
TARTU UNIVERSITY

FACULTY OF MATHEMATICS

Institute of Computer Siene

Chair of Theoretial Informatis

Meelis Roos

Integrating Time-Stamping and Notarization

Master's Thesis

Supervisor: Helger Lipmaa

Author: . " : : : " May 1999

Supervisor: . " : : : " May 1999

Head of Chair:. ." : : : " May 1999

Tartu 1999

Contents

Introdution 5

Time Stamps � What and Why? 5

What Is Missing . 5

Salability . 6

Time Stamps as a Part of Publi Key Infrastruture 6

Work In Progress . 6

Outline of the Paper . 7

1 Bakground 8

1.1 Trusted Third Party . 8

1.2 Linking of the Time Stamps 8

1.3 Binary Linking Shemes . 9

1.4 Relative Temporal Authentiation 11

1.5 Publi Key Infrastruture . 12

2 Simple Notarization 13

2.1 Certi�ate Revoation Lists 13

2.2 The Idea Behind Notarization 14

2.3 Prinipals and Notation . 15

2.4 Certi�ation Protool . 16

2.5 Notarization Protool . 16

2.6 Veri�ation Protool . 17

2.7 Certi�ate Revoation Protool 17

2.8 Disadvantages of Simple Notarization 18

3 Aumulated Notarization 19

3.1 The Idea of Aumulated Notarization 19

3.2 Group Hashes . 20

3.3 Certi�ation Protool . 21

3.4 Notarization Protool . 22

3.5 Veri�ation Protool . 23

3.6 Certi�ate Revoation Protool 24

3.7 Addition and Deletion of Notaries 24

3.8 The Advantages of Aumulated Notarization 25

4 Notarization with Temporal Authentiation 26

4.1 The Constrution . 26

4.1.1 Step 1 . 26

4.1.2 Step 2 . 27

2

4.1.3 Step 3 . 28

4.1.4 Step 4 . 29

4.2 Certi�ation Protool . 32

4.3 Downlink Protool . 33

4.4 Notarization Protool . 34

4.5 Temporal Veri�ation Protool 36

4.6 Signature Veri�ation Protool 38

4.7 Certi�ate Revoation Protool 39

4.8 Addition and Deletion of Notaries 39

4.9 Di�erenes Between the Notaries 40

4.10 The Top of the Hierarhy . 40

4.11 Cross-notarization . 41

4.12 Disadvantages of Integrated Notarization 41

Referenes 43

Kokkuvõte 45

3

Abstrat

In this thesis, we examine the urrent state of the most widely used publi

key infrastruture model and seure time-stamping systems. We begin by

giving an overview of the evolution of the time-stamping tehniques to show

the diretion of researh.

We identify some problems in PKI and time-stamping that need solutions

in pratie. The problems are not very bad today but are beoming worse

as time goes on and people start using these servies more and more. Both

problems are essentially salability problems.

We show a simple and known solution attempt to the problem with PKI. The

solution doesn't work either but gives a hint for building a working solution.

Using the hints we present a working solution for the PKI problem. The

new protool eliminates erti�ate revoation lists and redues the number

of time stamps required sine no time stamps are needed any more for the

PKI itself.

We also point the similarities between the new system and some existing

time-stamping systems. We analyze the similarities and develop another

new protool that integrates the �rst new protool with time-stamping and

solves the salability problem for time-stamping. The integration allows to

build the temporal authentiation of signed data tightly into the PKI.

4

Introdution

Time Stamps � What and Why?

The use of digital douments is inreasing rapidly. Eletroni mail was the

pioneer in this area � it has been used already for deades. Other usage

areas of digital douments have beome popular too in reent years. Word

proessors are not used only for printing but also to produe eletroni dou-

ments for sending to other people. Eletroni ommere and banking via the

Internet are beoming quite ommon. Eletroni douments are the future.

There exist elementary seurity measures for digital douments � signing

and enryption. These measures are quite ommon and usable nowadays.

There also exist needed infrastrutures and protools of managing and dis-

tributing the keys, erti�ates et.

This is good but this is not su�ient. Most of the mehanisms work only for

short-term douments. As an example, the ryptographi signature on a e-

mail is important only at the moment of reeiving the mail. The widely used

ryptographi primitives stop working after the keys have been ompromised.

This works for douments with short lifetime but not for douments with long

lifetime. The douments with long lifetime need additional measures to be

taken for inreasing their validity period.

The idea is to write down the time where the key erti�ates beome valid

and beome invalid and ompare the times to the time of signing of the

douments in question. If the time of the signature lies between the start

and end times of the validity period of the orresponding erti�ate then the

signature is valid. This an be veri�ed anytime in the future if the times are

saved with doument signatures.

The times on signatures need to be seure or they would be useless. The

main subjet of this paper is the theory of seure time stamps on douments.

What Is Missing

Neither the theory nor the pratie of time-stamping are ready yet. There

are several areas in the theory and between the theory and the pratie that

need further researh. The author has identi�ed two problems that need to

5

be solved but lak a lear solution yet � salability of the time-stamping

servies and integration with Publi Key Infrastrutures.

Salability

The urrent time-stamping systems and proposed protools work well on one

server but have weak or no methods for using a network of many servers.

The only time-stamping systems so far that sale well in the number of

servers must be unonditionally trusted and are "trivial" from the rypto-

graphi viewpoint. Most of the non-trivial systems have only one entral

time-stamping server and have no mehanism for saling to multiple servers.

But this kind of salability is surely needed when the time-stamping beomes

more widespread.

Time Stamps as a Part of Publi Key Infrastruture

The urrent time-stamping systems are just what the name says � time-

stamping systems. Time-stamping is onsidered a stand-alone servie that

is not integrated with real usage areas like digital signatures et. In real

life the time stamps will probably be used mostly as a part of Publi Key

Infrastruture (PKI). The main need for the temporal authentiation will be

between the signatures and the validity periods of orresponding erti�ates.

There are other uses too that are not onneted to the PKI � like time-

stamping of piees of art to show that the author had it earlier than some

pirate. But urrent preditions show that these other uses of time stamps

will be a lot less ommon than the use in PKI.

Work In progress

The paper is based on work done in Küberneerika AS where the author works.

our researh group has studied time-stamping in last two years. This work

has resulted in several papers about time-stamping: the onept of time-

stamping for national use, [BLLV98℄ about binary linking shemes, [BL98℄

about new and more e�ient linking shemes, [BLS99℄ about even more

e�ient linking shemes and [Lip99℄ about authentiation graphs � gener-

alizations of binary linking shemes. We have also produed a spei�ation

for time-stamping server that uses our linking shemes and the author has

6

programmed a test version of the time-stamping server. The urrent work

onentrates mainly on PKI and putting the time-stamping systems into use

in PKI. Our speialists also take part as sienti� advisors from preparing

the digital signature laws of Estonia.

Outline of the Paper

This paper onsists of four hapters. Chapter 1 gives the bakground infor-

mation about the previous results in time-stamping and desribes the basi

ideas of existing time-stamping systems. Chapter 2 ontains overview and

some ritis about erti�ate revoation lists in Publi Key Infrastruture.

The ritis give the motivation for further researh. A well-known simple

notarization protool is given that tries to solve the problem but fails. Chap-

ter 3 desribes a new protool � aumulated notarization protool. This

protool solves the given problem with PKI. Chapter 4 desribes another

new protool � aumulated notarization integrated with time-stamping.

This protool serves as the salable notarization protool but also provides

temporal authentiation for signed douments.

7

1 Bakground

This hapter gives an overview of the results that are needed later. For a

omplete overview of the results in time-stamping as of fall 1998 see [Jus98b℄.

Subsequential work has been done mainly by the researhers of Küberneetika

AS, urrent results have been summarized in [Lip99℄.

One of the entral terms in this paper is time stamp.

De�nition 1.1. Loosely, a time stamp of a bit string is a token that binds

information about time with the bit string.

The main problem is obtaining the time stamps for digital douments in a

seure manner. The time-stamping protools are used for this.

1.1 Trusted Third Party

The simplest time-stamping protool uses a Trusted Third Party (TTP) that

knows the right time. The lient sends the message digest H(X) of its dou-

ment X to the TTP. The TTP adds urrent time t and puts its signature on

the pair (H(X); t). It sends the time t and the signature Sig

TSS

f(H(X); t)g

bak to the lient. The lient adds reeived values to the doument. So the

time is onneted to the doument and the orretness of the time is guaran-

teed by the signature. This works well if we trust the time-stamping server

(TSS) and its soure of time. We also have to assume that the key of the

TSS is never ompromised beause after the ompromise of TSS's seret key

all the time stamps are under question.

