
DISSERTATIONES MATHEMATICAE UNIVERSITATIS TARTUENSIS29
SIZE-EFFICIENT INTERVALTIME STAMPS

JAN VILLEMSON

TARTU 2002

DISSERTATIONES MATHEMATICAE UNIVERSITATIS TARTUENSIS29

DISSERTATIONES MATHEMATICAE UNIVERSITATIS TARTUENSIS29
SIZE-EFFICIENT INTERVALTIME STAMPS

JAN VILLEMSON

Department of Mathemati
s, University of Tartu, EstoniaDissertation is a

epted for the
ommen
ement of the degree of Do
tor ofPhilosophy (PhD) on April 12, 2002, by the Coun
il of the Department ofMathemati
s, University of Tartu.Opponents:Pekka Orponen Helsinki University of Te
hnologyHelsinki, FinlandHelger Lipmaa Helsinki University of Te
hnologyHelsinki, FinlandCommen
ement will take pla
e on June 17, 2002.Publi
ation of this dissertation is granted by the governmental �nan
ialsupport to PhD students.

Jan Villemson 2002 Tartu Ülikooli Kirjastuse trükikodaTiigi 78, 50410 TartuTellimus nr. 300

CONTENTSLIST OF ORIGINAL PUBLICATIONS 8ABSTRACT 91 INTRODUCTION 101.1 Paper-based do
uments . 101.2 Who is responsible for the do
ument? 111.3 When was the do
ument signed? 121.4 Absolute and linkage-based time stamps 141.5 Two s
enarios of time-stamping 151.6 Obje
tives and outline of the thesis 172 STATE OF THE ART 192.1 Hash fun
tions . 192.2 Proving dependen
ies between the data items 202.3 Linkage-based time-stamping 212.4 O�-line
omparability . 223 LINKING SCHEMES 263.1 Basi
 requirements . 263.1.1 General framework 263.1.2 Interval time-stamping 313.2 Optimization goal . 333.3 Composition of linking s
hemes 343.4 Topologi
ally sorted binary trees 353.5 Complete trees . 363.6 S
hemes with �(G) = 1:5 + o(1) 374 OPTIMAL LINKING SCHEMES 424.1 Optimal family of s
hemes 424.2 Proof of Lemma 4 . 434.3 Proof of Lemma 5 . 464.4 Proof of Lemma 6 . 474.5 Proof of Lemma 7 . 484.6 Proof of Lemma 8 . 49
5

5 LINKING USING TREES Sdw 535.1 Alternative des
ription of the trees Sdw 535.2 The algorithm . 605.3 E�
ien
y and further optimizations 656 INSTEAD OF THE CONCLUSIONS 67REFERENCES 69SISUKOKKUVÕTE 74ACKNOWLEDGEMENTS 76

6

LIST OF FIGURES1.1 The general model of time-stamping. 132.1 Example of Merkle's authenti
ation tree. 202.2 Example of linear linking s
heme. 222.3 Example of linking s
heme of [BHS93℄. 232.4 Example of linking s
heme of [BLLV98℄. 243.1 A simple example of time-stamping s
heme. 273.2 The
onstru
tion G1
G2. 343.3 Complete tree with an interval time stamp of size 2d� 1. . 373.4 The pro
ess of forming the trees Sdw. 384.1 Transformations of a linking s
heme. 454.2 Transformation from an arbitrary tree to a binary tree. . . . 474.3 Transformation from a binary tree to a sorted tree. 484.4 Graph of the fun
tion �(�). 515.1 The graph S2;3. 57

7

LIST OF ORIGINAL PUBLICATIONS1. Ahto Buldas, Peeter Laud, Helger Lipmaa, Jan Villemson, Time-Stamping with Binary Linking S
hemes, Advan
es in Cryptology �CRYPTO '98, Springer-Verlag 1998, pp 486-501.2. Margus Freudenthal, Sven Heiberg, Jan Willemson, Personal Se
urityEnvironment on Palm PDA, in pro
eedings of ACSAC 2000, De
em-ber 2000, New Orleans, Louisiana, USA.3. Arne Ansper, Ahto Buldas, Meelis Roos, Jan Willemson, E�
ientlong-term validation of digital signatures, Advan
es in Cryptology �PKC 2001, Springer-Verlag, LNCS 1992, pp 402-415, presented onPKC 2001, February 2001, Cheju Island, Korea.4. Arne Ansper, Ahto Buldas, Märt Saarepera, Jan Willemson, Improv-ing the availability of time-stamping servi
es, Information Se
urityand Priva
y � 6th Australasian Conferen
e, ACISP 2001, Springer-Verlag, LNCS 2119, pp 360-375, presented on ACISP 2001, July 11-13,2001, Sydney, Australia.5. Ahto Buldas, Meelis Roos, Jan Willemson, Undeniable replies fordatabase queries, a

epted to Fifth International Balti
 Conferen
eon DB and IS, June 2002, Tallinn, Estonia.6. Kristo Heero, Uuno Puus, Jan Willemson, XML based do
ument man-agement in Estonian legislative system, a

epted to Fifth Interna-tional Balti
 Conferen
e on DB and IS, June 2002, Tallinn, Estonia.

8

ABSTRACTIn various appli
ations of digital do
ument management it is ne
essary todetermine di�erent parameters of do
uments � e.g. the format, the authoror the time of
reation. Determining the time
an be unsu

essful sin
e thebits of a digital do
ument look the same regardless of their exa
t in
ep-tion moment. Hen
e, in pra
ti
al appli
ations instead of �xing the digitaldo
ument's
reation time it is better to register the do
ument at
ertain au-thority and
onsider the registration time instead. Su
h a pro
ess is
alledtime-stamping and the
orresponding authority is
alled Time-StampingAuthority.There are a number of o

asions where one-time registration of the datais enough. Registering a patent appli
ation is a good example of su
h as
enario. Determining the time of digital signature
reation, on the otherhand, di�ers substantially from the patent
ase. This is
aused by the fa
tthat digital signatures are given using private keys that should remain underthe signers' sole
ontrol.Hen
e, it is impossible to determine the exa
t moment of signing by anythird party. Nevertheless, it is possible to �x two moments � one beforeand another after the signature
reation. Using these moments we
an laterprove that the signature was given during some time interval and this formof time-stamping is
alled interval time-stamping.The main idea of the
urrent PhD thesis is to study interval time-stamping s
hemes that allow us to de
rease the size of the time stampsas mu
h as possible. While doing this, several restri
tions must be takeninto a

ount, the most important one being the ability to
ompare
reationtimes of the do
uments without help of any third party.In the thesis, we state an expli
it optimization goal, give an upper boundto the size of time stamps, �nd a lower estimate for this bound and
onstru
ta family of graphs approa
hing this (una
hievable) estimate asymptoti
ally.The last
hapter of the thesis is devoted to the questions of pra
ti
alimplementation of the proposed s
hemes. The original re
urrent de�nitionof the s
heme family turns out to be unsuitable, so we will introdu
e analternative des
ription. This solution enables storing the server's internalstate in a limited number of variables that
an be e�
iently ba
k-upped.The des
ription is further used to design an e�
ient step-by-step time-stamping algorithm. 9

1 INTRODUCTION1.1 Paper-based do
umentsIn many everyday appli
ations there is a do
ument involved to witness ourbehavior. Bus ti
kets, diplomas, promissory notes, passports, wills, stu-dent
ards, driver's li
enses, love-letters, sto
k shares, guarantee
oupons,business
ontra
ts et
. are all very
ommon and well-known examples.There are several
omponents that help a do
ument to prove things andhen
e make it a do
ument as we understand this notion today.� Contents � this is the meaning of the do
ument, stating that Mr. Xhas some rights or obligations or that he has just stated something(e.g. expressed love for Ms. Y). In other words,
ontents of the do
-ument shows why it was
reated and in all the examples above the
ontents were physi
ally written on something that is
alled� Medium � for usual do
uments, this is just paper or sometimes plas-ti
; from the history we also remember people writing their messageson wood, on stone or even en
oding them by making knots in ribbons.� Means of authenti
ation � a do
ument
an have no legal value ifnobody is responsible for it.1 Thus, in order to establish the person in
harge, there must be something added to the do
ument
ontents toenable an independent party (judge) to de
ide whether or not someoneis bound to it. Mostly, a hand-written signature does the job, some-times people also use �ngerprints, water-marks or just three
rossesatta
hed.It is important to note that in the
ase of
onventional paper-based do
u-ments the
ontents are
onne
ted to the signature via the medium. On
e atext has been typed on paper and a signature written under it, there is noway to erase either of them without leaving visible tra
es (at least it shouldbe very hard).But in digital world we see that our familiar intuition behind do
umentsmay break down. We no longer have any paper to take into our hands for1Even more, the responsibility for do
ument
reation must be taken by a human. We
an not say �the
omputer wrote it� as it is pointless to put the
omputer behind thebars if anything goes wrong. It is of
ourse te
hni
ally possible for a
omputer to
reatemessages automati
ally, but there must still be a human person responsible for that.10

reading, suddenly a pie
e of information may have many identi
al originalset
. It usually takes some time from people to get used to the new frameworkand sometimes unexpe
ted things
an happen. Let us
on
lude this se
tionby a small real-world example of what happens if the
onventional methodsare applied to digital data management.In Tartu University, Estonia, somewhere at the end of 1990sthere was a regulation established
on
erning several aspe
ts ofbureau
ra
y. One part of it was talking about destroying the oldand unne
essary do
uments. When the se
retaries had
olle
teda pile of old do
uments, they had to write short notes about the
ontents of all these do
uments, store those notes and then feedthe do
uments to the shredder. But when they needed to deletesome �les from a
omputer hard disk, they �rst had to printthose �les out and feed the printouts to the shredder! And noword about a
tual deletion of �les from hard disks!A lesson to be learned:
hanging from paper to
omputers really
hangesthe notion do
ument. One has to be
autious of what to say about digitaldo
uments if one has only seen the paper ones � they a
t di�erently inmany important details!1.2 Who is responsible for the do
ument?When dealing with paper do
uments, we are used to think that it is impor-tant to establish, who wrote the do
ument. This information is importantfor
ontra
ts, wills, promissory notes et
. If a
ontra
t is signed and one ofthe parties breaks it, we must be able to determine who is responsible forthe
onsequen
es. In many pra
ti
al appli
ations, �nding out the
reatorof a do
ument also gives us the responsible person.On the other hand, having a digital do
ument at hand (or in the
om-puter), it is impossible to say who has
reated it, be
ause the bits
annotbe distinguished by handwriting. Hen
e, the best we
an do is to be sureabout who takes the responsibility for the do
ument.Te
hni
ally, responsibility means potential repressions against a person,possibility to apply penalties (�nan
ial or even death penalty) if somethinggoes wrong. Consequently, we must be able to determine the right personby the do
ument and possibly using some additional data.The pro
ess of binding a person to a (digital) do
ument is
alled givinga digital signature and it is implemented via a signature s
heme.11

1. In order to be able to give digital signatures, the user A needs a keypair
onsisting of a private signature key SA and a publi
 veri�
ationkey VA. The private part is kept se
ret, whereas the publi
 part ismade available to everybody.2. The user A
an apply signature
reation pro
edure to a do
ument Xand the private key SA to obtain the signature SigAfXg.3. When the veri�er B has a do
ument X, a signature SigAfXg and apubli
 key VA, he
an apply the veri�
ation pro
edure to them andget �Yes� or �No� as the out
ome, indi
ating the
orre
tness of thesignature.4. Knowing only the publi
 key VA, it is
omputationally infeasible to�nd its se
ret
ounterpart SA, or even produ
e a valid signature of Ato a new do
ument X.There are many signature s
hemes proposed, out of whi
h RSA [RSA78℄and Digital Signature Standard (DSS) [NIS00℄ are two of the most popularones. You may also look at Birgit P�tzmann's ex
ellent PhD thesis [P�96℄for more information on digital signature s
hemes.1.3 When was the do
ument signed?It is not always enough to know who
reated/signed the do
ument, butalso when it was done. For an example, if Ali
e signs a promissory noteand makes her private key publi
 right after that, she
an later
laim thatanybody
ould have given the signature instead of her. One possible solutionto this problem is to make Ali
e responsible for all signatures given with herprivate key until she expli
itly
laims her private key
ompromised (revokesher key). Hen
e, before a

epting Ali
e's promissory note, the bank shouldverify whether Ali
e has revoked her key and give her money only if the keyis still valid. For instan
e, if digital
erti�
ates (the framework of statingthe validity of signature keys proposed by Kohnfelder [Koh78℄) are used, thebank may
onsult an OCSP [MAM+99℄ server or a Notary server [ABRW01℄.Nevertheless, in order to be able to prove later (e.g. in
ourt) thatAli
e's key was not revoked at the moment of signing, the bank has topresent some more
onvin
ing arguments than just the
laim �We
he
kedthat the signature key was valid�. These extra arguments should at least saywhat happened before � was it the a
t of signing or the a
t of revo
ation.One of the most widely used ideas to over
ome this problem is to in-trodu
e a new party to the game. This party is responsible for atta
hing12

PSfrag repla
ements X

X

Y
Y

TSX

TSX

TSY
TSYTSA

?<>:
Veri�erFigure 1.1: The general model of time-stamping.time information (time stamps) to the do
uments (or to any other kind ofdigital data, e.g. au
tion bids, patent
laims et
.). Be
ause of its role, heis generally known as Time-Stamping Authority (TSA).The general work model of TSA is explained in Figure 1.1. If a do
u-ment X is to be time-stamped, some
ommuni
ation is initiated with theauthority. During this
ommuni
ation the do
ument is transmitted to theTSA who
omputes the time stamp TSX and returns it. Of
ourse, thewhole proto
ol
an be mu
h more
ompli
ated than just having one pass,e.g. we might add
lient and/or server authenti
ation,
ompute the timestamp in several parts et
.It is not enough only to issue time stamps. We must also have means of
omparing them and establishing whi
h one was issued earlier (Figure 1.1,13

below). Of
ourse, in order to make the time-stamping system pra
ti
althere are several requirements to meet.� The proto
ol should not take too long to run.� The time stamps should be as small as possible to avoid unne
essaryoverhead in
ommuni
ation and storage.� It should not be ne
essary to invoke any parties (even the TSA) to theveri�
ation pro
edure, i.e. time stamps should be
omparable o�-line.The last two
onditions are in a way
ontroversial. The feature of o�-line
omparison implies that time stamps must
ontain enough informationabout all the other time stamps. As we want our time-stamping system toallow potentially any number of time stamps, it is for instan
e very di�
ultto make the time stamps having
onstant size. Hen
e, a tradeo� has to befound and the question how small
an o�-line
omparable time stamps beneeds an answer. Answering this question in
ase of time stamp for digitalsignatures is the
ore of this thesis, but before rea
hing the
ore we stillneed to dis
uss some details.1.4 Absolute and linkage-based time stampsThe standard approa
h when building a time-stamping framework is to givethe TSA a (generally trusted)
lo
k and let him sign the request togetherwith the
lo
k's state at the moment the request is re
eived. For exam-ple, the IETF PKIX time-stamping standard [ACPZ01℄ is based on thisidea. Still, su
h an absolute time-stamping approa
h su�ers from severaldrawba
ks.1. The TSA is
ompletely trusted. Among other things, this means thatthe TSA
an atta
h any time (not ne
essarily the
orre
t one) to therequests.2. As the TSA signs its statements, the
ompromise of its private keyalso be
omes a problemati
 issue.3. In a way, atta
hing absolute time to the do
uments gives too mu
hinformation. We are mostly not interested in exa
t time moments,but rather in establishing the temporal relationship (earlier/later) ofseveral events. This was the
ase with Ali
e's signature and key revo-
ation. It also is when we need to
ompare patent registrations, or tomake sure that a job-appli
ation arrived before the deadline et
.14

