
U N I V E R S I T Y OF T A R T U

Faculty of Mathematics and Computer Science

Institute of Computer Science

Ilja Livenson

VirtualLife Security Infrastructure

Master’s Thesis

Supervisor: Dan Bogdanov, MSc

Author: ... “.....” June 2009

Supervisor: .. “.....” June 2009

Accepted for defence
Professor: .. “.....” June 2009

TARTU 2009

Contents

1 Introduction 6
1.1 Motivation . 7
1.2 Structure of the thesis . 9

2 Background Knowledge 10
2.1 Network architectures . 10

2.1.1 The client-server architecture 10
2.1.2 Peer-to-peer architecture 10

2.2 The cryptographic primitives . 11
2.2.1 One-way functions . 11
2.2.2 Cryptographic hash function 11
2.2.3 Digital signature . 12
2.2.4 Message authentication code 12
2.2.5 Authentication protocol 12

2.3 Cryptosystems . 12
2.3.1 Symmetric cryptosystem 13
2.3.2 Asymmetric cryptosystem 13
2.3.3 Hybrid cryptosystem . 13
2.3.4 Identity certificate . 14

2.4 The X.509 security infrastructure 14
2.4.1 Public key certificates . 14
2.4.2 Certificate revocation lists 16
2.4.3 Examples of X.509 usage 16

3 Review of the Existing Solutions 18
3.1 Method of selection . 18
3.2 Second Life . 19
3.3 OpenSimulator . 20
3.4 RealXtend . 21
3.5 Project Wonderland . 22
3.6 Croquet and Open Cobalt . 23

3.6.1 Croquet . 23
3.6.2 Open Cobalt . 23

3.7 LifeSocial . 23

3

CONTENTS 4

4 The Architecture of VirtualLife 26
4.1 Architectural overview . 26

4.1.1 Virtual Client . 27
4.1.2 Virtual Zone . 27
4.1.3 Virtual Nation . 27
4.1.4 Constitution . 28

4.2 Interactions among peers . 29
4.2.1 Client-to-Client communication 30
4.2.2 Client-to-Zone communication 30
4.2.3 Client-to-Nation communication 30
4.2.4 Zone-to-Zone communication 31
4.2.5 Zone-to-Nation communication 31

5 VirtualLife Security Infrastructure 32
5.1 High-level description . 32

5.1.1 Security challenges . 33
5.2 The vlsec library . 34

5.2.1 Securable objects . 34
5.2.2 Key management . 35
5.2.3 Cryptographic primitives and algorithms 36
5.2.4 Authorisation . 36

5.3 Identity management . 39
5.3.1 Motivation for another solution 39
5.3.2 Overview of the VirtualLife solution 40
5.3.3 Implementation . 40

5.4 The vlnet library . 41
5.4.1 Streams and state machines 41
5.4.2 Secure streams and the authentication protocol 42
5.4.3 Provided security properties 43

5.5 The vlprotocol library . 43
5.5.1 Login . 44
5.5.2 Signing a contract . 44
5.5.3 Group management . 45

6 Analysis of Solution 47
6.1 Future work . 48

7 Resümee 49

A VirtualLife Project Information 53

B VL Project Deliverables 54

C VL Source Code 55

D VL Authentication Protocol 56

E Key libraries used 57
E.1 OpenSSL toolkit . 57
E.2 RakNet . 57
E.3 DigiDoc . 58

List of acronyms

2D 2 Dimensional
3D 3 Dimensional
CA Certification Authority
GUID Global Unique Identifier
IM Instant Messaging
MAC Message Authentication Code
MMORPG Massively Multiplayer Online Role Playing Game
NAT Network Address Translation
P2P Peer-to-Peer
PKI Public Key Infrastructure
RA Registration Authority
SSL Secure Socket Layer
TLS Transport Layer Security
VL VirtualLife
VN Virtual Nation
VoIP Voice over Internet Protocol
QoS Quality of Service
VZ Virtual Zone
VC Virtual Client

5

Chapter 1
Introduction

In the recent years advances in the quality and speed of network connec-
tions have made online collaborative environments extremely popular. The
most typical examples include massively multiplayer online role-playing games
(MMORPGs) like World of Warcraft (over 11 million paying subscribers as of
2009) and more general 3D worlds like Second Life that aim at being not only
game environments but also act as e-commerce and educational platforms. The
world itself is not always 3D - for example DOFUS, the leading MMORPG in
France counting over 10 million users, is 2D based. Essentially, a virtual world
is a simulated environment that allows its users to interact via avatars – user’s
computer-based representation of herself or himself.

The year 2008 saw a significant increase in the popularity of 3D worlds and the
interest towards these technologies seems to be constantly growing. Massive
media coverage of the events that took place in the Second Life world – public
lectures and art exhibits to name only a few – also spawn more and more interest
from the industry and research institutions towards the phenomenon as a whole.

Specific “events” – conferences, seminars or business focused meetings – are
exclusively dedicated to virtual worlds, for example Metaverse U Conference
in Stanford University, State of the play conference series dealing with the
intersection of virtual worlds, games and the law and Engage! Expo (previously
“Virtual Worlds Conference”). This trend seems to confirm the prediction
recently done by the market research group Gartner [Gar], according to which,
“by the end of 2011, 80 percent of active Internet users (and Fortune 500
enterprises) will have a “second life”, but not necessarily in Second Life”. A
similar trend is identified in the Metaverse roadmap [SSea09], a study developed
by a group of researchers and industry players with the aim of identifying the
future of the 3D web, in ten years well have approximately 1,5 billions users of
“various forms of 3D-enabled Web”.

For companies, creating a virtual presence in terms of becoming part of existing
virtual world or even creating their own is an interesting use case. It can result in
improved marketing and visibility as such cases are still not too common. This

6

CHAPTER 1. INTRODUCTION 7

can also result in new economic and business models: for example, by using a 3D
world as a new sales channel or providing premium services to the inhabitants
of the virtual world. There’s a risk involved, of course, as the development and
running of such services is often an expensive undertaking that may or may not
pay off.

For more information about the current state of the market and foreseen trends,
visit the Metaverse Roadmap group project site [SSea09] or K-Zero (a UK
company specialising in virtual worlds) Radar [com09].

1.1 Motivation

The sizes of user bases and revenues of existing virtual worlds are increasing
(consider $1.4 billion World of Warcraft earned in 2008 [HR]) and this makes
the search for improvements in this area economically motivated. Like all large
and complex systems, virtual worlds have a lot of difficulties, both technical and
legal. Some of the most common are:

• High running costs. All of the popular virtual worlds are based on
the client-server architecture where the client is typically a lightweight
program, providing a rich user interface as its main functionality. The
server on the other hand is responsible for the core functionality, i.e.
providing a consistent world to multiple users, handling payments,
communication (chat and VoIP) among avatars, object persistency, script
calculations and so on. In practice this means that the load on the server
is usually very high and handling multiple users is expensive as it requires
computational clusters. Network bandwidth is another issue for such
centralised worlds as 3D worlds usually require a lot of communication
between server and clients.

• Lack of strong security solution. Very often the security infrastructure
was not designed from the very start but rather added on the “need-to-
secure” basis, which might lead to non-secure solutions. Additionally, if
the virtual world is to provide also legally binding services – for example
e-commerce, own currency, support for signing contracts and so on –
it must comply with the laws that contain certain requirements to the
security of the system.

• Lack of support by the legislation system. It is relatively easy to
create a system that can collect user data. What is often missed, however,
is the fact that already the fact of such collection can lead to certain legal
consequences. Another problem is that supplying medium, for example
peer-to-peer based distribution network, for efficient data sharing can lead
to the misuse of this medium by the end-user that can affect also the
provider of the service. Handling such situations is an expensive task
and it makes sense to centralise it and provide already tested and legally
accredited solutions. The support for virtual contracts holding in the real
life is another concern.

CHAPTER 1. INTRODUCTION 8

• Deployment issues. Though more technical issue and seemingly not too
relevant, this is one of the most irritating problems of the virtual world
platforms, as it increases the time to market for the products based on the
virtual world platforms. For example, consider an e-learning world based
on the platform that needs around 100 ports to be open on server - this
will pose considerable problems with firewalls and network administrators
if the system should be deployed at public schools or universities.

The EU FP7 research project “Secure, Trusted and Legally Ruled Collaboration
Environment in Virtual Life” (further referenced as VirtualLife) aims at creating
a production quality platform that improves on several aspects of existing 3D
world frameworks. To validate the solution, it will be initially used in the Virtual
Campus scenario.

VirtualLife project includes nine partners from Estonia, Lithuania, Rumania,
Germany, Italy and France, both academical institutions and commercial
companies. More details about the organisational aspects of VirtualLife can
be found in Appendix A.

The most characteristic features of the VirtualLife platform are:

• Strong level of security. The solution is based on the X.509 PKI security
infrastructure standard and provides identity management, support for
multiple certificates, single sign-on, generic authorisation framework,
signing of multi-party contracts and other functionality.

• Peer-to-peer architecture. It is one of the most widely used approaches for
lowering costs for running collaborative software systems that allow real
time interaction. However, employing such an architecture adds problems
with security and integrity of data. More information about what peer-to-
peer architecture actually means in the context of the 3D world is given
in Chapter 4.

• Enforceable laws and regulations. It will be possible to describe rules that
govern certain parts of the virtual world, or the world as the whole. The
rules can be applied to almost all aspects of the virtual world interactions,
for example restrictions on the age of the participants or automatic checks
for the success criteria of a digital agreement. Typical solutions for this is
to have these rules written in the end-user license agreement (EULA),
VirtualLife takes a step further and makes a selection them actually
enforceable by implementing Virtual Nation Laws.

• Lightweight deployment. By employing service-level routing of network
messages and transparant NAT-traversal, VirtualLife poses only minimal
deployment requirements.

This thesis focuses on the security aspects of the VirtualLife project. The
author was part of the design and implementation team working on security
and network infrastructure as well as contributing to the design of the whole
system. Results of the work were also described in the project deliverables, that
received good evaluation from the reviewers. Although the project is still far

CHAPTER 1. INTRODUCTION 9

from completion, the main ideas of the security infrastructure are already in
place and implemented.

