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Abstra
t

In this thesis, we examine the 
urrent state of the most widely used publi


key infrastru
ture model and se
ure time-stamping systems. We begin by

giving an overview of the evolution of the time-stamping te
hniques to show

the dire
tion of resear
h.

We identify some problems in PKI and time-stamping that need solutions

in pra
ti
e. The problems are not very bad today but are be
oming worse

as time goes on and people start using these servi
es more and more. Both

problems are essentially s
alability problems.

We show a simple and known solution attempt to the problem with PKI. The

solution doesn't work either but gives a hint for building a working solution.

Using the hints we present a working solution for the PKI problem. The

new proto
ol eliminates 
erti�
ate revo
ation lists and redu
es the number

of time stamps required sin
e no time stamps are needed any more for the

PKI itself.

We also point the similarities between the new system and some existing

time-stamping systems. We analyze the similarities and develop another

new proto
ol that integrates the �rst new proto
ol with time-stamping and

solves the s
alability problem for time-stamping. The integration allows to

build the temporal authenti
ation of signed data tightly into the PKI.
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Introdu
tion

Time Stamps � What and Why?

The use of digital do
uments is in
reasing rapidly. Ele
troni
 mail was the

pioneer in this area � it has been used already for de
ades. Other usage

areas of digital do
uments have be
ome popular too in re
ent years. Word

pro
essors are not used only for printing but also to produ
e ele
troni
 do
u-

ments for sending to other people. Ele
troni
 
ommer
e and banking via the

Internet are be
oming quite 
ommon. Ele
troni
 do
uments are the future.

There exist elementary se
urity measures for digital do
uments � signing

and en
ryption. These measures are quite 
ommon and usable nowadays.

There also exist needed infrastru
tures and proto
ols of managing and dis-

tributing the keys, 
erti�
ates et
.

This is good but this is not su�
ient. Most of the me
hanisms work only for

short-term do
uments. As an example, the 
ryptographi
 signature on a e-

mail is important only at the moment of re
eiving the mail. The widely used


ryptographi
 primitives stop working after the keys have been 
ompromised.

This works for do
uments with short lifetime but not for do
uments with long

lifetime. The do
uments with long lifetime need additional measures to be

taken for in
reasing their validity period.

The idea is to write down the time where the key 
erti�
ates be
ome valid

and be
ome invalid and 
ompare the times to the time of signing of the

do
uments in question. If the time of the signature lies between the start

and end times of the validity period of the 
orresponding 
erti�
ate then the

signature is valid. This 
an be veri�ed anytime in the future if the times are

saved with do
ument signatures.

The times on signatures need to be se
ure or they would be useless. The

main subje
t of this paper is the theory of se
ure time stamps on do
uments.

What Is Missing

Neither the theory nor the pra
ti
e of time-stamping are ready yet. There

are several areas in the theory and between the theory and the pra
ti
e that

need further resear
h. The author has identi�ed two problems that need to
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be solved but la
k a 
lear solution yet � s
alability of the time-stamping

servi
es and integration with Publi
 Key Infrastru
tures.

S
alability

The 
urrent time-stamping systems and proposed proto
ols work well on one

server but have weak or no methods for using a network of many servers.

The only time-stamping systems so far that s
ale well in the number of

servers must be un
onditionally trusted and are "trivial" from the 
rypto-

graphi
 viewpoint. Most of the non-trivial systems have only one 
entral

time-stamping server and have no me
hanism for s
aling to multiple servers.

But this kind of s
alability is surely needed when the time-stamping be
omes

more widespread.

Time Stamps as a Part of Publi
 Key Infrastru
ture

The 
urrent time-stamping systems are just what the name says � time-

stamping systems. Time-stamping is 
onsidered a stand-alone servi
e that

is not integrated with real usage areas like digital signatures et
. In real

life the time stamps will probably be used mostly as a part of Publi
 Key

Infrastru
ture (PKI). The main need for the temporal authenti
ation will be

between the signatures and the validity periods of 
orresponding 
erti�
ates.

There are other uses too that are not 
onne
ted to the PKI � like time-

stamping of pie
es of art to show that the author had it earlier than some

pirate. But 
urrent predi
tions show that these other uses of time stamps

will be a lot less 
ommon than the use in PKI.

Work In progress

The paper is based on work done in Küberneerika AS where the author works.

our resear
h group has studied time-stamping in last two years. This work

has resulted in several papers about time-stamping: the 
on
ept of time-

stamping for national use, [BLLV98℄ about binary linking s
hemes, [BL98℄

about new and more e�
ient linking s
hemes, [BLS99℄ about even more

e�
ient linking s
hemes and [Lip99℄ about authenti
ation graphs � gener-

alizations of binary linking s
hemes. We have also produ
ed a spe
i�
ation

for time-stamping server that uses our linking s
hemes and the author has
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programmed a test version of the time-stamping server. The 
urrent work


on
entrates mainly on PKI and putting the time-stamping systems into use

in PKI. Our spe
ialists also take part as s
ienti�
 advisors from preparing

the digital signature laws of Estonia.

Outline of the Paper

This paper 
onsists of four 
hapters. Chapter 1 gives the ba
kground infor-

mation about the previous results in time-stamping and des
ribes the basi


ideas of existing time-stamping systems. Chapter 2 
ontains overview and

some 
riti
s about 
erti�
ate revo
ation lists in Publi
 Key Infrastru
ture.

The 
riti
s give the motivation for further resear
h. A well-known simple

notarization proto
ol is given that tries to solve the problem but fails. Chap-

ter 3 des
ribes a new proto
ol � a

umulated notarization proto
ol. This

proto
ol solves the given problem with PKI. Chapter 4 des
ribes another

new proto
ol � a

umulated notarization integrated with time-stamping.

This proto
ol serves as the s
alable notarization proto
ol but also provides

temporal authenti
ation for signed do
uments.
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1 Ba
kground

This 
hapter gives an overview of the results that are needed later. For a


omplete overview of the results in time-stamping as of fall 1998 see [Jus98b℄.

Subsequential work has been done mainly by the resear
hers of Küberneetika

AS, 
urrent results have been summarized in [Lip99℄.

One of the 
entral terms in this paper is time stamp.

De�nition 1.1. Loosely, a time stamp of a bit string is a token that binds

information about time with the bit string.

The main problem is obtaining the time stamps for digital do
uments in a

se
ure manner. The time-stamping proto
ols are used for this.

1.1 Trusted Third Party

The simplest time-stamping proto
ol uses a Trusted Third Party (TTP) that

knows the right time. The 
lient sends the message digest H(X) of its do
u-

ment X to the TTP. The TTP adds 
urrent time t and puts its signature on

the pair (H(X); t). It sends the time t and the signature Sig

TSS

f(H(X); t)g

ba
k to the 
lient. The 
lient adds re
eived values to the do
ument. So the

time is 
onne
ted to the do
ument and the 
orre
tness of the time is guaran-

teed by the signature. This works well if we trust the time-stamping server

(TSS) and its sour
e of time. We also have to assume that the key of the

TSS is never 
ompromised be
ause after the 
ompromise of TSS's se
ret key

all the time stamps are under question.

1.2 Linking of the Time Stamps

De�nition 1.2. A one-way fun
tion is a fun
tion that is easy to 
ompute

but intra
table to invert.

The next natural move is to link all the time stamps together using suppos-

edly one-way fun
tions. It is 
omputationally infeasible to insert do
uments

into this 
hain later. The TSS keeps a registry of all issued time stamps and

gives the time stamps out for veri�
ation. This idea was �rst published in

[HS90℄ and [HS91℄. The proto
ol:

8



� The 
lient C sends a bit string Y to the TSS

� TSS knows the sequen
e number of the time stamp, be it n. The TSS


omputes H

n

= h(n; ID

C

; Y ) where h is a hash fun
tion and ID

C

is

the identity of C.

� TSS 
omputes L

n

= H(H

n

; L

n�1

). This is the linking information. The

hash fun
tion H may di�er from h.

� TSS sends fn; ID

C

; L

n�1

; Sig

TSS

fL

n

gg to C. This is the time stamp.

The L

n

's are the linking information that holds the proof. The one-way

dependent 
hain of L

n

's from one do
ument to another proves that the �rst

do
ument was time-stamped earlier than the se
ond. During the veri�
ation,

the intermediate L

i

's 
an be requested from the TSS.

