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Towards Practical Post-Quantum Voting Protocol: Shorter Exact
Lattice-Based Proof of a Shuffle

Abstract:
Electronic voting solutions are built on complex cryptographic tools to guarantee security
and fairness. Currently, those tools are based on hardness assumptions of discrete
logarithm, factorization and other classical problems. While they are hard to break
in classical computers, there are efficient quantum algorithms to solve using quantum
computers of the near future. Thus, there is a need to develop voting protocols that are
resistant to quantum attacks.

Verifiable shuffling based voting systems are a popular use-case of mix-networks first
proposed by Chaum four decades ago [Cha81] as a general tool for building anonymous
communication systems. A decade later the quantum threat was known and since then
only a few studies searched for post-quantum secure mix-nets. Recently, Costa, Martinez
and Morillo introduced new arguments of shuffle for RLWE ciphertexts and how to prove
the correctness of the shuffling without leaking sensitive info [CMM17]. In this thesis,
we provide exact, shorter proof of Costa et al.’s lattice-based shuffling arguments. As a
result, we obtain a practical non-interactive zero-knowledge proof having a runtime of 1
second per voter.
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Postkvant-hääletamisprotokollide arendamine: lühem täpne võrepõ-
hine segamistõestus
Lühikokkuvõte:
Elektroonilise hääletamise protokollid kasutavad keerukaid krüptograafilisi meetodeid,
et tagada valimiste turvalisus ja ausus. Praegu kasutusel olevad meetodid tuginevad
klassikalistele ülesannetele nagu diskreetne logaritm ja suurte kordarvude tegurdamine.
Need ülesanded on üldjuhul rasked klassikaliste arvutite jaoks, kuid neid saab efektiiv-
selt lahendada piisavalt võimsate kvantarvutite abil. Seega on oluline arendada välja
hääletamisprotokollid, mis peaksid vastu kvantarvuti abil teostatavatele rünnetele.

Verifitseeritavad segamispõhised hääletamissüsteemid kasutavad miksimisvõrke, mil-
le pakkus juba 40 aastat tagasi esimesena välja Chaum [Cha81] kui vahendi anonüümse
kommunikatsioonivõimaluse loomiseks. Kümmekond aastat hiljem ilmnes kvantarvu-
tite oht, kuid postkvant-miskimisvõrke on sellest ajast uuritud väga vähe. 2017. aastal
pakkusid Costa, Martinez ja Morillo välja RLWE krüptogrammide miksimise põhimõtte
ning näitasid, kuidas tõestada miskimise korrektsust ilma sisendite privaatsust rikkuma-
ta [CMM17]. Selles väitekirjas esitame täpse ja lühema tõestuse Costa jt võrepõhisele
konstruktsioonile. Tulemusena saame praktilise mitteinteraktiivse nullteadmustõestuse
ajakuluga umbes 1 sekund miksitava hääle kohta.

Võtmesõnad:

CERCS:P170 - Arvutiteadus, arvutusmeetodid, süsteemid, juhtimine

3



Contents
1 Introduction 5

2 Preliminaries 7
2.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Lattices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.1 General Introduction . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.2 Ideal lattices . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Splitting Rings, Galois authomorphisms . . . . . . . . . . . . . . . . . 10
2.4 Challenge space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.5 Error distribution, Discrete Gaussians and Rejection Sampling . . . . . 11
2.6 Generalized Shwartz-Zippel lemma . . . . . . . . . . . . . . . . . . . 12
2.7 Cryptography overview . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.8 Lattice based Cryptography . . . . . . . . . . . . . . . . . . . . . . . . 15

2.8.1 Ring-LWE Encryption, Module SIS/LWE . . . . . . . . . . . . 15
2.8.2 Commitment scheme . . . . . . . . . . . . . . . . . . . . . . . 16

2.9 Cryptographic voting . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.9.1 Homomorphic e-voting . . . . . . . . . . . . . . . . . . . . . . 20
2.9.2 Verifiable shuffle-based e-voting . . . . . . . . . . . . . . . . . 21
2.9.3 Mix-node security . . . . . . . . . . . . . . . . . . . . . . . . 21

3 Post-Quantum mix-net 22
3.1 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2 Costa, Martinez and Morillo proof of shuffle . . . . . . . . . . . . . . . 22
3.3 Our work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.4 Non-interactivity and proof size . . . . . . . . . . . . . . . . . . . . . 34
3.5 Instantiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.6 Performance and Security . . . . . . . . . . . . . . . . . . . . . . . . . 35

4 Implementation results 37

5 Post-Quantum Voting Scheme 40

6 Conclusion 42

References 47

Appendix 48
I. Licence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4



1 Introduction
Adopted in 1948 by United Nations General Assembly, Article 21 point 3 of The
Universal Declaration of Human Rights1 states "The will of the people shall be the basis
of the authority of government; this will shall be expressed in periodic and genuine
elections which shall be by universal and equal suffrage and shall be held by secret vote
or by equivalent free voting procedures". Throughout history, the means of voting have
changed and are mostly affected by technological advances. In the information era, there
is a digitalization trend in which services are transformed into e-services. As a matter of
fact, some countries have been offering online elections at either in municipal or national
level for several years. Companies like Helios and Scytl offer internet-based voting
solutions for any institutions looking for internal elections.

Online voting has been a subject of numerous studies as well. A very detailed
comparison of paper vs online voting is given in a paper by Jan Willemson [Wil17]. A
more recent study found that by use of online voting the amount of errors made by voters
when casting ballots is reduced [Ger20]. Furthermore, online voting has been formalized
and several requirements are expected to be met to achieve transparency, anonymity, and
verifiability. Generally, such voting protocols employ cryptographic tools and methods.

Rapid development in quantum technologies poses a serious threat to modern cryp-
tography because of Shor’s algorithm [Sho99] which can solve previously believed to be
hard discrete log problems. Voting protocols are not exceptions, as well. ElGamal and
Paillier’s encryption scheme is the usual choice for voting protocols due to their homo-
morphic construction, but they are also vulnerable to quantum attacks. Experts predict
that such threatening quantum computers will be a reality within a few decades2. Thus,
there is an urgent need to design quantum-resistant practical online voting protocols.

Recently, a number of papers have been published in this area. In general, those
proposed protocols make use of lattice-based post-quantum encryption schemes, again
due to their homomorphic nature. Although it is theoretically possible to construct a
Fully Homomorphic Encryption scheme, problems occur when it comes to efficiently
implement it in practice. The goal of this work is to devise a verifiable and practical
shuffling protocol using post-quantum cryptography tools based on recent academic
work.

A general overview of cryptographic voting, necessary mathematical background,
and quick introduction to the cryptographic primitives are given in Section 2. An
adapted verifiable, fully post-quantum shuffling algorithm alongside its zero-knowledge
proof is presented in Section 3. Section 4 contains the implementation overview and

1https://www.un.org/en/universal-declaration-human-rights/
2Recent study [GE19] shows that around 20 million noisy qubits are required to factor 2048 bit RSA

integers in 8 hours. M.Mosca estimates that there is a 1/6 chance of building fault-tolerant quantum
computer able to crack RSA-2048 by 2027. According to him, this likelihood will be a half before 2035
https://www.etsi.org/news-events/events/1173-etsi-iqc-quantum-safe-workshop-2017
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results. Finally, in Section 5, we foresee a complete online voting protocol with a
theoretical suggestion on zero-knowledge prover of decryption oracle. In the end,
Section 6 summarizes the whole work and possible future extensions to this work.
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2 Preliminaries
This section contains necessary background information on design principles of cryp-
tographic voting, underlying mathematical notions and definitions of cryptographic
primitives that are used throughout this work.

2.1 Notation
Before formulating mathematical model of cryptographic voting and all the necessary
tools for construction, it is helpful to fix the notation. In this work, general sets are
denoted by italic roman capital letters, e.g. S. Z and R denote set of integers and real
numbers respectively. Let Z×n denote the group of invertible elements modulo n. bxe
represents the closest integer to x in Zq. An element of the set is denoted by lower-

case letters, s ∈ S and when it is sampled uniformly, we write s $← S . We also
use the same notation s $← D when an element is sampled according to a probability
distribution D. Polynomials will be typed in bold-face to be differentiated from scalars,
e.g., f =

∑
i fiXi. Vectors are represented by lower-case roman letters arrow atop, ~u(or

~v ) and their i-th components is shown with a subscript: ui (or vi ). It should not be
confused with ~ui which is a one of many vectors, possibly sharing similar properties.
Preferably, all vectors are column vectors by default and concatenation of two vectors is
denoted like ~u‖~v which is still a column vector. An inner product is denoted 〈·, ·〉 and
computed as dot product between vectors. Finally, upper-case roman letters will denote
matrices, M (or A). An element y can also be the output of deterministic algorithm A

on input x. In this case, we write y ← A(x) and y $← A(x) when A is a probabilistic
algorithm.

2.2 Lattices
2.2.1 General Introduction

In mathematics, there are two lattices which should not be confused. We will be using
lattices from group theory.

Definition 2.1 (Lattice). A typical lattice L in Rn is a discrete additive subgroup of Rn

spanned by m linearly independent vectors with coefficients called basis vectors.

L = {
m∑
i

xi~bi | xi ∈ Z,~bi ∈ Rn}

A matrix B whose columns are~b1, . . . ,~bm are called basis matrix. It is equivalent to
say that they form a basis of the lattice L(B).
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The basis of a lattice is not necessarily unique. One can multiply B with a uni-
modular matrix U to get another basis. Although this is a simple fact, it has important
consequences. Because a basis is enough to represent lattice structure, complexity of the
lattice related problems differ regarding the properties of the basis. A good basis which
consists of short highly orthogonal vectors is useful to solve certain problems, while
a bad basis with low orthogonality is not. Shortest Vector Problem (SVP) is a perfect
example for that.

Surprisingly, transforming a bad basis into a good one is also a difficult problem. In a
two dimensional lattice this problem can be solved by simply using Gaussian elimination
method. Lenstra-Lenstra-Lovasz (LLL) algorithm [LLL82] generalizes this method into
any arbitrary dimensional lattice where Gaussian elimination is performed on the two
elements of the basis at a time. Nonetheless, the length of the vectors in resulting basis
can be exponentially far from the optimal value.