The last
onsideration leads to the question, whether it is possible toestablish temporal relationships by some other (less-demanding) means, andif so, perhaps it
ould also be possible to redu
e the trust requirements ofthe TSA.Su
h a framework
an be built by using one-way fun
tions to
reate un-deniable
ausal relationships between digital events rather than assigningphysi
al time to them. As a result, all the time-stamped items form some-thing like a
hain of links where it is impossible to insert some new elementsor to delete any old ones. Be
ause of this analogy the des
ribed approa
h is
alled linkage-based time-stamping . It was �rst proposed in 1990 in [HS91℄and later improved in [BLLV98℄.1.5 Two s
enarios of time-stampingBefore starting to
reate a new time-stamping s
heme we must analyze therequirements the s
heme has to meet. First, we will dis
uss the possiblesettings where it makes sense to apply time-stamping. On a very generallevel we
an distinguish the following two basi
 s
enarios.First s
enario: Who gets it �rst? In this s
enario, there are severalparti
ipants who are interested in the same resour
e and they need to be(among) the �rst ones to get it. There are many
ommon examples of thiss
enario.� When several s
ientists make the same invention, only the �rst one torea
h the patent bureau is the one who
an
laim the rights for theinvention.� If �ights are booked internationally, the airline
ompanies tend todouble-book some seats as their experien
e shows that many bookingsare often
an
eled. Still, from time to time, it happens that some�ights are over-booked and in this
ase only the �rst bookers shouldget the seats.� Temporal ordering of the requests
an be applied for several kinds ofau
tions, see [PSST01, RG95℄ for dis
ussion.In order to prove later to the patent-interested s
ientists that some of their
ompetitors were not favored unfairly, time-stamping is a natural tool touse. It is also quite easy to organize time-stamping in
ases like the onesabove as all the
lients are obliged to express their interest dire
tly anyway,by pressing a button or running to the travel agent. Hen
e, it is enough15

for the TSA to re
ord the moment of the interest expression and to issue atime stamp for that moment.Se
ond s
enario: When did the
at die? Re
all the S
hrödinger'sfamous mental
at experiment [S
h35℄ (the English translation used here isdue to John D. Trimmer [Tri80℄):A
at is penned up in a steel
hamber, along with the followingdevi
e (whi
h must be se
ured against dire
t interferen
e by the
at): in a Geiger
ounter there is a tiny bit of radioa
tive sub-stan
e, so small, that perhaps in the
ourse of the hour one ofthe atoms de
ays, but also, with equal probability, perhaps none;if it happens, the
ounter tube dis
harges and through a relayreleases a hammer whi
h shatters a small �ask of hydro
yani
a
id. If one has left this entire system to itself for an hour,one would say that the
at still lives if meanwhile no atom hasde
ayed.For us, the important question arising from this experiment is: if we openthe
hamber and see a dead
at then how
an we tell the exa
t moment ofdeath? The sad truth stated by S
hrödinger is � we
annot.A similar situation
an be observed in the
omputer world if we needto determine the time of some private digital a
tion. One very importantexample � signing � was already presented above. Note that the situationof signing is substantially di�erent from registering patents. As we sawbefore, a s
ientist interested in the honor of invention
an (and has to) showhis interest expli
itly and publi
ly. Signing, on the other hand, involvesappli
ation of a private signature key that is known only to the signer andto no-one else. Hen
e, no-one ex
ept for the signer knows the exa
t momentwhen the signature was
reated.So what
an we do if we still need to determine the time somehow?The answer is simple � if you
annot do it exa
tly, try to be as pre
ise aspossible and prove that the event took pla
e during some time interval. Forthe S
hrödinger's
at, this means saying that the
at died during the hourwhen the
hamber was
losed; for digital signatures the very same approa
happlies � if we
an prove that a signature was
reated during some (relativelyshort) time interval, one
an be reasonably satis�ed with the result. Thetime stamps used for the proof are
alled interval time stamps from nowon.
16

Whereas the �rst s
enario is pretty well studied [HS91, BLLV98, BL98,BLS00, Lip99℄, the se
ond one has arisen only re
ently. Still, being appli-
able for time-stamping digital signatures, it is by no means less importantthan the patent s
enario. There are also other possible appli
ations of inter-val time stamps. In prin
iple, any
omputation that is
arried out outsideof the dire
t sight of the TSA
an be a subje
t to it. For example,
om-putation of message authenti
ation
odes (MACs, see [MvOV97℄, Se
tion9.5) also involves usage of se
ret keys and hen
e interval time stamps are tobe used. Another interesting appli
ation of this approa
h is time-stampingother TSA's time stamps. This way, it is possible to
reate dependen
iesbetween the �histories� �written� by di�erent TSAs. These dependen
ies
an be used to� syn
hronize the a
tions of TSAs and make items in di�erent �histories�
omparable with ea
h other; and� in
rease the reliability and availability of the TSAs: when one TSA istemporarily down, the other one still retains the
ontinuity of the �rstone's work (see [ABSW01℄ for a more detailed dis
ussion on availabil-ity issues).1.6 Obje
tives and outline of the thesisThe basi
 motivation of this thesis was already stated in Se
tion 1.3. Addingthe results of the dis
ussions from Se
tions 1.4 and 1.5, we formulate thefollowing
entral problem of the thesis.Find a linkage-based time stamping s
heme that provides assmall interval time stamps as possible and enables o�-line
om-parison.When solving this problem we will mostly
on
entrate on the mathe-mati
al side and postpone the dis
ussion about pra
ti
al implementationsto the end. Still, this dis
ussion is by no means less substantial than therest of the thesis as the work of the TSA must also be e�
ient and reli-able. Hen
e, when proposing some new s
hemes, one must also ask howgood algorithms
an be designed based on mathemati
al des
riptions of thes
hemes.The rest of the thesis is devoted to solving these two problems and isorganized as shown below. Several results presented in the thesis have notyet been published on any
onferen
e nor in any journal, but rather in a17

series of manus
ripts and te
hni
al reports. The referen
es
an be foundbelow as well.� Chapter 2 gives te
hni
al ba
kground and a brief histori
al overviewne
essary to understand the rest of the thesis.� Chapter 3 presents a general framework of linking s
hemes togetherwith detailed te
hni
al des
riptions. Size-e�
ien
y of the previousbest-known time-stamping system is
onsidered for interval time stampsand improved by 25%. This result was �rst obtained by Buldas andWillemson and des
ribed in manus
ript [BW01a℄.� Chapter 4 presents a new family of linking s
hemes and proves itsasymptoti
al optimality with respe
t to an upper bound for the size oftime stamps. The new s
heme family was de�ned �rst in [BW01a℄ andfurther analyzed in [BW01b℄ by Buldas and Willemson. The optimals
hemes were �rst found by the author of the thesis in [Wil01b℄.� Chapter 5 dis
usses the restri
tions that are set on the TSA's serverthat uses new linking s
hemes. We give an e�
ient and reliable al-gorithm for generating the s
hemes on the �y. The algorithm wasoriginally des
ribed by the author in [Wil01a℄.� Chapter 6 ends the thesis and draws some philosophi
al
on
lusions.

18

2 STATE OF THE ART2.1 Hash fun
tionsIn order to build a linkage-based time-stamping s
heme we use a
ollisionresistant hash fun
tion (see [MvOV97℄,
hapter 9)1, i.e. a fun
tion h su
hthat it� inputs bit-strings of arbitrary length and outputs bit-strings of �xedlength k, i.e. h : f0; 1g� ! f0; 1gk ;� works e�
iently (i.e. for any x, h(x) is easy to
ompute);� is
ollision resistant : it is
omputationally infeasible to �nd inputsx 6= x0 su
h that h(x) = h(x0).It
an be easily seen (e.g. [Sti95℄,
hapter 7) that (under some natu-ral extra
onditions)
ollision resistant hash fun
tions also have the nextdesirable properties:� preimage resistan
e: for essentially all outputs y 2 f0; 1gk it is infea-sible to �nd x 2 f0; 1g� su
h that h(x) = y;� 2nd preimage resistan
e: for given x 2 f0; 1g�, it is infeasible to �ndx0 6= x su
h that h(x) = h(x0).Whereas the question of existen
e of su
h fun
tions is still open, several
andidates have been tailored and they are believed to be good enoughfor pra
ti
al use. SHA-1 [NIS95℄ together with its improvements SHA-256,SHA-384 and SHA-512 [NIS01℄ are the most popular ones at the time ofthis writing.Later on we will extensively use the notation h(x1; x2; : : : ; xl) and bythat we mean the value of the fun
tion h on some prede�ned data stru
turefrom where all the bit-strings x1; x2; : : : ; xl
an be restored. One might e.g.use
on
atenation of the strings or some
ontainer format.1As the idea of the
urrent thesis is not to make a deep
ontribution into the theoryof hash fun
tions, our de�nition used here is rather informal and intuitive. For moredetailed dis
ussion we refer the reader to [Pre93℄.
19

��

�
�
�
�

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

�� �� �� ��

��
��
��
��

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

��
��
��
��
��
��

��
��
��
��
��
��
����
����
����
����
����
����

����
����
����
����
����
����
������
������
������
������
������

������
������
������
������
������

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

������
������
������
������
������

������
������
������
������
������

���
���
���
���
���
���

���
���
���
���
���
���

��
��
��
��
��
��

��
��
��
��
��
��

PSfrag repla
ements

x1 x2 x3 x4 x5 x6h1 = h(x1; x2)h2 = h(h1; x3) h3 = h(x4; x5)h4 = h(h3; x6)h5 = h(h2; h4)

Figure 2.1: Example of Merkle's authenti
ation tree.2.2 Proving dependen
ies between the data itemsIn what follows, we will
onsider a pro
ess where outputs of some hash
omputations are used as inputs to others. This way we
an make oneoutput value dependent on many input values and prove this dependen
eby exposing some of the inputs or intermediate hash values. For instan
e,if we are given x1; x2 su
h thath(x1; h(x2; x3)) = y (2.1)then we say that y depends on the inputs x1; x2; x3 in the sense that thereis no other way to obtain y as a result of some hash
omputations than
omputing it by formula (2.1) (be
ause otherwise we should be able to�nd se
ond preimages to the fun
tion h). Hen
e, in order to prove that ydepends on x2, it is su�
ient to show the additional values x1 and x3 sothat anyone
an
ompute h1 = h(x2; x3) and verify that y = h(x1; h1).Su
h a reasoning
an be generalized to quite
ompli
ated data stru
-tures, for instan
e to binary trees as done by Merkle [Mer80℄. Figure 2.1presents an example of resulting Merkle's authenti
ation tree.Similar to the above, for all the leaves labeled x1; : : : ; x6 it is possibleto prove that h5 depends on them. For instan
e, if the dependen
e of h5on x3 is to be proven, one may add the verti
es h1 and h4 and the veri�ermay
ompute h2 = h(h1; x3) and h5 = h(h2; h4).Hen
e, if h5 is published in authenti
 and undeniable way, the presen
eof the leaves x1; : : : ; x6 at the time of forming the Merkle's authenti
ationtree
an not later be denied (even by the party who formed the tree). If we
onsider x1; : : : ; x6 to be re
ords in some database D, then h5 is the digest of20

D and the proof methodology des
ribed above
an be used to prove whetherfor any parti
ular xi the
ondition xi 2 D or the
ondition xi 62 D holds.We refer the reader to [BLL00, BRW02℄ for more details.2.3 Linkage-based time-stampingAs noted in Se
tion 1.3, there are two se
urity drawba
ks in absolute-timebased time-stamping: the need to trust the TSA and TSA's potential key
ompromise. Hen
e, in order to avoid these problems, the TSA should havetools for time-stamping su
h that1) he is not able to re
ompute his statements afterwards; and2) his statements do not depend on any se
ret information.It turns out that the
ryptographi
 hash fun
tions des
ribed in Se
tion 2.1
an be su

essfully applied in order to meet the requirements above.This idea was �rst proposed by Haber and Stornetta in [HS91℄ whointrodu
ed linking s
hemes. They
ompare a linking s
heme with a labnotebook the entries of whi
h are �lled one after another and the sewn-inpages of whi
h make the re
ord hard to tamper with.The approa
h of Haber and Stornetta is (being a bit simpli�ed) thefollowing. Let us have a
ollision resistant hash fun
tion h and let xn bethe next time-stamping request (later also
alled an item). The time stampfor xn will be (xn; Ln);where Ln is the linking information de�ned asLn = (xn�1; h(Ln�1)):Thus one-way dependen
ies are
reated between the linking informationstrings Ln and through them also between the items xn, allowing us tosay that xn was time-stamped later than xn�1. As no-one knows how to
ompute se
ond preimages for the hash fun
tion, even the TSA
an notalter the time stamps after they are issued. Of
ourse he
an try to delaysome time-stamps, but if he delays too mu
h he will be
aught on
heating.Be
ause the linking information items form a linear
hain, su
h s
heme is
alled linear ; an example is depi
ted in Figure 2.2.Though reliable in the sense of se
urity, the linear linking s
heme of[HS91℄ is very impra
ti
al for two reasons.21

����

����

�� �� ���� �� ��

�� �� ���� �� ���
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

����������������������������������

PSfrag repla
ements
L1 L2 L3 L4 L5 L6
x1 x2 x3 x4 x5 x6Figure 2.2: Example of linear linking s
heme.� Every time it is ne
essary to establish the temporal relationship be-tween two items, the veri�er must re
ompute the whole
hain betweenthem and this requires a lots of time if the items are far apart.� For the veri�
ation pro
edure it is ne
essary to have all the interme-diate items available as well. They
an be kept in a
entral server,at the veri�er or anywhere else, but the required storage spa
e in-
reases linearly in time anyway. Besides, if for some reason the stor-ing server be
omes unavailable, time stamp dependen
ies
an not beveri�ed anymore. On
e again, we refer the reader more interested inthe availability issues to [ABSW01℄.2.4 O�-line
omparabilityBy o�-line
omparability we mean the property of the time-stamping s
hemeto provide su
h time stamps that
an be
ompared by the veri�er without
onne
ting to any other parties, i.e. based on the time stamps only.Is it possible to a
hieve this property? The answer is a�rmative, as it
an be seen from the following naïve time-stamping s
heme:� time stamp for the request xi is the set Ti = fx1; x2; : : : ; xi�1g;2� if it is ne
essary to
ompare the time stamps Ti and Tj of the itemsxi and xj , respe
tively, �nd out whether xi 2 Tj or xj 2 Ti.Another s
heme providing o�-line
omparable time stamps, but also lineartime stamp size was proposed by Pinto and Freitas in [PF96℄.There have been several attempts to de
rease the size estimate for timestamps based on Merkle's authenti
ation trees, e.g. Benaloh and de Mare2The time stamp Ti may also be signed by the TSA in order to a
hieve authenti
ationand non-repudiation. In this
ase we also need o�-line signature veri�
ation as done e.g.in [ABRW01℄. 22

�������
���
���
���

���
���
���
���

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�
���
���
���
���
���

���
���
���
���
���

�
�
�
�
�

�
�
�
�
�

��

��

��
��
��
��

�
�
�
�

������

����

����

�
�
�
�
��
��
��
��

������

����

����

�
�
�
�
��
��
��
��

������������ ����
����
����
����

����
����
����
����

�
�
�
�
�

�
�
�
�
�
��
��
��
��
��

��
��
��
��
��

�
�
�
�
�

�
�
�
�
��
�
�
�
�
�
�

�
�
�
�
�
�
�

���
���
���
���

���
���
���
���

�
�
�
�

�
�
�
�

���
���
���
���
���

���
���
���
���
���

�
�
�
�
�

�
�
�
�
��
�
�
�
�
�
�

�
�
�
�
�
�
�

����
����
����
����

����
����
����
����

��
��
��
��
��

��
��
��
��
��

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

���
���
���
���
���

���
���
���
���
���

�
�
�
�
�

�
�
�
�
��
�
�
�
�
�
�

�
�
�
�
�
�
��� ������

PSfrag repla
ements
rl�1 rl rl+1

Figure 2.3: Example of linking s
heme of [BHS93℄.[BdM91℄ and Haber, Stornetta et. al. [BHS93, HS97℄. We
onsider herebrie�y the s
heme of Haber and Stornetta that lies on the foundation ofSurety Digital Notary and Timestamping Servi
e [Sur℄.Haber and Stornetta divide the work pro
ess of a time-stamping serverinto rounds. All the items xl1; : : : ; xlkl obtained during the round l are usedas leaves for a Merkle's authenti
ation tree. As explained in Se
tion 2.2,the tree's root value rl depends in undeniable way on all the items xli andthis dependen
e
an later be proven by exposing some additional items.The number of extra items needed is logarithmi
 in kl. In order to
reatedependen
ies between the root nodes of di�erent rounds, linear linking isused. An example of the Haber-Stornetta s
heme is depi
ted in Figure 2.3.Note that the items inside one round are a
tually not ordered in theHaber-Stornetta s
heme. In pra
ti
e, we may a

ept in
omparability oftwo time-stamps, if they are
lose enough in time. This implies the need tomake the duration of one round short enough in the Haber-Stornetta s
hemebut doing so we loose in logarithmi
 e�
ien
y provided by the Merkle'sauthenti
ation trees used inside the rounds.The �rst time-stamping s
heme providing both logarithmi
 time stampsizes and undeniable linear ordering of the items was proposed by Bul-das, Laud, Lipmaa, and Willemson in [BLLV98℄. Their basi
 idea was tolink a new item to two older ones: the previous item and a spe
i�
allysele
ted item from (possibly very distant) past. Be
ause of this propertythese s
hemes are
alled binary linking s
hemes. An example of [BLLV98℄s
heme is depi
ted in Figure 2.4The resear
h on size-optimal linking s
hemes was
ontinued by Bul-23

���� �� �� �� �������������� �� �� �� ������������������

���� �� �� �� �������������� �� �� �� ��Figure 2.4: Example of linking s
heme of [BLLV98℄.

