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ABSTRACTIn various appliations of digital doument management it is neessary todetermine di�erent parameters of douments � e.g. the format, the authoror the time of reation. Determining the time an be unsuessful sine thebits of a digital doument look the same regardless of their exat inep-tion moment. Hene, in pratial appliations instead of �xing the digitaldoument's reation time it is better to register the doument at ertain au-thority and onsider the registration time instead. Suh a proess is alledtime-stamping and the orresponding authority is alled Time-StampingAuthority.There are a number of oasions where one-time registration of the datais enough. Registering a patent appliation is a good example of suh asenario. Determining the time of digital signature reation, on the otherhand, di�ers substantially from the patent ase. This is aused by the fatthat digital signatures are given using private keys that should remain underthe signers' sole ontrol.Hene, it is impossible to determine the exat moment of signing by anythird party. Nevertheless, it is possible to �x two moments � one beforeand another after the signature reation. Using these moments we an laterprove that the signature was given during some time interval and this formof time-stamping is alled interval time-stamping.The main idea of the urrent PhD thesis is to study interval time-stamping shemes that allow us to derease the size of the time stampsas muh as possible. While doing this, several restritions must be takeninto aount, the most important one being the ability to ompare reationtimes of the douments without help of any third party.In the thesis, we state an expliit optimization goal, give an upper boundto the size of time stamps, �nd a lower estimate for this bound and onstruta family of graphs approahing this (unahievable) estimate asymptotially.The last hapter of the thesis is devoted to the questions of pratialimplementation of the proposed shemes. The original reurrent de�nitionof the sheme family turns out to be unsuitable, so we will introdue analternative desription. This solution enables storing the server's internalstate in a limited number of variables that an be e�iently bak-upped.The desription is further used to design an e�ient step-by-step time-stamping algorithm. 9



1 INTRODUCTION1.1 Paper-based doumentsIn many everyday appliations there is a doument involved to witness ourbehavior. Bus tikets, diplomas, promissory notes, passports, wills, stu-dent ards, driver's lienses, love-letters, stok shares, guarantee oupons,business ontrats et. are all very ommon and well-known examples.There are several omponents that help a doument to prove things andhene make it a doument as we understand this notion today.� Contents � this is the meaning of the doument, stating that Mr. Xhas some rights or obligations or that he has just stated something(e.g. expressed love for Ms. Y). In other words, ontents of the do-ument shows why it was reated and in all the examples above theontents were physially written on something that is alled� Medium � for usual douments, this is just paper or sometimes plas-ti; from the history we also remember people writing their messageson wood, on stone or even enoding them by making knots in ribbons.� Means of authentiation � a doument an have no legal value ifnobody is responsible for it.1 Thus, in order to establish the person inharge, there must be something added to the doument ontents toenable an independent party (judge) to deide whether or not someoneis bound to it. Mostly, a hand-written signature does the job, some-times people also use �ngerprints, water-marks or just three rossesattahed.It is important to note that in the ase of onventional paper-based dou-ments the ontents are onneted to the signature via the medium. One atext has been typed on paper and a signature written under it, there is noway to erase either of them without leaving visible traes (at least it shouldbe very hard).But in digital world we see that our familiar intuition behind doumentsmay break down. We no longer have any paper to take into our hands for1Even more, the responsibility for doument reation must be taken by a human. Wean not say �the omputer wrote it� as it is pointless to put the omputer behind thebars if anything goes wrong. It is of ourse tehnially possible for a omputer to reatemessages automatially, but there must still be a human person responsible for that.10



reading, suddenly a piee of information may have many idential originalset. It usually takes some time from people to get used to the new frameworkand sometimes unexpeted things an happen. Let us onlude this setionby a small real-world example of what happens if the onventional methodsare applied to digital data management.In Tartu University, Estonia, somewhere at the end of 1990sthere was a regulation established onerning several aspets ofbureauray. One part of it was talking about destroying the oldand unneessary douments. When the seretaries had olleteda pile of old douments, they had to write short notes about theontents of all these douments, store those notes and then feedthe douments to the shredder. But when they needed to deletesome �les from a omputer hard disk, they �rst had to printthose �les out and feed the printouts to the shredder! And noword about atual deletion of �les from hard disks!A lesson to be learned: hanging from paper to omputers really hangesthe notion doument. One has to be autious of what to say about digitaldouments if one has only seen the paper ones � they at di�erently inmany important details!1.2 Who is responsible for the doument?When dealing with paper douments, we are used to think that it is impor-tant to establish, who wrote the doument. This information is importantfor ontrats, wills, promissory notes et. If a ontrat is signed and one ofthe parties breaks it, we must be able to determine who is responsible forthe onsequenes. In many pratial appliations, �nding out the reatorof a doument also gives us the responsible person.On the other hand, having a digital doument at hand (or in the om-puter), it is impossible to say who has reated it, beause the bits annotbe distinguished by handwriting. Hene, the best we an do is to be sureabout who takes the responsibility for the doument.Tehnially, responsibility means potential repressions against a person,possibility to apply penalties (�nanial or even death penalty) if somethinggoes wrong. Consequently, we must be able to determine the right personby the doument and possibly using some additional data.The proess of binding a person to a (digital) doument is alled givinga digital signature and it is implemented via a signature sheme.11



1. In order to be able to give digital signatures, the user A needs a keypair onsisting of a private signature key SA and a publi veri�ationkey VA. The private part is kept seret, whereas the publi part ismade available to everybody.2. The user A an apply signature reation proedure to a doument Xand the private key SA to obtain the signature SigAfXg.3. When the veri�er B has a doument X, a signature SigAfXg and apubli key VA, he an apply the veri�ation proedure to them andget �Yes� or �No� as the outome, indiating the orretness of thesignature.4. Knowing only the publi key VA, it is omputationally infeasible to�nd its seret ounterpart SA, or even produe a valid signature of Ato a new doument X.There are many signature shemes proposed, out of whih RSA [RSA78℄and Digital Signature Standard (DSS) [NIS00℄ are two of the most popularones. You may also look at Birgit P�tzmann's exellent PhD thesis [P�96℄for more information on digital signature shemes.1.3 When was the doument signed?It is not always enough to know who reated/signed the doument, butalso when it was done. For an example, if Alie signs a promissory noteand makes her private key publi right after that, she an later laim thatanybody ould have given the signature instead of her. One possible solutionto this problem is to make Alie responsible for all signatures given with herprivate key until she expliitly laims her private key ompromised (revokesher key). Hene, before aepting Alie's promissory note, the bank shouldverify whether Alie has revoked her key and give her money only if the keyis still valid. For instane, if digital erti�ates (the framework of statingthe validity of signature keys proposed by Kohnfelder [Koh78℄) are used, thebank may onsult an OCSP [MAM+99℄ server or a Notary server [ABRW01℄.Nevertheless, in order to be able to prove later (e.g. in ourt) thatAlie's key was not revoked at the moment of signing, the bank has topresent some more onvining arguments than just the laim �We hekedthat the signature key was valid�. These extra arguments should at least saywhat happened before � was it the at of signing or the at of revoation.One of the most widely used ideas to overome this problem is to in-trodue a new party to the game. This party is responsible for attahing12
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below). Of ourse, in order to make the time-stamping system pratialthere are several requirements to meet.� The protool should not take too long to run.� The time stamps should be as small as possible to avoid unneessaryoverhead in ommuniation and storage.� It should not be neessary to invoke any parties (even the TSA) to theveri�ation proedure, i.e. time stamps should be omparable o�-line.The last two onditions are in a way ontroversial. The feature of o�-line omparison implies that time stamps must ontain enough informationabout all the other time stamps. As we want our time-stamping system toallow potentially any number of time stamps, it is for instane very di�ultto make the time stamps having onstant size. Hene, a tradeo� has to befound and the question how small an o�-line omparable time stamps beneeds an answer. Answering this question in ase of time stamp for digitalsignatures is the ore of this thesis, but before reahing the ore we stillneed to disuss some details.1.4 Absolute and linkage-based time stampsThe standard approah when building a time-stamping framework is to givethe TSA a (generally trusted) lok and let him sign the request togetherwith the lok's state at the moment the request is reeived. For exam-ple, the IETF PKIX time-stamping standard [ACPZ01℄ is based on thisidea. Still, suh an absolute time-stamping approah su�ers from severaldrawbaks.1. The TSA is ompletely trusted. Among other things, this means thatthe TSA an attah any time (not neessarily the orret one) to therequests.2. As the TSA signs its statements, the ompromise of its private keyalso beomes a problemati issue.3. In a way, attahing absolute time to the douments gives too muhinformation. We are mostly not interested in exat time moments,but rather in establishing the temporal relationship (earlier/later) ofseveral events. This was the ase with Alie's signature and key revo-ation. It also is when we need to ompare patent registrations, or tomake sure that a job-appliation arrived before the deadline et.14



The last onsideration leads to the question, whether it is possible toestablish temporal relationships by some other (less-demanding) means, andif so, perhaps it ould also be possible to redue the trust requirements ofthe TSA.Suh a framework an be built by using one-way funtions to reate un-deniable ausal relationships between digital events rather than assigningphysial time to them. As a result, all the time-stamped items form some-thing like a hain of links where it is impossible to insert some new elementsor to delete any old ones. Beause of this analogy the desribed approah isalled linkage-based time-stamping . It was �rst proposed in 1990 in [HS91℄and later improved in [BLLV98℄.1.5 Two senarios of time-stampingBefore starting to reate a new time-stamping sheme we must analyze therequirements the sheme has to meet. First, we will disuss the possiblesettings where it makes sense to apply time-stamping. On a very generallevel we an distinguish the following two basi senarios.First senario: Who gets it �rst? In this senario, there are severalpartiipants who are interested in the same resoure and they need to be(among) the �rst ones to get it. There are many ommon examples of thissenario.� When several sientists make the same invention, only the �rst one toreah the patent bureau is the one who an laim the rights for theinvention.� If �ights are booked internationally, the airline ompanies tend todouble-book some seats as their experiene shows that many bookingsare often aneled. Still, from time to time, it happens that some�ights are over-booked and in this ase only the �rst bookers shouldget the seats.� Temporal ordering of the requests an be applied for several kinds ofautions, see [PSST01, RG95℄ for disussion.In order to prove later to the patent-interested sientists that some of theirompetitors were not favored unfairly, time-stamping is a natural tool touse. It is also quite easy to organize time-stamping in ases like the onesabove as all the lients are obliged to express their interest diretly anyway,by pressing a button or running to the travel agent. Hene, it is enough15



for the TSA to reord the moment of the interest expression and to issue atime stamp for that moment.Seond senario: When did the at die? Reall the Shrödinger'sfamous mental at experiment [Sh35℄ (the English translation used here isdue to John D. Trimmer [Tri80℄):A at is penned up in a steel hamber, along with the followingdevie (whih must be seured against diret interferene by theat): in a Geiger ounter there is a tiny bit of radioative sub-stane, so small, that perhaps in the ourse of the hour one ofthe atoms deays, but also, with equal probability, perhaps none;if it happens, the ounter tube disharges and through a relayreleases a hammer whih shatters a small �ask of hydroyaniaid. If one has left this entire system to itself for an hour,one would say that the at still lives if meanwhile no atom hasdeayed.For us, the important question arising from this experiment is: if we openthe hamber and see a dead at then how an we tell the exat moment ofdeath? The sad truth stated by Shrödinger is � we annot.A similar situation an be observed in the omputer world if we needto determine the time of some private digital ation. One very importantexample � signing � was already presented above. Note that the situationof signing is substantially di�erent from registering patents. As we sawbefore, a sientist interested in the honor of invention an (and has to) showhis interest expliitly and publily. Signing, on the other hand, involvesappliation of a private signature key that is known only to the signer andto no-one else. Hene, no-one exept for the signer knows the exat momentwhen the signature was reated.So what an we do if we still need to determine the time somehow?The answer is simple � if you annot do it exatly, try to be as preise aspossible and prove that the event took plae during some time interval. Forthe Shrödinger's at, this means saying that the at died during the hourwhen the hamber was losed; for digital signatures the very same approahapplies � if we an prove that a signature was reated during some (relativelyshort) time interval, one an be reasonably satis�ed with the result. Thetime stamps used for the proof are alled interval time stamps from nowon.
16



