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Digital proximity tracing (DPT) for Sars-CoV-2 pandemic mitigation is a complex

intervention with the primary goal to notify app users about possible risk exposures

to infected persons. DPT not only relies on the technical functioning of the proximity

tracing application and its backend server, but also on seamless integration of health

system processes such as laboratory testing, communication of results (and their

validation), generation of notification codes, manual contact tracing, and management

of app-notified users. Policymakers and DPT operators need to know whether their

system works as expected in terms of speed or yield (performance) and whether

DPT is making an effective contribution to pandemic mitigation (also in comparison

to and beyond established mitigation measures, particularly manual contact tracing).

Thereby, performance and effectiveness are not to be confused. Not only are there

conceptual differences but also diverse data requirements. For example, comparative

effectiveness measures may require information generated outside the DPT system, e.g.,

frommanual contact tracing. This article describes differences between performance and

effectiveness measures and attempts to develop a terminology and classification system

for DPT evaluation. We discuss key aspects for critical assessments of whether the

integration of additional data measurements into DPT apps may facilitate understanding

of performance and effectiveness of planned and deployed DPT apps. Therefore, the

terminology and a classification system may offer some guidance to DPT system

operators regarding which measurements to prioritize. DPT developers and operators

may also make conscious decisions to integrate measures for epidemic monitoring

but should be aware that this introduces a secondary purpose to DPT. Ultimately, the

integration of further information (e.g., regarding exact exposure time) into DPT involves

a trade-off between data granularity and linkage on the one hand, and privacy on the

other. More data may lead to better epidemiological information but may also increase
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the privacy risks associated with the system, and thus decrease public DPT acceptance.

Decision-makers should be aware of the trade-off and take it into account when planning

and developing DPT systems or intending to assess the added value of DPT relative to

the existing contact tracing systems.

Keywords: contact tracing app, digital health, COVID-19, coronavirus, performance, effectiveness, digital

proximity tracing

INTRODUCTION

Digital proximity tracing (DPT) is a novel health technology,
designed to complement manual contact tracing (MCT) by using
apps in national efforts to mitigate the Sars-CoV-2 pandemic (1).
The primary purpose of DPT is to provide an instrument for
fast, anonymous notification of other app users with potential
exposure risks to an infected app user (2).

The current Sars-CoV-2 crisis is the first global public health

crisis that sees massive, nationwide roll-outs of DPT apps (3).
This is noteworthy because DPT has never undergone large-

scale, real-world testing in its target population prior to release,
as would normally be required for health technologies (4, 5).
This is largely due to the urgency of the Sars-CoV-2 crisis,

where many countries gave precedence to fast release over
extensive testing. All the more, governments face pressure to
justify the rapid DPT deployment and to demonstrate its impact

on pandemic mitigation. Specifically, evaluations are needed
to demonstrate whether single parts and the whole system
of DPT perform well from a technical perspective, but also

whether DPT helps to contain transmission chains (6). First data-

driven studies of DPT effectiveness have started to emerge only
recently (7–9).

Ideally, such evaluations of DPT should follow a standardized
protocol to allow comparability across countries and settings,
but also to facilitate learning from other countries’ experiences.
However, in direct exchanges and discussions with national
health authorities and DPT developers, this group of authors
noticed a substantial confusion among health authorities,
politicians, and even DPT experts about the aims of DPT, the
terminology, and goals for system evaluations. The metaphor
of a “Babylonian confusion of tongues” is not too far
to describe the current situation. This problem has been
recognized, and international health authorities and different
groups of academics have attempted to bring some structure
into discussions about DPT development, deployment, and
evaluation (10, 11). A starting point for discussion (including
a glossary with relevant keywords) is presented in von
Wyl et al. (6). Furthermore, Colizza et al. present some
high-level recommendations regarding effectiveness evaluations
of DPT apps (12). Specifically, they emphasize elements
such as user update and adherence, speed of notification,
but also transparency of DPT risk scoring algorithms and
evaluations (12). In addition, experimental studies have been
conducted to assess the performance of contact detection
by DPT (13–16). The study by Rodriguez and colleagues
is noteworthy because it also aimed at defining impact

indicators for DPT apps, mostly for user behavior and exposure
detection (16). But the study description does not reveal why
and how the specific indicators were selected. Of further
note, all these studies were conducted by researchers from
different scientific backgrounds, and hence using their respective
terminologies and performance indicator measures (e.g., from
clinical research or computer science), with little consistency
across studies.