24

das, Laud, Lipmaa and S
hoenmakers [BL98, BLS00℄. The Buldas-Lipmaa-S
hoenmakers (BLS-) s
heme [BLS00℄ was proven to give size-optimal timestamps for the patent s
enario, but in this thesis we show that for intervaltime-stamps more e�
ient solutions
an be given. We present a new familyof s
hemes based on unbalan
ed trees whi
h redu
es the size of time stampsabout 28%
ompared to the BLS-s
heme. We will also prove that with re-spe
t to the best
urrently known estimates for the time-stamp sizes, thisfamily of s
hemes is asymptoti
ally optimal.

25

3 LINKING SCHEMES3.1 Basi
 requirements3.1.1 General frameworkIn Chapter 2, we saw how several graphs1 (e.g.
hains and trees)
an beused to
reate dependen
ies between di�erent data items. In this
hapter,we
onsider the general
ase and assume a rooted dire
ted a
y
li
 graph(with ar
s heading towards the root) as a basis of our linkage-based time-stamping s
hemes.The items to be time-stamped are represented as nodes with in-valen
y0 (by an analogy with trees they are also
alled leaves in this thesis) and ar
srefer to hash
omputations performed using a prede�ned hash fun
tion h.In order to make statements about temporal relationships between di�erentitems, we also assume that the leaves of the graph are linearly ordered.There are n! possible orders for a graph with n leaves and not ne
essarilyall of them give rise to an equally good linking s
heme. Hen
e, spe
ifyingthe order of leaves plays an important role in s
heme
onstru
tion.Figure 3.1 shows a simple linking s
heme with time-stamped itemsx1; x2; x3; x4 and with hash values h1 = h(x2; x3); h2 = h(x1; h1); h3 =h(h1; x3); : : :.Based on su
h a s
heme the time-stamping server works as follows. Theserver's work is divided into a sequen
e of steps. At ea
h step i� a new item xi is obtained;� several hash
omputations are performed on xi and previously storedvalues;� for the next steps some old and some newly
omputed values arestored.An example of
omputations
arried out on the graph of Figure 3.1
an beseen in Table 3.1. Note that the set of values to
ompute and to store isnot ne
essarily uniquely determined by the graph. For example, on step 3we
ould also
ompute the values h3; h4; h5 and store the value h5 only.1The
urrent thesis relies on graph theory quite heavily. It was the author's
hoi
e notto in
lude an introdu
tory
hapter about graphs into the thesis as there are many goodresour
es available in literature. A reader in need for more ba
kground should probablystart from some
lassi
al books like [Chr75℄ or [Har69℄.26

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����

��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������

����������������
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

��������
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

PSfrag repla
ements
x1 x2 x3 x4

x5x6x7x8 h1h2 h3 h4h5 h6
h7Figure 3.1: A simple example of time-stamping s
heme.

Step Input Compute Store1 x1 x12 x2 x1; x23 x3 h1 = h(x2; x3), h2 = h(x1; h1) x3; h1; h24 x4 h3 = h(h1; x3), h4 = h(h3; x3), h6h5 = h(h2; h4), h6 = h(h5; x4)Table 3.1: A simple example of time-stamping
omputations.
27

In what follows, we will use the labels xi and hj in two di�erent mean-ings. First, they denote the a
tual values atta
hed to the verti
es and hen
ewe
an perform hash
omputations using the values xi and hj as arguments.Se
ond, we will usually speak about the verti
es xi and hj using the labelsas vertex referen
es just like it is a general
ustom in graph theory.Like in Chapter 2, we are able to prove one-way dependen
ies betweenseveral items, e.g. we
an say that h6 depends on x2. As a proof of su
ha statement, it is enough to give some extra items required to repeat thehash
omputations that lead from x2 to h6. For example, we
an
omputethat h(x2; x3) = h1;h(h1; x3) = h3;h(h3; x3) = h4;h(h2; h4) = h5;h(h5; x4) = h6;and hen
e we may present the set of items fx3; h2; x4g (sometimes
alledtime
erti�
ate) as a proof. Note that these
omputations are performedfollowing the dire
ted pathx2 ! h1 ! h3 ! h4 ! h5 ! h6: (3.1)Su
h a path will be
alled an authenti
ation path. Later we will also needthe ar
s that are not parts of the authenti
ation path but parti
ipate in the
omputation pro
ess. E.g., for the path (3.1) in Figure 3.1 the ne
essaryadditional ar
s are(x3; h1); (x3; h3); (x3; h4); (h2; h5); (x4; h6):These ar
s are
alled authenti
ation path support ar
s.At the same time it is also possible to verify the ne
essary dependen
eby
omputing h(x2; x3) = h1;h(x1; h1) = h2;h(h2; h4) = h5;h(h5; x4) = h6;where the time
erti�
ate fx3; x1; h4; x4g is required for proof.Later we will see that time
erti�
ate forms an important part of atime-stamp. As the main obje
tive of the thesis stated in Se
tion 1.6 is28

to de
rease the size time stamps, we are also interested in redu
ing thesize of time
erti�
ates. The minimal set (in the sense of
ardinality) ofextra nodes needed to prove the dependen
e of node y on node x is
alledauthenti
ator of node x (relative to node y) and is denoted by Auth(x; y).In order to be pre
ise we also give a formal de�nition of this notion.First we de�ne the operation of set hash.De�nition 1 Let G be a time-stamping graph and h be the hash fun
tionin use. Let K � V (G). Then SHh is a set hash operation that works asfollows:SHh : 2V (G) ! 2V (G) : K 7! K [fx = h(x1; : : : ; xk) :x1; : : : ; xk 2 K; (x1; x); : : : ; (xk; x) 2 E(G)g:It is natural to denote SH1h(K) := SHh(K), SH2h(K) := SHh(SH1h(K)),et
. As G is a �nite graph, for some natural number i it must happen thatSHih(K) = SHi+1h (K). This set will be denoted as SH�h(K).Now we are ready to de�ne what it means to be able to prove depen-den
ies.De�nition 2 A subset K of V (G) is
alled a proof set (proving the depen-den
e of y on x) if1) y 62 SH�h(K);2) y 2 SH�h(K [fxg).One of the proof sets (
hosen in some way) having the minimal
ardinalityis
alled authenti
ator and is denoted as Auth(x; y).Note that the set Auth(x; y) is not ne
essarily unique as there may beseveral proof sets of minimal
ardinality. For example, we may have bothAuth(h1; h5) = fx3; h2g and Auth(h1; h5) = fx1; h4g for the graph in Figure3.1. Later on, we should be
areful not to
ause misinterpretations basedon this non-uniqueness. As we will mostly be interested in the
ardinalityjAuth(x; y)j only, this is not going to be too di�
ult.As the notion of authenti
ation path was important in the �rst informaldes
ription of authenti
ators, it is interesting to ask, how this notion relatesto De�nition 2. In order to answer this question, we �rst prove the followinglemma.Lemma 1 If K is a proof set proving the dependen
e of y on x, then eitherx = y or there exists a prede
essor y0 of y su
h that K is also a proof setproving the dependen
e of y0 on x. 29

Proof. If x = y then we are done. If x is a prede
essor of y we are alsodone by De�nition 2.Otherwise,
onsider all the prede
essors y1; y2; : : : ; yk of y. As y 2SH�h(K [fxg) then by De�nition 1, for every index i it holds that yi 2SH�h(K [fxg). On the other hand, if for every index i it would hold thatyi 2 SH�h(K), it would also mean that y 2 SH�h(K) whi
h is not possible.Hen
e, for some prede
essor yi0 the
ondition yi 62 SH�h(K) is satis�ed.Choosing y0 = yi0
on
ludes the proof. 2Now we
an
arry on this pro
ess for several times: �nd a prede
essor y0of y, then a prede
essor y00 of y0, et
. As the graph G is �nite and a
y
li
,eventually we must arrive at the vertex x, obtaining hen
e the path from xto y.It is generally not the
ase that for any two verti
es there exists a de-penden
e one way or another. The root node r (r = h6 in Figure 3.1) is anex
eption: it depends on any other node and this way the whole �history�of the s
heme is
aptured into the root. This way we may say that the rootis younger than all the other items in the s
heme, but we would also like to
ompare the items inside the s
heme as well.For that purpose, we need to keep tra
k of the �history� throughout theformation of the s
heme: after a new item xj is added for time-stamping,we perform some hash
omputations and output a set of items
apturingone-way information about all the items time-stamped this far. We give thefollowing de�nition.De�nition 3 Set Hj � V (G) is
alled a history set (for the item xj) if1) 8i � j 9y 2 Hj su
h that y depends on (or is equal to) xi;2) every y 2 Hj
an be
omputed from the elements x1; x2; : : : ; xj.Note that the
hoi
e of the set Hj is generally not unique. For example,in Figure 3.1 we may take H3 = fx3; h1; h2g or H3 = fh2; h4g or evenH3 = fh5g.Next to the authenti
ators, the sets Hj form another important part ofthe time-stamps, hen
e we are interested in minimizing the number of theirelements as well.De�nition 4 The set history set Hj having the smallest possible
ardinalityis
alled freshness token and is denoted as FTj.Just as it was the
ase with the authenti
ators, we must be
areful whenoperating with the sets FTj as they are not uniquely determined. Beingmostly interested in the
ardinalities only, this will not be a big problem.30

Note that the de�nition of authenti
ators does not depend on the orderof leaves, but the de�nition of freshness tokens does.3.1.2 Interval time-stampingRe
all now our original task stated in Chapter 1. We need to prove thatsome a
tion C (e.g.
reation of a digital signature) took pla
e between twoevents (whi
h are not ne
essarily time moments, but
an also be linkingevents) t1 and t2. Su
h a proof must
learly
onsist of two parts:a) proof that C happened after t1; andb) proof that C happened before t2.Of
ourse, in order for our time-stamping system to work properly, thefollowing transitivity-resembling
ondition has to hold as well:
) if it is proven that C happened before t and D happened after t thenit is possible to prove that C happened before D.Let the TSA have rea
hed the state where the next item would be xj+1and the user A needs to sign a do
ument X together with interval timestamp. Then A needs some additional information that for any item xi,i � j lets him to prove that xi o

urred before the signature. Hen
e,this additional information must depend on all the previous items xi �and freshness token FTj is su�
ient for this purpose. The �rst steps ofobtaining a time stamp look like as follows2:1. A! TSA: request for the freshness token2. TSA! A: FTj3. A:
omputes � = SigAfX;FTjgNow the signature � depends in one-way fashion on all the previousrequests xi. How
an we give an upper bound to the time moment ofsigning? This
an be done simply by letting the signature to be the nexttime-stamping item xk:4. A! TSA: �5. TSA: adds xk = � to the linking s
heme,
omputes FTk et
.2Here we use standard
ryptographi
 proto
ol syntax where the expression A! B :X means that the party A sends the party B message X and the expression A : Z meansthat the party A takes a
tion Z. 31

By the
ondition
) above, in future it may of
ourse be ne
essary toprove that all the later freshness tokens FTl, l > k depend on xk. Thisholds also for the very last freshness token FTn = frg. The smallest proofof dependen
e of the root r on xk is given by the authenti
ator Auth(xk; r);later on, this set will also be
alled existen
e token (for xk)3. Clearly,the existen
e token
annot be issued before the whole graph is
ompleted.Therefore, the time-stamping pro
edure is �nished as follows:6. TSA:
ompletes the s
heme by
omputing the root value r;7. TSA! A: Auth(xk; r).But what about the other freshness tokens FTl, r > l > k? Do we needspe
ial authenti
ators for all of them? This would
learly be too resour
e-
onsuming and hen
e we state a mu
h simpler requirement. Namely, werequire that the very same authenti
ator Auth(xk; r) should be enough forproving all the other ne
essary dependen
ies as well:8k < l 9y 2 FTl : Auth(xk; y) � Auth(xk; r): (3.2)The next theorem shows an important
lass of graphs that satisfy thisrequirement.Theorem 1 For any tree T with linearly ordered leaves the
ondition (3.2)holds.Proof. Let the leaves of T be ordered as x1; x2; : : : ; xn and let xk be anarbitrary leaf. As T is a tree, there exists the unique authenti
ation pathxk ! h1 ! h2 ! : : :! r; (3.3)and also the authenti
ator Auth(xk; r) is unique. Even more, for any vertexv on the authenti
ation path (3.3) it holds thatAuth(xk; r) = Auth(xk; v) �[Auth(v; r)(where �[denotes disjoint union) whi
h impliesAuth(xk; v) � Auth(xk; r):3It was suggested to the author by several readers that a notation symmetri
 to FTishould be used for this notion as well; so it
ould be something like ETi or ET(xi). Still,this notation was not a

epted in the
urrent thesis as by the author's opinion this would
ause more loss than gain in understandability of Chapter 4.32

Hen
e the theorem is proven if we
an prove that for any freshness tokenFTl (l > k) there is a vertex y 2 FTl that belongs to the authenti
ationpath (3.3). But this is a dire
t impli
ation of De�nitions 3 and 4. 2Running a bit ahead, we
an say that all the parti
ular time-stampings
hemes that will be proposed in the
urrent thesis belong to the
lassof graphs des
ribed in Theorem 1. In what follows, we will not refer tothe theorem expli
itly but keep it in mind every time a new s
heme is
onstru
ted.After doing all the work above, we are �nally ready to de�ne the notionof interval time stamp.De�nition 5 Let G be a time-stamping s
heme with leaves x1; : : : ; xn and1 � i < j � n. Interval time stamp for the interval [i; j℄ is the pair(FTi;Auth(xj ; r)):3.2 Optimization goalWhen time stamps are used to establish relationships between digital signa-tures, it is
onvenient to have the time stamps atta
hed to the signatures.Still, we do not want to add too mu
h storage overhead be
ause of the timestamps. Hen
e, it is important to redu
e the size of time stamps as mu
has possible and this is the main goal of the
urrent thesis.In Se
tion 3.1, we saw that interval time stamps
onsist of two parts �freshness token FTi and existen
e token Auth(xj; r). In order to estimatethe size of the whole time stamp, we will use the following de�nitions.De�nition 6 By the width of the
omputation graph G we mean the valueW (G) = maxi=1;:::;n jFTij:De�nition 7 By the depth of the
omputation graph G we mean the valueD(G) = maxi=1;:::;n jAuth(xi; r)j:It is
lear that W (G) and D(G) are the upper bounds for the sizes offreshness and existen
e tokens, respe
tively.It may happen that the freshness and existen
e tokens for some digitalsignature have some elements in
ommon, so we
on
lude that the size oftime stamps is upper bounded by the valueW (G) +D(G);33

��

�
�
�
�

��

����

����

����

���� ����

��
��
��
��

���� ��

PSfrag repla
ements G1 G2Figure 3.2: The
onstru
tion G1
G2.but this estimate is not ne
essarily sharp. It is an interesting open questionto obtain exa
t bounds for the size of time stamps.As all the
urrently known e�
ient linking s
hemes provide time-stampsizes logarithmi
 in the number of items, we are interested in
omparingthis value to log2 kGk where kGk denotes the number of leaves of the graphG. Hen
e, in what follows we will be optimizing the following quantity:�(G) = W (G) +D(G)log2 kGk : (3.4)3.3 Composition of linking s
hemesIn the
onstru
tion of our new s
hemes we need the following
ompositionoperation whi
h is similar to that proposed in [BL98℄.De�nition 8 The graph with one vertex and no ar
s is I.De�nition 9 Let G1 and G2 be two rooted dire
ted a
y
li
 graphs with rootverti
es r1 and r2, respe
tively. Then by G1
 G2 we denote the tree withvertex set V (G1
G2) = V (G1) [V (G2) [frg and ar
 set E(G1
G2) =E(G1) [E(G2) [f(r1; r); (r2; r)g, where r is a new vertex. The subgraphsG1 and G2 will be
alled left and right subgraphs, respe
tively.The
onstru
tion G1
G2 is depi
ted in Figure 3.2.It is
lear that starting from the tree I and applying this
onstru
tionre
ursively, we obtain only binary trees, and even more, every rooted di-re
ted binary tree
an be
onstru
ted this way. In order to use these treesas time-stamping s
hemes, a linear order has to be de�ned on their leaf set(see Subse
tion 3.1.1). 34