Whereas the �rst senario is pretty well studied [HS91, BLLV98, BL98,BLS00, Lip99℄, the seond one has arisen only reently. Still, being appli-able for time-stamping digital signatures, it is by no means less importantthan the patent senario. There are also other possible appliations of inter-val time stamps. In priniple, any omputation that is arried out outsideof the diret sight of the TSA an be a subjet to it. For example, om-putation of message authentiation odes (MACs, see [MvOV97℄, Setion9.5) also involves usage of seret keys and hene interval time stamps are tobe used. Another interesting appliation of this approah is time-stampingother TSA's time stamps. This way, it is possible to reate dependeniesbetween the �histories� �written� by di�erent TSAs. These dependeniesan be used to� synhronize the ations of TSAs and make items in di�erent �histories�omparable with eah other; and� inrease the reliability and availability of the TSAs: when one TSA istemporarily down, the other one still retains the ontinuity of the �rstone's work (see [ABSW01℄ for a more detailed disussion on availabil-ity issues).1.6 Objetives and outline of the thesisThe basi motivation of this thesis was already stated in Setion 1.3. Addingthe results of the disussions from Setions 1.4 and 1.5, we formulate thefollowing entral problem of the thesis.Find a linkage-based time stamping sheme that provides assmall interval time stamps as possible and enables o�-line om-parison.When solving this problem we will mostly onentrate on the mathe-matial side and postpone the disussion about pratial implementationsto the end. Still, this disussion is by no means less substantial than therest of the thesis as the work of the TSA must also be e�ient and reli-able. Hene, when proposing some new shemes, one must also ask howgood algorithms an be designed based on mathematial desriptions of theshemes.The rest of the thesis is devoted to solving these two problems and isorganized as shown below. Several results presented in the thesis have notyet been published on any onferene nor in any journal, but rather in a17



series of manusripts and tehnial reports. The referenes an be foundbelow as well.� Chapter 2 gives tehnial bakground and a brief historial overviewneessary to understand the rest of the thesis.� Chapter 3 presents a general framework of linking shemes togetherwith detailed tehnial desriptions. Size-e�ieny of the previousbest-known time-stamping system is onsidered for interval time stampsand improved by 25%. This result was �rst obtained by Buldas andWillemson and desribed in manusript [BW01a℄.� Chapter 4 presents a new family of linking shemes and proves itsasymptotial optimality with respet to an upper bound for the size oftime stamps. The new sheme family was de�ned �rst in [BW01a℄ andfurther analyzed in [BW01b℄ by Buldas and Willemson. The optimalshemes were �rst found by the author of the thesis in [Wil01b℄.� Chapter 5 disusses the restritions that are set on the TSA's serverthat uses new linking shemes. We give an e�ient and reliable al-gorithm for generating the shemes on the �y. The algorithm wasoriginally desribed by the author in [Wil01a℄.� Chapter 6 ends the thesis and draws some philosophial onlusions.
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2 STATE OF THE ART2.1 Hash funtionsIn order to build a linkage-based time-stamping sheme we use a ollisionresistant hash funtion (see [MvOV97℄, hapter 9)1, i.e. a funtion h suhthat it� inputs bit-strings of arbitrary length and outputs bit-strings of �xedlength k, i.e. h : f0; 1g� ! f0; 1gk ;� works e�iently (i.e. for any x, h(x) is easy to ompute);� is ollision resistant : it is omputationally infeasible to �nd inputsx 6= x0 suh that h(x) = h(x0).It an be easily seen (e.g. [Sti95℄, hapter 7) that (under some natu-ral extra onditions) ollision resistant hash funtions also have the nextdesirable properties:� preimage resistane: for essentially all outputs y 2 f0; 1gk it is infea-sible to �nd x 2 f0; 1g� suh that h(x) = y;� 2nd preimage resistane: for given x 2 f0; 1g�, it is infeasible to �ndx0 6= x suh that h(x) = h(x0).Whereas the question of existene of suh funtions is still open, severalandidates have been tailored and they are believed to be good enoughfor pratial use. SHA-1 [NIS95℄ together with its improvements SHA-256,SHA-384 and SHA-512 [NIS01℄ are the most popular ones at the time ofthis writing.Later on we will extensively use the notation h(x1; x2; : : : ; xl) and bythat we mean the value of the funtion h on some prede�ned data struturefrom where all the bit-strings x1; x2; : : : ; xl an be restored. One might e.g.use onatenation of the strings or some ontainer format.1As the idea of the urrent thesis is not to make a deep ontribution into the theoryof hash funtions, our de�nition used here is rather informal and intuitive. For moredetailed disussion we refer the reader to [Pre93℄.
19
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x1 x2 x3 x4 x5 x6h1 = h(x1; x2)h2 = h(h1; x3) h3 = h(x4; x5)h4 = h(h3; x6)h5 = h(h2; h4)

Figure 2.1: Example of Merkle's authentiation tree.2.2 Proving dependenies between the data itemsIn what follows, we will onsider a proess where outputs of some hashomputations are used as inputs to others. This way we an make oneoutput value dependent on many input values and prove this dependeneby exposing some of the inputs or intermediate hash values. For instane,if we are given x1; x2 suh thath(x1; h(x2; x3)) = y (2.1)then we say that y depends on the inputs x1; x2; x3 in the sense that thereis no other way to obtain y as a result of some hash omputations thanomputing it by formula (2.1) (beause otherwise we should be able to�nd seond preimages to the funtion h). Hene, in order to prove that ydepends on x2, it is su�ient to show the additional values x1 and x3 sothat anyone an ompute h1 = h(x2; x3) and verify that y = h(x1; h1).Suh a reasoning an be generalized to quite ompliated data stru-tures, for instane to binary trees as done by Merkle [Mer80℄. Figure 2.1presents an example of resulting Merkle's authentiation tree.Similar to the above, for all the leaves labeled x1; : : : ; x6 it is possibleto prove that h5 depends on them. For instane, if the dependene of h5on x3 is to be proven, one may add the verties h1 and h4 and the veri�ermay ompute h2 = h(h1; x3) and h5 = h(h2; h4).Hene, if h5 is published in authenti and undeniable way, the preseneof the leaves x1; : : : ; x6 at the time of forming the Merkle's authentiationtree an not later be denied (even by the party who formed the tree). If weonsider x1; : : : ; x6 to be reords in some database D, then h5 is the digest of20



D and the proof methodology desribed above an be used to prove whetherfor any partiular xi the ondition xi 2 D or the ondition xi 62 D holds.We refer the reader to [BLL00, BRW02℄ for more details.2.3 Linkage-based time-stampingAs noted in Setion 1.3, there are two seurity drawbaks in absolute-timebased time-stamping: the need to trust the TSA and TSA's potential keyompromise. Hene, in order to avoid these problems, the TSA should havetools for time-stamping suh that1) he is not able to reompute his statements afterwards; and2) his statements do not depend on any seret information.It turns out that the ryptographi hash funtions desribed in Setion 2.1an be suessfully applied in order to meet the requirements above.This idea was �rst proposed by Haber and Stornetta in [HS91℄ whointrodued linking shemes. They ompare a linking sheme with a labnotebook the entries of whih are �lled one after another and the sewn-inpages of whih make the reord hard to tamper with.The approah of Haber and Stornetta is (being a bit simpli�ed) thefollowing. Let us have a ollision resistant hash funtion h and let xn bethe next time-stamping request (later also alled an item). The time stampfor xn will be (xn; Ln);where Ln is the linking information de�ned asLn = (xn�1; h(Ln�1)):Thus one-way dependenies are reated between the linking informationstrings Ln and through them also between the items xn, allowing us tosay that xn was time-stamped later than xn�1. As no-one knows how toompute seond preimages for the hash funtion, even the TSA an notalter the time stamps after they are issued. Of ourse he an try to delaysome time-stamps, but if he delays too muh he will be aught on heating.Beause the linking information items form a linear hain, suh sheme isalled linear ; an example is depited in Figure 2.2.Though reliable in the sense of seurity, the linear linking sheme of[HS91℄ is very impratial for two reasons.21
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L1 L2 L3 L4 L5 L6
x1 x2 x3 x4 x5 x6Figure 2.2: Example of linear linking sheme.� Every time it is neessary to establish the temporal relationship be-tween two items, the veri�er must reompute the whole hain betweenthem and this requires a lots of time if the items are far apart.� For the veri�ation proedure it is neessary to have all the interme-diate items available as well. They an be kept in a entral server,at the veri�er or anywhere else, but the required storage spae in-reases linearly in time anyway. Besides, if for some reason the stor-ing server beomes unavailable, time stamp dependenies an not beveri�ed anymore. One again, we refer the reader more interested inthe availability issues to [ABSW01℄.2.4 O�-line omparabilityBy o�-line omparability we mean the property of the time-stamping shemeto provide suh time stamps that an be ompared by the veri�er withoutonneting to any other parties, i.e. based on the time stamps only.Is it possible to ahieve this property? The answer is a�rmative, as itan be seen from the following naïve time-stamping sheme:� time stamp for the request xi is the set Ti = fx1; x2; : : : ; xi�1g;2� if it is neessary to ompare the time stamps Ti and Tj of the itemsxi and xj , respetively, �nd out whether xi 2 Tj or xj 2 Ti.Another sheme providing o�-line omparable time stamps, but also lineartime stamp size was proposed by Pinto and Freitas in [PF96℄.There have been several attempts to derease the size estimate for timestamps based on Merkle's authentiation trees, e.g. Benaloh and de Mare2The time stamp Ti may also be signed by the TSA in order to ahieve authentiationand non-repudiation. In this ase we also need o�-line signature veri�ation as done e.g.in [ABRW01℄. 22
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Figure 2.3: Example of linking sheme of [BHS93℄.[BdM91℄ and Haber, Stornetta et. al. [BHS93, HS97℄. We onsider herebrie�y the sheme of Haber and Stornetta that lies on the foundation ofSurety Digital Notary and Timestamping Servie [Sur℄.Haber and Stornetta divide the work proess of a time-stamping serverinto rounds. All the items xl1; : : : ; xlkl obtained during the round l are usedas leaves for a Merkle's authentiation tree. As explained in Setion 2.2,the tree's root value rl depends in undeniable way on all the items xli andthis dependene an later be proven by exposing some additional items.The number of extra items needed is logarithmi in kl. In order to reatedependenies between the root nodes of di�erent rounds, linear linking isused. An example of the Haber-Stornetta sheme is depited in Figure 2.3.Note that the items inside one round are atually not ordered in theHaber-Stornetta sheme. In pratie, we may aept inomparability oftwo time-stamps, if they are lose enough in time. This implies the need tomake the duration of one round short enough in the Haber-Stornetta shemebut doing so we loose in logarithmi e�ieny provided by the Merkle'sauthentiation trees used inside the rounds.The �rst time-stamping sheme providing both logarithmi time stampsizes and undeniable linear ordering of the items was proposed by Bul-das, Laud, Lipmaa, and Willemson in [BLLV98℄. Their basi idea was tolink a new item to two older ones: the previous item and a spei�allyseleted item from (possibly very distant) past. Beause of this propertythese shemes are alled binary linking shemes. An example of [BLLV98℄sheme is depited in Figure 2.4The researh on size-optimal linking shemes was ontinued by Bul-23
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das, Laud, Lipmaa and Shoenmakers [BL98, BLS00℄. The Buldas-Lipmaa-Shoenmakers (BLS-) sheme [BLS00℄ was proven to give size-optimal timestamps for the patent senario, but in this thesis we show that for intervaltime-stamps more e�ient solutions an be given. We present a new familyof shemes based on unbalaned trees whih redues the size of time stampsabout 28% ompared to the BLS-sheme. We will also prove that with re-spet to the best urrently known estimates for the time-stamp sizes, thisfamily of shemes is asymptotially optimal.
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3 LINKING SCHEMES3.1 Basi requirements3.1.1 General frameworkIn Chapter 2, we saw how several graphs1 (e.g. hains and trees) an beused to reate dependenies between di�erent data items. In this hapter,we onsider the general ase and assume a rooted direted ayli graph(with ars heading towards the root) as a basis of our linkage-based time-stamping shemes.The items to be time-stamped are represented as nodes with in-valeny0 (by an analogy with trees they are also alled leaves in this thesis) and arsrefer to hash omputations performed using a prede�ned hash funtion h.In order to make statements about temporal relationships between di�erentitems, we also assume that the leaves of the graph are linearly ordered.There are n! possible orders for a graph with n leaves and not neessarilyall of them give rise to an equally good linking sheme. Hene, speifyingthe order of leaves plays an important role in sheme onstrution.Figure 3.1 shows a simple linking sheme with time-stamped itemsx1; x2; x3; x4 and with hash values h1 = h(x2; x3); h2 = h(x1; h1); h3 =h(h1; x3); : : :.Based on suh a sheme the time-stamping server works as follows. Theserver's work is divided into a sequene of steps. At eah step i� a new item xi is obtained;� several hash omputations are performed on xi and previously storedvalues;� for the next steps some old and some newly omputed values arestored.An example of omputations arried out on the graph of Figure 3.1 an beseen in Table 3.1. Note that the set of values to ompute and to store isnot neessarily uniquely determined by the graph. For example, on step 3we ould also ompute the values h3; h4; h5 and store the value h5 only.1The urrent thesis relies on graph theory quite heavily. It was the author's hoie notto inlude an introdutory hapter about graphs into the thesis as there are many goodresoures available in literature. A reader in need for more bakground should probablystart from some lassial books like [Chr75℄ or [Har69℄.26
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x1 x2 x3 x4