1.3 Binary Linking S
hemes

Linear linking s
hemes have two obvious drawba
ks. The �rst one is the

e�
ien
y � to verify the 
hain between two do
uments, the veri�er must do

the same amount of work that the TSS did between the two time stamps.

This may be years' worth of work and is obviously too mu
h.

The se
ond drawba
k is the amount of information that the TSS must store

for later retrieval by the veri�ers. All L

n

's must be saved in the ar
hive.

Identi�
ation of these faults lead resear
hers to the development of exponen-

tially more e�
ient binary linking s
hemes [BLLV98℄. The idea is to link the

time stamps not only to the element dire
tly pre
eding it but also to some

other element further in the past. The other link 
an be used to traverse the


hain more e�
iently by taking longer jumps. This redu
es the amount of

time needed to verify the temporal order of do
uments.

De�nition 1.3. A linking s
heme is an algorithm that tells whi
h existing

elements in the 
hain should a new element be linked to.

Another idea is to group the requests into rounds and traverse only between

the summaries of rounds. By doing this we 
an redu
e also the amount

needed by the TSS to keep the data items required for veri�
ation. Su
h

linking-s
hemes are 
alled a

umulated linking s
hemes.
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It has been shown in [BLLV98℄ that there exist linking s
hemes that provide

logarithmi
 length veri�
ation paths in the 
hain, enable the use of rounds

and guarantee possibility of veri�
ation the temporal order between any two

time stamps issued in one round and the veri�er does not need any additional

information to perform the 
omparison. The linking s
heme is shown on

�gure 1.
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Figure 1: The linking s
heme of BLLV98

The e�
ien
y of intra-round linking s
hemes has been improved in [BLS99℄

(�gure 2).
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Figure 2: The e�
ient intra-round linking s
heme of BLS99

Furthermore, it appears that the inter-round and intra-round linking s
hemes

do not have to be the same ([Lip99℄).
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1.4 Relative Temporal Authenti
ation

When talking about temporal authenti
ation of data, we 
an distinguish be-

tween absolute and relative temporal authenti
ation. In the 
ase of absolute

temporal authenti
ation the time stamps 
ontain information that is some

representation of the time value as known in non-digital world. When 
om-

paring two absolute timestamps we 
ompare the time values in them.

In the 
ase of relative temporal authenti
ation the time stamps 
ontain infor-

mation that 
an only be used to 
he
k whether one time stamps was made

earlier than another. There's no analogue for the real absolute time.

While both s
hemes 
an be used to 
ompare the time stamps there are deep

di�eren
es between these two methods. It has been shown in [Jus98a℄ that

absolute time 
an not be used without trusted third parties serving the abso-

lute time. This means that we must trust both the trusted third party itself

and its time sour
e. For relative temporal authenti
ation no trusted third

party is required be
ause the time stamps 
an be linked together with se
ure

linking s
hemes that prevent forgery, as shown in [BLLV98℄.

However there are problems with relative temporal authenti
ation too. While

all digital do
uments 
an be made veri�able, the 
onne
tion between the

digital do
uments and the real absolute time is weak. With absolute time

stamps we 
an asso
iate the time-stamped do
uments with events in the real

world. With relative time stamps this is not possible without additional

work.

The most natural way to do it is to periodi
ally time stamp a non
e (a bit

string not known earlier � 
an be generated randomly). If I hourly time

stamp a non
e and keep tra
k of these non
es then I 
an use these time

stamps to determine the time of some other digital time stamps with the

pre
ision of 1 hour. And that's all � anybody else has no reason to trust

my hourly time stamps. If they would trust my hourly marks then it's like I

would be the trusted third party for them.

So every party that wants to know the approximate real-world time for digital

time-stamped do
uments must use its own periodi
al time stamps. To solve

these problems in 
ourt, the 
ourt system must use its own periodi
al time

marks.
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1.5 Publi
 Key Infrastru
ture

In 1976 W. Di�e and M. Hellman published their work about publi
 key


ryptosystems [DH76℄. With the help of the RSA 
ryptosystem [RSA78℄ this

ideology has be
ame dominant in 
ryptography. Users have their publi
 and

private keys. The keep the private key se
ret and publish the publi
 key with

help of publi
 key 
erti�
ates. The 
erti�
ates 
onne
t the persons and their

publi
 keys. A publi
 key infrastru
ture is the infrastru
ture that deals with

publi
 key 
erti�
ates and all problems asso
iated with these 
erti�
ates

(like 
erti�
ation, 
erti�
ate expiration, 
erti�
ate revo
ation, distributing

the 
erti�
ate validity info et
). There are several paradigms of how the

infrastru
ture should operate and whi
h 
ryptographi
 systems and proto
ols

to use. The X.509 standard ([HFPD99℄) is the de fa
to standard for PKI

in today's Internet. It has been developed originally for o�-line operations

and then extended to operate on-line too. The 
urrent version of X.509 is

3. Despite being already in the third in
arnation it still has problems with

s
alability and delays in the distribution of 
erti�
ate information.
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2 Simple Notarization

2.1 Certi�
ate Revo
ation Lists

The X.509 family of standards uses a hierar
hy of Certi�
ate Authorities

(CA's) to issue and revoke the 
erti�
ates. When a 
erti�
ate is issued, it

is expe
ted to be in use for its entire validity period. However, various 
ir-


umstan
es may 
ause a 
erti�
ate to be
ome invalid prior to the expiration

of the validity period. Su
h 
ir
umstan
es in
lude 
hange of name, 
hange

of asso
iation between the subje
t and the CA (e.g., an employee terminates

employment with an organization), and 
ompromise or suspe
ted 
ompro-

mise of the 
orresponding private key. Under su
h 
ir
umstan
es, the CA

needs to revoke the 
erti�
ate.

The 
urrent PKI standards [HFPD99℄ use Certi�
ate Revo
ation Lists (CRLs)

to distribute the information about revoked 
erti�
ates. Ea
h CA periodi-


ally issues a signed list of revoked 
erti�
ates that have not yet expired. The

list is valid for some �xed amount of time lasting at least to the next periodi


issue of CRLs. The CRL 
onsists of time-stamped 
erti�
ate numbers. In

the 
urrent implementations the CRL 
ontents use absolute time stamps and

do not use a time-stamping servi
es for obtaining these stamps. When we

want to get the reliable temporal authenti
ation for the revo
ation info, we

must use 
ryptographi
ally se
ure time-stamping servi
es.

When a 
erti�
ation-using system wants to verify a signed and time-stamped

do
ument, it must verify all these 
onditions:

� The signature is 
orre
t with respe
t to the 
erti�
ate

� The 
erti�
ate is not in a re
ent-enough CRL. If the 
erti�
ate is in

a CRL, the time stamps of the signed message and the 
orresponding

CRL re
ord are veri�ed. The time stamp of the message must be earlier

than the time stamp of the revo
ation re
ord.

� The signature and the 
erti�
ate of the CRL are 
orre
t and the 
er-

ti�
ate of the CA has not expired with respe
t to a higher level CA.

The same method is used re
ursively.

The CRLs are issued periodi
ally and ea
h verifying operation must use a

re
ent-enough CRL. The se
urity poli
y spe
i�es how re
ent the CRLs must

13



be. To get a good-enough proof of the 
erti�
ate not being revoked, the entire


urrent CRL must be transferred to the 
lient. The 
lient must then do a

linear sear
h in the CRL. This takes O(n) time where n grows very large.

In addition a delay is introdu
ed be
ause of the periodi
 nature of CRLs �

we 
annot use the latest information about the revo
ations but must use the

latest published list.

Closer analysis of the transmission 
osts of the CRLs ([BCF+94℄ and [Mi
96℄)

shows that the CRLs are very 
ostly. For instan
e, if for US Federal PKI

there are

� 3 000 000 users,

� ea
h CA serves 30000 users,

� 10% of the 
erti�
ates are revoked,

� CRLs are sent out biweekly,

� the veri�ers of the signatures request 
erti�
ate information for 5 sig-

natures per day, and

� the 
ommuni
ation 
osts are 2 
ents per kilobyte,

then the total PKI yearly 
osts are $732 Millions, of whi
h $563 Millions are

due to CRL transmissions. The share of CRLs would be even greater when

more 
erti�
ates are veri�ed per day ([Vil99℄).

This doesn't 
ount the resour
es needed to time stamp every CRL re
ord

if we want exa
t and se
ure temporal authenti
ation. In this situation the

main use of time stamps is to verify the temporal order of signing and 
er-

ti�
ate revo
ations. We want to eliminate the need of CRLs be
ause of their

ine�
ien
y and to redu
e the additional 
osts required for time-stamping.