The present viewpoint attempts to provide further
clarifications on key aspects of DPT evaluations by bringing
together DPT developers and public health experts from
different countries to present a unified proposal for terminology
and classification of measures to evaluate DPT. Thereby, we
will focus on DPT apps that follow the privacy-preserving
design principles outlined by the Decentralized Privacy-
Preserving Proximity Tracing (DP-3T) (17) protocol for
two reasons. First, the design principles serve—to our
knowledge—as the basis for most currently deployed DPT
apps [exceptions are, for example, the French TousAntiCovid
app (18) or the TraceTogether app from Singapore (13)].
Second, decentralized, privacy-preserving DPT apps, as
well as the voluntariness of their use, pose the greatest
methodological challenges for monitoring and for designing
effectiveness evaluation strategies due to the (intended) paucity
of data.

The viewpoint is structured as follows. Section Principles
of Digital Proximity Tracing in Support of Manual Contact
Tracing describes the basic principles of DPT. Section DPT Is a
Complex Intervention argues that DPT is a complex intervention,
relying on the fast completion of clearly defined actions in
the notification cascade by different health systems actors.
Section A Closer Look at DPT Steps and Their Influence on
Intervention Outcomes breaks the DPT notification cascade into
its separate parts and describes how some basic questions and
checks may easily be utilized in the DPT evaluation. Section
Basic Concepts for DPT Evaluations introduces basic concepts
and terminologies to describe and assess DPT systems from
different viewpoints, namely system performance assessments
and public health effectiveness evaluations. Section Proposal for
Classification of Different DPT Evaluation Measures outlines a
classification matrix to distinguish different types of indicator
measures. Concrete indicator examples are provided and
referenced in the Supplementary Materials. In section Key
Considerations for the Practical Implementation of Performance
and Effectiveness Measures, the viewpoint closes with some basic
considerations for developing and implementing indicators for
DPT evaluation.
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PRINCIPLES OF DIGITAL PROXIMITY
TRACING IN SUPPORT OF MANUAL
CONTACT TRACING

The principles of DPT have been described extensively elsewhere
(1). In brief, DPT enables participants to trace proximity contacts
(exposures) that could pose relevant infection risks. If one of the
proximity contact persons tests positive for Sars-CoV-2, the app
will warn other users who were in close proximity during the
infected person’s time window of infectivity, thereby increasing
the coverage and/or speed of the contact tracing process relative
to MCT. The potential advantages of DPT compared with MCT
are 3-fold. DPT can (#1) lead to faster exposure notifications than
MCT, (#2) reach persons who are not personally known to an
index case, and (#3) DPT is easily scalable and should still work
when MCT reaches its capacity limits.

Most countries that have released DPT apps have opted
for a privacy-preserving, decentralized architecture according
to the DP-3T blueprint (17, 19). That is, proximity contacts
are not sent to a central server, but stored and evaluated
locally on smartphones. The only data that is sent to a
central server are pseudonymous, random identifiers of persons
with a confirmed SARS-CoV-2 infection. These “infectious”
identifiers are downloaded by all other users and compared
to the locally stored identifiers to find out which of the
proximity encounters were with SARS-CoV-2 positive people.
If the temporal aggregation of the matched encounters exceeds
a minimal duration at a relevant proximity (depending on the
estimated infectiousness of the positively tested person), users
are notified and recommendations on further steps to take
are provided.

The dominant choice of a privacy-preserving architecture
across many countries highlights the emphasis of the primary
DPT function (“warning people early in an anonymousmanner”)
over purposes such as disease monitoring. DPT is, first and
foremost, a notification tool aimed at breaking transmission
chains, and its primary function does not necessitate the
collection of personal data of index cases and their contacts.
Nevertheless, debates in several countries suggest that DPT is
sometimes also viewed as an opportunity to collect data for
epidemiological monitoring, for example, to obtain additional
information on time and setting of the events with high risk of
exposure. Such secondary functions of DPT are beyond the scope
of this article and are only discussed briefly where relevant for the
broader context.

DPT IS A COMPLEX INTERVENTION

The preventive effect of DPT results from a timely warning of
exposed persons so that they can enter quarantine and initiate
further preventive measures. In this context, timely means a
faster contact notification than is usual in MCT. In addition,
DPT can also reach persons who would normally be missed by
MCT (e.g., because they were chance encounters of the index
case). As illustrated by Figure 1, the app notification process
reflects an information flow in multiple steps to eventually

produce specific actions leading to the prevention of further
transmission (indicated by the #-signs in Figure 1). The effect

of DPT depends on the interplay between health system actors

(e.g., testing laboratories) and app users. It is not the app
per se but the fast completion of the full notification cascade
and subsequent actions that lead to the desired results (9).

Of note, the distinction between app users and other actors

is warranted because (voluntary) user actions are strongly
influenced by behavioral aspects and incentives (20, 21), whereas

actions required by other health system actors may depend

more on automatization, technical interfaces, resources, or
capacity (22).