1.2 Linking of the Time Stamps

De�nition 1.2. A one-way funtion is a funtion that is easy to ompute

but intratable to invert.

The next natural move is to link all the time stamps together using suppos-

edly one-way funtions. It is omputationally infeasible to insert douments

into this hain later. The TSS keeps a registry of all issued time stamps and

gives the time stamps out for veri�ation. This idea was �rst published in

[HS90℄ and [HS91℄. The protool:

8

� The lient C sends a bit string Y to the TSS

� TSS knows the sequene number of the time stamp, be it n. The TSS

omputes H

n

= h(n; ID

C

; Y) where h is a hash funtion and ID

C

is

the identity of C.

� TSS omputes L

n

= H(H

n

; L

n�1

). This is the linking information. The

hash funtion H may di�er from h.

� TSS sends fn; ID

C

; L

n�1

; Sig

TSS

fL

n

gg to C. This is the time stamp.

The L

n

's are the linking information that holds the proof. The one-way

dependent hain of L

n

's from one doument to another proves that the �rst

doument was time-stamped earlier than the seond. During the veri�ation,

the intermediate L

i

's an be requested from the TSS.

1.3 Binary Linking Shemes

Linear linking shemes have two obvious drawbaks. The �rst one is the

e�ieny � to verify the hain between two douments, the veri�er must do

the same amount of work that the TSS did between the two time stamps.

This may be years' worth of work and is obviously too muh.

The seond drawbak is the amount of information that the TSS must store

for later retrieval by the veri�ers. All L

n

's must be saved in the arhive.

Identi�ation of these faults lead researhers to the development of exponen-

tially more e�ient binary linking shemes [BLLV98℄. The idea is to link the

time stamps not only to the element diretly preeding it but also to some

other element further in the past. The other link an be used to traverse the

hain more e�iently by taking longer jumps. This redues the amount of

time needed to verify the temporal order of douments.

De�nition 1.3. A linking sheme is an algorithm that tells whih existing

elements in the hain should a new element be linked to.

Another idea is to group the requests into rounds and traverse only between

the summaries of rounds. By doing this we an redue also the amount

needed by the TSS to keep the data items required for veri�ation. Suh

linking-shemes are alled aumulated linking shemes.

9

It has been shown in [BLLV98℄ that there exist linking shemes that provide

logarithmi length veri�ation paths in the hain, enable the use of rounds

and guarantee possibility of veri�ation the temporal order between any two

time stamps issued in one round and the veri�er does not need any additional

information to perform the omparison. The linking sheme is shown on

�gure 1.

21

3

4 5

6

7

8 9

10

11

12

13

14

15

16 17

18

19 20

21

22

23 24

25

26 27

28

29

30

31

Figure 1: The linking sheme of BLLV98

The e�ieny of intra-round linking shemes has been improved in [BLS99℄

(�gure 2).

L

00

R

r�1

= L

�

L

000

H

000

L

001

H

001

H

010

L

010

L

011

H

011

L

100

H

100

H

101

L

101

L

110

H

110

H

111

L

111

L

11

L

10

L

01

L

0

R

r

= L

�

L

1

Figure 2: The e�ient intra-round linking sheme of BLS99

Furthermore, it appears that the inter-round and intra-round linking shemes

do not have to be the same ([Lip99℄).

10

1.4 Relative Temporal Authentiation

When talking about temporal authentiation of data, we an distinguish be-

tween absolute and relative temporal authentiation. In the ase of absolute

temporal authentiation the time stamps ontain information that is some

representation of the time value as known in non-digital world. When om-

paring two absolute timestamps we ompare the time values in them.

In the ase of relative temporal authentiation the time stamps ontain infor-

mation that an only be used to hek whether one time stamps was made

earlier than another. There's no analogue for the real absolute time.

While both shemes an be used to ompare the time stamps there are deep

di�erenes between these two methods. It has been shown in [Jus98a℄ that

absolute time an not be used without trusted third parties serving the abso-

lute time. This means that we must trust both the trusted third party itself

and its time soure. For relative temporal authentiation no trusted third

party is required beause the time stamps an be linked together with seure

linking shemes that prevent forgery, as shown in [BLLV98℄.

However there are problems with relative temporal authentiation too. While

all digital douments an be made veri�able, the onnetion between the

digital douments and the real absolute time is weak. With absolute time

stamps we an assoiate the time-stamped douments with events in the real

world. With relative time stamps this is not possible without additional

work.

The most natural way to do it is to periodially time stamp a none (a bit

string not known earlier � an be generated randomly). If I hourly time

stamp a none and keep trak of these nones then I an use these time

stamps to determine the time of some other digital time stamps with the

preision of 1 hour. And that's all � anybody else has no reason to trust

my hourly time stamps. If they would trust my hourly marks then it's like I

would be the trusted third party for them.

So every party that wants to know the approximate real-world time for digital

time-stamped douments must use its own periodial time stamps. To solve

these problems in ourt, the ourt system must use its own periodial time

marks.

11

1.5 Publi Key Infrastruture

In 1976 W. Di�e and M. Hellman published their work about publi key

ryptosystems [DH76℄. With the help of the RSA ryptosystem [RSA78℄ this

ideology has beame dominant in ryptography. Users have their publi and

private keys. The keep the private key seret and publish the publi key with

help of publi key erti�ates. The erti�ates onnet the persons and their

publi keys. A publi key infrastruture is the infrastruture that deals with

publi key erti�ates and all problems assoiated with these erti�ates

(like erti�ation, erti�ate expiration, erti�ate revoation, distributing

the erti�ate validity info et). There are several paradigms of how the

infrastruture should operate and whih ryptographi systems and protools

to use. The X.509 standard ([HFPD99℄) is the de fato standard for PKI

in today's Internet. It has been developed originally for o�-line operations

and then extended to operate on-line too. The urrent version of X.509 is

3. Despite being already in the third inarnation it still has problems with

salability and delays in the distribution of erti�ate information.

12

2 Simple Notarization

2.1 Certi�ate Revoation Lists

The X.509 family of standards uses a hierarhy of Certi�ate Authorities

(CA's) to issue and revoke the erti�ates. When a erti�ate is issued, it

is expeted to be in use for its entire validity period. However, various ir-

umstanes may ause a erti�ate to beome invalid prior to the expiration

of the validity period. Suh irumstanes inlude hange of name, hange

of assoiation between the subjet and the CA (e.g., an employee terminates

employment with an organization), and ompromise or suspeted ompro-

mise of the orresponding private key. Under suh irumstanes, the CA

needs to revoke the erti�ate.

The urrent PKI standards [HFPD99℄ use Certi�ate Revoation Lists (CRLs)

to distribute the information about revoked erti�ates. Eah CA periodi-

ally issues a signed list of revoked erti�ates that have not yet expired. The

list is valid for some �xed amount of time lasting at least to the next periodi

issue of CRLs. The CRL onsists of time-stamped erti�ate numbers. In

the urrent implementations the CRL ontents use absolute time stamps and

do not use a time-stamping servies for obtaining these stamps. When we

want to get the reliable temporal authentiation for the revoation info, we

must use ryptographially seure time-stamping servies.

When a erti�ation-using system wants to verify a signed and time-stamped

doument, it must verify all these onditions:

� The signature is orret with respet to the erti�ate

� The erti�ate is not in a reent-enough CRL. If the erti�ate is in

a CRL, the time stamps of the signed message and the orresponding

CRL reord are veri�ed. The time stamp of the message must be earlier

than the time stamp of the revoation reord.

� The signature and the erti�ate of the CRL are orret and the er-

ti�ate of the CA has not expired with respet to a higher level CA.

The same method is used reursively.

The CRLs are issued periodially and eah verifying operation must use a

reent-enough CRL. The seurity poliy spei�es how reent the CRLs must

13

be. To get a good-enough proof of the erti�ate not being revoked, the entire

urrent CRL must be transferred to the lient. The lient must then do a

linear searh in the CRL. This takes O(n) time where n grows very large.