2.2 The Idea Behind Notarization

A notary is an authority that 
erti�es 
lients' signatures. Traditional notaries

verify and sign the signatures of 
lients. Ea
h notary has its own 
erti�
ate

from a CA. The main idea of simple notarization is simple: both the duties

of the CA and the traditional notary are given to one prin
ipal. We 
all this

prin
ipal notary here and hereinafter. When the 
lient (say, A) wants to sign

14



a message M , it signs M and submits the signature Sig

A

fMg to the notary.

The notary signs the signature only if it �nds the 
erti�
ate of A to be valid.

Sin
e the notary and the CA are the same, the notary knows whether the


erti�
ate is valid at the moment of the signing. The veri�er only needs to


he
k whether the signature mat
hes the do
ument and whether the notary

has signed the signature. The signature of the notary is su�
ient to prove

that to the best of the notary's (CA's) knowledge the 
erti�
ate was valid at

the time of the signing.

If the notary signs some signature made with a non-valid 
erti�
ate then

nothing bad happens. The signature of the notary makes the notary respon-

sible for any damages when the user has revoked the 
erti�
ate. The user

may use several notaries simultaneously to prote
t itself from bad notaries

that refuse to revoke the 
erti�
ates.

2.3 Prin
ipals and Notation

The prin
ipals of the proto
ols in this se
tion and hereinafter:

� C � the 
lient of the notary (the signer)

� V � the veri�er (the one who want to verify the signature of C)

� N � the notary (the notary+CA of C)

� N

�

� the parent notary of N where appli
able

By Sig

A

fBg we denote the signature that the prin
ipal A has given on the

bit string B. The signature 
ontains the message digest of B en
rypted with

the private key of A.

By PK

A

we denote the publi
 key of the prin
ipal A.

By Auth

A

we denote the 
redentials of the prin
ipal A. The 
redentials are

meant to show the legal uses of the key (like signing 
ontra
ts with level of

responsibilities not above some �xed value).

By ID

A

we denote the personal data of prin
ipal A that is needed to identify

the prin
ipal outside the PKI.

By Cert

A

we denote the 
erti�
ate of prin
ipal A. It 
onsists of PK

A

, Auth

A

and possibly also ID

A

.
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In the proto
ols, the notation A

n

�! B : X denotes proto
ol step number n,

during whi
h the prin
ipal A sends the data X to the prin
ipal B.

The asterisks on some of the variables mean that these variables 
ome form

the parent notary.

2.4 Certi�
ation Proto
ol

The simple proto
ols are taken from [Bul99℄. The 
lient C generates a pair

of a private key and a publi
 key. It sends the 
erti�
ate request to N . The


erti�
ate request 
onsist of its publi
 key PK

C

, identity ID

C

and 
redentials

Auth

C

.

The notary generates the 
erti�
ate Cert

C

= fPK

C

; ID

C

;Auth

C

g and adds

the 
erti�
ate to its database of valid 
erti�
ates. The notary doesn't need

to send the signed 
erti�
ate ba
k to the 
lient be
ause there's no need for

su
h 
erti�
ate � ea
h signature 
ontains a notary-signed 
erti�
ate anyway.

So the notary just a
knowledges the 
erti�
ation request.

The notary and the 
lient should also agree on a revo
ation password of the

given 
erti�
ate (one-time password is a suitable example). The password

may be ne
essary to revoke the 
erti�
ate later.

We don't spe
ify anything about the database of 
urrently valid 
erti�
ates

that the notary maintains. The CRLs were linear lists; we 
an avoid the

linear sear
h in this database if it is appropriately organized. The database

may use some faster methods to 
he
k whether a given 
erti�
ate is valid or

not (trees for O(log n) or hashes for O(1) for example).

Proto
ol 2.1. Certi�
ation proto
ol 1

1. C

1

�! N : PK

C

; ID

C

;Auth

C

2. C

2

 � N : ACK

2.5 Notarization Proto
ol

The 
lient C signs a do
ument X and sends the signature Sig

C

fXg and the


erti�
ate Cert

C

to the notary. The notary 
he
ks whether the 
erti�
ate is
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in its database of valid 
erti�
ates. If it is then the notary signs the signature

of C and the 
erti�
ate with its own private key and sends it ba
k to C.

Proto
ol 2.2. Notarization proto
ol 1

1. C

1

�! N : Sig

C

fXg

2. C

2

 � N : Sig

N

fSig

C

fXg;Cert

C

g

The 
erti�
ate of C is needed in the response sin
e it is the only thing that

binds the signature to the 
lient C. The answer from the notary tells that the


lient C has produ
ed a bit string that we 
all Sig

C

fXg while the 
erti�
ate

of C was valid.

2.6 Veri�
ation Proto
ol

C sends the do
ument X along with its own signature, its own 
erti�
ate and

the notary-signed signature to V . V veri�es that the signature of C mat
hes

the do
ument and the 
erti�
ate and that the signature and the 
erti�
ate

are signed by N . V also 
he
ks whether Auth

C

permits this kind of do
ument

to be signed with this 
erti�
ate. V 
an also learn the identity of C from

the 
erti�
ate. V doesn't need to 
he
k any other sour
es of information, all

ne
essary values must have been re
eived with the do
ument.

Proto
ol 2.3. Signature veri�
ation proto
ol 1

1. C

1

�! V : X; Sig

C

fXg;Cert

C

; Sig

N

fSig

C

fXg;Cert

C

g

2.7 Certi�
ate Revo
ation Proto
ol

The 
lient C signs and sends the revo
ation request Sig

C

fREVOKE Cert

C

g

to the notary. Or the 
lient C 
alls the notary N and tells its 
erti�
ate

revo
ation password. The notary N removes the 
erti�
ate of C from the

database of valid 
erti�
ates and no longer signs signatures that use this


erti�
ate. In fa
t the notary may even 
ompletely forget about the 
erti�
ate

if no other rules prohibit it � the 
erti�
ate is not needed any more by the

proto
ol.
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Proto
ol 2.4. Certi�
ate revo
ation proto
ol 1

1. C

1

�! N : Sig

C

fREVOKE Cert

C

g

2.8 Disadvantages of Simple Notarization

The proto
ol assumes that the publi
 key of N has been distributed to all the

parti
ipants and that the key is valid through the whole period of the use of

the proto
ols. This does not hold in real life. Another problem is s
alability

� one notary 
an serve only a limited number of requests in a time period.

This may not be su�
ient in real world.

We 
ould build a simple hierar
hy of the notaries � we require the signature

of a higher level notary on the signature of N . The signature of do
ument

X would be
ome

X; Sig

C

fXg; Sig

N

fSig

C

fXg;Cert

C

g,

Sig

N

�

fSig

N

fSig

C

fXg;Cert

C

g;Cert

N

g:

We 
an extend this method to 
reate a tree of notaries. This method would

solve the problem of distributing most notaries' keys automati
ally but it

doesn't s
ale either. The upper level notaries must do the same amount of

work as all their 
lients together. When ea
h notary in the hierar
hy has

about the same number of 
lients (the other notaries inside the hierar
hy

and the real 
lients as the leaves of the tree), the load of notaries rises expo-

nentially from bottom to top. Something must be done to redu
e the load

on higher level notaries.
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3 A

umulated Notarization

We now know that we probably want a hierar
hi
al stru
ture of the notaries.

We 
onstru
ted a simple tree in se
tion 2 but the tree was not s
alable

enough. In this se
tion we want to modify the simple notarization proto
ol to

a s
alable proto
ol. The idea of this proto
ol 
omes with slight optimizations

from [Bul99℄. The optimizations involve freeing the notary from the duty of

verifying the a
tual signatures, in our system the notary just 
erti�es whi
h

publi
 key 
erti�
ate was used. The a
tual veri�
ation is done by the veri�er.

3.1 The Idea of A

umulated Notarization

The main idea of a

umulated notarization is to make every notary do

roughly the same amount of work. To redu
e the amount of work needed by

its parent notary, a 
lient notary doesn't send ea
h of its own signatures to

the parent notary to sign. Instead, it groups the signatures into rounds. The

length of the round is limited either by time, by the number of signatures in

the round or by any other reasonable measure. At the end of ea
h non-empty

round it sends a summary of the round to the parent notary to sign. When it

re
eives the answer it sends the summary of the round and the answer from

parent notary to ea
h of the 
lients. In addition, ea
h 
lient is sent a proof

that its data was used to 
reate the summary.