We identify three high-level tasks (illustrated by

colored boxes in Figure 1) that combined cover the entire
notification cascade:

• Proximity estimation: This aspect pertains to the exchange
of ephemeral (regularly changing) identifiers between users’
devices, and the detection of significant proximity contacts
(e.g., <1.5m for more than 15min).

• Diagnosis and identifiers upload: This aspect pertains to the
upload of identifiers by index cases.

• Notification of proximity contacts: This aspect pertains to
the notification of proximity contacts by their mobile device,
and the subsequent actions taken by users as a response to
this notification.

The dependency of the DPT intervention on its embedding in
the overall pandemic mitigation response and the involvement of
multiple actors fulfills the definition for complex interventions,
as used in other fields of healthcare research (23, 24). In
DPT, involved health system actors are setting-specific but may
include testing laboratories or health authorities including MCT
units or operators of infolines (Figure 1). Figure 2 provides an
even more detailed view of 10 individual steps in the DPT
notification cascade. The red person illustrates the infected
app user who gets tested, receives a positive test result, and
triggers the app notification. The green person depicts a
proximity contact who receives an app notification. Of note,
in most DPT implementations, several of the steps in Figure 2

involve free user choices whether or not to complete a specific
task (e.g., step 6, authorization of key upload) without fears
of retribution.

This insight that DPT is a complex intervention involving
voluntary actions is relevant from a practical standpoint because
it shifts the focus of discussion from single aspects (e.g.,
technical accuracy of Bluetooth measurements) to a broader
systems perspective (25). However, in addition to measuring
the final intended outcome of a complex intervention, the
monitoring of individual components of a complex intervention
is nonetheless important. Because complex interventions,
DPT in particular, depend on a seamless, fast cascade of
events (as shown in Figure 1), measurements characterizing
speed and efficiency of specific system components and
actors are useful to identify bottlenecks in the notification
chain, as well as to act as leverage points for improving
system behavior.
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FIGURE 1 | Example of required steps in the notification cascade of digital proximity tracing in decentralized systems. An infected person A receives a positive test

result for Sars-CoV-2 and (possibly automatically) an upload authorization. After consent by the user, the app uploads the random identifiers to a server. Person B’s

device regularly downloads “infectious” identifiers. If B was in close proximity to A (or other infected users) for a prolonged time, then B receives the app notification.

Upon receiving this notification, B has several options, for example—in some countries—calling an information line (#1), getting tested for Sars-CoV-2 (#2), or entering

quarantine voluntarily (#3). The colored boxes refer to the three main tasks involved in the DPT notification cascade, described in section DPT Is a Complex
Intervention.

A CLOSER LOOK AT DPT STEPS AND
THEIR INFLUENCE ON INTERVENTION
OUTCOMES

To illustrate how system components can influence the outcome
of the intervention, let us look at the three high-level tasks
indicated in Figure 1 above (proximity estimation, diagnosis and
identifiers upload, proximity contact notification). The precise
details of each of the tasks depend on national or regional
choices regarding system design and configuration. However, all
systems adhere to a similar, three-step structure. In the following,
we will in greater detail describe the processes and country-
specific variations, and identify questions that help to assess the
system performance.

Proximity Estimation
All systems we consider in this paper rely on the Google/Apple
Exposure Notification (GAEN) framework (26). Therefore, the
accuracy of proximity estimation depends on the functioning of
the GAEN framework and howwell the chosen parameters reflect
the desired measure of proximity (with slight regional variation).

Determining the accuracy of this component requires accurate
ground-truth information about the exact distance and duration
of a proximity contact. Collecting such information is nearly
impossible in non-experimental settings without infringement

of privacy (e.g., because it would require the use of video
cameras to establish ground truth). Therefore, research groups
(27–30) have used laboratory and simulated settings to replicate
these scenarios with carefully constructed/measured ground-
truth information. These measurements can then be used to
answer questions such as:

• What parameter choices best reflect the desired
distance/duration threshold?

• What distribution of false positives/false negatives does this
choice induce for particular users’ behaviors and under
different environments?

• Does the choice of device model/manufacturer/platform
influence the realized threshold?

To inform technical questions and setting-specific
implementation decisions, the GAEN framework documentation
is a suitable starting place (17).

Diagnosis and Identifier Upload
To enable proximity contacts to receive notifications, Sars-
CoV-2-positive users must upload the random identifiers they
broadcasted during the contagious window. Most countries
use a system of upload authorization to allow uploads by
confirmed index cases only, thereby preventing false warnings or
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FIGURE 2 | Specific actions required in the notification cascade.

manipulation. As of today, automatic uploads of identifiers are
not possible.

The following steps are considered critical (Figure 2):

• Get tested and receive a (positive) test result.
• Obtain upload authorization by a health authority (e.g.,

automatically when users registered the test in the app; or
via an upload authorization code obtained through interaction
with the health authorities after receiving a positive test).