Another aspect of VirtualLife – the peer-to-peer architecture – was an important
motivator when designing the security infrastructure. The possibility to lose
the single point of failure in the world is a very attractive idea. However, it
introduces several complications with identity management, trust models and
providing high level of quality of service. VirtualLife employs a hybrid peer-to-
peer topology to better address these issues.

1.2 Structure of the thesis

This thesis contains two parts: theoretical and practical. The theoretical part
has five main chapters:

• Chapter 2 gives the necessary background knowledge about the informa-
tion security area;

• Chapter 3 contains a review of the existing solutions and describes the
current situation in the area of virtual worlds;

• Chapter 4 gives a high-level description of the VirtualLife architecture;

• Chapter 5 contains a detailed description of the security infrastructure of
the VirtualLife platform, which is the focal point of this work;

• Chapter 6 provides an analysis and comparison of VirtualLife solution
with the solutions from Chapter 3.

Complimentary material about the VirtualLife project, including relevant
deliverables, is attached as appendices at the end of this thesis.

The practical part is the actual implementation of the security infrastructure.
Appendix C describes attached code in more details.

Chapter 2
Background Knowledge

A reader knowledgeable of basic networking and cryptography can skip forward
to the next chapter.

2.1 Network architectures

2.1.1 The client-server architecture

Client-server is one of the most popular network application architectures where
one single dedicated computer called server accepts connections from multiple
clients. The advantage of this solution is in the simplicity of the programming
model and a somewhat simple security model – typically, only the server needs
to be trusted. Disadvantages include high running costs, having a single point
of failure and problems with scalability. Popular examples are traditional web
servers, the “World of Warcraft” MMORPG and Second Life.

2.1.2 Peer-to-peer architecture

In peer-to-peer (P2P) architecture applications, every participant can act both
as a server and a client. There are several types of peer-to-peer application
classes. We list the more relevant ones:

Pure P2P. In this case all of the nodes or peers are completely equal. No
single point of failure exists, every peer is completely autonomous. Examples
include Gnutella and Freenet.

Hybrid P2P. In case of the hybrid P2P systems, some nodes are chosen to
have additional functionality (most often because their are more powerful than

10

CHAPTER 2. BACKGROUND KNOWLEDGE 11

the other peers in the system or have higher bandwidth). These nodes are called
supernodes. This design is mostly used in instant messengers, for example in
Skype.

Structured and unstructured P2P. In P2P systems, all nodes are usually
connected into an overlay network. Based on the algorithm used for forming this
network, a P2P system can be either unstructured (overlay links are established
arbitrarily) or structured (establishing links follows a certain algorithm). Both
P2P types have advantages and disadvantages, for example, structured networks
provide very efficient “key-value” lookups; however, if the “value” is large in
size or the popularity of the “key” is not uniformly distributed, unstructured
networks might provide better QoS. For example, storing 3D world geometry
data in a distributed hash table (DHT) is not generally feasible because that
data follows power law probability distribution.

2.2 The cryptographic primitives

2.2.1 One-way functions

A ne-way function is a function that can be easily computed on every valid
input, but given the image of the random input it is hard (hereinafter hard
is used in the sense of computational complexity theory) to find the original.
Though their existence is still not strictly proven, they lie at the core of the
many cryptographic primitives and operations.

A special case of a one-way function is a trapdoor function. This is a function
that is easy to compute in one direction, but is hard to compute in the opposite
direction without special information, called the “trapdoor”. Asymmetric
cryptosystems are based on using such functions. Examples are the RSA
cryptosystem and Rabin cryptosystem.

2.2.2 Cryptographic hash function

A cryptographic hash function is a function h that has the following properties:

1. compression – h maps an input x of an arbitrary length to an output h(x)
with a fixed length n.

2. ease of computation – for any input x calculating h(x) is easy.

3. preimage resistance – for essentially all pre-specified outputs, it is hard to
find any input, which evaluates to the given output. In other words, it is
unfeasible to find a message that has a given hash.

4. second preimage resistance – it is hard to find any second input, which
has the same output as any specified input, i.e. it is unfeasible to modify
a message without changing its hash.

CHAPTER 2. BACKGROUND KNOWLEDGE 12

5. collision resistance – it is hard to find two distinct inputs of h that would
produce the same output, i.e. it is unfeasible to find two different messages
with the same hash.

Examples of such function include SHA-1 and MD-5. These function are
used extensively in information security application, they are typical in digital
signatures, message authentication codes and authentication protocols.

2.2.3 Digital signature

The purpose of the digital signature is to provide a mean for an entity to bind
its identity to a piece of information. It is most commonly used for two major
cases:

1. a way for the receiver of the message, sent over insecure channel, to assure
that the origin of the message is what is claimed;

2. as a mean for implementation of the electronic signature that have the
same legal significance as a traditional signature in many countries of
Europa and US.

2.2.4 Message authentication code

Message authentication codes, or MACs, are functions used for message
authentication. A MAC function accepts as input a secret key and an arbitrary-
length message, and outputs a message authentication code. Its value can
be used by verifiers in possession of the secret key to detect any changes to
the message content. MAC, unlike digital signature, is based on a symmetric
cryptosystem (see 2.3.1). As it is much faster than a digital signature, it is
often used for verification of the messages once the identity of the parties have
been established and a secret key (also called “session key”) is shared among
participants.

2.2.5 Authentication protocol

An authentication protocol is a set of steps that allows to identify one or more
participating parties. It is one of the first steps in many protocols and is
sometimes referenced as a “handshake”.

2.3 Cryptosystems

A cryptosystem is a particular way for implementing encryption and decryption.
Typically, there are at least three algorithms involved: key generation,
encryption and decryption. Depending on whether encryption and decryption

CHAPTER 2. BACKGROUND KNOWLEDGE 13

keys are equal, cryptosystems are divided into symmetric and asymmetric. Both
of them have merits and drawbacks, so in practice a third, hybrid, type of
cryptosystems is used more often.

2.3.1 Symmetric cryptosystem

Symmetric cryptosystems are based on symmetric encryption and decryption
algorithms, where encryption and decryption keys are the same or one can
be transformed into another with a simple operation. Among more popular
symmetric algorithms are Blowfish (used in many applications, now superseded
by Twofish), RC4 (one of the most widely used stream ciphers, e.g. in Secure
Sockets Layer (SSL) and Wireless Encryption Privacy (WEP)) and Rijndael (or
AES - Advanced Encryption Standard). Older but widely known algorithms
include also DES (Data Encryption Standard, now deprecated as it is vulnerable
to brute-force attack because of the small 56-bit key) and Triple DES or 3-DES
– updated version of DES, still often used in practice.

Main problems of such systems include the problem with the key distribution
among involved parties. The encryption/decryption itself is however reasonably
efficient and can be used to efficiently realise secure stream or block based
communication channels.

2.3.2 Asymmetric cryptosystem

In an asymmetric or public key cryptosystem each party has a pair of keys - a
private and a public. The first one should be kept secret while the latter should
be distributed freely. The public key is used for encrypting messages that can
after be decrypted only with the corresponding private key. Additionally, the
private and public keys can be used for signing and verification respectively.
This provides an additional security property - non-repudiation, as only the
owner of the private key could have produced a certain signature.

With asymmetric cryptography one must verify whether the distributed public
key indeed belongs to a certain party. This problem can tackled by building a
hierarchical public key. One of such approaches is described below and is called
the X.509 public key infrastructure1. Another major problem is the speed of
encryption and decryption that is, on average, hundreds to thousands times
slower than when using symmetric ciphers.

2.3.3 Hybrid cryptosystem

By combining symmetric and asymmetric cryptosystems one can get a system
that incorporates benefits from both of them. A typical hybrid cryptosystem
contains following two parts:

1X.509 is a standard currently supported by Internet Engineering Task Force (IETF). The
name itself dates back to the time when it was part of the larger family of the X.500 electronic
directory services.

CHAPTER 2. BACKGROUND KNOWLEDGE 14

• a key encapsulation scheme, based on an asymmetric or public-key
cryptosystem;

• data encapsulation, based on a symmetric cryptosystem.

The first part is generally used to negotiate a symmetric key that is used
afterwards in protocols for efficient data encryption and decryption. The key
negotiation is sometimes called the “handshake”.

2.3.4 Identity certificate

An identity certificate, or often simply a certificate, is a an electronic document
that incorporates a digital signature to bind together a public key with identity
information such as the name of a person or an organisation, their address, and
so forth. The certificate can be used to verify that a public key belongs to an
individual.

In its essence, a certificate is a minimalistic mapping of a public key to an
identity, certified by some certificate authority (CA). This certification can be
made hierarchical, thus making the problem of public key distribution much
easier - only public keys of the CAs have to be distributed to provide verification
possibility for all certificates trusted by those CAs. Most of the browsers
nowadays have several trusted certificates already built in.

2.4 The X.509 security infrastructure

One of the most popular standards in security is the X.509 PKI standard
[KSea]. It specifies standards for public key certificates, certificate revocation
lists, attribute certificates and a certification path validation algorithm.

An important aspect is that unlike other industry level public key infrastructures
(for example, Kerberos), X.509 is very well suited for less structured networks,
for example peer-to-peer ones.

2.4.1 Public key certificates

Public key certificate is an electronic document where identity information is
bound together with the public key of the identity. To assure that this binding
holds, digital signature is used for signing the certificate data. Digital signature
can be given either by the identity itself (a self-signed certificate) or by a trusted
third party called Certification Authority (CA).

X.509 version 3 certificate includes the following information:

• version,

• serial number,

CHAPTER 2. BACKGROUND KNOWLEDGE 15

• issuer,

• validity period,

• subject,

• subject public key info,

• optional extensions.