When every notary behaves this way and the tree of notaries is almost in

balan
e then all the notaries do roughly the same amount of work. Suppose

they have a round length of 1 se
ond. The notaries re
eive requests, sign them

and add them to the summary in some way. At the end of the round they

submit the summary to the parent notary. When they re
eive the answer,

they send the answer with other data ba
k to the 
lient. They may work

on the next round while waiting for the answer of the previous round so the

work does not stop.

The top of the hierar
hy has no parent so it must behave a little di�erently.

No rounds are ne
essary there sin
e all the data is internal to the notary. So

the topmost notary may just answer ea
h request as soon as it is re
eived.

The delay between the request and the answer from the 
lient viewpoint

raises from top to down. Ea
h level in the hierar
hy adds an additional delay

from 0 to the round length of this notary. If there is a round length of 1

se
ond for every notary, the average delay at ea
h level is 0.5 s and the total
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delay is

k�1

2

se
onds where k is the height of the hierar
hy. This is not too

bad sin
e k = O(log n) where n is the number of notaries in the hierar
hy.

3.2 Group Hashes

De�nition 3.1. A hash fun
tion is a 
omputationally e�
ient fun
tion map-

ping binary strings of arbitrary length to binary strings of some �xed length,


alled the hash values.

The group hashes are a generalization of hash fun
tions of one argument.

Normal hash fun
tions take one arbitrary-length bit string as an argument

and produ
e a �xed-length bit string as a result. H is the family of hash

fun
tions that generate n-bit output:

H = fh : f0; 1g

�

�! f0; 1g

n

g

We use a subset of all possible hash fun
tions � the 
ryptographi
 hash

fun
tions. The most important property of 
ryptographi
 hash fun
tions is

that it's 
omputationally infeasible to �nd 
ollisions, i.e. to �nd an A for an

X su
h that h(A) = X or to �nd A and B su
h that h(A) = h(B). From

the moment somebody invents a way to �nd 
ollisions, the hash fun
tions is

not se
ure any more and is 
onsidered broken. Until the hash fun
tion has

not been broken, the output value is the eviden
e that the input value was

used to 
reate the output value.

Group hash extends the hash fun
tions to multiple arguments (a group of

arguments � hen
e the name). The family of group hash fun
tions may be

de�ned as

G = fg : (f0; 1g

�

)

�

�! f0; 1g

n

g

(the fun
tions take some arbitrary length bit strings as input and produ
e a

n-bit result). Sin
e we use the group hash values for eviden
e, we also require

the group hash fun
tions to be 
ollision-free.

But this alone is not su�
ient. The other property of normal hash fun
tions

� the output is the eviden
e that an input was used some way to 
reate the

output � is not automati
. The group hash fun
tion must be built so that

for ea
h input we 
an 
ompute a proof that shows that the input was used

to 
reate the output.

De�nition 3.2. A group hash fun
tion is a hash fun
tion that takes multiple

arguments and provides a proof for ea
h argument that the argument was

used to 
ompute the result.
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The 
lassi
al example of group hash fun
tions is the algorithm of Benaloh

and de Mare [BdM94℄. It relies on the fa
t that RSA is hard to break. The

group hash fun
tion g is de�ned as follows:

g(y

1

; : : : ; y

n

) = x

y

1

� ::: �y

n

0

mod m

and the proof that y

i

was used is

p(i; y

1

; : : : ; y

n

) = x

y

1

� ::: �y

i�1

�y

i+1

� ::: �y

n

0

mod m

where x

0

is a 
onstant and m = pq is an RSA modulus fa
toring of whi
h is

unknown to any party. The value p(i; Y ) is given to the veri�er that wants

to verify whether y

i

was used to 
al
ulate g(Y ). The veri�
ation su

eeds i�

p(i; Y )

y

i

mod m = g(Y ):

This s
heme uses linear storage size for the proof. Better s
hemes like loga-

rithmi
 and 
onstant size also exist [Jus98b℄. In pra
ti
e there may be other

needs for the group hashes � like the need of being able to distinguish the

order of the inputs when the inputs 
ome in sequentially.

The a

umulated notarization proto
ol just uses the fa
ts that the group

hashes have smaller size than the total size of inputs and there exists a proof

for every input that says the input was used to 
reate the output.

3.3 Certi�
ation Proto
ol

The 
lient C generates a pair of a private key and a publi
 key. It 
onta
ts

the notary and gives the 
erti�
ate request to N . The notary must have some

way to identify the 
lient and 
he
k that the identity of the user is 
orre
t �

else anybody 
ould fake its identity and the 
erti�
ation would be no good.

The 
erti�
ate request 
onsists of 
lient's publi
 key PK

C

, identity ID

C

and


redentials Auth

C

. The notary adds the 
erti�
ate to its database of valid


erti�
ates and a
knowledges the 
erti�
ation.

Proto
ol 3.1. Certi�
ation proto
ol 2

1. C

1

�! N : PK

C

; ID

C

;Auth

C

2. C

2

 � N : ACK

We assume that all the notaries (N) in the tree have registered at their parent

notary before any notarization involving the notary N begin.
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3.4 Notarization Proto
ol

The same proto
ol is used between the �nal 
lient of the notary servi
e and

between the notaries in the hierar
hy. We 
hoose a notary from the tree and


all it N . C is a 
lient of its and N

�

it its parent notary.

The proto
ol begins as in se
tion 2.5. The 
lient C signs a do
ument X

and sends the signature Y = Sig

C

fXg to the notary N . The notary 
he
ks

whether the 
erti�
ate of C is in its database of valid 
erti�
ates.

When no problems are found, N a

umulates Sig

N

fY;Cert

C

g to the 
urrent

group hash. When the 
urrent round ends, N 
al
ulates the group hash L and

sends the pair fL;Cert

N

g to the parent notary N

�

as a normal notarization

request. It gets fSig

N

�

fL;Cert

N

g; L

�

; T

�

; R

�

g in response. L

�

is the value of

the group hash for N

�

(like L is for N). T

�

is the proof that L

�

is one-way

dependent from L. R

�

is the rest � the proof information from upper layers.

Proto
ol 3.2. Notarization proto
ol 2

1. C 
omputes Y = Sig

C

fXg

2. C

1

�! N : Y;Cert

C

3. N 
omputes the group hash value L = h(: : : ; Y; : : : )

4. N

1

�! N

�

: L;Cert

N

5. N

2

 � N

�

: Sig

N

�

fL;Cert

N

g; L

�

; T

�

; R

�

6. N 
ompiles R = fSig

N

�

fL;Cert

N

g;Cert

N

; L

�

; T

�

; R

�

g

and the proof T .

7. C

2

 � N : Sig

N

fY;Cert

C

g; L; T;R

8. C 
ompiles its own R

0

= fSig

N

fY;Cert

C

g;Cert

C

; L; T;Rg

The root notary just responds with empty R sin
e it has no parent notaries

and thus the rest of the 
hain is empty. The root notary may still want to

use rounds so it doesn't di�er from the others too mu
h.

We 
arry the 
erti�
ate information along at all the levels. This is be
ause

some information is needed about the publi
 key that was used to 
reate the
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orresponding signature. It should be possible to redu
e the amount of this

information, like with using message digests of the 
erti�
ate and storing the

whole 
erti�
ate somewhere where it is a

essible to the veri�ers.

The size of R (and thus the size of the whole notarized signature) is linear

to the height of the notarization tree. As the height k = O(log n) where n is

the number of notaries, it's still only logarithmi
 to the number of notaries.

So it's not too bad but it 
ould be smaller.

3.5 Veri�
ation Proto
ol

Here C denotes the �nal 
lient � the leaf of the tree.

C sends the do
umentX to V . It also sends Sig

C

fXg and R

0

. R

0

is essentially

a 
hain of signatures from all the notaries from the notary of C to the top of

the hierar
hy.

Proto
ol 3.3. Signature veri�
ation proto
ol 2

1. C

1

�! V : X; Sig

C

fXg; R

0

V 
he
ks the following 
riteria:

1. Sig

C

fXg(= Y ) mat
hes X and Cert

C

2. Auth

C

(
ontained in Cert

C

) permits this kind of signing

3. Sig

N

fY g mat
hes Y and Cert

N

4. Auth

N

(
ontained in Cert

N

) permits this kind of signing

5. T shows that Sig

N

fY g was used to 
reate L

6. : : : (repeat last three lines for every level up to the root)

7. The 
erti�
ate of the root notary mat
hes the published and well-known

one

If all these 
onditions are met then the signature is 
onsidered valid.
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In fa
t the veri�er 
he
ks that on ea
h level, the higher level notary has prop-

erly notarized the signature and that the higher level notary had permission

to notarize it at this moment. The latter is a
hieved by verifying that the

notary signed the data given to it and submitted the data to a higher level

notary for approval. All this is essentially the same as in the simple proto
ol.

