TARTU UNIVERSITY
FACULTY OF MATHEMATICS
Institute of Computer Science
Chair of Theoretical Informatics

Meelis Roos

Integrating Time-Stamping and Notarization
Master’s Thesis

Supervisor: Helger Lipmaa

Author: " May 1999
SUPEIVISOT: « vttt veii e "... " May 1999
Head of Chair:........................ "... " May 1999

Tartu 1999

Contents

Introduction
Time Stamps — What and Why?
What Is Missing o
Scalability
Time Stamps as a Part of Public Key Infrastructure
Work In Progress oo
Outline of the Paper

1 Background
1.1 Trusted Third Party
1.2 Linking of the Time Stamps
1.3 Binary Linking Schemes
1.4 Relative Temporal Authentication
1.5 Public Key Infrastructure

2 Simple Notarization
2.1 Certificate Revocation Lists
2.2 The Idea Behind Notarization
2.3 Principals and Notation
2.4 Certification Protocol
2.5 Notarization Protocol
2.6 Verification Protocol,
2.7 Certificate Revocation Protocol
2.8 Disadvantages of Simple Notarization

3 Accumulated Notarization
3.1 The Idea of Accumulated Notarization
3.2 GroupHashes L
3.3 Certification Protocol
3.4 Notarization Protocol
3.5 Verification Protocol
3.6 Certificate Revocation Protocol
3.7 Addition and Deletion of Notaries
3.8 The Advantages of Accumulated Notarization

4 Notarization with Temporal Authentication
4.1 The Construction
4.1.1 Stepl e
4.1.2 Step2o

413 Step3 28

414 Stepd 29

4.2 Certification Protocol 32
4.3 Downlink Protocol 33
4.4 Notarization Protocol 34
4.5 Temporal Verification Protocol 36
4.6 Signature Verification Protocol 38
4.7 Certificate Revocation Protocol 39
4.8 Addition and Deletion of Notaries 39
4.9 Differences Between the Notaries 40
4.10 The Top of the Hierarchy 40
4.11 Cross-notarization. e 41
4.12 Disadvantages of Integrated Notarization 41
References 43
Kokkuvote 45

Abstract

In this thesis, we examine the current state of the most widely used public
key infrastructure model and secure time-stamping systems. We begin by
giving an overview of the evolution of the time-stamping techniques to show
the direction of research.

We identify some problems in PKI and time-stamping that need solutions
in practice. The problems are not very bad today but are becoming worse
as time goes on and people start using these services more and more. Both
problems are essentially scalability problems.

We show a simple and known solution attempt to the problem with PKI. The
solution doesn’t work either but gives a hint for building a working solution.
Using the hints we present a working solution for the PKI problem. The
new protocol eliminates certificate revocation lists and reduces the number
of time stamps required since no time stamps are needed any more for the
PKI itself.

We also point the similarities between the new system and some existing
time-stamping systems. We analyze the similarities and develop another
new protocol that integrates the first new protocol with time-stamping and
solves the scalability problem for time-stamping. The integration allows to
build the temporal authentication of signed data tightly into the PKI.

Introduction

Time Stamps — What and Why?

The use of digital documents is increasing rapidly. Electronic mail was the
pioneer in this area — it has been used already for decades. Other usage
areas of digital documents have become popular too in recent years. Word
processors are not used only for printing but also to produce electronic docu-
ments for sending to other people. Electronic commerce and banking via the
Internet are becoming quite common. Electronic documents are the future.

There exist elementary security measures for digital documents — signing
and encryption. These measures are quite common and usable nowadays.
There also exist needed infrastructures and protocols of managing and dis-
tributing the keys, certificates etc.

This is good but this is not sufficient. Most of the mechanisms work only for
short-term documents. As an example, the cryptographic signature on a e-
mail is important only at the moment of receiving the mail. The widely used
cryptographic primitives stop working after the keys have been compromised.
This works for documents with short lifetime but not for documents with long
lifetime. The documents with long lifetime need additional measures to be
taken for increasing their validity period.

The idea is to write down the time where the key certificates become valid
and become invalid and compare the times to the time of signing of the
documents in question. If the time of the signature lies between the start
and end times of the validity period of the corresponding certificate then the
signature is valid. This can be verified anytime in the future if the times are
saved with document signatures.