3.4 Topologi
ally sorted binary treesDe�nition 10 We say that the binary tree T is topologi
ally sorted if forevery non-leaf node one of its
hildren is marked as left and the other oneas right
hild.Note that this de�nition indu
es a natural linear order (whi
h we will also
all topologi
al) for all the leaves of the topologi
ally sorted binary tree.This order
an be formalized in the following way.1. Let the root be labeled by the empty string �.2. For every vertex labeled by a string � let its left
hild be labeled bythe string �L and the right
hild by the string �R.3. Order the leaves into the lexi
ographi
 order of their labels (note thatL pre
edes R in the alphabet).It is
lear that the leaves of all binary trees
an be topologi
ally sorted byde�ning the right and the left
hildren for every inner node in some way. Inwhat follows, we will assume su
h an order from the leaves of
-
onstru
tedtrees, if not otherwise expli
itly stated.For topologi
ally sorted binary trees the following lemma holds.Lemma 2 Let T be a topologi
ally sorted binary tree and T = T1
T2 (su
ha presentation being obviously unique). Then the following equalities hold.W (T) = maxfW (T1);W (T2) + 1g;D(T) = maxfD(T1);D(T2)g+ 1:Proof. When the TSA builds the freshness tokens in the graph T , it �rstgenerates the the ones
orresponding to the left subtree T1 and then theones
orresponding to the right subtree T2. In the latter
ase we see fromDe�nition 3 that some of the nodes in the freshness tokens must
apture allthe leaves of T1 as well. De�nition 4 requires the number of these nodes tobe as small as possible (note that the freshness tokens for the two subtreesare independent). Hen
e the best solution is to add the root of the subtreeT1 to all the freshness tokens of the subtree T2. This proves the �rst equality.In order to prove the se
ond equality, that let r, r1 and r2 be the rootsof the trees T , T1 and T2, respe
tively. Then for any item xiAuth(xi; r) = � Auth(xi; r1) [fr2g; if xi 2 T1;Auth(xi; r2) [fr1g; if xi 2 T2:35

The proof is now straightforward. 2Remark. Some
are has to be taken here in order to make sure what anequation like Auth(xi; r) = Auth(xi; r1) [fr2ga
tually means
onsidering that the sets Auth(xi; r) and Auth(xi; r1) arenot, in general, uniquely determined. One should read this equation in thefollowing way: �For any possible authenti
ator Auth(xi; r1) we obtain anauthenti
ator Auth(xi; r) by adding the node r2 to it�. A similar
lari�
ationis appli
able for the freshness tokens as well. 4It is interesting to note that the following lemma holds.Lemma 3 If T is a topologi
ally sorted binary tree with leaves x1; x2; : : : ; xnand root r then for ea
h index iFTi � Auth(xi; r)holds.As we do not need this lemma in the
urrent thesis, we do not prove ithere but refer to [BLS00℄ for the proof of a
ompletely analogous result.3.5 Complete treesThe
omplete (binary) tree Cd of depth d is de�ned by the following re
ursives
heme5: Cd = � I; if d = 0;Cd�1
 Cd�1; if d > 0:Clearly, kCdk = 2d and W (Cd) = D(Cd) = d. Hen
e,�(Cd) = d+ dd = 2:It is also easy to see that the estimate obtained does not
hange if we
onsider the a
tual size of time stamps instead of the value W (Cd)+D(Cd).This
laim follows from the fa
t that interval time stamps in this tree
an4It is not di�
ult to see that in the
ase of topologi
ally sorted binary trees bothauthenti
ators and freshness tokens are in fa
t unique. Still the above remark must betaken into a

ount in future arguments.5In this se
tion and further on, the equality of graphs is a
tually an isomorphism.The author will use both = and ' to represent the isomorphism, whi
hever symbolseems more suitable in a parti
ular
ase. 36

��

��
��
��
��

��
��
��
��

���� �� ��

������������������������

�����
�����
�����
�����

�����
�����
�����
�����

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

�
�
�
�
�

�
�
�
�
�

��
��
��
��
��

��
��
��
��
��

�
�
�
�
�

�
�
�
�
�

��
��
��
��
��

��
��
��
��
��PSfrag repla
ements x2d�1 x2d�1+1Figure 3.3: Complete tree with an interval time stamp of size 2d� 1.have size 2d � 1. Indeed, if the requests are x1; x2; : : : ; x2d , the freshnesstoken for the item x2d�1 (i.e. the set FT2d�1�1) has size d � 1 and theexisten
e token of the item x2d�1+1 has size d, where the tokens are
learlydisjoint; see Figure 3.3.Binary trees were used as the basis for BLS-s
heme [BLS00℄, and al-though proven to be the optimal ones for time-stamping in
ase of patents
enario, the estimate �(Cd) = 2 is not the best possible for interval timestamps. In Se
tion 3.6, we will see that the ratio �(G)
an be improved byat least 25% by
onsidering a di�erent family of trees.3.6 S
hemes with �(G) = 1:5 + o(1)De�nition 11 Let the family Sdw of trees be de�ned as follows6:Sdw = � I; if d = 0 or w = 0;Sd�1w
Sd�1w�1; if w > 0 and d > 0:See Figure 3.4 for an illustration of this re
ursive pro
ess. It is not hardto
ome up with the following hypothesis (whi
h, as we will prove, is true)looking at the �gure.Theorem 2 If w � d then Sdw ' Cd.6The notation Sdw using Gothi

apital S originates from the phrase �Signature time-stamping s
heme� having in mind the primary appli
ation of the de�ned family of treesas time-stamping s
hemes for digital signatures.37

��

�
�
�
�

����

�
�
�

�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

����

�
�
�

�
�
�

����������

�
�
�

�
�
�

��

��

������

�
�
�

�
�
�

����

��
��
��
��

����

�
�
�

�
�
�

������������

�
�
�

�
�
� ��

�
�
�
�������������

��

�
�
�
�

������

�
�
�

�
�
�

�
�
�
�

��������

�
�
�

�
�
�

����

����

����

�
�
�

�
�
�

��

�
�
�
�

������

�
�
�

�
�
�

����������

�
�
�

�
�
�

��

�
�
�
�

������

�
�
�

�
�
�

��

�
�
�
�

������

�
�
�

�
�
�

����

��
��
��
��

����

�
�
�

�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

����

�
�
�

�
�
�

����������

�
�
�

�
�
�

��

��

����
��

�
�
�
�

�
�
�
�

��

�
�
�
�

������

�
�
�

�
�
�

��
��
��
��

��
��
��
��

�
�
�
�

��

�
�
�

�
�
�

������������

�
�
�

�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

����

�
�
�

�
�
�

�
�
�
�

�
�
�
�

����

�
�
�

�
�
�

������������

�
�
�

�
�
�

��

��
��
��
��

������

�
�
�
�

��

�
�
�
�

����������

�
�
�

�
�
�����

�
�
�

�
�
�

�
�
�

�
�
�

��

�
�
�
�

��������

�
�
�

�
�
�

��
��
��
��

��
��
��
��

�
�
�
�

��

�
�
�

�
�
�

����������

�
�
�

�
�
�

��

��

������

�
�
�

�
�
�

��

�
�
�
�

������

�
�
�

�
�
�

��������

�
�
�

�
�
� ����

�
�
�
�����������

��

�
�
�
�

������

�
�
�

�
�
�

�
�
�
�

�
�
�
�

��
��
��
��

��

�
�
�

�
�
�

��������

�
�
�

�
�
�

��
��
��
��

��
��
��
��

�
�
�
�

��

�
�
�

�
�
�

��
��
��
��

��
��
��
��

����

����������������

����

��

��

������

�
�
�

�
�
�

����

����

������

�
�
�

�
�
�

������������

�
�
�

�
�
�

��

��

����
��

�
�
�
�

�
�
�
�

����

����

����

����
��������

����

�
�
�

�
�
�������������

����

����

����

�
�
�

�
�
�

��

�
�
�
�

������

�
�
�

�
�
�

����������

�
�
�

�
�
�

��

��

������

�
�
�

�
�
�

����

����

����

�
�
�

�
�
�

������������

�
�
�

�
�
� ��

�
�
�
�������������

��

��

��

����

�
�
�

�
�
�

��

�
�
�
�

������

�
�
�

�
�
�

����������

�
�
�

�
�
�

��

��

����
��

�
�
�
�

�
�
�
�

����

����

����

�
�
�

�
�
�

����
��������

�
�
�
�

�
�
�
�

��

�
�
�

�
�
�������������

����

����

����

�
�
�

�
�
�

��

��

������

�
�
�

�
�
�

����������

�
�
�

�
�
���

��
��
��

��
��
��
��

�
�
�
�

��

�
�
�

�
�
�

��

�
�
�
�

������

�
�
�

�
�
�

��
��
��
��

��
��
��
��

�
�
�
�

��

�
�
�

�
�
�

����������

�
�
�

�
�
�

��
��
��
��

��
��
��
��

�
�
�
�

����

�
�
�

�
�
�

��
��
��
��

��
��
��
��

����

����������������

��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��

��
��
��
��
����������

�
�
�

�
�
���

�
�
�

�
�
�

�
�
�

�
�
�

��

��

�
�
�
�

������

��
��
��
��

��

�
�
�
�
����������

�
�
�

�
�
���

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��
��

����

�
�
�
�

�
�
�
�

��
��
��
��

�
�
�
�

��

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��
��

��
��
��
��
��

PSfrag repla
ements
w d0 0

1
1

2

2

3

3 4

4
Figure 3.4: The pro
ess of forming the trees Sdw.

38

Proof. We use indu
tion on d. For d = 0S0w = I = C0;so the
laim holds in this
ase. Assume now the
laim of the Theorem istrue for some d and
onsider a tree Sd+1w , where w � d+ 1. By De�nition11, we have Sd+1w = Sdw
Sdw�1 = Cd
 Cd = Cd+1by indu
tion hypothesis, as w � d+1 implies both w � d and w�1 � d. 2The
ase of
omplete trees was already
onsidered in Se
tion 3.5. Nextwe will look at the
ase w < d to try to lo
ate trees G = Sdw for whi
h�(G) < 2. Assuming the inequality w < d, we now prove the followingtheorem.Theorem 3 If w < d then the following
laims hold:1. W (Sdw) = w;2. D(Sdw) = � d; if w > 0;0; if w = 0;3. kSdwk =Pwk=0 �dk�.Proof.1. We use indu
tion on d. If d = 1 then w = 0 andW (S10) = W (I) = 0;hen
e the
laim holds for d = 1.For the step of indu
tion we �rst note that the trees Sdw are all topo-logi
ally sorted and hen
e Lemma 2
an be applied. We obtainW (Sdw) = W (Sd�1w
Sd�1w�1) = maxfW (Sd�1w);W (Sd�1w�1) + 1g:If now w < d� 1, we haveW (Sdw) = W (Sd�1w
Sd�1w�1) = maxfW (Sd�1w);W (Sd�1w�1) + 1g == maxfw; (w � 1 + 1)g = wbe
ause of the indu
tion hypothesis.If w = d� 1 then Sd�1w = Cd�1,
onsequentlyW (Sd�1w) = W (Cd�1) = d� 1 = wand hen
e the above
omputation holds for this
ase as well.39

2. If w = 0 then D(Sdw) = D(I) = 0:If w > 0 we on
e again we use indu
tion on d. The indu
tion basisis veri�ed exa
tly as above. For the indu
tion step we obtain fromLemma 2 that the equalityD(Sdw) = maxfD(Sd�1w);D(Sd�1w�1)g+ 1holds. Now for d+ 1 (under assumption w > 0) we have:D(Sd+1w) = maxfD(Sdw);D(Sdw�1)g+ 1 == maxfd; (d _ 0)g+ 1 = d+ 1;where the notation (d_0) means an entity with the value being equalto d or 0 (depending on w). Note that the assumption w < d is nota
tually needed for this part of the theorem.3. First note that the
laim holds for w = 0 askSd0k = kIk = 1 = 0Xk=0�dk�:Straightforwardly, the
laim holds also for w = d:kSddk = kCdk = 2d = dXk=0�dk�:Now we use indu
tion on d. For d = 1 we have w = 0 and the requiredequality holds as shown above. For d > 1 and 0 < w < d+ 1 we havekSd+1w k = kSdwk+ kSdw�1k = wXk=0�dk�+ w�1Xk=0 �dk�= �d0�+ wXk=1�dk�+ wXk=1� dk � 1�= �d+ 10 �+ wXk=1 ��dk�+� dk � 1�� == �d+ 10 �+ wXk=1�d+ 1k � = wXk=0�d+ 1k �:40

2 Unfortunately, there is no known
losed formula for Pwk=0 �dk�. Still, ifd = 2w + 1 we
an
ompute the exa
t value as follows:kS2w+1w k = wXk=0�2w + 1k � = 12 � " wXk=0�2w + 1k �+ wXk=0�2w + 1k �# == 12 � " wXk=0�2w + 1k �+ 2w+1Xk=w+1�2w + 1k �# == 12 � 2w+1Xk=0 �2w + 1k � = 12 � 22w+1 = 22w:So if we use Tw = S2w+1w in a tree-based time-stamping s
heme, the numberof elements in time
erti�
ate for a digital signature is upper bounded byW (Tw) +D(Tw) = w + 2w + 1 = 3w + 1:Hen
e, �(Tw) = W (Tw) +D(Tw)log2 kTwk = 3=2 + o(1);whi
h about 25% less than in the
omplete tree s
heme. The next
haptershows that this estimate
an be improved even further, but not too mu
h.

41

4 OPTIMAL LINKING SCHEMES4.1 Optimal family of s
hemesIn order to �nd the optimal s
hemes in the sense of the ratio (3.4) we studythe situation in more detail. Let G be the
lass of all �nite rooted dire
teda
y
li
 graphs. Our aim is to prove the following theorem.Theorem 4 For the
hara
teristi
 � the following is true:inff�(G) : G 2 Gg = 1log2 1 +p52 ! :This in�mum is approa
hed for the trees Sdw withwd � 3�p52 and d!1:We present a proof in several steps by proving a sequen
e of lemmas;the proof methodology is similar to the one found in [BLS00℄. Ea
h of the�rst four lemmas shows one redu
tion from more general
lass of graphs tomore spe
i�
 ones until we end up with the trees Sdw. The
ru
ial pointis to show how to
arry all the redu
tions out without in
reasing the value�(G). The �nal lemma determines the optimal value of �(Sdw). Note thatas the value 1log2 1 +p52 !is irrational1, but all the values �(G) are rational no graph G
an have thisvalue for �(G), it
an only be approa
hed asymptoti
ally. The statementsof the lemmas are the following.Lemma 4 For any rooted dire
ted a
y
li
 graph G there exists a tree Tsu
h that �(T) � �(G).1This
laim is not di�
ult to prove by the following standard argument. Iflog2 � 1+p52 � = ab with a; b 2 N, we get 1+p52 = 2a=b and 1 + p5 = 2(a+b)=b. Hen
e,(1 +p5)b = A+Bp5 (A;B 2 Nnf0g) should be an integer, a
ontradi
tion.42

Lemma 5 For any tree T there exists a binary tree T 0 su
h that �(T 0) ��(T).Lemma 6 For any binary tree T 0 there exists a topologi
ally sorted binarytree T 00 su
h that �(T 00) � �(T 0).Lemma 7 For given non-negative integers w and d, any topologi
ally sortedbinary tree T having the greatest number of leaves and W (T) = w, D(T) =d, is isomorphi
 to Sdw.Lemma 8 The equalityinff�(Sdw) : w < dg = 1log2 1 +p52 !holds. This in�mum is approa
hed forwd � 3�p52 and d!1:4.2 Proof of Lemma 4Assume �rst that we have any rooted dire
ted a
y
li
 graph G as our time-stamping s
heme. If it is not a tree (otherwise, the lemma is done), wemust have verti
es with out-valen
y greater than 1. Let v be a vertex without-valen
y k � 2 su
h that all of its prede
essors have out-valen
y 1; hen
ev is the root of an indu
ed subtree T of G (su
h a v exists be
ause G isa
y
li
).Consider the authenti
ator Auth(v; r). Let v1; : : : ; vk be all the dire
tsu

essors of v and let the authenti
ation path
orresponding to Auth(v; r)start with the ar
 (v; v1). We will show that deleting the ar
s (v; v2),: : :,(v; vk) (and possibly some other ar
s and verti
es) from G does not in
reasethe value of �(G).As a result of edge deletion,
ardinalities of the sets FTi
annot in
rease,but
ardinalities of the sets Auth(xi; r), in prin
iple,
an. We study thisproblem in more detail. The analysis will be
arried out for two di�erent
ases.1. Consider �rst the items xi not belonging to the subtree rooted in vtogether with their authenti
ation paths and the
orresponding au-thenti
ation path support ar
s. It is
lear that if none of the ar
s43