Schnorr’s Block Korkine-Zolotarev (BKZ) reduction [SE94] algorithm is widely
adopted algorithm to measure hardness of finding a good basis. Here, instead of working
on two vectors at single step, the algorithm takes a block of β vectors. Internally, it
searches for the shortest vector in β-dimensional sublattice which is still a hard problem.

Definition 2.2. The i-th minimum of the lattice L is the radius of the smallest closed
ball centered at the origin that contains at least i linearly independent points in L and
denoted λi(L).

Clearly, the shortest vector in lattice has length λ1(L).

Definition 2.3 (Approximate Shortest Vector Problem (SVPγ). Given a basis B of a
lattice L(B), find a non-zero vector ~v such that ‖~v‖2 ≤ γ · λ1(L(B)).

In 1998, Ajtai proved in his seminal work [Ajt98] that γ-SVP is an NP-hard problem
in its exact version (γ = 1) and polynomial approximations (γ(n) polynomial in the
dimension of the lattice). When γ is exponentially large LLL algorithm finds the solution
in polynomial time. For smaller values of γ, BKZ reduction with large block size is
commonly used. The overall time complexity depends on the block size, therefore it is a
direct indicator of the problem hardness.

Definition 2.4 (Approximate Closest Vector Problem (CVPγ). Given a basis B and a
vector ~u not necessarily in L(B), find the closest vector ~v in L(B) at distance at most γ,
i.e ‖~u− ~v‖ ≤ γ ·min~w∈L ‖~u− ~w‖.

Definition 2.5 (Short Integer Solution). Given a matrix A ∈ Zm×n find shortest non-zero
vector ~x such that A~x = 0

All three problems are related to each other. Goldreich et al.’s work [GMSS99]
shows that CVPγ and SVPγ have the same hardness. It easy to see the relation between
SVP and SIS problems using q-ary lattices.
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Definition 2.6 (q-ary lattices). . A lattice L is said to be q-ary if for an integer q,
qZn ⊂ L ⊂ Zn.

Usually, q-ary lattices are represented in two forms. First, for a given matrix A ∈
Zm×n

Λq(A) = {~x ∈ Zn | A~z = ~x mod q : ~z ∈ Zn}.

Second way, called orthogonal Λq has form

Λ⊥q (A) = {~x ∈ Zn | AT~x = 0 mod q}.

Observe that SIS solution to A is also the SVP solution in Λ⊥q (A).
Using lattice problems, Oded Regev introduced provable post-quantum secure Learn-

ing With Errors cryptosystem [Reg05].

Definition 2.7 (Learning With Errors (LWE)). Let n and q be integers, χ a discrete noise
distribution in Z, and ~s a secret vector in Znq . Sample m uniformly random public vectors

~ai from Znq and error term ei
←
$ χ and calculate~b = 〈~ai, ~s〉+ ei. Denote this distribution

(~ai, bi) ∈ Znq × Zq as LWEs,χ.
The decisional LWE problem asks to distinguish LWEs,χ from uniform distribution

on Znq × Zq.
Given access to m sample of (~ai, bi), search LWE problem asks to recover secret

vector ~s.

Regev’s main result is that under certain conditions (χ being discrete Gaussian
distribution over integers, m = poly(n)) LWE problem is as hard as approximate SVP
problem even for quantum computers.

Ajtai’s SIS problem and Regev’s LWE problem are foundations of modern lattice
based cryptography.

2.2.2 Ideal lattices

In plain LWE, public vectors ~ai are random and not related to each other. We can think
of them being rows of a matrix A ∈ Zm×nq . There are mn independent components.
Adding a particular algebraic structure to the matrix can reduce the communication cost
of the matrix.

In abstract algebra, (left or right) ideal I of a ring R is a set of ring elements such
that for r ∈ R and x, y ∈ I , then x+ y ∈ I and rx ∈ I . If all elements of the ideal can
be computed from an element a, then this ideal is called principal ideal and denoted as
I = (a).

For a rational prime q, let Zq be the ring of integers modulo q, with its elements
considered in the interval

[
− q−1

2
, q−1

2

]
such that for any set element r there exists a

unique positive integer less than q congruent to r mod q. Letting d be a power of two, we
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consider the ringsR = Z[X]/(Xd + 1) andRq = Zq[X]/(Xd + 1). Elements of these
rings are written in bold lower-case letters (e.g. p), and vectors with elements from these
rings will naturally be denoted as ~b. Matrices overR orRq are bold upper-case letters,
e.g. B. Any element a ∈ Rq can be written as column vector Va = |a0, a1, . . . , ad−1|T
where a =

∑d−1
i=0 aiX

i and ai ∈ Zq.
Choose a random polynomial a and construct set of all polynomials which are

obtained multiplying a with other polynomials inRq. This set forms a principal ideal. It
is not known whether additional structure of ideal lattices cause weaknesses. Respective
problems are called Ideal-SVPγ, Ideal-CVPγ, and Ideal-SIS.

Especially for ringRq, the same element can be represented as a matrix in Zq when
it is a multiplicand:

Ma =

∣∣∣∣∣∣∣∣∣
a0 −ad−1 −ad−2 · · · −a1
a1 a0 −ad−1 · · · −a2
... . . . . . . . . . ...

ad−1 ad−2 ad−3 · · · a0

∣∣∣∣∣∣∣∣∣ .
Observe that principal ideal generated by a is also a lattice span byMa. It is also

called ideal lattice.
Moreover, l2 and l∞ norms are defined as usual:

‖a‖∞ = max
i
|ai| and ‖a‖2 =

√
|a0|2 + . . .+ |ad−1|2 .

These norms can naturally be extended to vectors overRq. For ~w = {w1, . . . ,wk} ∈ Rk
q ,

we have
‖~w‖∞ = max

i
‖wi‖ and ‖~w‖2 =

√
‖w1‖22 + . . .+ ‖wk‖22 .

Polynomials and vectors with short norm will simply be referred to as short.

2.3 Splitting Rings, Galois authomorphisms
When q − 1 ≡ 2l mod 4l, the 2l-th primitive root of unity is contained in Zq but no
higher roots. Then Xd + 1 splits into l irreducible polyonmials of degree d/l, i.e

Xd + 1 =
∏
i∈Z×2l

(Xd/l − ζ i) mod q =
l∏

i=1

ϕi mod q

where ζ is primitive 2l-th root of unity in Zq and ϕi = X − ζ2i−1. Thus, the ringRq is
isomorphic to the product of the corresponding residue fields:

Rq
∼= Zq[X]/(ϕ1)× · · · × Zq[X]/(ϕl) .
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We call a ring fully splitting when l = d.
This ring has a group of automortphisms Aut(Rq) that is isomorpic to Z×2l,

i 7→ σi : Z×2l → Rq,

where σi(X) = X i are Galois automorphisms. The group Aut(Rq) acts transitively on
prime ideals ϕi. In other words, there exists an automorphism such that σ(ϕi) = ϕj for
any i, j ∈ 1, . . . , l.

2.4 Challenge space
Elements of the ringRq are not always invertible. In fact, Lyubashevsky et al. proved
a relation between the probability of invertiblity in this ring and the number of residue
fields it splits into [LS18, Corollary 1.2]. Their claim is that generally short non-zero
polynomials are invertible. In lattice based zero knowledge proofs, the verifier often
samples from a challenge set such that the difference of any two elements in that set
is invertible. However, constructing such a set and uniformly sampling from it is not a
trivial task.

Therefore, Lyubashevsky et al. proposed another method where they relaxed the
invertiblity requirement. They defined the challenge space as the set of ternary poly-
nomials C = {−1, 0, 1}d ⊂ R. Coefficients of a challenge c ∈ C are identically and
independently distributed where 0 has probability 1/2 and ±1 both have probability 1/4.
In [ALS20, Lemma 3.3], it is shown that if c← C, the distribution of coefficients of c
mod (Xd/l − ζ) is almost uniform and the maximum probability of coefficients over Zq
is bounded. Denote this bound with p. For example, authors in last reference estimated
p = 2−31.44 for l = d = 128, q ≈ 232. An element c in splitting ringRq is non-invertible
when c mod ϕi = 0 for any i = 1, . . . , l. Then the difference of any two challenges
c̄ = c− c′ is non-invertible with probability at most pd/l.

2.5 Error distribution, Discrete Gaussians and Rejection Sampling
Rejection sampling. It is a common practice to hide secret commitment randomness
~r in another vector ~z without leaking any information about ~r. In other words, these
vectors should be statistically close. For this purpose, in the protocol the prover samples
"masking" vector ~y using discrete Gaussian distribution. Upon receiving the challenge
c $← C by the verifier, the prover responds with~z = ~y + c~r. Rejection sampling lemma
[Lyu12] below states that ~r and ~z are within negligible statistical distance if masking
vectors are sampled from discrete Gaussian distribution with certain standard deviation.

Definition 2.8. The discrete Gaussian distribution onRl centered around ~v ∈ Rl with

11



standard deviation s > 0 is given by

Dld
~v,s(~z) =

e−‖~z−~v‖
2
2/2s

2∑
~z′∈Rl e

−‖~z′‖22/2s2
.

When it is centered around ~0 ∈ Rl, we write Dld
s (~z) = Dld

~0,s
(~z).

Lemma 1 (Rejection Sampling). Let V ⊆ Rl be a set of polynomials with norm
at most T and ρ : V → [0, 1] be a probability distribution. Also, write s = 2T

and M = exp(6 + 1/16). Now, sample ~v $← ρ and ~y $← Dld
s , set ~z = ~y + ~v, and run

b← Rej(~z,~v, s) (see Figure 1). Then the probability that b = 0 is at least (1−2−100)/M
and the distribution of (~v,~z), conditioned on b = 0, is within statistical distance of
2−100/M of the product distribution ρ×Dld

s .

Rej(~z,~v, s)

u
$← [0, 1)

If u > 1
M
· exp

(−2〈~z,~v〉+‖~v‖2
2s2

)
return 0
Else return 1

Figure 1. Rejection sampling algorithm [Lyu12]

The following tail-bound lemma which follows from [Woj93, Lemma 1.5(i)] is useful
to define the MSIS bound.

Lemma 2 (tail-bound). Let~z← Dld
s . Then

Pr
[
‖~z‖2 < s

√
2ld
]
> 1− 2−ld/8.