x5x6x7x8 h1h2 h3 h4h5 h6
h7Figure 3.1: A simple example of time-stamping sheme.

Step Input Compute Store1 x1 x12 x2 x1; x23 x3 h1 = h(x2; x3), h2 = h(x1; h1) x3; h1; h24 x4 h3 = h(h1; x3), h4 = h(h3; x3), h6h5 = h(h2; h4), h6 = h(h5; x4)Table 3.1: A simple example of time-stamping omputations.
27



In what follows, we will use the labels xi and hj in two di�erent mean-ings. First, they denote the atual values attahed to the verties and henewe an perform hash omputations using the values xi and hj as arguments.Seond, we will usually speak about the verties xi and hj using the labelsas vertex referenes just like it is a general ustom in graph theory.Like in Chapter 2, we are able to prove one-way dependenies betweenseveral items, e.g. we an say that h6 depends on x2. As a proof of suha statement, it is enough to give some extra items required to repeat thehash omputations that lead from x2 to h6. For example, we an omputethat h(x2; x3) = h1;h(h1; x3) = h3;h(h3; x3) = h4;h(h2; h4) = h5;h(h5; x4) = h6;and hene we may present the set of items fx3; h2; x4g (sometimes alledtime erti�ate) as a proof. Note that these omputations are performedfollowing the direted pathx2 ! h1 ! h3 ! h4 ! h5 ! h6: (3.1)Suh a path will be alled an authentiation path. Later we will also needthe ars that are not parts of the authentiation path but partiipate in theomputation proess. E.g., for the path (3.1) in Figure 3.1 the neessaryadditional ars are(x3; h1); (x3; h3); (x3; h4); (h2; h5); (x4; h6):These ars are alled authentiation path support ars.At the same time it is also possible to verify the neessary dependeneby omputing h(x2; x3) = h1;h(x1; h1) = h2;h(h2; h4) = h5;h(h5; x4) = h6;where the time erti�ate fx3; x1; h4; x4g is required for proof.Later we will see that time erti�ate forms an important part of atime-stamp. As the main objetive of the thesis stated in Setion 1.6 is28



to derease the size time stamps, we are also interested in reduing thesize of time erti�ates. The minimal set (in the sense of ardinality) ofextra nodes needed to prove the dependene of node y on node x is alledauthentiator of node x (relative to node y) and is denoted by Auth(x; y).In order to be preise we also give a formal de�nition of this notion.First we de�ne the operation of set hash.De�nition 1 Let G be a time-stamping graph and h be the hash funtionin use. Let K � V (G). Then SHh is a set hash operation that works asfollows:SHh : 2V (G) ! 2V (G) : K 7! K [ fx = h(x1; : : : ; xk) :x1; : : : ; xk 2 K; (x1; x); : : : ; (xk; x) 2 E(G)g:It is natural to denote SH1h(K) := SHh(K), SH2h(K) := SHh(SH1h(K)),et. As G is a �nite graph, for some natural number i it must happen thatSHih(K) = SHi+1h (K). This set will be denoted as SH�h(K).Now we are ready to de�ne what it means to be able to prove depen-denies.De�nition 2 A subset K of V (G) is alled a proof set (proving the depen-dene of y on x) if1) y 62 SH�h(K);2) y 2 SH�h(K [ fxg).One of the proof sets (hosen in some way) having the minimal ardinalityis alled authentiator and is denoted as Auth(x; y).Note that the set Auth(x; y) is not neessarily unique as there may beseveral proof sets of minimal ardinality. For example, we may have bothAuth(h1; h5) = fx3; h2g and Auth(h1; h5) = fx1; h4g for the graph in Figure3.1. Later on, we should be areful not to ause misinterpretations basedon this non-uniqueness. As we will mostly be interested in the ardinalityjAuth(x; y)j only, this is not going to be too di�ult.As the notion of authentiation path was important in the �rst informaldesription of authentiators, it is interesting to ask, how this notion relatesto De�nition 2. In order to answer this question, we �rst prove the followinglemma.Lemma 1 If K is a proof set proving the dependene of y on x, then eitherx = y or there exists a predeessor y0 of y suh that K is also a proof setproving the dependene of y0 on x. 29



Proof. If x = y then we are done. If x is a predeessor of y we are alsodone by De�nition 2.Otherwise, onsider all the predeessors y1; y2; : : : ; yk of y. As y 2SH�h(K [ fxg) then by De�nition 1, for every index i it holds that yi 2SH�h(K [ fxg). On the other hand, if for every index i it would hold thatyi 2 SH�h(K), it would also mean that y 2 SH�h(K) whih is not possible.Hene, for some predeessor yi0 the ondition yi 62 SH�h(K) is satis�ed.Choosing y0 = yi0 onludes the proof. 2Now we an arry on this proess for several times: �nd a predeessor y0of y, then a predeessor y00 of y0, et. As the graph G is �nite and ayli,eventually we must arrive at the vertex x, obtaining hene the path from xto y.It is generally not the ase that for any two verties there exists a de-pendene one way or another. The root node r (r = h6 in Figure 3.1) is anexeption: it depends on any other node and this way the whole �history�of the sheme is aptured into the root. This way we may say that the rootis younger than all the other items in the sheme, but we would also like toompare the items inside the sheme as well.For that purpose, we need to keep trak of the �history� throughout theformation of the sheme: after a new item xj is added for time-stamping,we perform some hash omputations and output a set of items apturingone-way information about all the items time-stamped this far. We give thefollowing de�nition.De�nition 3 Set Hj � V (G) is alled a history set (for the item xj) if1) 8i � j 9y 2 Hj suh that y depends on (or is equal to) xi;2) every y 2 Hj an be omputed from the elements x1; x2; : : : ; xj.Note that the hoie of the set Hj is generally not unique. For example,in Figure 3.1 we may take H3 = fx3; h1; h2g or H3 = fh2; h4g or evenH3 = fh5g.Next to the authentiators, the sets Hj form another important part ofthe time-stamps, hene we are interested in minimizing the number of theirelements as well.De�nition 4 The set history set Hj having the smallest possible ardinalityis alled freshness token and is denoted as FTj.Just as it was the ase with the authentiators, we must be areful whenoperating with the sets FTj as they are not uniquely determined. Beingmostly interested in the ardinalities only, this will not be a big problem.30



Note that the de�nition of authentiators does not depend on the orderof leaves, but the de�nition of freshness tokens does.3.1.2 Interval time-stampingReall now our original task stated in Chapter 1. We need to prove thatsome ation C (e.g. reation of a digital signature) took plae between twoevents (whih are not neessarily time moments, but an also be linkingevents) t1 and t2. Suh a proof must learly onsist of two parts:a) proof that C happened after t1; andb) proof that C happened before t2.Of ourse, in order for our time-stamping system to work properly, thefollowing transitivity-resembling ondition has to hold as well:) if it is proven that C happened before t and D happened after t thenit is possible to prove that C happened before D.Let the TSA have reahed the state where the next item would be xj+1and the user A needs to sign a doument X together with interval timestamp. Then A needs some additional information that for any item xi,i � j lets him to prove that xi ourred before the signature. Hene,this additional information must depend on all the previous items xi �and freshness token FTj is su�ient for this purpose. The �rst steps ofobtaining a time stamp look like as follows2:1. A! TSA: request for the freshness token2. TSA! A: FTj3. A: omputes � = SigAfX;FTjgNow the signature � depends in one-way fashion on all the previousrequests xi. How an we give an upper bound to the time moment ofsigning? This an be done simply by letting the signature to be the nexttime-stamping item xk:4. A! TSA: �5. TSA: adds xk = � to the linking sheme, omputes FTk et.2Here we use standard ryptographi protool syntax where the expression A! B :X means that the party A sends the party B message X and the expression A : Z meansthat the party A takes ation Z. 31



By the ondition ) above, in future it may of ourse be neessary toprove that all the later freshness tokens FTl, l > k depend on xk. Thisholds also for the very last freshness token FTn = frg. The smallest proofof dependene of the root r on xk is given by the authentiator Auth(xk; r);later on, this set will also be alled existene token (for xk)3. Clearly,the existene token annot be issued before the whole graph is ompleted.Therefore, the time-stamping proedure is �nished as follows:6. TSA: ompletes the sheme by omputing the root value r;7. TSA! A: Auth(xk; r).But what about the other freshness tokens FTl, r > l > k? Do we needspeial authentiators for all of them? This would learly be too resoure-onsuming and hene we state a muh simpler requirement. Namely, werequire that the very same authentiator Auth(xk; r) should be enough forproving all the other neessary dependenies as well:8k < l 9y 2 FTl : Auth(xk; y) � Auth(xk; r): (3.2)The next theorem shows an important lass of graphs that satisfy thisrequirement.Theorem 1 For any tree T with linearly ordered leaves the ondition (3.2)holds.Proof. Let the leaves of T be ordered as x1; x2; : : : ; xn and let xk be anarbitrary leaf. As T is a tree, there exists the unique authentiation pathxk ! h1 ! h2 ! : : :! r; (3.3)and also the authentiator Auth(xk; r) is unique. Even more, for any vertexv on the authentiation path (3.3) it holds thatAuth(xk; r) = Auth(xk; v) �[ Auth(v; r)(where �[ denotes disjoint union) whih impliesAuth(xk; v) � Auth(xk; r):3It was suggested to the author by several readers that a notation symmetri to FTishould be used for this notion as well; so it ould be something like ETi or ET(xi). Still,this notation was not aepted in the urrent thesis as by the author's opinion this wouldause more loss than gain in understandability of Chapter 4.32



