level. */
5:static inline void set_output (const uint8_t val)
6:{
7:    if (val)
8:        PORTB |= (1 << PB0);
9:    else

10:        PORTB &= ~(1 << PB0);
11:}
12: 
13:/* Initialise output port, and set port B pin initially to low
14: * level. */
15:static inline void init_output (void)
16:{
17:    /* Set port B pin 0 to output. */
18:    DDRB |= (1 << PB0);
19:
20:    /* Set output initially to high. */
21:    set_output (1);
22:}
23: 
24:int main (void)
25:{
26:    /* Variable for temporary output value. */
27:    uint8_t output_value;
28:    
29:    /* Initialise output port. */
30:    init_output ();
31:
32:    while (1)
33:    {
34:        /* Some code. */
35:        
36:        /*  get_output_value give new value to output. */
37:        output_value = get_output_value ();
38:        
39:        /* Change output state. */
40:        set_output (output_value);
41:    }
42:}

Listing 4.28: Using inline functions.

When inlining larger functions, and if these functions are used in several  
places, then in most cases, the compiler warns about code growth. In embedded 
systems where programs are executed from program memory (typically from 
flash  memory),  the  increased  program size  is  irrelevant  in  most  cases.  For 
example, the ATMega1280 microcontroller has 128 kB of program memory and 
8 kB of  RAM, and it  is  not  uncommon that  programs that  take half  of  the 
program  memory  require  most  of  the  target  microcontroller  RAM.  In  such 
system, it is reasonable to use inline functions as much as possible and it may 
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be necessary to suppress compiler warnings, which notify about program size 
growth. The inline functions are copied to a place of calling, and do not use any 
stack; compared to regular functions, each inline functions typically save 2...4  
bytes of stack. Also the absence of calling and return instructions increases the 
speed of program execution.

Although inline functions allow to save significant amount of memory, these 
functions may also have some downsides – as inline functions do not exists as 
separate functions in program code, it is not possible to take function address. If 
it is still tried to take address from an inline function, two possible outcomes 
occur. Firstly, the compiler may refuse to compile this source file or function 
and secondly, the compiler creates a copy from inline function, and this copy 
will not be inlined and the returned address will be this non-inlined function's 
address.

The above paragraph described the use of inline functions in C. In most of 
the cases, it is applied to C++ as well. The only place where caution should be 
taken  is  when  inlining  is  used  in  constructors,  destructors  and  templates.  
Inlining  these  program  parts  may  increase  the  executable  program  size 
significantly [61].

4.5.3. Fast Hardware Access
Interrupts are hardware mechanisms for notifying that new data is present in 
some hardware register. When data is available, an interrupt is triggered and the 
program  continues  on  interrupt  vector  and  later  returns  to  the  site  where 
program execution was before the interruption. Executing an interrupt routine 
usually means that the CPU uses jump instruction to enter an interrupt vector 
and  when  leaving,  uses  an  interrupt  return  instruction.  Typically,  jump and 
return instructions require several CPU clock cycles. The AVR microcontroller 
needs four clock cycles to enter  and two cycles to exit.  In cases when it  is  
needed that some program reacts extremely fast to input change, polling can be 
used instead of interrupts.  Depending on input reading instruction, one input 
poll takes two to four clock cycles, which is saving significant time compared to 
interrupts.

In the Listing 4.29, is an input polling example for AVR microcontrollers. In 
this example a while loop is executed until PB0 input is logical 1; if input goes 
to  logical  0,  the  program continues  after  line  8.  As  reading  from hardware 
PORTB is defined as reading from a volatile variable, the compiler does not 
optimise the loop body (lines 3 to 8). The nop instruction on line 8 serves as a 
placement mark for the Listing 4.30.

1:while (PORTB & (1 << PB0))
2:{
3:    /* While loop body. */
4:
5:    /* This nop instruction is neccerary for finding exact code
6:     * part in disassembled code, it does not have any other
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7:     * purpose in this example. */
8:    __asm__ __volatile__ ("nop");
9:}

Listing 4.29: Input polling example.

While disassembling the example above, it is seen that this function is five 
CPU clock cycles long when the input is logical 1; and three cycles long when 
the input is logical 0 (Listing 4.30).

1:L0: sbis 0x05, 0; skip next instruction when bit 0 is set in
2:                ; register 5 (PORTB), 1 clock cycle when false,
3:                ; 2 clock cycles when true
4:    rjmp L1     ; jump out from loop (jump to label L1), 2 clock
5:                ; cycles
6:    nop         ; placement mark, no operation, 1 clock cycle
7:    rjmp L0     ; jump back to beginning of the loop (jump to
8:                ; label L0), 2 clock cycles
9:L1:

Listing 4.30: Assembler output for Listing 4.29.

Program example in Listings  4.29 and  4.30 take 6 to 7 instruction when 
executed on AVR microcontroller. Both examples take also 7 bytes of program 
memory.

A similar  program for ATMega1280 that  has  same functionality but  uses 
interrupts  takes  at  least  five  instructions  to  enter  and  return  [7].  Other 
microcontrollers may have different number of clock cycles to enter and return 
the interrupt handler but using interrupts is typically not as fast as polling.

4.5.4. Byte Order Manipulation
Many programs need to change the order of bytes, to construct a larger variable 
from the set of bytes, or to change order of bytes in a network message. In the 
Listing 4.31 is a typical function of this kind. This function constructs a 16-bit 
variable from two 8-bit variables. In the line 1, a pointer is passed to constant  
array of bytes; this array should be at least two elements long. In line 6, a byte is 
taken from buffer element 1 and shifted 8 bits to the left; finally, the result is  
added (in this example, adding is logical) to buffer element 2; the result will be 
returned when the functions ends.

1:uint16_t change_order_shift (const uint8_t *buf)
2:{
3:    /* Shift fist buffer element to left by 8 bits and add
4:     * buffer second element to result – i.e. {0xAA, 0xBB} ->
5:     * 0xAABB. */
6:    return ((buf[0] << 8) | buf[1]);
7:}

Listing 4.31: Using shift to change byte order.

Disassembled code is presented in the Listing 4.32. The AVR GCC version 
4.9.0  was  used  for  compiling  this  example.  Disassembled  program  is  10 
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instructions  long  (including  return  instruction)  and  uses  nearly  same 
instructions, which were required in a source code. In the line 1, the source 
memory address is copied to register Z, which is an indirect addressing register.  
In line 3, the first byte is read to register 18, and in line 5 cleared register 19. 
The registers 18 and 19 are handled as one 16-byte register  where the 8-bit  
value is  placed;  in  lines  7 and 10,  the  8-bit  is  shifted  to  right.  The  second 
element of the array is  read in line 11 and placed into a temporary register  
which then is added to the first variable in line 15. In this example there are 
several instructions that are not needed for output – for example, line 5 shows 
clearing  of  the  register  19  where  several  instructions  later  a  new  value  is 
written. Also on lines 13 and 16 are shown redundant movw instructions.

1:    movw r30, r24  ; move pointer to indirect addressing
2:                   ; register
3:    ld   r18, Z    ; load first byte from buffer to temporary
4:                   ; register
5:    ldi  r19, 0x00 ; set lower byte to 0x00 in destination
6:                   ; register pair (unesseray instruction)
7:    mov  r19, r18  ; move loaded byte to destination register,
8:                   ; this instruction performs also 8 bit shift
9:                   ; left

10:    eor  r18, r18  ; clear temporary register
11:    ldd  r24, Z+1  ; load second byte from buffer to another 
12:                   ; temporary register
13:    movw r20, r18  ; move first register pair to another
14:                   ; temporary register
15:    or   r20, r24  ; add lower 8 bits to output register
16:    movw r24, r20  ; move register pair to function output
17:                   ; register
18:    ret            ; return from this function

Listing 4.32: Listing of the 'change_order_shift' function.

In the Listing 4.33 is a function that constructs same 16-bit variable but uses 
union for this purpose. In this example, it is not expected that the compiler uses  
optimal instructions for compiling with this function. Instead, exact steps are 
specified to change the order of bytes. In line 3, is passed a pointer to constant 
array of bytes to the change_order_union function; underlying array should be 
at  least  two  elements  long.  In  the  lines  6  to  13  a  union  is  defined,  which 
contains two elements: one array with the length of two bytes (line 9), and one 
16 bit variable (line 12). In lines 16 and 19, elements from the input buffer buf  
(an array) to union addr_u are copied and the returned 16-bit variable is shown 
in line 23.

1:/* Change order of bytes by using union. Array of input bytes is
2: * given by pointer.*/
3:uint16_t change_order_union (const uint8_t *buf)
4:{
5:    /* Union for conversion. */
6:    union
7:    {
8:        /* This array contains mapping to the 16-bit element. */
9:        uint8_t byte[2];
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10:
11:        /* This element contains 16-bit value. */
12:        uint16_t word;
13:    } addr_u;
14: 
15:    /* Copy last buffer element to union first element. */
16:    addr_u.byte[0] = buf[1];
17:
18:    /* Copy first buffer element to union last element. */
19:    addr_u.byte[1] = buf[0];
20:    
21:    /* Return 16-bit element from union, which has reversed 
22:     * byte order. */
23:    return addr_u.word;
24:}

Listing 4.33: Using union to change byte order.

The Listing 4.34 presents disassembled program code from the Listing 4.33. 
AVR GCC version of 4.9.0 was used for compiling this example. This code is 4 
instructions long (including the return instruction) and it uses exact instructions 
that are required for changing the order of bytes. In line 1 is the source memory 
address, copied to register Z (the indirect addressing register). The lines 3 and 5 
show code where bytes are copied from memory location and placed to output 
register  in  reversed  order.  The  resulting  value  has  an  exact  reverse  order 
compared to the original value.

1:    movw r30, r24 ; move pointer to indirect addressing
2:                  ; register
3:    ldd  r24, Z+1 ; load second byte into lower half of output
4:                  ; register pair
5:    ld   r25, Z   ; load first byte into higer half of output
6:                  ; register pair
7:    ret           ; return from this function

Listing 4.34: Listing of the 'change_order_union' function.

Using union to  change order  of  bytes  makes the resulting machine code 
significantly smaller but this function may depend on hardware. It is possible to 
port  the  first  function  (Listing  4.31)  without  modifications  to  different 
architectures,  but  using  the  second  function  in  a  different  architecture  may 
involve conditional compilation.

However, in cases when it is needed to convert an array of bytes to a larger  
integer, but the byte order remains the same, conversion is a trivial task. This 
can be accomplished simply by casting array elements to a larger type. Such 
casting is not compatible with MISRA C rule 11.4 [71].

4.5.5. Optimisation of AES Cryptographic Functions
As  embedded  systems  are  used  quite  widely  in  control  applications,  it  is 
reasonable that in unsecured environment the communication channel shall be 
encrypted. Although many new microcontrollers have hardware cryptography 
engine [6], the majority of microcontrollers do not have it. In small embedded 
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systems mostly symmetrical  key cryptographic  algorithms are  used,  such as 
AES, DES (Data Encryption Standard) and XTEA (eXtended Tiny Encryption 
Algorithm). It is also possible to use algorithms with asymmetrical keys, but 
these  algorithms  consume  significant  amount  of  microcontroller  resource; 
usually at least one magnitude more than the symmetrical keys, and therefore 
the microcontroller is not able to perform other tasks. Currently it is known that 
only elliptic curve cryptography (ECC) is usable in 8-bit microcontrollers [88]. 
Methods that are described in this section are used with the AES algorithm, with 
128 bit keys. But it is also possible to use it with 192 or 256 bit keys.

While  the  AES  cryptographic  algorithm  [78] requires  relatively  small 
amount  of  processor  and  memory  resources  [18],  it  may  still  require  more 
resources  than  smaller  microcontrollers  may actually  have.  It  is  possible  to 
optimise  processor  or  memory  resource  consumption  where  the  substitution 
table (S-Box)  [78] calculations are performed. It is possible to compute the  S-
Box values in three different ways. Firstly, without precomputed S-Box values 
all  values  are  calculated  when needed  [53].  Secondly,  the  S-Box values  are 
computed during a program start  [4]. Thirdly, the  S-Box values are generated 
before the compilation – all the values are program memory constants [81]. In 
an embedded system,  the second method where S-Box values  are generated 
when program starts,  is  the least  suitable.  This method places the generated 
values to RAM and either to static or dynamic storage. It is suitable in systems 
where  there  is  enough  spare  memory.  Other  two  methods  are  suitable  for 
embedded  systems.  The  first  method where  the  S-Box values  are  generated 
when needed is reasonable for use in such cases where cryptographic functions 
are required only few times, and encryption and decryption are not time critical. 
This uses quite small amount of memory, both program and RAM, but requires 
more CPU resource. Typically, it takes around 100 bytes of program memory 
and up to 32 bytes of RAM (short time storage) but it requires several hundreds  
of CPU cycles to calculate constants (exact number depends on code inlining 
and optimisations). In the Listing  4.35, is a function for S-Box calculation. In 
this listing, function body is left out; the main purpose of this listing is to show 
the difference between the first and third method (Listing 4.35).

1:/* Function for S-Box calculation, where parameter 'x' is byte
2: * value that has to be mapped to S-Box. */
3:uint8_t rj_sbox (const uint8_t x)
4:{
5:    uint8_t rj_sbox_value;
6:
7:    /* Calculate rj_sbox_value, this may take significant amount
8:     * of CPU resource. */
9:

10:    return rj_sbox_value;
11:}

Listing 4.35: Function for S-Box value calculation.

In  case  of  the  third  method,  the  S-Box values  are  generated  before  the 
compilation. This uses more program memory area, it requires at least 256 bytes 
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but not more than 300 bytes of memory for table storage and accessors, but is  
nearly same fast as the second one (reading constant values from a program 
memory  uses  some  CPU  cycles  more  than  reading  values  from  RAM). 
However, it does not require any additional RAM for S-Box. In the Listing 4.36 
is the S-Box implementation for reading constants from a program memory. The 
S-Box values are defined in the lines 2 to 5 and required read function is defined 
in line 9.

1:/* Array of precomputed S-Box values. */
2:static const uint8_t PROGMEM sbox[256] =
3:{
4:    /* AES S-Box constants */
5:};
6: 
7:/* Read S-Box value fom constant array. This macro emulates an
8: * rj_sbox function. */
9:#define rj_sbox(x) pgm_read_byte (&sbox[(x)])

Listing 4.36: Using program memory for AES S-Box.

1:void aes_sub_bytes (uint8_t *buf)
2:{
3:    uint8_t i;
4:    
5:    for (i = 0; i < 16; i++)
6:    {   
7:        /* Fill buffer by S-Box values. These values are
8:         * calculated by 'rj_sbox' function or retrieved by
9:         * using macro from precalculated array of constants. */

10:        buf[i] = rj_sbox (buf[i]);
11:    }
12:}

Listing 4.37: Using S-Box constants in AES.

In the Listing 4.37 is a function that can use functions that are described in 
the Listings 4.35 and 4.36. In lines 5 to 11 is a function for reading the S-Box 
values from program memory, or calculated on the fly; read values are placed 
into the output array buf.

4.6. Dynamic Memory

Most  of  the  programs  for  non-embedded  devices  use  dynamic  memory 
intensively. Typically, the program asks the kernel for additional memory during 
the execution by using special standard library functions. Asking for memory 
every time when its needed is much easier than to estimate the exact memory 
requirements during development. In some cases, asking for more memory is 
the only possible way to handle large data sets. To use dynamic memory, the 
first  required task is to ask for a memory block. This can be done by using  
special command and later, when the memory block is not required any longer, 
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it  can  be  released12.  In  embedded  systems,  which  have  a  multithreaded 
programs, and several processes using dynamic memory concurrently, without 
any  mechanisms implemented  for  prevention  of  memory fragmentation  it  is 
possible to fragment the entire free memory and eventually it is not available 
any  continuous free memory with required size; i.e., the memory is exhausted. 
In this situation it  is  possible that  the system still  has enough free memory, 
however, all the memory blocks are too small for the required size, and it can 
happen that it is not possible to combine larger blocks by adding several smaller 
blocks together. Also, effects of memory fragmentation may surface differently 
every time; bugs, which are related to this, may show up in the field but not in  
the development environment. Above are described some of the reasons why it 
is not advised to use dynamic memory in embedded systems. It is not allowed to 
use  dynamic  memory  by  MISRA C  (rule  20.4  [71]),  MISRA C++  (rule 
18-4 [72])  and   JSF++  (AV Rule  206  [55]).  Unlike  in  embedded  systems, 
fragmentation is not an issue in desktop computers – there are several hardware 
and  software  mechanisms  available  to  mitigate  it.  Despite  quite  a  lot  of 
research [20, 59] has been done in this area, and several memory allocators are 
developed (PJSIP Fast Memory Pool  [105], which can use stack based pools, 
Doug Lea memory allocator – dmalloc [52] and TLSF [17], memory allocators 
from Molecular Musings have two different allocation strategies – stack-like 
and  linear  [63])   for  small  embedded  systems  only  one  implementation  is 
known that uses pool: it is implemented as part of FunkOS [27].

Memory allocation and deallocation functions presented in the current thesis 
allow to avoid above described memory exhaustion problems; they are available 
for TM as an alternative dynamic memory management and used several times 
for  debugging  purpose.  Presented  functions  also  have  overrun  detection 
capability. As the presented solution is quite simple and used in systems where 
there is only one type of memory available, therefore it is not possible to use 
different pools, for example one for fast access but small blocks and another for  
slow  access  and  large  blocks.  Similar  approach  is  presented  in  Effective 
C++ [61],  but  the  current  example  has  been  written  for  C.  Effective  C++ 
allocation  functions  do  not  contain  any underrun  detection,  i.e.,  it  does  not 
detect writing prior the beginning of an allocated block. These occasions are 
relatively  rare  and  in  most  cases  are  detected  by  previous  block  overrun 
detection. GCC has also similar protection mechanisms but currently these are 
not available for smaller microcontrollers [29]. Presented functions do not take 
into  account  memory  alignment  and  this  may  cause  some  issues  on  larger 
computers.  Alignment  is  not  an  issue  in  an  8-bit  microcontroller  where  the 
memory is typically byte aligned.