2.6 Generalized Shwartz-Zippel lemma
The generalized Shwartz-Zipple lemma is stated in Lemma 3

Lemma 3. Let p ∈ R[x1, x2, . . . , xn] be a non-zero polynomial of total degree d ≥ 0
over a commutative ring R. Let S be a finite subset of R such that none of the differences
between two elements of S is a divisor of 0 and let r1, r2, ..., rn be selected at random
independently and uniformly from S. Then: Pr[p(r1, r2, . . . , rn) = 0] ≤ d/|S|.

Proof. c.f [CMM19, Appendix A]
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In general, it is not trivial to construct set S. A polynomial in Rq is a zero divisor
when at least one of its NTT coefficient is zero. Then, difference of two elements is
not a divisor of zero when they do not have common NTT coefficient. There can be at
most q pairwise different modulo degree 1 prime ideals for fully splitting rings. This
strictly reduces soundness. However, for partially splitting rings this number increases to
qd/l. For any random polynomial, one can find qd/l − 1 other polynomials which doesn’t
have common NTT coefficient and construct set S. Without loss of generality, we sample
polynomials from C instead of S where we apply Lemma 3.

2.7 Cryptography overview
During the formalization of the online voting protocol, we will use several cryptographic
primitives. Here, we give a brief introduction to encryption schemes, commitments, and
Zero-Knowledge proofs.

Encryption & Decryption A general way to hide secret information from unwanted
parties is transforming it into a specific form in which only the trusted party can get the
original message. Thus, we need two parties equipped with specific functions, data, and
keys who want to secretly communicate with each other. An encryption scheme is a set
of Gen, Enc, Dec functions.

• Gen: generates secret and public key (sk, pk) for a given security parameter

• Enc: given a plaintext m and a public key pk, outputs ciphertext c. c ←
Enc(m, pk)

• Dec: recovers plaintext m from ciphertext c using secret key sk. m← Dec(c, sk)

If sk = pk meaning that the same key is used for encryption and decryption, the
encryption scheme is called symmetric, otherwise asymmetric. For an encryption scheme,
the decryption failure is the probability that m 6= Dec(Enc(m, pk), sk).

An encryption scheme is said to be Indistinguishable Chosen Plaintext Attack, IND-
CPA if an adversary cannot distinguish ciphertexts of two chosen plaintexts.

Commitment scheme Commitment schemes are used to prove that a particular mes-
sage is not changed during computation. It is very similar to encryption schemes, but
differ where they are used. A commitment scheme consists of three algorithms.

• Gen: generates public key pk for a given security parameter.
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• Com: given an input message m and public key pk, produces a commitment c and
opening d. (c, d)← Com(m, pk).

• Ver: using the opening d, accepts if c is a commitment to m using public key pk
or rejects.

A commitment scheme is correct if a verifier accepts honest commitments to a valid
message. It is binding if it can be correctly opened to one message. Finally, hiding
property claims verifier cannot recover committed message.

A commitment scheme is perfectly binding/hiding if no computationally unbounded
adversary can break it. Similarly, if the advantage of PPT adversaries is negligible, then
a commitment scheme is said to be computationally binding/hiding. As a fact, it is not
possible to have a perfectly binding and perfectly hiding encryption scheme.

Zero-Knowledge proofs Zero-knowledge proofs are interactive protocols between
two parties, a prover and a verifier when the prover wants to assure the verifier that he
knows some secret value without leaking information about the value.

Definition 2.9 (Σ-protocol). An interactive three round zero-knowledge proofs between
a prover P and a verifier V in which given an x, P tries to convince V that it knows a
witness w such that (x,w) ∈ R is called Σ-protocol.

In a Σ-protocol, P sends a message y to V and waits for the answer c, also called
challenge. Then P replies z. Looking at the protocol transcript (x, y, c, z), the verifier
accepts or rejects the proof.

The zero-knowledge protocol is complete when an honest verifier always accepts
the transcript generated with honest prover knowing valid witness w. If no cheating
prover can convince an honest verifier without a witness, then the protocol is sound.
Moreover, if the verifier cannot learn about the witness, it is zero-knowledge. For Σ-
protocols, soundness also means that there is an extractor which can extract witness
from two accepting challenges (x, y, c, z) and (x, y, c′, z′). Finally, there should be a
polynomial-time simulator that can simulate the behavior of an honest prover and outputs
an accepting transcript.

There can be more than three rounds in zero-knowledge protocols.
Σ-protocol can be made non-interactive using Fiat-Shamir transformation. Basically,

instead of a verifier choose a random challenge c, the prover uses a public one-way hash
function and sets c equal to the hash of public data in the first round. Then, the protocol
transcript is (x, y,H(x||y), z). The non-interactive verifier accepts if the transcript is
acceptable for the interactive verifier.

A zero-knowledge protocol may have statistical/perfect or computational security
properties. Perfect and computational terms are defined as commitment schemes. Here,
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the statistical keyword is added to allow very negligible statistical error independent of
the adversary’s computational capabilities.

It is desired to have perfect security properties, but having statistical or computational
is also acceptable.

2.8 Lattice based Cryptography
2.8.1 Ring-LWE Encryption, Module SIS/LWE

In our constructions, we will rely on hardness of Ring-LWE (RLWE) which is proven to
be as secure as Ideal-SVPγ [LPR13] and Module-LWE (MLWE)/ Module-SIS (MSIS)
[DS15, PR05] problems.

Definition 2.10 (RLWEχ). In the decisional Ring-LWE problem with an error distri-

bution χ overR, the PPT adversary A is asked to distinguish (a, b)
$← Rq ×Rq from

(a, a · s + e) for a $← Rq and s, e← χ.

The corresponding search-RLWE problem asks to find s from several (a, b) RLWE
samples.

We implement the encryption scheme described in [LPR13]. Let χ1 be error distribu-
tion overR where each coefficient is sampled from {−1, 0, 1}.

• Gen: Given a uniformly sampled inRq, a secret s← χ1 and an error e← χ1, the
public key is defined as pk = (a, b) = (a, a · s + e) and private key as s.

• Enc: To encrypt a message z ∈ R2, sample new randomness r and error terms
e1, e2 from error distribution χ1. Then the ciphertext is a pair of polynomials (u, v)
such that

u = a · r + e1 ,

v = b · r + e2 +
⌊q

2

⌉
z .

• Dec: Given ciphertext (u, v), compute

v− u · s = (r · e− e1 · s + e2) +
⌊q

2

⌉
z .

If each coefficient of the resulting polynomial is close to 0, set the respective
coefficient of decrypted message to 0. Otherwise, set the decrypted message as 1.

The RLWE encryption scheme defined as above is semantically secure under RLWEχ1

assumption. To see this, just observe that the ciphertext consists of two RLWE samples,
which by the RLWEχ1 assumption indistinguishable from uniformly random elements.
Thus, unless one can solve decisional RLWE problem, all ciphertexts look like uniform
and no information can be extracted about the plaintext.
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Definition 2.11 (MLWEn,m,χ). In the Module-LWE problem with parameters n,m > 0

and an error distribution χ overR, the PPT adversaryA is asked to distinguish (a,~t) $←
Rm×n
q × Rm

q from (A,A~s + ~e) for A $← Rm×n
q , a secret vector ~s ← χn, and an error

vector ~e← χm.

Definition 2.12 (MSISm,n,β). The goal in the Module-SIS problem with parameters

n,m > 0 and 0 < β < q is to find ~x $← Rm
q for a given matrix A $← Rn×m

q such that
A~x = ~0 mod q and 0 < ‖~x‖2 < β.

In practical security estimations, the parameter m in Definitions 2.11 and 2.12 does
not play a crucial role, therefore we simply omit it and use the notations MLWEn,χ and
MSISn,β . Furthermore, we let the parameters µ and λ denote the module ranks for MSIS
and MLWE.

2.8.2 Commitment scheme

In this work, we will be using a variant of BDLOP commitment scheme [BDL+18].
Let, B0 ∈ Rµ×(µ+λ+1)

q , ~b1 ∈ Rµ+λ+1
q and~r ← χ

(µ+λ+1)d
2 . The commitment of a single

message m ∈ Rq is a pair (~t0, t1) where

~t0 = B0~r ,

t1 = 〈~b1,~r〉+ m .

It is easy to see that the commitment scheme is binding and hiding due to MSISµ

and MLWEλ assumptions respectively.

Definition 2.13. A weak opening for the commitment~t =~t0‖t1 consists of l polynomials
c̄i ∈ Rq, randomness vector~r? overRq and a message m? ∈ Rq such that

‖c̄i‖2 ≤ 2κ and c̄i mod ϕi 6= 0 for all 1 ≤ i ≤ l ,

‖c̄i~r?‖2 ≤ 2β for all 1 ≤ i ≤ l ,

B0~r? =~t0 ,

〈~b1,~r?〉+ m? = t1 .

The commitment scheme is proven to be binding also with respect to the weak
opening in [ALS20, Lemma 4.3].

Using Galois automorphisms and fully splitting rings a zero-knowledge proof of
opening for BDLOP commitments is given in [ALS20]. The protocol in Figure 2 is
complete, statistical zero-knowledge and computationally sound under Module-SIS
assumption. Keeping the structure same and adding some garbage terms, it is possible to
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prove linear (Figure 3) and product (Figure 4) relationships between committed messages.
Moreover, the soundness of the protocols is not reduced when amortized over many
relations. In [ALS20] have proved security properties of zero-knowledge proof of
product relation protocol.

Prover P Verifier V

B0 ∈ Rµ×(µ+λ+1)
q ; ~b1 ∈ Rµ+λ+1

q B0,~b1

~r ∈ {−1, 0, 1}(µ+λ+1)d ⊂ Rq ~t0, t1
m ∈ Rq

~t0 = B0~r
t = 〈~b1,~r〉+ m

For i = 0, . . . , k − 1 :

~yi
$← D

(µ+λ+1)d
s

~wi = B0~yi
~wi−−−−−−−−→
c←−−−−−−− c $← C

For i = 0, . . . k − 1 :
~zi = ~yi + σi(c)~r

If Rej ((~zi), (σi(c)~r), s) = 1, abort ~zi−−−−−−−−→
For i = 0, . . . k − 1 :

‖~zi‖2
?