Example of the real certificate:

Certificate:
Data:

Version: 3 (0x2)
Serial Number: 857 (0x359)
Signature Algorithm: sha1WithRSAEncryption
Issuer: DC=org, DC=balticgrid, CN=Baltic Grid Certification Authority
Validity

Not Before: Jul 1 12:04:50 2008 GMT
Not After : Jul 1 12:04:50 2009 GMT

Subject: DC=org, DC=balticgrid, OU=ut.ee, CN=Ilja Livenson
Subject Public Key Info:

Public Key Algorithm: rsaEncryption
RSA Public Key: (1024 bit)

Modulus (1024 bit):
00:da:50:c7:a8:ac:df:51:21:35:dc:1a:cc:6a:da:
5b:64:91:b7:ab:0f:b6:aa:10:eb:3b:4f:ab:1c:2c:
0f:30:b4:bc:4e:66:5f:9a:53:dc:c1:f2:20:39:18:
88:00:3f:2c:97:2f:1e:16:70:df:b8:79:c3:f7:30:
b3:25:1a:41:9d:45:39:2e:02:a0:87:1f:8a:57:8c:
fc:99:2b:d7:c6:de:bb:42:54:f0:64:88:ca:cd:c0:
76:7b:55:c8:02:92:51:46:e4:46:d3:84:64:b0:a8:
64:3d:54:68:68:a3:50:09:32:9a:d6:91:a1:0d:83:
c8:41:d5:2f:76:ad:53:66:5f

Exponent: 65537 (0x10001)
X509v3 extensions:

X509v3 Basic Constraints: critical
CA:FALSE

X509v3 Key Usage: critical
Digital Signature, Non Repudiation, Key Encipherment, Data Encipherment

X509v3 Subject Key Identifier:
F1:9C:1F:BE:22:1B:2C:26:87:77:14:71:A2:3F:CE:26:3C:50:D8:E0

X509v3 Authority Key Identifier:
keyid:41:4E:DE:40:E9:3E:AE:FC:69:43:FB:38:7C:A0:39:43:F1:48:1E:AC
DirName:/DC=org/DC=balticgrid/CN=Baltic Grid Certification Authority
serial:00

X509v3 Certificate Policies:
Policy: 1.3.6.1.4.1.19974.11.1.1.1

CHAPTER 2. BACKGROUND KNOWLEDGE 16

X509v3 Issuer Alternative Name:
URI:http://ca.balticgrid.org/

X509v3 CRL Distribution Points:
URI:http://ca.balticgrid.org/bgca-crl.pem

Signature Algorithm: sha1WithRSAEncryption
41:02:7d: ...<the rest of the signature>

-----BEGIN CERTIFICATE-----
MIID9z.. <the rest of the certificate>
-----END CERTIFICATE-----

2.4.2 Certificate revocation lists

If a certificate gets compromised, for example the private key was stolen, or
should be disabled for any other reason, it should be added to a certificate
revocation list (CRL). The users of the X.509 security infrastructure update
their copy of the list periodically and use it during the certificate verification,
thus keeping the system relatively safe. One of the main problems with such
an approach is the inability to do online verification, hence making the attack
window rather wide. A more modern certificate validation protocol exists, which
is known as Online Certificate Status Protocol (OCSP). It enables near real-time
checks about certificate revocation status.

2.4.3 Examples of X.509 usage

The X.509 infrastructure is used or supported by many popular protocols and
applications. To name some of the most popular examples:

• SSL/TLS and SSH – it is possible to establish application layer security
channels using keypairs from the X.509 credentials;

• S-MIME – a standard for public key encryption and signing of e-mail
messages encapsulated in MIME.

• LDAP – Lightweight Directory Access Protocol is often used for storing
user accounts. The use of X.509 allows for secure and fine-grained access
to the directory;

• WS-Security – a communication protocol that allows adding security to
web services. It describes how to attach signatures and encryption headers
to SOAP messages, including security tokens and X.509 certificates among
others.

• IPsec – Internet layer protocol for securing IP communication by securing
each IP packet of data. It is based on hybrid encryption and supports
X.509 certificates.

• HTTPS – Secure version of the HTTP protocol. It is basically HTTP over
SSL/TLS. HTTPS has become a standard any secure web applications.

CHAPTER 2. BACKGROUND KNOWLEDGE 17

• XMPP – Extensible Messaging and Presence Protocol is a set of XML
standards used primarily for instant messaging. It has a number of useful
extensions, for example VoIP or support for user avatars. X.509 can be
used for authentication of the users.

Chapter 3
Review of the Existing Solutions

There are a number of virtual world solutions out there that can be seen as
direct competitors of the VirtualLife platform. To give the reader an overview
of the current status in the state-of-the-art development in the area, we review
several popular projects that share goals of the VirtualLife. As the total review
would consume too much time and not be directly connected to the topic of this
thesis, we limit review to the relevant aspects:

• topological structure (client-server/peer-to-peer),

• identity management,

• security infrastructure,

• communication channels (VoIP, chat, video).

The comparison of the reviewed solutions with the VirtualLife platform is done
in Chapter 6.

3.1 Method of selection

In our selection of the virtual worlds the main criteria was either similar to
VirtualLife area of usage or a certain design aspect that was planned also in
VirtualLife – for example, peer-to-peer architecture – as it may lead to serious
consequences for security infrastructure. Materials from public sources were
used for this review. Additionally, most of the described platforms were installed
and tested in practise.

18

CHAPTER 3. REVIEW OF THE EXISTING SOLUTIONS 19

3.2 Second Life

The closest to VirtualLife 3D world in terms of usage idea is Second Life [?]. It is
a proprietary virtual world developed by Linden Lab, first launched on June 23,
2003. It allows its users, called Residents, to interact with each other through
avatars. Residents can explore, meet other residents, socialise, participate in
individual and group activities, create and trade virtual property and services
with one another, or travel throughout the world, which residents refer to as
the grid.

Topological structure. Second Life is based on a client-server architecture.
Each region in the Second Life “grid” runs on a single core of a multi-core
server. The functionality of these servers includes running scripts in the region
and providing communication between avatars and objects located there. The
client software in the Second Life is called the Viewer. The official Viewer is open
source and its main task is to render 3D graphics using OpenGL technology. A
number of other Viewers exist, including text-based and browser-based ones.

Figure 3.1: With the current Second Life solution the Viewer connects only to
the region and the region keeps track of everything and acts as a proxy to the
central databases.

Identity management Second Life stores all identity-related data in a
central database in a custom format.

Security infrastructure Authentication is based on the username/password
pair. Authentication is done over secure HTTP. Access to all assets requires a

CHAPTER 3. REVIEW OF THE EXISTING SOLUTIONS 20

login token for establishing identity and permissions. Multiple simultaneous
connections from the same account are restricted.

Text chat and voice chat are not currently encrypted, neither is the official
viewer’s cache.

More information about the Second Life security can be found from the Second
Life knowledge base [Lab].

Communication channels Avatars can communicate via local chat or global
instant messaging (IM). Chatting is used for localised public conversations
between two or more avatars, and is visible to any avatar within a given distance.
IMs are used for private conversations, either between two avatars, or among
the members of a group, or even between objects and avatars. Unlike chatting,
IM communication does not depend on the participants being within a certain
distance of each other.

Embedded voice, web, audio, and video streams do not pass through the Second
Life servers; they are rather accessed directly by the Second Life viewer.

3.3 OpenSimulator

OpenSimulator [com], often referred to as OpenSim, is an open source server
platform for hosting virtual worlds. It is compatible with the Second Life
client and supports additional protocols for hosting virtual worlds with different
feature sets. It is modular and can be extended by plugins. It is used with some
modification by the realXtend platform described below in Section 3.4. Multiple
servers can be integrated into a “grid” which allows larger and more complex
areas to be simulated.

Topological structure. OpenSimulator has two modes of operations: stand-
alone or grid mode. In standalone mode, everything runs in a single process. In
grid mode, modules are separated into multiple processes, which can be run on
different machines. There are six modules: the user server, the grid server, the
asset server, the inventory server, the messaging server, and the region server.
The general structure is similar to the Second Life one – a lightweight client and
a server.

Identity management. Though the OpenID solution [Fou] is planned for the
OpenSimulator, at the moment all identity related data is stored in a central
database in a custom format.

Security infrastructure. OpenSimulator supports groups and permissions.
Authentication is done using a username/password pair.

CHAPTER 3. REVIEW OF THE EXISTING SOLUTIONS 21

Communication channels. The main protocol supported by OpenSimulator
is the Second Life protocol for client to server communication. This protocol
utilises both UDP and XML-RPC. Internally OpenSimulator server components
communicate with XML-RPC and REST (JSON/HTTP and XML/HTTP). It
is unclear whether communications is done in an encrypted manner.

3.4 RealXtend

RealXtend [cona] offers a free open source virtual world platform with which
you can use to create your own applications.

Topological structure. The RealXtend is a classical client-server 3D world.
Its viewer is an open source browser based on technologies very similar to those
used by VirtualLife GUI, for example using OGRE [KSL] as a 3D graphics
engine.

The RealXtend server is an open source server based on the OpenSimulator
platform (see section 3.3 for details) with several modifications.

Client domain
Produce view from world
User input
Construction tools

Content domain
Store content

World domain
Provide world state
Reflects world ownsers policy
Generates world behaviour (physics
simulation + scripts, region modules)

Account domain
Account management
authentication

rex architecture (0.3)
OpenSim based
Extra functionality

(UDP) avatar behavior
(UDP) object handling

(UDP) World state
(UDP) world assets

assets, avatar

Avatar

Avatar

login

authenticate

Account management
Authentication

Authentication Server

Run physic simulation
Run scrips
Store local inventories
Push world state changes
Optional modules

RexServer

3D GUID
World build tools

rexViewer

Avatar customation

Avatar Generator

3D avatars
Global inventory

AvatarStorage

Figure 3.2: Rex architecture. Server-side has 3 modules: an account
domain that handles authentication and account management, a world domain
reponsible for the main actions in the world and a content domain used for
storing world objects. Figure is a courtesy of RealXtend.

Other aspects. The identity management, security infrastructure and com-
munication channels in realXtend are the same as in openSimulator.

CHAPTER 3. REVIEW OF THE EXISTING SOLUTIONS 22

3.5 Project Wonderland

Project Wonderland [Mic] is an open source Java programming toolkit for
creating collaborative 3D virtual worlds. Apart from the typical functionality
of collaborative 3D worlds, Wonderland includes a VoIP solution with the
possibility to call land lines and sharing of the live desktop applications and
documents. It is sponsored and developed by community developers and Sun
Microsystems Laboratories. Project Wonderland, along with realXtend, are two
main platforms used by the ImmersiveEducation project [pro] for creating and
delivering game-based learning.