The di�eren
e is in the te
hnique of submitting the notarized bit string for

approval. Here the group hash helps to tra
k that it was really approved.

3.6 Certi�
ate Revo
ation Proto
ol

C sends N a signed revo
ation request or just 
alls N and tells its revo
ation

password. N deletes the 
erti�
ate of C from its database of valid 
erti�
ates

and doesn't respond to requests with 
erti�
ate Cert

C

any more.

Proto
ol 3.4. Certi�
ate revo
ation proto
ol 2

1. C

1

�! N : REVOKE Cert

C

; Sig

C

fREVOKE Cert

C

g

The 
erti�
ate in REVOKE request is needed to determine whi
h 
erti�
ate

should be revoked. The signature is needed to avoid forgery of the revo
ation

request (otherwise anybody 
ould revoke my 
erti�
ate if he knew my 
erti�-


ate from earlier 
ommuni
ation). When the private key of a user has been


ompromised then anyone knowing the private key 
an revoke the 
erti�
ate.

This is only good sin
e the 
erti�
ate really needs revo
ation in this 
ase.

3.7 Addition and Deletion of Notaries

The addition and deletion of the notaries is extremely simple with the 
urrent

model of the proto
ol. The addition pro
ess has been already 
overed with

the 
erti�
ation proto
ol � the same proto
ol applies to both notaries and

real 
lients.

The deletion is also simple � the notary that wants to quit doesn't respond

to any requests any more and it revokes its 
erti�
ate at the parent notary.

That's all. All issued signatures 
ontinue to hold sin
e a higher level notary

has signed them. No more signatures 
an be issued sin
e the 
erti�
ate has

been revoked.
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The proto
ol doesn't require any ar
hive of the leaving notary to be kept so

there's also no ar
hive to transfer to any other notary. Note that while the

proto
ol doesn't require any ar
hives to be saved, some legal a
ts may still

require them.

3.8 The Advantages of A

umulated Notarization

� It's s
alable � all the notaries do roughly the same amount of work.

So the upper level notaries don't have to do more work then the lower

level notaries.

� No additional information is needed to 
he
k the signature if the nota-

rization 
hain is given with the signed do
ument. No CRLs, no time

stamps.

� No proto
ol needs negative proofs (like "the 
erti�
ate of A is not in

any kind of bla
klist")
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4 Notarization with Temporal Authenti
ation

It's interesting to note that we 
an use the linking s
hemes from time-

stamping systems with rounds from se
tion 1.3 as the group hashes. The

reason we do this is be
ause the notarization 
hain in a

umulated nota-

rization proto
ol has the same stru
ture as one half of the time-stamping


hain. We look at the notarization 
hain in terms of time-stamping and add

another 
hain for the other dire
tion of one-way dependen
e to integrate the

properties of time-stamping into the notarization hierar
hy.

Let's enumerate the 
lient requests. At �rst the order of the requests is not

signi�
ant � we 
an use just any order. Then we apply the linking s
heme to

the sequen
e of inputs. Sin
e we have no 
onne
tion to the earlier rounds of

the notary at the moment we 
an use just any value for the �rst (initial) value

as long as it is �xed. We obtain the round value and a head and a tail (as

de�ned in [BLLV98℄) for ea
h of the inputs. For any input, the 
ombination

of the initial value, head, tail and the hash value is su�
ient to prove that

the input was used to 
al
ulate the hash value.

This kind of group hash doesn't guarantee anything more than we already

have. But this approa
h gives us the hints where to look further if we also

want the temporal authenti
ation of the inputs.

4.1 The Constru
tion

4.1.1 Step 1

Let's 
on
entrate on a single notary. It re
eives requests from its 
lients,

pro
esses them by rounds and requests notarization of the group hash from

its parent notary. The 
lient requests are hashed together with a group

hash. So far the only requirement for the group hash was that the 
lients


ould verify the fa
t that their request was used to 
reate the hash value.

Now we set up more stri
t requirements � the temporal order of the requests

must be veri�able in the future.

We showed that we 
an use a linking s
heme from time-stamping systems

as the group hash but sin
e we didn't 
onne
t the beginning of the 
hain

to anything we didn't use a half of the power of the linking s
hemes. We


ould verify the order of inputs inside a round if we enumerated them in the
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natural (in
oming) order. But this was all, we 
ouldn't get further into the

future or into the past.

The obvious next step is to 
onne
t the subsequent rounds together (�gure

3). We use the hash value of (n � 1)-th round to get the �rst value of the

nth round.

Figure 3: A 
hain with linked rounds

The way how the round summaries are 
onne
ted is not important here. We


an use any linking s
heme that is e�
ient for us. The following proto
ols

just require that the do
uments in the 
hain must be 
omparable. The 
hoi
e

of the linking s
hemes is out of the s
ope of this paper, both for intra-round

and inter-round linking.

The linking s
hemes may require some intermediate round summaries to be

present for inter-round dependen
y veri�
ation. We further assume that the

information is kept available.

4.1.2 Step 2

Now let's have a look at the 
onne
tions between the notaries. We 
ontinue

to use the same hierar
hy that 
onne
ted the notaries in se
tion 3. The

submission of the group hash value to the parent notary 
an be seen as a link

between the linking 
hains of these two notaries. We name these links the

upward links � the dire
tion of information goes from a lower level notary

to its parent. This means that the element in the parent 
hain where the

upward link ends is one-way dependent from the summary of the 
urrent

round of the 
lient notary.

Figure 4: Two upwards linked 
hains
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Figure 4 illustrates this. The upper 
hain denotes the parent notary and the

lower 
hain denotes a 
lient of its. The parent notary has the round length

of 5 and the 
lient notary has the round length of 4. The round lengths

at ea
h notary are not related at all � ea
h notary may use even its own

linking s
heme inside and between its rounds. To be usable by the 
lients, the

s
hemes must be published and know to the 
lients otherwise they 
ouldn't


he
k the 
orre
tness of the temporal dependen
y and signatures.

The time goes from left to right on this �gure and all the other �gures where

time is important. At the end of ea
h round the 
lient 
omputes the group

hash and sends it to the parent to sign. The arrows don't go dire
tly up but

to the right sin
e the transmission of the data takes some time. It gets the

�rst empty pla
e in the parent's 
urrent round.

4.1.3 Step 3

Now we want to add the downward links � the links that go from the parent

notary to the 
lient notary and 
arry linking information. These links are

needed for a
hieving temporal dependen
e from the do
uments in the past �

the dependen
y information 
omes through these links. There is also some

other information transferred from the parent to the 
lient � the signed

answer to upward links � but this is not important for the linking and so

the other information is not 
onsidered here.

The downward arrows 
reate a one-way dependen
y between the group hash

of the parent's last �nished round and the 
lient's freshly starting round. The


lient requests this information from the parent in some way that is again

not important to the linking but is easily doable. This one-way dependen
y


an be used to show that an element in the 
lient 
hain has been notarized

later than some previous elements in the parent 
hain.

Sin
e the round lengths of the parent and the 
lient don't have to be the same,

it may happen that some round at the parent's 
hain is giving the downward

linking information to several 
onsequent rounds at the 
lient 
hain when the


lient round length is smaller. Similarly, when the 
lient's round length is

larger that the parent's round length then it may happen that some round at

the parent 
hain gives no linking information to the 
lient. This good sin
e

the 
lient gets the latest information always and so the probability of being

able to 
ompare two do
uments be
omes larger.
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Figure 5: Two fully linked 
hains � like �gure 4 but with downward links

4.1.4 Step 4

Now we have des
ribed the links between notaries and so we are able to put

together a big tree of notaries all linked together. Ea
h two notaries are


onne
ted the way we just des
ribed i� they were 
onne
ted in se
tion 3.

There are no other 
onne
tions in the tree.

The top-level notary has no upward links sin
e it is the authority itself and

doesn't need a signature from something else. The same goes for the time-

stamping information � the top-level notary manages the "master" 
hain of

linking information.