≤ β = s
√

2(µ+ λ+ 1)d

B0~zi
?
= ~wi + σi(c)~t0

Figure 2. Automorphism opening proof. σ = σ2l/k+1 ∈ Aut(Rq) , C is the challenge
distribution overR where each coefficient is independently identically distributed with
Pr(0) = 1/2 and Pr(1)=Pr(-1)=1/4, and Ds is the discrete Gaussian distribution on Z with
standard deviation s = 11kd‖~r‖2 [ALS20]
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Prover P Verifier V

B0 ∈ Rµ×(µ+λ+n)
q ; ~b1,~b2, . . . ,~bn ∈ Rµ+λ+n

q B0,~b1,~b2, . . . ,~bn
~r ∈ {−1, 0, 1}(µ+λ+n)d ⊂ Rq ~t0, t1, t2, . . . , tn
a1, a2, . . . , an ∈ Rq a1, a2, . . . , an
m1,m2, . . . ,mn ∈ Rq

~t0 = B0~r M =
∑n

i=1 aimi

ti = 〈~bi,~r〉+ mi ∀i = 1, . . . n

For i = 0, . . . k − 1 :

~yi
$← D

(µ+λ+n)d
s

~wi = B0~yi
~wi−−−−−−−−→

α1,...,αk←−−−−−−−− α1, . . . ,αk
$←∈ Rq

v =
∑k−1

i=1 αiσ
−i(
∑n

j=1 aj〈~bj,~yi〉)
v−−−−−−−→
c←−−−−−−− c $← C

For i = 0, . . . k − 1 :
~zi = ~yi + σi(c)~r

If Rej ((~zi), (σi(c)~r), s) = 1, abort ~zi−−−−−−−−→
For i = 0, . . . k − 1 :

||~zi||2
?

≤ β = s
√

2(µ+ λ+ n)d

B0~zi
?
= ~wi + σi(c)~t0

f ji = 〈~bj,~zi〉 − σi(c)tj∑k−1
i=1 αiσ

−i(
∑n

j=1 ajf ji + σi(c)m)
?
= v

Figure 3. Amortized linear relation proof: ZK-proof [M =
∑n

i=1 aimi]
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Prover P Verifier V

= µ+ λ+ 3n+ 1

B0 ∈ Rµ×lq ; ~b
(j)

1 ,~b
(j)

2 ,~b
(j)

3 ,~b4 ∈ Rlq B0,~b
(j)

1 ,~b
(j)

2 ,~b
(j)

3 ,~b4

~r ∈ χld; ~t0, t
(j)
1 , t(j)2 , t(j)3

m(j)
1 ,m(j)

2 ,m(j)
3 ∈ Rq

~t0 = B0,~r

t(j)1 = 〈~b
(j)

1 ,~r〉+ m(j)
1

t(j)2 = 〈~b
(j)

2 ,~r〉+ m(j)
2

t(j)3 = 〈~b
(j)

3 ,~r〉+ m(j)
3

For i = 0, . . . , k − 1 :

~yi
$← Dld

s

~wi = B0~yi
~wi−−−−−−−−−−→

α1,...,αnk←−−−−−−−−−−− α1, . . . ,αnk
$←∈ Rq

t4 = 〈~b4,~r〉+

k−1∑
i=0

n∑
j=1

αin+jσ
−i(〈~b

(j)

3 ,~yi〉−

−m(j)
1 〈~b

(j)

2 ,~yi〉 −m
(j)
2 〈~b

(j)

1 ,~yi〉)

v = 〈~b4,~y0〉+

k−1∑
i=0

n∑
j=1

αin+jσ
−i
(
〈~b

(j)

1 ,~yi〉〈~b
(j)

2 ,~yi〉
)

t4,v−−−−−−→
c←−−−−−−−−− c $← C

For i = 0, . . . k − 1 :

~zi = ~yi + σi(c)~r

If Rej
(
(~zi), (σi(c)~r), s

)
= 1, abort ~zi−−−−−−−−−−→

For i = 0, . . . k − 1 :

||~zi||2
?
≤ β = s

√
2ld

B0~zi
?
= ~wi + σi(c)~t0

f (i),(j)
1 = 〈~b

(j)

1 ,~yi〉 − σi(c)t(j)1

f (i),(j)
2 = 〈~b

(j)

2 ,~yi〉 − σi(c)t(j)2

f (i),(j)
3 = 〈~b

(j)

3 ,~yi〉 − σi(c)t(j)3

f4 = 〈~b4,~z0〉 − ct4
k−1∑
i=0

n∑
j=1

αin+jσ
−i
(

f (i),(j)
1 f (i),(j)

2 + σi(c)f (i),(j)
3

)
+ f4

?
= v

Figure 4. ZK-proof
[
(m(j)

1 m(j)
2 = m(j)

3 )nj=1

]19



2.9 Cryptographic voting
In cryptography, the secure voting protocol consists of several phases and algorithms
and satisfies transparency, privacy, and end-to-end verifiability requirements. A generic
voting scheme consists of the following parts.

• Encryption scheme: Voters encrypt their choice for privacy purposes

• Bulletin board: Also ballot box, where all cast ballots are stored. Usually, it is a
publicly shared read-only list.

• Digital signature scheme: Besides hiding their choice, voters prove their eligibil-
ity to vote by digitally signing the encrypted ballot.

• Tallying: After all votes cast, all entries in the bulletin board counted. The
responsible authority is called tallier.

Besides secure encryption and unforgeable signature properties, the electronic voting
protocol has to be publicly verifiable for all steps. This is called end-to-end verifiability.
Different approaches to electronic voting require different measures to be taken. There
are two common approaches used in real elections.

2.9.1 Homomorphic e-voting

A homomorphic encryption scheme satisfies either or both of the following properties:

• Additively homomorphic: Enc(m1) + Enc(m2) = Enc(m1 +m2)

• Multiplicatively homomorphic: Enc(m1) · Enc(m2) = Enc(m1m2)

The use of homomorphic encryption schemes in cryptographic voting protocols
makes tallying possible without decrypting each cast ballot. Instead, a tallying function is
evaluated on ciphertexts and decrypted to get the final tally. Indeed, this is the main idea
of homomorphic voting. For example, in Yes-No voting, if the answers are represented
as 1 (YES) and 0 (NO), then just by adding all ciphertexts the election result can be
obtained.

Homomorphic properties also make it easy to alter election results. Following the
previous analogy of Yes-No voting, an adversary can cast 2, or any number, indeed any
data to ruin the election. To prevent this, voters are required to submit proof that cast
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votes are encoded properly. Generally, proof of plaintext knowledge protocols is used in
this case.

An electoral authority may also be dishonest. Sometimes, the tallying function is
not a straightforward addition. Then, the tallying authority should provide proof of
evaluation. In the end, there should be another proof that evaluation on ciphertexts
correctly decrypts to the published tally.

2.9.2 Verifiable shuffle-based e-voting

In verifiable shuffle-based voting protocols, cast ballots are decrypted then tallied indi-
vidually. In between, a mixing network secretly shuffles ciphertexts to remove the link
between voters and their choice. Shuffling is permuting the order of ciphertexts and
re-encrypting afterward. Re-encryption is generally realized utilizing the homomorphic
nature of the encryption scheme. In other words, if the scheme is additively homo-
morphic, encryption of zero is added to the original ciphertext. If it is multiplicatively
homomorphic, the ciphertext is multiplied by encryption of one. As usual, the mixing
authority has to provide cryptographic proof that shuffling has been done correctly and no
single vote has been modified. Moreover, plaintexts of input and output ciphertexts are
the same but permuted. In practice, mixing networks contain at least there independent
mixing nodes to completely unlink input and output ciphertexts even if the half of mixing
nodes are malicious.

2.9.3 Mix-node security

Costa et al. [CMM19] proposed novel security definition for a mix-node. Assume
that MixVotes is a generic mixing algorithm such that, given input ciphertexts and a
permutation vector, produces shuffled and re-encrypted ciphertexts. Moreover, let z(iA)

and zπ(jA) the message before and after running the algorithm.

Definition 2.14. Let J be a uniform random variable taking values in [1, . . . , N ]. A
mix-node given by algorithm MixVotes is said to be secure if the advantage of any PPT
adversary A over random guess is negligible in the security parameter. That is, ∀c, ∃κ0
s.t if κ > κ0 :

AdvsecA =
∣∣Pr
[
z(iA) = zπ(jA)

]
− Pr

[
z(iA) = zπ(J)

]∣∣ < 1

κc
.
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3 Post-Quantum mix-net

3.1 Related Works
Numerous works have been done on the idea of mixing networks (mix-nets) since its
introduction by Chaum in 1981 [Cha81]. In secure e-voting context, mix nets should
be verifiable as well. A very broad and detailed review of existing verification methods
for mix-nets in the literature is given in a very recent paper [HM20]. However, only a
small subset of those verification methods have been reconstructed using post-quantum
cryptography tools. To the best of our knowledge, the only practical lattice-based mix-net
[BHM20] achieves verifiability using an alternative approach to zero-knowledge proof of
shuffle. Nonetheless, [CMM17] and [Str18] give proofs of a shuffle for lattice-based re-
encryption mix-nets. The first one may not be considered as fully post-quantum as it uses
Pedersen commitments which are based on discrete log problem. The last construction
requires a Fully Homomorphic Encryption scheme and any homomorphic commitment
scheme. While the commitment scheme in [BDL+18] is additively homomorphic and
post-quantum secure making the whole proof post-quantum safe, whereas FHE schemes
are not practical yet.

3.2 Costa, Martinez and Morillo proof of shuffle
Costa et al.’s improved their work and proposed a proof of shuffle which is constructed
over lattice-based post-quantum secure primitives only [CMM19]. The main idea is
briefly given here.

LetRq = Zq[X]/(Xd+1) be ring of polynomials degree less than d and q ≡ 3 mod 8.
This rings splits into two residue fields of polynomials degree less than d/2 and every
polynomial of degree smaller than d/2 inRq are invertible. Define RLWE encryption as
in Section 2.10.

Assume that there are N RLWE ciphertexts (ui, vi) encrypted with public key
(pk.a, pk.b) to be shuffled. A mixing node will generate secret random zero encryp-
tion ciphertexts (u0

i , v0i ) and permutation π, and output (u′i, v′i) such that

(u0
i , v

0
i ) = (pk.a · rE,i + eu,i, pk.b · r + ev,i + 0)

(u′i, v
′
i) = (uπ(i) + u0

i , v
π(i) + v0i )

where rE,i, eu,i, ev,i ← χ1 for all i = 1, . . . , N . Then, authors prove that if π is a valid
permutation, then for any α,β,γ ∈ S where S is a set of polynomials of degree less
than n/2

N∏
i=1

(βi+αi − γ) =
N∏
i=1

(βπ(i) +απ(i) − γ) (1)
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holds due to generalized Schwartz-Zippel lemma with small cheating probability. Simi-
larly,

N∑
i=1

αiu(i) =
N∑
i=1

απ(i)(u′(i) − u(i)
0 ) (2)

N∑
i=1

αiv(i) =
N∑
i=1

απ(i)(v′(i) − v(i)0 ). (3)

One can think of each formula as two polynomials with coefficients in Rq evaluated
at the same point α. Again, due to generalized Schwartz-Zippel lemma, if equality
holds, then both polynomials are equal to each other, thus their coefficients are the same.
Moreover, the relations (1), (2) and (3) along with proof of correct encryption are shown
in [CMM19] to be enough to argue correctness of shuffle.