In addition a delay is introdued beause of the periodi nature of CRLs �

we annot use the latest information about the revoations but must use the

latest published list.

Closer analysis of the transmission osts of the CRLs ([BCF+94℄ and [Mi96℄)

shows that the CRLs are very ostly. For instane, if for US Federal PKI

there are

� 3 000 000 users,

� eah CA serves 30000 users,

� 10% of the erti�ates are revoked,

� CRLs are sent out biweekly,

� the veri�ers of the signatures request erti�ate information for 5 sig-

natures per day, and

� the ommuniation osts are 2 ents per kilobyte,

then the total PKI yearly osts are $732 Millions, of whih $563 Millions are

due to CRL transmissions. The share of CRLs would be even greater when

more erti�ates are veri�ed per day ([Vil99℄).

This doesn't ount the resoures needed to time stamp every CRL reord

if we want exat and seure temporal authentiation. In this situation the

main use of time stamps is to verify the temporal order of signing and er-

ti�ate revoations. We want to eliminate the need of CRLs beause of their

ine�ieny and to redue the additional osts required for time-stamping.

2.2 The Idea Behind Notarization

A notary is an authority that erti�es lients' signatures. Traditional notaries

verify and sign the signatures of lients. Eah notary has its own erti�ate

from a CA. The main idea of simple notarization is simple: both the duties

of the CA and the traditional notary are given to one prinipal. We all this

prinipal notary here and hereinafter. When the lient (say, A) wants to sign

14

a message M , it signs M and submits the signature Sig

A

fMg to the notary.

The notary signs the signature only if it �nds the erti�ate of A to be valid.

Sine the notary and the CA are the same, the notary knows whether the

erti�ate is valid at the moment of the signing. The veri�er only needs to

hek whether the signature mathes the doument and whether the notary

has signed the signature. The signature of the notary is su�ient to prove

that to the best of the notary's (CA's) knowledge the erti�ate was valid at

the time of the signing.

If the notary signs some signature made with a non-valid erti�ate then

nothing bad happens. The signature of the notary makes the notary respon-

sible for any damages when the user has revoked the erti�ate. The user

may use several notaries simultaneously to protet itself from bad notaries

that refuse to revoke the erti�ates.

2.3 Prinipals and Notation

The prinipals of the protools in this setion and hereinafter:

� C � the lient of the notary (the signer)

� V � the veri�er (the one who want to verify the signature of C)

� N � the notary (the notary+CA of C)

� N

�

� the parent notary of N where appliable

By Sig

A

fBg we denote the signature that the prinipal A has given on the

bit string B. The signature ontains the message digest of B enrypted with

the private key of A.

By PK

A

we denote the publi key of the prinipal A.

By Auth

A

we denote the redentials of the prinipal A. The redentials are

meant to show the legal uses of the key (like signing ontrats with level of

responsibilities not above some �xed value).

By ID

A

we denote the personal data of prinipal A that is needed to identify

the prinipal outside the PKI.

By Cert

A

we denote the erti�ate of prinipal A. It onsists of PK

A

, Auth

A

and possibly also ID

A

.

15

In the protools, the notation A

n

�! B : X denotes protool step number n,

during whih the prinipal A sends the data X to the prinipal B.

The asterisks on some of the variables mean that these variables ome form

the parent notary.

2.4 Certi�ation Protool

The simple protools are taken from [Bul99℄. The lient C generates a pair

of a private key and a publi key. It sends the erti�ate request to N . The

erti�ate request onsist of its publi key PK

C

, identity ID

C

and redentials

Auth

C

.

The notary generates the erti�ate Cert

C

= fPK

C

; ID

C

;Auth

C

g and adds

the erti�ate to its database of valid erti�ates. The notary doesn't need

to send the signed erti�ate bak to the lient beause there's no need for

suh erti�ate � eah signature ontains a notary-signed erti�ate anyway.

So the notary just aknowledges the erti�ation request.

The notary and the lient should also agree on a revoation password of the

given erti�ate (one-time password is a suitable example). The password

may be neessary to revoke the erti�ate later.

We don't speify anything about the database of urrently valid erti�ates

that the notary maintains. The CRLs were linear lists; we an avoid the

linear searh in this database if it is appropriately organized. The database

may use some faster methods to hek whether a given erti�ate is valid or

not (trees for O(log n) or hashes for O(1) for example).

Protool 2.1. Certi�ation protool 1

1. C

1

�! N : PK

C

; ID

C

;Auth

C

2. C

2

 � N : ACK

2.5 Notarization Protool

The lient C signs a doument X and sends the signature Sig

C

fXg and the

erti�ate Cert

C

to the notary. The notary heks whether the erti�ate is

16

in its database of valid erti�ates. If it is then the notary signs the signature

of C and the erti�ate with its own private key and sends it bak to C.

Protool 2.2. Notarization protool 1

1. C

1

�! N : Sig

C

fXg

2. C

2

 � N : Sig

N

fSig

C

fXg;Cert

C

g

The erti�ate of C is needed in the response sine it is the only thing that

binds the signature to the lient C. The answer from the notary tells that the

lient C has produed a bit string that we all Sig

C

fXg while the erti�ate

of C was valid.

2.6 Veri�ation Protool

C sends the doument X along with its own signature, its own erti�ate and

the notary-signed signature to V . V veri�es that the signature of C mathes

the doument and the erti�ate and that the signature and the erti�ate

are signed by N . V also heks whether Auth

C

permits this kind of doument

to be signed with this erti�ate. V an also learn the identity of C from

the erti�ate. V doesn't need to hek any other soures of information, all

neessary values must have been reeived with the doument.

Protool 2.3. Signature veri�ation protool 1

1. C

1

�! V : X; Sig

C

fXg;Cert

C

; Sig

N

fSig

C

fXg;Cert

C

g

2.7 Certi�ate Revoation Protool

The lient C signs and sends the revoation request Sig

C

fREVOKE Cert

C

g

to the notary. Or the lient C alls the notary N and tells its erti�ate

revoation password. The notary N removes the erti�ate of C from the

database of valid erti�ates and no longer signs signatures that use this

erti�ate. In fat the notary may even ompletely forget about the erti�ate

if no other rules prohibit it � the erti�ate is not needed any more by the

protool.

17

Protool 2.4. Certi�ate revoation protool 1

1. C

1

�! N : Sig

C

fREVOKE Cert

C

g

2.8 Disadvantages of Simple Notarization

The protool assumes that the publi key of N has been distributed to all the

partiipants and that the key is valid through the whole period of the use of

the protools. This does not hold in real life. Another problem is salability

� one notary an serve only a limited number of requests in a time period.

This may not be su�ient in real world.

We ould build a simple hierarhy of the notaries � we require the signature

of a higher level notary on the signature of N . The signature of doument

X would beome

X; Sig

C

fXg; Sig

N

fSig

C

fXg;Cert

C

g,

Sig

N

�

fSig

N

fSig

C

fXg;Cert

C

g;Cert

N

g:

We an extend this method to reate a tree of notaries. This method would

solve the problem of distributing most notaries' keys automatially but it

doesn't sale either. The upper level notaries must do the same amount of

work as all their lients together. When eah notary in the hierarhy has

about the same number of lients (the other notaries inside the hierarhy

and the real lients as the leaves of the tree), the load of notaries rises expo-

nentially from bottom to top. Something must be done to redue the load

on higher level notaries.

18

3 Aumulated Notarization

We now know that we probably want a hierarhial struture of the notaries.

We onstruted a simple tree in setion 2 but the tree was not salable

enough. In this setion we want to modify the simple notarization protool to

a salable protool. The idea of this protool omes with slight optimizations

from [Bul99℄. The optimizations involve freeing the notary from the duty of

verifying the atual signatures, in our system the notary just erti�es whih

publi key erti�ate was used. The atual veri�ation is done by the veri�er.

3.1 The Idea of Aumulated Notarization

The main idea of aumulated notarization is to make every notary do

roughly the same amount of work. To redue the amount of work needed by

its parent notary, a lient notary doesn't send eah of its own signatures to

the parent notary to sign. Instead, it groups the signatures into rounds. The

length of the round is limited either by time, by the number of signatures in

the round or by any other reasonable measure. At the end of eah non-empty

round it sends a summary of the round to the parent notary to sign. When it

reeives the answer it sends the summary of the round and the answer from

parent notary to eah of the lients. In addition, eah lient is sent a proof

that its data was used to reate the summary.