Topological structure. Project Wonderland is a client-server software plat-
form. The server software is based upon Project Darkstar, a multi-user
technology for the Java SE platform.

Project Darkstar manages a collection of objects (called ManagedObjects) and
provides APIs for the synchronized update of the state of these objects in
response to events from multiple clients. Updates to ManagedObjects are
themselves transactional – either a coherent set of state updates happen across
a set of objects or they do not happen at all. All items within a game or
virtual world are represented by ManagedObjects on the server. For example,
rooms, players, tools, weapons, or any other virtualized real-world objects are
represented that way.

The client is a desktop Java application and is based upon two technologies
to render the 3D world: Java 3D and Looking Glass 3D (LG3D). Java 3D, a
standard extension to Java SE, renders sets of 3D objects to the screen, making
use of hardware acceleration if possible. Project Looking Glass provides a 3D
desktop environment. It provides a 3D windowing environment and a set of
APIs to build 3D applications.

Identity management. Wonderland includes only a very basic profile kept
at the server.

Security infrastructure. By default, Project Wonderland does not require
users to authenticate to the server, i.e. they do not need to enter a password
to get access to the world. An username/password authentication scheme can,
however, be configured.

Communication channels. Though Project Wonderland is a client-server
application, there’s a possibility to create also direct channels between peers, for
example for VoIP or chat communication. It should be noted that Wonderland
requires a lot of open ports on the server for the normal functioning (suggested
number is above 200).

CHAPTER 3. REVIEW OF THE EXISTING SOLUTIONS 23

3.6 Croquet and Open Cobalt

3.6.1 Croquet

The Croquet [Conb] is an open source platform on which to build virtual world
applications. It features a peer-based messaging protocol. Croquet is built using
the Squeak programming language, which is a dialect of Smalltalk.

Architecture Croquet is built as a peer-to-peer system. It is based upon
the concept of replicated computation - rather than replicated data – and a
synchronised message passing model, where the messages themselves ensure
that the replicated systems remain consistent between machines.

Croquet is based on the TeaTime architecture – real-time multi-user architecture
used for replicated computation and synchronisation. The core class Croquet’s
architecture is the TObject class, which acts as a superclass for Tea objects. A
Tea object has a property that messages sent to it are redirected to replicated
copies of itself located on other users’ machines in the peer-to-peer network. All
of the more complicated objects inside of Croquet are constructed as subclasses
of TObject.

Though it is necessary to synchronise the world state of a new user by
transferring the current contents of the world, after that, the worlds stay
consistent only through the creation and processing of time based messages.
Due to the high network requirements, a single peer in Croquet can handle on
average up to 7-8 concurrent clients.

Security. Apart from basic username/password authentication system, Cro-
quet does not include any significant security mechanisms.

3.6.2 Open Cobalt

Open Cobalt [ea], built on top of the Croquet platorm, is an open source virtual
world browser. The Open Cobalt application is a type of 3D browser that can
be used to define and access a network of interlinked 3D virtual environments,
similar to the way web browsers are used to access different sites. Transportation
is visually implemented by portals.

3.7 LifeSocial

LifeSocial [GPM+08] is a P2P based online multimedia platform developed at
TU Darmstadt’s Multimedia Communications Lab. It is not a 3D world, but
shares many of the use cases with the VirtualLife platform. Apart from the basic
functionality of the collaborative environments, such as creating and sharing
profiles or searching for other people profiles, it offers tools for the following:

CHAPTER 3. REVIEW OF THE EXISTING SOLUTIONS 24

Figure 3.3: Example screenshot of the Open Cobalt application. It shows
embedded web browser alongside with the 3D model of the Erechtheum temple.

• a distributed storage with access control,

• voice and text chat,

• distributed storage of personal data,

• sharing of files,

• streaming of music to your friends.

Topological structure. LifeSocial is a peer-to-peer network based on a
structured overlay network, i.e. a distributed hash table (DHT). To make
the programming model easier, LifeSocial also introduces the distributed data
structures. These structures contain several storable objects, identified by a key,
that store besides usage specific content (e.g. meta data to images) pointers to
other data objects.

Identity management and security. LifeSocial’s identity system is based
on the usage of pseudonyms – each new node gets an unique identifier. In case of
LifeSocial, they are using asymmetrical cryptographic public keys as node IDs.
To attach more personal data, a self-signed document containing the username,
the node identifier and the IP address of the node is stored in the LifeSocial
peer-to-peer network.

Additional personal profile data and information about the groups is stored
using a combination of an asymmetric cryptosystem, that is signing data with

CHAPTER 3. REVIEW OF THE EXISTING SOLUTIONS 25

Figure 3.4: Although the graphical user interface of the LifeSocial application
is not 3D, it still shares a lot of concepts similar to those of the VirtualLife.

the public key, and a symmetric one – in case the stored data is confidential, it
can be encrypted with symmetric key that is shared among authorised parties.

Communication channels. LifeSocial supports chat and sharing of photos
and music by using a system of plugins. Plugins can be implemented by either
storing objects in the LifeSocial DHT network or by using information about
the IP of the peer from the identity information.

Chapter 4
The Architecture of VirtualLife

4.1 Architectural overview

The architecture of VirtualLife is based on the idea of a connected network
of peers. Though potentially, every peer can act both as a server and a
client, in practice it makes sense to distinguish some more powerful nodes. So
topologically, VirtulLife is a hybrid peer-to-peer network.

Each node can run various services. Examples include, but are not limited to:

• graphical user interface – built with a state-of-the-art 3D rendering engine;

• certificate authority (CA) service – for issuing lightweight certificates;

• group, account and reputation management – for storing corresponding
information;

• persistence database – holds information about objects and their metadata
(ownership, location, etc);

• search engine – built using the information retrieval engine Xapian that
allows, among other things, full text search, approximate matching,
synonyms and multilingual search.

As it doesn’t make sense to run all services on one node and also taking
into consideration such aspects as user configuration and machine capabilities
(CPU and network bandwidth), we divide peers according to their roles into
Virtual Clients (VC), Virtual Zones (VZ) and Virtual Nations (VN). The prefix
“virtual” is often skipped in the following text when Client, Zone and Nation
do not have other context.

26

CHAPTER 4. THE ARCHITECTURE OF VIRTUALLIFE 27

GUI

Peer

Entity management

Group management

Search

Scripting

CA

Topological manager

<other services>

Figure 4.1: “Building block” of the VirtualLife platform. A peer that depending
on the active services can act as a Client, Zone or Nation.

4.1.1 Virtual Client

The Client is typically an end-user running state-of-the-art 3D graphical user
interface, though a command line client interface is also available. It connects
to the Nation or the Zone (in case of a standalone Zone) and interacts with the
VirtualLife.

4.1.2 Virtual Zone

A Zone is a node in the VirtualLife network. It represents a part of the
world, taking care of the world geometry and assets, management of groups and
permissions. The Zone gives the users possibility to create and share content
and participate in other transactions.

The Zone software can be combined with the Client if, for example, the user
wants to host his or her own part of the world.

Zones can be standalone, acting as a server in the typical client-server 3D world,
but what makes the VirtualLife solution more interesting, is the possibility for
Zones to join into Nations.

4.1.3 Virtual Nation

The Nation is an agglomeration of Zones. When a Zone decides to become a
part of the Nation, it accepts the regulations of the Nation (for example, laws
of simulated physics or limitations on the age of the users).

Nation also provides additional services. They are mostly limited to the ones
that are needed for bootstrapping the new user, for example providing a list of

CHAPTER 4. THE ARCHITECTURE OF VIRTUALLIFE 28

available Zones, or that are Nation specific – enabling common currency (will
not be supported in the first version of the VirtualLife platform) or common
Constitution a.k.a. Virtual Law.

Virtual Nation

VZ VZ

VZ VZ

VZ

Figure 4.2: A schematic structure of the VL components in case of one Nation
and five Zones. For the Clients the world entry point is the Nation server, though
communication itself takes place mostly between Clients and Zones. Although
the Zones do have a topological location, they are not forming a continuous 3D
world. Transportation between the Zones is done via teleportation.

4.1.4 Constitution

One of the major goals of the VirtualLife project is to try and implement
enforceable laws and regulations. The Constitution, or Virtual Law, is a set
of directives that govern processes within VirtualLife. When a Zone joins the
Nation, it starts following the Nation’s laws. Hence, the user travelling within
the Zones, that belong to the same Nation, can count on a certain homogeneity
of the environment and provided services.

Among possible regulations are:

• limitations on public chats and client-to-client chats, for example when
taking a test in the virtual university;

• location-based restrictions;

• management of contracts between users and between user and Nation;

• handling of disputes among users and between a user and Nation;

• handling of amendments to Constitution by user vote.

CHAPTER 4. THE ARCHITECTURE OF VIRTUALLIFE 29

4.2 Interactions among peers

The communication model is important for the design and implementation of
services provided by VirtualLife. The model includes not only creation and
management of network connections, but also the level of abstraction of the
communication channel and its representation at the network level.

We have analysed several models while choosing the communication model.
For example, allowing only one Client-to-Zone connection simplifies logic of the
program, but also makes it inefficient:

• the Zone node must be powerful enough to manage many connections;

• if the Zone node disappears, then the entire Zone disappears;

• additional network overhead is imposed on the Zone node, for example for
routing VoIP or chat messages.

Another approach would be to establish separate connections for each new
logical connection, for example new chat window or new agreement signing.
Though it is a more “pure” approach and also more stable. For example,
the loss of one communication partner does not influence channels with other
participants. It also has a number of disadvantages:

• more complicated management of connections – one can more easily
“forget” about a connection and thus cause memory leaks or a security
risk;

• having a number of open ports is considered a bad behaviour by many
administrators and anti-virus software tools, so it is bad for software
acceptance;

• a missing single point of control over connections makes the implementa-
tion of application-wise security policies complicated.

As always, choosing something in-between is more optimal, so the VirtualLife
communication model is based on the idea that at most one connection is
established with every possible party. So, for example, if peer A is connected
to nation B that runs 15 different services, it will only establish one network
connection. All other messages will be routed within that connection. In that
sense it is very similar to the point-to-point virtual private network (VPN).
More details about the message routing model are given in Section 5.4.