(v; v2); (v; v3); : : : ; (v; vk) belongs to any of the sets of authenti
ationpath support ar
s then deleting the ar
s (v; v2); (v; v3); : : : ; (v; vk) doesnot a�e
t any of the sets Auth(xi; r). But if we deleted some authen-ti
ation path support ar
 then it may happen that the
ardinalities ofsome sets Auth(xi; r) in
rease. There are two
losely
onne
ted
aseshow this may be possible.As none of the items xi under
onsideration belong to the subtreerooted in v, then no authenti
ation path support ar
 under
onsidera-tion belongs to this subtree. Hen
e, deleting the ar
s (v; v2),(v; v3),: : :,(v; vk) essentially means that the vertex v is removed from some proofsets. From De�nitions 1 and 2 it follows that if we want to retain asmu
h as possible from an old proof set (say, proving the dependen
e ofr on the vertex xi0), we must repla
e v with some (possibly several) ofits su

essors. This way the
ardinality of one proof set
an in
reaseand thus the same
an happen to the
orresponding authenti
ator aswell.It is also possible that after the authenti
ator
orresponding to someauthenti
ation path has
onsiderably in
reased, some other authenti-
ator
orresponding to some other authenti
ation path turns out to besmaller (but still larger than the original authenti
ator Auth(xi0 ; r)).Hen
e, this
ase may result in in
rease of the
ardinality of Auth(xi0 ; r)as well.In both
ases, it is enough to show how to modify the graph some moreso that the new authenti
ators will either
oin
ide with the originalones or even have one element (namely v) less.This modi�
ation will be done by removing some more verti
es (and of
ourse the ar
s that loose one end-vertex) from the graph. The nodesto be removed will be the ones from the set fv2; : : : ; vkg that had noother parents than just v in the original graph G; and re
ursively alltheir su

essors that had no other prede
essors than v and the onesalready deleted.After su
h modi�
ation there are two possibilities.(a) If (v; v1) was an authenti
ation path support ar
 for some au-thenti
ator Auth(xi; r) in the original graph, then v is not re-moved from Auth(xi; r). Still, all the su

essors of v added toauthenti
ators in the meantime are deleted. Hen
e, all in all, the
ardinality of Auth(xi; r) did not in
rease.(b) If (v; v1) was not an authenti
ation path support ar
 for some44

�� ����

����

��
��
��
��

����

����

����

��

�
�
�
�

��

��

��
��
��
��

��
��
��
��

������

�
�
�
�
�
�

�
�
�
�
�
�

����
����
����
����
����
����
����

����
����
����
����
����
����
����

�
�
�
�
�
�
�

�
�
�
�
�
�
���
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

�
�
�
�
�

�
�
�
�
���
��
��

��
��
��

������
������
������
������
������
������
������

������
������
������
������
������
������
������

�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����������������������

����

�
�
�
�

�
�
�
�

�� ����

����

��
��
��
��

��

��

����

��

�
�
�
�

��

��

��
��
��
��

��
��
��
��

��������

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

��
��
��
��
��
��
��

��
��
��
��
��
��
��

�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������

����
����
����
����
����
����
����

����
����
����
����
����
����
����

�
�
�
�
�
�
�

�
�
�
�
�
�
����
���
���
���
���
���

���
���
���
���
���
���

��
��
��
��
��

��
��
��
��
��

�
�
�
�
�

�
�
�
�
���
��
��

��
��
��

������
������
������
������
������
������
������

������
������
������
������
������
������
������

������
������
������
������
������
������
������

������
������
������
������
������
������
������������������������

����

�
�
�
�

�
�
�
�

�
�
�
�
��
��
��
��

����

����

��

��

�
�
�
�

��

����

����

��������

����
����
����
����
����
����
����

����
����
����
����
����
����
����

�
�
�
�
�
�
�

�
�
�
�
�
�
����
���
���
���
���
���

���
���
���
���
���
���

������
������
������
������
������
������
������

������
������
������
������
������
������
������������������������

����

�
�
�
�
�

�
�
�
�
�

�
�
�
�

���� ��

�
�
�
�

����

����

����������������������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

����

�
�
�
�
�

�
�
�
�
�

PSfrag repla
ements x1x1
x1 x1

x2x2
x2 x2

x3x3
x3 x3

x4x4
x4 x4

v1
v1 v1

v2
v2 v2v3 v3v4 v4

h1
h1 h1h2 h2

h3
h3 h3

vv
v v rr

r r

Figure 4.1: Transformations of a linking s
heme.authenti
ator Auth(xi; r) in the original graph then the new au-thenti
ator has lost one element v.It is possible that after su
h a transformation some nodes still havein-valen
y 1. Then the
orresponding edges
an also be deleted if thenodes are joined with their parent.An example of all transformations is depi
ted in Figure 4.1. In the�gure, we have already denoted the su

essors of v so that v ! v1 ! ris the authenti
ation path having one of the proof sets of the smallestpossible size, namely fv2; v3; h3g. As the verti
es v3, v4 and h2 de-pend only on v they are deleted (together with the outgoing ar
s, of
ourse). At the very last step, we also delete the nodes of in-valen
y1. Note that �nally, v is on
e again a member of the proof set for theauthenti
ation path from x4 to r!2. Let xi be a leaf in the subtree with root v. It is
lear that45

(a) every authenti
ation path from xi to r must go through v, and(b) every proof set (proving the dependen
e of r on xi)
onsists of twosubsets of V (G) � a subset A of verti
es of the subtree rooted inv and a subset B of the verti
es of the remaining graph. Besidesthat, from observation (a) we see that v 62 A and v 62 B.The ar
 deletion pro
ess des
ribed above does not in�uen
e the setA, but it may in�uen
e the set B. If we
onsider the proof set tobe Auth(xi; r) in the original graph G, then we must have jBj =jAuth(v; r)j. Disregarding for a moment the whole subtree rooted in vand keeping only v, this vertex be
omes a leaf in the modi�ed graph.Applying exa
tly the same argument as in the �rst part of the proofwe see that deletion of the ar
s (v; v2); : : : ; (v; vk) does not in
reasethe
ardinality of Auth(v; r).As a result of these transformations in the graph G we have de
reasedthe number of nodes with out-valen
y more than 1� without in
reasing any of the sets Auth(xi; r);� without in
reasing any of the sets FTi; and� without
hanging the number of leaves.By repeating the pro
ess with the remaining nodes of out-valen
y more than1, we eventually arrive at a tree T with �(T) � �(G).4.3 Proof of Lemma 5If T is not a binary tree, there must be a vertex v with only one
hild ormore than two
hildren.In the �rst
ase, we may simply delete v and join its only
hild with itsonly parent (if this vertex is the root, we simply delete it, leaving the
hildas the new root). After su
h a vertex deletion the
ardinalities of the setsFTi and Auth(xi; r)
an only de
rease.In the se
ond
ase, we introdu
e some additional verti
es as shown inFigure 4.2.These additional verti
es
ontain information about several
hildren ofv in the original tree. Hen
e, it may be possible to de
rease the
ardinalitiesof FTi and Auth(xi; r). For example, in Figure 4.2 (left) the nodes b;
; d; eare ne
essary in order to prove the dependen
e of v on a, but in Figure 4.2(right) only the vertex u is enough. 46

����

�
�
�
�

��

�
�
�
�

��

������

�
�
�
�

��

�
�
�
�

��

��
��
��
��

��
��
��
��

����

��������
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

��������

��������

������

������

����
����
����
����

����
����
����
����

�
�
�
�
�

�
�
�
�
��
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�

PSfrag repla
ements
ab
de v ab
de stu

v
Figure 4.2: Transformation from an arbitrary tree to a binary tree.By
ontinuing this pro
ess we eventually arrive at tree T 0 where everyvertex has either 2 or 0
hildren, i.e. a binary tree. From the proof aboveit is also
lear that �(T 0) � �(T).4.4 Proof of Lemma 6Let T 0 be a binary tree with its leaves sorted in some (not ne
essarily topo-logi
al) order. We show how to reorder the leaves without
hanging thebasi
 stru
ture of the tree. By doing so, we do not
hange the size of au-thenti
ators and neither the number of leaves. Hen
e, in order to
ompletethe proof, we must show that reordering
an be done without
hanging thesize of freshness tokens.First we label the nodes of T 0 in the fashion of Se
tion 3.4.1. Let the root be labeled with the empty string �.2. For every vertex labeled with a string �, label the
hild that has theleftmost prede
essor as �L and the other one as �R. We
all �L theleft
hild and �R the right
hild of �.From De�nition 10 we get that the whole tree be
omes topologi
ally sorted.Hen
e, we are only required to prove that this rearrangement does notin
rease any freshness tokens. We do it by proving the following lemma.Lemma 9 If the verti
es are labeled as des
ribed above, the freshness tokenFTi�1 must have at least as many elements as there are letters R in thelabel of the leaf xi. 47

��
��
��
��

�
�
�
�

��

��
��
��
��

�� ����

����

�� ����

���� ��

��
��
��
��

��
��
��
��

�
�
�
�

��

��

����

��

�� ����

����

��

����������������������������������

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�������

�
�
�
�
�
�
�

�
�
�
�
�
�
��
�
�
�
�
�

�
�
�
�
�
�

������

�
�
�
�
�
�
�

�
�
�
�
�
�
���������

����������������������������������

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

������������������������

�
�
�
�
�
�

�
�
�
�
�
���������������

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

PSfrag repla
ementsLL LLL L� �RLL RLLRL RLR RLRL LRLLR LR
RLR RLRLRR LRRRR RRFigure 4.3: Transformation from a binary tree to a sorted tree.Proof. The number of letters R in the label of the leaf xi shows howmany times in the pro
ess of proving the dependen
e of the root node onxi it is ne
essary to invoke information from earlier time, i.e. from the�left� on the time-line of the items. As T 0 is a tree, these invo
ations areindependent and hen
e, the set FTi�1 must
ontain separate elements for allof the invo
ations. Consequently, FTi�1
ontains at least the same numberof elements as there are letters R in the label of the leaf xi. 2To
on
lude the proof it remains to note that for a topologi
ally sortedtree the sets FTi
ontain nothing but the ne
essary information and hen
eresorting the tree topologi
ally
an only de
rease their
ardinalities.The pro
ess of reordering is depi
ted in Figure 4.3.4.5 Proof of Lemma 7If d = 0 or w = 0 we must have T = I and hen
e the Lemma is proven inthis
ase.Assume that for some w; d > 0 there exist topologi
ally sorted binarytrees su
h that the
laim does not hold. Let T be a tree among them su
hthat the sum w + d is the smallest possible; so kTk > kSdwk. Obviously,T 6= I. Thus it is possible to represent T as T = T1
 T2. From Lemma 2we get the following equalities:w = W (T) = maxfW (T1);W (T2) + 1g;d = D(T) = maxfD(T1);D(T2)g+ 1:

48

Consequently, the inequalitiesD(T1) � d� 1;W (T1) � w;D(T2) � d� 1;W (T2) � w � 1:hold.As w+(d� 1) < w+ d and (w� 1)+ (d� 1) < w+ d, the Lemma holdsfor both T1 and T2. Thus,kTk = kT1k+ kT2k � kSd�1w k+ kSd�1w�1k = kSd�1w
Sd�1w�1k = kSdwk;a
ontradi
tion. 4.6 Proof of Lemma 8In the light of Theorem 3, the ratio �(G) to be estimated
an be written asw + dlog2 n = w + dlog2(Pwk=0 �dk�) : (4.1)In order to give a better upper bound to the expression (4.1) we needan asymptoti
 formula for the sumPwk=0 �dk� (whi
h does not have a known
losed formula). In [GKP89℄, problem 9.42, it is proven that if wd = � < 12then wXk=0�dk� � 2d�K(�)�0:5�log2 d+O(1); (4.2)where K(�) = � � log2 1� + (1� �) � log2 11� �:Substituting (4.2) into (4.1), we getlimd!1 w + dlog2(Pwk=0 �dk�) = limd!1 �d+ dd �K(�)� 0:5 � log2 d+O(1)= limd!1 1 + �K(�)� 0:5 � log2 dd +O(1d)= 1 + �K(�) :49

For deriving the approximation formula for 0:5 � � < 1, we note �rst thatfor su
h � and for su�
iently large d,wXk=0�dk� = 2d � dXk=w+1� dd� k� = 2d � d�w�1Xj=0 �dj� �� 2d � 2d�K(�0)�0:5�log2 d+O(1);where �0 = (d�w�1)=d = 1���1=d < 1�� � 0:5. Hen
e, for 0:5 � � < 1we getlimd!1 w + dlog2(Pwk=0 �dk�) = limd!1 �d+ dlog2f2d � (1� 2[K(�0)�1℄�0:5�log2 d+O(1))g= limd!1 1 + �1 + 1d � log2 �1� 2d�[K(1���1=d)�1℄�0:5�log2 d+O(1)�= 1 + �:Therefore,�(�) = limd!1 w + dlog2(Pwk=0 �dk�) = � 1+�K(�) ; if 0 < � < 12 ;1 + �; if 12 � � < 1: (4.3)Note that � is
ontinuous at 12 be
ause K �12� = 1. The graph of thefun
tion � is depi
ted in Figure 4.4.For �nding minima of �(�) we solve the equation�0(�) = 2 � log2 11�� � log2 1�H2(�) = 0:Hen
e, 2 � log2 11�� � log2 1� = 0 whi
h implies that (1 � �)2 = �. Thisquadrati
 equation has a unique solution in the interval [0; 0:5℄, namely�0 = 3�p52 :Let � = 1+p52 denote the Golden ratio. It is easy to verify that11� �0 = � and 1�0 = �2 � 2:61803:
50

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

Figure 4.4: Graph of the fun
tion �(�).Hen
e, 1 + �0K(�0) = 1 + �0�0 � log2 1�0 + (1� �0) � log2 11��0= log�12 "� 1�0� �01+�0 � � 11� �0� 1��01+�0 #= log�12 �� 2�01+�0 � � 1��01+�0 � = 1log2 � � 1:44042:We
on
lude that based on the trees Sdw asymptoti
ally optimal time-stamping s
hemes are obtained if w � 3�p52 d � d2:61803 .In order to get some idea about the speed of
onvergen
e we provideTable 4.1. The table shows the values of the ratio (3.4) for the previousbest s
hemes (with d = 2w+ 1), for the s
hemes with w = � d2:618:::� (whereb�e denotes the
losest integer fun
tion) and for size-optimal s
hemes. Thenumbers of leaves of size-optimal s
hemes are also shown.51

d w = d�12 : ratio w = � d2:618:::�: ratio wopt: ratio nopt9 4: 1:62500 3: 1:70833 4: 1:62500 25619 9: 1:55556 7: 1:57355 8: 1:55412 16976627 13: 1:53846 10: 1:54249 12: 1:53015 4705056429 14: 1:53571 11: 1:53353 12: 1:52562 12301278149 24: 1:52083 19: 1:50157 20: 1:49946 7 � 101389 44: 1:51136 34: 1:48020 36: 1:47902 3 � 1025129 64: 1:50781 49: 1:47064 51: 1:46970 7 � 1036239 119: 1:50420 91: 1:45907 93: 1:45875 3 � 1068589 294: 1:50170 225: 1:44947 227: 1:44943 3 � 10169Table 4.1: Convergen
e of the linking s
heme parameters.

52

5 LINKING USING TREES SdwIn the previous
hapters, we mainly
on
entrated on building linking s
hemesthat provide minimal sizes for time stamps. Still, in order to ensure suit-ability for pra
ti
al use, we must address the problem of e�
ien
y in thepro
ess of
omputation by following a parti
ular s
heme.There are two main
on
erns we should address in more detail.1. It is impra
ti
al for the TSA to
onstru
t �rst the whole s
heme assome empty data stru
ture and then start �lling it with data. Thisdata stru
ture is in fa
t ne
essary only for keeping tra
k of the
om-putations and not for storing all the values; only a very small numberof values are needed for further
omputations.2. As noted in [ABSW01℄, the availability of time-stamping servi
e is amajor issue. If the TSA's server
rashes, it must be possible to restorethe last
omplete set FTi in order to ensure that the
ausal relation-ships between the time stamps issued before and after the
rash do notbreak. Note that the original de�nition of the trees Sdw is re
ursiveand hen
e the algorithm following this de�nition
losely must be re-
ursive as well. Colle
ting the data ne
essary to restore the work of are
ursive-algorithm-based server basi
ally means ba
kuping the re
ur-sion sta
k at every step. This in turn means implementing a re
ursionsta
k independent of the
ompiler's one. The author is
urrently un-aware of any
ompiler having primitives for generating re
ursion sta
kdumps and restoring the pro
esses later by these dumps.The state of the algorithm presented in this
hapter is stored in 2l + 3variables where l is the largest number of nodes in the sets FTi. This ismu
h less than the storage spa
e required to keep the whole empty data-stru
ture. These variables are also
onsiderably easier to handle in the
aseof server re
overy than the re
ursion sta
k.5.1 Alternative des
ription of the trees SdwIn this se
tion, we are going to present a non-re
ursive des
ription for thegraphs Sdw enabling us also to �nd an e�
ient algorithm for generatingthese graphs. 53