When every notary behaves this way and the tree of notaries is almost in

balane then all the notaries do roughly the same amount of work. Suppose

they have a round length of 1 seond. The notaries reeive requests, sign them

and add them to the summary in some way. At the end of the round they

submit the summary to the parent notary. When they reeive the answer,

they send the answer with other data bak to the lient. They may work

on the next round while waiting for the answer of the previous round so the

work does not stop.

The top of the hierarhy has no parent so it must behave a little di�erently.

No rounds are neessary there sine all the data is internal to the notary. So

the topmost notary may just answer eah request as soon as it is reeived.

The delay between the request and the answer from the lient viewpoint

raises from top to down. Eah level in the hierarhy adds an additional delay

from 0 to the round length of this notary. If there is a round length of 1

seond for every notary, the average delay at eah level is 0.5 s and the total

19

delay is

k�1

2

seonds where k is the height of the hierarhy. This is not too

bad sine k = O(log n) where n is the number of notaries in the hierarhy.

3.2 Group Hashes

De�nition 3.1. A hash funtion is a omputationally e�ient funtion map-

ping binary strings of arbitrary length to binary strings of some �xed length,

alled the hash values.

The group hashes are a generalization of hash funtions of one argument.

Normal hash funtions take one arbitrary-length bit string as an argument

and produe a �xed-length bit string as a result. H is the family of hash

funtions that generate n-bit output:

H = fh : f0; 1g

�

�! f0; 1g

n

g

We use a subset of all possible hash funtions � the ryptographi hash

funtions. The most important property of ryptographi hash funtions is

that it's omputationally infeasible to �nd ollisions, i.e. to �nd an A for an

X suh that h(A) = X or to �nd A and B suh that h(A) = h(B). From

the moment somebody invents a way to �nd ollisions, the hash funtions is

not seure any more and is onsidered broken. Until the hash funtion has

not been broken, the output value is the evidene that the input value was

used to reate the output value.

Group hash extends the hash funtions to multiple arguments (a group of

arguments � hene the name). The family of group hash funtions may be

de�ned as

G = fg : (f0; 1g

�

)

�

�! f0; 1g

n

g

(the funtions take some arbitrary length bit strings as input and produe a

n-bit result). Sine we use the group hash values for evidene, we also require

the group hash funtions to be ollision-free.

But this alone is not su�ient. The other property of normal hash funtions

� the output is the evidene that an input was used some way to reate the

output � is not automati. The group hash funtion must be built so that

for eah input we an ompute a proof that shows that the input was used

to reate the output.

De�nition 3.2. A group hash funtion is a hash funtion that takes multiple

arguments and provides a proof for eah argument that the argument was

used to ompute the result.

20

The lassial example of group hash funtions is the algorithm of Benaloh

and de Mare [BdM94℄. It relies on the fat that RSA is hard to break. The

group hash funtion g is de�ned as follows:

g(y

1

; : : : ; y

n

) = x

y

1

� ::: �y

n

0

mod m

and the proof that y

i

was used is

p(i; y

1

; : : : ; y

n

) = x

y

1

� ::: �y

i�1

�y

i+1

� ::: �y

n

0

mod m

where x

0

is a onstant and m = pq is an RSA modulus fatoring of whih is

unknown to any party. The value p(i; Y) is given to the veri�er that wants

to verify whether y

i

was used to alulate g(Y). The veri�ation sueeds i�

p(i; Y)

y

i

mod m = g(Y):

This sheme uses linear storage size for the proof. Better shemes like loga-

rithmi and onstant size also exist [Jus98b℄. In pratie there may be other

needs for the group hashes � like the need of being able to distinguish the

order of the inputs when the inputs ome in sequentially.

The aumulated notarization protool just uses the fats that the group

hashes have smaller size than the total size of inputs and there exists a proof

for every input that says the input was used to reate the output.

3.3 Certi�ation Protool

The lient C generates a pair of a private key and a publi key. It ontats

the notary and gives the erti�ate request to N . The notary must have some

way to identify the lient and hek that the identity of the user is orret �

else anybody ould fake its identity and the erti�ation would be no good.

The erti�ate request onsists of lient's publi key PK

C

, identity ID

C

and

redentials Auth

C

. The notary adds the erti�ate to its database of valid

erti�ates and aknowledges the erti�ation.

Protool 3.1. Certi�ation protool 2

1. C

1

�! N : PK

C

; ID

C

;Auth

C

2. C

2

 � N : ACK

We assume that all the notaries (N) in the tree have registered at their parent

notary before any notarization involving the notary N begin.

21

3.4 Notarization Protool

The same protool is used between the �nal lient of the notary servie and

between the notaries in the hierarhy. We hoose a notary from the tree and

all it N . C is a lient of its and N

�

it its parent notary.

The protool begins as in setion 2.5. The lient C signs a doument X

and sends the signature Y = Sig

C

fXg to the notary N . The notary heks

whether the erti�ate of C is in its database of valid erti�ates.

When no problems are found, N aumulates Sig

N

fY;Cert

C

g to the urrent

group hash. When the urrent round ends, N alulates the group hash L and

sends the pair fL;Cert

N

g to the parent notary N

�

as a normal notarization

request. It gets fSig

N

�

fL;Cert

N

g; L

�

; T

�

; R

�

g in response. L

�

is the value of

the group hash for N

�

(like L is for N). T

�

is the proof that L

�

is one-way

dependent from L. R

�

is the rest � the proof information from upper layers.

Protool 3.2. Notarization protool 2

1. C omputes Y = Sig

C

fXg

2. C

1

�! N : Y;Cert

C

3. N omputes the group hash value L = h(: : : ; Y; : : :)

4. N

1

�! N

�

: L;Cert

N

5. N

2

 � N

�

: Sig

N

�

fL;Cert

N

g; L

�

; T

�

; R

�

6. N ompiles R = fSig

N

�

fL;Cert

N

g;Cert

N

; L

�

; T

�

; R

�

g

and the proof T .

7. C

2

 � N : Sig

N

fY;Cert

C

g; L; T;R

8. C ompiles its own R

0

= fSig

N

fY;Cert

C

g;Cert

C

; L; T;Rg

The root notary just responds with empty R sine it has no parent notaries

and thus the rest of the hain is empty. The root notary may still want to

use rounds so it doesn't di�er from the others too muh.

We arry the erti�ate information along at all the levels. This is beause

some information is needed about the publi key that was used to reate the

22

orresponding signature. It should be possible to redue the amount of this

information, like with using message digests of the erti�ate and storing the

whole erti�ate somewhere where it is aessible to the veri�ers.

The size of R (and thus the size of the whole notarized signature) is linear

to the height of the notarization tree. As the height k = O(log n) where n is

the number of notaries, it's still only logarithmi to the number of notaries.

So it's not too bad but it ould be smaller.

3.5 Veri�ation Protool

Here C denotes the �nal lient � the leaf of the tree.

C sends the doumentX to V . It also sends Sig

C

fXg and R

0

. R

0

is essentially

a hain of signatures from all the notaries from the notary of C to the top of

the hierarhy.

Protool 3.3. Signature veri�ation protool 2

1. C

1

�! V : X; Sig

C

fXg; R

0

V heks the following riteria:

1. Sig

C

fXg(= Y) mathes X and Cert

C

2. Auth

C

(ontained in Cert

C

) permits this kind of signing

3. Sig

N

fY g mathes Y and Cert

N

4. Auth

N

(ontained in Cert

N

) permits this kind of signing

5. T shows that Sig

N

fY g was used to reate L

6. : : : (repeat last three lines for every level up to the root)

7. The erti�ate of the root notary mathes the published and well-known

one

If all these onditions are met then the signature is onsidered valid.

23

In fat the veri�er heks that on eah level, the higher level notary has prop-

erly notarized the signature and that the higher level notary had permission

to notarize it at this moment. The latter is ahieved by verifying that the

notary signed the data given to it and submitted the data to a higher level

notary for approval. All this is essentially the same as in the simple protool.

The di�erene is in the tehnique of submitting the notarized bit string for

approval. Here the group hash helps to trak that it was really approved.

3.6 Certi�ate Revoation Protool

C sends N a signed revoation request or just alls N and tells its revoation

password. N deletes the erti�ate of C from its database of valid erti�ates

and doesn't respond to requests with erti�ate Cert

C

any more.