To illustrate what kind of communication occurs between peers in the VirtualLife
system, we bring some typical examples. They are not describing the system
at full, but rather give an overview of what happens in the system and where
security infrastructure might be applicable.

CHAPTER 4. THE ARCHITECTURE OF VIRTUALLIFE 30

4.2.1 Client-to-Client communication

All protocols that do not depend explicitly on a third party, run in a peer-to-peer
fashion – directly from client to client. It must be noted that in some cases the
actual stream of bits could be routed through other peers, for example for NAT
traversal or higher bandwidth, but it doesn’t change the logical end-points.

Some of the more typical interaction between clients are:

• chat or multichat (in the latter case more than one client can be involved),

• VoIP communication,

• file transfers,

• signing a two-party contract.

4.2.2 Client-to-Zone communication

The Zone is a core building block of VirtualLife. It is generally a more powerful
node as it must handle a higher computational and network load due to several
semi-central services being run there. This includes physics engine, entity
manager, geometry distribution, etc.

The Client typical communicates with a Zone in the following cases:

• logging in into the Zone, which can be transparent for the user, if he or
she have logged in into the Nation,

• getting new geometry data and location of avatars and other entities,

• modifying the world, creation, moving, deleting of objects,

• managing group memberships,

• queries to the search engine,

• queries to the authorisation service.

4.2.3 Client-to-Nation communication

A Nation hosts several central services that are reasonable to have in a single
instance:

• registration,

• logging in to the Nation in a single-sign-on manner,

• certification authority service,

• zone topology,

CHAPTER 4. THE ARCHITECTURE OF VIRTUALLIFE 31

• nation-wide groups,

• status of other avatars,

• timestamping.

4.2.4 Zone-to-Zone communication

VirtualLife is not continuous at the moment – it is not possible to walk from
one Zone to another. The decision was made because of the complexity of such
solutions. This is also not the goal of the VirtualLife project. However, Zones
do interact with each other, mostly transparent for the user, in the following
cases:

• storing and retrieving objects (master copies might reside in different
Zones),

• world update propagation,

• connection routing,

• asset replication.

4.2.5 Zone-to-Nation communication

It provides rules and general services for all the Clients that inhabit its Zones.
As it is a single point-of-failure, it was designed to be very light-weight, so only
minimal communication between Zone and Nation (or Nation and Client) is
envisaged.

Some interactions that need to take place anyway, are:

• providing information about logged-in Clients,

• providing a master replica of the Virtual Law,

• providing policies, including permissions,

• topology updates from Zone to Nation.

Chapter 5
VirtualLife Security Infrastructure

One of the main aspects of the VirtualLife platform is security. As security is
a very broad term and as such not a very useful one, we need to refine that. In
VirtualLife security is a cross-cutting concern, which means that it affects all
parts of the system. It covers all transactions allowed within the system as well
as more specific aspects of the application. For example, the storage of sensitive
data (private keys), trust towards Certification Authority (CA) or the influence
of the reputation of the participant on his or her capabilities. The security
layer of the VirtualLife infrastructure assures that the allowed operations are
executed safely and only by authorised identities.

Building a secure system often means that certain sacrifices in efficiency or
usability are inevitable. One of the design goals of the VirtualLife security
infrastructure was to provide a possibility to adjust the level of security needed
for operations. For example, if speed of data transfer is more important than
its security – consider streaming world geometry data – then it could be done
with a minimal overhead. However, if security is of a higher concern – think of
a point-to-point chat or VoIP conversation where new deals or business ideas
are being discussed – it is possible to turn on all security mechanisms, including
encryption, display of partner’s reputation and the reputation of the CA, that
signed certificate used for establishing VoIP channel.

5.1 High-level description

The top level abstraction in the VirtualLife security infrastructure is the notion
of a transaction. A transaction is an operation on some object that follows a
certain strict protocol and involves one or more actors. Due to the diverse nature
of transactions it makes sense to define allowed transactions in the system and
analyse them in more detail.

In VirtualLife, the security infrastructure is implemented in three libraries
– vlsec, vlnet and vlprotocol that share a common identity management

32

CHAPTER 5. VIRTUALLIFE SECURITY INFRASTRUCTURE 33

framework. Figure 5.1 describes the dependencies of the parts, higher blocks
depend on the underlying ones. There are additional dependencies in the
system. For example, most of the components depend on the vlcommon library
providing basic services, but for the sake of simplicity they are not described in
this work.

vlsec

Identity management vlnet

vlprotocol

Figure 5.1: The VL security infrastructure consists of 4 main components:
vlsec, vlnet, vlprotocol and identity management framework.

Briefly, the functionality of these parts is:

• vlsec – security primitives and low and mid level credential management;

• vlnet – implementation of the networking layer and tightly connected core
like transaction authentication;

• identity management – a module of the program that spans several li-
braries and provides abstractions for managing avatar specific information.
In terms of source code, identity management module is comprised of
the classes in vlsec and vlcommon and network protocols;

• vlprotocol – implementation of the state machines for supported trans-
actions.

Each component is described in more detail below. A number of third party
libraries were used in the implementation of the VirtualLife security layer, the
key ones are described in appendix E.

5.1.1 Security challenges

Every security aspect or transaction has attacks associated with them. Handling
these possible attacks is necessary in any production quality system. More
specific attacks and possible solutions are discussed below in the corresponding
sections, but there are also more general and technical issues. We base our
security heavily on the X.509 security infrastructure. Therefore, any attack
that can compromise the security level provided by the infrastructure essentially
concerns every action of an actor and system as a whole. Problems and possible
solutions specific to X.509 infrastructure are described below.

Breaking private key protection. The private key could be encrypted with
a very weak password. In VirtualLife we will enforce a password strength check
for storing private keys.

CHAPTER 5. VIRTUALLIFE SECURITY INFRASTRUCTURE 34

Server spoofing. We will verify the identity of both parties in the beginning
of every connection to disallow this attack.

The lunchtime attack. This attack refers to the idea that a user’s computer,
with the ability to decrypt, is available to an attacker while the user is away.
To defeat this attack the parties will close connections that have been inactive
for a certain period of time.

Abusing the key revocation delay. Key revocation is not immediate and
that may cause problems. In VirtualLife we have a network built around the
Virtual Nations, so it is suitable to use them for propagating key revocation
information.

Blind trust towards Certification Authorities. An actor will have to
trust the other actors CA to be able to perform transactions. It is known that
users are sometimes too trusting so the VirtualLife software will include verbose
explanations of the provided security guarantees.

5.2 The vlsec library

The vlsec library forms the core of the VL security infrastructure. It provides
basic cryptographic operations used by higher level libraries, utilities for
managing security credentials and all associated data structures. The vlsec
library is described in more details in VL deliverable D3.1 and in addendum to
D3.2 [BLL08, BLL09].

The implementation of vlsec is based on the OpenSSL toolkit – an open source
library for cryptographic operations, brief description of OpenSSL is given in
Appendix E.

5.2.1 Securable objects

Defining data objects, that could be protected with the security infrastructure is
an important design decision that affects architecture. These objects are neither
objects in a programming sense nor simple byte arrays, but rather entities that
have some contextual meaning and that we want to e.g. encrypt, sign or validate.

Objects include, but are not limited to the following:

1. items that might have copyright;

2. digital signatures;

3. reputation information;

4. citizenship, belonging to some community or group;

CHAPTER 5. VIRTUALLIFE SECURITY INFRASTRUCTURE 35

5. secure communication channels.

To accommodate for these use cases, cryptographic operations in VirtualLife
work on standard strings presented in the C++ string datatype. This way we
do not restrict security to specific object types. There is however a potential
increase of complexity of operations for the developer using vlsec library. If
we want to use the security primitives on an object, we first need to serialise it
into a string form, which might not always be a trivial task. It must be noted,
however, that the same requirement of being able transform object into a byte
array is in place also for transporting objects using vlnet networking library,
so it is a general requirement for all the objects in question.

The next important cryptographic objects are the keys. Both asymmetric keys
and symmetric keys are supported by the vlsec library. Asymmetric keys are
used in public key cryptography where keys are strongly bound to identity. In
public key cryptography, every identity has a keypair that contains a public key
and a private key. The private key must be kept secret at all times as possession
of this key effectively implies being its owner in several cases, for example when
giving digital signatures. The public key is used for encryption and signature
verification, whereas the private key is used for decryption and giving signatures.
In VirtualLife we use the RSA cipher for public key cryptography. Symmetric
keys are used for encrypting large or streaming data. Symmetric keys are stored
as standard strings, similarly to asymmetric cipher initialisation vectors and
random nonces. VirtualLife uses AES as the symmetric cipher of choice.

The vlsec library in VirtualLife has the classes KeyPair and PrivateKey for
representing keypairs and private keys, respectively. We do not have a separate
public key object as we use an X.509 certificate in its place. Since the certificate
contains a public key and also identity information, we use it to simplify the
system. All primitives requiring a public key as input take a certificate instead.

VirtualLife is extensively using the X.509 certificate infrastructure in trans-
actions. For this reason there is a Certificate class in vlsec that represents
an instance of a certificate. The certificate contains information about its
owner and the public key. If the certificate is not yet signed, the certificate
request object is used. The X.509 standard is very common and much used in
applications, so supporting this standard allows the users of VirtualLife to also
use credentials issued by other parties to identify themselves.

5.2.2 Key management

The keys and certificates of VirtualLife will have to be securely stored and
handled to maintain security guarantees. Also, there needs to be a mechanism
for creating new keys. These tasks are all provided by the vlsec library in our
implementation of the security architecture.

Firstly we discuss key generation. Good randomness generation is important
when generating both symmetric and asymmetric keys. For this reason, the
CryptoService class in the vlsec library provides a randomness generator for
both numbers and strings. The KeyManager class generates both symmetric

CHAPTER 5. VIRTUALLIFE SECURITY INFRASTRUCTURE 36

and asymmetric keys. The class is also capable of deriving a symmetric session
key and an initialisation vector from a random seed. This capability is important
in key agreement protocols.

The keypairs also need to be stored permanently. For this reason we created the
KeyStore class. This class can store certificates, private keys and keypairs. The
certificates are stored in the PEM format and private keys in the PKCS#12
format. Private keys are encrypted and protected by a password. The
certificates are identified by a hash of the certificate’s issuer, serial number
and subject name. Private key identifiers are provided by the developer.