The times on signatures need to be secure or they would be useless. The
main subject of this paper is the theory of secure time stamps on documents.

What Is Missing

Neither the theory nor the practice of time-stamping are ready yet. There
are several areas in the theory and between the theory and the practice that
need further research. The author has identified two problems that need to

be solved but lack a clear solution yet — scalability of the time-stamping
services and integration with Public Key Infrastructures.

Scalability

The current time-stamping systems and proposed protocols work well on one
server but have weak or no methods for using a network of many servers.
The only time-stamping systems so far that scale well in the number of
servers must be unconditionally trusted and are "trivial" from the crypto-
graphic viewpoint. Most of the non-trivial systems have only one central
time-stamping server and have no mechanism for scaling to multiple servers.
But this kind of scalability is surely needed when the time-stamping becomes
more widespread.

Time Stamps as a Part of Public Key Infrastructure

The current time-stamping systems are just what the name says — time-
stamping systems. Time-stamping is considered a stand-alone service that
is not integrated with real usage areas like digital signatures etc. In real
life the time stamps will probably be used mostly as a part of Public Key
Infrastructure (PKI). The main need for the temporal authentication will be
between the signatures and the validity periods of corresponding certificates.
There are other uses too that are not connected to the PKI — like time-
stamping of pieces of art to show that the author had it earlier than some
pirate. But current predictions show that these other uses of time stamps
will be a lot less common than the use in PKI.

Work In progress

The paper is based on work done in Kiiberneerika AS where the author works.
our research group has studied time-stamping in last two years. This work
has resulted in several papers about time-stamping: the concept of time-
stamping for national use, [BLLV98| about binary linking schemes, [BL98|
about new and more efficient linking schemes, [BLS99| about even more
efficient linking schemes and [Lip99] about authentication graphs — gener-
alizations of binary linking schemes. We have also produced a specification
for time-stamping server that uses our linking schemes and the author has

programmed a test version of the time-stamping server. The current work
concentrates mainly on PKI and putting the time-stamping systems into use
in PKI. Our specialists also take part as scientific advisors from preparing
the digital signature laws of Estonia.

Outline of the Paper

This paper consists of four chapters. Chapter 1 gives the background infor-
mation about the previous results in time-stamping and describes the basic
ideas of existing time-stamping systems. Chapter 2 contains overview and
some critics about certificate revocation lists in Public Key Infrastructure.
The critics give the motivation for further research. A well-known simple
notarization protocol is given that tries to solve the problem but fails. Chap-
ter 3 describes a new protocol — accumulated notarization protocol. This
protocol solves the given problem with PKI. Chapter 4 describes another
new protocol — accumulated notarization integrated with time-stamping.
This protocol serves as the scalable notarization protocol but also provides
temporal authentication for signed documents.

1 Background

This chapter gives an overview of the results that are needed later. For a
complete overview of the results in time-stamping as of fall 1998 see [Jus98b|.
Subsequential work has been done mainly by the researchers of Kiiberneetika
AS, current results have been summarized in [Lip99|.

One of the central terms in this paper is time stamp.

Definition 1.1. Loosely, a time stamp of a bit string is a token that binds
information about time with the bit string.

The main problem is obtaining the time stamps for digital documents in a
secure manner. The time-stamping protocols are used for this.

1.1 Trusted Third Party

The simplest time-stamping protocol uses a Trusted Third Party (TTP) that
knows the right time. The client sends the message digest H(X) of its docu-
ment X to the TTP. The TTP adds current time ¢ and puts its signature on
the pair (H(X),t). It sends the time ¢ and the signature Sigrss{(H(X),?)}
back to the client. The client adds received values to the document. So the
time is connected to the document and the correctness of the time is guaran-
teed by the signature. This works well if we trust the time-stamping server
(TSS) and its source of time. We also have to assume that the key of the
TSS is never compromised because after the compromise of TSS’s secret key
all the time stamps are under question.

1.2 Linking of the Time Stamps

Definition 1.2. A one-way function is a function that is easy to compute
but intractable to invert.