Hene the theorem is proven if we an prove that for any freshness tokenFTl (l > k) there is a vertex y 2 FTl that belongs to the authentiationpath (3.3). But this is a diret impliation of De�nitions 3 and 4. 2Running a bit ahead, we an say that all the partiular time-stampingshemes that will be proposed in the urrent thesis belong to the lassof graphs desribed in Theorem 1. In what follows, we will not refer tothe theorem expliitly but keep it in mind every time a new sheme isonstruted.After doing all the work above, we are �nally ready to de�ne the notionof interval time stamp.De�nition 5 Let G be a time-stamping sheme with leaves x1; : : : ; xn and1 � i < j � n. Interval time stamp for the interval [i; j℄ is the pair(FTi;Auth(xj ; r)):3.2 Optimization goalWhen time stamps are used to establish relationships between digital signa-tures, it is onvenient to have the time stamps attahed to the signatures.Still, we do not want to add too muh storage overhead beause of the timestamps. Hene, it is important to redue the size of time stamps as muhas possible and this is the main goal of the urrent thesis.In Setion 3.1, we saw that interval time stamps onsist of two parts �freshness token FTi and existene token Auth(xj; r). In order to estimatethe size of the whole time stamp, we will use the following de�nitions.De�nition 6 By the width of the omputation graph G we mean the valueW (G) = maxi=1;:::;n jFTij:De�nition 7 By the depth of the omputation graph G we mean the valueD(G) = maxi=1;:::;n jAuth(xi; r)j:It is lear that W (G) and D(G) are the upper bounds for the sizes offreshness and existene tokens, respetively.It may happen that the freshness and existene tokens for some digitalsignature have some elements in ommon, so we onlude that the size oftime stamps is upper bounded by the valueW (G) +D(G);33
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G2.but this estimate is not neessarily sharp. It is an interesting open questionto obtain exat bounds for the size of time stamps.As all the urrently known e�ient linking shemes provide time-stampsizes logarithmi in the number of items, we are interested in omparingthis value to log2 kGk where kGk denotes the number of leaves of the graphG. Hene, in what follows we will be optimizing the following quantity:�(G) = W (G) +D(G)log2 kGk : (3.4)3.3 Composition of linking shemesIn the onstrution of our new shemes we need the following ompositionoperation whih is similar to that proposed in [BL98℄.De�nition 8 The graph with one vertex and no ars is I.De�nition 9 Let G1 and G2 be two rooted direted ayli graphs with rootverties r1 and r2, respetively. Then by G1 
 G2 we denote the tree withvertex set V (G1 
G2) = V (G1) [ V (G2) [ frg and ar set E(G1 
G2) =E(G1) [ E(G2) [ f(r1; r); (r2; r)g, where r is a new vertex. The subgraphsG1 and G2 will be alled left and right subgraphs, respetively.The onstrution G1 
G2 is depited in Figure 3.2.It is lear that starting from the tree I and applying this onstrutionreursively, we obtain only binary trees, and even more, every rooted di-reted binary tree an be onstruted this way. In order to use these treesas time-stamping shemes, a linear order has to be de�ned on their leaf set(see Subsetion 3.1.1). 34



3.4 Topologially sorted binary treesDe�nition 10 We say that the binary tree T is topologially sorted if forevery non-leaf node one of its hildren is marked as left and the other oneas right hild.Note that this de�nition indues a natural linear order (whih we will alsoall topologial) for all the leaves of the topologially sorted binary tree.This order an be formalized in the following way.1. Let the root be labeled by the empty string �.2. For every vertex labeled by a string � let its left hild be labeled bythe string �L and the right hild by the string �R.3. Order the leaves into the lexiographi order of their labels (note thatL preedes R in the alphabet).It is lear that the leaves of all binary trees an be topologially sorted byde�ning the right and the left hildren for every inner node in some way. Inwhat follows, we will assume suh an order from the leaves of 
-onstrutedtrees, if not otherwise expliitly stated.For topologially sorted binary trees the following lemma holds.Lemma 2 Let T be a topologially sorted binary tree and T = T1
T2 (suha presentation being obviously unique). Then the following equalities hold.W (T ) = maxfW (T1);W (T2) + 1g;D(T ) = maxfD(T1);D(T2)g+ 1:Proof. When the TSA builds the freshness tokens in the graph T , it �rstgenerates the the ones orresponding to the left subtree T1 and then theones orresponding to the right subtree T2. In the latter ase we see fromDe�nition 3 that some of the nodes in the freshness tokens must apture allthe leaves of T1 as well. De�nition 4 requires the number of these nodes tobe as small as possible (note that the freshness tokens for the two subtreesare independent). Hene the best solution is to add the root of the subtreeT1 to all the freshness tokens of the subtree T2. This proves the �rst equality.In order to prove the seond equality, that let r, r1 and r2 be the rootsof the trees T , T1 and T2, respetively. Then for any item xiAuth(xi; r) = � Auth(xi; r1) [ fr2g; if xi 2 T1;Auth(xi; r2) [ fr1g; if xi 2 T2:35



The proof is now straightforward. 2Remark. Some are has to be taken here in order to make sure what anequation like Auth(xi; r) = Auth(xi; r1) [ fr2gatually means onsidering that the sets Auth(xi; r) and Auth(xi; r1) arenot, in general, uniquely determined. One should read this equation in thefollowing way: �For any possible authentiator Auth(xi; r1) we obtain anauthentiator Auth(xi; r) by adding the node r2 to it�. A similar lari�ationis appliable for the freshness tokens as well. 4It is interesting to note that the following lemma holds.Lemma 3 If T is a topologially sorted binary tree with leaves x1; x2; : : : ; xnand root r then for eah index iFTi � Auth(xi; r)holds.As we do not need this lemma in the urrent thesis, we do not prove ithere but refer to [BLS00℄ for the proof of a ompletely analogous result.3.5 Complete treesThe omplete (binary) tree Cd of depth d is de�ned by the following reursivesheme5: Cd = � I; if d = 0;Cd�1 
 Cd�1; if d > 0:Clearly, kCdk = 2d and W (Cd) = D(Cd) = d. Hene,�(Cd) = d+ dd = 2:It is also easy to see that the estimate obtained does not hange if weonsider the atual size of time stamps instead of the value W (Cd)+D(Cd).This laim follows from the fat that interval time stamps in this tree an4It is not di�ult to see that in the ase of topologially sorted binary trees bothauthentiators and freshness tokens are in fat unique. Still the above remark must betaken into aount in future arguments.5In this setion and further on, the equality of graphs is atually an isomorphism.The author will use both = and ' to represent the isomorphism, whihever symbolseems more suitable in a partiular ase. 36
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Figure 3.4: The proess of forming the trees Sdw.
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Proof. We use indution on d. For d = 0S0w = I = C0;so the laim holds in this ase. Assume now the laim of the Theorem istrue for some d and onsider a tree Sd+1w , where w � d+ 1. By De�nition11, we have Sd+1w = Sdw 
Sdw�1 = Cd 
 Cd = Cd+1by indution hypothesis, as w � d+1 implies both w � d and w�1 � d. 2The ase of omplete trees was already onsidered in Setion 3.5. Nextwe will look at the ase w < d to try to loate trees G = Sdw for whih�(G) < 2. Assuming the inequality w < d, we now prove the followingtheorem.Theorem 3 If w < d then the following laims hold:1. W (Sdw) = w;2. D(Sdw) = � d; if w > 0;0; if w = 0;3. kSdwk =Pwk=0 �dk�.Proof.1. We use indution on d. If d = 1 then w = 0 andW (S10) = W (I) = 0;hene the laim holds for d = 1.For the step of indution we �rst note that the trees Sdw are all topo-logially sorted and hene Lemma 2 an be applied. We obtainW (Sdw) = W (Sd�1w 
Sd�1w�1) = maxfW (Sd�1w );W (Sd�1w�1) + 1g:If now w < d� 1, we haveW (Sdw) = W (Sd�1w 
Sd�1w�1) = maxfW (Sd�1w );W (Sd�1w�1) + 1g == maxfw; (w � 1 + 1)g = wbeause of the indution hypothesis.If w = d� 1 then Sd�1w = Cd�1, onsequentlyW (Sd�1w ) = W (Cd�1) = d� 1 = wand hene the above omputation holds for this ase as well.39



2. If w = 0 then D(Sdw) = D(I) = 0:If w > 0 we one again we use indution on d. The indution basisis veri�ed exatly as above. For the indution step we obtain fromLemma 2 that the equalityD(Sdw) = maxfD(Sd�1w );D(Sd�1w�1)g+ 1holds. Now for d+ 1 (under assumption w > 0) we have:D(Sd+1w ) = maxfD(Sdw);D(Sdw�1)g+ 1 == maxfd; (d _ 0)g+ 1 = d+ 1;where the notation (d_0) means an entity with the value being equalto d or 0 (depending on w). Note that the assumption w < d is notatually needed for this part of the theorem.3. First note that the laim holds for w = 0 askSd0k = kIk = 1 = 0Xk=0�dk�:Straightforwardly, the laim holds also for w = d:kSddk = kCdk = 2d = dXk=0�dk�:Now we use indution on d. For d = 1 we have w = 0 and the requiredequality holds as shown above. For d > 1 and 0 < w < d+ 1 we havekSd+1w k = kSdwk+ kSdw�1k = wXk=0�dk�+ w�1Xk=0 �dk�= �d0�+ wXk=1�dk�+ wXk=1� dk � 1�= �d+ 10 �+ wXk=1 ��dk�+� dk � 1�� == �d+ 10 �+ wXk=1�d+ 1k � = wXk=0�d+ 1k �:40



2 Unfortunately, there is no known losed formula for Pwk=0 �dk�. Still, ifd = 2w + 1 we an ompute the exat value as follows:kS2w+1w k = wXk=0�2w + 1k � = 12 � " wXk=0�2w + 1k �+ wXk=0�2w + 1k �# == 12 � " wXk=0�2w + 1k �+ 2w+1Xk=w+1�2w + 1k �# == 12 � 2w+1Xk=0 �2w + 1k � = 12 � 22w+1 = 22w:So if we use Tw = S2w+1w in a tree-based time-stamping sheme, the numberof elements in time erti�ate for a digital signature is upper bounded byW (Tw) +D(Tw) = w + 2w + 1 = 3w + 1:Hene, �(Tw) = W (Tw) +D(Tw)log2 kTwk = 3=2 + o(1);whih about 25% less than in the omplete tree sheme. The next haptershows that this estimate an be improved even further, but not too muh.