The protocol in [CMM19] uses commitment scheme from [BKLP15] to prove afore-
mentioned arguments mainly due to existence of zero-knowledge proofs for linear and
multiplicative relations for the commitment scheme. We recall the protocol briefly below.

First, the prover P commits to zero encryption ciphertexts (u0
i , v0i ) , sends them to

the verifier V and runs amortized zero-knowledge proof of knowledge of small secret
elements that those commitments are indeed commitments to encryptions of zero with
valid error parameters. Next, P commits to the permutation vector π and sends the
commitment to the verifier again. Committing to permutation vector is committing to
π(1), . . . ,π(N). Then, V samples a polynomial α from the challenge set send back to
the prover. Following to that, P calculates commitments to απ(1), . . . ,απ(N). To show
that the permutation vector is chosen before challenges and is a valid permutation, the
prover runs linear and multiplicative relation proofs several times and calculates the
product in (1) using committed values. Next, again by help of those relation proofs, it
proves the remaining two equalities to show shuffling is correct. During the verification
phase, the verifier has to verify zero knowledge proofs of knowledge of small secret
elements and relations (1), (2) and (3).

Costa et al. mention that it is possible to use amortization techniques described
in [dPLNS17] and reduce the complexity and total cost of the protocol. Unfortunately,
they have not explicitly shown how to do that, nor have they instantiated the parameters
to evaluate performance and concrete security level of the protocol.

3.3 Our work
In this work, we suggest several modifications to solve both issues by replacing the
commitment scheme with a variant of Module SIS/LWE based commitment scheme
from [BDL+18]. This replacement allows use of more efficient zero-knowledge proofs
of linear and product (Figure 4) relation between committed messages [ALS20, LNS20].
Those protocols are short, efficient and have no extra cost when amortized over many
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relations. Besides, there is no need to repeat the protocol several times to get desired
soundness properties. Instead, Galois automorphisms are used to boost soundness.
However, to achieve great results, it is required to use fully splitting rings. Nevertheless,
as we change the mathematical setting, there is a need for additional careful analysis
of security. Another important change we bring in is use of challenge set defined in
Section 2.4 instead of S.

Next, we describe our protocol. Semantically, it follows the same structure. First, let
µ and λ be rank of secure MSIS and MLWE instances, respectively, and choose q − 1 ≡
2l mod 4l such that Rq is a fully splitting ring, i.e d = l and B0 ∈ Rµ×(µ+λ+9N+1)

q ,
~b1,~b2, . . .~b9N+1 ∈ Rµ+λ+9N+1

q . Furthermore, choose k so that qkd/l ≈ 2256.
Again, assume that there are N RLWE ciphertexts (ui, vi) which are shuffled by

permutation vector π and re-encrypted adding (u0
i , v0i ). The resulting ciphertexts (u′i, v′i)

also satisfy (1), (2) and (3) for random challanges α,β,γ ∈ C.
First, the prover P has to prove that zero-encryptions are not ill-formed, in other

words, they are correct encryptions of zero polynomial. However, ciphertexts has to be
kept secret, therefore it computes and sends commitments.

~t0 = B0~r

t
u
(i)
0

= 〈~bi,~r〉+ u(i)
0

t
v
(i)
0

= 〈~bN+i,~r〉+ v(i)0

where~r ∈ Rµ+λ+9N+1
q is the commitment randomness. Unpacking and substituting the

ciphertexts we have

t
u
(i)
0

= 〈~bi,~r〉+ pk.a · ri,E + ei,u,

t
v
(i)
0

= 〈~bN+i,~r〉+ pk.b · ri,E + ei,v + 0.

Rewriting as a matrix equation we get a specific structure:

∣∣∣∣∣tu(i)0

t
v
(i)
0

∣∣∣∣∣ =

∣∣∣∣ ~bi,1 . . . ~bi,n′ pk.a 1 0
~bN+i,1 . . . ~bN+i,n′ pk.b 0 1

∣∣∣∣
∣∣∣∣∣∣∣∣∣∣∣∣∣

~r1
...
~rn′
ri,E
ei,u
ei,v

∣∣∣∣∣∣∣∣∣∣∣∣∣
where n′ = µ+ λ+ 9N + 1. Observe that the last equation has form A~s = ~u. Proving
~s is short in this equation also proves that the committed message is a valid encryption
of zero polynomial. Unfortunately, there is no practical exact proof of short solution
to structured linear equation inRq. However, one can transfer the equation into better
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understood Zq domain almost at no cost. Then it is possible to use proof of knowledge
of a ternary solution to an unstructured linear equation over Zq described in [ENS20].

∣∣∣∣∣∣
Vt
u
(i)
0

Vt
u
(i)
0

∣∣∣∣∣∣ =

∣∣∣∣∣ M~bi,1 . . . M~bi,n′
Mpk.a Id 0d

M~bN+i,1
. . . M~bN+i,n′

Mpk.b 0d Id

∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣

V~r1
...
V~rn′
Vri,E
Vei,u
Vei,v

∣∣∣∣∣∣∣∣∣∣∣∣∣
~u = A~s

~u ∈ Z2d
q ~s ∈ Znq A ∈ Z2d×n

q n = (n′ + 3)d

Proving the shortness of secret values for each ciphertext individually is not cost-
effective. The main reason is that proving shortness of ~r will be repeated for each
ciphertext. One would look for amortized or batch-proofs to solve the problem. However,
it is also possible to reconstruct A~s = ~u relation for all commitments at once. More
specifically, it is possible to concatenate all matrix equations into a single bigger equation
as below.

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

t
u
(1)
0

t
v
(1)
0

t
u
(2)
0

t
v
(2)
0...

t
u
(N)
0

t
v
(N)
0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

~b1,1 . . . ~b1,n′ pk.a 0 · · · 0
~bN+1,1 . . . ~bN+1,n′ pk.b 0 · · · 0
~b2,1 . . . ~b2,n′ 0 pk.a · · · 0
~bN+2,1 . . . ~bN+2,n′ 0 pk.b · · · 0

... . . . ...
...

... . . . ...
~bN,1 . . . ~bN,n′ 0 0 · · · pk.a
~b2N,1 . . . ~b2N,n′ 0 0 · · · pk.b

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
I2N

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

~r1
...
~rn′
r1,E
r2,E

...
rN,E
e1,u
e1,v
e2,u
e2,v

...
eN,u
eN,v

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(4)

Here, I2N is 2N × 2N identity matrix with diagonal elements being polynomial 1.
Finally, we transfer the equation (4) fromRq to Zq domain.
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∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Vt
u
(1)
0

Vt
v
(1)
0

Vt
u
(2)
0

Vt
v
(2)
0...

Vt
u
(N)
0

Vt
v
(N)
0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

M~b1,1 . . . M~b1,n′
Mpk.a 0d · · · 0d

M~bN+1,1
. . . M~b1,n′

Mpk.b 0d · · · 0d

M~b2,1 . . . M~b2,n′
0d Mpk.a · · · 0d

M~bN+2,1
. . . M~b2,n′

0d Mpk.b · · · 0d
... . . . ...

...
... . . . ...

M~bN,1 . . . M~bN,n′
0d 0d · · · Mpk.a

M~b2N,1 . . . M~b2N,n′
0d 0d · · · Mpk.b

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
I2Nd

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

V~r1
...
V~rn′
r1,E
Vr2,E

...
VrN,E
Ve1,u
Ve1,v
Ve2,u
Ve2,v

...
VeN,u
VeN,v

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(5)

The last equality has the form A~s = ~u, too. This time n = (n′ + 3N)d, so that
~u ∈ Z2Nd

q ~s ∈ Znq A ∈ Z2Nd×n
q .

Finally, we employ optimization technique described in Section 3.4 and set commit-
ment vectors as ~bi = ~0µ‖~ei‖~b

′
i where ~ei are 9N + 1 dimensional standard basis vectors

and ~b
′
∈ Rλ

q . Changing rows and simplifying (5), we get

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Vt
u
(1)
0

Vt
u
(N)
0...

Vt
u
(N)
0

Vt
v
(1)
0

Vt
v
(2)
0...

Vt
v
(N)
0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=


02Nd×µd I2Nd 02Nd×(7N+1)d

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

M~b
′
1,1

. . . M~b
′
1,λ

M~b
′
2,1

. . . M~b
′
2,λ

... . . . ...
M~b

′
N,1

. . . M~b
′
N,λ

M~b
′
N+1,1

. . . M~b
′
N+1,λ

M~b
′
N+2,1

. . . M~b
′
N+2,λ

... . . . ...
M~b

′
2N,1

. . . M~b
′
2N,λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣Mpk.a
Mpk.b

∣∣∣∣⊗ IN I2Nd



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

V~r1
...
V~rn′
Vr1,E
Vr2,E

...
VrN,E
Ve1,u
Ve2,u

...
VeN,u
Ve1,v
Ve2,v

...
VeN,v

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
26



As multiplying with zero matrix doesn’t affect at all, without loss of generality it can
be removed from equation. Then, polynomials with index in the range 0 ≤ i ≤ µ and
2N ≤ i ≤ 9N + 1 in commitment randomness should also be removed. The final form
of the equation will thus be

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Vt
u
(1)
0

Vt
u
(N)
0...

Vt
u
(N)
0

Vt
v
(1)
0

Vt
v
(2)
0...