The  Figure  4.3 presents  the  main  principle  of  the  developed  allocator. 
Memory blocks are stored in a pool, which is a large two-dimensional array.  
The pool size is determined before the compilation. Using a predefined memory 

12 Some  languages  like  Java  allow  to  release  memory  automatically,  but  some 
languages like C require that user releases the unused memory block.
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pool  size  allows  to  determine  memory  requirements  during  compilation.  In 
situations where all pool items are shared out, memory request operation will 
block until at least one new block is available.

In  the  following  Listings  4.38,  4.39 and  4.40 is  an  implementation  of 
described allocator, which uses memory pool for back end. Presented code is 
more flexible than similar functions in the FunkOS source; it is also a drop-in 
replacement for regular malloc, and it is capable of detecting memory overrides. 
The Listing 4.38 is a header file for the pooled allocator. The line 8 defines pool 
element size and the lines 11 to 23 define pool element structure where the 
variable is_taken represents pool state (boolean value). An array named data is 
a memory  area that is returned by  pmalloc function, and finally the member 
named guard that holds a four byte signature for detecting overflows is defined. 
As elements in the structure  pool_data_t are 8 and 32-bit wide, this structure 
may be padded in 32-bit architectures. Whether it will be padded depends on the 
value of ITEM_SIZE, should after division by four the remainder be three, no 
padding occurs. When a structure is padded, it is possible to write a number of 
padded bytes over data element before overwriting is detected. The lines 29 to 
30 show function declarations for registering a new memory pool. The last two 
declarations  in  line  36  and  40  are  the  replacements  for  malloc and  free 
functions.

1:#ifndef __PMALLOC_H_
2:#define __PMALLOC_H_ 1
3:
4:#include <stddef.h>
5:#include <stdint.h>
6: 
7:/* Size of single memory element. */
8:#define ITEM_SIZE 128
9: 

10:/* Structure for pool information. */
11:typedef struct
12:{
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13:    /* Flag for taken state. */
14:    uint_fast8_t is_taken;
15:
16:    /* Shared memory area. */
17:    uint8_t data[ITEM_SIZE];
18:
19:    /* Pattern to detect memory corruption, this should be
20:     * always after pool data. */
21:    uint32_t guard;
22:}
23:pool_data_t;
24:
25:/* Function for pool registration. Where parameter 'new_pool' is
26: * pointer to memory area that holds pool data. Parameter
27: * 'pool_items' is number of pool elements, which is stored in
28: * 'new_pool'. */
29:extern void register_pool (pool_data_t *new_pool,
30:                           const unsigned int pool_items);
31: 
32:/* Malloc function. Where parameter 'size' is requested memory
33: * size. This function returns allocated memory or NULL when no
34: * free memory is available or requested memory is larger than
35: * single pool element can hold. */
36:extern void *pmalloc (const size_t size);
37: 
38:/* The 'pfree' function causes the allocated memory referenced
39: * by 'ptr' to be made available for future allocations. */
40:extern void pfree (void *ptr);
41:
42:#endif

Listing 4.38: Header file for pooled allocator and deallocator.

In the Listing 4.39 is a source code of a pooled allocator. The line 9 defines 
pattern for detecting memory overflows, this constant is used as a guard pattern 
and is compared against guard element in pool_data_t structure when memory 
region is freed. In the lines 11 to 15 are declared holders for memory pool size 
information  (line  12)  and  pool  data  (line  15),  in  the  lines  17  to  20  is 
conditionally compiled lock variable, which is used for locking functions when 
all memory is shared out. Memory pool registration function is implemented in 
the lines 25 to 46.  Lines 30 and 35  check that only one pool is defined, and if  
more  than  one  pool  is  defined,  it  simply  ignores  the  request  for  new pool 
registration. In the lines 38 and 39 the pool and pool information is copied to 
local  static  variables,  and  in  the  lines  41  and 45  guard  bytes  are  set.  It  is  
possible  to  declare  a  pool  by  using  static  pool  structure;  by  leaving  these 
functions out, it will allow to use pmalloc without initialisation.

In the lines 52 to 91 is  an implementation of the  pmalloc function.  This 
function returns a pointer to memory pool, or in case of an error, the NULL 
pointer  and  sets  the  errno variable  to  ENOMEM.  In  the  lines  56  to  62, 
requested  size  is  tested  against  maximum element  size.  When  more  than  a 
single pool element can hold is requested, NULL will be returned, which means 
an error and errno is the relevant value (ENOMEM). In the lines 64 to 85 a free 
pool element is searched. If a free element is found, it will be marked as taken 
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(the line 76) and returned to pointer in this memory area (line 77). If no free  
pool elements exist,  it  will  wait until  the next free pool element (line 83) is 
released and then the pool will be scanned again for free elements. If no waiting 
code is present, the lines between 64 to 68 and 81 to 85 are omitted. Without 
code for signal waiting and when no free pool element is present, NULL will be 
returned and errno value is set to ENOMEM. If event waiting code is present, 
the  code  in  the  lines  89  and  90  is  not  executed.  However,  these  lines  are 
required as this function is declared to return a value and, typically, compilers 
refuse to  compile  functions  that  are  declared to  have return value while  no 
return value is present. Memory releasing is done by  pfree function, which is 
implemented in the lines 95 to 127. In lines 99 to 126 an address from the  
memory pool is searched. If given address is found in the pool (line 104) then 
this pool element is marked as free (line 118). A free signal is sent (line 122) to 
pmalloc,  this  signal  is  caught  when  pmalloc is  waiting for the pool  element 
release (line 83), and finally,  pfree function returns in the line 124. If waiting 
code is not present then after a pool element release (line 118) is conditionally 
compiled code, which is responsible for sending the “element free” signal to 
pmalloc. The pfree function is also responsible checking for memory overflows. 
Memory  checking  functionality  is  in  the  lines  109  to  114.  When  memory 
overflow occurs, the guard byte area will be overwritten and it can be detected 
by comparing this memory area with known guard bytes  (line 109).  Should 
these bytes and memory area not match, a short error message is printed (lines  
111 and 112) and the program is terminated (line 113). Memory error message 
printing and program termination could be changed to some other action. In an 
embedded system, this is the most reasonable thing to do; after calling the exit  
function, a watchdog is typically triggered and the whole program restarts, but 
with corrupted memory the program may have unpredictable behaviour.

1:#include <errno.h>
2:#include <stddef.h>
3:#include <stdio.h>
4:#include <stdlib.h>
5:#include <string.h>
6:#include "pmalloc.h"
7: 
8:/* Pattern for detecting memory overflows. */
9:#define GUARD_PATTERN 0xDEADBEEF

10: 
11:/* Number of pool items. */
12:static unsigned int items = 0;
13: 
14:/* Pointer to registred pool. */
15:static pool_data_t *pool = NULL;
16: 
17:#ifdef HAS_WAIT_SIGNAL
18:/* Signal for memory release (if it is present). */
19:static signal_t sig_pfree;
20:#endif
21: 
22:/* Pool registration. Where parameter 'new_pool' is pointer to
23: * memory area that holds pool data. Parameter 'pool_items' is
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24: * number of pool elements, which is stored in 'new_pool'. */
25:void register_pool (pool_data_t *new_pool,
26:                    const unsigned int pool_items)
27:{ 
28:    unsigned int i;
29:
30:    if (pool != NULL)
31:    {
32:        /* If pool is already registred then reuturn
33:         * immediately. */
34:        return;
35:    }
36: 
37:    /* Store pool pointer and number of pool items. */
38:    pool = new_pool;
39:    items = pool_items;
40:
41:    for (i = 0; i < items; i++)
42:    {
43:        /* Fill guard area with predefined pattern. */
44:        pool[i].guard = GUARD_PATTERN;
45:    }
46:} 
47: 
48:/* Malloc function. Where parameter 'size' is requested memory
49: * size. This function returns allocated memory or NULL when no
50: * free memory is available or requested memory is larger than
51: * single pool element can hold. */
52:void *pmalloc (const size_t size)
53:{
54:    unsigned int i;
55:
56:    if (size > ITEM_SIZE)
57:    {
58:        /* Requested size is larger than single pool element can
59:         * hold. Return NULL and set error description. */
60:        errno = ENOMEM;
61:        return NULL;
62:    }
63:
64:#ifdef HAS_WAIT_SIGNAL
65:    /* Loop for waiting free element. */
66:    while (1)
67:    {
68:#endif
69:        for (i = 0; i < items; i++)
70:        {
71:            /* Search element that has is_taken field false. */
72:            if (pool[i].is_taken == 0)
73:            {
74:                /* Mark this elemen as taken and return pointer
75:                 * to this area. */
76:                pool[i].is_taken = 1;
77:                return &pool[i].data;
78:            }
79:        }
80:
81:#ifdef HAS_WAIT_SIGNAL
82:        /* Wait until least one element is released. */
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83:        wait_signal (&sig_pfree);
84:    }
85:#endif 
86:    
87:    /* No free block found. This code is compiled only when
88:     * HAS_WAIT_SIGNAL is not defined. */
89:    errno = ENOMEM;
90:    return NULL;
91:}
92: 
93:/* The 'pfree' function causes the allocated memory referenced
94: * by 'ptr' to be made available for future allocations. */
95:void pfree (void *ptr)
96:{
97:    unsigned int i;
98:
99:    for (i = 0; i < items; i++)
100:    {
101:        /* Search for pool element by given pointer. It is
102:         * possible to free element that is present in pool.
103:         * Null pointer is also allowed. */
104:        if (ptr == &pool[i].data)
105:        {
106:            /* Check that guard pattern is valid. If guard
107:             * pattern is modified is most reasonable action to
108:             * close program. */
109:            if (pool[i].guard != GUARD_PATTERN)
110:            { 
111:                fputs ("memory pool guard pattern is "
112:                       "corrupted\n", stderr);
113:                exit (EXIT_FAILURE);
114:            }
115:
116:            /* Guard patten is OK, we can mark this pool 
117:             * element as available. */
118:            pool[i].is_taken = 0;
119:
120:#ifdef HAS_WAIT_SIGNAL
121:            /* Send singal that element is released. */
122:            send_signal (&sig_pfree);
123:#endif
124:            return;
125:        }
126:    }
127:}

Listing 4.39: Source code for pooled allocator and deallocator.

The Listing 4.40 shows a test program for the above code. In the line 8 is a 
defined number of pool  elements and in the line 11 type definition for void 
pointer, which is used with pointer arrays. The main function of the program is 
in the lines 13 to 88. The line 16 defines memory back-end pool and on the lines 
17 to 19 are the variables, which hold pointer that is returned by pmalloc. The 
line 22 ensures that all memory pool elements have null value; this is required 
only for taken variable in pool_data_t structure; this variable should be initially 
null. In the line 23 is initialised memory pool. The lines 26 to 58 show a test for 
the situation when all memory is shared out and no free memory remains. The 
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lines 62 and 66 release all the memory, which was taken in the previous test 
(lines 26 to 58). Finally, the lines 70 to 85 is a test case for memory corruption 
by overwriting last four bytes (lines 79 to 85). In 8-bit microcontrollers it is 
required to  overwrite  one byte  but  in  32 and 64-bit  computers  the  memory 
alignment is different, and due to the padding, the guard element may have an 
offset up to three bytes.

1:#include <errno.h>
2:#include <stddef.h>
3:#include <stdio.h>
4:#include <string.h>
5:#include "pmalloc.h"
6: 
7:/* Number of elements in memory pool. */
8:#define ELEMENTS 8
9: 

10:/* Type for void pointer (useful for casting). */
11:typedef void * void_ptr_t;
12:
13:int main (void)
14:{
15:    unsigned int i;
16:    pool_data_t new_pool[ELEMENTS];
17:    void_ptr_t data[ELEMENTS + 2];
18:    void_ptr_t data_tmp = NULL;
19:    void_ptr_t data_last = NULL;
20: 
21:    /* Set all pool elements to 0 and register new pool. */
22:    memset (new_pool, 0x00, sizeof (new_pool));
23:    register_pool (new_pool, ELEMENTS);
24: 
25:    /* Test for element allocation. */
26:    puts ("Allocate\n");
27:    for (i = 0; i < (ELEMENTS + 2); i++)
28:    {
29:        /* Request new memory. */
30:        data_tmp = pmalloc (ITEM_SIZE - 8 + i);
31:
32:        if (data_tmp == NULL)
33:        {   
34:            /* Error: no memory returned, either requested size
35:             * is larger than single pool element can hold or no
36:             * pool elements are available. */
37:            printf ("%02d\t%s\n", i, strerror (errno));
38:        }
39:        else if (data_last == NULL)
40:        {   
41:            /* First test run, previous pointer is not yet 
42:             * stored. */
43:            printf ("%02d\tPool: %p; diff (NA)\n",
44:                    i, data_tmp);
45:        }
46:        else
47:        {
48:            /* Print pool element info and address difference
49:             * between pointers. */
50:            printf ("%02d\tPool: %p; diff %ld\n", i, data_tmp,
51:                  (ptrdiff_t)(data_tmp – data_last));
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52:        }
53:        
54:        /* Store allocated memory to array. This array allows to
55:         * release previously allocated memory. */
56:        data_last = data_tmp;
57:        data[i] = data_tmp;
58:    }
59: 
60:    /* Test for element deallocation. */
61:    puts ("\nFree\n");
62:    for (i = 0; i < ELEMENTS; i++)
63:    {
64:        /* Free all elements that has stored to array. */
65:        pfree (data[i]);
66:    }
67: 
68:    /* Test for data corruption. */
69:    printf ("\nData corruption test\n");
70:    data_tmp = pmalloc (ITEM_SIZE);
71:    if (data_tmp == NULL)
72:    {
73:        /* Failed allocate to memory, either no pool elements
74:         * are available or requested size was larger that
75:         * single element can hold. */
76:        printf ("%02d\t%s\n", i, strerror (errno));
77:    }
78:    else
79:    {
80:        /* Fill memory with 0xFF also overwrite guard bytes. */
81:        memset (data_tmp, 0xFF, ITEM_SIZE + 4);
82: 
83:        /* This call shold detect error and close program. */
84:        pfree (data_tmp);
85:    }
86:
87:    return -1;
88:}

Listing 4.40: Example usage and test for pooled allocator and deallocator.

Above described function simplifies also debugging – when the memory size 
and  memory  contents  placement  is  known,  it  is  quite  easy  to  check  the 
overflows and find possible candidate that may cause it.

Program example in Listing 4.40 takes roughly the same amount of program 
memory than a similar application that is created for using dynamic memory.  
This  example is  as  fast  or  faster  than similar  application that  uses  dynamic 
memory.

As a final note, when memory requirements during program development 
are known it is possible to reserve free memory before compilation. Therefore it  
is not required to use dynamic memory at all. Also in embedded systems it is  
not reasonable to use dynamic memory in such processes that do not release 
memory during program execution. Most of the buffers in drivers do not release 
memory, and in this case, it is possible to estimate required memory size before 
compilation.
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4.7. Conclusions

The  current  chapter  handles  improvements  that  were  directly  or  indirectly 
required to develop new TM. The first section outlines a software development 
process  that  can  be  used  in  embedded  software  development  and  gives 
examples for using hardware related automated tests. The following processes 
are  handled  in  this  section  –  Code  and  Fix,  using  UML as  part  of  other  
processes, agile practices (TDD and BDD) and sequential processes (V-model 
and waterfall). In embedded software development, it is most difficult to use 
agile  practices  when  Code  and  Fix  is  appropriate  for  experimenting  and 
prototyping,  and sequential  processes  for  safety or mission critical  software. 
Agile  practices  are  too  time  consuming  for  experimenting  and  are  not 
appropriate for mission or safety critical systems. It is also possible to use UML 
for modelling embedded software, but due to the higher resource requirements 
of the resulting program, it is usable only in larger embedded systems.

The  second  section  concentrates  on  the  use  of  different  programming 
languages within one project. In that section the use of C and C++ programming 
languages  is  observed.  The  first  part  gives  the  main  reasons  for  language 
choice:  it  is  best  to  use C for  smaller  microcontrollers,  older  compilers and 
creating kernel related code, and C++ is best to be used for creating program 
logic. However, there is no limitation of usage of C++ with recent compilers. 
The  second  part  of  that  section  describes  how  to  use  several  higher  level 
languages  within  one  software  project.  The  main  reason  for  using  different 
languages in one project is that some tasks are best suited for one language 
while other tasks for another language. Also several examples are given on how 
to use program structures in C that are known from C++. This might be useful 
in situations where it is required to use virtual table like approach but due to the 
compiler or memory limitations it is not possible to use C++.

The third section concentrates on program structures and the influence of 
program structure in testing. The first part of this section handles super-loop 
programs. As this kind of programs are tightly coupled with hardware, methods 
are given for reducing hardware dependencies. It is also shown how to create  
functions that do not store states internally. Typically such functions are related 
to  EEPROM  reading  and  writing,  and  are  inherently  very  difficult  to  test 
automatically.  The  following  part  focuses  on  hardware  testing,  and  this  is 
accomplished by using unit tests. For this testing is uploaded new test program 
to microcontroller memory. The last part of that section focuses on the use of  
OCD, on the limitations of OCD, on situations where it is not possible to test a  
program by using OCD, and on using one spare IO pin to monitor system states.