Similarly there must be the lowest level in the hierar
hy with no downward

links.

This is illustrated by �gure 6. The �gure shows that the resulting graph is

similar to a sheet of paper folded into two in the top and broken into three

at point C and just folded a little at point B. All the arrows are on the sheets

of paper but not between the sheets.

The �gures 7 and 8 illustrate the dependen
y paths in the graph. Figure

7 shows the maximum prede
essors of a top-level linking element. There

exists a one-way dependen
y from all the prede
essors in the �gure and all

the earlier elements on their levels to the top-level element. There exist no

su
h proof for any later element at any level. Similarly, �gure 8 represents all

minimal su

essors of a top-level element. There exists a one-way dependen
y

from the top-level element to any of the su

essors in the �gure and any

element right of them and there doesn't exist su
h a proof for any earlier

element.

The �gures together give a good view about how the dependen
y propagates

in the graph: from the earlier element up to a 
ommon notary, then some

time along the 
hain of the notary and then down to the later element. It's
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Figure 6: The general s
hema with 6 notaries and all upward and downward links

3
0



Figure 7: The prede
essors of an element

Figure 8: The su

essors of an element
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su�
ient to go up only until there is a 
ommon notary, i.e. a notary that is in

the path from the earlier element to the top and in the path from the top to

the later element. In the worst 
ase the top-level notary is the only 
ommon

notary. In the best 
ase the elements are 
lients of the same lowest-level

notary and no up-down links between the notaries are ne
essary at all.

The upward path of the do
ument is the linking information for 
ompar-

ing against future do
uments and the downward path is for 
omparing with

past do
uments. The 
lient 
onne
ts a downward path and an upward path

together with the do
ument signature. It �rst asks the downward linking

information from the notary, adds it to the do
ument information (the do
-

ument itself or a message digest) and notarizes the result. This 
reates the

signature on the do
ument and also adds the upward path. The triple 
on-

sisting of downward path, do
ument and upward path (also 
ontains the

signature) is the whole unit of temporal authenti
ation.

The 
onventional time-stamping system that was orthogonal to PKI had an

annoying property: it required two time stamps on a signed do
ument: one

before the signing (for showing that the signature was made later than some

do
uments) and one after the signing (for proving that the signature was

made before some other do
ument). Our integrated system removes this

need sin
e we really need only one half of ea
h time stamp.

4.2 Certi�
ation Proto
ol

The 
erti�
ation proto
ol is the same as the 
erti�
ation proto
ol in se
tion

3.3. The 
lient C generates a pair of a private key and a publi
 key. It


onta
ts the notary and gives the 
erti�
ate request to N . The notary must

have some way to identify the 
lient and 
he
k that the identity of the user is


orre
t � else anybody 
ould fake its identity and the 
erti�
ation would be

no good. The 
erti�
ate request 
onsists of 
lient's publi
 key PK

C

, identity

ID

C

and 
redentials Auth

C

. The notary adds the 
erti�
ate to its database

of valid 
erti�
ates and a
knowledges the 
erti�
ation.

Proto
ol 4.1. Certi�
ation Proto
ol 3

1. C

1

�! N : PK

C

; ID

C

;Auth

C

2. C

2

 � N : ACK
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We again assume that all the notaries (N) in the tree have registered at their

parent notary before any notarization involving N begin.

4.3 Downlink Proto
ol

The downlink proto
ol is for making the downward links in the graph. At

the beginning of a new round ea
h notary (ex
ept the top-level notary) asks

the group hash value of the last �nished round from its parent notary. The

parent notary gives the value as the answer (G), the group hash value from its

parent's last �nished round (G

�

), the proof (H) that G

�

was used to 
ompute

the value of G and the rest (S). The rest is the downlink information that


ame with G

�

.

The downlink information G is used as the initial value of the new round of

N . It is also used by the �nal 
lients to asso
iate it with the do
uments that

are to be signed.

Proto
ol 4.2. Downlink proto
ol 3

1. N

1

�! N

�

: REQUEST

2. N

2

 � N

�

: G;G

�

; H; S

3. N 
omputes its own S

0

= fG;G

�

; H; Sg

When a 
lient asks the downlink information from the notary N , N answers

with G, G

�

and H from its last �nished round and uses S

0

for the rest. So

the rest gathers into S on the way down.

The top-level notary must have G in the answer sin
e G is used as a seed on

lower levels. It may not have G

�

and H sin
e it may give out just its latest

element in the linking 
hain as the seed for lower levels. But the top-level

notary may use rounds and G

�

and H as well if it 
hooses so.

The one thing that is 
ertainly di�erent about the top-level notary is that

it doesn't have anything to add in S. Instead it should sign the G that it

puts in the answer and put the signature into S. This is ne
essary to for any

lower level 
lients for de
iding whether to trust the downlink 
hain that it gets

from the parent notary. Otherwise the notaries in the path from the top-level

notary to some other �xed notary may 
hoose to provide false information
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that 
an not be used by the 
lient later be
ause it has no proof value. Adding

the signature of the top-level notary helps against false linking information

but doesn't help against too old linking information. So the 
lients should

regularly 
he
k whether their do
uments are reliably 
omparable with respe
t

to temporal order. Do
uments notarized at di�erent notaries must be used

for this kind of 
he
k else the linking information is not used in the 
he
ks.

The signature of the top-level notary is su�
ient � no signatures from lower

level notaries are required. These signatures would not add any useful proofs

and they would require putting the 
erti�
ates of the intermediate notaries

into S.

The downlink information is independent from the uplink information. There

are two points where the two dire
tions meet: the 
lient asso
iates both

downward and upward linking information with the do
ument and the veri�er

�nds a 
onne
tion between the upward links of the older do
ument and the

downward links of the newer do
ument.

4.4 Notarization Proto
ol

The same proto
ol is used between the �nal 
lient of the notary servi
e and

between the notaries in the hierar
hy. However, the �nal 
lient has to prepare

for the proto
ol slightly di�erently. While normal notaries must have used

the downlink proto
ol to get the initial element for the round, the 
lient must

use the downlink proto
ol too but it uses the information in 
reation of the

initial signature of the do
ument.

We 
hoose a notary from the tree and 
all it N . C is a 
lient of its and N

�

it its parent notary of N .

The 
lient C has a do
ument X and the 
urrent downlink information S. It

signs the pair fX;Sg and sends the signature Y = Sig

C

fX;Sg to the notary

N . The notary 
he
ks whether the 
erti�
ate of C is in its database of valid


erti�
ates.

When no problems are found, N a

umulates Sig

N

fY;Cert

C

g to the 
urrent

group hash. When the 
urrent round ends, N 
al
ulates the group hash L.

The 
al
ulation also yields Z that is the a
tual bit string that represents Y

in the group hash. Y 
an't be used dire
tly be
ause the value in the hash

must depend on Y and the previous elements in the hash.

34



N sends the pair fL;Cert

N

g to the parent notaryN

�

as a normal notarization

request. It gets fSig

N

�

fL;Cert

N

g; P

�

; Z

�

; L

�

; T

�

; R

�

g in response.

Z

�

is the representation of L in the group hash of the parent as des
ribed

above. L

�

is the value of the group hash for N

�

(like L is for N). T

�

is the

proof that L

�

is one-way dependent from Z

�

. R

�

is the rest � the upward

linking information from the upper layers. P

�

is the previous element in the


hain of the parent notary. It is needed for 
he
king the 
orre
tness of Z

�

. To


ompute Z

�

, the parent notary used the input from 
lient and some earlier

information from its 
hain � like the dire
tly pre
eding element in the 
hain.

The 
lient needs the earlier linking information to verify the 
orre
tness of

Z

�

. The previous element exists always even in the same round � for the

very �rst element of the round we use the initial values of the round as the

previous element (G).

Y

T

ZP

L

R

Figure 9: The important variables of one round

The proto
ol:

Proto
ol 4.3. Notarization proto
ol 3

1. C 
omputes Y = Sig

C

fX;Sg

2. C

1

�! N : Y;Cert

C

3. N 
omputes the group hash value L = h(: : : ; P; Y; : : : ),

this also yields Z and the new proof T

4. N

1

�! N

�

: L;Cert

N

5. N

2

 � N

�

: Sig

N

�

fL;Cert

N

g; P

�

; Z

�

; L

�

; T

�

; R

�
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6. N 
ompiles R = fSig

N

�

fL;Cert

N

g;Cert

N

; P

�

; Z

�

; L

�

; T

�

; R

�

g

7. C

2

 � N : Sig

N

fY;Cert

C

g; P; Z; L; T;R

8. C 
ompiles its own R

0

= fSig

N

fY;Cert

C

g;Cert

C

; P; Z; L; T;Rg

4.5 Temporal Veri�
ation Proto
ol

The input of temporal veri�
ation proto
ol is a pair of notarized do
uments,

the notarized signatures of both do
uments and the downlink information

the do
uments. The goal is to determine if the supposedly later do
ument is

really later than the supposedly earlier do
ument.