De�nition 12 The set �w;d is de�ned as the following set of words in thealphabet f1; 2; : : : ; dg�0:�w;d = f�0 : � = �1�2 : : : �j�j 2 f1; 2; : : : ; dg�; j�j � w; �1 > �2 > : : : > �j�jg:Here, if d = 0 we assume that f1; 2; : : : ; dg = ; and f1; 2; : : : ; dg� = f�g,where � is the empty word.That is, the set �w;d
onsists of all stri
tly de
reasing ve
tors of lengthup to w+1, having the elements from the set f0; 1; : : : ; dg and ending with0. Note that every element o

urs in every ve
tor at most on
e, 0 o

ursexa
tly on
e. In the rest of the paper we will write the ve
tors as words,without parentheses and
ommas. Greek lower
ase letters will denote thewords and Latin lower
ase letters x; y their elements.De�nition 13 For w; d � 0 let mw;d denote the ve
tormw;d = 8<: 0; w = 0 _ d = 0;d(d� 1) : : : (d� w + 1)0; d > w > 0;d(d � 1) : : : 10; w � d > 0:Denote also the set of the elements of the ve
tor mw;d as Mw;d.Theorem 5 The set �w;d is linearly ordered with respe
t to lexi
ographi
order �. It's least element is the ve
tor 0 and the largest element is mw;d.Proof. Linearity of the lexi
ographi
 order is a well-known fa
t and mini-mality of the ve
tor 0 is obvious. Maximality of the ve
tor mw;d
an also beeasily established. If w = 0 or d = 0, then �w;d = f0g and also mw;d = 0.Otherwise, it is
lear that the largest ve
tor has to start with the largestelement of the alphabet, d. As all the letters in the ve
tors of �w;d must beunique, the next letter in the largest ve
tor must be d�1 et
. The length ofthe ve
tor is bounded by either the maximal allowed length w+1 if d > w,or by la
k of possible elements if w � d. 2Theorem 6 For w; d � 1 the equality�w;d = �w;d�1 [d�w�1;d�1holds. 54

Proof.�w;d = f�0 : � 2 f1; 2; : : : ; dg�; j�j � w; �1 > �2 > : : : > �j�jg == f�0 : � 2 f1; 2; : : : ; d� 1g�; j�j � w; �1 > �2 > : : : > �j�jg [[f�0 : � 2 f1; 2; : : : ; dg�; j�j � w; d = �1 > �2 > : : : > �j�jg == �w;d�1 [fd�0 : � 2 f1; 2; : : : ; d� 1g�; j� j � w � 1; �1 > : : : > �j� jg == �w;d�1 [d�w�1;d�12De�nition 14 For ea
h � 2 �w;d we de�ne the set
w;d(�) = fx 2 � : � = �x�;8� 2 �w;d [� = �x&) � � �℄g:That is,
w;d(�)
onsists of su
h elements x of the ve
tor � that � isthe greatest ve
tor among the ve
tors having the same initial segment upto the element x as � does (re
all form De�nition 12 that ea
h o

urren
eof every element in � is unique).Lemma 10 The following properties of fun
tion
 hold.1. Let � be presented in the form � = �� , where � = (x� 1)(x� 2) : : : y0for some x; y 2 f1; : : : ; d + 1g and � has maximal possible length (if� = 0 we have � = � and � = 0). If (y = 1) _ (j�j = w + 1) then
w;d = fx� 1; x� 2; : : : ; y; 0g, otherwise
w;d = f0g.2. d 2
w;d(�),
w;d(�) = Mw;d , � = mw;d;3. � 2 �w;d�1)
w;d(�) =
w;d�1(�);4. � 2 �w�1;d�1)
w;d(d�) = �
w�1;d�1(�); � 6= mw�1;d�1Mw;d; � = mw�1;d�1 .Proof.1. The maximality
ondition on � implies that � does not end with xand the
ondition (y = 1) _ (j�j = w + 1) essentially means that theve
tor �
an not be made longer by adding elements before the last0. If the latter is not the
ase, there exists z 2 f1; 2; : : : ; dg su
h that�(x� 1) : : : yz0 2 �w;d and as �(x� 1) : : : y0 � �(x� 1) : : : yz0, only0
an be in the set
w;d by De�nition 14. On the other hand, if we
an not add su
h an z, ea
h element of the set fx� 1; x� 2; : : : ; y; 0gsatis�es the
ondition given in De�nition 14. It is also
lear that noelement of �
an be in
w;d(�) as �x0 2 �w;d and �(x�1) : : : y0 � �x0.55

2. We will prove that d 2
w;d(�))
w;d(�) = Mw;d) � = mw;d) d 2
w;d(�).If d 2
w;d(�), we must have a = d and � = � in the previous
laimof the Lemma. If d = 0 the present
laim is obvious. If w � d > 0,we get the
ase b = 1 and
w;d(�) = fd; d � 1; : : : ; 1; 0g, if d > w > 0,the length of � is bounded by w + 1 and we get
w;d(�) = fd; d �1; : : : ; d� w + 1; 0g. In both
ases we have
w;d(�) = Mw;d.If
w;d(�) = Mw;d, we see that every element of Mw;d also belongs to�, hen
e � = mw;d.If � = mw;d, we obviously have d 2
w;d(�), thus
on
luding the proof.3. We know from the proof of Theorem 6 that �w;d�1 = f� 2 �w;d :�1 6= dg. As � 2 �w;d�1, we
an write
w;d(�) = fx 2 � : � = �x�;8� = �x& 2 �w;d � � �g == fx 2 � : � = �x�;8� = �x& 2 �w;d�1 � � �g ==
w;d�1(�):4. We know from Theorem 6 that d�w�1;d�1 = f� 2 �w;d : �1 = dg. Fora ve
tor d� 2 d�w�1;d�1 we
an distinguish two
ases.(a) d 2
w;d(d�). From the se
ond
laim of the Lemma this holdsi�
w;d(d�) = Mw;d and d� = mw;d, whi
h is equivalent to � =mw�1;d�1.(b) d 62
w;d(d�). From the se
ond
laim of the Lemma this is equiv-alent to � 6= mw�1;d�1. We
ompute:
w;d(d�) = fx 2 d� : d� = d�x�;8� = d�x& 2 �w;d � � d�g == fx 2 � : � = �x�;8� = �x& 2 �w�1;d�1 � � �g ==
w�1;d�1(�):2De�nition 15 The dire
ted rooted graph Sw;d has the vertex setV (Sw;d) = [�2�w;df(�; x) : x 2
w;d(�)gand the edge setE(Sw;d) = f((�; x1)(�; x2)) 2 (V (Sw;d))2 : � = �x2x1�g [[f((�x�; x)(�y�; y)) 2 (V (Sw;d))2 : y = x+ 1g:56

PSfrag repla
ements 000000 0 1 11 2 22 333
Figure 5.1: The graph S2;3.An example of the graph S2;3 is presented in Figure 5.1. The ve
torsin the �gure are depi
ted verti
ally and the elements of
w;d(�) are
ir
led.The edges of Sw;d are of two kinds: the edges joining the verti
es belongingto the same ve
tor � and the edges joining the verti
es belonging to di�erentve
tors. The �rst ones will be
alled verti
al and the se
ond ones horizontaledges (following the intuition of Figure 5.1).Now we are ready to state the following theorem
laiming that the treesSdw and Sw;d are essentially the same implying that it is enough to give analgorithm for building the graphs Sw;d.Theorem 7 Sdw ' Sw;d. The root of the graph Sw;d is (mw;d; d).Proof. The proof will be given using indu
tion by the de�nition of thegraph Sdw (see De�nition 11). The basis of indu
tion
onsists of the
aseswhere either w = 0 or d = 0. In both
ases we see that �w;d = f0g and
w;d(0) = f0g. Hen
e V (Sw;d) = f(0; 0)g and there
an be no edges in thegraph following De�nition 15. Consequently Sw;d ' I = Sdw if w = 0 ord = 0, with the root being obviously the only vertex of the graph.Now assume that w; d � 1, Sd�1w�1 ' Sw�1;d�1 and Sd�1w ' Sw;d�1. Inorder to prove that Sw;d ' Sdw = Sd�1w
Sd�1w�1;we �rst need to establish a one-to-one
orresponden
e between the vertexsets V (Sw;d) and V (Sw;d�1
Sw�1;d�1). The ne
essary
orresponden
e
an

57

be easily derived from Theorem 6 and Lemma 10 as follows.V (Sw;d) = [�2�w;df(�; x) : x 2
w;d(�)g == [�2�w;d�1f(�; x) : x 2
w;d�1(�)g [[�2d�w�1;d�1f(�; x) : x 2
w;d(�)g == V (Sw;d�1) [[�2d�w�1;d�1f(�; x) : x 2
w;d(�)g == V (Sw;d�1) [[�2�w�1;d�1f(d�; x) : x 2
w;d(d�)g == V (Sw;d�1) [[�2�w�1;d�1f(d�; x) : x 2
w�1;d�1(�)g [f(mw;d; d)g == V (Sw;d�1) [f(d�; x) : (�; x) 2 V (Sw�1;d�1)g [f(mw;d; d)g:Hen
e we
an
on
lude that the fun
tion ' : V (Sw;d) ! V (Sw;d�1
Sw�1;d�1) a
ting as follows'(�; x) = 8<: (�; x); � 2 �w;d�1(�0; x); �0 2 �w�1;d�1; � = d�0; x 2 �0(mw;d; d); x = dis a bije
tion.Now it remains to prove that the mapping indu
ed by ' between thesets E(Sw;d) and E(Sw;d�1
 Sw�1;d�1) is also a bije
tion. We will dividethe edges of Sw;d into �ve
ategories and
onsider the
ategories separately.� ((�; x1)(�; x2)) 2 E(Sw;d); � = �x2x1� and the �rst element of � is notd. By Theorem 6 we obtain � 2 �w;d�1 and following the de�nitionof the mapping ' we see that'((�; x1)(�; x2)) = ((�; x1)(�; x2)) 2 (V (Sw;d�1))2:As � = �x2x1�, we obtain ((�; x1)(�; x2)) 2 E(Sw;d�1). Note alsothat this way we get all the verti
al edges of the graph Sw;d�1.� ((�; x1)(�; x2)) 2 E(Sw;d); � = �x2x1� and the �rst element of � is d.This
ase has two sub-
ases.
✶ � = �; x2 = d. As (�; x2) 2 V (Sw;d), by the de�nition of the setV (Sw;d) we have d = x2 2 �. For this
ase Lemma 10 implies� = mw;d. Hen
e, x1 = d � 1 or x1 = 0, whi
h
an be the
ase58

i� w = 1. We
laim that the image of the edge ((�; x1)(�; x2))under ' is the edge
onne
ting the root of Sw�1;d�1 and the newvertex g. From our de�nition of ' we know that '(�; x1) =(mw�1;d�1; x1) and '(�; x2) = g. The vertex (mw�1;d�1; x1) isthe root of the graph Sw�1;d�1. Indeed, for the
ase x1 = d�1 weuse the indu
tion hypothesis. For x1 = 0 and w = 1 we simplyhave (mw�1;d�1; x1) = (0; 0) and Sw�1;d�1 = I. We have proventhe
laim.
✶ � 6= �. Let � = d� 0 and � = d�0, then x1; x2 2 �0 2 �w�1;d�1.Hen
e'((�; x1)(�; x2)) = ((�0; x1)(�0; x2)) 2 (V (Sw�1;d�1))2:As �0 = � 0x2x1�, we see that ((�0; x1)(�0; x2)) 2 E(Sw�1;d�1).Note also that this way we get all the verti
al edges of the graphSw�1;d�1.� ((�x�; x)(�y�; y)) 2 E(Sw;d); y = d; x = d � 1. This implies � = �and y = d 2
w;d(�d�). Hen
e, by Lemma 10 we have �d� = d� =mw;d. Following the de�nition of ', we see that '(�y�; y) = g. We
laim that the image of the edge ((�x�; x)(�y�; y)) under ' is the edge
onne
ting the root of the graph Sw;d�1 and the new vertex g. So, itonly remains to prove that the image of the vertex (�x�; x) is the rootof the graph Sw;d�1. By indu
tion hypothesis, we need to show thatthe equality (�x�; x) = (mw;d�1; (d�1)) holds. As (�x�; x) 2 V (Sw;d),we know that x 2
w;d(�x�). But as � = � and x = d� 1, Lemma 10implies the ne
essary
ondition (�x�; x) = (mw:d�1; (d � 1)) and the
laim is proven.� ((�x�; x)(�y�; y)) 2 E(Sw;d); y = x+1 and � 6= � does not start withd. Then we
laim that the edges '((�x�; x)(�y�; y)) are exa
tly allthe horizontal edges of the graph Sw;d�1. First note that as � doesnot start with d (but with something less), we have �x�; �y� 2 �w;d�1and
onsequently'((�x�; x)(�y�; y)) = ((�x�; x)(�y�; y)) 2 (V (Sw;d�1))2:As y = x + 1, by De�nition 15 we obtain the required impli
ation'((�x�; x)(�y�; y)) 2 E(Sw;d�1).� ((�x�; x)(�y�; y)) 2 E(Sw;d); y = x + 1 and � starts with d. Thisimplies x; y < d and hen
e'((�x�; x)(�y�; y)) = ((� 0x�; x)(� 0y�; y)) 2 (V (Sw�1;d�1))2;59

where � = d� 0. As y = x+1, we obtain all the horizontal edges of thegraph Sw�1;d�1 this way.Hen
e, we have proven a one-to-one
orresponden
e between the setsE(Sw;d)and E(Sw;d�1
 Sw�1;d�1) as well, thus
on
luding the proof. 25.2 The algorithmIn this se
tion we introdu
e an algorithm for building the graphs Sw;d. Wewill present the algorithm in three steps:1) generation of all the ve
tors of the set �w;d in their lexi
ographi
order;2) �nding the elements of the sets
w;d(�) (and hen
e
reating the setV (Sw;d));3) a

omplishing the hash steps represented by the edges (and hen
e
ompleting the graph Sw;d).It will be
onvenient to have all the ve
tors of the same length, so we willpad all the ve
tors having length less than l = minfw + 1; d + 1g (whi
h isthe maximal length of the elements of �w;d) with 0s at the end. We alsointrodu
e l integer variables �1; �2; : : : ; �l and
onsider them as elements of�, thus � = �1�2 : : : �l. Now we
laim that Algorithm 1 produ
es all theelements of the set �w;d in lexi
ographi
 order.In order to prove the
orre
tness of the algorithm, we need the followinglemma des
ribing
onse
utive ve
tors of the set �w;d (whi
h we still
onsideras padded with 0s).Lemma 11 Let the ve
tor � 2 �w;d be represented in the form� = �(x� 1)(x� 2) : : : y0 : : : 0;where x; y 2 f1; 2; : : : ; d+1g and the substring (x�1)(x�2) : : : y is as longas possible (if � = 00 : : : 0 then � = (x � 1)(x � 2) : : : y = �). If y = 1 orj�(x� 1)(x � 2) : : : yj = w then the ve
tor dire
tly su

eeding � in terms ofthe order � is � = �x0 : : : 0, otherwise it is � = �(x� 1)(x� 2) : : : y10 : : : 0.Proof. Consider �rst the
ase y = 1 _ j�(x � 1)(x � 2) : : : yj = w. Notethat maximality of the substring (x � 1)(x � 2) : : : y implies that � doesnot end with x and hen
e � = �x0 : : : 0 2 �w;d in this
ase. We also see60

Algorithm 1 Generate the ve
tors of the set �w;dRequire: w > 0; d > 01: Set l := minfw + 1; d + 1g2: Set � := �1�2 : : : �l = 00 : : : 03: for i = 1 to j�w;dj � 1 do4: Output �5: Set j to be the least index su
h that �j = 06: if j = l then7: Set j := j � 18: end if9: while j > 1&�j = �j�1 � 1 do10: Set �j := 011: Set j := j � 112: end while13: Set �j := �j + 114: Reset �15: end for16: Output �that � � � , hen
e it remains to prove that there
an be no ve
tors betweenthem. Suppose on the
ontrary that su
h a ve
tor exists. It
learly mustbegin with �(x� 1)(x� 2) : : :. It is not possible to in
rease any element inthe part (x � 1)(x � 2) : : : y as it
onsists of
onse
utive elements, all theelements in the ve
tor must be unique and in this part less than x. Hen
ethe only way to
reate a ve
tor between � and � is to append somethingsmaller than y at the end of this part. But this is not possible as we haveone of two
ases: either y = 1 or the ve
tor �(x � 1)(x � 2) : : : y0 alreadyhas the maximal allowed length w + 1.Now
onsider the other
ase y 6= 1& j�(x � 1)(x � 2) : : : yj < w (whi
hin
ludes the
ase � = 00 : : : 0). Reasoning exa
tly the way we did in theprevious
ase, we see that � = �(x � 1)(x � 2) : : : y10 : : : 0 2 �w;d, � � �and that there
an be no ve
tors between them. 2Now we
an explain why Algorithm 1 generates all the elements of theset �w;d in lexi
ographi
 order. As the algorithm starts with the least ve
tor00 : : : 0, it is enough to prove that ea
h run of the algorithm (i.e. ea
h stepin the for-
y
le), taking ve
tor � as input, outputs its immediate su

essor.Note that the algorithm makes j�w;dj�1 runs, so the output of the last runis exa
tly the greatest ve
tor mw;d (see Theorem 5).61