The fourth section deals with different type of schedulers and watchdogs. On 
conventional computers it is reasonable to use a preemptive scheduler, but in 
embedded systems where a watchdog is also used, it is worth to consider using 
only  a  cooperative  scheduler.  When  one  thread  is  stuck  with  a  preemptive 
scheduler, all other threads may still work normally, including the thread that is  
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responsible  for  resetting  the  watchdog.  When  a  program  is  stuck  with  a 
cooperative kernel, it causes the whole system freeze, including the watchdog's 
control task, which consequently triggers the watchdog to reset. The second part 
of  that  section describes  different  methods for  the  use  of  a  single  hardware 
watchdog in programs where all threads are active in predefined order, or in  
situations where threads are active at the same time. When there is a predefined 
order, it is required to reset the watchdog's pass lock from one thread to another.  
When threads are active at same time, then it is required to have one monitoring 
process that has access to all states of threads.

The  fifth  section  describes  methods  of  optimising  several  program 
constructs. First, methods are shown for limiting function arguments; instead of 
using parameters that are passed by value, pointers can be used for passing data 
structures.  Secondly,  function  inlining  is  considered;  while  inlining  large 
functions  is  not  recommended  in  conventional  computers,  in  smaller 
microcontrollers software relatively large functions can be safely inlined. This 
is due to the fact that conventional computers execute program from RAM (or 
from  cache)  but  microcontrollers  execute  program  directly  from  separate 
memory  and  therefore  do  not  have  similar  cache  effects  like  conventional 
computer have. As well, most of the microcontrollers have a reasonable amount 
of  program memory.  After  that  are  given  examples  of  how and when  it  is 
possible to use input polling instead of interrupts. Mostly, input polling is used 
when it is required to react extremely fast to input change. The chapter also 
describes the change of byte order, which is typically related to programs that 
interact with external hardware or programs. In order to change the byte order,  
shifts in C are typically used, but to use unions is more effective. This section 
also  shows  two  optimisation  methods  for  the  AES  algorithm:  S-Box value 
calculation on the fly,  and the use of pre-generated  S-Box values, which are 
stored in the program memory.

The last section describes alternative approach for malloc and free. Regular 
memory  allocation  functions,  which  are  used  in  embedded  systems,  may 
significantly fragment RAM, therefore it is possible that free memory can be 
exhausted.  Memory  exhaustion  by  fragmentation  is  rare  in  conventional 
computers but, in embedded systems, this may happen quite frequently. This is 
one of the reasons why MISRA does not allow to use dynamic memory. The 
current  thesis  presents  a  memory allocation  method  that  uses  user  supplied 
memory  pool  as  back-end,  and  hence  makes  it  impossible  to  fragment  the 
memory.  Presented allocation and deallocation functions  are  also capable  of 
checking the memory overruns.

This chapter described methods and improvements that are completely or 
partly applied and tested on TM. Although described solutions are TM specific,  
they can still be used in other similar devices.
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5. SUMMARY

This thesis concentrates on software development improvements and solutions 
for embedded systems that have small computational power and limited amount 
of memory, namely marine aid to navigation (AtoN) systems.

More precisely, all research, improvements and solutions that are described 
in this thesis were required for a Telematics Module of AtoN systems; without  
these improvements development the product itself and its additional features 
would have been much more complicated to implement or failed completely. In 
this thesis the reasons why this research was required were discussed: coping 
with problems that arise when developing a new AtoN device, or adding some 
additional functionality. Main focus was on the following six issues:

1. Functions and methods that are described and investigated in this thesis 
should have low memory and processor utilisation, which make them 
suitable for use in low power AtoN devices, namely Telematics Module.

2. Mixing source code that is written in different programming languages, 
namely C and C++. Effective function pointers usage on structures and 
automated tests.

3. Software testing methods for small embedded systems, including using 
unit tests for hardware testing.

4. Watchdog  hardware  handling  in  multithreaded  programs  with 
monitoring all threads simultaneously.

5. Optimisation  of  code  parts  that  are  used  quite  widely  in  embedded 
systems but are not optimised by compiler.

6. Dynamic  memory  handling  that  does  not  fragment  memory,  is 
lightweight, and suitable for use in AtoN devices.

All publications that are related to this thesis, use described improvements  
directly  or  indirectly.  All  described  improvements  are  tested  and  used 
successfully in AtoN telematics module or similar system software.

The next section outlines the main contributions of this thesis.

5.1. Contributions

The main contributions of the thesis are:

1. The choice of programming language that is usable in embedded AtoN 
systems.

Several  decades ago,  the main programming language for embedded 
systems  was  assembler;  now  there  are  numerous  programming 
languages available, but mostly C and C++ are being used. In this thesis 
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pros and cons of both languages and methods how it is possible to mix 
both languages in embedded AtoN systems to get the best  result  are 
shown.

2. Different program structures and improvements on embedded software 
testing. 

In embedded systems mostly two different program structures are used: 
super-loop programs and multithreaded programs. Super-loop programs 
have less functionality than multithreaded programs but use hardware 
resources more effectively. Multithreaded programs may have a lot of 
different functionalities but require a lot of CPU and memory resources 
and  are  not  as  efficient  as  super-loop  programs.  In  both  cases  it  is 
possible  to  use  similar  testing  methods,  but  testing  of  super-loop 
programs is  more  complicated  than  it  is  in  multithreaded programs, 
mainly  because  of  the  program  structure,  which  is  more  related  to 
hardware and therefore requires more hardware writing mocks.

3. Methods for resetting watchdog timers is non-trivial in multithreaded 
programs.

In  multithreaded  systems  it  is  possible  to  choose  between  several 
different  schedulers  –  cooperative  or  preemptive.  A  preemptive 
scheduler allows to create such programs that do not hang when one 
thread hangs. However, programs with a cooperative scheduler tend to 
hang completely when at least one thread hangs. In embedded systems 
it is possible to take advantage of the hanging of the whole cooperative 
kernel. This excludes the situations where a system stays partially in 
working  condition  but  is  not  able  to  perform  its  tasks.  Another 
important aspect while writing embedded multithreaded programs is the 
watchdog resetting mechanism. Most hardware watchdogs require that 
only one thread is responsible for resetting the watchdog and, therefore,  
all threads should send alive messages to one thread or function that is 
responsible for handling the watchdog. For this purpose, it is possible to 
use  two  different  methods;  all  threads  send  alive  messages  to  one 
monitor thread, or all  threads pass alive message from one thread to 
another.

4. Optimisation methods for embedded system software.

In some cases, the compiler is not able to generate the most optimal 
code, e.g., does not automatically inline functions that are one line long 
or functions that are called only once. Also the compiler is not able to 
optimise program parts that are responsible for byte order manipulation. 
When using AES cryptographical functions, it  is possible to use two 
different  substitution  table  calculation  methods.  One  of  the  methods 
uses less memory but is slower, another one uses more memory but is 
significantly faster.
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5. Alternatives for dynamic memory.

Using dynamic memory in embedded systems contains several risks, 
however, it is possible to replace traditional dynamic memory functions 
with memory pools. While using a memory pool, it is possible to set  
dynamic  memory  size  before  compilation  and  also  monitor  RAM 
usage.

5.2. Conclusions

This thesis concentrates on software development and testing methods of AtoN 
embedded  systems.  These  systems  are  mainly  designed  to  work  in  remote 
places like buoys or lighthouses or in other similar navigational applications. 
Described  improvements  and  methods  were  required  for  developing  new 
generation Telematics Module (TM) and are currently used in navigation light 
systems around Estonian coastal area and on the larger rivers and lakes. The 
proposed  methods  and  improvements  in  this  thesis  enable  to  achieve  low 
microcontroller CPU and memory consumption. Despite simplicity the methods 
are also quite robust  to allow them to be used successfully in  other similar 
systems which require long-term autonomous work, low power consumption, 
and  where  it  is  not  essential  to  have  high  computational  power.  Although 
described methods and improvements are TM specific, they can be also used in 
other similar embedded systems.

This thesis discussed also programming languages that are suitable for use in 
smaller  embedded systems.  Different  testing methods which can  be  used in 
various  situations  in  embedded  software  developement  were  presented. 
Watchdogs that are used with multitasking kernels and different schedulers were 
also discussed. Several ways how to optimise embedded programs is shown – 
changing the order of bits in larger data word, using inlining and also some 
techniques  for  using  cryptographic  functions  on  smaller  embedded systems. 
And finally the replacement for standard memory allocation and deallocations 
functions is presented, which allows to reduce memory fragmentation.

The  main  conclusion  of  this  thesis  is  that  it  is  possible  to  use  above 
described methods, improvements and solutions on different AtoN systems that 
require  low  energy  consumption  long  autonomy  and  high  reliability.  All 
described improvements  have been in  use  in  the  deployed AtoN systems in 
Estonian and abroad. These improvements were made feasible to measure wave 
heights  with navigational  buoys,  allows to detect  buoy heel  angle and buoy 
collisions with other objects.

The thesis presents also a short overview about Estonian AtoN systems and 
an overview of problems that raised during new TM development.
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ABSTRACT

In recent decades, along with the development of microcontrollers, embedded 
systems  are  increasingly  frequently  used  in  areas  designed  for  long-term 
autonomous operation. In addition, many of these systems are installed in hard 
to  access  areas  for  support  personnel  and  also  require  very  low  power 
consumption. This thesis handles the software component of the new generation 
marine navigation light systems, problems that araised during the development 
of  the  embedded  software,  solutions  for  these  problems  and  also  tools  and 
methods for testing embedded software.

The  main  objectives  of  the  thesis  are  methods,  technical  solutions,  and 
recommendations of using existing embedded software developement methods 
for  development  highly  constrained  embedded  systems.  In  this  thesis  are 
described  methods  and  technical  solutions,  which  are  used  in  the  marine 
navigation  light  systems.  These  methods  have  low  memory  and  processor 
resources consumption, which is in many cases more important than accuracy 
of the mathematical  functions.  This thesis also handles  briefly programming 
languages, which suits for embedded system development. Also are described 
different  ways to  develop automatically  testable  embedded software and are 
presented  methods  which  allows  to  simplify  testing  of  embedded  systems, 
including using automated tests with continuous integration servers. The thesis 
provides recommendations and discuss disadvantages of various schedulers as 
well as proposes the preferred scheduler for small embedded systems. Both co-
operative and preemptive schedulers are discussed,  also was pointed out  the 
possible performance and memory bottlenecks, which have influence on smaller 
embedded systems. Various approaches to resetting the watchdog resulting from 
the characteristics of multitasking programs are presented. Described methods 
are suitable for different schedulers and program structures. Optimisations for 
function  calls,  effectively  changing  the  sequence  of  bytes,  and  some 
recommendations  of  using  the  AES  cryptographic  functions  were  given. 
Optimised  functions  are  mainly  targeted  for  smaller  embedded  systems 
allowing to reduce the use of memory and CPU consumption. An alternative 
approach to the use of dynamic memory, which is mostly designed for using in 
smaller embedded systems is presented, this approach can also be used in larger  
computers as well. The developed solution also allows to take into account the 
memory requirements when compiling the program.

All  of  the above-mentioned methods,  techniques and solutions have been 
applied in AS Cybernetica marine navigation light systems.
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KOKKUVÕTE

Viimastel kümnenditel on koos mikrokontrollerite arenguga hakatud erinevaid 
sardsüsteeme kasutama ka sellistes kohtades kus on ette nähtud ilma tugiisikute 
sekkumiseta pikemaajaline autonoomne töö. Lisaks, on veel ka paljud sellised 
süsteemid  paigutatud  kohtadesse,  mis  on  teenindavale  personaalile  raskesti 
ligipääsetavad  ja  samas  nõuavad  ka  väga  väikest  energiatarvet.  Käesolev 
väitekiri käsitlebki uue generatsiooni AtoN seadmete tarkvara osa, tarkvara ja 
lisafunktsioonide  loomisel  tekkinud  probleeme  ja  sobilikke  lahendusi  ning 
tarkvara loomisel ja testimisel kasutatavaid tööriistu ja meetodeid.

Väitekirja  peamisteks  väljunditeks  on  meetodid,  tehnilised  lahendused  ja 
soovitused  olemasolevate  sardtarkvara  arendamise  meetodite  ja  praktikate 
kasutamiseks  piiratud  võimalustega  sardsüsteemides.  Kõikide  kirjeldatud 
meetodite juures on oluline see, et nende mälu tarbimine oleks minimaalne ja 
samas  võtaksid  ka  minimaalselt  protsessori  ressurssi,  mis  on  ka  paljudel 
juhtudel olulisem kui matemaatiliste funktsioonide täpsus. Töös on välja toodud 
sobilikud  programmerimiskeeled,  kirjeldatud  erinevaid  lähenemisi  ja 
programmi struktuure mis võimaldavad lihtsustada sardsüsteemides automaatset 
testimist, mis omakorda annab võimaluse kasutada automatiseeritud teste koos 
pideva integratsiooni serveritega. On toodud soovitused erinevate planeerijate 
kasutamiseks  ja  ka  puudused  mis  võivad  avaldada  mõju  programmide 
ülesehitusele.  Planeerijate  juures  on  käsitletud  co-operative ja  preemptive 
planeerijaid,  arvestades  seejuures  ka  võimaliku  jõudluse  ja  mälu  vajaduse 
piiranguid.  Kirjeldatud  multitegur  programmide  eripäradest  tulenevad 
lähenemisi  valvetaimeri  nullimisele,  töös  on  ka  kirjeldatud  meetodeid 
valvetaimeri nullimiseks mis on sobilikud kasutamiseks erinevate planeerijatega 
ja programmi struktuuridega. Kirjeldatud peamiselt väiksemate sardsüsteemide 
spetsiifilised  optimeerimised  funktsioonide  väljakutsumisele,  efektiivsemaid 
meetodideid  baitide  järjekorra  manipuleerimieks  ja  mõned  soovitused  AES 
krüptograafiliste  funktsioonide  kasutamisel.  Optimeeritud  funktsioonid 
võimaldavad  vähendada  mälu  või  protsessori  ressursi  kasutamist.  On  ka 
näidatud  alternatiivne  lähenemine  dünaamilise  mälu  hõivamisele  ja 
vabastamisele.  Näidatud  lahendus  on  eelkõige  mõeldud  kasutamiseks 
väiksematel  sardsüteemidel,  kuid  sobilik  kasutada  ka  suurematel  arvutitel. 
Väljatöötatud lahendus võimaldab võtta arvesse ka vajaliku mälu suurust juba 
programmi kompileerimisel.

Kõik eelpool mainitud meetodid, tehnikad ja lahendused on realiseeritud AS 
Cybernetica mere navigatsioonitulesüsteemides.
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Abstract —  This  paper  presents  a  method  for  firmware 
update  in  memory  constrained  low-power  controllers  used  in 
marine  aids  to  navigation (AtoN)  and  telematics  systems.  The 
developed  method  allows  carrying  out  firmware  updates 
regardless  of  the  communication channel  used.  This  approach 
differs  from  other  similar  methods  mainly  by  its  low 
requirements  to  hardware  and  high  flexibility;  hence  it  is 
applicable  to  relatively  small  microcontrollers.  The  paper  is 
concluded with experimental  results  performed on operational 
marine buoys.

I. INTRODUCTION

Like many recently developed embedded products, flashers 
and telematics modules employed in marine AtoN systems are 
relatively  complicated  devices  with  complex  firmware.  For 
example,  a  typical  navigational  buoy  or  a  lighthouse  is 
equipped  with  at  least  two microcontrollers  (in  addition  to 
modems).  Depending  on  the  application  specifics,  each 
microcontroller may have quite a complex program, typically 
between 20 kB and 100 kB of program code which is roughly 
7,000 to 40,000 lines of code. Also it is not uncommon that 
functional requirements to firmware of already deployed units 
change  over  the  time,  necessitating  several  updates  during 
product’s  usable  lifetime.  In  some  rare  cases,  the  already 
deployed  firmware  may  need  to  be  updated  due  to 
programming errors in  some functions that  have passed the 
initial testing and surface only when certain set of conditions 
appear.  Usually,  in  such  cases  it  is  required to  undertake  a 
field  trip  either  to  retrieve  a  controller  to  the  depot,  or  to 
perform the  firmware  upgrading  process  at  the  remote  site 
since direct physical connection to the system is needed. This 
becomes  costly  in  case  of  systems  which  have  numerous 
devices distributed over a wide geographic area, or even if a 
few devices are located at places not easily accessible – like 
marine buoys. A solution for such cases (for devices capable 
to communicate wirelessly) is to use firmware update over the 
air  (FOTA).  Currently,  firmware  updates  over  the  air  are 
mainly used in automobiles, cellular phones and various smart 
sensor  solutions.  Taking  into  account  the  constantly 
decreasing  mobile  data  communication  prices  (for  example 
GPRS,  3G  and beyond),  firmware  updating  over  the  air  is 
clearly the most cost effective method for AtoN and telematics 
systems.

A wide  range of  FOTA capable  systems exist,  mainly  in 
mobile communication [1], [2] and automotive electronics [3] 
domains. The latter systems are somewhat similar to marine 
AtoN systems –  all  modern cars  have  at  least  one  internal 
network  and  several  devices  are  connected  to  this  local 
network.  But  in-car  electronic  systems  usually  differ  from 
marine  AtoN systems by  having significantly  higher  power 
consumption.  FOTA applications  for  automotive  electronics 
and  mobile  phones  can  typically  update  firmware  of  fairly 
large microcontrollers as it is possible to use data compression 
and  encryption.  Unfortunately,  these  methods are  much too 
resource  demanding  for  low  power  AtoN  controllers  and 
cannot be used in autonomous marine AtoN systems. On the 
other  hand,  many  memory  and  power  efficient  firmware 
updating  methods  have  been  recently  developed  for  smart 
sensors and similar systems [4]. Most of these methods suffer 
from one drawback – they cannot update firmware on other 
devices connected to the remote controller over its local wired 
network (LAN). While marine AtoN systems typically consist 
of several programmable devices operating in a  local  wired 
network that lack the ability to communicate directly with a 
FOTA server,  they  would  benefit  from such  indirect  FOTA 
capability. Some firmware updating methods proposed in  [4] 
would almost be suitable,  but  these approaches are tied too 
closely to certain specific smart sensor kernel or toolflow, thus 
not being suitable for our development environment.