41



4 OPTIMAL LINKING SCHEMES4.1 Optimal family of shemesIn order to �nd the optimal shemes in the sense of the ratio (3.4) we studythe situation in more detail. Let G be the lass of all �nite rooted diretedayli graphs. Our aim is to prove the following theorem.Theorem 4 For the harateristi � the following is true:inff�(G) : G 2 Gg = 1log2 1 +p52 ! :This in�mum is approahed for the trees Sdw withwd � 3�p52 and d!1:We present a proof in several steps by proving a sequene of lemmas;the proof methodology is similar to the one found in [BLS00℄. Eah of the�rst four lemmas shows one redution from more general lass of graphs tomore spei� ones until we end up with the trees Sdw. The ruial pointis to show how to arry all the redutions out without inreasing the value�(G). The �nal lemma determines the optimal value of �(Sdw). Note thatas the value 1log2 1 +p52 !is irrational1, but all the values �(G) are rational no graph G an have thisvalue for �(G), it an only be approahed asymptotially. The statementsof the lemmas are the following.Lemma 4 For any rooted direted ayli graph G there exists a tree Tsuh that �(T ) � �(G).1This laim is not di�ult to prove by the following standard argument. Iflog2 � 1+p52 � = ab with a; b 2 N, we get 1+p52 = 2a=b and 1 + p5 = 2(a+b)=b. Hene,(1 +p5)b = A+Bp5 (A;B 2 Nnf0g) should be an integer, a ontradition.42



Lemma 5 For any tree T there exists a binary tree T 0 suh that �(T 0) ��(T ).Lemma 6 For any binary tree T 0 there exists a topologially sorted binarytree T 00 suh that �(T 00) � �(T 0).Lemma 7 For given non-negative integers w and d, any topologially sortedbinary tree T having the greatest number of leaves and W (T ) = w, D(T ) =d, is isomorphi to Sdw.Lemma 8 The equalityinff�(Sdw) : w < dg = 1log2 1 +p52 !holds. This in�mum is approahed forwd � 3�p52 and d!1:4.2 Proof of Lemma 4Assume �rst that we have any rooted direted ayli graph G as our time-stamping sheme. If it is not a tree (otherwise, the lemma is done), wemust have verties with out-valeny greater than 1. Let v be a vertex without-valeny k � 2 suh that all of its predeessors have out-valeny 1; henev is the root of an indued subtree T of G (suh a v exists beause G isayli).Consider the authentiator Auth(v; r). Let v1; : : : ; vk be all the diretsuessors of v and let the authentiation path orresponding to Auth(v; r)start with the ar (v; v1). We will show that deleting the ars (v; v2),: : :,(v; vk) (and possibly some other ars and verties) from G does not inreasethe value of �(G).As a result of edge deletion, ardinalities of the sets FTi annot inrease,but ardinalities of the sets Auth(xi; r), in priniple, an. We study thisproblem in more detail. The analysis will be arried out for two di�erentases.1. Consider �rst the items xi not belonging to the subtree rooted in vtogether with their authentiation paths and the orresponding au-thentiation path support ars. It is lear that if none of the ars43



(v; v2); (v; v3); : : : ; (v; vk) belongs to any of the sets of authentiationpath support ars then deleting the ars (v; v2); (v; v3); : : : ; (v; vk) doesnot a�et any of the sets Auth(xi; r). But if we deleted some authen-tiation path support ar then it may happen that the ardinalities ofsome sets Auth(xi; r) inrease. There are two losely onneted aseshow this may be possible.As none of the items xi under onsideration belong to the subtreerooted in v, then no authentiation path support ar under onsidera-tion belongs to this subtree. Hene, deleting the ars (v; v2),(v; v3),: : :,(v; vk) essentially means that the vertex v is removed from some proofsets. From De�nitions 1 and 2 it follows that if we want to retain asmuh as possible from an old proof set (say, proving the dependene ofr on the vertex xi0), we must replae v with some (possibly several) ofits suessors. This way the ardinality of one proof set an inreaseand thus the same an happen to the orresponding authentiator aswell.It is also possible that after the authentiator orresponding to someauthentiation path has onsiderably inreased, some other authenti-ator orresponding to some other authentiation path turns out to besmaller (but still larger than the original authentiator Auth(xi0 ; r)).Hene, this ase may result in inrease of the ardinality of Auth(xi0 ; r)as well.In both ases, it is enough to show how to modify the graph some moreso that the new authentiators will either oinide with the originalones or even have one element (namely v) less.This modi�ation will be done by removing some more verties (and ofourse the ars that loose one end-vertex) from the graph. The nodesto be removed will be the ones from the set fv2; : : : ; vkg that had noother parents than just v in the original graph G; and reursively alltheir suessors that had no other predeessors than v and the onesalready deleted.After suh modi�ation there are two possibilities.(a) If (v; v1) was an authentiation path support ar for some au-thentiator Auth(xi; r) in the original graph, then v is not re-moved from Auth(xi; r). Still, all the suessors of v added toauthentiators in the meantime are deleted. Hene, all in all, theardinality of Auth(xi; r) did not inrease.(b) If (v; v1) was not an authentiation path support ar for some44
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Figure 4.1: Transformations of a linking sheme.authentiator Auth(xi; r) in the original graph then the new au-thentiator has lost one element v.It is possible that after suh a transformation some nodes still havein-valeny 1. Then the orresponding edges an also be deleted if thenodes are joined with their parent.An example of all transformations is depited in Figure 4.1. In the�gure, we have already denoted the suessors of v so that v ! v1 ! ris the authentiation path having one of the proof sets of the smallestpossible size, namely fv2; v3; h3g. As the verties v3, v4 and h2 de-pend only on v they are deleted (together with the outgoing ars, ofourse). At the very last step, we also delete the nodes of in-valeny1. Note that �nally, v is one again a member of the proof set for theauthentiation path from x4 to r!2. Let xi be a leaf in the subtree with root v. It is lear that45



(a) every authentiation path from xi to r must go through v, and(b) every proof set (proving the dependene of r on xi) onsists of twosubsets of V (G) � a subset A of verties of the subtree rooted inv and a subset B of the verties of the remaining graph. Besidesthat, from observation (a) we see that v 62 A and v 62 B.The ar deletion proess desribed above does not in�uene the setA, but it may in�uene the set B. If we onsider the proof set tobe Auth(xi; r) in the original graph G, then we must have jBj =jAuth(v; r)j. Disregarding for a moment the whole subtree rooted in vand keeping only v, this vertex beomes a leaf in the modi�ed graph.Applying exatly the same argument as in the �rst part of the proofwe see that deletion of the ars (v; v2); : : : ; (v; vk) does not inreasethe ardinality of Auth(v; r).As a result of these transformations in the graph G we have dereasedthe number of nodes with out-valeny more than 1� without inreasing any of the sets Auth(xi; r);� without inreasing any of the sets FTi; and� without hanging the number of leaves.By repeating the proess with the remaining nodes of out-valeny more than1, we eventually arrive at a tree T with �(T ) � �(G).4.3 Proof of Lemma 5If T is not a binary tree, there must be a vertex v with only one hild ormore than two hildren.In the �rst ase, we may simply delete v and join its only hild with itsonly parent (if this vertex is the root, we simply delete it, leaving the hildas the new root). After suh a vertex deletion the ardinalities of the setsFTi and Auth(xi; r) an only derease.In the seond ase, we introdue some additional verties as shown inFigure 4.2.These additional verties ontain information about several hildren ofv in the original tree. Hene, it may be possible to derease the ardinalitiesof FTi and Auth(xi; r). For example, in Figure 4.2 (left) the nodes b; ; d; eare neessary in order to prove the dependene of v on a, but in Figure 4.2(right) only the vertex u is enough. 46
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Figure 4.2: Transformation from an arbitrary tree to a binary tree.By ontinuing this proess we eventually arrive at tree T 0 where everyvertex has either 2 or 0 hildren, i.e. a binary tree. From the proof aboveit is also lear that �(T 0) � �(T ).4.4 Proof of Lemma 6Let T 0 be a binary tree with its leaves sorted in some (not neessarily topo-logial) order. We show how to reorder the leaves without hanging thebasi struture of the tree. By doing so, we do not hange the size of au-thentiators and neither the number of leaves. Hene, in order to ompletethe proof, we must show that reordering an be done without hanging thesize of freshness tokens.First we label the nodes of T 0 in the fashion of Setion 3.4.1. Let the root be labeled with the empty string �.2. For every vertex labeled with a string �, label the hild that has theleftmost predeessor as �L and the other one as �R. We all �L theleft hild and �R the right hild of �.From De�nition 10 we get that the whole tree beomes topologially sorted.Hene, we are only required to prove that this rearrangement does notinrease any freshness tokens. We do it by proving the following lemma.Lemma 9 If the verties are labeled as desribed above, the freshness tokenFTi�1 must have at least as many elements as there are letters R in thelabel of the leaf xi. 47
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Consequently, the inequalitiesD(T1) � d� 1;W (T1) � w;D(T2) � d� 1;W (T2) � w � 1:hold.As w+(d� 1) < w+ d and (w� 1)+ (d� 1) < w+ d, the Lemma holdsfor both T1 and T2. Thus,kTk = kT1k+ kT2k � kSd�1w k+ kSd�1w�1k = kSd�1w 
Sd�1w�1k = kSdwk;a ontradition. 4.6 Proof of Lemma 8In the light of Theorem 3, the ratio �(G) to be estimated an be written asw + dlog2 n = w + dlog2(Pwk=0 �dk�) : (4.1)In order to give a better upper bound to the expression (4.1) we needan asymptoti formula for the sumPwk=0 �dk� (whih does not have a knownlosed formula). In [GKP89℄, problem 9.42, it is proven that if wd = � < 12then wXk=0�dk� � 2d�K(�)�0:5�log2 d+O(1); (4.2)where K(�) = � � log2 1� + (1� �) � log2 11� �:Substituting (4.2) into (4.1), we getlimd!1 w + dlog2(Pwk=0 �dk�) = limd!1 �d+ dd �K(�)� 0:5 � log2 d+O(1)= limd!1 1 + �K(�)� 0:5 � log2 dd +O(1d)= 1 + �K(�) :49



For deriving the approximation formula for 0:5 � � < 1, we note �rst thatfor suh � and for su�iently large d,wXk=0�dk� = 2d � dXk=w+1� dd� k� = 2d � d�w�1Xj=0 �dj� �� 2d � 2d�K(�0)�0:5�log2 d+O(1);where �0 = (d�w�1)=d = 1���1=d < 1�� � 0:5. Hene, for 0:5 � � < 1we getlimd!1 w + dlog2(Pwk=0 �dk�) = limd!1 �d+ dlog2f2d � (1� 2[K(�0)�1℄�0:5�log2 d+O(1))g= limd!1 1 + �1 + 1d � log2 �1� 2d�[K(1���1=d)�1℄�0:5�log2 d+O(1)�= 1 + �:Therefore,�(�) = limd!1 w + dlog2(Pwk=0 �dk�) = � 1+�K(�) ; if 0 < � < 12 ;1 + �; if 12 � � < 1: (4.3)Note that � is ontinuous at 12 beause K �12� = 1. The graph of thefuntion � is depited in Figure 4.4.For �nding minima of �(�) we solve the equation�0(�) = 2 � log2 11�� � log2 1�H2(�) = 0:Hene, 2 � log2 11�� � log2 1� = 0 whih implies that (1 � �)2 = �. Thisquadrati equation has a unique solution in the interval [0; 0:5℄, namely�0 = 3�p52 :Let � = 1+p52 denote the Golden ratio. It is easy to verify that11� �0 = � and 1�0 = �2 � 2:61803:
50
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Figure 4.4: Graph of the funtion �(�).Hene, 1 + �0K(�0) = 1 + �0�0 � log2 1�0 + (1� �0) � log2 11��0= log�12 "� 1�0� �01+�0 � � 11� �0� 1��01+�0 #= log�12 �� 2�01+�0 � � 1��01+�0 � = 1log2 � � 1:44042:We onlude that based on the trees Sdw asymptotially optimal time-stamping shemes are obtained if w � 3�p52 d � d2:61803 .In order to get some idea about the speed of onvergene we provideTable 4.1. The table shows the values of the ratio (3.4) for the previousbest shemes (with d = 2w+ 1), for the shemes with w = � d2:618:::� (whereb�e denotes the losest integer funtion) and for size-optimal shemes. Thenumbers of leaves of size-optimal shemes are also shown.51