There is additional convenience functionality in the vlsec library, for instance,
getting a list of trusted Certificate Authorities, importing and exporting users’
keys etc. This functionality is mostly needed by the identity management
module and is described in Section 5.3.

To minimise the risk of unauthorised access to the private key, for example, by
extracting it from the hibernate file or the virtual machine memory, the private
key object is stored in memory only when it is needed for the operations.

5.2.3 Cryptographic primitives and algorithms

Once the keys and certificates are loaded and ready, we can start using
them in cryptographic operations. The vlsec library can perform encryption
and decryption with both asymmetric and symmetric keys, it can sign and
verify strings using asymmetric keys, compute hash functions and message
authentication codes. These services are provided in the CryptoService class
of vlsec library.

Input texts are given as strings, keys are given using their respective types. All
operations return a boolean value to signal the success status of the operation.
The results are written to output parameters given as C++ variable references.

The number of primitives is not large, but it is sufficient for implementing
a wide range of secure transactions. These transactions can be run by a
single machine (algorithms for complex cryptographic operations) or multiple
machines (protocols for running secure operations between many parties). The
actual implementation of the algorithms is in the OpenSSL’s crypto library
that vlsec depends upon.

Operations typical for X.509 certificates are also located in vlsec library, both
for the normal usage, for example, verifying certificate signatures, and for
implementing custom Certification Authority – signing certificate requests and
managing CA signing policies.

5.2.4 Authorisation

Authorisation is required to verify the user’s permission and acceptability
for using a service provided by the Virtual Zone or a Virtual Nation. It is
implemented as a separate module in the vlsec library. It allows the developer

CHAPTER 5. VIRTUALLIFE SECURITY INFRASTRUCTURE 37

to define own policies for various object types and also support linking of policies
together, thus enabling creation of complex policies, e.g. inheriting policies from
the parent objects. It is also pretty lightweight and can be easily integrated into
higher level protocols from vlprotocol library.

Authorisation is tightly related to the Identity structure, described in more
details in section 5.3. At the moment, three types of authorisation policies are
supported: whitelist, blacklist and token-based policies.

Whitelist policy

In the case of a whitelist, the service provider has a list of identities or certificates
who are allowed to use the service. To use the service, the user must have proved
the identity to the provider. If the provider finds the identity in its whitelist,
the service will be provided. Otherwise, the user will be denied the use of the
service.

To defeat this scheme, the attacker must either fake an identity (fake authen-
tication) or modify the service providers database. The first case is covered
in authentication. The service providers database can be modified only by
avatars with the necessary authorisation. This kind of authorisation is suitable
in scenarios where the number of authorised actors is small.

Blacklist policy

The blacklist has a similar concept to the one of the whitelist, but keeps a
database for different purposes. The database of the service provider will now
contain identities who are not allowed to use the services. All other VirtualLife
users can use the service. If the service provider receives a request to use a
service, but finds the identity of the requesting actor in its database, it will
deny the use of the service.

We assume, that a client (the attacker) has been banned from using the service
by inclusion in the blacklist. To defeat this scheme, the attacker must now
fake identity or remove its identity from the database. The security is again
guaranteed by the security of authorisation and access to the service providers
database.

This kind of authorisation is suitable for use in scenarios where normally all
users are allowed to use the service, but some are banned for misconduct.

Token-based policy

This approach is different from the previous two as it does not require the service
provider to have a database of accepted identities. Instead, the service provider
may issue “tickets” that allow the client to use a particular service. The ticket
can be any structure as long as it is uniquely serializable into C++ strings.

CHAPTER 5. VIRTUALLIFE SECURITY INFRASTRUCTURE 38

These tokens are given to the client who can later claim rights to use the service
by presenting them to the service provider. The service provider will then check
its database to see if such a token is indeed authorised for the operation. If it
is, the service provider allows the client to use the service. Otherwise, access is
denied.

This scheme is suitable when the service provider does not wish to keep large
databases. It is also good when the description of permissions is complex or the
service provider wishes to give the client a feeling of a “real-life permit”.

The attacks and countermeasures are the same as in the case of two previous
policy types.

Implementation

The implementation of the authorisation is based on two main classes: Autho-
rizationPolicy and Validator.

AuthorizationPolicy stands for a set of rules that define whether a certain
Identity is allowed to perform certain action on the Object. Each Authorization-
Policy object has a type to help Validator to choose the correct authorization
mechanism. Basically, AuthorizationPolicy serves as a container that maps
object actions to sets of identities/certificate owners/token owners.

Validator ’s main function validate checks whether given Identity can perform a
certain action on an object. The whole chain of policies linked to the object is
taken into account. Based on the check Validator returns an exit code, some of
the more relevant exit codes are:

1. AUTHZ_VALIDATION_SUCCESS – validation succeeded;

2. AUTHZ_VALIDATION_MISSING_POLICY – object doesn’t have any policy
linked to it. It’s up for the application to interpret this exit code;

3. AUTHZ_VALIDATION_FAILED – validation failed.

If an object has more than one policy linked to it, then Validator handles them
in a one-by-one fashion. If at least one policy fails, then the whole validation
fails as well.

Authorisation policies allow providing blacklists and whitelists for both iden-
tities and certificates. The motivation behind it as follows: sometimes you
might want simply to block a user (for example, you don’t like him) from doing
something. Specifying all possible user certificates would then be annoying, so
you can simple add the unique identifier of the user to the list. On the other
hand, sometimes it is required to be more fine-grained: for example, we allow
only users with certificates issued by highly trusted CAs to sign an important
document.

Examples of usage of authorisation framework are given in deliverable [BLL09].

CHAPTER 5. VIRTUALLIFE SECURITY INFRASTRUCTURE 39

5.3 Identity management

The essential component of every stateful secure system is identity management
– control of information about its users, providing information for authentication
and authorisation protocols. This is not a technically complicated problem in
the case of client-server architecture or in presence of a single trusted party.
However, in distributed systems, it is not so easy any more. A number of
solutions exist that tackle this problem. It is also one of the popular research
topics.

Some of the more widely known solutions include:

• Kerberos – an industry standard system offering account management
together with authentication and authorisation. It is a good solution for a
more controlled system, but using it in dynamic system with distributed
trust model is not so easy. It also has a single point-of-failure as it relies
on a central trusted server.

• OpenID – open and decentralized identity system that allows to use
accounts in one system for authentication in other systems that support
OpenID. For example, using a Google account for logging in to other
sites (Wordpress or Blogger) is technically implemented using OpenID
standard.

• Shibboleth – federated identity-based authentication and authorization
infrastructure that is based on Security Assertion Markup Language
(XML-based standard for exchanging authentication and authorization
data between security domains). Intended primarily for web applications,
though it could be adapted for other applications as well.

• X.509 security infrastructure – mentioned many times in this thesis,
is a PKI infrastructure suited very nicely for distributed trust model with
multiple trusted parties.

5.3.1 Motivation for another solution

In the digital world, people tend to have more than one digital identity.
Aggregating them together is a nice functionality to have, as essentially they all
belong to the same person.

Another problem is that many of the solutions listed above rely on a standard
socket programming interface, hence adapting them to the vlnet overlay
network would be a very time-consuming task.

Last but not least, non-standard planned functionality, for example, possibility
to rate other identities or assign trust levels to different trusted parties, was not
trivial in cases of the existing identity management solutions.

CHAPTER 5. VIRTUALLIFE SECURITY INFRASTRUCTURE 40

5.3.2 Overview of the VirtualLife solution

The identity management system of VirtualLife is built on top of the X.509
security infrastructure. Therefore, in order to qualify for being an actor in the
system, an entity must have valid X.509 credentials: signed public key and a
private key. This is required as almost all of the operations in VirtualLife assume
that parties can present their credentials.

The VL identity system follows the single identity - multiple credentials model.
It is possible to import credentials acquired from different sources. Figure 5.2
describes the high level idea of VL identity.

User B: "Good"
User C: "Awful"
...

CA A: "Reliable"
CA B: "Unreliable"
...

Name: "Alice"
Birthdate: "18.04.84"
...

X.509 credentials

Profile

Trust

Reputation

User A

Figure 5.2: Schema of VL digital identity. It includes several parts: a profile of
the user, X.509 security credentials, trust and reputation database.

5.3.3 Implementation

The main data structure defined in the Identity class is located in the
vlcommon library and contains general information about the user (name,
contact details, etc), while cryptography-related abstractions are in the vlsec
library: TrustManager and AccountManager classes. The first one is responsible
for managing the user’s trust towards other identities/credentials/CAs, as well
as reputation values. The latter one, AccountManager provides more general
functionality like creation of new accounts, import and export of accounts, for
example, if account information should be stored on a trusted flash disk.

CHAPTER 5. VIRTUALLIFE SECURITY INFRASTRUCTURE 41

5.4 The vlnet library

Though the design of the networking layer was not the keypoint of this thesis nor
can be attributed to the author, we think that for better understanding a short
explanation is needed. Certain vlnet properties and interfaces have outreaching
consequences also for protocols. A more precise description of vlnet along with
usage examples is given in the deliverable D3.2 [BLL09].

The vlnet library is used to create communication layer for all multiparty
operations. It is designed to create and support a hybrid peer-to-peer network
topology that will is used by VirtualLife nodes. The library is built on top of
RakNet cross-platform high performance networking library and provides some
high level abstractions to facilitate protocol implementations. See Appendix E
for details about the RakNet library.

The core of the vlnet library is the NetworkPeer -NetworkProtocol tandem of
connection and message handling classes. NetworkPeer operates on the message
and IP level while NetworkProtocol operates with persistent connections and
data streams. Every node in the VirtualLife network will run one instance of
NetworkPeer and one instance of NetworkProtocol.

The NetworkPeer wraps the functionality of the networking library and provides
a message and event stream to the NetworkProtocol. NetworkProtocol in turn
uses the NetworkPeer to send messages to other peers.

The NetworkProtocol class provides more high-level services. It operates with
streams of data. One stream has two endpoints and these can be managed
by any module of the software. The NetworkProtocol performs a post-office-
like task of identifying instances of a protocol and managing their message
flows. The direct benefit of this approach is that a complex software application
like VirtualLife can offload some complexity to a central service that is fit to
handle it.