Vt
v
(N)
0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=


I2Nd

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

M~b
′
1,1

. . . M~b
′
1,λ

M~b
′
2,1

. . . M~b
′
2,λ

... . . . ...
M~b

′
N,1

. . . M~b
′
N,λ

M~b
′
N+1,1

. . . M~b
′
N+1,λ

M~b
′
N+2,1

. . . M~b
′
N+2,λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣Mpk.a
Mpk.b

∣∣∣∣⊗ IN I2Nd



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

V~rµ+1

...
V~rn′
Vr1,E
Vr2,E

...
VrN,E
Ve1,u
Ve2,u

...
VeN,u
Ve1,v
Ve2,v

...
VeN,v

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

In the last equation, n′ = λ + 2N and as before n = (n′ + 3N)d. Having an equation
of the form A~s = ~u, the prover follows steps in [ENS20, Figure 3] to generate zero-
knowledge proof of correctness of zero-encryption ciphertexts. From now on, we call this
proof shortness proof, as we have seen it is mathematically equivalent to prove shortness
of encryption terms.

Next, P commits to permutation vector using the same commitment randomness as
before.

tπ(i) = 〈~b2N+i,~r〉+ π(i)

At this point, the prover sends~t0, tu(i)0
, t
v
(i)
0
, tπ(i) commitments and shortness proof

to the verifier in order to get random challange α which is used in (1), (2) and (3)
arguments. If expanded, those arguments contain intermediate terms απ(i),απ(i)u(i)

0 and
απ(i)v(i)0 . Therefore, the prover also calculates commitments to them.

tαπ(i) = 〈~b3N+i,~r〉+απ(i)

t4N+i = 〈~b4N+i,~r〉+απ(i)u(i)
0

t5N+i = 〈~b5N+i,~r〉+απ(i)v(i)0
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Then, the verifier receives last 3N commitments and returns challenges β and γ sam-
pled from C. The prover continues to calculate commitments to remaining intermediate
terms and sends to the verifier. Π stores partial products in the equation (1) at every step
and its initial value is 1.

t6N+i = 〈~b6N+i,~r〉+ βπ(i) +απ(i) − γ
t7N+i = 〈~b7N+i,~r〉+ Π

t8N+i = 〈~b8N+i,~r〉+ Π(βπ(i) +απ(i) − γ)

Π = Π · (βπ(i) +απ(i) − γ)

Finally,P is ready to start proving relations (1), (2) and (3) among RLWE ciphertexts.
Remaining part of the protocol looks like other lattice based zero-knowledge protocols.
The prover samples k masking vectors ~yi from discrete Gaussian distribution with
standard deviation ς = 11kκ‖~r‖2 where κ is a bound on the l1 norm of elements in C.
Next, k prover commitments ~wi = B0~yi are calculated and sent to the verifier to get new
(4N + 4)k challenges εi. Then, the prover calculates four garbage terms v1, v2, v3, v4
and a final garbage commitment t9N+1. In Figure 5 they correspond to long expressions.
With a careful inspection, one can see that indeed they are amortized linear and product
relations of expanded arguments (1), (2) and (3). At the next step, the prover sends these
garbage terms to the verifier and waits for the final challange polynomial c. As a last
step, rejection sampling is performed on ~zi = ~yi + σi(c)~r to make sure that ~yi hides ~r
without leaking any information about commitment randomness. Finally,~zi vectors are
sent to the verifier. The verifier runs verification equations depicted in Figure 6. The
whole protocol is shown in Figure 5.
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Prover P Verifier V

u(i),u(i)
0 ,u′(i) ∈ Rq u(i),u′,(i)

v(i), v(i)
0 , v′(i) ∈ Rq v(i), v′,(i)

κ = µ+ λ+ 9N + 1

B0 ∈ Rµ×κq ; ~b0,~b1, . . . ,~b9N+1 ∈ Rκq B0,~b1, . . . ,~b9N+1

π = Perm(N)

~r ∈ χκd2 ;
~t0 = B0~r
For i = 1, . . . N

t
u
(i)
0

= 〈~bi,~r〉+ u(i)
0

t
v
(i)
0

= 〈~bN+i,~r〉+ v(i)
0

tπ(i) = 〈~b2N+i,~r〉+ π(i)
Shortness proof Σ1

~t0,tπ(i),t
u
(i)
0

,t
v
(i)
0

,Σ1

−−−−−−−−−−−−→ α ∈ C
α←−−−−−−−−−−

for i = 1, . . . N :

tαπ(i) = 〈~b3N+i,~r〉+απ(i)

t4N+i = 〈~b4N+i,~r〉+απ(i)u(i)
0

t5N+i = 〈~b5N+i,~r〉+απ(i)v(i)
0

t
απ(i) ,t4N+i,t5N+i

−−−−−−−−−−−→ β,γ ∈ C
β,γ←−−−−−−−−−

Π = 1
for i = 1, . . . N :

t6N+i = 〈~b6N+i,~r〉+ βπ(i) +απ(i) − γ
t7N+i = 〈~b7N+i,~r〉+ Π

t8N+i = 〈~b8N+i,~r〉+ Π(βπ(i) +απ(i) − γ)
Π = Π · (βπ(i) +απ(i) − γ)

t6N+i,t7N+i,t8N+i,−−−−−−−−−−−−→
For i = 0, . . . , k − 1 :

~yi
$← Dld

ς

~wi = B0~yi
~wi−−−−−−−−→
ε←−−−− ε1, ε2, . . . , ε(4N+4)k ∈ Rq

v1 =
∑k−1
i=0

∑N
j=1 εiN+jσ

−i
(
β〈~b2N+j ,~yi〉+ 〈~b3N+j ,~yi〉 − 〈~b6N+j ,~yi〉

)
v2 = 〈~b9N+1,~y0〉+

∑k−1
i=0

∑N
j=1 εNk+iN+jσ

−i(〈~b6N+j ,~yi〉〈~b7N+j ,~yi〉)+
+
∑k−1
i=0

∑N
j=1 ε2Nk+iN+jσ

−i(〈~b3N+j ,~yi〉〈~bj ,~yi〉)+
+
∑k−1
i=0

∑N
j=1 ε3Nk+iN+jσ

−i(〈~b3N+j ,~yi〉〈~bN+j ,~yi〉)

t9N+1 = 〈~b9N+1,~r〉+
∑k−1
i=0

∑N
j=1 εNk+iN+jσ

−i(〈~b8N+j ,~yi〉−
−Π〈~b6N+j ,~yi〉 − (βπ(j) +απ(j) − γ)〈~b7N+j ,~yi〉

)
+

+
∑k−1
i=0

∑N
j=1 ε2Nk+iN+jσ

−i(〈~b4N+j ,~yi〉 −απ(j)〈~bj ,~yi〉 − u(j)
0 〈~b3N+j ,~yi〉

)
+

+
∑k−1
i=0

∑N
j=1 ε3Nk+iN+jσ

−i(〈~b5N+j ,~yi〉 −απ(j)〈~bN+j ,~yi〉 − v(j)
0 〈~b3N+j ,~yi〉

)
v3 =

∑k−1
i=0 ε4Nk+2i+1σ

−i(∑N
j=1 u(j)′〈~b3N+j ,~yi〉 −

∑N
j=1〈~b4N+j ,~yi〉

)
+

+
∑k−1
i=0 ε4Nk+2i+2σ

−i(∑N
j=1 v(j)′〈~b3N+j ,~yi〉 −

∑N
j=1〈~b5N+j ,~yi〉

)
v4 =

∑k−1
i=0 ε(4N+2)k+iσ

−i(〈~b9N ,~yi〉) +
∑k−1
i=0 ε(4N+3)k+iσ

−i(〈~b7N+1,~yi〉)
v1,v2,v3,v4,t9N+1−−−−−−−−−−−−→

c←−−−−−−−− c $← C
For i = 0, . . . k − 1 :
~zi = ~yi + σi(c)~r

If Rej
(
(~zi), (σi(c)~r), s

)
= 1, abort ~zi−−−−−−−−→

Verify

Figure 5. ZK-proof of shuffle
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Verify

Verify Shortness proof Σ1

For i = 0, . . . k − 1 :

||~zi||2
?

≤ β = s
√

2ld

B0~zi
?
= ~wi + σi(c)~t0

For j = 1, . . . N :

fu
(j)
0
i = 〈~bj,~zi〉 − σi(c)t

u
(j)
0

f v
(i)
0
i = 〈~bN+j,~zi〉 − σi(c)t

v
(j)
0

fπ(j)i = 〈~b2N+j,~zi〉 − σi(c)tπ(j)
fα

π(j)

i = 〈~b3N+j,~zi〉 − σi(c)tαπ(j)
f 4N+j
i = 〈~b4N+j,~zi〉 − σi(c)t4N+j

f 5N+j
i = 〈~b5N+j,~zi〉 − σi(c)t5N+j

f 6N+j
i = 〈~b6N+j,~zi〉 − σi(c)t6N+j

f 7N+j
i = 〈~b7N+j,~zi〉 − σi(c)t7N+j

f 8N+j
i = 〈~b8N+j,~zi〉 − σi(c)t8N+j

f 9N+1 = 〈~b9N+1,~z0〉 − ct9N+1∑k−1
i=0

∑N
j=1 εiN+jσ

−i
(
βfπ(j)i + fα

π(j)

i − f 6N+j
i + σi(c)γ

)
?
= v1∑k−1

i=0

∑N
j=1 εNk+iN+jσ

−i(f 6N+j
i f 7N+j

i + σi(c)f 8N+j
i )+

+
∑k−1

i=0

∑N
j=1 ε2Nk+iN+jσ

−i(fα
π(j)

i fu
(j)
0
i + σi(c)f 4N+j

i )+

+
∑k−1

i=0

∑N
j=1 ε3Nk+iN+jσ

−i(fα
π(j)

i f v
(j)
0
i + σi(c)f 5N+j

i ) + f 9N+1
?
= v2

M1 =
∑N

i=1α
iu(i) M2 =

∑N
i=1α

iv(i)∑k−1
i=0 ε4Nk+2i+1σ

−i(∑N
j=1 u(j)′fα

π(j)

i −
∑N

j=1 f 4N+j
i + σi(c)M1

)
+

+
∑k−1

i=0 ε4Nk+2i+2σ
−i(∑N

j=1 v(j)′fα
π(j)

i −
∑N

j=1 f 5N+j
i + σi(c)M2

) ?
= v3

Π =
∏N

j=1(βj +αj − γ)∑k−1
i=0 ε(4N+2)k+iσ

−i(f 9Ni + σi(c)Π) +
∑k−1

i=0 ε(4N+3)k+iσ
−i(f 7N+1

i + σi(c))
?
= v4

Figure 6. Verification equations
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Completeness In case of non-aborting transcript due to rejection sampling, the hon-
est verifier V is convinced with overwhelming probability. Observe that distributions
of vectors ~zi are independent of each other and have statistical distance 2−100 to Dld

s

due to Rejection Sampling lemma. Therefore by Lemma 2 they are bounded by
β1 = s

√
2(λ+ µ+ 9N + 1)d. The remaining four verification equations in Figure 6

regarding v1, v2, v3 and v4 are straightforward to verify. Similarly, this reasoning can be
applied to shortness proof but with β2 = s

√
2(λ+ µ+ 5N + λ+ 3)d(See [ENS20] for

more detail).