Of
ourse we must know the value j�w;dj beforehand. This value
anbe
omputed from Theorems 2 and 3 using the formula (see Se
tion 5.3 fore�
ien
y
onsiderations
on
erning this formula)j�w;dj = � 2d; w � dPwk=0 �dk�; w < d : (5.1)Now
onsider one run of the algorithm with input �. Following Lemma11, in order to generate its immediate su

essor we �rst have to �nd therepresentation of the ve
tor � in the form �(x� 1)(x� 2) : : : y0 : : : 0 (wherethe part (x � 1)(x � 2) : : : y has maximal length possible). If y = 1 orj�(x � 1)(x � 2) : : : yj = w we must repla
e the part (x � 1)(x � 2) : : : ywith x00 : : : 0 and otherwise just in
rease the �rst 0 by 1. Note that thelatter is exa
tly the same operation as the �rst one, if we
onsider the part(x� 1)(x � 2) : : : y to be just the �rst 0.In order to perform the ne
essary
hanges, we must �nd the �rst 0 in �(line 5), as that is the last position where the
hange
an o

ur. In whatfollows, j will be the
ounter indi
ating the
urrent position in �.If � has maximal allowed length l (i.e. j = l), we know we
an not
hange the last 0 of the ve
tor, so we must start at the position l� 1. Thisis what the lines 6-8 do.The essential part of the algorithm is the while-loop on the lines 9-12.If we haven't rea
hed the beginning of the ve
tor yet (i.e. j > 1) and the
urrent element is the prede
essor of the element just before it, we are stillon the part (x�1)(x�2) : : : y. We set the
urrent position to 0 and move astep towards the beginning. If we rea
h the beginning of the ve
tor or thebeginning of the part (x� 1)(x� 2) : : : y, we stop the loop and in
rease the
urrent element (whi
h is equal to x) by 1 (line 13). If either1) the �rst 0 was dis
overed at the position 1, or2) the �rst 0 was dis
overed at a position later than 1 and earlier thanl, but the element just before it is greater than 1,we just need to in
rease this �rst 0 to 1. In this
ase the while-loop is notentered at all and the in
rease is on
e again performed on line 13.Now we have
reated the next � and we
an take the next run of thealgorithm. The algorithm is �nished by outputting the result of the lastrun, whi
h we know, equals mw;d.Now we add vertex set generation to Algorithm 1, whi
h by De�nition15 means generating the sets
w;d(�). They
an be generated at the sametime when produ
ing at the next � in one run of Algorithm 1.62

Algorithm 2 Generate the vertex set of the graph Sw;dRequire: w > 0; d > 01: Set l := minfw + 1; d + 1g2: Set � := �1�2 : : : �l = 00 : : : 03: for i = 1 to j�w;dj do4: Set
w;d(�) = ;5: Set j to be the least index su
h that �j = 06: In
lude the element �j to the set
w;d(�)7: if j = l then8: Set j := j � 19: end if10: while j > 1&�j = �j�1 � 1 do11: Set �j := 012: Set j := j � 113: In
lude the element �j to the set
w;d(�)14: end while15: Set �j := �j + 116: Output the set
w;d(�) and reset �17: end forConsider Algorithm 2. Note that Algorithm 2 runs one more time thanAlgorithm 1 does. The reason is that we also want to generate the set
w;d(�) for the last ve
tor mw;d as well.In order to prove that Algorithm 2 generates the
orre
t set
w;d(�),write � as above in the form �(x � 1)(x � 2) : : : y0 : : : 0 (where the part(x � 1)(x � 2) : : : y is as long as possible). We need to show that if the
ondition (y = 1)_ (j�(x�1)(x�2) : : : y0j = w+1) holds then the elementsx�1; x�2; : : : ; y; 0 are in
luded into the set
w;d(�) and otherwise
w;d(�) =f0g (see Lemma 10).As follows from the proof of Algorithm 1 presented above, the elementsx� 1; x� 2; : : : ; y; 0 (or just 0, if y > 1 and j�(x� 1)(x� 2) : : : y0j < w+1)are exa
tly the ones set to 0 or in
reased by 1. This means that we mustadd an element of � to the set
w;d(�) every time right before we set it to0 or in
rease by 1 � and this is exa
tly what Algorithm 2 does.In order to
omplete the algorithm of generation of the graph Sw;d westill need to show how to draw the edges. As we remember from De�nition15, the edges
an be of two kinds � verti
al and horizontal. With verti
aledges there should be no problems, as they are drawn inside one set
(�w;d),i.e. during one run of our algorithm. Horizontal edges
an
ause moreproblems as in order to
omplete a horizontal edge we need to know both63

its end-verti
es. So it is ne
essary to keep some information about thestarted edges over several runs of the algorithm.What kind of information is needed? Going ba
k to the original moti-vation behind the trees Sdw, we see that these trees are used to represent
ertain hash
omputations and a
tually we are only interested in the hashvalue atta
hed to the root of the tree. In order to
arry the ne
essary hashvalues along the
omputations, we introdu
e l new variables h1; h2; : : : ; hland let hi
arry the last hash value atta
hed to a vertex of the form (�; �i).Let H be the hash fun
tion used for hash
omputations and
onsiderAlgorithm 3.Algorithm 3 Create the hash-edges of the graph Sw;dRequire: w > 0; d > 01: Set l := minfw + 1; d + 1g2: Set �1 = �2 = : : : = �l := 03: for i = 1 to j�w;dj do4: Set j to be the least index su
h that �j = 05: Set hj to be the next input data item6: if j = l then7: Set j := j � 18: Compute hj = H(hj ; hj+1)9: end if10: while j > 1&�j = �j�1 � 1 do11: Set �j := 012: Set j := j � 113: Compute hj = H(hj ; hj+1)14: end while15: Set �j := �j + 116: end for17: Return h1The verti
es of the graphs Sdw are divided into two subsets: verti
esrepresenting data items (leaves of the tree) and verti
es representing the
omputations. At ea
h round exa
tly one data item is added and in the
onstru
tion of the tree Sw;d it must
orrespond to the leaf, i.e. vertex(�; 0). This is expressed on line 5 of the algorithm.All the other verti
es we add represent hash
omputations. Hash
om-putations on lines 8 and 13
arry exa
tly the same
hara
ter. As soon as thealgorithm has de
ided to move one step towards the beginning of the ve
tor�; the hash value
orresponding to the new lo
ation in � (or the vertex ofthe graph Sw;d) is repla
ed by the hash of the value at the previous lo
ation64

and the old value at the new lo
ation.By De�nition 15, there are two verti
es that are sour
es for the edgesending in the vertex (�x(x � 1)�; x), they are (�(x � 1)� 0; x � 1) for someve
tor � 0 and (�x(x � 1)�; x � 1) (we assume x > 0, whi
h is exa
tly the
ase with non-data-item verti
es). Hen
e, it remains to prove that the lasttwo verti
es have the
orre
t hash values atta
hed to them. Let x be theith element of the ve
tor �x(x� 1)� .Consider �rst the ve
tors � = �x(x � 1)� and �0 = �(x � 1)� 0. As the�rst part, �; is the same, it was not
hanged between the generation roundsof ve
tors �0 and �. Moreover, the ith element was last
hanged at the timeof generation of �0, as x and x � 1 di�er by 1 and Algorithm 3
hangeselements of the ve
tors of �w;d by 1 at a time. Consequently the previousvalue of hi, when pro
essing the vertex (�x(x � 1)�; x),
omes from the
orre
t vertex (�(x� 1)� 0; x� 1).At last,
onsider the verti
es (�x(x � 1)�; x) and (�x(x � 1)�; x � 1).Following the algorithm we see that the vertex (�x(x � 1)�; x � 1) waspro
essed just before (�x(x� 1)�; x), hen
e the hash value atta
hed to it ishi+1, whi
h is the
orre
t one.Re
alling that the root of the tree Sw;d is the vertex is (mw;d; d) (seeTheorem 7) we see that the algorithm must output the last value of h1 afterthe last step. As this is exa
tly the a
tion taken on line 17, we
on
ludethat Algorithm 3 represents the hash
omputations of the graph Sw;d ' Sdw
orre
tly.5.3 E�
ien
y and further optimizationsDespite its
ompli
ated look, Algorithm 3 is very e�
ient. The algorithmruns j�w;dj times and on ea
h run j
w;d(�)j steps are made. Hen
e theobvious estimate to the
omplexity of the algorithm is O(jV (Sw;d)j). Evenmore, the operations used in Algorithm 3 are �
heap�: the only operationsused are additions-subtra
tions by 1 and hash
omputations (where thelatter ones
an not be avoided anyway). Of
ourse, we still need to take
are about the sear
h dire
tive on line 4 of Algorithm 3 that just states: Setj to be the least index su
h that �j = 0. This sear
h
an be done in log2 lsteps, but it is also possible to introdu
e one extra variable and modify thealgorithm so that at the end of run it is set to the least 0 of the newlygenerated �.Memory requirements of our algorithm are very low as well. We needto store the following data in order to restore the
omputations after theserver's
rash: 65

� l, j and j�w;dj;� h1; : : : ; hl for hash values;� �1; : : : ; �l as
ounters.As the
ounters �j
an
ontain values up to d, the
orresponding requiredstorage spa
e for the values of hi and �j is l � log2 d + l � k, where k is theoutput length of the hash fun
tion h. A re
ent unpublished result by HelgerLipmaa [Lip02℄ shows that this requirement
an a
tually be de
reased tolog2 d+ l � k by using en
oding of the leaves presented in Se
tion 3.4.One must also ask, how mu
h resour
es does it take to
ompute j�w;djand how mu
h storage spa
e does this value need. Formula (5.1) does notlook promising at the �rst sight as it
ontains a sum of binomial
oe�
ients.Still, if we are satis�ed with the estimate �(G) � 1:5, we
an use the treesTw = S2w+1w from Se
tion 3.6. For these graphs j�w;2w+1j = 22w that
an be
omputed very e�
iently in binary format. But if we want theasymptoti
ally optimal s
hemes des
ribed in Chapter 4 we
an
hange thealgorithm a little and substitute the for-
y
le in rows 3-16 of Algorithm 3with a while-loop working if �1 < d+1. The
orre
tness of this substitutionis justi�ed by the observation that on its last run the algorithm
hanges theve
tor � = mw;d to the ve
tor (d+1)00 : : : 0. Note that su
h a modi�
ationenables us to repla
e the need to store (a relatively large) value of j�w;djwith the need to store only the value of d.

66

6 INSTEAD OF THE CONCLUSIONSAlmost every PhD thesis starts o� with the author's dream to a
hieve some-thing new (preferably revolutionary) and useful (preferably something that
ould be sold right away). Of
ourse there are ex
eptions, but I hope theyare rare. Why? Mainly be
ause I believe that ambition is the most impor-tant
ause of every great dis
overy made on Earth and hen
e there is verylittle hope to a
hieve anything without any ambitions.Does this mean that every thesis a
hieves the high goals set by theauthor (with the help of supervisor, of
ourse)? Not at all, as it takessomething more to
ome up with revolutionary results than just the goalsthemselves. This �something more� is hard to de�ne, but for sure it
ontains� a bit of talent needed to see deep under the
ore of things,� a bit of lu
k to �nd the right problems to look at, and� a lot of hard work (lasting approximately for 200 days without eatingnor sleeping in the
ase of Tartu University, Estonia).Have I had all the ne
essary
omponents? Most of them probably yes.Talent and lu
k are of
ourse di�
ult to measure, but at least the goalswere de
ent and the work was hard (well, I admit I ate and slept from timeto time, but the period of writing lasted
onsiderably longer than just 200days).How well have the original goals been met and what is the a
tual pra
-ti
al value of the thesis? To the �rst question, the answer
an be statedrather
learly and it
onsists of several parts.� The thesis identi�ed the need to look at the two separate time-stampings
enarios: patents and digital signatures. It turned out that linkings
hemes providing size-optimal time stamps for one s
enario are notoptimal for another.� It was shown that the size of time stamps
an be estimated fromabove by the value �(G). It is not the best possible estimate but byour
urrent state of knowledge, the exa
t expression of the size of timestamps is too
ompli
ated to deal with. Maybe one day . . .� We proved that the optimal value of �(G) is1log2 1 +p52 ! � 1:4404267

and it is approa
hed (but never a
hieved as this value is irrational)with the family of trees Sdw. The e�e
t gained in
omparison with theprevious best-known BLS-s
heme is 28% whi
h is quite a remarkableamount. Even more importantly we showed that just by estimatingthe value of �(G) the result
an not be improved any more. Of
ourse,if one day the tools of dealing with the a
tual the size of time stampsbe
ome available, the estimate may be improved some more, but theauthor's wild guess is that not too mu
h. At the moment, it seems thatthe asymptoti
 size of time-stamps remains the same as mentionedabove.� It turned out that the original de�nition of the optimum-providingfamily was not too suitable for a
tual implementation of a TSA. Inorder to improve the situation, the idea of representing the
urrentstate of
omputations with some simple and e�
ient en
oding wasproposed and one possible en
oding designed.The question of pra
ti
al appli
ability is a bit more
ompli
ated. Of
ourse, we
an build ni
e tools and try to sell them but people will only buythem if they need to. Do they need time-stamping? At least in Estonia theydo as the Law of Digital Signatures requires it. But do the users a
tuallyneed linking? The answer is unfortunately � probably not at the moment.Going ba
k to Chapter 1, we re
all that the easiest way to implementtime-stamping is to let the TSA just sign the requests together with phys-i
al time. The solution is of
ourse totally inse
ure as the TSA must beun
onditionally trusted. Is this a serious obsta
le keeping people from us-ing this solution? No, it is not. Looking at the atmosphere of suspi
ionthat we
an see every day between di�erent politi
ians, businessmen andeven nations, it is hard to believe how trusting people are deep in theirhearts. Why not to de
lare an authority trustworthy, if su
h a de
larationsaves us from the trouble of setting up linkage-based time-stamping! Andthere is really not mu
h to do in order to
hange the human mind. The bestsolution is probably to wait, see and hope that after the �rst few in
identswith
heating TSAs the need for more se
ure solutions arises.But before that
omputer s
ientists all over the world still have sometime to sear
h for better solutions to propose when they will really beneeded. And in that light I
an say I do not regret writing this thesiseven a bit.
68

REFERENCES[ABRW01℄ Arne Ansper, Ahto Buldas, Meelis Roos, and Jan Willemson.E�
ient long-term validation of digital signatures. In Publi
Key Cryptography - PKC'2001, volume 1992 of LNCS, pages402�415, February 2001.[ABSW01℄ Arne Ansper, Ahto Buldas, Märt Saarepera, and Jan Willem-son. Improving the availiability of time-stamping servi
es. InVijay Varadharajan and Yi Mu, editors, 6th Australasian Con-feren
e, ACISP 2001, volume 2119 of LNCS, pages 360�375,Sydney, Australia, July 2001. Springer-Verlag.[ACPZ01℄ C. Adams, P. Cain, D. Pinkas, and R. Zu

herato. RFC3161:Time Stamp Proto
ol (TSP). August 2001.[BdM91℄ Josh Benaloh and Mi
hael de Mare. E�
ient broad
ast time-stamping. Te
hni
al Report 1, Clarkson University Departmentof Mathemati
s and Computer S
ien
e, August 1991.[BHS93℄ Dave Bayer, Stuart Haber, and W. S
ott Stornetta. Improv-ing the e�
ien
y and reliability of digital time-stamping. InSequen
es II: Methods in Communi
ation, Se
urity, and Com-puter S
ien
e, pages 329�334. Springer-Verlag, 1993.[BL98℄ Ahto Buldas and Peeter Laud. New linking s
hemes for digitaltime-stamping. In Pro
. 1st International Conferen
e on Infor-mation Se
urity and Cryptology � ICISC'98, pages 3�13, Seoul,Korea, De
ember 1998.[BLL00℄ Ahto Buldas, Peeter Laud, and Helger Lipmaa. A

ountableCerti�
ate Management using Undeniable Attestations. InSushil Jajodia and Pierangela Samarati, editors, 7th ACM Con-feren
e on Computer and Communi
ations Se
urity, pages 9�18. ACM Press, November 2000.[BLLV98℄ Ahto Buldas, Peeter Laud, Helger Lipmaa, and Jan Villemson.Time-stamping with binary linking s
hemes. In Advan
es inCryptology � CRYPTO'98, volume 1462 of LNCS, pages 486�501, Santa Barbara, 1998. Springer-Verlag.69