The next natural move is to link all the time stamps together using suppos-
edly one-way functions. It is computationally infeasible to insert documents
into this chain later. The TSS keeps a registry of all issued time stamps and
gives the time stamps out for verification. This idea was first published in
[HS90] and [HS91|. The protocol:

e The client C' sends a bit string Y to the TSS

e TSS knows the sequence number of the time stamp, be it n. The TSS
computes H,, = h(n,ID¢,Y) where h is a hash function and I D¢ is
the identity of C.

e TSS computes L,, = H(H,, L,,_1). This is the linking information. The
hash function H may differ from h.

e TSS sends {n,ID¢, L, 1,Sigrss{L,}} to C. This is the time stamp.

The L,’s are the linking information that holds the proof. The one-way
dependent chain of L,,’s from one document to another proves that the first
document was time-stamped earlier than the second. During the verification,
the intermediate L;’s can be requested from the TSS.

1.3 Binary Linking Schemes

Linear linking schemes have two obvious drawbacks. The first one is the
efficiency — to verify the chain between two documents, the verifier must do
the same amount of work that the TSS did between the two time stamps.
This may be years’ worth of work and is obviously too much.

The second drawback is the amount of information that the TSS must store
for later retrieval by the verifiers. All L,,’s must be saved in the archive.

Identification of these faults lead researchers to the development of exponen-
tially more efficient binary linking schemes [BLLV98]. The idea is to link the
time stamps not only to the element directly preceding it but also to some
other element further in the past. The other link can be used to traverse the
chain more efficiently by taking longer jumps. This reduces the amount of
time needed to verify the temporal order of documents.

Definition 1.3. A linking scheme is an algorithm that tells which existing
elements in the chain should a new element be linked to.

Another idea is to group the requests into rounds and traverse only between
the summaries of rounds. By doing this we can reduce also the amount
needed by the TSS to keep the data items required for verification. Such
linking-schemes are called accumulated linking schemes.

It has been shown in [BLLV9S8| that there exist linking schemes that provide
logarithmic length verification paths in the chain, enable the use of rounds
and guarantee possibility of verification the temporal order between any two
time stamps issued in one round and the verifier does not need any additional
information to perform the comparison. The linking scheme is shown on
figure 1.

251
15

30

10 13

12

18

22

21

25

29

28

1 2 4 5 8 9 11 16 17 19 20 23 24 26 27

Figure 1: The linking scheme of BLLV98

The efficiency of intra-round linking schemes has been improved in [BLS99]
(figure 2).

Figure 2: The efficient intra-round linking scheme of BL.S99

Furthermore, it appears that the inter-round and intra-round linking schemes
do not have to be the same ([Lip99]).

10

1.4 Relative Temporal Authentication

When talking about temporal authentication of data, we can distinguish be-
tween absolute and relative temporal authentication. In the case of absolute
temporal authentication the time stamps contain information that is some
representation of the time value as known in non-digital world. When com-
paring two absolute timestamps we compare the time values in them.

In the case of relative temporal authentication the time stamps contain infor-
mation that can only be used to check whether one time stamps was made
earlier than another. There’s no analogue for the real absolute time.

While both schemes can be used to compare the time stamps there are deep
differences between these two methods. It has been shown in [Jus98a] that
absolute time can not be used without trusted third parties serving the abso-
lute time. This means that we must trust both the trusted third party itself
and its time source. For relative temporal authentication no trusted third
party is required because the time stamps can be linked together with secure
linking schemes that prevent forgery, as shown in [BLLV98].

However there are problems with relative temporal authentication too. While
all digital documents can be made verifiable, the connection between the
digital documents and the real absolute time is weak. With absolute time
stamps we can associate the time-stamped documents with events in the real
world. With relative time stamps this is not possible without additional
work.

The most natural way to do it is to periodically time stamp a nonce (a bit
string not known earlier — can be generated randomly). If I hourly time
stamp a nonce and keep track of these nonces then I can use these time
stamps to determine the time of some other digital time stamps with the
precision of 1 hour. And that’s all — anybody else has no reason to trust
my hourly time stamps. If they would trust my hourly marks then it’s like I
would be the trusted third party for them.