In  order  to  carry  out  firmware  updating  over  the  air  for 
remote marine systems we developed a new method especially 
suitable to our AtoN systems. The method is designed to be 
reliable and enables over the air updates while providing also 
support  for  external  devices  connected  to  a  local  wired 
network of the remote AtoN, i.e. the method supports medium 
independent firmware updating. Beside medium independent 
firmware updating, another requirement for AtoN systems is 
power and  memory efficiency  (small  memory footprint).  In 
our  telematics  module  the  described  method  requires 
approximately 3.2 kB of program-memory and 280 bytes of 
RAM. Such low memory requirements make it  suitable  for 
small  microcontrollers  which  have  certain program sections 
where it is possible to use self-programming instructions.

It is also anticipated that the communication channel might 
not be fully reliable and may occasionally have high failure 
probability,  i.e.  it  may not  be  possible  to  transfer  the  new 



firmware  in  full  during  a  single  communication  session. 
Therefore  a  fault  tolerant  procedure  is  foreseen,  allowing 
transferring only certain program parts at a time. In case of 
transmission faults, or partially corrupted program memory, it 
is  possible  to  save  several  firmware  backups  inside  the 
controller’s  backup  memory.  Most  notably,  this  firmware 
updating method with previously downloaded firmware image 
interrupts  the  normal  operation  of  the  system for  up  to  15 
seconds only, performing all preparations in the background. 
Due  to  the  properties  above  described,  this  method is  well 
suited  for  application  in  mission  critical  AtoN  systems, 
including  buoy  systems  subject  to  synthetic  Automatic 
Identification System (AIS) reporting, and lighthouse systems.

This paper highlights the design considerations which are 
used in our new firmware updating system. Section 2 gives a 
brief overview of our current system. The firmware updating 
method itself is described in section 3. Section 4 outlines the 
results of experimental testing that was performed. Section 5 
gives an overview of the impact of firmware updating to the 
operation  of  a  buoy  tasked  with  synthetic  AIS  reporting 
mission, and finally, the concluding remarks are presented in 
Section 6.

II. CURRENT SYSTEM OVERVIEW

Embedded systems which are used in marine AtoN systems 
are often composed of several controllers which are connected 
to the local  area network of the AtoN site while one of the 
controllers acts as a Telematics Module (TM) – a gateway to 
the Remote Control and Monitoring Systems (RCMS) central 
server.  A typical marine AtoN system is presented in Fig.  1 
where TM is a communication controller (network gateway), 
and C1, C2, …, Cn are internal controllers in charge for the 
AtoN site’s mission. The main task of a telematics module is 
packet forwarding between wireless and local area interfaces; 
a TM may also be configured to fulfill some additional tasks 
like time synchronization with GPS or certain measurement 
tasks. Internal controllers C1, C2, …, Cn may be navigational 
lantern  flashers,  smart  power  supply  system controllers,  or 
certain measurement controllers.

Since  data  communication  is  the  slowest  phase  of  the 
firmware updating process and the firmware updating should 
not interrupt the normal operation of a marine AtoN (typically, 

a buoy or a lighthouse) for a significant period of time, then 
the only possible way to minimize the interrupts  caused by 
firmware updating would be to buffer the new firmware into 
external buffer or backup memory. For fast firmware copying, 
it  is  necessary that  each controller  shall  have such a buffer 
memory  since  the  internal  AtoN network  can  be  either  too 
slow  or  have  too  high  probability  of  errors  to  load  the 
firmware  directly  into  the  program  memory  of  a 
microcontroller  connected  to  the  site  LAN.  Firmware 
buffering must not interfere with the normal operation of the 
system.  Figure  2 presents  a  block  diagram of such  a  node 
which allows firmware buffering. The MCU (microcontroller 
unit)  is  an  8-bit  Atmel  AVR  family  (ATmega1280) 
microcontroller that has program memory in two sections – a 
boot section and an application section – where the application 
section is writable from the boot section, but the boot section 
is writable only from the boot section itself.  In  our current 
design, the boot section is a read-only section. CI1 and CI2 are 
communication  interfaces  –  CI1  is  a  GR64  GSM/GPRS 
modem with integrated TCP/IP stack and CI2 is an RS-485 
interface. Currently, the interfaces C1 and C2 are nearly equal 
– all commands can be passed from one interface to another 
and all commands are in the same format.

In  systems  with  significant  computational  power  and 
memory, the most widely spread communication protocol is 
TCP/IP – typically  incoming connections  are  TCP/IP based 
and  the  LAN  may  also  be  TCP/IP  based.  Although  it  is 
possible to run TCP/IP stack in 8 bit microcontrollers then in 
most of the cases it is too resource demanding for low power 
microcontrollers.  Therefore,  it  is  preferable  to  use  some 
lightweight communication protocol on such 8-bit devices. In 
our  communication  controller  it  is  used  two  level 
communication stack where the second level is common for 
LAN  and  GSM/GPRS  and  the  first  level  is  GSM/GPRS 
specific. In the LAN side the first level is underlying on RS-
485  link  and  the  GSM/GPRS  is  underlying  on  modem 
integrated TCP/IP link. All commands on the second level are 
the same.

Figure 2 presents a telematics module that can store several 
different  working  firmware  versions  to  external  memory, 
including  a  backup  version  which  may  have  minimal 
functionality  but  has  been  exhaustively  tested.  For  reliable 
firmware updating, controller’s ability to hold a previous and a 
backup firmware version in external memory is essential. In Figure 1: AtoN internal network

Figure 2: Telematics module



the  worst  case  where  communication  fails  or  firmware 
corrupts during transmission it is always possible to roll back 
to  a  previous  or  a  backup  firmware  version.  Firmware 
corruption during communication is quite rare on GSM/GPRS 
link but  quite  common on LAN, which has  our proprietary 
protocol  on  RS-485  link.  Minimal  capacity  of  external 
memory should be not less than twice the size of the writable 
program memory of the controller, but the optimal size is three 
times  the  controller's  memory  size.  This  external  buffer 
memory is a prerequisite for our firmware updating method.

Inside the microcontroller all program code is situated in the 
boot section and strictly isolated from any other program code. 
The boot section also holds a self contained program which is 
responsible  for  copying  the  firmware  from  the  external 
memory into the controller program memory.

III. FIRMWARE UPDATING

Our  firmware  updating  method  is  basically  a  three  step 
process:

1. First,  the  new  firmware  image  is  transferred  over  a 
GSM/GPRS link or over LAN to the external memory of the 
controller.

2. After successful firmware loading to the external memory 
a  firmware  copying  program  is  started.  This  program  will 
verify  the  32-bit  checksum of  the  firmware  in  the  external 
memory and after  successful  checksum verification initiates 
loading of the new firmware into the program memory of the 
controller.

3. The  main  program  of  the  controller  is  started  after 
successful firmware loading into program memory. Once the 
firmware update is successfully completed, a self-test function 
is started. In a situation where the  self-test  fails,  the  old or 
backup firmware is loaded back. If the self-test succeeded, the 
main program clears the self-test flags and the controller starts 
operating using the new firmware.

As  was  mentioned  earlier  our  system  has  common 
command format for all interfaces. For firmware updating this 
is  important  as  commands  should  not  depend  on  what 
communication interface is used during the updating process. 
Such  common  command  acceptance  is  needed  for  the 
firmware updating service to be capable of extension to any 
compatible locally connected devices. Should the commands 
or command formats be different for each interface then the 
telematics module would need to be equipped with command 
translation  capability  which  may  become  overly  resource 
demanding.  A  common  command  format  makes  also  the 
whole system design simpler.

While the  external  memory should  store  several  different 
firmware versions,  it  is  necessary to  use a strictly specified 
memory layout. Since the external memory can be accessed 
only from special interfaces that all have their own read and 
write  commands,  it  does  not  need  to  have  any  special  file 
system. Without any file system utilized, it is only necessary 
to segment the memory properly. Figure 3 presents an external 
memory  layout  with  all  segments  of  same  size  as  the 

controller’s program memory. Since it is not possible to write 
to the boot loader section of the microcontroller, the area in 
external  memory  that  contains  the  boot  loader  section 
addresses  does  not  need  to  hold  any  program  code  and 
therefore  can  hold  image  block  checksum  values.  Block 
checksums are necessary to track corrupted firmware, and in 
partial update mode, non matching parts in external memory. 
The  difference  between  two  checksums  is  that  block 
checksums are taken from a block of 256 bytes while the 32-
bit checksum is taken for whole program image, excluding the 
block  checksum area.  Block  checksums are  optional  in  the 
loading  process;  the  only  purpose  of  those  checksums  is 
aiding  the  detection  of  corrupt  firmware  part  locations  in 
external  memory,  or  indicating  mismatching  parts  between 
two  different  firmware  versions.  Block  checksums  are 
calculated by the controller  after  special calculation request 
from the  FOTA server.  An  incorrect  block  checksum itself  
does not interrupt the firmware loading process.

The first step of firmware updating process is to load the 
new firmware image into the external memory, which can be 
performed  by  loading  fragments  of  code  into  specified 
memory regions, i.e. loading only updates, or by transfer of a 
new image in full. New loadable firmware image is generated 
by GNU Binutils, and may be either in binary, IHEX, SREC, 
or preferably, in the ELF format, but all formats must contain 
32-bit firmware checksum information. Firmware loading can 
take place  either  using a wired connection over LAN, or  a 
wireless  (GSM/GPRS)  connection.  Since  the  firmware 
updating  method  supports  both  partial  and  full  firmware 
uploading  modes,  it  is  reasonable  to  use  partial  firmware 
upload mode when communication link failures exceeding a 
single session break are expected during firmware updating. 
Expected communication link failures in one session can be 
found as follows:

p fail×d s≥1  (1)

where pfail is byte failure probability e.g. one failure per ten 
kilobytes, and ds is transferred data size. In case of deployed 
devices  it  is  reasonable  to  transfer  the  firmware  over 
GSM/GPRS  in  one  continuous  part  during  one  continuous 

Figure 3: Memory allocation in external memory



session,  while  over  LAN  it  can  be  accomplished  by 
transferring  several  parts  in  one  or  several  sessions.  Both 
transfer methods are the same for the controller side,  but in 
case of using the partial update mode the server has to ask for 
block checksums, to verify these, and to start a new transfer in 
a  case  a  faulty  block  checksum  was  detected.  Also,  both 
transfer  methods  do  not  inflict  any  interference  upon  the 
operation of the whole remote AtoN site system.

Two alternatives are available for tracking faulty firmware: 
using block checksums and whole program memory checksum 
(32-bit  checksum).  While  it  is  possible  to  use  block 
checksums to track faulty firmware data, it is not necessary to 
compute  block  checksums  after  transfer  when  the  new 
firmware  has  been  transferred  within  one  session.  In  such 
case, it is more efficient to make the controller to calculate a 
single long checksum and if this checksum does not match to 
re-initiate the transfer of the new image in whole. In case of 
partial  image  loading,  it  is  necessary  to  check  block 
checksums after  each 256 byte block is  transferred;  in case 
that  a  controller  computed block checksum does not  match 
with a block checksum computed at the server side, retransfer 
of  only  the  faulty  block  of  the  new  firmware  image  is 
required.

Once  the  firmware  transfer  into  external  memory  is 
completed, a non-critical moment from the system mission’s 
point of view is awaited to start up a small firmware copying 
program which will copy the new firmware from the external 
memory into the program memory of the microcontroller as 
fast as possible. This firmware copying program is basically 
part of the boot loader, being responsible for correct firmware 
copying from external memory to microcontroller’s program 
memory. The copying program also has two EEPROM regions 
which are designated for signaling system self-test functions 
when the firmware is updated. One of the EEPROM regions 
holds a successive firmware update counter and another region 
holds a new firmware and a faulty checksum flag. Before the 
firmware  copying  process  is  started,  the  32-bit  firmware 
checksums  are  checked;  if  these  do  not  match,  a  faulty 
checksum  flag  is  set  and  a  system  reset  is  initiated.  If 
checksums  are  correct  then  firmware  copying  from  the 
external  memory  to  microcontroller  program  memory  is 
started. After the firmware copying process is completed, the 
successive  firmware  update  counter  is  incremented  and  the 
new firmware flag is set. Thereafter a system reset is initiated, 
starting up the operation with newly loaded firmware.

As soon as the new firmware is started up, a check of the 
flags set is performed. In case when the new firmware flag is 
set, a self-test shall be initiated. If the new firmware does not 
succeed completing the self-test within a specified timeframe, 
the operation is discontinued and a previous or backup version 
of the firmware is loaded back into the program memory of 
the controller. In case that a faulty checksum flag is set, the 
controller  sends  a  failure  indication  message  to  the  FOTA 
server in the first communication session and no self-test is 
started.  The  firmware  copying  program  with  successive 

firmware update counter and new firmware flag can also track 
cases where new firmware is unable to operate at all and is 
therefore immediately terminated by a watchdog (WD) reset. 
When more than three WD resets occur,  the old or  backup 
firmware  will  be  loaded  back  into  the  controller  program 
memory. The successive firmware update counter and new the 
firmware  flag  are  both  cleared  when  the  controller  has 
successfully completed the self-test.

IV. EXPERIMENTAL RESULTS

The  above  described  method  has  been  successfully 
implemented in our AtoN telematics module. Since the new 
firmware  updating  method  must  be  compatible  with  our 
legacy boot loader software, it contains a quite large portion of 
the wired boot loader program code. Despite the compatibility 
with  our  legacy  boot  loader,  the  new  boot  loader  with 
firmware  copying  code  needs  only  3.2  kB  of  program 
memory,  and approximately 280 bytes  of  RAM to  operate. 
The firmware copying code itself needs approximately 1 kB of 
program memory.

The laboratory tests with our new boot loader and FOTA 
server showed that the previously described method can copy 
firmware from the external buffer memory to main memory in 
about  8  seconds,  and the  interruption  of  the  main  program 
operation  lasts  less  than  15  seconds.  Firmware  update  was  
tried with two different remote control and monitoring system 
(RCMS) servers – our test server and an actual AtoN RCMS 
server.  The  following  test  results  are  taken  from  the  test 
server;  the only difference between a test  server  and a full  
RCMS server was the upload speed where the test server was 
roughly  two  times  faster.  Firmware  updating  over  the 
GSM/GPRS data link was tested with two different firmware 
images: one of  71.634 kB of program code, and another of 
79.021  kB  of  program  code.  Firmware  loading  over 
GSM/GPRS data link to the controller’s external memory is 
quite  slow:  loading  of  a  71.634  kB  firmware  image  takes 
typically 52 sec to 56 sec, and loading of a 79.021 kB image 
55 sec to 60 sec. Such a low firmware downloading speed is 
mainly  caused  by  slow  internal  connections  between  the 
external  buffer  memory,  the  microcontroller,  and  its 
GSM/GPRS modem. In theory, it  is possible to increase the 
downloading speed, but this is not practical.

In  the  laboratory,  roughly  95%  of  firmware  transferring 
attempts  into  the  external  memory  over  GSM/GPRS 
succeeded in  the  first  attempt  and 5% of  the  failures  were 
largely  caused  by  GSM/GPRS  communication  failures;  all 
repeated  attempts  for  firmware  transferring  were  successful 
already at  the  second trial.  Most  GSM/GPRS failures  were 
caused by network delays which were over 15 seconds long, 
resulting in server timeout.

Firmware  updating  was  also  tested  on  deployed  devices 
within  the  operational  AtoN  infrastructure  and  as  was 
anticipated,  the  results  displayed  slightly  lower  first-time 
success rate than in the laboratory: roughly 90% of firmware 
transferring attempts into the external memory succeeded in 



the first attempt, 5% in the second attempt and remaining 5% 
of transfers succeeded within ten attempts.  Transfer  failures 
were caused by long transfer delays or connection loss, where 
both are quite common at remote AtoN sites operating in the 
conditions of low GSM field strength.

In  addition  to  GSM/GPRS transmission  trials,  tests  were 
carried out to investigate server side failures: the server was 
shut down during an active communication session, resulting 
in a new connection to the server to be established after a 15 
seconds  timeout;  the  new  firmware  was  downloaded  again 
without  unwanted  effects  on  the  remote  AtoN  system 
operation.

Since the integrity of the firmware is protected by a fairly 
long  checksum  value,  a  faulty  firmware  image  was  never 
copied  into  controller’s  program  memory.  When  the  new 
firmware was found to be faulty, the controller never tried to 
copy it into the program memory; therefore in such cases the 
program memory remained unchanged. In case when both, the 
program  memory  and  the  new  image  were  corrupt,  the 
controller  always  copied  the  last-known-to-work  or  backup 
firmware back to program memory. When a faulty firmware 
image  with  a  correct  checksum  value  was  copied  to 
microcontroller’s  program memory,  it  could  never  pass  the 
self-test  and  after  a  while  a  working firmware  version  was 
loaded back.