• Upload identifiers by consenting to the release and upload of
identifiers in the app.

The exact process of obtaining upload authorizations differs per
country. Some countries, e.g., Belgium (31), and Germany (32),
let users register Sars-CoV-2 tests in the app (who then also
receive their test result through the app). Users with positive tests

then automatically receive an upload authorization. In addition
to or instead of such an automatic flow based on registered tests,
other countries provide index cases with an upload authorization
code that they enter into the app (Switzerland and Portugal
use this as the only flow, German and Belgium use it as an
alternative) or let users obtain authorizations via an eHealth
system (e.g., in Estonia where the eHealth system also manages
Sars-CoV-2 tests).

Moreover, the GAEN framework requires users to explicitly
consent to release the random identifiers their phones have
broadcast. Therefore, any app will request user action and explicit
consent. However, the timing of consent provision varies across
countries and can occur, for example, during laboratory test
registration (e.g., in Germany) or upon receipt of a positive
test result.
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Based on the three critical processes described above, one
could ask the following questions related to the operation of
the system:

• How long between users getting tested and receiving a result?
• What fraction of users register tests in the app, if this function

is available?
• What is the time from receiving the result to

uploading identifiers?
• How many users with permissions to upload do not finish the

process? At what point do they abandon the process?

While data collections to address these questions are
highly setting-specific, publicly accessible examples of
such monitoring systems already exist, for example,
in Switzerland (9, 33), Germany (34), or in the
Netherlands (35).

Notification of Proximity Contacts
Apps regularly retrieve uploaded positive identifiers from the
system’s backend server and then compare them (using the
GAEN framework) against stored identifiers. If the framework
detects a sufficiently long exposure, the app sends a notification
to the end-user. Depending on the country, this notification
instructs the user to contact the local health authority or a hotline,
take a test, or self-quarantine. As with MCT, users may fail to
follow these instructions.

To protect privacy (and to facilitate efficiency), uploaded
identifiers are not immediately downloadable by other app end-
users. Instead, the backend regularly releases a new batch of
identifiers. For example, every 2 h.

The following factors influence the notification timeline.

• Time to publish. The time between receiving “positive”
identifiers at the system’s backend, and their publication, when
these identifiers can be retrieved by other phones.

• Polling frequency. The frequency with which user’s devices
retrieve new “positive” identifiers and compute matches. This
time is influenced by the mobile OS’s scheduler as well as the
internet connectivity of the phone.

• Time for the user to notice the notification and to subsequently
act upon it.

The first and second factors are configurable parameters,
constrained by the capabilities enabled by the GAEN framework
(17). The effect of the system’s scheduler can be tested in a
laboratory setting.

The following questions can be asked concerning this
notification task (some may not be possible to answer in privacy-
preserving architectures):

• How many people receive a notification? How many of them
later test positive?

• How many people follow through after receiving
a notification?

• What is the time between positive upload and notification?
• How long between a notification is received and the user acts

upon it?

The monitoring websites mentioned in section Diagnosis and
Identifier Upload also provide good example metrics for the
proximity contact notification step (33–35).

BASIC CONCEPTS FOR DPT
EVALUATIONS

As illustrated above (Figures 1, 2), DPT relies on a fast and
seamless flow of information along the notification cascade.
Blockades or inefficiencies in single steps can lead to bottlenecks
and prevent the information flow, thus inhibiting the primary
goal of DPT to warn other app users about potential risk
exposures. The information flow of each DPT step can be
described by at least three attributes: speed, yield, and capacity.
Speed describes how fast an action is completed and can be
measured in terms of time. Yield refers to a completion fraction,
that is, a number of tasks executed as needed per 100. Yield
sometimes also has a time connotation, that is the fraction of
task completion for a given time frame (also referred to as
throughput). Capacity relates to the task volume an actor can
handle in a given time (which, in turn, may also influence speed
and yield). For example, testing laboratories or manual contact
tracers can only process a certain number of samples or cases,
given the available resources such as machinery or personnel.
Therefore, volumes can be described as percentages below or
above the capacity limit.

The different DPT system components, as well as the
basic attributes (speed, yield, capacity) and questions about the
DPT functioning, lend themselves to the development of Key
Performance Indicators (KPIs). For a better interpretation of these
KPIs, a contextualization with the dynamic of the Sars-CoV-2
pandemic is often useful (e.g., to compare the number of key
uploads with the incidence of new infections).

Overall, such KPIs provide valuable information on the
procedural performance of the overall system, as well as possible
bottlenecks in the notification cascade. If any of the components
of the tasks in Figure 1 (e.g., providing upload authorization)
malfunctions, the delay will ripple to the whole notification
cascade and undermine DPT’s ability to perform its primary
purpose of notifying exposed contacts. Therefore, KPIs can also
be viewed as measures of technical and procedural preconditions
for DPT to fulfill its primary purpose (9).