d w = d�12 : ratio w = � d2:618:::�: ratio wopt: ratio nopt9 4: 1:62500 3: 1:70833 4: 1:62500 25619 9: 1:55556 7: 1:57355 8: 1:55412 16976627 13: 1:53846 10: 1:54249 12: 1:53015 4705056429 14: 1:53571 11: 1:53353 12: 1:52562 12301278149 24: 1:52083 19: 1:50157 20: 1:49946 7 � 101389 44: 1:51136 34: 1:48020 36: 1:47902 3 � 1025129 64: 1:50781 49: 1:47064 51: 1:46970 7 � 1036239 119: 1:50420 91: 1:45907 93: 1:45875 3 � 1068589 294: 1:50170 225: 1:44947 227: 1:44943 3 � 10169Table 4.1: Convergene of the linking sheme parameters.
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5 LINKING USING TREES SdwIn the previous hapters, we mainly onentrated on building linking shemesthat provide minimal sizes for time stamps. Still, in order to ensure suit-ability for pratial use, we must address the problem of e�ieny in theproess of omputation by following a partiular sheme.There are two main onerns we should address in more detail.1. It is impratial for the TSA to onstrut �rst the whole sheme assome empty data struture and then start �lling it with data. Thisdata struture is in fat neessary only for keeping trak of the om-putations and not for storing all the values; only a very small numberof values are needed for further omputations.2. As noted in [ABSW01℄, the availability of time-stamping servie is amajor issue. If the TSA's server rashes, it must be possible to restorethe last omplete set FTi in order to ensure that the ausal relation-ships between the time stamps issued before and after the rash do notbreak. Note that the original de�nition of the trees Sdw is reursiveand hene the algorithm following this de�nition losely must be re-ursive as well. Colleting the data neessary to restore the work of areursive-algorithm-based server basially means bakuping the reur-sion stak at every step. This in turn means implementing a reursionstak independent of the ompiler's one. The author is urrently un-aware of any ompiler having primitives for generating reursion stakdumps and restoring the proesses later by these dumps.The state of the algorithm presented in this hapter is stored in 2l + 3variables where l is the largest number of nodes in the sets FTi. This ismuh less than the storage spae required to keep the whole empty data-struture. These variables are also onsiderably easier to handle in the aseof server reovery than the reursion stak.5.1 Alternative desription of the trees SdwIn this setion, we are going to present a non-reursive desription for thegraphs Sdw enabling us also to �nd an e�ient algorithm for generatingthese graphs. 53



De�nition 12 The set �w;d is de�ned as the following set of words in thealphabet f1; 2; : : : ; dg�0:�w;d = f�0 : � = �1�2 : : : �j�j 2 f1; 2; : : : ; dg�; j�j � w; �1 > �2 > : : : > �j�jg:Here, if d = 0 we assume that f1; 2; : : : ; dg = ; and f1; 2; : : : ; dg� = f�g,where � is the empty word.That is, the set �w;d onsists of all stritly dereasing vetors of lengthup to w+1, having the elements from the set f0; 1; : : : ; dg and ending with0. Note that every element ours in every vetor at most one, 0 oursexatly one. In the rest of the paper we will write the vetors as words,without parentheses and ommas. Greek lowerase letters will denote thewords and Latin lowerase letters x; y their elements.De�nition 13 For w; d � 0 let mw;d denote the vetormw;d = 8<: 0; w = 0 _ d = 0;d(d� 1) : : : (d� w + 1)0; d > w > 0;d(d � 1) : : : 10; w � d > 0:Denote also the set of the elements of the vetor mw;d as Mw;d.Theorem 5 The set �w;d is linearly ordered with respet to lexiographiorder �. It's least element is the vetor 0 and the largest element is mw;d.Proof. Linearity of the lexiographi order is a well-known fat and mini-mality of the vetor 0 is obvious. Maximality of the vetor mw;d an also beeasily established. If w = 0 or d = 0, then �w;d = f0g and also mw;d = 0.Otherwise, it is lear that the largest vetor has to start with the largestelement of the alphabet, d. As all the letters in the vetors of �w;d must beunique, the next letter in the largest vetor must be d�1 et. The length ofthe vetor is bounded by either the maximal allowed length w+1 if d > w,or by lak of possible elements if w � d. 2Theorem 6 For w; d � 1 the equality�w;d = �w;d�1 [ d�w�1;d�1holds. 54



Proof.�w;d = f�0 : � 2 f1; 2; : : : ; dg�; j�j � w; �1 > �2 > : : : > �j�jg == f�0 : � 2 f1; 2; : : : ; d� 1g�; j�j � w; �1 > �2 > : : : > �j�jg [[ f�0 : � 2 f1; 2; : : : ; dg�; j�j � w; d = �1 > �2 > : : : > �j�jg == �w;d�1 [ fd�0 : � 2 f1; 2; : : : ; d� 1g�; j� j � w � 1; �1 > : : : > �j� jg == �w;d�1 [ d�w�1;d�12De�nition 14 For eah � 2 �w;d we de�ne the setw;d(�) = fx 2 � : � = �x�;8� 2 �w;d [� = �x& ) � � �℄g:That is, w;d(�) onsists of suh elements x of the vetor � that � isthe greatest vetor among the vetors having the same initial segment upto the element x as � does (reall form De�nition 12 that eah ourreneof every element in � is unique).Lemma 10 The following properties of funtion  hold.1. Let � be presented in the form � = �� , where � = (x� 1)(x� 2) : : : y0for some x; y 2 f1; : : : ; d + 1g and � has maximal possible length (if� = 0 we have � = � and � = 0). If (y = 1) _ (j�j = w + 1) thenw;d = fx� 1; x� 2; : : : ; y; 0g, otherwise w;d = f0g.2. d 2 w;d(�), w;d(�) = Mw;d , � = mw;d;3. � 2 �w;d�1 ) w;d(�) = w;d�1(�);4. � 2 �w�1;d�1 ) w;d(d�) = � w�1;d�1(�); � 6= mw�1;d�1Mw;d; � = mw�1;d�1 .Proof.1. The maximality ondition on � implies that � does not end with xand the ondition (y = 1) _ (j�j = w + 1) essentially means that thevetor � an not be made longer by adding elements before the last0. If the latter is not the ase, there exists z 2 f1; 2; : : : ; dg suh that�(x� 1) : : : yz0 2 �w;d and as �(x� 1) : : : y0 � �(x� 1) : : : yz0, only0 an be in the set w;d by De�nition 14. On the other hand, if wean not add suh an z, eah element of the set fx� 1; x� 2; : : : ; y; 0gsatis�es the ondition given in De�nition 14. It is also lear that noelement of � an be in w;d(�) as �x0 2 �w;d and �(x�1) : : : y0 � �x0.55



2. We will prove that d 2 w;d(�)) w;d(�) = Mw;d ) � = mw;d ) d 2w;d(�).If d 2 w;d(�), we must have a = d and � = � in the previous laimof the Lemma. If d = 0 the present laim is obvious. If w � d > 0,we get the ase b = 1 and w;d(�) = fd; d � 1; : : : ; 1; 0g, if d > w > 0,the length of � is bounded by w + 1 and we get w;d(�) = fd; d �1; : : : ; d� w + 1; 0g. In both ases we have w;d(�) = Mw;d.If w;d(�) = Mw;d, we see that every element of Mw;d also belongs to�, hene � = mw;d.If � = mw;d, we obviously have d 2 w;d(�), thus onluding the proof.3. We know from the proof of Theorem 6 that �w;d�1 = f� 2 �w;d :�1 6= dg. As � 2 �w;d�1, we an writew;d(�) = fx 2 � : � = �x�;8� = �x& 2 �w;d � � �g == fx 2 � : � = �x�;8� = �x& 2 �w;d�1 � � �g == w;d�1(�):4. We know from Theorem 6 that d�w�1;d�1 = f� 2 �w;d : �1 = dg. Fora vetor d� 2 d�w�1;d�1 we an distinguish two ases.(a) d 2 w;d(d�). From the seond laim of the Lemma this holdsi� w;d(d�) = Mw;d and d� = mw;d, whih is equivalent to � =mw�1;d�1.(b) d 62 w;d(d�). From the seond laim of the Lemma this is equiv-alent to � 6= mw�1;d�1. We ompute:w;d(d�) = fx 2 d� : d� = d�x�;8� = d�x& 2 �w;d � � d�g == fx 2 � : � = �x�;8� = �x& 2 �w�1;d�1 � � �g == w�1;d�1(�):2De�nition 15 The direted rooted graph Sw;d has the vertex setV (Sw;d) = [�2�w;df(�; x) : x 2 w;d(�)gand the edge setE(Sw;d) = f((�; x1)(�; x2)) 2 (V (Sw;d))2 : � = �x2x1�g [[ f((�x�; x)(�y�; y)) 2 (V (Sw;d))2 : y = x+ 1g:56
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Figure 5.1: The graph S2;3.An example of the graph S2;3 is presented in Figure 5.1. The vetorsin the �gure are depited vertially and the elements of w;d(�) are irled.The edges of Sw;d are of two kinds: the edges joining the verties belongingto the same vetor � and the edges joining the verties belonging to di�erentvetors. The �rst ones will be alled vertial and the seond ones horizontaledges (following the intuition of Figure 5.1).Now we are ready to state the following theorem laiming that the treesSdw and Sw;d are essentially the same implying that it is enough to give analgorithm for building the graphs Sw;d.Theorem 7 Sdw ' Sw;d. The root of the graph Sw;d is (mw;d; d).Proof. The proof will be given using indution by the de�nition of thegraph Sdw (see De�nition 11). The basis of indution onsists of the aseswhere either w = 0 or d = 0. In both ases we see that �w;d = f0g andw;d(0) = f0g. Hene V (Sw;d) = f(0; 0)g and there an be no edges in thegraph following De�nition 15. Consequently Sw;d ' I = Sdw if w = 0 ord = 0, with the root being obviously the only vertex of the graph.Now assume that w; d � 1, Sd�1w�1 ' Sw�1;d�1 and Sd�1w ' Sw;d�1. Inorder to prove that Sw;d ' Sdw = Sd�1w 
Sd�1w�1;we �rst need to establish a one-to-one orrespondene between the vertexsets V (Sw;d) and V (Sw;d�1
Sw�1;d�1). The neessary orrespondene an
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be easily derived from Theorem 6 and Lemma 10 as follows.V (Sw;d) = [�2�w;df(�; x) : x 2 w;d(�)g == [�2�w;d�1f(�; x) : x 2 w;d�1(�)g [ [�2d�w�1;d�1f(�; x) : x 2 w;d(�)g == V (Sw;d�1) [ [�2d�w�1;d�1f(�; x) : x 2 w;d(�)g == V (Sw;d�1) [ [�2�w�1;d�1f(d�; x) : x 2 w;d(d�)g == V (Sw;d�1) [ [�2�w�1;d�1f(d�; x) : x 2 w�1;d�1(�)g [ f(mw;d; d)g == V (Sw;d�1) [ f(d�; x) : (�; x) 2 V (Sw�1;d�1)g [ f(mw;d; d)g:Hene we an onlude that the funtion ' : V (Sw;d) ! V (Sw;d�1 
Sw�1;d�1) ating as follows'(�; x) = 8<: (�; x); � 2 �w;d�1(�0; x); �0 2 �w�1;d�1; � = d�0; x 2 �0(mw;d; d); x = dis a bijetion.Now it remains to prove that the mapping indued by ' between thesets E(Sw;d) and E(Sw;d�1 
 Sw�1;d�1) is also a bijetion. We will dividethe edges of Sw;d into �ve ategories and onsider the ategories separately.� ((�; x1)(�; x2)) 2 E(Sw;d); � = �x2x1� and the �rst element of � is notd. By Theorem 6 we obtain � 2 �w;d�1 and following the de�nitionof the mapping ' we see that'((�; x1)(�; x2)) = ((�; x1)(�; x2)) 2 (V (Sw;d�1))2:As � = �x2x1�, we obtain ((�; x1)(�; x2)) 2 E(Sw;d�1). Note alsothat this way we get all the vertial edges of the graph Sw;d�1.� ((�; x1)(�; x2)) 2 E(Sw;d); � = �x2x1� and the �rst element of � is d.This ase has two sub-ases.
✶ � = �; x2 = d. As (�; x2) 2 V (Sw;d), by the de�nition of the setV (Sw;d) we have d = x2 2 �. For this ase Lemma 10 implies� = mw;d. Hene, x1 = d � 1 or x1 = 0, whih an be the ase58