So every party that wants to know the approximate real-world time for digital
time-stamped documents must use its own periodical time stamps. To solve
these problems in court, the court system must use its own periodical time
marks.

11

1.5 Public Key Infrastructure

In 1976 W. Diffie and M. Hellman published their work about public key
cryptosystems [DH76]. With the help of the RSA cryptosystem [RSA78| this
ideology has became dominant in cryptography. Users have their public and
private keys. The keep the private key secret and publish the public key with
help of public key certificates. The certificates connect the persons and their
public keys. A public key infrastructure is the infrastructure that deals with
public key certificates and all problems associated with these certificates
(like certification, certificate expiration, certificate revocation, distributing
the certificate validity info etc). There are several paradigms of how the
infrastructure should operate and which cryptographic systems and protocols
to use. The X.509 standard ([HFPD99|) is the de facto standard for PKI
in today’s Internet. It has been developed originally for off-line operations
and then extended to operate on-line too. The current version of X.509 is
3. Despite being already in the third incarnation it still has problems with
scalability and delays in the distribution of certificate information.

12

2 Simple Notarization

2.1 Certificate Revocation Lists

The X.509 family of standards uses a hierarchy of Certificate Authorities
(CA’s) to issue and revoke the certificates. When a certificate is issued, it
is expected to be in use for its entire validity period. However, various cir-
cumstances may cause a certificate to become invalid prior to the expiration
of the validity period. Such circumstances include change of name, change
of association between the subject and the CA (e.g., an employee terminates
employment with an organization), and compromise or suspected compro-
mise of the corresponding private key. Under such circumstances, the CA
needs to revoke the certificate.

The current PKI standards [HFPD99| use Certificate Revocation Lists (CRLSs)
to distribute the information about revoked certificates. Each CA periodi-
cally issues a signed list of revoked certificates that have not yet expired. The
list is valid for some fixed amount of time lasting at least to the next periodic
issue of CRLs. The CRL consists of time-stamped certificate numbers. In
the current implementations the CRL contents use absolute time stamps and
do not use a time-stamping services for obtaining these stamps. When we
want to get the reliable temporal authentication for the revocation info, we
must use cryptographically secure time-stamping services.

When a certification-using system wants to verify a signed and time-stamped
document, it must verify all these conditions:

e The signature is correct with respect to the certificate

e The certificate is not in a recent-enough CRL. If the certificate is in
a CRL, the time stamps of the signed message and the corresponding
CRL record are verified. The time stamp of the message must be earlier
than the time stamp of the revocation record.

e The signature and the certificate of the CRL are correct and the cer-
tificate of the CA has not expired with respect to a higher level CA.
The same method is used recursively.

The CRLs are issued periodically and each verifying operation must use a
recent-enough CRL. The security policy specifies how recent the CRLs must

13

be. To get a good-enough proof of the certificate not being revoked, the entire
current CRL must be transferred to the client. The client must then do a
linear search in the CRL. This takes O(n) time where n grows very large.
In addition a delay is introduced because of the periodic nature of CRLs —
we cannot use the latest information about the revocations but must use the
latest published list.

Closer analysis of the transmission costs of the CRLs (|[BCF+94]| and [Mic96])
shows that the CRLs are very costly. For instance, if for US Federal PKI
there are

e 3 000 000 users,
e each CA serves 30000 users,
e 10% of the certificates are revoked,

e CRLs are sent out biweekly,

e the verifiers of the signatures request certificate information for 5 sig-
natures per day, and

e the communication costs are 2 cents per kilobyte,

then the total PKI yearly costs are $732 Millions, of which $563 Millions are
due to CRL transmissions. The share of CRLs would be even greater when
more certificates are verified per day ([Vil99]).

This doesn’t count the resources needed to time stamp every CRL record
if we want exact and secure temporal authentication. In this situation the
main use of time stamps is to verify the temporal order of signing and cer-
tificate revocations. We want to eliminate the need of CRLs because of their
inefficiency and to reduce the additional costs required for time-stamping.