Protool 3.4. Certi�ate revoation protool 2

1. C

1

�! N : REVOKE Cert

C

; Sig

C

fREVOKE Cert

C

g

The erti�ate in REVOKE request is needed to determine whih erti�ate

should be revoked. The signature is needed to avoid forgery of the revoation

request (otherwise anybody ould revoke my erti�ate if he knew my erti�-

ate from earlier ommuniation). When the private key of a user has been

ompromised then anyone knowing the private key an revoke the erti�ate.

This is only good sine the erti�ate really needs revoation in this ase.

3.7 Addition and Deletion of Notaries

The addition and deletion of the notaries is extremely simple with the urrent

model of the protool. The addition proess has been already overed with

the erti�ation protool � the same protool applies to both notaries and

real lients.

The deletion is also simple � the notary that wants to quit doesn't respond

to any requests any more and it revokes its erti�ate at the parent notary.

That's all. All issued signatures ontinue to hold sine a higher level notary

has signed them. No more signatures an be issued sine the erti�ate has

been revoked.

24

The protool doesn't require any arhive of the leaving notary to be kept so

there's also no arhive to transfer to any other notary. Note that while the

protool doesn't require any arhives to be saved, some legal ats may still

require them.

3.8 The Advantages of Aumulated Notarization

� It's salable � all the notaries do roughly the same amount of work.

So the upper level notaries don't have to do more work then the lower

level notaries.

� No additional information is needed to hek the signature if the nota-

rization hain is given with the signed doument. No CRLs, no time

stamps.

� No protool needs negative proofs (like "the erti�ate of A is not in

any kind of blaklist")

25

4 Notarization with Temporal Authentiation

It's interesting to note that we an use the linking shemes from time-

stamping systems with rounds from setion 1.3 as the group hashes. The

reason we do this is beause the notarization hain in aumulated nota-

rization protool has the same struture as one half of the time-stamping

hain. We look at the notarization hain in terms of time-stamping and add

another hain for the other diretion of one-way dependene to integrate the

properties of time-stamping into the notarization hierarhy.

Let's enumerate the lient requests. At �rst the order of the requests is not

signi�ant � we an use just any order. Then we apply the linking sheme to

the sequene of inputs. Sine we have no onnetion to the earlier rounds of

the notary at the moment we an use just any value for the �rst (initial) value

as long as it is �xed. We obtain the round value and a head and a tail (as

de�ned in [BLLV98℄) for eah of the inputs. For any input, the ombination

of the initial value, head, tail and the hash value is su�ient to prove that

the input was used to alulate the hash value.

This kind of group hash doesn't guarantee anything more than we already

have. But this approah gives us the hints where to look further if we also

want the temporal authentiation of the inputs.

4.1 The Constrution

4.1.1 Step 1

Let's onentrate on a single notary. It reeives requests from its lients,

proesses them by rounds and requests notarization of the group hash from

its parent notary. The lient requests are hashed together with a group

hash. So far the only requirement for the group hash was that the lients

ould verify the fat that their request was used to reate the hash value.

Now we set up more strit requirements � the temporal order of the requests

must be veri�able in the future.

We showed that we an use a linking sheme from time-stamping systems

as the group hash but sine we didn't onnet the beginning of the hain

to anything we didn't use a half of the power of the linking shemes. We

ould verify the order of inputs inside a round if we enumerated them in the

26

natural (inoming) order. But this was all, we ouldn't get further into the

future or into the past.

The obvious next step is to onnet the subsequent rounds together (�gure

3). We use the hash value of (n � 1)-th round to get the �rst value of the

nth round.

Figure 3: A hain with linked rounds

The way how the round summaries are onneted is not important here. We

an use any linking sheme that is e�ient for us. The following protools

just require that the douments in the hain must be omparable. The hoie

of the linking shemes is out of the sope of this paper, both for intra-round

and inter-round linking.

The linking shemes may require some intermediate round summaries to be

present for inter-round dependeny veri�ation. We further assume that the

information is kept available.

4.1.2 Step 2

Now let's have a look at the onnetions between the notaries. We ontinue

to use the same hierarhy that onneted the notaries in setion 3. The

submission of the group hash value to the parent notary an be seen as a link

between the linking hains of these two notaries. We name these links the

upward links � the diretion of information goes from a lower level notary

to its parent. This means that the element in the parent hain where the

upward link ends is one-way dependent from the summary of the urrent

round of the lient notary.

Figure 4: Two upwards linked hains

27

Figure 4 illustrates this. The upper hain denotes the parent notary and the

lower hain denotes a lient of its. The parent notary has the round length

of 5 and the lient notary has the round length of 4. The round lengths

at eah notary are not related at all � eah notary may use even its own

linking sheme inside and between its rounds. To be usable by the lients, the

shemes must be published and know to the lients otherwise they ouldn't

hek the orretness of the temporal dependeny and signatures.

The time goes from left to right on this �gure and all the other �gures where

time is important. At the end of eah round the lient omputes the group

hash and sends it to the parent to sign. The arrows don't go diretly up but

to the right sine the transmission of the data takes some time. It gets the

�rst empty plae in the parent's urrent round.

4.1.3 Step 3

Now we want to add the downward links � the links that go from the parent

notary to the lient notary and arry linking information. These links are

needed for ahieving temporal dependene from the douments in the past �

the dependeny information omes through these links. There is also some

other information transferred from the parent to the lient � the signed

answer to upward links � but this is not important for the linking and so

the other information is not onsidered here.

The downward arrows reate a one-way dependeny between the group hash

of the parent's last �nished round and the lient's freshly starting round. The

lient requests this information from the parent in some way that is again

not important to the linking but is easily doable. This one-way dependeny

an be used to show that an element in the lient hain has been notarized

later than some previous elements in the parent hain.

Sine the round lengths of the parent and the lient don't have to be the same,

it may happen that some round at the parent's hain is giving the downward

linking information to several onsequent rounds at the lient hain when the

lient round length is smaller. Similarly, when the lient's round length is

larger that the parent's round length then it may happen that some round at

the parent hain gives no linking information to the lient. This good sine

the lient gets the latest information always and so the probability of being

able to ompare two douments beomes larger.

28

Figure 5: Two fully linked hains � like �gure 4 but with downward links

4.1.4 Step 4

Now we have desribed the links between notaries and so we are able to put

together a big tree of notaries all linked together. Eah two notaries are

onneted the way we just desribed i� they were onneted in setion 3.

There are no other onnetions in the tree.

The top-level notary has no upward links sine it is the authority itself and

doesn't need a signature from something else. The same goes for the time-

stamping information � the top-level notary manages the "master" hain of

linking information.

Similarly there must be the lowest level in the hierarhy with no downward

links.

This is illustrated by �gure 6. The �gure shows that the resulting graph is

similar to a sheet of paper folded into two in the top and broken into three

at point C and just folded a little at point B. All the arrows are on the sheets

of paper but not between the sheets.

The �gures 7 and 8 illustrate the dependeny paths in the graph. Figure

7 shows the maximum predeessors of a top-level linking element. There

exists a one-way dependeny from all the predeessors in the �gure and all

the earlier elements on their levels to the top-level element. There exist no

suh proof for any later element at any level. Similarly, �gure 8 represents all

minimal suessors of a top-level element. There exists a one-way dependeny

from the top-level element to any of the suessors in the �gure and any

element right of them and there doesn't exist suh a proof for any earlier

element.

The �gures together give a good view about how the dependeny propagates

in the graph: from the earlier element up to a ommon notary, then some

time along the hain of the notary and then down to the later element. It's

29

A

B

F

C

D

E

Figure 6: The general shema with 6 notaries and all upward and downward links

3
0

Figure 7: The predeessors of an element

Figure 8: The suessors of an element

31

su�ient to go up only until there is a ommon notary, i.e. a notary that is in

the path from the earlier element to the top and in the path from the top to

the later element. In the worst ase the top-level notary is the only ommon

notary. In the best ase the elements are lients of the same lowest-level

notary and no up-down links between the notaries are neessary at all.

The upward path of the doument is the linking information for ompar-

ing against future douments and the downward path is for omparing with

past douments. The lient onnets a downward path and an upward path

together with the doument signature. It �rst asks the downward linking

information from the notary, adds it to the doument information (the do-

ument itself or a message digest) and notarizes the result. This reates the

signature on the doument and also adds the upward path. The triple on-

sisting of downward path, doument and upward path (also ontains the

signature) is the whole unit of temporal authentiation.