5.4.1 Streams and state machines

A stream in the vlnet library is basically a pipe. You put data in at one end
and it comes out on the other end. Specific types of streams can also take care
of encoding and decoding formats used in them. This is achieved by letting the
stream know the serialisation methods for the given objects.

To force the stream into behaving in a predetermined way the developer can
add a state machine to the stream. This state machine can then be used to
discard messages that should not arrive at the given state of the protocol and
force the path of the protocol execution.

The state machine may be really strict by going into a new state when every
message arrives or is sent. This is useful for cryptographic protocols with a clear
construction. If the stream is used for transferring data, for example geometry
and textures, the stream may be in a perpetual “connected” state and accept
data messages all the time.

CHAPTER 5. VIRTUALLIFE SECURITY INFRASTRUCTURE 42

When designing a protocol the developer will have to build a stream for
transferring its data. Based on the construction of the protocol the developer
can use different aspects of stream design outlined previously.

The main business logic of a protocol is not stored in the stream, but rather in
a helper or a service. A helper provides a high-level interface to the protocol
for starting it and getting the results. A helper might have a command login
with the required parameters and a command getLoginResult for learning how
it went. This again simplifies the construction of a graphical user interface that
can basically bind user input to the respective protocol helpers and forward
protocol results to the user visually, whether it is a success or an error message.

A service in VirtualLife is a type of protocol endpoint that performs a certain
task. An example might be logging the user into the system. If the GUI would
use a protocol helper then the server will use a service for answering the clients’
queries. A helper usually has only a few streams whereas a service might be
working with many stream at once. The helpers and services may have their
own state machines, if it is required.

5.4.2 Secure streams and the authentication protocol

A stream may ask the NetworkProtocol for a secure communication channel.
In that case a channel will be opened, if it was not opened before, and on the
streams request messages will be encrypted during transport. This process is
transparent for the stream, as the NetworkProtocol will take care of channel
negotiation and encryption automatically, given that the necessary keys are
provided. The stream may also then ask the NetworkProtocol for the identity
of the node on the other end of the stream for verification.

In the beginning of any communication session the parties prove their identities
to each other. The authentication mechanism is based on the PKI used in
VirtualLife. Intuitively, parties use their certificates to present their identity,
and the private key to prove that they possess the private key that goes to
together with this identity. Authentication will have to be redone for every
connection, because otherwise it will be easier to mount man-in-the-middle
attacks.

To provide such functionality a new authentication protocol – VirtualLife
Authentication Protocol (VLAP) – was designed and implemented on top of
vlnet architecture. It is inspired by TLSv1 protocol and is used for establishing
one- or two-way authentication between parties and negotiation and distribution
of the session key.

To test out the security properties of the designed protocol, it was modelled
using spi -calculus1 and verified using the ProVerif automatic cryptographic
protocol verifier [Bla]. More information about VLAP and its verification is
given in Appendix D.

1Spi-calculus, an extension of π-calculus, is as a formal notation for describing and
reasoning about cryptographic protocols.

CHAPTER 5. VIRTUALLIFE SECURITY INFRASTRUCTURE 43

Attacks and countermeasures

There are some specific attacks on the secure channel listed below.

Faking identity. The attacker might want to create a stream while claiming
to be someone else. The responsibility of verifying the identity of the other
party lies on the user. The client software will provide as much information as
possible about the identification of the channel endpoints.

Eavesdropping. The attacker might want to listen in on the communication.
The proper application of encryption schemes will solve this problem.

Man-in-the-middle attack. The attacker might want to insert new mes-
sages into an already existing channel, or remove existing messages from there.
Again, the proper application of encryption schemes together with message
authentication codes will make this attack unfeasible.

Denial of Service. In case a channel is routed through another peer, that
peer might decide to drop connection forwarding. If there are other possible
routing paths, the parties in the stream might route the messages through other
nodes in the VirtualLife network.

5.4.3 Provided security properties

As vlnet is used as a platform for creating application-specific protocols, we
wanted to make sure that at least the basic security properties are met. As
such, vlnet assures the following properties for the protocols built on top, when
using secure channels:

• confidentiality - guaranteeing the secrecy of sensitive information;

• origin integrity - ensuring that you know whom you are talking to;

• message integrity - unauthorised modifications to messages can be de-
tected.

5.5 The vlprotocol library

Most of the application specific transactions are implemented in the vlprotocol
library. We use terms “protocol” and “transaction” interchangeably, because
using state machine model of vlnet, their meaning becomes the same. The
implementation of most of the protocols is not directly connected to the security
infrastructure, therefore only a few are described here.

CHAPTER 5. VIRTUALLIFE SECURITY INFRASTRUCTURE 44

5.5.1 Login

In VirtualLife we have a single-sign-on solution based on the X.509 infrastruc-
ture. Login essentially consists of two steps:

• establishing a secure connection – this is handled by the vlnet library’s
secure channel and includes bilateral certificate validation;

• user authorisation – handled by authorisation framework and is more
application/configuration specific, for example users with low reputation
could be banned from logging in into some Zones.

Attacks on this protocol are composed from the attacks on its two subparts:
creation of user channel and authorisation framework.

5.5.2 Signing a contract

Signing a contract means attaching a digital signature that is generated using
the document and the security credentials (private key) of the identity. The
signatures are then attached to the document using standard solutions.

VirtualLife support for digital signature is based on the DigiDoc library [Ser]
that follows XML-DSIG and XAdES standards for digital signature. The key
class is SignedDocument that abstracts the idea of any digital document and
provides methods for operations related to digital signing. SignedDocument
can be created from any string, essentially meaning that we can sign not only
document files, but also dynamically generated content, for example a chat
history.

SignedDocument supports the following types of operations:

• Creating signed document from any string with specified MIME type. The
string has to be saved to a temporary file.

• Creating signed document from any file with specified MIME type. Given
the path of the source file, the MIME type of the file, and the path of
the destination DDOC2 file, a signed document structure will be created.
The source file will be embedded in BASE64 into the resulting signed
document structure. No signatures will be added yet.

• Adding one or more signatures to the document using provided private
keys and certificates. Signatures are to be added one by one to the
signed document structure, which contains the source file and possibly
some already present signatures. The signers certificate with the public
RSA key will be added to the structure. The signature will be constructed
from the hash of the data to be signed.

2DDOC is XML-based container format that contains signed file along with the given
signatures.

CHAPTER 5. VIRTUALLIFE SECURITY INFRASTRUCTURE 45

• Verifying the correctness of the signatures to check if they match the
content of the document.

• Saving and loading document to/from the DDOC files.

Created signed documents can be held both in memory and stored in a standard
form on the persistent storage (e.g. HDD or flash disk). The document can be
verified as long as at least one copy of the SignedDocument object or the DDOC
file exists.

Attacks and countermeasures

Contract modifications. The attacker would like to modify sums or terms
in the contact. This problem is solved through the correct application of
cryptographic digital signatures. The signatures will not verify for a modified
contract.

Contract copy. Attacker creates n copies of document and claims that the
contract should be applied n times. Every contract will need to contain a serial
number or a random nonce. If two contracts contain the same number, they are
considered the same.

Signing on behalf of somebody else. The attacker might want to forge
a signature. This problem is solved through the correct application of
cryptographic digital signatures. The attack will only be possible if the attacker
has the private key of the attack target.

Deniability. Attacker claims that she didn’t sign the contract. The used
digital signature scheme does not allow deniable signatures. As long as
there exists one copy of the signature and the contract, the existence of a
signature can not be mathematically denied. To be more specific, there is no
infallible protection against this attack. Instead, in most jurisdictions the digital
signature scheme will lead to the assumption that the person who has signed
the contract is party to the contract since only this person had the private key
required for the digital signature.

Role change. Attacker tries to change his role in a contract (e.g. from
“buyer” to “seller”). This is covered by protecting the contract from modi-
fications. It is assumed that the contract contains the mapping between signers
and roles.

5.5.3 Group management

Dealing with single object instances is often too complicated, hence VirtuaLife
provides possibility to group objects together. The only requirement on the

CHAPTER 5. VIRTUALLIFE SECURITY INFRASTRUCTURE 46

object type is to have a GUID. There are multiple use cases for groups. For
example, managing of citizens of the Virtual Nation or support for “user-driven”
organisations, e.g. trade unions or guilds.

It is possible to assign permissions based on the membership in a particular
group. For instance, only members of the “UT Cryptographers” group can
enter a particular Virtual Zone.

There’s no authorisation built in into the group management as it might
be very use case-specific. Developer should integrate group management
with authorisation in most cases manually, using the provided authorisation
mechanisms.

In VirtualLife, a peer that provides group management service exposes interface
for the following operations:

• GROUP_OPERATION_CREATE_GROUP – create new group, the user can specify
group name and description

• GROUP_OPERATION_DELETE_GROUP – delete specified group

• GROUP_OPERATION_ADD_MEMBER – add member to the group

• GROUP_OPERATION_REMOVE_MEMBER – remove member from the group

• GROUP_OPERATION_IS_MEMBER – query if the specified member belongs to
the group

• GROUP_OPERATION_GET_MEMBERS – get all members of the group

• GROUP_OPERATION_GET_GROUPS – get all groups stored at the server

• GROUP_OPERATION_GROUP_INFO – get group metadata: name and descrip-
tion

Attacks and countermeasures

Claiming membership or non-membership. Membership can easily be
verified with an online query to the peer providing group management service.

Chapter 6
Analysis of Solution

The VirtualLife project is still far from completion. Therefore, it is complicated
to say whether it will succeed in creating the innovative platform for secure
collaboration. However, the major architectural solution have already been
established and partly implemented so we can compare it with solutions from
another vendors or projects.

Below is a feature comparison of the VirtualLife platform with solutions
reviewed in Chapter 3.