Zero-knowledge Zero-knowledge property of proof of shortness protocol is given in
[ENS20]. Indeed, following the same steps, it is possible to simulate this protocol as
well. First, sample~zi ← Dld

s , which are statistically close to the non-aborting trasncript
by Rejection Sampling Lemma. Next, again by the same lemma σi(c)~r are independent
of the~zi and thus simulator choose σi(c) = c′i

$← C ,~r← χld2 like a honest prover. Now,
simulator can calculate ~wi which is uniquely determined by previous variables. Other
challenges α,β,γ ∈ C are independent of each other, thus they can also be randomly
chosen. Straightforwardly, the simulator computes~t0. The rest of commitments can be
uniformly sampled fromRq as by the MLWE assumption they will be indistinguishable
from real MLWE samples. Finally, remaining equations of vi are deterministic functions
of~t,~zi and σi(c).

Soundness Soundness relation for proof of shortness protocol is described in detail in
[ENS20] which is similar to the proof for protocol in Figure 5. Consider the extractor
given in [ALS20] which can extract weak openings after rewinding the protocol l/k
times and get~r? and ~y? or finds MSIS8dβ1 solution for B0. It can also extract messages
simply from commitment relations.

t
u
(i)
0

= 〈~bi,~r?〉+ m(i)?
0

t
v
(i)
0

= 〈~bN+i,~r?〉+ m(i)?
1

tπ(i) = 〈~b2N+i,~r?〉+ m(i)?
2
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tαπ(i) = 〈~b3N+i,~r?〉+ m(i)?
3

t4N+i = 〈~b4N+i,~r?〉+ m(i)?
4

t5N+i = 〈~b5N+i,~r?〉+ m(i)?
5

t6N+i = 〈~b6N+i,~r?〉+ m(i)?
6

t7N+i = 〈~b7N+i,~r?〉+ m(i)?
7

t8N+i = 〈~b8N+i,~r?〉+ m(i)?
8

t9N+1 = 〈~b9N+1,~r?〉+ m?
9

Setting~z?i = ~y?i + σi(c)~r?, masked openings are defined below.

fu
(j)
0
i = 〈~bj,~y?i 〉 − σi(c)m(j)?

0

f v
(j)
0
i = 〈~bN+j,~y?i 〉 − σi(c)m(j)?

1

fπ(j)i = 〈~b2N+j,~y?i 〉 − σi(c)m(j)?
2

fα
π(j)
0
i = 〈~b3N+j,~y?i 〉 − cm(j)?

3

f 4N+j
i = 〈~b4N+j,~y?i 〉 − σi(c)m(j)?

4

f 5N+j
i = 〈~b5N+j,~y?i 〉 − σi(c)m(j)?

5

f 6N+j
i = 〈~b6N+j,~y?i 〉 − σi(c)m(j)?

6

f 7N+j
i = 〈~b7N+j,~y?i 〉 − σi(c)m(j)?

7

f 8N+j
i = 〈~b8N+j,~y?i 〉 − σi(c)m(j)?

8

f 9N+1 = 〈~b9N+1,~y?0〉 − cm(j)?
9

Now, substituting those terms to their respective places in verification equations and
doing algebraic simplifications, verification equations for v1, v2, v3 and v4 yields

c
k−1∑
i=0

N∑
j=1

εiN+jσ
−i
(
βm(j)?

2 + m(j)?
3 −m(j)?

6 + γ
)

= 0
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c2
( k−1∑
i=0

N∑
j=1

εNk+iN+jσ
−i(m(j)?

6 m(j)?
7 −m(j)?

8 )+

+
k−1∑
i=0

N∑
j=1

ε2Nk+iN+jσ
−i(m(j)?

0 m(j)?
3 −m(j)?

4 )+

+
k−1∑
i=0

N∑
j=1

ε3Nk+iN+jσ
−i(m(j)?

1 m(j)?
3 −m(j)?

5 )
)

= 0

c
( k−1∑
i=0

ε4Nk+2i+1σ
−i(M1 −

N∑
j=1

u(j)′m(j)?
3 −

N∑
j=1

m(j)?
4

)
+

+
k−1∑
i=0

ε4Nk+2i+2σ
−i(M2 −

N∑
j=1

v(j)′m(j)?
3 −

N∑
j=1

m(j)?
5

))
= 0

c
( k−1∑
i=0

ε(4N+2)k+iσ
−i(Π−m(N)?

8 ) +
k−1∑
i=0

ε(4N+3)k+iσ
−i(1−m(1)?

7 )
)

= 0

In [ALS20, Theorem 5.1 ], the cheating probability of similar arguments are proven
to be bounded ε < (3p)k. That means, if βm(j)?

2 + m(j)?
3 − m(j)?

6 + γ 6= 0 for some j,
then the probability of above equation being true is bounded by (3p)k. Similarly, with
the same probability bound, we get m(j)?

0 m(j)?
3 − m(j)?

4 6= 0; m(j)?
1 m(j)?

3 − m(j)?
5 6= 0

and m(j)?
6 m(j)?

7 −m(j)?
8 6= 0 altogether, or

∑N
j=1 u(j)′m(j)?

3 −
∑N

j=1 m(j)?
4 −M1 6= 0 and∑N

j=1 v(j)′m(j)?
3 −

∑N
j=1 m(j)?

5 −M2 6= 0; or m(N)?
8 − Π 6= 0.

Combining all extracted relations we re-establish

N∏
j

(βm(j)?
2 + m(j)?

3 − γ) = Π =
N∏
j

(βj +αj − γ)

N∑
j

m(j)?
3 (u(j)′ −m(j)?

0 ) = M1 =
N∑
i=1

αiu(i)

N∑
j

m(j)?
3 (v(j)′ −m(j)?

1 ) = M2 =
N∑
i=1

αiv(i)
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Mix-Node Security Once more, we refer to [CMM19] where mix-node security is
proved using game based approach. Indeed, by following exactly the same steps, and
only replacing statistical closeness of Game 0 and Game 1 with computational closeness
under MLWE8dβ2 assumption guaranteeing shortness error terms in RLWE encryptions,
it is possible to show that the advantage of adversary over random guessing is bounded:

ε = AdvsecA (κ) ≤ εMLWE + 2−100 + εRLWE .

3.4 Non-interactivity and proof size
The protocol in Figure 5 is made non-interactive with the help of standard Fiat-Shamir
technique. In other words, challenges are computed by the prover by hashing all previous
messages and public information. Furthermore, instead of sending ~wi, v1, v2, v3, v4 which
are used as input to the hash function to generate challenges, the standard technique is to
send hash output and let the verifier recompute those values from verification equations
and check that hashes of computed input terms match with the prover’s hash. Thus, it
is enough to send the commitment~t0‖t1‖ · · · ‖t9N , garbage term t9N+1 and vectors~zi. A
polynomial inRq consists of d coefficients less than q, so it takes dblog qc bits at most.
~t0 and~zi for i = 1, . . . , k consist of µ and λ+ µ+ 9N + 1 polynomials, respectively. A
formulate to calculate the full cost of shortness proof is given in [ENS20]. Combining
all of these, the size of accepting trasncript for our protocol is

(µ+ 9N + 1)dblog qc+ k(λ+ µ+ 9N + 1)dblog qc+ 256+

+ (λ+ µ+ 5N + 4)dblog qc+ k(2λ+ µ+ 5N + 3)dblog qc+ 256 =

= 14N(k + 1)dblog qc+ (k(3λ+ 2µ+ 4) + λ+ 2µ+ 5)dblog qc+ 512

Overall, size of proof of shuffle protocol is linearly dependent on the number of
ciphertexts (i.e. votes in the voting scenario). However, the number of public variables,
such as commitment keys, is increasing quadratically. A possible optimization method is
to choose common shared seed and derive all public polynomials using that seed.

Another possible place for optimization is to choose public variables in a specific
format such as B0 = [Iµ|B′0] where B′0 ∈ R

µ×(λ+9N+1)
q and vectors ~bi = ~0µ‖~ei‖~b

′
i where

~ei is the i-th standard basis vector of length 9N+1 and~b
′
i ∈ Rλ

q as suggested in [LNS20],
so that total number of uniform polynomials will be linear in N . (This optimization is
already taken into account in the size of shortness proof transcript while constructing
shortness proof)

3.5 Instantiation
Here we propose a valid parameter set for proof of a shuffle protocol. Parameters have
to instantiated in a way that the protocol achieves 128 bit classical soundness and post-
quantum encryption security of RLWE is at least that much. For Module SIS security,
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8dβ1 < q and 8dβ2 < q. Coefficients of secret key and error terms used in RLWE
encryption are sampled uniformly in {−1, 0, 1}, i.e χ1 = U({−1, 0, 1}d). Similarly,
distribution C and χ2 are defined on the same set: Pr(x = 1) = Pr(x = −1) and
Pr(x = 0) = 1/2 in C and Pr(x = 0) = 6/16 in χ2. We find that for q ≈ 232, mixing
node is secure up to 10 voters which is insufficient. For this reason and in order to easily
represent coefficients with primary data types, we choose q ≈ 264. Then, using LWE
and SIS security estimator script3 we get that for d = 4096, λ = 1, µ = 1 Hermite factor
for MLWEλ,χ2 with ternary noise is 1.0027 and MSIS8dβ has root Hermite factor 1.0027.
Finally, by Lemma 3 in [ALS20], p ≈ −62., which implies that k = 2 is enough for the
desired soundness level.