[BLS00℄ Ahto Buldas, Helger Lipmaa, and Berry S
hoenmakers. Opti-mally e�
ient a

ountable time-stamping. In Publi
 Key Cryp-tography � PKC'2000, volume 1751 of LNCS, pages 293�305,Melbourne, Australia, January 2000. Springer-Verlag.[BRW02℄ Ahto Buldas, Meelis Roos, and Jan Willemson. Undeniablereplies for database queries. To appear in the pro
eedings ofFifth International Balti
 Conferen
e on DB and IS, June 2002.[BW01a℄ Ahto Buldas and Jan Willemson. A new linking s
heme forinterval time stamps. Manus
ript, available from the authors,2001.[BW01b℄ Ahto Buldas and Jan Willemson. On interval time stamps ofminimum size. Manus
ript, available from the authors, 2001.[Chr75℄ Ni
os Christo�des. Graph theory: an algorithmi
 approa
h.A
ademi
 Press, New York, London, San Fran
is
o, 1975.[GKP89℄ R. L. Graham, D. E. Knuth, and O. Patashnik. Con
rete Math-emati
s. Addison-Wesley, Reading, MA, 1989.[Har69℄ Frank Harary. Graph theory. Addison-Wesley, 1969.[HS91℄ Stuart Haber and W.S
ott Stornetta. How to time-stamp adigital do
ument. Journal of Cryptology, 3(2):99�111, 1991.[HS97℄ Stuart Haber and W.S
ott Stornetta. Se
ure names for bit-strings. In Pro
. 4th ACM Conferen
e on Computer and Com-muni
ations Se
urity, 1997.[Koh78℄ Loren M. Kohnfelder. Toward a pra
ti
al publi
-key
ryptosys-tem. 1978.[Lip99℄ Helger Lipmaa. Se
ure and e�
ient time-stamping s
hemes.PhD thesis, Tartu University, 1999.[Lip02℄ Helger Lipmaa. On Optimal Hash Tree Traversal. Manus
ript,available from the author. First presented during the Esto-nian Winter S
hool on Computer S
ien
e, Palmse, Estonia, onMar
h 4th, 2002.[MAM+99℄ Mi
hael Myers, R. Ankney, A. Malpani, S. Galperin, andCarlisle Adams. RFC2560: X.509 Internet Publi
 Key Infras-tru
ture Online Certi�
ate Status Proto
ol - OCSP. June 1999.70

[Mer80℄ Ralph C. Merkle. Proto
ols for publi
 key
ryptosystems.In Pro
eedings of the 1980 IEEE Symposium on Se
urity andPriva
y, pages 122�134, 1109 Spring Street, Suite 300, SilverSpring, MD 20910, USA, April 1980. IEEE Computer So
ietyPress.[MvOV97℄ Alfred J. Menezes, Paul C. van Oorshot, and S
ott A. Vanstone.Handbook of Applied Cryptography. CRC Press, Bo
a Raton,New York, London, Tokyo, 1997.[NIS95℄ NIST. Se
ure hash standard. Federal Information Pro
essingStandards Publi
ation 180-1, April 1995.[NIS00℄ NIST. Digital Signature Standard (DSS). Federal InformationPro
essing Standards Publi
ation 186-2, January 2000.[NIS01℄ NIST. Se
ure hash standard. Federal Information Pro
essingStandards Publi
ation 180-2, May 2001.[PF96℄ Fernando Pinto and Vas
o Freitas. Digital time-stamping tosupport non repudiation in ele
troni

ommuni
ations. In Pro
.SECURICOM'96 � 14th worldwide Congress on Computer andCommuni
ations Se
urity and Prote
tion, CNIT, pages 397�406, Paris, June 1996.[P�96℄ Birgit P�tzmann. Digital Signature S
hemes, volume 1100 ofLNCS. Springer-Verlag, Heidelberg, August 1996.[Pre93℄ Bart Preneel. Analysis and design of
ryptographi
 hash fun
-tions. PhD thesis, Katholieke Universiteit Leuven (Belgium),January 1993.[PSST01℄ A. Perrig, S.W. Smith, D. Song, and J.D. Tygar. SAM: AFlexible and Se
ure Au
tion Ar
hite
ture using Trusted Hard-ware. In ICEC01: First International Workshop on InternetComputing and Ele
troni
 Commer
e, April 2001.[RG95℄ T. E. Ro
ko� and M. P. Groves. Design of an Internet-BasedSystem for Remote Dut
h Au
tions. Internet Resear
h: Ele
-troni
 Networking Appli
ations and Poli
y, 5(4):10�16, 1995.[RSA78℄ Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. Amethod for obtaining digital signatures and publi
-key
ryp-tosystems. Communi
ations of the ACM, 21(2):120�126, Febru-ary 1978. 71

[S
h35℄ Erwin S
hrödinger. Die gegenwärtige Situation in der Quan-tenme
hanik. Die Naturwissens
haften, 23:807�812; 823�828;844�849, 1935.[Sti95℄ Douglas R. Stinson. Cryptography: Theory and Pra
ti
e. CRCPress, Bo
a Raton, New York, London, Tokyo, 1995.[Sur℄ Surety digital notary and timestamping servi
e homepage.Available at http://www.surety.
om.[Tri80℄ John D. Trimmer. The Present Situation In Quantum Me
han-i
s. Pro
eedings of the Ameri
an Philosophi
al So
iety, 124:323�338, 1980.[Wil01a℄ Jan Willemson. An algorithm for building e�
ient time-stamping s
hemes on the �y. Manus
ript, available from theauthor, 2001.[Wil01b℄ Jan Willemson. Optimal trees for interval time stamps.Manus
ript, available from the author, 2001.

72

INDEXk � k, 34Auth(), 29authenti
ation path, 28support ar
s, 28authenti
ator, 29�(), 34
w;d, 55
erti�
ate, 12Cd, 36D(), 33depth, 33digest, 20edgehorizontal, 57verti
al, 57FT, 30G1
G2, 34G, 42hash fun
tion, 19history set, 30I, 34item, 21key pair, 12key revo
ation, 12leaf, 26linking information, 21linking s
heme, 21binary, 23Haber-Stornetta, 23

linear, 21Mw;d, 54mw;d, 54o�-line
omparability, 22�(), 50proof set, 29Sw;d, 56set hash, 29Sdw, 37�w;d, 54signature s
heme, 11Tw, 41time
erti�
ate, 28time stamp, 13interval, 16, 33time-stampingabsolute, 14linkage-based, 15Time-Stamping Authority (TSA),13tokenexisten
e, 32freshness, 30tree binary
omplete, 36topologi
ally sorted, 35Merkle's authenti
ation, 20W (), 33width, 33
73

SUURUSE MÕTTES EFEKTIIVSEDINTERVALLAJATEMPLIDSisukokkuvõteErinevates digitaalse asjaajamise rakendustes tekib vajadus määratadigitaalse informatsiooni erinevaid parameetreid � millises vormingus oninfo esitatud, kes ja kuna dokumendi lõi jne. Enamasti pole andmete tekketäpset aega võimalik kindlaks teha, kasvõi sel põhjusel, et dokumendi loojaei pruugi loomise aktist aastaid teatada. Nii asendataksegi digitaalse in-formatsiooni tekkeaja kindlakstegemine tavaliselt registreerimisaja �kseeri-misega, nõudes, et dokumendi looja peab dokumendi registreerima selleksette nähtud autoriteedi juures. Niisugust protseduuri nimetatakse ajatem-belduseks ja autoriteeti ajatempliteenuse osutajaks.On olemas rida stsenaariume, mille korral andmete ühekordsest regist-reerimisest piisab. Töös nimetatakse seda tinglikult patendistsenaariumiks,pidades silmas võimalikku rakendust patendivaidluste lahendamisel, kustuleb kindlaks teha, kes oma leiutisest esimesena teada andis. Sama ideo-loogia abil saab ka välja selgitada, kes reserveeris esimesena lennukipiletijne.Digitaalallkirjade tekkeaja kindlakstegemisel on olukord aga põhimõt-teliselt teistsugune. Nimelt on dokumendi digitaalne signeerimine seotudprivaatvõtme kasutamisega ja see operatsioon tuleb läbi viia võtmeomanikutäieliku kontrolli all. Niisiis ei saa dokumendi allkirjastamise täpset mo-menti mingi kolmanda osapoole juures �kseerida. Küll aga saab registreeridakaks ajahetke � ühe kindlalt enne signeerimist ja teise kindlalt pärast seda.Nii võime hiljem väita, et elektronallkiri on antud mingi kindla ajaintervallijooksul ning sellest johtuvalt nimetatakse kirjeldatud ajatembelduse vormiintervallajatembelduseks.Käesoleva doktoritöö eesmärk on uurida intervallajatembeldusskeeme,mis võimaldaksid ajatemplite suuruse miinimumini viia. Väitekirjas for-maliseeritakse vastav optimeerimisülesanne, antakse ajatemplite suurusele(küllalt täpne) ülemine hinnang, leitakse antud hinnagu jaoks alampiir ningnäidatakse ära graa�depere, mis lähendab seda piiri kuitahes hästi (kusjuu-res täpne piir on saavutamatu).Töö viimane osa on pühendatud väljatöötatud graa�pere praktilise rea-liseerimise küsimustele ajatempliteenuse osutaja serveris. Algse rekurrentsegraa�pere de�nitsiooni põhjal on küll võimalik luua vastav rekursiivne algo-ritm, kuid esiteks ei vasta rekursioon linkimispõhise ajatembelduse ideoloo-giale ning teiseks pole naiivne rekursiivne realisatsioon käideldavuse mõttes74

turvaline. Lahendusena pakutakse töös välja alternatiivne samm-sammulinealgoritm, mis säilitab serveri töö jätkamiseks vajaliku informatsiooni efek-tiivselt ning varundataval kujul.

75

ACKNOWLEDGEMENTSThere are many people without whom this thesis would not have been bornat all. I guess the �rst person to blame (or to thank) for dragging me intothe topi
 is Helger Lipmaa who asked me to join Cyberneti
a in 1997/98and introdu
ed me to several other beautiful minds. Besides this Helgerdeserves some extra words of gratitude for reading preliminary versions ofmy thesis and making a number of valuable suggestions.It would take long to list all the good
olleagues in Cyberneti
a whohave in�uen
ed me one way or another, and hen
e I just mention the mostimportant one of them all � my supervisor Ahto Buldas. If I know anythingabout data se
urity, time-stamping or paper writing at all, it's thanks tohim. An important role has also been played by Cyberneti
a as an organiza-tion where beginning s
ientists and developers have found a fruitful groundto grow.It is very hard to write a
omputer s
ien
e thesis without a
omputerand its software, thus I would also like to thank the
reators of heaps of greatfree software like Linux operating system, LATEX text preparation system,Free Pas
al Compiler, Nedit editor and others.And last but not least � I have been happy to have an understandingand supporting family, represented by my wife Kairi. I promise to havemore time for her when this thesis will be ready.

76

CURRICULUM VITAEJan VillemsonCitizenship: Estonian Republi
Born: July 30, 1974, Tartu, EstoniaMarital status: marriedAddress: Ravila 70-5, Tartu, EstoniaConta
ts: phone: (+372 7) 302 667, e-mail: jan�ut.eeEdu
ation1981 � 1992 Tartu Se
ondary S
hool No. 121992 � 1996 BS
, Fa
ulty of Mathemati
s, Tartu University1996 � 1998 MS
, Fa
ulty of Mathemati
s, Tartu UniversityProfessional updating stays1996 � Eindhoven Te
hni
al University (TUE), Holland1997 � Turku University, Finland1998 � 3rd Estonian Winter S
hool in Computer S
ien
e (EWSCS), Palmse,Estonia2000 � 5th EWSCS, Palmse, Estonia2001 � 6th EWSCS, Palmse, Estonia2001 � EIDMA mini
ourse on Cryptographi
 Multiparty Proto
ols, TUE,Holland2002 � 7th EWSCS, Palmse, EstoniaProfessional employment1998 � . . . Resear
h engineer, Cyberneti
a2000 � . . . Le
turer, Tartu University
77

S
ienti�
 workThe main �elds of interest are
ombinatorial methods and their appli
ationsin data se
urity and digital do
ument management.Results have been presented at the
onferen
es in Santa Barbara (USA,1998), New Orleans (USA, 2000), Cheju Island (Korea, 2001), Sydney (Aus-tralia, 2001) and Tallinn (Estonia, 2002).

78

CURRICULUM VITAEJan VillemsonKodakondsus: EestiSünniaeg ja -koht: 30. juuli 1974, Tartu, EestiPerekonnaseis: abielusAadress: Ravila 70-5, Tartu, EestiKontaktandmed: telefon: (+372 7) 302 667, e-mail: jan�ut.eeHaridus1981 � 1992 Tartu 12. Keskkool1992 � 1996 bakalaureus, Tartu Ülikooli matemaatikateaduskond1996 � 1998 magister, Tartu Ülikooli matemaatikateaduskondErialane enesetäiendus1996 � Eindhoveni Tehnikaülikool (TUE), Holland1997 � Turu Ülikool, Soome1998 � 3. Eesti Arvutiteaduse Talvekool (EATTK), Palmse, Eesti2000 � 5. EATTK, Palmse, Eesti2001 � 6. EATTK, Palmse, Eesti2001 � EIDMA lühikursus �Cryptographi
 Multiparty Proto
ols�, TUE,Holland2002 � 7. EATTK, Palmse, EestiErialane teenistuskäik1998 � . . . teadur, Cyberneti
a2000 � . . . lektor, Tartu Ülikool
79

TeadustegevusPeamisteks tegevusvaldkondadeks on kombinatoorsed meetodid ning nenderakendused andmeturbes ja digitaalses dokumendihalduses.Tulemused on publitseeritud konverentsidel Santa Barbaras (USA, 1998),New Orleansis (USA, 2000), Cheju Island'il (Korea, 2001), Sydneys (Aus-traalia, 2001) ja Tallinnas (Eesti, 2002).

80

DISSERTATIONES MATHEMATICAEUNIVERSITATIS TARTUENSIS1. Mati Heinloo. The design of nonhomogeneous spheri
al vessels,
ylin-dri
al tubes and
ir
ular dis
s. Tartu, 1991. 23 p.2. Boris Komrakov. Primitive a
tions and the Sophus Lie problem.Tartu, 1991. 14 p.3. Jaak Heinloo. Phenomenologi
al (
ontinuum) theory of turbulen
e.Tartu, 1992. 47 p.4. Ants Tauts. In�nite formulae in intuitionisti
 logi
 of higher order.Tartu, 1992. 15 p.5. Tarmo Soomere. Kineti
 theory of Rossby waves. Tartu, 1992. 32 p.6. Jüri Majak. Optimization of plasti
 axisymmetri
 plates and shells inthe
ase of Von Mises yield
ondition. Tartu, 1992. 32 p.7. Ants Aasma. Matrix transformations of summability and absolutesummability �elds of matrix methods. Tartu, 1993. 32 p.8. Helle Hein. Optimization of plasti
 axisymmetri
 plates and shellswith pie
e-wise
onstant thi
kness. Tartu, 1993. 28 p.9. Toomas Kiho. Study of optimality of iterated Lavrentiev method andits generalizations. Tartu, 1994. 23 p.10. Arne Kokk. Joint spe
tral theory and extension of non-trivial multi-pli
ative linear fun
tionals. Tartu, 1995. 165 p.11. Toomas Lepikult. Automated
al
ulation of dynami
ally loaded rigid-plasti
 stru
tures. Tartu, 1995. 93 p. (in russian)12. Sander Hannus. Parametri
al optimization of the plasti

ylindri
alshells by taking into a

ount geometri
al and physi
al nonlinearities.Tartu, 1995. 74 p.13. Sergei Tupailo. Hilbert's epsilon-symbol in predi
ative subsystems ofanalysis. Tartu, 1996. 134 p.14. Enno Saks. Analysis and optimization of elasti
-plasti
 shafts in tor-sion. Tartu, 1996. 96 p.15. Valdis Laan. Pullba
ks and �atness properties of a
ts. Tartu, 1999.90 p.16. Märt Põldvere. Subspa
es of Bana
h spa
es having Phelps' unique-ness property. Tartu, 1999. 74 p.81

17. Jelena Ausekle. Compa
tness of operators in Lorentz and Orli
z se-quen
e spa
es. Tartu, 1999. 72 p.18. Krista Fis
her. Stru
tural mean models for analyzing the e�e
t of
omplian
e in
lini
al trials. Tartu, 1999. 124 p.19. Helger Lipmaa. Se
ure and e�
ient time-stamping systems. Tartu,1999. 56 p.20. Jüri Lember. Consisten
y of empiri
al k-
entres. Tartu, 1999. 148 p.21. Ella Puman. Optimization of plasti

oni
al shells. Tartu, 2000. 102p.22. Kaili Müürisep. Eesti keele arvutigrammatika: süntaks. Tartu, 2000.107 lk.23. Varmo Vene. Categori
al programming with indu
tive and
oindu
-tive types. Tartu, 2000. 116 p.24. Olga Sokratova.
-rings, their �at and proje
tive a
ts with someappli
ations. Tartu 2000. 120 p.25. Maria Zeltser. Investigation of double sequen
e spa
es by soft andhard analiti
al methods. Tartu 2001. 154 p.26. Ernst Tungel. Optimization of plasti
 spheri
al shells. Tartu 2001.90 p.27. Tiina Puolakainen. Eesti keele arvutigrammatika: morfoloogiline üh-estamine. Tartu 2001.28. Rainis Haller. M(r; s)-inequalities. Tartu 2002. 75 p.

82