Authentication Security ID Management Architecture Status
Second Life UP SP CS PR

OpenSimulator UP SP CS DV
Wonderland UP SP CS DV

Croquet UP PP PP DV
LifeSocial PK PP PP DV

VirtualLife PK PP PP DV
Legend

UP username-password authentication PK PKI based authentication
SP profile stored at server PP profile is distributed
PR production system DV in development

The VirtualLife platform was designed from the very beginning as a platform
that provides secure collaborative environments. The accent on security and
connection to the legal system is something not seen in the other solutions.
VirtualLife provides a strong identity management solution based on X.509
standard that binds with the external authorities. Extensive usage of X.509
security infrastructure makes future integration of the system supporting the
same standard easier, without breaking the security properties within the
VirtualLife. It is also easier to bind operations in the VirtualLife with the

47

CHAPTER 6. ANALYSIS OF SOLUTION 48

legal system – not something that can be seen in the other solutions. Having a
strong identity management also allows users of the VirtualLife system to have
a much more reliable understanding of whom the are communicating with.

Support for digital signatures makes it possible to sign legally binding contracts
possible without the need for additional end-user agreements from the virtual
world provider.

VirtualLife implements several ideas from the social networks, like rating of
the identities and trust towards trusted third parties. Using these ideas in
conjunction with operational and behavioural patterns from the 3D world, it is
possible to implement new types of authorisation and authentication algorithms.

Another important aspect is the usage of the service-level routing and protocols
implemented as state machines. Service-level routing allows to minimise the
number of required ports for operation, making deployment and also NAT
traversal easier. State-machines for protocols do make implementation of the
protocols more complicated, but this also raises the reliability of the protocols
and makes the formal protocol analysis easier.

Using state-of-the-art libraries for visual appearance makes VirtualLife compa-
rable with with the production solutions.

6.1 Future work

Although the core security infrastructure of the VirtualLife is in place, there is a
number of things that need to be done in this area. This includes, for example,
addition of X.509 enabled VoIP channel, more fine-grained access control for
scripts, implementation of event recording and logging system.

7
Resümee

VirtualLife’i turvainfrastruktuur

Ilja Livenson

Magistritöö (20 AP)

Käesolevas magistritöös kirjeldame VirtualLife projekti raames tehtud turva-
infrastruktuuri. VirtualLife on Euroopa Liidu 7. raamprogrammi teaduspro-
jekt, mille sihiks on luua turvaline ning kindel võrgupõhine 3D koostöö keskkond.

Tänapäeva virtuaalmaailmad hõlmavad suurt valdkonda, kuhu kuuluvad näiteks
võrgu mängud, õpperakendused ning firmade esindused Internetis. ” Tavaliselt
on need maailmad ehitatud klient-server arhitektuuriga. Sellega kaasnevad
teatud probleemid: kõrged kulud serverite ülevalpidamiseks, vajadus usaldada
serverit kõikide transaktsioonide puhul. Samuti on seni vähe tähelepanu
pööratud virtuaalmaailmade seosele seadusandlusega. VirtualLife projekti
idee on proovida neid probleeme lahendada, pakkudes turvalist hajutatud 3D
virtuaalmaailma raamistikku.

Töös esitame projekti käigus disainitud ning realiseeritud turvaraamistiku. Meie
infrastruktuur põhineb X.509 turvastandardil ning koosneb neljast osast:

• vlsec – krüptoteek, mis pakkub nii krüptoprimitiive ning operatsioone
nendega, kui ka kõrgema taseme andmestruktuure ning operatsioone, nt.
sertifikaatide signeerimine ning valideerimine.

• vlnet – võrguteek, mis peale kiire andmeedastuse pakub olekumasinatel
põhinevat mudelit protokollide realiseerimiseks ning turvalisi ühendusi,
mis võimaldavad tuvastada otspunktide identiteeti.

49

7. RESÜMEE 50

• vlprotocol – teek, mis koosneb rakendusspetsiifilistest protokollidest, re-
aliseeritud on sellised baasprotokollid ja toimingud nagu registreerumine,
sisselogimine ning dokumentide allkirjastamine.

• identiteedi haldussüsteem, mis on integreeritud kirjeldatud teekidesse
ning pakkub võimalus siduda kasutajaprofiiliga ka tema krüptograafilised
võtmed ning hinnang teistele identiteeditele (reputatsioon) ning usaldatud
kolmandatele osapooltele, nagu näiteks sertifitseerimiskeskused.

Autor soovib tänada oma juhendajat, kelle pühendumus ja põhjalikkus olid
hindamatuks panuseks käesoleva magistritöö valmimisele, ning VirtualLife
projekti liikmeid.

Bibliography

[Bla] Bruno Blanchet. Automatic cryptographic protocol verifier, in the
formal model, http://www.proverif.ens.fr/.

[BLL08] Dan Bogdanov, Peeter Laud, and Ilja Livenson. D3.1. VirtualLife
Security Infrastructure System. Confidential, Cybernetica AS,
November 2008.

[BLL09] Dan Bogdanov, Peeter Laud, and Ilja Livenson. D3.2.VirtualLife
Client Server Message Exchange System. Confidential, Cybernetica
AS, March 2009.

[com] OpenSimulator community. Opensimulator, http://
opensimulator.org/.

[com09] KZero company. Kzero Radar, 2009.

[cona] RealXtend consortium. Realxtend platform, http://www.
realxtend.org/.

[Conb] The Croquet Consortium. thtp://www.opencroquet.org.

[ea] Julian Lombardi et al. Open Cobalt, http://www.duke.edu/

~julian/Cobalt/Home.html.

[Fou] OpenID Foundation. http://openid.net/.

[Gar] Inc Gartner. Report on the virtual worlds’ development trends,
http://www.gartner.com/it/page.jsp?id=503861.

[GPM+08] Kalman Graffi, Sergey Podrajanski, Patrick Mukherjee, Aleksandra
Kovacevic, and Ralf Steinmetz. A distributed platform for
multimedia communities. In IEEE International Symposium on
Multimedia (ISM ’08), Berkley, USA, Dec 2008. IEEE, IEEE
Computer Society Press.

[HR] Piers Harding-Rolls. Subscription MMOGs: Life beyond World of
Warcraft.

51

BIBLIOGRAPHY 52

[KSea] Stephen Kent, Stefan Santesson, and et al. Public-Key
Infrastructure (X.509).

[KSL] Torus Knot Software Ltd. Ogre rendering engine, http://www.
ogre3d.org/.

[Lab] Linden Lab. An overview of Second Life security, https:
//support.secondlife.com/ics/support/KBAnswer.asp?
questionID=5566.

[Mic] Sun Microsystem. Project wonderland, https://
lg3d-wonderland.dev.java.net/.

[pro] MediaGrid project. The Immersive Education Initiative, http://
immersiveeducation.org/.

[Ser] Sertifitseerimiskeskus AS, http://www.sk.ee/files/soft/
DigiDocLib-2.2.5-eng.pdf. DigiDoc library.

[SSea09] John Smart, John Smart, and Jerry Paffendorf et al. Metaverse
Roadmap Overview. Technical report, Virtual Worlds Roadmap
group, http://www.metaverseroadmap.org/overview/, 2009.

Appendix A
VirtualLife Project Information

Project name “Secure, Trusted and Legally Ruled Collaboration
Environment in Virtual Life”

Project page http://www.ict-virtuallife.eu

Participants

Nergal S.r.l. (Italy), SME
Cybernetica AS (Estonia), SME
Digital Video S.p.A. (Italy), SME
Geumacs (Romania), SME
MIF VU (Lithuania), University
Panebarco S.a.s. (Italy), SME
Tavae (France), SME
Universität Göttingen (Germany), University
Virtual Italian Parks (Italy), SME

Start of the project January 2008
Duration 36 Month
Budget 3.3 million euro

53

Appendix B
VL Project Deliverables

A better picture about the project, including some more specific details of design
and implementation, can be acquired from the project deliverables. Though
some of them, especially early ones, are not describing the system exactly due
to the nature of the software development projects, they might be helpful for
the reader.

Due to the publication policy of the project, most of the deliverables are
confidential. To get access to them, please, contact author or supervisor of
this thesis directly.

54

Appendix C
VL Source Code

There was no stable release of the VL code up to now. The release is planned
later this year, approximately in September 2009. Although the security and
networking part of the application are not in their final form as well, their are
relatively stable and are mostly filled with additional functionality – no major
changes in design are undertaken. The license of the code is still not finally
decided, hence we cannot attach full source tree; only the source code of the
described libraries is attached.

• code/lib/vlsec/

• code/lib/vlnet/

• code/lib/vlprotocol/

Getting access to the full source code is possible as well, for that, please, contact
author or supervisor of this thesis directly.

55

Appendix D
VL Authentication Protocol

VirtualLife Authentication Protocol (VLAP) is described in more details in
seminar paper. Text of the seminar paper along with the VLAP model in
spi-format and presentation can be found on the attached CD. Description of
relevant files:

vlap/vlap_sem_2008.pdf article describing VLAP
vlap/VL_ssl.cvpi model of the VLAP in the ProVerif-compatible

format
vlap/vlap_presentation.pptx presentation about VLAP
vlap/proverifbsd1.15.tar.gz archive containing ProVerif protocol verifier that can

be used to reproduce results

56

Appendix E
Key libraries used

E.1 OpenSSL toolkit

OpenSSL is an open-source cryptography library, one of the most popular
nowadays. It consists of two main parts:

1. crypto - contains implementation of many cryptographic algorithms,
this library is among other things used for implementation of SSH and
OpenPGP. The functionality includes symmetric encryption, public key
cryptography and key agreement, certificate handling, cryptographic hash
functions and a cryptographic pseudo-random number generator.

2. ssl - implementation of SSL v2 and v3 and TLS v1 protocols.

E.2 RakNet

RakNet library is a state-of-the-art networking library used in many modern
applications, multiplayer games among others. RakNet is based on the concept
of a reliable UDP and handles many issues typical for network application
automatically:

• orders or sequences packets that arrived out of order, and does so
efficiently,

• resends packets that didn’t arrive,

• transparently handles network issues such as flow control and aggregation.

It also contains a number of plugins very useful when creating an application.
For example, implementation of low-bandwidth VoIP communications and NAT
traversal.

57

APPENDIX E. KEY LIBRARIES USED 58

A somewhat different from TCP/IP stack model of RakNet makes usage of
libraries that rely on the socket interface more difficult.

E.3 DigiDoc

DigiDoc is a C library that allows to create, sign and verify DigiDoc files.
These files are compliant with the XML-DSIG and XadES standards for digital
signatures. The DigiDoc library also supports the usage of smartcards .