V. FIRMWARE UPDATING IN SYNTHETIC AIS REPORTING MISSION

AtoN  device  firmware  updating  over  the  air  may  have 
certain  impact  on  continuity  of  the  synthetic  AIS  reporting 
mission of a buoy system. AtoN devices subject to synthetic 
AIS  reporting  are  expected  to  broadcast  their  status 
information typically at a three minute interval while the data 
sent  to  the  RCMS  remain  valid  only  for  one  minute. 
Therefore, it is necessary that an AtoN device in synthetic AIS 
configuration  can  update  the  firmware  within  about  two 
minutes. Typically, an AtoN telematics module needs about 15 
seconds for its measuring tasks and tests, but following a reset 
event it takes roughly another 30 seconds for registration into 
the  GSM/GPRS  communications  network.  If  the  firmware 
update and controller reset is completed within less than three 
minutes  of  time  from  the  moment  when  the  controller 
submitted its regular synthetic AIS report to the RCMS server, 
the firmware updating process will have no impact to the AIS 
mission, presenting a negligible impact to the availability of 
the navigational signal.

While  our  AtoN  controller  currently  cannot  send  AtoN 
status information while receiving new firmware update from 
the  RCMS  server,  a  gap  in  forwarding  the  synthetic  AIS 
messages into the AIS shore infrastructure for broadcasting is 
inevitable. Although such communication gap will be present 
during the firmware loading process, the AtoN controller will 
continue the operation with its regular tasks during this time. 
This  communication  gap  can  be  avoided  by  two  different 
methods: the first option would be a faster data transmission 
between the server and the telematics module, and the second 
option would be data transmission in smaller firmware parts 
which are transmitted over a  longer period. The faster  data 
transmission  is  in  principle  possible,  but  it  requires  some 
modifications  in  the  firmware  architecture  of  the  existing 
controller,  and is currently not practical.  The second option 
where the firmware is transmitted in several parts is currently 
possible  on  controller  side,  but  would  require  several 
modifications in the existing RCMS server software.

VI. CONCLUSION

The objective of the current work was to develop a reliable 
method  for  remote  firmware  updating  in  embedded  AtoN 
controllers with minimum impact on operational availability. 
The  developed  method  differs  from  other  similar  methods 
mainly  by  short  program  interruption  time,  which  is  very 
important  in  case  of  synthetic  AIS  reporting  mission  of 
targeted  telematics  modules;  the  above  described  firmware 
updating  method  has  negligible  impact  upon  AIS  mission. 
Furthermore,  it  enables  updating  of  the  firmware  even  in 
programmable equipment units with the AtoN site system that 
are connected to the local area network of the AtoN site. This 
firmware updating method also features a roll back capability 
allowing  reverting  to  previous  known-to-work  firmware  in 
case  of  transmission  faults  of  the  firmware,  or  partially 
corrupting  program  memory.  The  method  has  been 
successfully implemented and deployed in our buoy telematics 
electronic  systems  with  all  firmware  tests  both  in  the 
laboratory conditions and at the sea environment successful.
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ABSTRACT:  This  paper  presents  a  numerically  efficient 
method developed for obtaining heel angle information on 
navigational  buoys  by  the  use  of  onboard  low  power 
embedded controllers equipped with solid state acceleration 
sensors,  focusing  on  the  signal  processing  principles 
employed.  Calculation  of  the  buoy  heel  (tilt  angle  or 
inclination)  is  based  on  continuous  measurement  of 
acceleration of  the buoy in  all  three  planes of  movement, 
accomplished  using  a  3-axial  solid  state  accelerometer  (g-
sensor)  with  the  maximum  range  of  ±3  g.  The  sensor  is 
integrated  with  an  Aid  to  Navigation  (AtoN)  telematics 
module  that  is  subject  to  low  power  consumption 
requirements  and  size  restrictions  resulting  in  limited 
computational  capability.  Results  of  tests  performed  on 
operational  marine buoys are presented at  the end of  the 
article.

1 Introduction
Despite  the  widespread  use  of  mature  electronic 
technologies  for  marine  navigation,  visual  light 
navigation stations remain an indispensable part of marine 
navigation  safety  infrastructure  for  foreseeable  future. 
While  the  navigational  buoys  are  widely  used  for 
generating  light  signals  of  strictly  specified  visibility 
range  and  flashing  character,  the  environmental  effects 
like  wave  action,  winds,  tidal  currents  and  ice  may 
adversely  affect  both  by  tilting  the  buoy,  introducing 
either a dynamic or a static heel angle, or a combination 
of both. This may introduce significant reduction of the 
visibility  range  and  parasitic  modulation  of  the  light 
signal as described in  [1], therefore timely awareness of 

the relevant authorities of the typical and critical angles of 
heel of deployed navigational buoys can be considered a 
precondition  for  provision  of  a  high  quality  light 
navigation  service.  In  addition,  specifics  of  the  Nordic 
region introduce a problem that  goes undetectable by a 
traditional AtoN remote monitoring system: a buoy may 
be on station (within the limits of the assigned and GPS 
monitored geographical position), but stuck in the ice at a 
significant heel angle making the navigation light to fail 
in most of directions (Figure 1). The above situations can 
introduce significant navigational hazards due to the fact 
that buoy lanterns often use rather narrow vertical beam 
profiles  (divergence)  providing  only  five  to  fifteen 
degrees full width at half of maximum intensity.

Most  of  such  buoy  light  signal  visibility  problems 
could  be  avoided  by using  buoy  lanterns  with  a  light 
source  that  is  either  always  horizontally  aligned  by 
mechanical  means (gimballed),  or equipped with a light 
source and optics that guarantee a sufficient vertical beam 
width for any environmental  conditions encountered.  In 
practice, such solutions are too expensive to manufacture, 
too  bulky  and  power  consuming for  most  applications. 
With many buoys at critical stations equipped with remote 
monitoring  (telematics)  equipment  featuring  low power 
embedded controllers,  a  feasible  alternative  to  reducing 
the navigational risks associated with excessive buoy heel 
angles is tilt monitoring in conjunction with reporting of 
critical heel angles to the operations centre,  allowing to 
issue navigational warnings and to take appropriate action 
as necessary. The same setup provides efficient means for 
service  quality  control  (statistics)  as  well  as  for 
researching the behaviour of specific buoys deployed at 
specific locations in order to determine sufficiency of the 
stability provided by the buoy platform selected, and to 
decide upon required minimum vertical divergence of the 
buoy lantern to be employed.

The most cost effective of contemporary methods for 
inclination measurement is achieved by application of a 
programmable  microcontroller  equipped  with  a  three-
axial micromechanical accelerometer sensor (a solid state 
g-sensor – a Micro-Electro-Mechanical System (MEMS)) 
that  can  measure  acceleration  levels  on  all  three  axes 
simultaneously,  including  the  static  component  of 
gravitational acceleration distributed over the sensor axes Figure 1: Buoy in Ice



depending  on  inclination  of  the  controller  carrying  the 
sensor.  Similar  angle  detection  methods  have  been 
developed  for  directional  drilling  systems  [2] and 
monitoring  of  patient’s  head  position  during  a  post-
operative  period  after  vitreoretinal  surgery  [3].  Some 
MEMS  g-sensor  manufacturers  have  published  certain 
application  notes  describing  tilt  measurement  and 
calculation  [4],  but  none  of  the  published  material 
reviewed offered angle calculation methods suitable for 
dynamic environment. In addition, most of the suggested 
methods  require  powerful  microcontrollers  for 
implementation  of  complex  algorithms  while 
implementing  of  autonomous  heel  angle  calculation 
capability onboard a buoy is only feasible when using a 
simple algorithm.

The rest of this paper is organized as follows: Section 
2 provides a brief overview of the developed heel angle 
measurement  system;  Sections  3 and  4 describe  the 
proposed  heel  angle  calculation  method;  Section  5 
outlines  results  of  experiments  and  tests  performed  in 
both laboratory and marine environment; the concluding 
remarks are given in Section 6.

2 Remote Monitoring and Acceleration 
Measurement System Overview

While  AtoN  remote  control  and  monitoring  systems 
(RCMS) of varying degrees of sophistication have been 
around for decades, measurement of buoy heel angles has 
not been widely used due to complexity and cost - in an 
autonomous  system  that  needs  to  provide  reliable 
operation from primary batteries  for  years,  spending of 
every  mA  of  current  must  be  well  substantiated.  Our 
concept  foresaw  integration  of  a  single  new  hardware 
component (3-axial g-sensor) with the existing telematics 
module (TM) used for remote monitoring of navigational 
buoys, and accomplishment of heel angle calculation and 
monitoring tasks using the available ADC ports and spare 
computational capacity of the existing microcontroller. In 
a  typical  application,  the  TM  is  installed  inside  a 
protective enclosure together with a flasher module and 
an  LED array,  and  mounted  on  a  buoy superstructure, 
typically  2  to  4.5  meters  above  the  sea  level. 
Communication protocols of the TM that serves primarily 
as  a  communications  gateway  between  the  remote  site 
equipment and the RCMS centre server were updated to 
accommodate  heel  angle  information  and  associated 
alarms.

A TM is performing acceleration data acquisition in 
blocks  where  each  block  consists  of  three  10-bit 
acceleration  measurement  values  representing 
acceleration  levels  sampled  from  three  axes  of  the  g-
sensor. All samples in one block are separated from each 
other  by 0.6ms in  time.  Block  sampling  period  is  user 
selectable,  typically  set  to  100ms  considering  the 
dynamics  of  the  buoy  platform.  Due  to  the  fact  that 
acceleration data acquisition is not the primary task for 
the TM, under certain circumstances the acceleration data 

blocks may be sampled at slightly uneven intervals due to 
coinciding higher priority tasks of the processor: at most 
0.33%  of  blocks  may  be  delayed  by  10%  to  20%  of 
configured  sampling  interval.  Due  to  the  considerably 
slow movement of a buoy, with a typical buoy moving 
cycle  between  2s  and  10s,  and  the  considerably  high 
sampling  rate  used,  such  occasional  uneven  sampling 
does  not  have  any  significant  detrimental  impact  on 
autonomous heel angle calculation.

Figure  2 shows relevant subsystems of a TM utilized 
for  acceleration  measurement,  inclination  angle 
calculation and status/alarm communication tasks, leaving 
out all parts which are not involved in the process. The 
MCU used is an 8-bit AVR microcontroller, performing 
analog to digital conversion of g-sensor output data, heel 
angle  calculations,  angle  value  monitoring,  maintaining 
statistics and initiating communications when necessary. 
When a heel angle value exceeding a pre-configured level 
is detected, the MCU initiates a communications session 
with the RCMS centre server using the communications 
interface (CI) to report a critical heel angle. In the current 
system implementation, the CI is a GSM/GPRS modem 
with  integrated  TCP/IP  stack.  The  acceleration  sensor 
utilized is an ADXL330 by Analog Devices  [5] which is 
connected  directly  to  the  analog  input  channels  of  the 
MCU,  allowing  reducing  the  power  consumption 
compared to the situation where a smart digital g-sensor 
would be used.

It  is  still  possible  to  calculate  the heel  angle  at  the 
server  side,  but  this  is  practical  only  in  special  cases 
focusing on a more detailed research of buoy movements 
since transmission of raw acceleration data to the RCMS 
would  be  required.  For  example,  in  case  of  a  100ms 
sampling  period,  nearly  1MB  of  raw  data  has  to  be 
transmitted  to  the  RCMS server  hourly.  In  addition  to 
direct  communication  costs,  other  factors  limiting  the 
utilization  of  server  side  data  processing  are  increased 
power  consumption  of  the  TM  due  to  the  systematic 
transmissions over the open communication channel and, 
last  but  not  least,  inability  of  immediate  local  decision 
making due to the calculation results being available only 
at the remote operations centre.

3 Buoy Heel Angle Calculation
Calculation  of  the  inclination  angle  based  on  digitized 
real-time  acceleration  data  can  be  performed  by  using 

Figure 2: TM Block Diagram



simple trigonometric  functions like sine or  tangent.  For 
systems  that  have  hardware  floating  point  support,  the 
most elegant and easiest way would be to use tangent. In 
8-bit  embedded  systems  where  all  numbers  have  quite 
small  range,  the only feasible option is  to  use the sine 
function.  8-bit  systems  cannot  use  tangent  because 
tangent have infinite value when the angle is 90 degrees, 
and it  is very inefficient  to use fixed point variables to 
store such values. When using the sine function for angle 
calculation, it is necessary to use an additional hypotenuse 
calculation;  this  is  not  a  problem  in  all  systems  with 
sufficient available computational power. This additional 
calculation  makes  all  data  processing  a  little  more 
resource  consuming  and  may  introduce  small 
inaccuracies,  making this approach not suitable for  raw 
acceleration data processing on the server side.

It  is  possible to  simplify the rest  of  calculations by 
finding the  length of  the  vector  in  the X-Y plane,  and 
using it as a single value describing the horizontal plane. 
This  simplification  is  possible  due  to  the  absence  of 
directional data in the horizontal plane of the buoy.

Length of the horizontal acceleration vector:
c= x2

 y2  (1)
where x and y are acceleration values from X and Y 

axis outputs of the sensor.
Sine function also needs the hypotenuse:

h=c2z2  (2)
where  c  is  the  length  of  the  horizontal  acceleration 

vector and z is acceleration value from the Z axis output 
of the sensor.

The  inclination  angle  (buoy  heel  angle)  can  be 
calculated using the following formula:

=arcsin c
h

 (3)

In actual marine environment, the acceleration values 
obtained  from  the  acceleration  sensor  are  changing 
continuously which can cause certain errors in short term 
calculations.  However,  it  is  possible  to  perform a  long 
term  calculation  that  averages  all  input  data  and  thus 
eliminates  most  errors  caused  by  the  continuously 
changing  acceleration.  Averaging  is  possible  because 
buoy movement  is  mainly  symmetrical  to  all  axes  and 
averaging  provides  a  central  value  without  short  term 
excessive acceleration peaks.

4 Algorithm Implementation in Telematics 
Module Firmware

The  most  important  limitation  at  using  the  inclination 
angle calculation algorithm directly in TM firmware is the 
absence  of square root,  hardware  floating point  support 
and fast trigonometric functions. These functions can only 
be used in the server side applications. Inclination angle 
calculation algorithm for TM is based on the following 
simplification that results in a metavariable that is directly 
proportional  to  the  inclination  angle,  allowing  taking 
actions  at  detecting  certain  threshold  angles  when 
necessary.

First,  the  squares  of  catheti  and  hypotenuse  are 
calculated:

c2
=x2

 y2  (4)

h2
=c2

z2  (5)
The  inclination  angle  metavariable  is  calculated  as 

follows:

=216⋅
c2

h2  (6)

The result of formula  6 is a value that holds enough 
information to  unambiguously determine the inclination 
angle  of  the  buoy  from  the  vertical  axis.  It  can  be 
averaged locally,  or forwarded to the server  side inside 
corresponding  messages  of  the  TM  for  use  by  other 
systems.

Due  to  the  limitations  of  the  TM  hardware,  it  is 
possible  to  use  only  fixed  point  values;  therefore,  all 
values shall  be in 16 bit  range,  which will  cause  some 
errors in our heel angle calculation. Hence the worst case 
accuracy δ is calculated as follows:

=216⋅sin2  (7)

=∣−arcsin 


216∣  (8)

where  the  variable  θ  is rounded  down to  a  nearest 
integer.

Worst  case accuracy can then be found by inserting 
angle values between 0º and 90º into formulas  7 and  8, 
resulting  in  heel  angle  calculation  errors  as  shown  in 
detail on graphs in Figure 3.

Resultantly, the worst case computational accuracy at 
determining the heel angle of a TM is 0.220º in the range 
of 0º to 2º and 88º to 90º, and 0.010º in the range of 2º to 
88º.

Implementation of the average inclination algorithm in 
TM  firmware  is  accomplished  as  follows.  First,  the 
average  square  of  the  catheti  and  the  hypotenuse  is 
calculated:

c2
= 1n∑i=1
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 (10)

The  average  inclination  angle  over  the  averaging 
period is calculated as shown in formula 11:
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As  seen  in  formula  11,  angle  averaging  can  be 
accomplished  without  division,  simplifying  the 
calculations.

Decoding  of  instantaneous  or  average  angle  values 
from the metavariables received from a TM on the server 
side is accomplished as follows (the angle α is given in 
radians):

=arcsin  

216  (12)

where θ is a coded angle metavariable received from a 
telematics module.

5 Test Results
Inclination angle calculation tests were carried out both 
on  our  in-house  rotating  test  bench  and  on  the 
navigational  buoys  deployed  in  actual  marine 
environment.  Table  1 presents  the  results  of  our 
laboratory tests.

Angle Average angle, measured by controller Error
0.0º 1.0º 1.0º
1.0º 0.7º 0.3º
2.0º 1.7º 0.3º
3.0º 2.3º 0.7º
5.0º 4.6º 0.4º
10.0º 9.6º 0.4º
20.0º 19.9º 0.1º
30.0º 30.2º 0.2º
45.0º 45.1º 0.1º

Table 1: Test results

As seen in Table  1, all values that are measured by 
TM are quite close to actual inclination angles of the TM; 
the average error  over the tested range was below 0.5º. 
Only two cases exhibited larger errors – 0º and 3º, where 
the first one was caused by the controller and second error 
was caused by test bench, but both errors were below 1º 
which is acceptable for a device that is not intended for 
precise angle measurement.

In  addition  to  laboratory  tests,  our  method  was 
verified  in  actual  operational  environment  of  the 
navigational buoys (Figure 1). The angle reported by TM 
based  on  autonomous  calculations  was  consistent  both 
with  the  visually  identified  buoy  angle  as  well  as  the 
results  of  server  side  calculations  based  on  raw 
acceleration data. When observing the static heel angle of 

a buoy frozen in an ice field over a longer period it  is 
clearly  seen  that  heel  angle  changes  remain  below one 
degree as expected (Figure 4).