The 
lient C sends two do
uments X

1

and X

2

to the veri�er V . It also sends

R

0

1

, R

0

2

, S

1

and S

2

. R

0

1

and R

0

2

are the upward links for X

1

and S

1

and S

2

are the downward links for X

1

and X

2

.

Proto
ol 4.4. Temporal veri�
ation proto
ol 3

1. C

1

�! V : X

1

; X

2

; S

1

; S

2

; Sig

C

1

fX

1

; S

1

g; Sig

C

2

fX

2

; S

2

g; R

0

1

; R

0

2

Here C

1

and C

2

are the signers of X

1

and X

2

. They don't have to be equal

to neither ea
h other nor C. The veri�
ation algorithm uses the following

s
heme:

1. The veri�er 
he
ks that the do
uments X

1

and X

2

have 
orre
t sig-

natures from their respe
tive owners. The validity of the signatures

is not 
he
ked � just the fa
t that the signatures mat
h the do
u-

ments. S

1

and S

2

are needed for this sin
e they were used for signing

and so must be used for signature veri�
ation. If any of the signatures

doesn't mat
h then we 
an't 
ontinue the veri�
ation and the answer

is negative.

2. The veri�er �nds the lowest 
ommon notary of X

1

and X

2

by following

the 
hains R

0

1

and S

2

from bottom to top. We 
all this 
ommon notary

N . If there's no 
ommon notary then the temporal order 
an't be

determined and the answer is negative. This is the 
ase only when the

do
uments have been notarized in di�erent notarization hierar
hies or

when some linking information is forged.
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3. The veri�er 
he
ks the one-way dependen
y from SigfX

1

; S

1

g to the

data item in R

0

1

that 
orresponds to N . We name the already veri�ed

dataD. At the beginning of the 
hainD = fSig

C

fX

1

; S

1

g;Cert

C

g. The

veri�er uses iterative method. Ea
h step uses the following s
heme until

it has 
he
ked the Z given by N .

� 
he
k that Z = h(P;D) where h is the hash fun
tion used to


ompute Z

� 
he
k that T proves that Z was used to 
ompute L

� D := fL;Cert

M

g where M is the 
urrent notary

If any of these 
he
ks fail then the answer is negative. If the 
he
ks

su

eed then the veri�er has found that the value of Z in N 's 
hain is

dependent from the do
ument X

1

.

4. The veri�er 
he
ks the one-way dependen
y from the round summary

of N (the summary is 
ontained in S

2

) to SigfX

2

; S

2

g. We name the

already veri�ed data D. At the beginning of the 
he
k D = G where

G is the downlink information that 
ame from N . If for R

0

we 
he
ked

from the beginning of the 
hain to the inside of the stru
ture then

here we take the initial value from deep inside the 
hain stru
tures and

iterate until we rea
h the outmost stru
ture level. At ea
h level we

have the 
urrent values of G, G

�

, H and S. The veri�er must use the

following s
heme at ea
h level:

� 
he
k that H proves that G

�

was used to 
ompute G

If any of these 
he
ks fail then the answer is negative. If the 
he
ks

su

eed then the veri�er has found that the last G in the 
hain is

one-way dependent from the G from N . That means S

2

is one-way

dependent from the G in N 's 
hain.

5. The veri�er 
he
ks the notarization of Sig

C

2

fX

2

; S

2

g using the infor-

mation in R

0

2

. The s
heme is exa
tly the same as for 
he
king R

0

1

but

now we want to 
he
k until we rea
h the top. If there are any problems

rea
hing the top-level notary, the answer is negative. If the notariza-

tion from top-level notary 
annot be veri�ed with the publi
ly known


erti�
ate of the top-level notary then the answer is negative.

This step is needed to 
he
k that S

2

and X

2

are bound together. The

notarized signature on the pair them binds the pair together.
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6. The last thing to be 
he
ked is the temporal dependen
y in the time-

stamping 
hain of N . We have one upward link ending in the 
hain of

N and one downward link starting there. We want to know if the end

of the upward link is there before the beginning of the downward link.

For this we must use the inter-round linking s
heme of N . This is the

only step in the veri�
ation that may need network a

ess be
ause we

might need to retrieve some intermediate round summaries from the

notary N or from an ar
hive-keeper. If the 
he
k fails then the answer

is negative.

7. If nothing failed then the answer is positive � X

2

is later than X

1

.

4.6 Signature Veri�
ation Proto
ol

The input of the signature veri�
ation proto
ol is a notarized do
ument. The

goal is to determine if the signature is valid. This is similar to the veri�
ation

proto
ol in se
tion 3.5.

Here C denotes again the �nal 
lient � the leaf of the tree.

C sends the do
ument X to V . It also sends Sig

C

fXg and R

0

as de�ned in

se
tion 4.4. R

0

is essentially a 
hain of signatures from all the notaries in the

path from the notary of C to the top of the hierar
hy. S

0

is not important for

signature veri�
ation sin
e the proof of signature validity 
omes only from

upward links.

Proto
ol 4.5. Signature veri�
ation proto
ol 3

1. C

1

�! V : X; Sig

C

fXg; R

0

V 
he
ks the following 
riteria:

1. Sig

C

fXg(= Y ) mat
hes X and Cert

C

2. Auth

C

(
ontained in Cert

C

) permits this kind of signing

3. Sig

N

fY g mat
hes Y and Cert

N

4. Auth

N

(
ontained in Cert

N

) permits this kind of signing

5. T shows that Sig

N

fY g was used to 
reate L
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6. : : : (repeat last three lines for every level up to the root)

7. The 
erti�
ate of the root notary mat
hes the published and well-known

one

If all these 
onditions are met then the signature is 
onsidered valid.

4.7 Certi�
ate Revo
ation Proto
ol

The 
erti�
ate revo
ation proto
ol is the same as in se
tion 3.6. C sends N a

signed revo
ation request or just 
alls N and tells its revo
ation password. N

deletes the 
erti�
ate of C from its database of valid 
erti�
ates and doesn't

respond to requests with 
erti�
ate Cert

C

any more.

Proto
ol 4.6. Certi�
ate revo
ation proto
ol 3

1. C

1

�! N : REVOKE Cert

C

; Sig

C

fREVOKE Cert

C

g

4.8 Addition and Deletion of Notaries

Addition of notaries is still simple as in the 
ase of a

umulated notarization

� the proto
ol was des
ribed in se
tion 4.2. To keep the tree e�
ient, new

notaries should be added in a way that keeps the tree mostly in balan
e. A


entral advisor may help in 
hoosing the parent notary for the new node.

The simple a

umulated notary system allowed deleting the notaries in a


lean way. Here the situation is not so brilliant � the time-stamping 
hains

keep us from just deleting the notary and its data. The summaries of the

rounds must be saved for later retrieval be
ause the intermediate values might

be needed when 
omparing two distant elements in the 
hain.

So in addition to revoking its 
erti�
ate the leaving notary must give all its

round summaries to some other authority that keeps the summaries available.

This may be another notary but sin
e the ar
hival is not a key part of the

proposed notary servi
e, some other party might be the ar
hive-keeper. Even

more, the notaries might give all their summaries to the ar
hive-keeper at

on
e after the 
reation. In this 
ase the ar
hive-keepers are the only parties

whi
h serve the summaries and in su
h 
ase the notaries may leave easily

again.
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The ar
hive-keepers (ar
hiving authorities) must be trusted to keep all the

information available. There's no need to trust them more be
ause they 
an't

forge the data they serve sin
e the linking information binds the data items

together with a se
ure linking s
heme.