However, KPIs have the caveat that they often summarily
reflect sequences of different actions (e.g., app usage, positive
test, identifier uploads, download of identifiers, and proximity
estimation). This composition complexity hinders the
interpretation of these metrics as a consequence of a single factor.

Furthermore, KPIs are, in a strict sense, not revealing
concerning how well DPT achieves its primary purpose of
reducing viral transmissions, respectively its “effectiveness,”
defined as the “ability to produce a desired result” (36). In
epidemiological studies, the concept of effectiveness often stands
for the real-world effect of an intervention against a comparator
(comparative effectiveness) and is expressed as an exposure-
outcome relationship.
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It is important to note that, in the majority of countries, DPT
is intended and designed to complement MCT. Therefore, in
most settings, a “fair” DPT effectiveness evaluation would involve
comparison between the use of DPT apps vs. non-use in addition
to manual contact tracing. In those settings where DPT is
implemented alongside MCT, effectiveness investigations should
ideally center around the three postulated main advantages of
DPT over MCT: DPT should lead to faster exposure notifications
than MCT, DPT can reach persons who are not personally
known to an index case, and DPT should still work when MCT
reaches its resource limits (6). Specific effectiveness outcomes
could focus, for example, on the time from the first exposure
notification (either by MCT and/or DPT) to entering quarantine,
or on the comparisons of the average number of persons who
later test positive between groups who were notified by MCT
or DPT. In both examples, the most obvious comparator is
classic MCT. In settings where no MCT exists (or where it
is no longer operable) and DPT is introduced in a staggered
process, regional comparisons of Sars-CoV-2 incidence could be
performed between geographic units that have introduced DPT
at different times.

Sometimes DPT and DPT-related measurements are
also discussed in the context of epidemiological monitoring
(surveillance). Such discussions are tied to the hope of gathering
relevant data and gaining insights about transmission dynamics.
It is important to note that epidemiological monitoring is not
part of the key functionality of DPT and necessitates an entirely
different set of measurements and KPIs that go beyond the data
requirements for privacy-preserving proximity tracing and it is
not included in the following discussions.

PROPOSAL FOR CLASSIFICATION OF
DIFFERENT DPT EVALUATION MEASURES

High-Level Distinction Between Key
Performance Indicators and Public Health
Effectiveness Metrics
Figure 3 proposes a KPIs classification matrix of different
measure types and perspectives (“aspects”) relevant for the DPT
assessments. We acknowledge that the distinction between the
different proposed types may not always be clean-cut in practice.
In fact, one may need several of these metrics to assess how well
the system performs each of the three tasks DPT systems must
realize to fulfill their objective (see Figure 1). Nevertheless, the
classification matrix may guide KPI development by illustrating
different dimensions that comprehensive DPT monitoring
systems should cover.

The horizontal dimensions of the classification matrix show
different steps from a basic Input-Processing-Output (IPO)
model perspective (37). Each step in the DPT notification cascade
requires resources (e.g., technical infrastructure, money) and
inputs (e.g., information), which are processed to create outputs
(e.g., notifications). The different IPO steps can be examined
from different viewpoints shown in the vertical classification
matrix dimension, namely from a technical (app-) perspective, as

well as from the viewpoint of different actors, including app end-
users, but also laboratories or public health services (Figure 1).

Therefore, each matrix cell reflects a combination of IPO-step
and viewpoint that can be useful to describe and evaluate the
performance of specific steps or elements of DPT systems (KPIs).
By taking a specific step in the notification cascade described
in section A Closer Look at DPT Steps and Their Influence on
Intervention Outcomes, the performance can be evaluated from
different angles using the guiding questions such as: What are
the resources needed to complete this step? How well does the
information flow along the notification cascade work? Or how
much desired output is generated by this step? Such KPIs can
be formalized as raw numbers, proportions, or ratios to describe
speed, yield, and capacity attributes (as described in section Basic
Concepts for DPT Evaluations).

Separate and located below the classification matrix in
Figure 3 are the public health effectiveness measures. They are
distinct from KPIs and aim to address a different question: does
the DPT system achieve its intended primary aim of notifying
exposed app users swiftly so they can take preventive measures?
Measures of the DPT effectiveness can relate, for example, to
the prevention of further transmission or comparative cost-
effectiveness when compared to MCT (6). The health-centered
effectiveness measures are different from KPIs, and yet not
independent. The completion of the notification process is a
precondition for achieving the DPT public health goal. In other
words, many public health metrics are an integral of different
processes in the app notification cascade, as they are a direct
consequence of how effective the notification cascade tasks
are executed.