6 Conclusions
The objective of the current work was to develop a low 
resource demanding heel angle calculation method that is 
feasible  for  application  on  navigational  buoys.  The 
developed method is suitable for low power marine AtoN 
embedded systems with an integrated 3-axis acceleration 
sensor  with  analog  output.  This  method  is  capable  of 
carrying out heel angle calculations in real time with an 
error levels of up to 0.220° in the range 0°…2° and 88°…
90°  and  0.01°  in  the  range  2°…88°. The  method  was 
successfully  tested  in  our  laboratory  as  well  as  in 
expected  operational  environment  at  the  sea;  all  test 
results were in accordance with actual heel angles while 
the errors were neglectable considering the intended use.
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Abstract  —  This paper presents a method for measuring wave 
height  with  navigational  buoys  which  are  equipped  with  an 
acceleration  sensor.  The  developed  method  differs  from other 
similar methods by the ability to measure wave height with buoys 
which  are  not  perfect  wave  followers  –  typical  in  case  of 
navigational  buoys.  The  paper  summarizes  the  experimental 
study performed using operational marine navigational buoys as 
sources of  wave data,  in comparison with wave measurements 
performed with pressure based wave height and period gauges. 
Comparative  measurements  were  made  in  variable  forcing 
conditions and results show good agreement between those two 
datasets.  Some  differences  that  occur  mainly  during  rapid 
changes of wave parameters, such as during build up and decay 
of  the  wave  field,  can  be  explained  by  physical  properties  of 
navigational buoys (shape and weight). 

Keywords: wave height measurement, navigational buoys

I.  INTRODUCTION

Wave  height  is  one  of  the  key  factors  influencing  the 
navigational  conditions  on  any  waterways.  Wave  field  is  a 
result of a complex set of factors; active, forcing factors (wind 
strength,  direction  and  duration),  and  passive  factors  (depth 
profile, topography of the sea bottom, coastline configuration, 
etc).  In  fluid  dynamics,  wind-generated  waves  are  surface 
waves that occur on the free surface of the water bodies.

Since  the  wave  regime  in  a  certain  sea  area  can  have 
remarkable spatial and temporal variability, in-situ wave height 
measurements with results made available to the mariners in 
real time are needed for the purposes of navigational decision 
support. Wave measurement with dedicated equipment is still 
costly  while  emerging  satellite  based  solutions  are  not  well 
suited  for  on-line  provision  of  localized  wave  height 
information. At the same time, numerous navigational buoys 
are floating around in almost all navigable waters, waiting to be 
tasked with wave height measurement.

Main limitation at developing of technological solutions for 
enabling the navigational buoys with wave height measurement 
functionality  is  the  restricted  power  availability:  to  avoid 
interfering with the primary mission of the buoys, any added 
equipment  must  draw  insignificant  amount  of  power  in 
comparison with on-board AtoN light signaling, measurement 
and  radio  systems.  Other  issues  involve  platform  specific 
calibration, data quality control and broadcasting methods.

II. SYSTEM OVERVIEW

The key to cost efficiency of a wave measurement network 
based on navigational buoys lays in the fact that it utilizes the 
telematics  equipment  and  GSM/GPRS  cellular  data  links 
already  present  on  the  buoys  for  the  purposes  of  aid  to 
navigation  (AtoN)  remote  control  and  monitoring.  Targeted 
buoys are  equipped with telematics  modules  with integrated 
three-axial accelerometers which are used as sensors for wave 
height  measurements.  In  our  case,  the  module  had 
computational  capabilities  sufficient  for  acceleration  based 
calculation of buoy heel angle. Designed for lowest achievable 
power consumption and certain AtoN specific communications 
tasks,  the  telematics  module  cannot  offer  sufficient  data 
processing  capability  to  perform  complex  computations  of 
wave heights in-situ. Instead, it will periodically transmit buoy 
acceleration data to a shore side wave height calculation server 
which can broadcast the results to the mariners using the shore 
side  Universal  Automated  Identification  System  (AIS) 
network. This research is ongoing, therefore it is too early to 
say  whether  a  computationally  more  efficient  wave  height 
measurement  algorithm  could  be  developed  for  utilization 
directly  on-board  a  navigational  buoy  using  the  current 
embedded hardware.

III. WAVE HEIGHT MEASUREMENT METHOD

Wave measurement by the means of acceleration sensors is 
not  brand  new:  the  method  was  introduced  in  1950-s  and 
commercial products are available, e.g. Datawell Waverider. In 
our  case  the  navigational  buoys  serve  as  measurement 
platforms – typical steel spar buoys with the weight of roughly 
5 tons  (Fig 1). These buoys are deployed for around the year 
operation, capable to withstand ice conditions. Chain moorings 
are used as standard, increasing overall buoy weight by 0.5 to 
1.5 tons,  and also keeping the buoys from riding the waves 
freely. Since the primary task of these buoys is to serve as a 
source of a navigation light signal, they are designed in a way 
allowing only limited wave following. Due to buoy hull design 
specifics and the mooring, each buoy has its own individual up 
and down movement period that does not depend significantly 
on the  weather  or  wave motions:  Figures 2 and  3 compare 
acceleration measurement results in calm and stormy weather 
that  demonstrate  matching  wave  periods.  Figure  3 shows 
noticeable  differences  between  two  acceleration  spectrum 
magnitude peaks,  but  the period of  the higher peak remains 
almost the same with waves which are higher than 1.2 meters. 



Therefore we can conclude that the navigational buoy platform 
used  is  not  dynamic  enough  for  successful  utilization  of 
common or straightforward wave height estimation algorithms 
(e.g. FFT based methods  [1]).

To  obtain  wave  height  values,  we  have  analyzed  buoy 
acceleration data and found a good correlation between values 
of acceleration and wave heights measured nearby by reference 
sensor for this particular type of navigation buoy. During the 
pilot study we also noticed that behavior of different navigation 
buoys differ from place to place and that’s not only because of 
differences  in  buoy shape and  weight  mentioned above,  but 
also due to local peculiarities of wave field defined by bottom 
topography and local wind condition – which makes of course 
our task even more complicated. Method of calculation of the 
wave parameters  based  on the  movements  of  a  navigational 
buoy  introduced  here  is  based  on  finding  the  maximum 
acceleration values during  certain time periods and correcting 
these  with  expected  wave  period  value  (buoy  up-down 
movement period). Currently, the method provides significant 
wave height as output and we have compared obtained data 
with reference wave measurements.

The  main  problem  for  this  method  of  wave  height 
estimation  lies  in  the  filtering  of  the  wave-induced  buoy 
motions and leaving the buoy’s own motion aside.  To solve 
this  problem  and  estimate  wave  heights  from  motions  of 
navigational  buoys, we have developed an empirical  method 
described below.

In  case  of  ideal  waves  and  measuring  equipment,  most 
developed waves can be considered quite sine like with same 
maximum  (crest)  and  minimum  (through)  values  of 
acceleration.  To find the amplitude of acceleration aw in such 
simplest  case,  we  only  need  to  find  the  maximum  and 
minimum values from the acceleration signal and subtract them 
from each other:

aw=max A−min A  (1)

In the Equation 1,  is parameter  A an array of acceleration 
values. In this simple case we can also obtain maximum and 
minimum  values  just  collecting  highest  and  lowest  signal 
values over a period of time in interest, which is a relatively 
simple operation for accomplishing in software.

With  a  constantly  changing  signal,  finding  of  maximum 
and minimum values becomes a much more complex task. The 
main challenge is to minimize the weight of the values which 
are close to the maximum and minimum values. One possible 
solution in such case is to sort all accelerations in decreasing 
order  and  to  construct  an  array  of  differences  between 
maximum and minimum values (using the same method as in 
Equation 1) and averaging the highest N values.

aw=
1
N
∑
i=1

N

 Ai  (2)

where  ΔAi is  array  of  decreasing  differences  between  the 
maximum and minimum of acceleration data. The parameter N 
is found by trial and error, but when setting the parameter N 
correctly,  one  can  obtain  a  rather  precise  result  by  such 
calculation. For example, in our collected data set we may have 
every 30th wave height as a real significant wave height, every 
wave is approximately 20 samples long and the acceleration 
signal from a real significant wave is two times higher than the 
acceleration signal caused by the normal buoy up and down 
movement.  With a signal 30 wave periods long, we shall set N 
to 3,  resulting in  acceleration  value  which  is  96.7% of  real 
significant  wave  height  acceleration  value.  This  calculation 

Figure 1: Steel spar buoy

Figure 2: Acceleration signal packages recorded in stormy (02/sept/2010) and 
calm weather (01/sept/2010)

Figure 3: Acceleration spectrums calculated from data of stormy 
(02/sept/2010) and calm weather (01/sept/2010)



method has proven to provide statistically relevant results with 
acceleration signals where the dominating frequency is not the 
actual wave frequency but certain occasional jumps may carry 
the correct wave height information.

In order to calculate the significant wave height, we need to 
convert the acceleration values to wave height values. For the 
simplicity we can assume that the analysed waveform is a good 
approximation of a sinusoidal wave. This allows to calculate 
the amplitude of the waveform using the double differentiation 
of sinusoidal acceleration function, resulting in the following 
formula:

D=
aw

22 f 2

 
(3)

where aw is the amplitude of the acceleration, f is the frequency 
of oscillation and D is the actual displacement.

To increase the accuracy of measurements, we also need to 
consider the buoy up and down movement frequency to correct 
the calculation results. The fact that most navigational buoys 
are located in the area with vessel traffic may cause significant 
short term measurement errors due to the wakes of ships hitting 
the buoys; this is particularly noticeable in calm weather.  In 
case of long term calculations, the wake waves do not change 
the buoy up and down movement period to such extent which 
would  degrade  the  precision  of  wave  measurement 
significantly.  To  take  the  buoy  movement  frequency  into 
account, we need to perform FFT analysis of the acceleration 
data set and to insert the main up-down movement frequency 
into Equation 3.

Before the calculated wave heights are saved or forwarded 
to  other  software,  each  wave  height  measurement  result  is 
corrected using a look-up-table; if necessary, the wave heights 
will  be  further  interpolated  with  cubic  spline  to  10-minute 
interval data segments and calculated a 2-hour running average 
wave height after the initial correction. The need for correction 
of the acceleration measurement results is due to the fact that 
the constant N in Equation 2 is based on average wave heights, 
but with this equation it may not result in correct wave heights 
when  the  waves  are  higher  or  lower  than  average.  This 
correction could remove or at least reduce the caused effect by 
using double-pass wave height calculation, where in first pass 
the wave heights are calculated and a new N value is found, 
while in the second pass the correct wave heights are calculated 
using the new N value obtained in the first  pass.  The wave 
height compensation is carried out by using a look-up-table, 
where  values  are  taken  from  reference  measurements  for  a 
specific navigational buoy. The main drawback of this wave 
height  measurement  method  is  the  need  for  reference 
measurement for every buoy type used.

Interpolation  of  wave  heights  to  10  minute  periods  is 
needed  for  two  reasons:  firstly,  the  acceleration  data 
transmission is accomplished using GSM/GPRS radio network 
which  may  have  quite  many  connection  breaks  during  one 
measuring  session  in  stormy  weather.  Secondly,  the 
acceleration measurement is not a priority task for the onboard 
electronic system of a navigational buoy and therefore it may 
become interrupted any time, thus the measuring sessions may 
be  of  unequal  duration. In  both  cases  the  data  transmission 
periods are of unpredictable length and therefore we could not 
calculate any average wave height without using interpolation.

IV. TESTS

In  order  to  develop  the  wave  analysis  algorithm  and 
validate  the  obtained  wave  data,  the  Estonian  Maritime 
Administration,  Cybernetica  AS  and  the  Marine  Systems 
Institute at Tallinn University of Technology have performed 
trials since late 2008 to establish feasibility of such wave height 
measurement  network  based  on  navigational  buoys.  Even  if 
navigation buoys are not ideal wave following platforms, it is 
still  possible to calculate a rather close approximation of the 
actual  wave  height  based  on  their  acceleration.  Tests  and 
validation  of  the  wave  height  estimation  method  were 
performed  in  five  reference  measurement  sessions  in  three 
different locations, each lasting at least two weeks. In all cases 
the reference  sensor  was deployed at  a  distance  less  than  3 
nautical miles from the buoys under testing (Fig.  4). Pressure 
based  wave  gauge  was  used  for  reference  measurements 
performed  by  the  Marine  Systems  Institute  at  Tallinn 
University of Technology.

Two  wave  recorders  were  used  during  experiments,  the 
working  principle  of  which  is  based  on  measurement  of 
pressure at fixed position of the probe with absolute pressure 
sensor (Keller Ltd.). Anchored instruments were deployed 5 to 
8m below sea surface and the measured pressure is converted 
into  height  of  water  column with  4Hz  sampling  rate,  while 
water temperature variations are automatically compensated by 

Figure 4: Location of navigational buoys hosting the acceleration sensors used 
in the wave parameter measurement experiment, and pressure based wave 

measurement equipment used for reference measurements shown with 
triangles.



sensor electronics. All data as raw pressure values are recorded 
on internal memory (an SD type card).  Wave parameters are 
calculated from raw pressures  after  return of the recorder  to 
shore  and  readout  of  the  data  from  the  instrument.  This 
instrument has proved itself well in the past, most important 
raw  data  for  wave  calculation  is  available  and  if  needed, 
several different methods of wave calculation could be used. In 
our  case  here  the  hydrostatic  pressure  is  measured  and 
following  conversation  procedure  is  applied  to  get  wave 
parameters  out  of  raw  data  series  [2].  Sub-surface  pressure 
transducers measure the instantaneous pressure that is the sum 
of air pressure, hydrostatic pressure and wave-induced dynamic 
pressure. If air pressure and hydrostatic pressure are assumed to 
remain constant at least during the wave period, the dynamic 
pressure under water is expressed with equations derived from 
the linear wave theory [3].

That pressure is a function of three parameters: the height 
of the pressure sensor from the seabed, wave frequency, and 
water  depth.  At  an  intermediate  water  depth,  the  pressure 
decreases  hyperbolically  with  depth,  therefore  a  sub-surface 
attenuation  coefficient  has  to  be  applied  in  order  to  get  a 
realistic picture of wave height.

First  the  pressure  time-series  (units  of  pressure)  are 
converted to a subsurface elevation time series (units of height
).  Then  the  time  series  is  divided  into  five-minute  sections 
called wave packets. Additionally, the packets are de-averaged 
and de-trended. The mean value is used in order to calculate 
gauge  depth,  which  is  needed  for  the  calculation  of  the 
attenuation coefficient. Further on, the power spectral density is 
estimated by using the Welch method, and a Hanning window 
is applied to smoothen the spectrum. The obtained subsurface 
elevation spectra Ssη are converted to surface elevation spectra 
(Sη) using the linear wave theory:

Sη=Ssη  cosh kd 
cosh k dz  

2

 (4)

with  k denoting the wave-number calculated  from the linear 
dispersion  equation,  d water  depth,  and  z elevation  of  the 
pressure  gauge relative  to  the  mean water  surface  (negative 
downwards).

From  the  surface  elevation  spectrum,  two  important 
characteristics  are  derived:  significant  wave  height  and  the 
period  corresponding  to  the  first  moment  of  the  spectrum. 
Significant wave height is defined as follows:

H s=4∫ Sη f df  (5)

The period corresponding to the first moment reads:

T 01=
∫ S η f df

∫ fS η f df
 (6)

Time series of measured wave parameters were conditioned 
same way for each of the measurement locations and periods, 
stored  in  ASCII  files  and  used  for  further  analysis  and 
comparison with wave parameters from navigational buoys.

Results  of  the  comparison  of  two  datasets  are  good. 
Measurement  periods captured different  wind conditions and 
wave field realizations. Two datasets fit with each other very 

well for waves below 2m, 95% of the resulting wave heights 
differed from the reference wave heights by less than 41cm. In 
case of wave heights of over 2m, the maximum difference was 
86 cm (Table 1 and figures 5-8), although the number of such 
larger wave heights was probably not sufficient for drawing a 
proper statistical conclusion. Therefore, future development of 
the  wave  calculation  algorithm would  be  focused  on  storm 
situations with larger wave heights that are more important for 
navigation.  Wave  field  variability  parameters  could  be 
estimated using wave modeling methods, e.g. SWAN that gives 
general  background  for  wave  parameters,  providing  specific 
benefits on coastal sea where morphometry of the coastline is 
as complicated as the wave field itself.

TABLE 1: DIFFERENCES BETWEEN WAVE HEIGHT PRESSURE BASED REFERENCE 
MEASUREMENT AND CALCULATED RESULTS

Percentage of 
calculation results 

within the maximum 
difference

Maximum difference in calculated significant 
wave height [m]

Range: 0.0 m to 2.0 m
(21794 reference points)

Range: 2.25 m to 5.0 m
(401 reference points)

68.27% 0.29 0.63

90.00% 0.37 0.78

95.00% 0.41 0.86

95.45% 0.41 0.87

99.73% 0.53 1.10

Figure 5: Results of first test period on buoy NM157 (Sept. 2010)

Figure 6: Results of first test period on buoy NM186 (Sept. 2010)



Certain errors can be at least partly attributed to the different 
measurement and reporting intervals and sometimes short data 
acquisition periods, with both due to the fact that the primary 
task of a navigational buoy is AtoN signaling. Nevertheless, 
both errors have almost negligible impact on measured wave 
heights.   Another  issue  is  natural  variability  on  wave  field 
which play role if there is distance between navigational buoy 
and  reference  measurement  site  and  always  it  is.  Wave 
parameters vary both in global scale in the Baltic Sea  [4] as 
well  local  scale  [5].  In  both  cases  seasonal  variability  has 
important  role,  which  we  took  into  account  planning 
comparisons in  at  least  two seasons.  Main driving force  for 
waves is wind and for future developments we can take into 
account the fact of anisotropy of wind field over the Baltic Sea 
[6] (defines the well more probable wind situations, also most 
extremes, and accordingly the realization of the wave field in 
certain sea area). Utilizing this fact improves planning of which 
navigational buoys to use for wave measurements to get better 
situational awareness of navigation conditions on sea routes.