i� w = 1. We laim that the image of the edge ((�; x1)(�; x2))under ' is the edge onneting the root of Sw�1;d�1 and the newvertex g. From our de�nition of ' we know that '(�; x1) =(mw�1;d�1; x1) and '(�; x2) = g. The vertex (mw�1;d�1; x1) isthe root of the graph Sw�1;d�1. Indeed, for the ase x1 = d�1 weuse the indution hypothesis. For x1 = 0 and w = 1 we simplyhave (mw�1;d�1; x1) = (0; 0) and Sw�1;d�1 = I. We have proventhe laim.
✶ � 6= �. Let � = d� 0 and � = d�0, then x1; x2 2 �0 2 �w�1;d�1.Hene'((�; x1)(�; x2)) = ((�0; x1)(�0; x2)) 2 (V (Sw�1;d�1))2:As �0 = � 0x2x1�, we see that ((�0; x1)(�0; x2)) 2 E(Sw�1;d�1).Note also that this way we get all the vertial edges of the graphSw�1;d�1.� ((�x�; x)(�y�; y)) 2 E(Sw;d); y = d; x = d � 1. This implies � = �and y = d 2 w;d(�d�). Hene, by Lemma 10 we have �d� = d� =mw;d. Following the de�nition of ', we see that '(�y�; y) = g. Welaim that the image of the edge ((�x�; x)(�y�; y)) under ' is the edgeonneting the root of the graph Sw;d�1 and the new vertex g. So, itonly remains to prove that the image of the vertex (�x�; x) is the rootof the graph Sw;d�1. By indution hypothesis, we need to show thatthe equality (�x�; x) = (mw;d�1; (d�1)) holds. As (�x�; x) 2 V (Sw;d),we know that x 2 w;d(�x�). But as � = � and x = d� 1, Lemma 10implies the neessary ondition (�x�; x) = (mw:d�1; (d � 1)) and thelaim is proven.� ((�x�; x)(�y�; y)) 2 E(Sw;d); y = x+1 and � 6= � does not start withd. Then we laim that the edges '((�x�; x)(�y�; y)) are exatly allthe horizontal edges of the graph Sw;d�1. First note that as � doesnot start with d (but with something less), we have �x�; �y� 2 �w;d�1and onsequently'((�x�; x)(�y�; y)) = ((�x�; x)(�y�; y)) 2 (V (Sw;d�1))2:As y = x + 1, by De�nition 15 we obtain the required impliation'((�x�; x)(�y�; y)) 2 E(Sw;d�1).� ((�x�; x)(�y�; y)) 2 E(Sw;d); y = x + 1 and � starts with d. Thisimplies x; y < d and hene'((�x�; x)(�y�; y)) = ((� 0x�; x)(� 0y�; y)) 2 (V (Sw�1;d�1))2;59



where � = d� 0. As y = x+1, we obtain all the horizontal edges of thegraph Sw�1;d�1 this way.Hene, we have proven a one-to-one orrespondene between the setsE(Sw;d)and E(Sw;d�1 
 Sw�1;d�1) as well, thus onluding the proof. 25.2 The algorithmIn this setion we introdue an algorithm for building the graphs Sw;d. Wewill present the algorithm in three steps:1) generation of all the vetors of the set �w;d in their lexiographiorder;2) �nding the elements of the sets w;d(�) (and hene reating the setV (Sw;d));3) aomplishing the hash steps represented by the edges (and heneompleting the graph Sw;d).It will be onvenient to have all the vetors of the same length, so we willpad all the vetors having length less than l = minfw + 1; d + 1g (whih isthe maximal length of the elements of �w;d) with 0s at the end. We alsointrodue l integer variables �1; �2; : : : ; �l and onsider them as elements of�, thus � = �1�2 : : : �l. Now we laim that Algorithm 1 produes all theelements of the set �w;d in lexiographi order.In order to prove the orretness of the algorithm, we need the followinglemma desribing onseutive vetors of the set �w;d (whih we still onsideras padded with 0s).Lemma 11 Let the vetor � 2 �w;d be represented in the form� = �(x� 1)(x� 2) : : : y0 : : : 0;where x; y 2 f1; 2; : : : ; d+1g and the substring (x�1)(x�2) : : : y is as longas possible (if � = 00 : : : 0 then � = (x � 1)(x � 2) : : : y = �). If y = 1 orj�(x� 1)(x � 2) : : : yj = w then the vetor diretly sueeding � in terms ofthe order � is � = �x0 : : : 0, otherwise it is � = �(x� 1)(x� 2) : : : y10 : : : 0.Proof. Consider �rst the ase y = 1 _ j�(x � 1)(x � 2) : : : yj = w. Notethat maximality of the substring (x � 1)(x � 2) : : : y implies that � doesnot end with x and hene � = �x0 : : : 0 2 �w;d in this ase. We also see60



Algorithm 1 Generate the vetors of the set �w;dRequire: w > 0; d > 01: Set l := minfw + 1; d + 1g2: Set � := �1�2 : : : �l = 00 : : : 03: for i = 1 to j�w;dj � 1 do4: Output �5: Set j to be the least index suh that �j = 06: if j = l then7: Set j := j � 18: end if9: while j > 1&�j = �j�1 � 1 do10: Set �j := 011: Set j := j � 112: end while13: Set �j := �j + 114: Reset �15: end for16: Output �that � � � , hene it remains to prove that there an be no vetors betweenthem. Suppose on the ontrary that suh a vetor exists. It learly mustbegin with �(x� 1)(x� 2) : : :. It is not possible to inrease any element inthe part (x � 1)(x � 2) : : : y as it onsists of onseutive elements, all theelements in the vetor must be unique and in this part less than x. Henethe only way to reate a vetor between � and � is to append somethingsmaller than y at the end of this part. But this is not possible as we haveone of two ases: either y = 1 or the vetor �(x � 1)(x � 2) : : : y0 alreadyhas the maximal allowed length w + 1.Now onsider the other ase y 6= 1& j�(x � 1)(x � 2) : : : yj < w (whihinludes the ase � = 00 : : : 0). Reasoning exatly the way we did in theprevious ase, we see that � = �(x � 1)(x � 2) : : : y10 : : : 0 2 �w;d, � � �and that there an be no vetors between them. 2Now we an explain why Algorithm 1 generates all the elements of theset �w;d in lexiographi order. As the algorithm starts with the least vetor00 : : : 0, it is enough to prove that eah run of the algorithm (i.e. eah stepin the for-yle), taking vetor � as input, outputs its immediate suessor.Note that the algorithm makes j�w;dj�1 runs, so the output of the last runis exatly the greatest vetor mw;d (see Theorem 5).61



Of ourse we must know the value j�w;dj beforehand. This value anbe omputed from Theorems 2 and 3 using the formula (see Setion 5.3 fore�ieny onsiderations onerning this formula)j�w;dj = � 2d; w � dPwk=0 �dk�; w < d : (5.1)Now onsider one run of the algorithm with input �. Following Lemma11, in order to generate its immediate suessor we �rst have to �nd therepresentation of the vetor � in the form �(x� 1)(x� 2) : : : y0 : : : 0 (wherethe part (x � 1)(x � 2) : : : y has maximal length possible). If y = 1 orj�(x � 1)(x � 2) : : : yj = w we must replae the part (x � 1)(x � 2) : : : ywith x00 : : : 0 and otherwise just inrease the �rst 0 by 1. Note that thelatter is exatly the same operation as the �rst one, if we onsider the part(x� 1)(x � 2) : : : y to be just the �rst 0.In order to perform the neessary hanges, we must �nd the �rst 0 in �(line 5), as that is the last position where the hange an our. In whatfollows, j will be the ounter indiating the urrent position in �.If � has maximal allowed length l (i.e. j = l), we know we an nothange the last 0 of the vetor, so we must start at the position l� 1. Thisis what the lines 6-8 do.The essential part of the algorithm is the while-loop on the lines 9-12.If we haven't reahed the beginning of the vetor yet (i.e. j > 1) and theurrent element is the predeessor of the element just before it, we are stillon the part (x�1)(x�2) : : : y. We set the urrent position to 0 and move astep towards the beginning. If we reah the beginning of the vetor or thebeginning of the part (x� 1)(x� 2) : : : y, we stop the loop and inrease theurrent element (whih is equal to x) by 1 (line 13). If either1) the �rst 0 was disovered at the position 1, or2) the �rst 0 was disovered at a position later than 1 and earlier thanl, but the element just before it is greater than 1,we just need to inrease this �rst 0 to 1. In this ase the while-loop is notentered at all and the inrease is one again performed on line 13.Now we have reated the next � and we an take the next run of thealgorithm. The algorithm is �nished by outputting the result of the lastrun, whih we know, equals mw;d.Now we add vertex set generation to Algorithm 1, whih by De�nition15 means generating the sets w;d(�). They an be generated at the sametime when produing at the next � in one run of Algorithm 1.62



Algorithm 2 Generate the vertex set of the graph Sw;dRequire: w > 0; d > 01: Set l := minfw + 1; d + 1g2: Set � := �1�2 : : : �l = 00 : : : 03: for i = 1 to j�w;dj do4: Set w;d(�) = ;5: Set j to be the least index suh that �j = 06: Inlude the element �j to the set w;d(�)7: if j = l then8: Set j := j � 19: end if10: while j > 1&�j = �j�1 � 1 do11: Set �j := 012: Set j := j � 113: Inlude the element �j to the set w;d(�)14: end while15: Set �j := �j + 116: Output the set w;d(�) and reset �17: end forConsider Algorithm 2. Note that Algorithm 2 runs one more time thanAlgorithm 1 does. The reason is that we also want to generate the setw;d(�) for the last vetor mw;d as well.In order to prove that Algorithm 2 generates the orret set w;d(�),write � as above in the form �(x � 1)(x � 2) : : : y0 : : : 0 (where the part(x � 1)(x � 2) : : : y is as long as possible). We need to show that if theondition (y = 1)_ (j�(x�1)(x�2) : : : y0j = w+1) holds then the elementsx�1; x�2; : : : ; y; 0 are inluded into the set w;d(�) and otherwise w;d(�) =f0g (see Lemma 10).As follows from the proof of Algorithm 1 presented above, the elementsx� 1; x� 2; : : : ; y; 0 (or just 0, if y > 1 and j�(x� 1)(x� 2) : : : y0j < w+1)are exatly the ones set to 0 or inreased by 1. This means that we mustadd an element of � to the set w;d(�) every time right before we set it to0 or inrease by 1 � and this is exatly what Algorithm 2 does.In order to omplete the algorithm of generation of the graph Sw;d westill need to show how to draw the edges. As we remember from De�nition15, the edges an be of two kinds � vertial and horizontal. With vertialedges there should be no problems, as they are drawn inside one set (�w;d),i.e. during one run of our algorithm. Horizontal edges an ause moreproblems as in order to omplete a horizontal edge we need to know both63