4.9 Di�eren
es Between the Notaries

All the notaries may use di�erent group hash fun
tions and linking s
hemes

for their internal time-stamping 
hains. For the 
lients to be able to verify

the 
omputations and time-stamping links, the notaries must put some iden-

ti�
ation of the algorithms used into the data that is 
omputed using the

algorithm. It means that the item Z in notarization proto
ol must 
arry the

hash fun
tion identi�er that was used to link the bits from the do
ument

into the 
hain; the item T must in
lude the group hash fun
tion identi�er

that is used inside the rounds; L must in
lude the identi�er about the link-

ing s
heme that 
onne
ts the rounds together; the item H must in
lude the

group hash identi�er that it is proof for. We do not need to in
lude the

linking s
heme identi�er in G sin
e this is the same as for L as far as the

notary doesn't 
hange the inter-round linking s
heme. This is a reasonable

assumption be
ause 
hanging the inter-round linking s
heme would be very

di�
ult and it's easier to just retire, ask a new 
erti�
ate and use the new

linking s
heme in the future.

If di�erent linking s
hemes and group hashes are used then the veri�
ation

pro
edure must 
he
k whether it understands the s
hemes and whether it

trusts the s
hemes. The users must understand that a veri�er with more

restri
tive se
urity poli
y may not a

ept proofs that some notaries produ
e.

4.10 The Top of the Hierar
hy

The proposed system doesn't solve the problems with the top of the hierar
hy.

All the parti
ipants must un
onditionally trust the top of the hierar
hy; it is

assumed that the publi
 key of the top-level notary has been distributed to

every parti
ipant.

Se
ure multi-party 
omputations and threshold s
hemes [Rab98℄ 
an be used

at the top-level notary to redu
e the se
urity risks 
oming from the high

trust level. With these methods we 
an a
hieve that no one knows the whole

se
ret key of the top-level notary and for the se
urity of the root notary to
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be 
ompromised many key-pie
e holders must 
ollaborate. If the number of

parties in the multi-party 
omputation is high enough and the threshold is

not unreasonably low, pretty high level of se
urity 
an be a
hieved.

The key distribution may use many broad
ast 
hannels (Internet, newspapers

et
) to distribute the key to everybody. The people 
an get the key from

several sour
es and trust it only when the majority of the sour
es agree on

the key.

4.11 Cross-notarization

The proposed system does not have 
ross-notarization methods built into

it. This doesn't mean that 
ross-notarization between several hierar
hies is

impossible.

First, the 
lassi
al "brute-for
e" method applies � the 
lient notarizes its

do
ument at several notaries that belong to di�erent hierar
hies (like a bank-

ing hierar
hy and some national hierar
hies a

ording to the possible usage

jurisdi
tions of the do
ument). The internals of the proto
ol are not rea
hed

with this method. This method is not pra
ti
al enough sin
e the user must

know before the signing whi
h hierar
hies may be needed in the future.

A slightly better 
ross-notarization method 
an be used. If we build our own

notary that automati
ally requests notarization from several notary hierar-


hies then we get essentially the same that we have with the previous method

� it's just slightly easier for the �nal 
lient to use it. But this method gives a

hint of building the hierar
hy below this notary. The hierar
hy should allow

several heads and several tails at ea
h level. Now if we modify the proto
ols

to use more than one head and tail then we 
an make the 
rossing points

pra
ti
ally everywhere. This means that with some little modi�
ations the

proto
ol gives us also a me
hanism for some 
ross-notarization.

4.12 Disadvantages of Integrated Notarization

In summary, some disadvantages remain and some new disadvantages are

introdu
ed with the proposed notarization proto
ol. Here are some disad-

vantages that may be problemati
 in some situations:

� The proto
ol assumes on-line operations. This is inevitable if we want
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temporal authenti
ation of data.

� The proto
ols still use large amounts of data. This is di�erent from

the CRL transport problem � most of the network bandwidth is used

during the signing pro
ess, the veri�
ation usually takes very little

bandwidth (if any). But the proto
ols that are provided here may be

optimized further. For example, hash values of some data items may

be used in some pla
es. I have not made these optimizations to make

the s
heme more understandable.

� The suitable round lengths for time-stamping and notarization may be

too di�erent and it may be hard to �nd a optimal round length for the

notaries. Notarization needs short rounds be
ause long rounds make

the response time very long. On the 
ontrary, time-stamping needs long

rounds be
ause the short rounds make the summaries useless in time-

stamping 
hains sin
e near-linear amounts of data should be sear
hed

for veri�
ation in some 
ases. Good inter-round linking s
hemes may

help here ([BLS99℄, [Lip99℄).
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Ajatembelduse ja notariseerimise

ühendamisest

Meelis Roos

Kokkuvõte

Käesolev töö uurib viimase aja probleeme ajatembelduse ning avaliku võt-

me infrastruktuuride alal. Alustuseks antakse lühike ülevaade ajatembelduse

tehnoloogiate arengust, et näidata uurimuste üldist suunda. Selleks tutvusta-

takse krüptograa�liselt seostamata ajatempleid, lineaarselt lingitud ajatemp-

leid ning jõutakse binaarsete ja üldistatud linkimisskeemideni. Viimaste pu-

hul on tegemist käesoleva aasta jooksvate tulemustega. Autor identi�tseerib

ajatemplisüsteemide juures skaleeruvusprobleemi � teadaolevad krüptograa-

�liselt turvalised süsteemid ei skaleeru ühest serverist ülespoole.

Avaliku võtme infrastruktuuridest (PKI) tegeldakse de fa
to standardiks ole-

va X.509-ga ja antakse ülevaade selle protokollistiku ühest problemaatilisest

tahust � serti�kaatide tühistusnimekirjadest. Siin komistame X.509 algse

variandi o�-line ülesehitusest päritud probleemide otsa: serti�kaatide tühis-

tusinformatsiooni antakse välja pikkade nimekirjadena perioodiliselt mingi

aja tagant. Kuna nimekirjad on pikad, siis tekivad probleemid võrguliiklu-

se mahuga jooksva informatsiooni saamiseks (iga kord tuleb värskeima info

saamiseks terve nimekiri omale ära kopeerida ja teha selles nimekirjas li-

neaarne läbivaatus). Tühistusnimekirjade perioodilise iseloomu tõttu ei ole

aegumisinfo perioodi pikkusest täpsem ajaline autentimine üldse võimalik.

PKI probleemi lahenduseks pakutakse töös (järjekordselt) radikaalset abinõu

� loobuda üldse tühistusnimekirjadest ja ehitada kogu süsteem teisiti üles,

arvestades seejuures tänapäevaseid nõudeid ja võimalusi. Töös pakutakse

lahenduseks notariseerimist � iga juriidilist jõudu omav allkiri tuleb lasta

notaril kontrollida ja kinnitada ning edaspidi piisab allkirja kontrolliks notari

kinnitusest.

Esimese lahendusvariandina tuuakse ära primitiivne notariseerimisprotokoll,

mis ei lahenda probleemi, kuid annab ideid edasiseks. Selle protokolli eda-

siarendusena pakutakse välja uus notariseerimise protokoll (akumuleeritud

notariseerimisprotokoll), mis lubab notaritest skaleeruva ja usaldatava hie-

rarhia moodustada. Usaldatavus garanteeritakse krüptograa�liste meetodi-

45



tega, nii et ka notarid ise ei saa midagi võltsida ning nende töö on täielikult

kontrollitav.

Pakutud süsteem lahendab probleemi PKI-ga ning tulemus sarnaneb oma

ülesehituselt ajatemplite linkimiseks kasutatavate skeemidega. Selgub, et no-

tariseermise hierarhia realiseerib automaatselt poole ajatemplisüsteemist. Au-

tor ehitab pakutud süsteemile juurde ka teise poole sellest süsteemist. Tu-

lemusena saadud protokoll (ajatembeldusega notariseerimisprotokoll) tagab

lisaks allkirjade õigsuse näitamisele ka allkirjastatavate dokumentide omava-

helise ajalise autentimise. Kuna süsteem on hierarhiline ja koosneb paljudest

väiksematest ajatemplisüsteemidest, siis on sellega leitud üks võimalik lahen-

dus ka ajatemplisüsteemide skaleeruvuse probleemile.

Töö on jätkuks ajatemplialastele uuringutele Küberneetika ASis, kus ajatem-

beldust on uuritud paar viimast aastat. Uuringute käigus on valminud aja-

templi kontseptsioon, rida artikleid ([BLLV98℄, [BL98℄, [BLS99℄ ja [Lip99℄)

ja ajatempliserveri spetsi�katsioon. Käesoleva töö autor on kirjutanud selle

järgi ka ajatemplite pilootserveri. Praegune uuringute suund on ajatemplite

rakendamine PKI-s. Aidatakse kaasa ka Eesti digitaaldokumentide seaduse

loomisel.
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