3.6 Performance and Security
We estimate performance of proof of shuffle protocol in terms of expensive operations.
Sampling challenges uniformly random from C or χ1 is not very hard but from dis-
crete Gaussian distribution with large deviation is time-consuming. To solve this, we
suggest using constant time Gaussian sampler by Zhao et al. [ZSS20]. Then, the only
expensive operation is polynomial multiplication inRq. When the ring is fully splitting,
multiplication can be handled in NTT domain in linear steps. In Figure 5 we see that
the protocol uses O(N2) multiplication operations due to 18N inner products between
vectors of length λ+ µ+ 9N + 1. However, applying optimization trick in Section 3.4,
this dependency becomes linear in N . Because complexity of polynomial multiplication
depends only ring structure, it can be assumed to be constant. Thus, the time complexity
of the protocol becomes linear in the number of voters.

Post-quantum security of Fiat-Shamir transform has not been fully proven in quan-
tum random oracle model (QROM) yet. Several works on this researh area restricted
definitions for security properties. For example, computionally binding commitment
schemes can be insecure against quantum attacks, as shown in [ARU14]. Collapse
binding is a stronger security property which allows to construct quantum argument
of knowledge [Unr16]. The BDLOP commitment scheme used in our protocol has
not been shown to satisfy collapse-binding property. But because SIS hash functions
are collapse-binding [LZ19], hopefully one can prove for Module-SIS based BDLOP
commitments as well. Another main challenge is to prove security of mutli-round Fiat-
Shamir [DFM20] in QROM. Until these problems are solved, unfortunately, we cannot
claim full post-quantum security of non-interactive protocol described in Section 3.4. An
alternative solution is Unruh transform [Unr15], but applying it will result undesirably
large protocol size.

However, the interactive protocol in Figure 5 will be potentially post-quantum secure.
In the online voting context, election auditors can be assumed to be honest verifiers. They

3https://github.com/pq-crystals/security-estimates
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can be restricted to have access to powerful quantum device during mixing procedure in
order to prevent them obtain secret permutation vector. After successfully verified mixing
phase is over, RLWE ciphertexts can be publicly shared at no risk due to post-quantum
security level of chosen parameters.

While the protocol given in Figure 5 proves arguments (1), (2) and (3) with negligible
soundness error for carefully chosen parameters such as in Section 3.5, arguments
themselves are not sound in case of fully splitting rings. The main reason is that
regardless of the construction, challenge sets for α,β,γ will not be sufficiently large.
First, there are at most q pairwise different polynomials whose difference is invertible.
Therefore, the probability bound in Lemma 3 will not be negligible. Even relaxing
invertibility requirement does not help substantially. However, repeating the whole
protocol several times can be a way to overcome this problem.
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4 Implementation results
To show the protocol in action, a small, yet fully functional, console-based voting
mock-up application is built using C++ language. There are no separate server or client
applications. This allows us to run experiments quickly for thousands of voters in
parallel. However, the basic software development principles are adopted for further
developments, allowing us to create independent services that have already been isolated
by their roles (voter/client, Election Set-Up, Ballot box, Mix Net, Decryption oracle,
Tallier). The source code is provided alongside the thesis and available on demand4.

The application is developed on top of several helpful libraries. NFLLib [MBG+16]
is used for faster calculations on lattices, which includes NTT transformations. This
library has other prerequisites (cmake, GMP, and Mpfr) as well. Then, fips202.h and
fips202.h files contains public domain implementation of SHAKE extendable-output
functions and SHA-3 hash functions from FIPS 2025. We used SHAKE256 as a hash
function in the Fiat-Shamir transform. As NFLlib is already SIMD optimized, we did
not employ advanced vectorization techniques explicitly. However, the fast discrete
Gaussian sampler in that library takes a long time and occupies lots of memory in the
initialization phase as it is building a look-up table with a very large standard deviation.
Instead, we used constant-time discrete Gaussian sampler from recent work [ZSS20].
During compilation, -O3 and -march=native flags are set.

All cryptographic components have been implemented from scratch. These include
RLWE encryption scheme [LPR13], commitment scheme and zero-knowledge proof
of opening and linear relations [BDL+18], and zero-knowledge proof of knowledge of
short exact solution to unstructured ternary equation in Zq [ENS20].

In Set-up phase, the application initializes services mentioned above and generates a
public and secret RLWE encryption key pair. For simplicity, the secret key is not divided
into secret shares among multiple trustees. The public key is reachable in the whole
application context by any function, whereas the secret key is visible to Mix Net (hence,
mix nodes) and Decryption oracle only. After this phase is finished, the central election
controller declares election is open meaning Ballot Box has started to accept encrypted
ballots. Voter can make use of the public key to privately encrypt the personal choice of
candidate, and send the ciphertext to the Ballot Box. Again for simplicity and due to they
are out of the context of this work, digital signatures are omitted. During experiments,
thousands of voters are instantiated, made a random choice, and cast votes in parallel.
For correctness and debugging purposes, these random choices are logged. Later, central
election controller closes election, i.e Ballot Box is not accepting ballots anymore.

Figure 7 and 8 gives information on the running time of shuffling, proof of shuffle,
and verification of proof for the varied number of voters. As it is obvious from the figure,

4Interested people send an email to valeh.farzaliyev@ut.ee
5https://github.com/PQClean/PQClean/blob/master/common/fips202.h
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the linear relationship is observed, which is expected. Similarly, the time to generate
proof of shuffle is linearly increasing with the number of mix nodes for a fixed number
of voters.

All experiments have been performed on a 2.2GHz Intel Haswell CPU with 64GBs
of RAM. NFLlib uses AVX2 or SSE optimization techniques if any of them exists in
CPU architecture. For the CPU model I used, it supports the AVX2 instruction set.

N Shortness proof (seconds) Shuffle proof (seconds) Total Size
10 7.5 4.1 12 13.875MB

100 71 40 111 132MB
1000 708 394 1090 1.28GB

10000 7000 3879 10859 12.8GB

Figure 7. Proof generation time
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N Shortness proof (seconds) Shuffle proof (seconds) Total
10 2.9 2.2 5.1

100 26 20 46
1000 240 199 458

10000 2450 1989 4579

Figure 8. Proof verification time
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5 Post-Quantum Voting Scheme
We have successfully shown how to design a practical zero-knowledge proof of shuffle
for Costa et al. mixing node using post-quantum secure primitives only. However, it
has reduced soundness and lacks concrete security proof in QROM. Assuming these
problems have been solved, we briefly sketch a way for a lattice-based post-quantum
secure voting scheme. For simplicity, we consider what should be changed in an internet
voting platform, called IVXV, used in Estonian elections.

IVXV is a verifiable shuffling based voting protocol in which threshold ElGamal
encryption is used to encrypt digital ballots. Before elections are started, encryption keys
are generated and distributed among several electoral authorities. Voters also append their
digital signatures to encrypted ballots using RSA signatures or Elliptic Curve Digital
Signature Algorithm. Later, once ballots are stored in the read-only bulletin board, they
are shuffled and proof of correct shuffle is generated using Verificatum software. After
several rounds of shuffling, fresh ciphertexts are decrypted only in the presence of at
least half of the key shares and zero-knowledge proof of correct decryption is produced.
External auditors can verify published zero-knowledge proofs to ensure that there was no
fraudulent activity. Besides, in order to reduce coercion risks, a mobile ballot verification
app is built for voters. In case a voter is suspected that his or her choice is not cast as
intended, they can scan a special QR code displayed right after finishing voting. The QR
code contains vote id and randomness used in ElGamal encryption. Thus, without a need
for a secret key, the mobile app can recover plaintext from encrypted ballot stored in the
bulletin board. The detailed security aspects of IVXV platform are well-explained in the
official website.6

The post-quantum alternative of IVXV is possible using lattice-based cryptography.
Moreover, we suggest using RLWE encryption scheme instead of ElGamal for three
reasons. First, similar to ElGamal, it is IND-CPA secure encryption scheme with
relatively short key and ciphertext size compared to other post-quantum secure encryption
methods. The second reason is that using RLWE allows us to utilize other lattice-based
tools even if they are based on different assumptions (such as MLWE and MSIS).
Finally, the mobile verification procedure need not be changed at all - sending encryption
randomness is enough to recover encrypted message with overwhelming probability.
Observe that for a RLWE ciphertext (u, v)

v = pk.b · r + e2 + bq
2
em =⇒ bq

2
em = v− pk.b · r− e2

Because, e2 is a small noise term, m can be recovered from the difference v− pk.b · r.
Choosing a post-quantum secure digital signature is not as hard as choosing other

primitives. The reason is that the digital signature can be realized independently and

6https://www.valimised.ee/sites/default/files/uploads/eng/IVXV-UK-1.0-eng.pdf
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need not be lattice-based. For example, one would use any round 3 finalists of NIST
PQC standardization contest7.

Threshold LWE is still an active research area. The suitable protocol would be a work
by Damgård et al. in which they attempted to generate multiparty computation protocol
secure against active adversaries based on RLWE assumption [DPSZ12, Appendix D].
The final piece is distributed decryption which is also given in [DPSZ12].

This is a general idea of how ivxv voting protocol can be made quantum resistant.
Of course, all components have to be modified in a way that they can work together.
The hardest part would be finding a concrete parameter set with provable strong security
properties.

7https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
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6 Conclusion
While the digitalization trend continues, it had already faced the biggest threat by
quantum computers. These computers are potentially very powerful so that they can break
almost all modern asymmetric cryptography used in digital banking, secure browsing,
communications, and even online voting. Fortunately, many people are working on
post-quantum secure alternatives. Lattice-based cryptography is the most promising
candidate to replace current standards.

In this thesis, we have presented a practical zero-knowledge proof of shuffle for
lattice-based mixing networks suitable for medium-scale elections. Our protocol is
built on techniques from recent academic works on lattice-based zero-knowledge proofs
including boosting soundness via Galois automorphisms. The resulting scheme has linear
memory cost and time complexity. The average run time per vote is one second.

The highly parallelizable nature of lattice operations allows for faster implementations
using many CPU and/or GPU cores concurrently. Although our simple conceptual
implementation needs several days to verify the validity of a mixing node in case
of million voters, this can be significantly reduced down to possibly comparable to
manual tallying with the help of parallel programming approaches, such as OpenMP
SIMD [FFLM20] and GPU [DS15]. This is a performance optimization task and most
likely will be solved in near future considering the uprising trend of parallel computing.

We have also described why fully splitting rings are not a good choice for compact
proofs. However, partially splitting rings require extra effort while proving security rela-
tions and software implementations. Lattice-based zero-knowledge proofs constructed
over partially splitting rings recently gained attention. It is an interesting research ques-
tion whether new techniques can be integrated to our proof of shuffle protocol to remove
the soundness barrier and we let it open for future work.
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