its end-verties. So it is neessary to keep some information about thestarted edges over several runs of the algorithm.What kind of information is needed? Going bak to the original moti-vation behind the trees Sdw, we see that these trees are used to representertain hash omputations and atually we are only interested in the hashvalue attahed to the root of the tree. In order to arry the neessary hashvalues along the omputations, we introdue l new variables h1; h2; : : : ; hland let hi arry the last hash value attahed to a vertex of the form (�; �i).Let H be the hash funtion used for hash omputations and onsiderAlgorithm 3.Algorithm 3 Create the hash-edges of the graph Sw;dRequire: w > 0; d > 01: Set l := minfw + 1; d + 1g2: Set �1 = �2 = : : : = �l := 03: for i = 1 to j�w;dj do4: Set j to be the least index suh that �j = 05: Set hj to be the next input data item6: if j = l then7: Set j := j � 18: Compute hj = H(hj ; hj+1)9: end if10: while j > 1&�j = �j�1 � 1 do11: Set �j := 012: Set j := j � 113: Compute hj = H(hj ; hj+1)14: end while15: Set �j := �j + 116: end for17: Return h1The verties of the graphs Sdw are divided into two subsets: vertiesrepresenting data items (leaves of the tree) and verties representing theomputations. At eah round exatly one data item is added and in theonstrution of the tree Sw;d it must orrespond to the leaf, i.e. vertex(�; 0). This is expressed on line 5 of the algorithm.All the other verties we add represent hash omputations. Hash om-putations on lines 8 and 13 arry exatly the same harater. As soon as thealgorithm has deided to move one step towards the beginning of the vetor�; the hash value orresponding to the new loation in � (or the vertex ofthe graph Sw;d) is replaed by the hash of the value at the previous loation64



and the old value at the new loation.By De�nition 15, there are two verties that are soures for the edgesending in the vertex (�x(x � 1)�; x), they are (�(x � 1)� 0; x � 1) for somevetor � 0 and (�x(x � 1)�; x � 1) (we assume x > 0, whih is exatly thease with non-data-item verties). Hene, it remains to prove that the lasttwo verties have the orret hash values attahed to them. Let x be theith element of the vetor �x(x� 1)� .Consider �rst the vetors � = �x(x � 1)� and �0 = �(x � 1)� 0. As the�rst part, �; is the same, it was not hanged between the generation roundsof vetors �0 and �. Moreover, the ith element was last hanged at the timeof generation of �0, as x and x � 1 di�er by 1 and Algorithm 3 hangeselements of the vetors of �w;d by 1 at a time. Consequently the previousvalue of hi, when proessing the vertex (�x(x � 1)�; x), omes from theorret vertex (�(x� 1)� 0; x� 1).At last, onsider the verties (�x(x � 1)�; x) and (�x(x � 1)�; x � 1).Following the algorithm we see that the vertex (�x(x � 1)�; x � 1) wasproessed just before (�x(x� 1)�; x), hene the hash value attahed to it ishi+1, whih is the orret one.Realling that the root of the tree Sw;d is the vertex is (mw;d; d) (seeTheorem 7) we see that the algorithm must output the last value of h1 afterthe last step. As this is exatly the ation taken on line 17, we onludethat Algorithm 3 represents the hash omputations of the graph Sw;d ' Sdworretly.5.3 E�ieny and further optimizationsDespite its ompliated look, Algorithm 3 is very e�ient. The algorithmruns j�w;dj times and on eah run jw;d(�)j steps are made. Hene theobvious estimate to the omplexity of the algorithm is O(jV (Sw;d)j). Evenmore, the operations used in Algorithm 3 are �heap�: the only operationsused are additions-subtrations by 1 and hash omputations (where thelatter ones an not be avoided anyway). Of ourse, we still need to takeare about the searh diretive on line 4 of Algorithm 3 that just states: Setj to be the least index suh that �j = 0. This searh an be done in log2 lsteps, but it is also possible to introdue one extra variable and modify thealgorithm so that at the end of run it is set to the least 0 of the newlygenerated �.Memory requirements of our algorithm are very low as well. We needto store the following data in order to restore the omputations after theserver's rash: 65



� l, j and j�w;dj;� h1; : : : ; hl for hash values;� �1; : : : ; �l as ounters.As the ounters �j an ontain values up to d, the orresponding requiredstorage spae for the values of hi and �j is l � log2 d + l � k, where k is theoutput length of the hash funtion h. A reent unpublished result by HelgerLipmaa [Lip02℄ shows that this requirement an atually be dereased tolog2 d+ l � k by using enoding of the leaves presented in Setion 3.4.One must also ask, how muh resoures does it take to ompute j�w;djand how muh storage spae does this value need. Formula (5.1) does notlook promising at the �rst sight as it ontains a sum of binomial oe�ients.Still, if we are satis�ed with the estimate �(G) � 1:5, we an use the treesTw = S2w+1w from Setion 3.6. For these graphs j�w;2w+1j = 22w thatan be omputed very e�iently in binary format. But if we want theasymptotially optimal shemes desribed in Chapter 4 we an hange thealgorithm a little and substitute the for-yle in rows 3-16 of Algorithm 3with a while-loop working if �1 < d+1. The orretness of this substitutionis justi�ed by the observation that on its last run the algorithm hanges thevetor � = mw;d to the vetor (d+1)00 : : : 0. Note that suh a modi�ationenables us to replae the need to store (a relatively large) value of j�w;djwith the need to store only the value of d.
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6 INSTEAD OF THE CONCLUSIONSAlmost every PhD thesis starts o� with the author's dream to ahieve some-thing new (preferably revolutionary) and useful (preferably something thatould be sold right away). Of ourse there are exeptions, but I hope theyare rare. Why? Mainly beause I believe that ambition is the most impor-tant ause of every great disovery made on Earth and hene there is verylittle hope to ahieve anything without any ambitions.Does this mean that every thesis ahieves the high goals set by theauthor (with the help of supervisor, of ourse)? Not at all, as it takessomething more to ome up with revolutionary results than just the goalsthemselves. This �something more� is hard to de�ne, but for sure it ontains� a bit of talent needed to see deep under the ore of things,� a bit of luk to �nd the right problems to look at, and� a lot of hard work (lasting approximately for 200 days without eatingnor sleeping in the ase of Tartu University, Estonia).Have I had all the neessary omponents? Most of them probably yes.Talent and luk are of ourse di�ult to measure, but at least the goalswere deent and the work was hard (well, I admit I ate and slept from timeto time, but the period of writing lasted onsiderably longer than just 200days).How well have the original goals been met and what is the atual pra-tial value of the thesis? To the �rst question, the answer an be statedrather learly and it onsists of several parts.� The thesis identi�ed the need to look at the two separate time-stampingsenarios: patents and digital signatures. It turned out that linkingshemes providing size-optimal time stamps for one senario are notoptimal for another.� It was shown that the size of time stamps an be estimated fromabove by the value �(G). It is not the best possible estimate but byour urrent state of knowledge, the exat expression of the size of timestamps is too ompliated to deal with. Maybe one day . . .� We proved that the optimal value of �(G) is1log2 1 +p52 ! � 1:4404267



and it is approahed (but never ahieved as this value is irrational)with the family of trees Sdw. The e�et gained in omparison with theprevious best-known BLS-sheme is 28% whih is quite a remarkableamount. Even more importantly we showed that just by estimatingthe value of �(G) the result an not be improved any more. Of ourse,if one day the tools of dealing with the atual the size of time stampsbeome available, the estimate may be improved some more, but theauthor's wild guess is that not too muh. At the moment, it seems thatthe asymptoti size of time-stamps remains the same as mentionedabove.� It turned out that the original de�nition of the optimum-providingfamily was not too suitable for atual implementation of a TSA. Inorder to improve the situation, the idea of representing the urrentstate of omputations with some simple and e�ient enoding wasproposed and one possible enoding designed.The question of pratial appliability is a bit more ompliated. Ofourse, we an build nie tools and try to sell them but people will only buythem if they need to. Do they need time-stamping? At least in Estonia theydo as the Law of Digital Signatures requires it. But do the users atuallyneed linking? The answer is unfortunately � probably not at the moment.Going bak to Chapter 1, we reall that the easiest way to implementtime-stamping is to let the TSA just sign the requests together with phys-ial time. The solution is of ourse totally inseure as the TSA must beunonditionally trusted. Is this a serious obstale keeping people from us-ing this solution? No, it is not. Looking at the atmosphere of suspiionthat we an see every day between di�erent politiians, businessmen andeven nations, it is hard to believe how trusting people are deep in theirhearts. Why not to delare an authority trustworthy, if suh a delarationsaves us from the trouble of setting up linkage-based time-stamping! Andthere is really not muh to do in order to hange the human mind. The bestsolution is probably to wait, see and hope that after the �rst few inidentswith heating TSAs the need for more seure solutions arises.But before that omputer sientists all over the world still have sometime to searh for better solutions to propose when they will really beneeded. And in that light I an say I do not regret writing this thesiseven a bit.
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SUURUSE MÕTTES EFEKTIIVSEDINTERVALLAJATEMPLIDSisukokkuvõteErinevates digitaalse asjaajamise rakendustes tekib vajadus määratadigitaalse informatsiooni erinevaid parameetreid � millises vormingus oninfo esitatud, kes ja kuna dokumendi lõi jne. Enamasti pole andmete tekketäpset aega võimalik kindlaks teha, kasvõi sel põhjusel, et dokumendi loojaei pruugi loomise aktist aastaid teatada. Nii asendataksegi digitaalse in-formatsiooni tekkeaja kindlakstegemine tavaliselt registreerimisaja �kseeri-misega, nõudes, et dokumendi looja peab dokumendi registreerima selleksette nähtud autoriteedi juures. Niisugust protseduuri nimetatakse ajatem-belduseks ja autoriteeti ajatempliteenuse osutajaks.On olemas rida stsenaariume, mille korral andmete ühekordsest regist-reerimisest piisab. Töös nimetatakse seda tinglikult patendistsenaariumiks,pidades silmas võimalikku rakendust patendivaidluste lahendamisel, kustuleb kindlaks teha, kes oma leiutisest esimesena teada andis. Sama ideo-loogia abil saab ka välja selgitada, kes reserveeris esimesena lennukipiletijne.Digitaalallkirjade tekkeaja kindlakstegemisel on olukord aga põhimõt-teliselt teistsugune. Nimelt on dokumendi digitaalne signeerimine seotudprivaatvõtme kasutamisega ja see operatsioon tuleb läbi viia võtmeomanikutäieliku kontrolli all. Niisiis ei saa dokumendi allkirjastamise täpset mo-menti mingi kolmanda osapoole juures �kseerida. Küll aga saab registreeridakaks ajahetke � ühe kindlalt enne signeerimist ja teise kindlalt pärast seda.Nii võime hiljem väita, et elektronallkiri on antud mingi kindla ajaintervallijooksul ning sellest johtuvalt nimetatakse kirjeldatud ajatembelduse vormiintervallajatembelduseks.Käesoleva doktoritöö eesmärk on uurida intervallajatembeldusskeeme,mis võimaldaksid ajatemplite suuruse miinimumini viia. Väitekirjas for-maliseeritakse vastav optimeerimisülesanne, antakse ajatemplite suurusele(küllalt täpne) ülemine hinnang, leitakse antud hinnagu jaoks alampiir ningnäidatakse ära graa�depere, mis lähendab seda piiri kuitahes hästi (kusjuu-res täpne piir on saavutamatu).Töö viimane osa on pühendatud väljatöötatud graa�pere praktilise rea-liseerimise küsimustele ajatempliteenuse osutaja serveris. Algse rekurrentsegraa�pere de�nitsiooni põhjal on küll võimalik luua vastav rekursiivne algo-ritm, kuid esiteks ei vasta rekursioon linkimispõhise ajatembelduse ideoloo-giale ning teiseks pole naiivne rekursiivne realisatsioon käideldavuse mõttes74



turvaline. Lahendusena pakutakse töös välja alternatiivne samm-sammulinealgoritm, mis säilitab serveri töö jätkamiseks vajaliku informatsiooni efek-tiivselt ning varundataval kujul.
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