A Worked Example of the KPIs
Classification Matrix and Public Health
Measures: The Proximity Notification Step
To further illustrate the use and usability of the KPIs classification
matrix, we will—cell by cell—describe KPIs examples related
to the proximity notification step (which could also be applied
to classic MCT). The proximity notification step (section
Notification of Proximity Contacts) is a crucial element in the
notification cascade with a direct relation to the primary DPT
goal: to warn proximity contacts as early as possible about
potential transmission risk exposures.

The first matrix column represents resource-oriented metrics,
which define resource needs for technical and non-technical
implementation and include, for example, costs for PCR-tests
(which are free for persons with a DPT notification in some
countries), costs for quarantining of DPT-notified persons, or any
other expenditures.

In the vertical dimension, the first matrix row reflects the app-
oriented, technical perspective. During DPT development and
operation, IT system design requires choices for parametrization
of measurements and backend systems, which are resource-
dependent and may impact speed, yield, or capacity of the
DPT processes. Therefore, concrete KPIs examples for resource-
oriented metrics from the technical perspective (cell 1) include
costs for development and maintenance of the app itself, as
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FIGURE 3 | Proposal for classification matrix of different indicator types to monitor DPT systems by steps of the Input-Process-Output model (resource-, process-,

and output metrics) as well as by aspect (app-oriented, technical viewpoint vs. actor-centric perspectives). The examples in the matrix pertain to the notification step

of proximity contacts (section Notification of Proximity Contacts). The output oriented metrics (5 & 6) may be integrated into public health-centered metrics.

well as for the technical infrastructure and the backend. Such
expenditures are often scaled by the number of active users
or the number of quarantine orders (or other indicators for
prevented transmissions).

The second matrix row reflects the actor-centric perspective
on the notification chain. Involved actors include laboratories
that perform PCR-tests and communicate results to app end-
users and health authorities, health authorities and other
authorized parties that take calls from notified users, and—
in settings with manual upload authorization—the parties
who provide upload authorization codes to diagnosed users.
Furthermore, among all involved actors, the app end-users play
a central role. End-users need to decide whether to use the
DPT app, but also to actively trigger (or at least consent to) the
upload of identifiers in case of testing positive for Sars-CoV-2.
Example KPIs that combine resource and actor perspectives (cell
2) include expenditures for user-linked actions, such as the costs
for providing app-notified contacts a free Sars-CoV-2 test.

Process metrics are located in the second matrix column.
Those KPIs describe interactions of the app and its users with
other parts and actors of the health system. For the app to
work as intended, several processes need to occur seamlessly so
that all tasks can be carried out successfully and timely: from
testing to prompt results communication, upload authorization
code generation, and identifier upload, notification of exposed
contacts, and these contacts taking action (e.g., calling the hotline
or a doctor and receiving advice). Process metrics can be used to
monitor how well the different conditions for app-functioning
are met, respectively, whether the different system parts work
as expected.

Examples of process-centric metrics that integrate the
technical perspective (cell 3) include, for example, precision and
recall of Bluetooth and exposure time measurements, which
are usually assessed in experimental settings. Specific design
choice evaluations may involve measurements of how well the
GAEN/Bluetooth approximation reflects actual physical distance
and time exposure, as well as backend configurations regarding
the frequency of infectious key uploads or downloads of lists of
infectious identifiers (which only happens a certain number of
times per day).Cell 4 represents process-orientedmetrics from an
actor perspective. Several steps in the notification cascade require
human involvement, sometimes on a voluntary basis. Therefore,
such actions may be strongly influenced by behavioral aspects,
digital and health literacy, but also by incentives. KPIs examples
include the fraction of positive app users who consent to or
actively initiate the identifier uploads. KPIs used to describe such
steps can often be based on yield (fraction of completed tasks) or
speed (time to completion) attributes.

Finally, the third matrix column reflects output-oriented
metrics. These KPI refer to desired outputs of DPT, which could
be numbers or yields of DPT-notified users who undertake a
recommended action (e.g., entering quarantine or getting tested
for Sars-CoV-2). These metrics are related to public health goals
but differ in that they focus on an intra-system perspective:
they often do not encompass external comparators but focus on
how a system has evolved. Technical aspects influence desired
outcomes in various ways. In cell 5, notifications of exposed
contacts are the desired outcome. An example KPI is the ratio
of the number of exposure notifications over the number of
upload authentication codes entered by positive tested users. The
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ratio depends on various technical aspects, including calculation
methods for proximity risk scores derived from Bluetooth
attenuation measurements.