The onventional time-stamping system that was orthogonal to PKI had an

annoying property: it required two time stamps on a signed doument: one

before the signing (for showing that the signature was made later than some

douments) and one after the signing (for proving that the signature was

made before some other doument). Our integrated system removes this

need sine we really need only one half of eah time stamp.

4.2 Certi�ation Protool

The erti�ation protool is the same as the erti�ation protool in setion

3.3. The lient C generates a pair of a private key and a publi key. It

ontats the notary and gives the erti�ate request to N . The notary must

have some way to identify the lient and hek that the identity of the user is

orret � else anybody ould fake its identity and the erti�ation would be

no good. The erti�ate request onsists of lient's publi key PK

C

, identity

ID

C

and redentials Auth

C

. The notary adds the erti�ate to its database

of valid erti�ates and aknowledges the erti�ation.

Protool 4.1. Certi�ation Protool 3

1. C

1

�! N : PK

C

; ID

C

;Auth

C

2. C

2

 � N : ACK

32

We again assume that all the notaries (N) in the tree have registered at their

parent notary before any notarization involving N begin.

4.3 Downlink Protool

The downlink protool is for making the downward links in the graph. At

the beginning of a new round eah notary (exept the top-level notary) asks

the group hash value of the last �nished round from its parent notary. The

parent notary gives the value as the answer (G), the group hash value from its

parent's last �nished round (G

�

), the proof (H) that G

�

was used to ompute

the value of G and the rest (S). The rest is the downlink information that

ame with G

�

.

The downlink information G is used as the initial value of the new round of

N . It is also used by the �nal lients to assoiate it with the douments that

are to be signed.

Protool 4.2. Downlink protool 3

1. N

1

�! N

�

: REQUEST

2. N

2

 � N

�

: G;G

�

; H; S

3. N omputes its own S

0

= fG;G

�

; H; Sg

When a lient asks the downlink information from the notary N , N answers

with G, G

�

and H from its last �nished round and uses S

0

for the rest. So

the rest gathers into S on the way down.

The top-level notary must have G in the answer sine G is used as a seed on

lower levels. It may not have G

�

and H sine it may give out just its latest

element in the linking hain as the seed for lower levels. But the top-level

notary may use rounds and G

�

and H as well if it hooses so.

The one thing that is ertainly di�erent about the top-level notary is that

it doesn't have anything to add in S. Instead it should sign the G that it

puts in the answer and put the signature into S. This is neessary to for any

lower level lients for deiding whether to trust the downlink hain that it gets

from the parent notary. Otherwise the notaries in the path from the top-level

notary to some other �xed notary may hoose to provide false information

33

that an not be used by the lient later beause it has no proof value. Adding

the signature of the top-level notary helps against false linking information

but doesn't help against too old linking information. So the lients should

regularly hek whether their douments are reliably omparable with respet

to temporal order. Douments notarized at di�erent notaries must be used

for this kind of hek else the linking information is not used in the heks.

The signature of the top-level notary is su�ient � no signatures from lower

level notaries are required. These signatures would not add any useful proofs

and they would require putting the erti�ates of the intermediate notaries

into S.

The downlink information is independent from the uplink information. There

are two points where the two diretions meet: the lient assoiates both

downward and upward linking information with the doument and the veri�er

�nds a onnetion between the upward links of the older doument and the

downward links of the newer doument.

4.4 Notarization Protool

The same protool is used between the �nal lient of the notary servie and

between the notaries in the hierarhy. However, the �nal lient has to prepare

for the protool slightly di�erently. While normal notaries must have used

the downlink protool to get the initial element for the round, the lient must

use the downlink protool too but it uses the information in reation of the

initial signature of the doument.

We hoose a notary from the tree and all it N . C is a lient of its and N

�

it its parent notary of N .

The lient C has a doument X and the urrent downlink information S. It

signs the pair fX;Sg and sends the signature Y = Sig

C

fX;Sg to the notary

N . The notary heks whether the erti�ate of C is in its database of valid

erti�ates.

When no problems are found, N aumulates Sig

N

fY;Cert

C

g to the urrent

group hash. When the urrent round ends, N alulates the group hash L.

The alulation also yields Z that is the atual bit string that represents Y

in the group hash. Y an't be used diretly beause the value in the hash

must depend on Y and the previous elements in the hash.

34

N sends the pair fL;Cert

N

g to the parent notaryN

�

as a normal notarization

request. It gets fSig

N

�

fL;Cert

N

g; P

�

; Z

�

; L

�

; T

�

; R

�

g in response.

Z

�

is the representation of L in the group hash of the parent as desribed

above. L

�

is the value of the group hash for N

�

(like L is for N). T

�

is the

proof that L

�

is one-way dependent from Z

�

. R

�

is the rest � the upward

linking information from the upper layers. P

�

is the previous element in the

hain of the parent notary. It is needed for heking the orretness of Z

�

. To

ompute Z

�

, the parent notary used the input from lient and some earlier

information from its hain � like the diretly preeding element in the hain.

The lient needs the earlier linking information to verify the orretness of

Z

�

. The previous element exists always even in the same round � for the

very �rst element of the round we use the initial values of the round as the

previous element (G).

Y

T

ZP

L

R

Figure 9: The important variables of one round

The protool:

Protool 4.3. Notarization protool 3

1. C omputes Y = Sig

C

fX;Sg

2. C

1

�! N : Y;Cert

C

3. N omputes the group hash value L = h(: : : ; P; Y; : : :),

this also yields Z and the new proof T

4. N

1

�! N

�

: L;Cert

N

5. N

2

 � N

�

: Sig

N

�

fL;Cert

N

g; P

�

; Z

�

; L

�

; T

�

; R

�

35

6. N ompiles R = fSig

N

�

fL;Cert

N

g;Cert

N

; P

�

; Z

�

; L

�

; T

�

; R

�

g

7. C

2

 � N : Sig

N

fY;Cert

C

g; P; Z; L; T;R

8. C ompiles its own R

0

= fSig

N

fY;Cert

C

g;Cert

C

; P; Z; L; T;Rg

4.5 Temporal Veri�ation Protool

The input of temporal veri�ation protool is a pair of notarized douments,

the notarized signatures of both douments and the downlink information

the douments. The goal is to determine if the supposedly later doument is

really later than the supposedly earlier doument.

The lient C sends two douments X

1

and X

2

to the veri�er V . It also sends

R

0

1

, R

0

2

, S

1

and S

2

. R

0

1

and R

0

2

are the upward links for X

1

and S

1

and S

2

are the downward links for X

1

and X

2

.

Protool 4.4. Temporal veri�ation protool 3

1. C

1

�! V : X

1

; X

2

; S

1

; S

2

; Sig

C

1

fX

1

; S

1

g; Sig

C

2

fX

2

; S

2

g; R

0

1

; R

0

2

Here C

1

and C

2

are the signers of X

1

and X

2

. They don't have to be equal

to neither eah other nor C. The veri�ation algorithm uses the following

sheme:

1. The veri�er heks that the douments X

1

and X

2

have orret sig-

natures from their respetive owners. The validity of the signatures

is not heked � just the fat that the signatures math the dou-

ments. S

1

and S

2

are needed for this sine they were used for signing

and so must be used for signature veri�ation. If any of the signatures

doesn't math then we an't ontinue the veri�ation and the answer

is negative.

2. The veri�er �nds the lowest ommon notary of X

1

and X

2

by following

the hains R

0

1

and S

2

from bottom to top. We all this ommon notary

N . If there's no ommon notary then the temporal order an't be

determined and the answer is negative. This is the ase only when the

douments have been notarized in di�erent notarization hierarhies or

when some linking information is forged.

36

3. The veri�er heks the one-way dependeny from SigfX

1

; S

1

g to the

data item in R

0

1

that orresponds to N . We name the already veri�ed

dataD. At the beginning of the hainD = fSig

C

fX

1

; S

1

g;Cert

C

g. The

veri�er uses iterative method. Eah step uses the following sheme until

it has heked the Z given by N .