Once the  information  from a  large  number  of  calibrated 
wave  height  sensors  is  available  to  the  shore  side  server 
application that maintains sea state awareness over the whole 
monitored  area,  utilization  of  it  for  provision  of  an  e-
Navigation service to aid the mariner becomes feasible and the 
system currently  in  trial  state  is  brought  to  full  operational 
capability.

V. CONCLUSIONS

A method is developed to use navigational buoys equipped 
with  acceleration  sensors  for  estimation of  wave  parameters. 
The  method  is  implemented  and  validated  with  independent 
measurements  with  pressure  sensors.  Low  to  medium  wave 
heights are quite well captured by heavy navigation buoys. Two 
algorithm verification  tests  were  carried  out  at  two different 
navigational buoy deployment sites, with both tests two weeks 
long. The differences between the measured and reference wave 
heights  were  typically  in  few tens  of  centimeters  for  waves 
below 2 meters.  Problems with higher wave heights are caused 
both by instrumental reasons, failure of data transmission during 
stormy weather, and by natural variability in wave field in sea 
areas with complicated bottom topography what is typically the 
case nearby the navigational buoys.  The main advantage of the 
developed method is that parameters of the wave field could be 
measured  in  situ in  open sea conditions –there  are  very  few 
operational wave data sources in the Baltic Sea and the current 
development is a step forward.  The experiments showed that 
reference  wave  height  measurements  in  different  forcing 
conditions are needed for obtaining buoy specific wave height 
calibration  coefficients.  Once  such  calibration  effort  is  done, 
wave data from extensive sea area is operationally available to 
support navigation on sea routes.
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ABSTRACT: During the software development stage, every 
developer  observes  the  program  behaviour  by  using 
assertions,  traces  or  other  debugging  methods,  but  most 
program  bottlenecks  and  some  bugs  may  surface  only 
during  program  profiling.  Software  profiling  in  desktop 
systems  is  a  relatively  simple  task,  but  unlike  in  desktop 
systems,  profiling  of  deeply  embedded  systems  is  quite 
complicated  task.  In  this  paper  we  present  a  profiling 
approach  for  deeply  embedded  systems  which  uses  GNU 
toolchain – GCC C compiler for code instrumentation and 
GProf  tool  for  analysing  output  data.  While  we  use  code 
instrumentation  and  transmit  profiling  data  immediately 
without  any  buffering,  we  lose  only  small  amount  of 
program performance.

1 Introduction
Software  profiling  plays  a  crucial  role  in  the  software 
development cycle. It can reveal many bottlenecks and in 
some circumstances  even  a  few bugs in  a  program.  In 
desktop  or  server  applications  profiling  is  relatively 
simple  task,  but  in  embedded  or  deeply  embedded 
systems, which may be 8 bit systems with very limited 
amount  of  RAM,  lack  of  writeable  storage  media  and 
sometimes  no  kernel  at  all,  profiling  may  be  quite  a 
challenging task.

The main driving force for this research was lack of 
profiling  tools,  capable  to  profile  deeply  embedded 
systems.  Most  integrated  development  environments  – 
(IDE's – e.g. AVR Studio, Code Composer Studio) have 
simulators  but  none  of  them  were  capable  to  collect 
accurately  profiling  data.  Although  some  CPU-level 
simulators  [1],[2] are  capable  to  collect  profiling  data, 
none of those simulators can handle programs which have 
lot of interaction with the real environment. Therefore, the 
only feasible way to profile deeply embedded systems is 
to use compiler assisted profiling methods where profiling 
is switched on during the program compilation stage and 
only for interested source files.

In  this  paper  we  describe  a  method  for  profiling 
deeply  embedded  systems.  The  rest  of  this  paper  is 
organized as follows: Section 2 provides a brief overview 
of  different  profiling  methods;  Section  3 describes  the 
proposed profiling method; Section  4 outlines results of 
the  experiments  and  performed  tests;  the  concluding 
remarks are given in Section 5.

2 Profiling Methods
Four  different  profiling  methods  exist  –  manual 
instrumentation,  hardware  or  kernel  assisted  methods, 
automated  methods,  and  simulation  based  methods. 
Manual  instrumentation  is  the  simplest  instrumentation 
method, which can also give quite good overview about 
the program behaviour in some sections, but this method 
is too labour-intensive method, thus it is not usable in our 
work. Although, one variation of manual instrumentation 
is  used  in  real  time  kernels,  where  instrumentation 
counters  are  hard-coded  into  device  drivers,  and  those 
counters are accessible through special functions.

CPU-level Simulation
Profiling by using CPU-level simulation is carried out by 
using special simulator which can record hardware states, 
events  or  subroutine  calls.  Data  collected  during  the 
simulation can be analyzed typically after simulation [1]-
[3],  but  it  should  be  possible  to  monitor  the  program 
status  during  simulation.  This  method  is  good  for 
analyzing systems which have limited range of input data 
or very limited interaction with the environment. But it is 
quite  useless  in  larger  systems  where  it  is  needed  to 
describe all input states over long period of time. Such 
system may have so many input states that we can not 
describe all input combinations and therefore we can not 
simulate such system. In addition, it is possible, but quite 
rare, that we need to simulate such situations where some 
hardware failures or some other hardware related issues, 
like  faulty  contacts,  fast  temperature  rise  or  supply 
voltage change, etc. might occur. In such special cases we 
can modify simulator so that it gives output like we want, 
but  this modification is usually too time consuming. In 
our case we do not expect that we have all input data and 
want  to  profile  program on the  final  hardware  with all 
other components in extreme environment conditions, like 
maximum and minimum operational temperature.

Sampling
Another profiling method is based on periodical program 
counter sampling [4],[5]. This method is most commonly 
used in larger systems, like desktop or server systems but 
sometimes  also  in  embedded  systems.  Sampling  mode 
profiling  has  two  main  advantages  –  it  does  not  need 
compiler support and it usually has negligible impact to a 
program execution.  However,  this profiling method has 



some  drawbacks  as  well.  First,  as  data  is  collected  in 
regular  intervals  it  may  not  be  so  accurate  as  other 
profiling methods. Usually this is not a big issue because 
programs or routines which are monitored several times 
are  statistically  correct.  Secondly,  this  method  needs 
typically  special  kernel  driver  which  is  responsible  for 
program  counter  sampling  or  kernel which  supports 
program counter sampling for other programs. Therefore 
in deeply embedded systems it is not possible to use such 
method  because  at  hardware  level  this  method  is  too 
resource consuming – it needs one spare timer and also 
quite  a  lot  of  RAM space.  In  addition,  it  may  be  too 
complicated to implement because of lack of supporting 
kernel  and/or  hardware.  Thus,  this  method  is  a  good 
choice in larger systems, mostly in Linux based systems, 
but not for deeply embedded systems.

Instrumentation
Profiling  by  code  instrumentation  is  the  most  accurate 
method and easiest to implement but it has usually quite a 
big impact  to  program execution speed  – it  may cause 
longer delays in quite unexpected places.

Several  different  instrumentation-based  profiling 
methods exist: 1)  automatic source level instrumentation 
(e.g.  [6]) 2)  compiler assisted (e.g.  GCC  [7]), 3) binary 
translated,  4)  runtime  instrumentation  (e.g.  Pin  [8] and 
Valgrind [9]) and runtime injection (e.g. Paradyn/Dyninst 
[10]).  As  deeply  embedded  systems  do  not  have  such 
computation  or  hardware  resources  to  modify  program 
code  –  then  we can  not  use  binary  translated,  runtime 
instrumentation  and  runtime  injection  methods. 
Therefore, we have only two possible profiling methods – 
automatic  source  level  instrumentation  and  compiler 
assisted. Both methods have eventually the same result, 
but GCC (GNU Compiler Collection) has a support for 
compiler assisted instrumentation and we need to rewrite 
only some small part of GCC which is much easier than 
to implement full automatic source level instrumentation. 
Therefore  we  have  chosen  compiler  assisted 
instrumentation.

In  compiler  assisted  instrumentation  compiler  adds 
profiling  function  calls  to  every  subroutine  call  and, 
depending on the profiling method, to every subroutine 
return. Profiling functions usually increase call  counters 
by one or in some rare cases can perform some other task, 
i.e. to send entry or exit event to a capturing host. And 
collected  profiling data is  usually  stored  to  “gmon.out” 
file by mcleanup function as the program exits. Mcleanup 
function also disables all further profiling and adds file 
headers to the output file. While this method is relatively 
easy to implement, it has highest impact from all profiling 
methods to program execution speed and also consumes 
quite a lot of processor and memory resources. Therefore, 
we  can  not  assume  that  the  processor  has  the  same 
resources  when  profiling  is  enabled  –  we  lose  some 
performance  during  profiling  as  we  get  back  some 
profiling information. As long as the impact of profiling 

data collection to the system functionality is acceptable, 
we can use it in our development.

For  profiling  deeply  embedded  systems  we  can 
transmit all subroutine entry and exit calls immediately to 
the capturing PC instead of storing profiling data into a 
RAM. This  kind  of  modification  of  a  typical  profiling 
method  makes  it  possible  to  profile  deeply  embedded 
systems  without  a  simulator.  But  it  may  not  work  in 
systems which have very critical timing sequences or no 
suitable communication interface.

3 Implementation
The basic principle of our profiling method is to send all 
instrumentation  data  out  to  a  capturing  system,  which 
have significant amount of memory and processing power 
i.e. to a desktop PC. This capturing system collects and 
analyzes  the  data.  For  profiling  in  deeply  embedded 
software  we  need  to  generate  instrumented  firmware, 
which  also  have  profiling  data  transmission  functions, 
load this new firmware into targeted microcontroller and 
start  programs  which  are  responsible  of  collecting 
profiling data in capturing side.  After  specified time or 
functions  entry/exit  calls,  capturing  program  translates 
collected information to gmon statistics format which can 
be later analyzed with GProf.

In our current work we have tested this method with a 
GCC C compiler, linker from GNU binutils package and 
AVR  microcontrollers,  ATtiny2313,  ATmega64  and 
ATmega1280 [11]. All targeted microcontrollers have 16-
bit  program  counters,  but  the  developed  method  is 
suitable for an arbitrary microcontroller regardless of the 
program counter width.

Compiling, Linking and Instrumentation
In order  to  produce  instrumented firmware  we can  use 
two different  methods to  add instrumentation code into 
the final program.

The first method is based on compiler mcount function 
(_mcount or  __mcount,  depending  on  the  OS  and 
compiler)  which  can  be  switched  on  during  the 
compilation phase with the -pg command line option. On 
most  architectures  GCC  have  working  instrumentation 
functions,  but  for  deeply  embedded systems (e.g.  8  bit 
AVR family microcontrollers) GCC usually does not have 
working instrumentation functions. The main reason for 
absence of the working instrumentation functions is the 
lack of writable storage media on microcontroller. To add 
profiling capability to GCC we need to modify GCC in 
some extent. Most important is to add the right references 
to  mcount function – a function which is responsible for 
capturing profiling data from the microcontroller side, and 
we  also  need  to  provide  our  mcount function.  While 
calling  any  function  the  processor  stores  call site 
information  to  a  stack,  thus  we  can  read  this call  site 
information directly  from the stack  and transfer  it  to  a 
capturing PC. In order to place instrumentation function 
(mcount function) calls before the real function is called, 



i.e. calls are placed before function prologue, we need to 
define PROFILE_BEFORE_PROLOGUE macro in GCC 
source (in config/avr/avr.h). This defined macro allows us 
to  read  both  call  site  addresses  from  stack  –  function 
which calls the  mcount function and the function before 
that.  Also,  we  have  modified  FUNCTION_PROFILER 
macro in GCC source (in config/avr/avr.h) to add call or 
rcall (relative  call  to  subroutine)  instruction  for  calling 
mcount function. In addition, AVR GCC is shipped with 
such  mcount function  that  has  empty  body and returns 
immediately  after  its  calling,  so  we  need  to  add  our 
mcount function which transfers  data out to a capturing 
host. To add our own mcount function we have to change 
the called mcount function reference to a weak reference 
– if we do not provide any  mcount function then linker 
adds  automatically  an  empty  mcount which  is  shipped 
with GCC.

Second  profiling  method  is  to  use 
__cyg_profile_func_enter and 
__cyg_profile_func_exit functions. Both functions 
execute  pre-defined  routines when function is called  or 
when it returns. But  __cyg_profile_func_enter and 
__cyg_profile_func_exit functions behave a little 
bit  differently  from  mcount function.  When  mcount 
functions  are  added  after  optimization  then 
__cyg_profile_func_enter and 
__cyg_profile_func_exit are  added  before 
optimization.  Therefore,  both  cyg_profile functions  are 
added to all static inline functions. Usually many libraries 
have defined many static inline functions, therefore it is 
quite  difficult  to  use  above  two  functions  as  compiler 
have inserted those into the final code, and the profiling 
functions take too many resources. To overcome this it is 
possible  to  redefine  function  headers  by  adding  an 
attribute which do not allow compiler to add cyg_profile 
function to inline function. Unfortunately, this approach is 
quite error borne and also may not work in all compilers 
in the same way. In addition to the above, when program 
calls  __cyg_profile_func_enter function then AVR 
GCC  usually  does  not  return  correct  call  site  address. 
Instead it will return some faulty data from the stack, and 
therefore it is possible to use the function's own address, 
but not the call site data.

Currently we have implemented in assembly-language 
our own  mcount function which is 84 instructions long 
and does not use any additional memory to save profiling 
data.  Therefore,  no  additional  RAM  is  taken  by  this 
method,  but  it  needs  some additional  program memory 
(Stotal):

S total=Scall nfunctions+ Sprofiling function  (1)

where Scall is the size of a call instruction in bytes, (for 
AVR microcontroller  2 bytes),  nfunctions is  the number of 
called  functions  and  Sprofiling  function is  the  size  of  the 
profiling function, in current system it is 168 bytes (84 
instructions).  For example,  systems where ten functions 
are  instrumented  it  is  needed  only  188  bytes  more 
program memory storage.

Data Transmission
The easiest and the most cost effective method to transfer 
profiling data to a capturing PC is to use serial interface. 
In  our  system  where  microcontroller  with  a  16-bit 
program counter  is  used,  we  need  to  transfer  in  every 
function call at least four bytes of data – two bytes for call 
site  address  and  two bytes  for  called  function  address. 
The  same  also  applies  for  cases  when  returned  from 
calling function. While synchronizing the target and host 
systems we need to add some negotiation packets or to 
use  special  input  data  format.  Negotiation  packets  are 
suitable  in  such  cases  where  systems  do  not  lose 
synchronization during data transmission. In our case we 
expect  that  the  host  PC  and  microcontroller  stays  in 
synchronization  for  all  the  time and  therefore  we have 
included  one  byte  constant  synchronization  header  to 
every profiling packet. Therefore, for every function call 
we  need  to  transfer  five  bytes  of  data  –  one  byte  for 
header, two bytes for call site and two bytes for caller – 
and the number of function entry and exit calls per one 
second (Nfn) would be:

N fn=
BR

2 N b
 (2)

where Nb is the number of bits for one function exit or 
entry call and BR is the data link baud rate. For example, 
when  we  use  standard  serial  interface  with  speed 
115200 b/s, 5 bytes of data, and 2 stop bits then we can 
have 1152 function calls per second. Also, with special 
hardware it is possible to use 9 bit (standard PC does not 
support  9 bit  serial  data)  transmission which eliminates 
the need for the packet header – we can use ninth bit for a 
header. In such case, with one stop bit, we can have 1440 
function calls per second. Calling  mcount function gives 
also a small overhead – for 84 cycle long function with 
call, return and with five internal branches it takes at least 
88 CPU cycles. Compared with serial throughput it does 
not add any significant impact  to the overall  speed.  To 
increase data throughput it is also possible to use JTAG, 
but  in  our  current  work  we  have  not  considered  this 
because  on  current  architecture  passing  data  through 
JTAG is  technically  quite  complicated  and  all  targeted 
microcontrollers does not support JTAG.

Data collection and Output
At the capturing PC side all function calls are counted and 
saved  to  “gmon.out”  statistics  file.  In  our  case,  where 
controller  has  16-bit  program counter,  we can  store  all 
function call counts into big array which is saved to gmon 
file after a certain number of collected entry/exit calls or 
after  certain  amount  of  time.  Capturing  program  also 
examines  the  call  address  of  the  called  subroutine,  the 
return  address  to  the  calling  subroutine and  compares 
them with  addresses  which  are  decoded  from the  ELF 
(Executable  and  Linkable  Format)  file.  If  capturing 
program finds any discrepancy between calling subroutine 
or  called  subroutine  with  decoded  program  then  all 
captured data are saved and capturing program exits. In 



our  current  work  our  capturing  program  counts  only 
function calls and does not hold function call graph. For 
statistics output we used BSD profiling file format, which 
is  easiest  to  implement  but  does  hold  only  very  basic 
profiling  data.  Generated  statistics  file,  which  holds 
profiling information, can be analyzed with most profiling 
tools that can read BSD profiling format. In our case we 
used GProf.