Furthermore, many outputs depend on end-user interactions.
App-notified contacts are expected to follow certain procedures
such as calling an infoline, getting tested, or entering quarantine
(cell 6). Examples for such user-dependent outcome KPIs are the
fraction app-notified users who voluntarily enter quarantine or
who seek testing. It is often instructive to express these KPIs both
as yield (fraction who completes an action) and speed attributes
(time until an action is completed).

Finally, the public-health-oriented metrics reflect the real-
world effectiveness of DPT apps as defined above and relate to the
main pandemic mitigation goals. These DPT goals are the result
of the interplay between the different technical and non-technical
aspects of the notification cascade. That is, the KPIs provide
information about the performance of the notification cascade
required for DPT effectiveness. However, KPIs do not provide
direct evidence for DPT effectiveness, for which a comparator
group is required (which, however, can also be a comparator
without any measures such as DPT or MCT as described in
section Basic Concepts for DPT Evaluations). In the context of the
proximity contact notification step, an effectiveness evaluation
could, for example, compare the time from positive testing of the
index case to quarantine of the proximity contact between DPT
and standard MCT.

As outlined in the previous section, key performance
indicators may contribute to effectiveness evaluations if (a) they
reflect actions or outcomes that are of public health relevance
and (b) if they are compared against a suitable “comparator
group.” Condition (b) is also the reason why the indicator in cell
6 is not (yet) an effectiveness measure. Monitoring this indicator
in a time-series will be informative about longitudinal changes.
However, an effectiveness analysis would require to compare the
indicator 6 against a reference group, such as the fraction of
persons entering voluntary quarantine with or without exposure
notification. The latter can occur if exposed contacts receive an
informal exposure notification, e.g., a message from a friend or a
relative who tested positive for SARS-CoV-2.

KEY CONSIDERATIONS FOR THE
PRACTICAL IMPLEMENTATION OF
PERFORMANCE AND EFFECTIVENESS
MEASURES

Definition of Expected Process Targets
To monitor the process performance of DPT, it is helpful to
have an expectation of where indicators should stand at a given
time. That is, to assess performance on the basis of absolute
numbers (e.g., number of authorized uploads) or a yield (e.g.,
fraction of authorized over realized uploads), expectations or
precise benchmark targets should be defined. Because DPT is still
a very novel health technology, defining specific benchmarks can
be challenging. Moreover, targets may not only be country—but
also setting—or subgroup-specific (e.g., targeting a specific app
coverage in the working population).

Target definitions can in part be informed by modeling results
(e.g., concerning required DPT coverage to create an effect)
(1, 38–40). But in many instances, only qualitative targets may
be feasible because of a lack of suitable reference values. A
possible approach to derive such qualitative targets is to describe
“desired” effects in a hypothetical, perfectly functioning system.
For example, KPIs tomeasure the full completion of actions, such
as the fraction of positive users that upload their information to
the server (e.g., bymeasuring the fraction of upload authorization
codes that are redeemed). Other KPI measuring attributes such
as speed may lack a clearly defined benchmark (for example,
the time from app notification to quarantine), but could be
formulated in terms of a comparison to other measures (for
example, the same intervals in a manual process).

Practical Implications of the Distinction
Between Performance and Effectiveness
Measures
The distinction between KPIs and comparative effectiveness
measures is more than just semantics. KPIs and effectiveness
measures require different data and measurement approaches.
Process metrics can be collected at different contact points in
the notification cascade (Figure 1), for example at app download,
during regular configuration updates, when upload authorization
codes are generated, or when notified users call an infoline. But
due to the privacy-preserving, decentralized nature of DPT apps
(at least those that follow the DP-3T blueprint) these metrics
provide only aggregated, non-identifiable data, and these data
points cannot be easily connected into a unique data stream for a
specific user.

By contrast, comparative effectiveness investigations need to
establish a link to processes and data collections of its comparator,
which will be MCT in most settings. But from a privacy
perspective, it should be clear that investigations providing
unquestionable evidence for DPT effectiveness can no longer be
privacy-preserving and anonymous. For example, an ideal study
of DPT/MCT effectiveness should be able to connect infected
cases with exposed contacts and follow their notification and
quarantining cascade in great detail. Often proposed key metric
is the secondary attack rate (SAR), which measures how many
exposed contacts of an infected person later test positive for
Sars-CoV-2 (11). However, calculating precise SAR measures
require an exact identification and linkage of cases and contacts,
something that is not foreseen in privacy-preserving DPT apps.
At the same time, DPT can also mitigate some shortcomings of
MCT, for instance by improving notification speed and extending
to exposed contacts who are unknown to the index case.