� hek that Z = h(P;D) where h is the hash funtion used to

ompute Z

� hek that T proves that Z was used to ompute L

� D := fL;Cert

M

g where M is the urrent notary

If any of these heks fail then the answer is negative. If the heks

sueed then the veri�er has found that the value of Z in N 's hain is

dependent from the doument X

1

.

4. The veri�er heks the one-way dependeny from the round summary

of N (the summary is ontained in S

2

) to SigfX

2

; S

2

g. We name the

already veri�ed data D. At the beginning of the hek D = G where

G is the downlink information that ame from N . If for R

0

we heked

from the beginning of the hain to the inside of the struture then

here we take the initial value from deep inside the hain strutures and

iterate until we reah the outmost struture level. At eah level we

have the urrent values of G, G

�

, H and S. The veri�er must use the

following sheme at eah level:

� hek that H proves that G

�

was used to ompute G

If any of these heks fail then the answer is negative. If the heks

sueed then the veri�er has found that the last G in the hain is

one-way dependent from the G from N . That means S

2

is one-way

dependent from the G in N 's hain.

5. The veri�er heks the notarization of Sig

C

2

fX

2

; S

2

g using the infor-

mation in R

0

2

. The sheme is exatly the same as for heking R

0

1

but

now we want to hek until we reah the top. If there are any problems

reahing the top-level notary, the answer is negative. If the notariza-

tion from top-level notary annot be veri�ed with the publily known

erti�ate of the top-level notary then the answer is negative.

This step is needed to hek that S

2

and X

2

are bound together. The

notarized signature on the pair them binds the pair together.

37

6. The last thing to be heked is the temporal dependeny in the time-

stamping hain of N . We have one upward link ending in the hain of

N and one downward link starting there. We want to know if the end

of the upward link is there before the beginning of the downward link.

For this we must use the inter-round linking sheme of N . This is the

only step in the veri�ation that may need network aess beause we

might need to retrieve some intermediate round summaries from the

notary N or from an arhive-keeper. If the hek fails then the answer

is negative.

7. If nothing failed then the answer is positive � X

2

is later than X

1

.

4.6 Signature Veri�ation Protool

The input of the signature veri�ation protool is a notarized doument. The

goal is to determine if the signature is valid. This is similar to the veri�ation

protool in setion 3.5.

Here C denotes again the �nal lient � the leaf of the tree.

C sends the doument X to V . It also sends Sig

C

fXg and R

0

as de�ned in

setion 4.4. R

0

is essentially a hain of signatures from all the notaries in the

path from the notary of C to the top of the hierarhy. S

0

is not important for

signature veri�ation sine the proof of signature validity omes only from

upward links.

Protool 4.5. Signature veri�ation protool 3

1. C

1

�! V : X; Sig

C

fXg; R

0

V heks the following riteria:

1. Sig

C

fXg(= Y) mathes X and Cert

C

2. Auth

C

(ontained in Cert

C

) permits this kind of signing

3. Sig

N

fY g mathes Y and Cert

N

4. Auth

N

(ontained in Cert

N

) permits this kind of signing

5. T shows that Sig

N

fY g was used to reate L

38

6. : : : (repeat last three lines for every level up to the root)

7. The erti�ate of the root notary mathes the published and well-known

one

If all these onditions are met then the signature is onsidered valid.

4.7 Certi�ate Revoation Protool

The erti�ate revoation protool is the same as in setion 3.6. C sends N a

signed revoation request or just alls N and tells its revoation password. N

deletes the erti�ate of C from its database of valid erti�ates and doesn't

respond to requests with erti�ate Cert

C

any more.

Protool 4.6. Certi�ate revoation protool 3

1. C

1

�! N : REVOKE Cert

C

; Sig

C

fREVOKE Cert

C

g

4.8 Addition and Deletion of Notaries

Addition of notaries is still simple as in the ase of aumulated notarization

� the protool was desribed in setion 4.2. To keep the tree e�ient, new

notaries should be added in a way that keeps the tree mostly in balane. A

entral advisor may help in hoosing the parent notary for the new node.

The simple aumulated notary system allowed deleting the notaries in a

lean way. Here the situation is not so brilliant � the time-stamping hains

keep us from just deleting the notary and its data. The summaries of the

rounds must be saved for later retrieval beause the intermediate values might

be needed when omparing two distant elements in the hain.

So in addition to revoking its erti�ate the leaving notary must give all its

round summaries to some other authority that keeps the summaries available.

This may be another notary but sine the arhival is not a key part of the

proposed notary servie, some other party might be the arhive-keeper. Even

more, the notaries might give all their summaries to the arhive-keeper at

one after the reation. In this ase the arhive-keepers are the only parties

whih serve the summaries and in suh ase the notaries may leave easily

again.

39

The arhive-keepers (arhiving authorities) must be trusted to keep all the

information available. There's no need to trust them more beause they an't

forge the data they serve sine the linking information binds the data items

together with a seure linking sheme.

4.9 Di�erenes Between the Notaries

All the notaries may use di�erent group hash funtions and linking shemes

for their internal time-stamping hains. For the lients to be able to verify

the omputations and time-stamping links, the notaries must put some iden-

ti�ation of the algorithms used into the data that is omputed using the

algorithm. It means that the item Z in notarization protool must arry the

hash funtion identi�er that was used to link the bits from the doument

into the hain; the item T must inlude the group hash funtion identi�er

that is used inside the rounds; L must inlude the identi�er about the link-

ing sheme that onnets the rounds together; the item H must inlude the

group hash identi�er that it is proof for. We do not need to inlude the

linking sheme identi�er in G sine this is the same as for L as far as the

notary doesn't hange the inter-round linking sheme. This is a reasonable

assumption beause hanging the inter-round linking sheme would be very

di�ult and it's easier to just retire, ask a new erti�ate and use the new

linking sheme in the future.

If di�erent linking shemes and group hashes are used then the veri�ation

proedure must hek whether it understands the shemes and whether it

trusts the shemes. The users must understand that a veri�er with more

restritive seurity poliy may not aept proofs that some notaries produe.

4.10 The Top of the Hierarhy

The proposed system doesn't solve the problems with the top of the hierarhy.

All the partiipants must unonditionally trust the top of the hierarhy; it is

assumed that the publi key of the top-level notary has been distributed to

every partiipant.

Seure multi-party omputations and threshold shemes [Rab98℄ an be used

at the top-level notary to redue the seurity risks oming from the high

trust level. With these methods we an ahieve that no one knows the whole

seret key of the top-level notary and for the seurity of the root notary to

40

be ompromised many key-piee holders must ollaborate. If the number of

parties in the multi-party omputation is high enough and the threshold is

not unreasonably low, pretty high level of seurity an be ahieved.

The key distribution may use many broadast hannels (Internet, newspapers

et) to distribute the key to everybody. The people an get the key from

several soures and trust it only when the majority of the soures agree on

the key.

4.11 Cross-notarization

The proposed system does not have ross-notarization methods built into

it. This doesn't mean that ross-notarization between several hierarhies is

impossible.

First, the lassial "brute-fore" method applies � the lient notarizes its

doument at several notaries that belong to di�erent hierarhies (like a bank-

ing hierarhy and some national hierarhies aording to the possible usage

jurisditions of the doument). The internals of the protool are not reahed

with this method. This method is not pratial enough sine the user must

know before the signing whih hierarhies may be needed in the future.

A slightly better ross-notarization method an be used. If we build our own

notary that automatially requests notarization from several notary hierar-

hies then we get essentially the same that we have with the previous method

� it's just slightly easier for the �nal lient to use it. But this method gives a

hint of building the hierarhy below this notary. The hierarhy should allow

several heads and several tails at eah level. Now if we modify the protools

to use more than one head and tail then we an make the rossing points

pratially everywhere. This means that with some little modi�ations the

protool gives us also a mehanism for some ross-notarization.

4.12 Disadvantages of Integrated Notarization

In summary, some disadvantages remain and some new disadvantages are

introdued with the proposed notarization protool. Here are some disad-

vantages that may be problemati in some situations:

� The protool assumes on-line operations. This is inevitable if we want

41

temporal authentiation of data.

� The protools still use large amounts of data. This is di�erent from

the CRL transport problem � most of the network bandwidth is used

during the signing proess, the veri�ation usually takes very little

bandwidth (if any). But the protools that are provided here may be

optimized further. For example, hash values of some data items may

be used in some plaes. I have not made these optimizations to make

the sheme more understandable.