4 Test Results
We have carried out three different profiling tests. In the 
first  test  we  used  ATtiny2313  microcontroller  with 
4 MHz CPU clock. The test program was simple super-
loop program which toggles microcontroller output pin in 
one second period. We also did not use any interrupts for 
precise  timing.  In  this  test,  profiling  code  increased 
program  by  184  bytes,  which  is  nearly  9%  from  all 
program  memory.  This  test  was  carried  out  with  two 
different  baud  rates  –  38400 b/s  and  115200 b/s.  To 
compare  with  non  instrumented  code  all  cycles  were 
delayed by 8 ms at the first baud rate, but at the second 
baud  rate  we  did  not  detect  any  significant  delay  in 
program  execution.  This  test  shows  quite  well  the 
limitations  of  this  method  –  it  is  quite  difficult  to 
instrument simple super-loop real-time programs without 
introducing extra  delays.  Therefore,  the current  method 
quite  likely  violates  real-time  constraints  in  real-time 
super-loop programs.

Second  test  was  simple  super-loop  program  which 
writes its current up-time to one serial port. In this test we 
used ATmega64 microcontroller with 8 MHz CPU clock. 
After instrumenting the program, its size was increased by 
222  bytes,  which  is  less  than  1%  of  total  program 
memory. Compared with non instrumented program, all 
uptime writing to serial port were delayed only by 40 ms 
with baud rate of 38400 b/s. This delay corresponds to 14 
calls of mcount function.

The third test  was carried  out in with ATmega1280 
microcontroller  which,  was  clocked  at  7.3728 MHz, 
instrumentation interface baud rate was 115200 b/s and a 
RTOS was used. In this test we instrumented some of the 
test  programs  and  RTOS  functions,  leaving  out  time-
critical  functions  and  interrupt  service  routines  (ISR's). 
After  instrumentation the whole program size increased 
by  2 kB  which  is  less  than  2%  of  the  total  program 
memory.  Instrumented  programs wrote  its  up-time to a 
serial  port  and  answered  queries  from RS-485  line.  In 
comparison with non instrumented program we did not 
detect  any  significant  delay  during  program  execution. 
The main reason why we did not see any significant delay 
or  other  effects  from  the  instrumentation  is  that  we 
instrumented  only  those  parts  of  the  program  which 
worked  only on  user  request  or  were  not  time critical. 
With interrupt  driven programs we may expect  to have 
the same behavior as in tests with RTOS.

To  summarize  the  performed  tests  –  in  most  tests 
profiling slowed the program execution only a little but 

with lower transmission baudrate it may slow down the 
whole program execution speed significantly. With RTOS 
it  is  quite  easy  to  separate  the  time  critical  and  ISR 
subroutines  from  the  user  programs,  which  makes  the 
whole  profiling  much  easier  than  it  is  in  super-loop 
programs.

5 Conclusions
The  objective  of  this  work  was  to  develop  a  profiling 
method which is suitable for deeply embedded systems. 
The developed method is capable of profiling programs in 
systems which have as low as two bytes of free RAM and 
at least 170 bytes of free program memory and one free 
serial interface. Developed method uses compiler assisted 
instrumentation  and  stores  all  collected  data  to  a  host 
computer. The host computer analyses the collected data 
and writes results to a file in BSD profiling file format. 
The method was successfully tested with three different 
AVR microcontrollers,  where  one  test  was  with RTOS 
and two tests with simple super-loop programs. Two tests 
showed that this method has minor problems with super-
loop  real-time  programs,  but  with  RTOS  or  interrupt 
driven  programs  this  method  has  negligible  effect  on 
program execution.
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Abstract - This  paper  presents  a  method  developed  for  collision 
detection on navigational buoys by the use of onboard low power 
embedded controllers equipped with solid state acceleration sensors, 
focusing on the signal processing principles employed. Detection of a 
collision of a vessel with a buoy is based on continuous monitoring 
of  the  acceleration  profile  of  the  buoy  in  all  three  planes  of 
movement, accomplished using a 3-axial solid state accelerometer (g-
sensor) with the maximum range of ±3 g. The sensor is integrated 
with a marine Aid to Navigation (AtoN) telematics module that is  
subject to low power consumption requirements and size restrictions 
resulting  in  limited  computational  capability.  Initial  operational 
testing  was  performed  on  navigational  buoys  in  actual  marine 
environment, including sea ice conditions. The results have validated 
the usability of the method, although no ship-to-buoy collisions have 
been encountered.

Keywords –  real-time  collision  monitoring;  ship-to-buoy collision; 
navigational buoy

I. INTRODUCTION

Despite the widespread use of mature electronic 
technologies for marine navigation, visual light navigation 
stations remain an indispensable part of marine navigation 
safety infrastructure for foreseeable future. Availability of the 
light signalling service provided by the fleet of floating aids of 
any responsible maritime authority depends in part on 
awareness of collision events that may breach the integrity of 
the floating platform and result in failure of the light signal.

Several  crash  detection  methods  have  been  developed 
during  last  decades  for  control  of  automotive  airbag 
deployment;  all  of these utilize acceleration sensors and use 
very  fast  and  robust  filtering  methods  on  high  acceleration 
peaks. In case of ship-to-buoy collisions, absolute acceleration 
levels  are  expected  to  remain  rather  low,  therefore  existing 
methods that are developed for ground transport systems are 
not suitable. We have not found any information on previous 
published works in this particular field which may be due to 
the  facts  that  establishing  a  collision  reporting  system may 
require a long time to earn the investment to the end user, and 
most buoys are not equipped with sensors that are capable of 
detecting the collision events. However, buoy collision events 
are not encountered very often, mostly because of rather low 
collision probability  [1]. According to ship/platform collision 
incident database [2], only a few accidents relate to buoys, but 
most  likely many collision events  of  smaller  magnitude  are 
either not reported to relevant authorities, or remain completely 
unnoticed while possibly causing latent failure of the platform 
or  equipment.  Receiving an immediate notification about 
collision  events exceeding a pre-set criticality threshold is 
necessary not only for timely re-establishment of the AtoN 
signal when needed, but also for reduction of pollution risks 
and identifying the particular vessel responsible for the 

damages by correlating the collision event time stamp with 
external vessel movement information sources (AIS or VTS 
databases).

The most cost effective of contemporary methods for 
detection of collision of a buoy with other floating objects is 
achieved by application of an embedded microcontroller 
equipped with a three-axial micromechanical accelerometer 
sensor (a solid state g-sensor –  a Micro-Electromechanical 
System (MEMS)) that can measure acceleration levels on all 
three axes simultaneously. While collision detection methods 
based on acceleration measurement have been developed for 
car crash detection systems, mainly for activating airbag 
inflation, such methods are based on detection of high 
acceleration levels occurring in a very short timeframe. In case 
of floating AtoN collisions, the event profile is rather different, 
displaying typical acceleration levels even below 5g with the 
duration of up to several seconds.

This paper presents a collision detection method which is 
suitable for implementation on navigational buoys. Previously 
we have implemented a method for in-situ determination of 
heel (inclination) angle of navigational buoys  [3] based on 
same embedded telematics hardware; the subject collision 
detection method is a second component of the floating 
platform status monitoring subsystem.

II. CURRENT SYSTEM OVERVIEW

While AtoN remote control and monitoring systems 
(RCMS) of varying degrees of sophistication have been around 
for decades, collision detection has not been widely used due 
to complexity and cost - in an autonomous system that needs to 
provide reliable operation from primary batteries for years, 
spending of every mA of current must be well substantiated. 
Our concept foresaw integration of a single new hardware 
component (3-axial g-sensor) with the existing telematics 
module (TM) used for remote monitoring of navigational 
buoys, and accomplishment of collision detection as well as 
heel angle calculation  [3] and monitoring tasks using the 
available ADC ports and spare computational capacity of the 
existing embedded microcontroller. In a typical application, the 
TM is installed inside a protective enclosure together with a 
flasher module and an LED array, and mounted on a buoy 
superstructure, typically 2 to 4.5 meters above the sea level. 
Communication protocols of the TM that serves primarily as a 
communications gateway between the remote site equipment 
and the RCMS centre server were updated to accommodate 
support for collision detection alarms.

A TM is performing continuous acceleration data 
acquisition of three 10-bit acceleration measurement values 
representing acceleration levels sampled from three axes of the 
g-sensor. All samples are acquired with a 20 ms interval, with 



sequential delays of 0.2 ms between readings acquired from x-, 
y-, and z-axes that in practice can be considered simultaneous 
sampling due to the slow progress of acceleration events. Since 
acceleration data acquisition is not the primary task for the 
TM, under certain circumstances the acceleration data may be 
sampled at slightly uneven intervals due to coinciding higher 
priority tasks of the processor. Due to the considerably long 
typical acceleration signal duration of 5 to 20 seconds, such 
occasional  uneven  sampling  does  not  have  any  significant 
detrimental impact on collision detection.

Fig.  1 shows relevant subsystems of a TM utilized for 
acceleration measurement, collision detection and heel angle 
calculation and status/alarm communication tasks, leaving out 
all parts which are not involved in the process. The MCU used 
is an 8-bit AVR microcontroller, performing analog-to-digital 
conversion of g-sensor output data, collision detection, heel 
angle calculations and initiating communications with the 
monitoring centre when necessary. When a collision event of 
significant magnitude is detected, the MCU initiates a 
communications session with the RCMS centre server using 
the communications interface (CI) to report a collision event. 
In the current system implementation, the CI is a GSM/GPRS 
modem. Collision  event  reporting,  which  includes  collision 
event detection, time-stamping and connection to the RCMS 
typically takes  5 seconds,  which is quite acceptable  in most 
cases.  The  acceleration  sensor  utilized  is  an  ADXL330  by 
Analog Devices [4] which is connected directly to the analog 
input channels of the MCU.

III. COLLISION DETECTION

To detect collisions with a navigational buoy, we must 
continuously monitor acceleration signals from all three axes. 
Assuming that we use this method only with navigational 
buoys, the sampling period can be set quite low but not below 
20 ms. In a typical buoy installation we may assume that a 
collision may appear from any direction and therefore we must 
take into account signals from all three acceleration axes. To 
detect a collision event in case of unlimited computational 
resources available, one would calculate the acceleration 
vector length, taking into account all acceleration values, and 
base the decision on that vector length. In our case, the system 
has rather limited amount of memory and computational 
capability, therefore it is not practical to calculate the vector 
length; instead, we can achieve almost same results by adding 
up the acceleration values. Using only such summation, we 
must take into account the fact that during collisions we get 
much higher resulting acceleration than in case of using 
acceleration vectors; this is usually the case when an impact 
comes in between two or three axes. Due to the specifics of our 

application, we can tolerate errors which are introduced by 
higher acceleration values since we do not need very exact 
values, but we need to know when maximum acceleration 
value exceeds certain threshold level.

Therefore, we can sum up the axial components for total 
acceleration:

A=A x+ A y+A z (1)

where Ax, Ay and Az are acceleration measurement values 
read directly from the g-sensor.

In order to detect collision from total acceleration A, we 
should filter out the static (DC) component from obtained 
signal. To filter out the DC component, we can use the 
following IIR filter:

y1n=a10⋅x1n+a11⋅x1n−1+b11⋅y1n−1 (2)

where a10 is IIR filter polynomial multiplier value 0.4844, 
a11 is multiplier value -0.4844 (a10 = -a11), b11 is feedback 
polynomial multiplier with value 0.9375, x1n is the last input 
value, x1n-1 is the previous input value, y1n is the current output 
value and y1n-1 the last output value. Multipliers a10, a11 and 
b11 are found as follows:

a10=(1+ xt )/2 (3)

a11=−(1+xt )/2=−a10 (4)

b11=xt (5)

where xt is a frequency-dependent constant:

xt=e−2π f c (6)

where fc is the normalized filter cut-off frequency.

In case of the particular buoy platforms used in operational 
testing of this method, we have chosen 0.5135 Hz for the DC 
cut-off frequency; this  allows  to  filter  out  most  of  the 
acceleration  related  to  wave  action.  Other  buoy  types  may 
require  a  different  DC  cut-off  frequency.  With  this  cut-off 
frequency,  the  normalized  cut-off  frequency  for  the  20 ms 
sampling period is 0.01027 fsampl

Values a10 and a11 that are found using formula 3 and  4 
both have two times higher values than those values which are 
inserted into formula 2. Mostly this dividing by two is needed 
for preventing overflow of the next filter stage, while smaller 
values are also easier to process in 8 bit microcontrollers than 
original values.

A filter described by formula  2 with values a10 and a11 

forms a differential stage  that may provide a negative output 
signal y10, but negative accelerations do not have any meaning 
in this collision detection system. Therefore, we can square the 
y10:

x2n=y1n
2 (7)

where x2n is an input value to the next stage. To eliminate 
negative values from y1n, we can also use absolute value, but 
taking a square also reduces smaller values which are mostly 
noise or signal changes which do not carry any significant 
information for collision detection.

Figure 1. TM Block Diagram



After DC level removal, we apply the second stage of 
filtering which plays a major role in our collision detection 
system. A collision detection filter should be rather fast, with 
acceptable filter delay in our case of less than 1 second;  this 
filter must be quite robust as well to avoid false collision 
reports. Therefore, we need to make this filter partly a pure 

averaging filter and also a low-pass filter (LP filter). Such a 
filter can be described using the following polynomial:

y2n=a20(x2n+x2n−1+x2n−2)+b21⋅y2n−1 (8)

where a20 is a polynomial multiplier value 0.2188, b21 is a 
feedback value 0.7812, x2n is an input value, x2n-1 and x2n-2 

previous input values, y2n an output value and y2n-2 the last 
output value. a20 is also an input signal multiplier value. Both 
constants a20 and b21 are found as follows (where g is the input 
signal gain):

a20=(1−xt )⋅g (9)

b21=xt (10)

The value y2n holds enough noise free averaged 
acceleration information to detect collision with an object. In 
the last step we only compare series of y2n values to the pre-
configured collision threshold value; when y2n are successively 
higher than the collision threshold value during a predefined 
timeframe, we register a collision event.

A. Algorithm stability and transfer functions

The filters described above (formulae  2 and  8) are stable 
when |b11| < 1 and |b21| < 1. When using formula 6 to calculate 
the constants b11 and b21, the condition fc > 0 should be true. 
To ensure that above mentioned condition is maintained, all 
poles must be inside a unit circle (Fig. 2).

Note that the signal in Fig. 4 is three times higher than it 
should be; this is caused by adding up the acceleration values 
from all three axes. In our application where the second filter 
is an integrator, it is not necessary for this filter to be very 
precise.

B. Crash detection algorithm adaptation to a 8 bit MCU

To use the above described methods on an 8-bit embedded 
microcontroller, we need to convert all constants to fixed point 
or integer values. This introduces one additional division 
operation in every filter. After introducing additional division 
operation into formula 2 we arrive at the following equation:

y1n=
1

b10

(a10⋅x1n+a11⋅x1n−1+b11⋅y1n−1) (11)

where a10 is an IIR filter polynomial multiplier with value 
62, a11 is a multiplier with value -62 (a10 = -a11), b10 is a 
feedback polynomial multiplier with value 128, and b11 is a 
feedback polynomial multiplier with value 120.

To find value x2n, we need to square y1n and scale it down:

x2n=
y1n

2

256
(12)

After changing the second filter (formula 8) to fixed point 
values we get following formula:

y2n=
1

b20

(a20(x2n+x2n−1+x2n−2)+b21⋅y2n−1) (13)

where a20 is a polynomial multiplier value 56, b20 is the 
feedback value 256 and b21 is the feedback value 200. Since 
all results are stored in 8-bit variables, we need to check before 

Figure 3: Transfer function of the first filter

Figure 4: Transfer function of the second filter

Figure 2: Poles and zeros of the first stage of crash detection filter



storing the result that the computations ended with a value with 
a maximum of 255; higher values have to be coerced to 255.

C. Detected crash values

Since we use IIR filters, we cannot directly link certain 
input values to output values. Table 1 and  Fig.  5 presents 
results of testing of our filter with one typical crash signal:

TABLE I. Y2N VALUE VS TOTAL ACCELERATION

Total acceleration [g] y2n
0.5 1
1.0 10
1.5 23
2.0 43
2.5 69
3.0 99
3.5 135
4.0 178
4.5 226
>4.7 255

IV. SIMULATIONS AND TESTS

We have carried out several simulations and tests to verify 
our method, but (fortunately) none of over 100 buoys fitted 
with this technology have registered any real collisions with a 
vessel yet.

Fig.  6 presents a typical simulation. For simplification, all 
three acceleration vectors are summed up, and the Earth’s 
gravitational acceleration is subtracted. Resulting acceleration 
signal is the signal that we expect to get when a collision of the 
buoy with a ship is encountered. As is shown in Fig.  6, with 
sufficient acceleration we can get our collision events quite 
fast. In that simulation, first event may be recorded 50 ms after 
the first acceleration peak and the second one 400 ms after the 
first acceleration peak. We have also carried out several  tests 
where we mounted the  TM to a heavy object and tried to hit 
this object with another object, i.e. make an artificial collision, 
and the results were comparable to the simulation in Fig. 6.

In last two years we have tested this method on actual 
navigational buoys but have not  registered  any ship-to-buoy 
collision events. Nevertheless, we have registered two 
interesting events –  first, when the ice moved over the buoy 

and second, when the mooring was too short for the current 
buoy’s deployment site, causing significant deceleration pulls 
in wind gusts and wave action (Fig. 7).

V. CONCLUSIONS

The objective of the current work was to develop a low 
resource demanding collision detection method that is feasible 
for application on navigational buoys. The developed method 
is suitable for low power marine AtoN based embedded 
systems with an integrated 3-axis MEMS acceleration sensor. 
This method is capable of collision detection in real time even 
with rather low acceleration signals. The method was 
successfully simulated and tested in our laboratory as well as 
in expected operational environment; all simulation results 
were in line with our expectations, although no real ship-to-
buoy collision events have been detected at seas by this time.
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