Choosing the Right Denominator
Selecting appropriate denominators for KPIs and public health
metrics can pose challenges. While there is no universal best
practice, we find that Venn diagrams can be a helpful tool to guide
the search for suitable denominators (Figure 4). Venn diagrams
are useful to illustrate the (non-)overlap between different
populations of interest. In the context of DPT, these are the
persons who are tested positive for Sars-Cov-2 (cases), those who

Frontiers in Digital Health | www.frontiersin.org 9 August 2021 | Volume 3 | Article 677929

https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/digital-health#articles


Lueks et al. Terminology of Digital Proximity Tracing

FIGURE 4 | Example use of Venn diagrams to define denominators for KPIs and public health metrics (courtesy of https://pact.mit.edu/).

are notified by DPT, and those who are informed throughmanual
contact tracing (MCT). DPT represents the whole population of
notified app users. MCT includes all persons who were identified
through manual contact tracing. The segments labeled from A-
G represent population counts (e.g., corresponding to outcome-
oriented metrics in Figure 3).

While Venn diagrams may facilitate conceptual discussions,
the assumptions and context must be well-described. These
assumptions include the following aspects.

• Goal: What type of high-level task or metric should be
described by the Venn diagram?

• Population: What is the origin of the data for KPIs or public
health metric analysis (case series, cohort study, population-
based study, or administrative database)?

• Time horizon: What is the time perspective covered by
the Venn diagram (cross-sectional, or cumulative over a
longer period)?

• Evaluation time point: At what time point are classifications
into the three groups (positive tested cases, DPT, MCT)
established? Shortly after the time of exposure, when PCR test
results are still pending? Cross-sectional at a given moment
in time?

• Case definitions: Furthermore, what is the accuracy with which
infection status can be determined (i.e. how to deal with
infected, untested individuals)?

• Setting-specific assumptions: Finally, country-specific
simplifications may be warranted based on the Test-Trace-
Isolate-Quarantine strategy (e.g., whether all PCR-positive
cases are automatically referred to MCT). Therefore, for
some countries, one can assume that segments A + E are
close to 0, whereas F + B are approximating the number of
positive cases.

Feasibility of Integrating Measurements
Directly Into DPT
Given the different data requirements for KPI monitoring and
effectiveness studies, the question arises how the necessary
information should be collected: by integration into DPT

apps and corresponding backend systems or through separate
research studies?

The addition of measurement capabilities to DPT apps can
be a sensitive matter. First, DPT apps following the DP-3T
blueprint are not designed as data collection instruments, but
as privacy-preserving notification tools that keep their users
anonymous. Adding more measurement capabilities (e.g., in the
backend or the app itself) leads to a data granularity-privacy
trade-off. The gain in knowledge has to be weighed against a
greater likelihood for de-anonymization. Adding measurement
capabilities may require an increased trust by end-users in
the system operators. For example, collecting exact dates of
exposures, notifications, and contacts with different actors (e.g.,
the infoline) may, in combination, imply that study subjects
may no longer be sure that their identities remain concealed.
The combination of these measures may already identify persons
uniquely, especially in smaller populations. If the collection of
such data is to take place, it must happen transparently and
app users should provide informed consent. In addition, other
privacy-preserving technologies that minimize the amount of
data collected and limit the capability of linkage across databases
can be employed1.

The decision of whether and how to integrate additional
measurements into DPT apps (beyond what is needed
for notification) is one that each country needs to make
separately. Such a decision must take into account specific legal
considerations, overall acceptance of the DPT technology, and
public expectations toward DPT privacy, as well as the individual
and societal risks associated with the new data collection.

As an alternative to DPT-integrated measurements, dedicated
(observational) research studies with volunteers and specifically
designed databases should be considered. Given informed
consent by participants, a linkage of information between DPT
and MCT should be possible. For example, studies could be

1Examples of privacy-preserving building blocks that could be used to support

measurements while minimizing risks for users are multi-party computation,

differential privacy, anonymous authentication, and homomorphic encryption.

Other privacy technologies could also be of interest.
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integrated into contact tracing and specifically survey index cases
and exposed contacts regarding app usages and notifications.
Ireland, for example, employs separate case management
systems, which collect numerous complementary data that could
be valuable for effectiveness research. Alternatively, app users
could be presented with short questionnaires including questions
regarding usage and past exposures. However, a linkage of apps
with survey advertisements (even on a voluntary basis) could
be regarded as intrusive and fuel privacy fears. Therefore, the
advantages and disadvantages of each survey recruitmentmethod
should be deliberated carefully.

CONCLUSION

The development of monitoring systems for DPT performance
and effectiveness requires complex decisions. While there is no
universal advice that could suit all settings and countries, it may
help to obtain clarity on the distinctions between performance
monitoring and effectiveness. Furthermore, decision makers
should become aware that not all measurements can and
should be integrated into DPT apps and connected backend
systems. Separate studies or data collection systems may be
needed to generate the necessary evidence for performance and

effectiveness of DPT. The proposed indicator classification aims
to support this process.
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