� The suitable round lengths for time-stamping and notarization may be

too di�erent and it may be hard to �nd a optimal round length for the

notaries. Notarization needs short rounds beause long rounds make

the response time very long. On the ontrary, time-stamping needs long

rounds beause the short rounds make the summaries useless in time-

stamping hains sine near-linear amounts of data should be searhed

for veri�ation in some ases. Good inter-round linking shemes may

help here ([BLS99℄, [Lip99℄).

42

Referenes

[BdM94℄ Josh Benaloh, Mihael de Mare, One-Way Aumulators: A De-

entralized Alternative to Digital Signatures, In Advanes in Cryp-

tology � Eurorypt'93, LNCS 765, pp. 274-285, Springer-Verlag,

Berlin, 1994.

[BCF+94℄ Shimshon Berkovits, Santosh Chokhani, Judith A. Furlong, Jisoo

A. Geiter, Jonathan C. Guild, Publi Key Infrastruture Study:

Final Report, Produed by the MITRE Corporation for NIST,

April 1994, http://sr.nist.gov/pki/douments/mitre.ps

[Bul99℄ Ahto Buldas, Certi�ate revoation, revisited, manusript, May 5,

1999

[BL98℄ Ahto Buldas, Peeter Laud, New linking shemes for digital time-

stamping, in The 1st International Conferene on Information Se-

urity and Cryptology, pages 3�14, Deember 1998

[BLLV98℄ Ahto Buldas, Peeter Laud, Helger Lipmaa, Jan Villemson, Time-

Stamping with Binary Linking Shemes, In Advanes in Cryptol-

ogy � CRYPTO'98, LNCS 1462, pp. 486-501, Springer-Verlag,

1998.

[BLS99℄ Ahto Buldas, Helger Lipmaa, Berry Shoenmakers, Optimally Ef-

�ient Aountable Time-Stamping, Submitted, May 1999

[DH76℄ Whit�eld Di�e, Martin E. Hellman, New diretions in ryptogra-

phy, in IEEE Trans. Inform. Theory, IT-22, pp. 644�654, Novem-

ber 1976

[HS90℄ Stuart Haber, W. Sott Stornetta, How to time-stamp a digital

doument, In Advanes in Cryptology�CRYPTO '90, pp. 437�

455, Springer-Verlag, 1991

[HS91℄ Stuart Haber, Wake�eld Sott Stornetta, How to Time-Stamp a

Digital Doument, Journal of Cryptology, vol. 3 (2), pp 99�111,

Springer-Verlag, 1991

[HFPD99℄ R. Housley, W. Ford, W. Polk, D. Solo, Internet X.509 Publi Key

Infrastruture: Certi�ate and CRL Pro�le, Internet RFC 2459,

January 1999, ftp://ftp.isi.edu/in-notes/rf2459.txt

43

[Jus98a℄ Mihael K. Just, Some Timestamping Protool Failures, in Pro-

eedings of the Internet Soiety Symposium on Network and Dis-

tributed Seurity (NDSS '98).

[Jus98b℄ Mihael K. Just, On the Temporal Authentiation of Digital Data,

Ph.D. Thesis, Shool of Computer Siene, Carleton University,

Deember 1998

[Lip99℄ Helger Lipmaa, Seure and E�ient Time-Stamping Systems,

Ph.D. Thesis, Tartu 1999

[Mi96℄ Silvio Miali, E�ient Certi�ate Revoation, Laboratory of

Computer Siene, Massahusetts Institute of Tehnology, 1996,

available from ftp://ftp-pubs.ls.mit.edu/pub/ls-pubs/

tm.outbox/MIT-LCS-TM-542b.ps.gz

[Rab98℄ Tal Rabin, A Simpli�ed Approah to Threshold and Proative

RSA, Advanes in Cryptology: CRYPTO'98, LNCS-1294, 440-

454

[RSA78℄ Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman, A

method for obtaining digital signatures and publi-key ryptosys-

tems, Communiations of the ACM, 21(2), pp. 120�126, 1978.

[Vil99℄ Jan Villemson, Certi�ate Revoation Paradigms, manusript,

April 15, 1999

44

Ajatembelduse ja notariseerimise

ühendamisest

Meelis Roos

Kokkuvõte

Käesolev töö uurib viimase aja probleeme ajatembelduse ning avaliku võt-

me infrastruktuuride alal. Alustuseks antakse lühike ülevaade ajatembelduse

tehnoloogiate arengust, et näidata uurimuste üldist suunda. Selleks tutvusta-

takse krüptograa�liselt seostamata ajatempleid, lineaarselt lingitud ajatemp-

leid ning jõutakse binaarsete ja üldistatud linkimisskeemideni. Viimaste pu-

hul on tegemist käesoleva aasta jooksvate tulemustega. Autor identi�tseerib

ajatemplisüsteemide juures skaleeruvusprobleemi � teadaolevad krüptograa-

�liselt turvalised süsteemid ei skaleeru ühest serverist ülespoole.

Avaliku võtme infrastruktuuridest (PKI) tegeldakse de fato standardiks ole-

va X.509-ga ja antakse ülevaade selle protokollistiku ühest problemaatilisest

tahust � serti�kaatide tühistusnimekirjadest. Siin komistame X.509 algse

variandi o�-line ülesehitusest päritud probleemide otsa: serti�kaatide tühis-

tusinformatsiooni antakse välja pikkade nimekirjadena perioodiliselt mingi

aja tagant. Kuna nimekirjad on pikad, siis tekivad probleemid võrguliiklu-

se mahuga jooksva informatsiooni saamiseks (iga kord tuleb värskeima info

saamiseks terve nimekiri omale ära kopeerida ja teha selles nimekirjas li-

neaarne läbivaatus). Tühistusnimekirjade perioodilise iseloomu tõttu ei ole

aegumisinfo perioodi pikkusest täpsem ajaline autentimine üldse võimalik.

PKI probleemi lahenduseks pakutakse töös (järjekordselt) radikaalset abinõu

� loobuda üldse tühistusnimekirjadest ja ehitada kogu süsteem teisiti üles,

arvestades seejuures tänapäevaseid nõudeid ja võimalusi. Töös pakutakse

lahenduseks notariseerimist � iga juriidilist jõudu omav allkiri tuleb lasta

notaril kontrollida ja kinnitada ning edaspidi piisab allkirja kontrolliks notari

kinnitusest.

Esimese lahendusvariandina tuuakse ära primitiivne notariseerimisprotokoll,

mis ei lahenda probleemi, kuid annab ideid edasiseks. Selle protokolli eda-

siarendusena pakutakse välja uus notariseerimise protokoll (akumuleeritud

notariseerimisprotokoll), mis lubab notaritest skaleeruva ja usaldatava hie-

rarhia moodustada. Usaldatavus garanteeritakse krüptograa�liste meetodi-

45

tega, nii et ka notarid ise ei saa midagi võltsida ning nende töö on täielikult

kontrollitav.

Pakutud süsteem lahendab probleemi PKI-ga ning tulemus sarnaneb oma

ülesehituselt ajatemplite linkimiseks kasutatavate skeemidega. Selgub, et no-

tariseermise hierarhia realiseerib automaatselt poole ajatemplisüsteemist. Au-

tor ehitab pakutud süsteemile juurde ka teise poole sellest süsteemist. Tu-

lemusena saadud protokoll (ajatembeldusega notariseerimisprotokoll) tagab

lisaks allkirjade õigsuse näitamisele ka allkirjastatavate dokumentide omava-

helise ajalise autentimise. Kuna süsteem on hierarhiline ja koosneb paljudest

väiksematest ajatemplisüsteemidest, siis on sellega leitud üks võimalik lahen-

dus ka ajatemplisüsteemide skaleeruvuse probleemile.

Töö on jätkuks ajatemplialastele uuringutele Küberneetika ASis, kus ajatem-

beldust on uuritud paar viimast aastat. Uuringute käigus on valminud aja-

templi kontseptsioon, rida artikleid ([BLLV98℄, [BL98℄, [BLS99℄ ja [Lip99℄)

ja ajatempliserveri spetsi�katsioon. Käesoleva töö autor on kirjutanud selle

järgi ka ajatemplite pilootserveri. Praegune uuringute suund on ajatemplite

rakendamine PKI-s. Aidatakse kaasa ka Eesti digitaaldokumentide seaduse

loomisel.

46