2.2 The Idea Behind Notarization

A notary is an authority that certifies clients’ signatures. Traditional notaries
verify and sign the signatures of clients. Each notary has its own certificate
from a CA. The main idea of simple notarization is simple: both the duties
of the CA and the traditional notary are given to one principal. We call this
principal notary here and hereinafter. When the client (say, A) wants to sign

14

a message M, it signs M and submits the signature Siga{M} to the notary.
The notary signs the signature only if it finds the certificate of A to be valid.
Since the notary and the CA are the same, the notary knows whether the
certificate is valid at the moment of the signing. The verifier only needs to
check whether the signature matches the document and whether the notary
has signed the signature. The signature of the notary is sufficient to prove
that to the best of the notary’s (CA’s) knowledge the certificate was valid at
the time of the signing.

If the notary signs some signature made with a non-valid certificate then
nothing bad happens. The signature of the notary makes the notary respon-
sible for any damages when the user has revoked the certificate. The user
may use several notaries simultaneously to protect itself from bad notaries
that refuse to revoke the certificates.

2.3 Principals and Notation
The principals of the protocols in this section and hereinafter:

e C — the client of the notary (the signer)

V' — the verifier (the one who want to verify the signature of C)

N — the notary (the notary-+CA of C)

N* — the parent notary of N where applicable

By Sig4{B} we denote the signature that the principal A has given on the
bit string B. The signature contains the message digest of B encrypted with
the private key of A.

By PK,4 we denote the public key of the principal A.

By Auth4 we denote the credentials of the principal A. The credentials are
meant to show the legal uses of the key (like signing contracts with level of
responsibilities not above some fixed value).

By ID 4 we denote the personal data of principal A that is needed to identify
the principal outside the PKI.

By Cert 4 we denote the certificate of principal A. It consists of PK 4, Authy
and possibly also ID 4.

15

In the protocols, the notation A = B : X denotes protocol step number 7,
during which the principal A sends the data X to the principal B.

The asterisks on some of the variables mean that these variables come form
the parent notary.

2.4 Certification Protocol

The simple protocols are taken from [Bul99]. The client C generates a pair
of a private key and a public key. It sends the certificate request to N. The
certificate request consist of its public key PK¢, identity ID¢ and credentials
Authc.

The notary generates the certificate Certe = {PK¢,ID¢, Authe} and adds
the certificate to its database of valid certificates. The notary doesn’t need
to send the signed certificate back to the client because there’s no need for
such certificate — each signature contains a notary-signed certificate anyway.
So the notary just acknowledges the certification request.

The notary and the client should also agree on a revocation password of the
given certificate (one-time password is a suitable example). The password
may be necessary to revoke the certificate later.

We don’t specify anything about the database of currently valid certificates
that the notary maintains. The CRLs were linear lists; we can avoid the
linear search in this database if it is appropriately organized. The database
may use some faster methods to check whether a given certificate is valid or
not (trees for O(logn) or hashes for O(1) for example).

Protocol 2.1. Certification protocol 1

1. C— N : PKc,IDc,AchC

2. C+ N : ACK

2.5 Notarization Protocol

The client C signs a document X and sends the signature Sigc{X } and the
certificate Certy to the notary. The notary checks whether the certificate is

16

in its database of valid certificates. If it is then the notary signs the signature
of C' and the certificate with its own private key and sends it back to C.

Protocol 2.2. Notarization protocol 1

1

1.C =N : Sige{X}

2.CE& N - Sign{Sigc{ X}, Certc}

The certificate of C' is needed in the response since it is the only thing that
binds the signature to the client C. The answer from the notary tells that the
client C' has produced a bit string that we call Sigo{X} while the certificate
of C' was valid.

2.6 Verification Protocol

C sends the document X along with its own signature, its own certificate and
the notary-signed signature to V. V verifies that the signature of C' matches
the document and the certificate and that the signature and the certificate
are signed by N. V also checks whether Auths permits this kind of document
to be signed with this certificate. V' can also learn the identity of C' from
the certificate. V' doesn’t need to check any other sources of information, all
necessary values must have been received with the document.

Protocol 2.3. Signature verification protocol 1

1

1. C =V : X,Sige{X},Certe, Sign{Sigc{ X}, Certc}

2.7 Certificate Revocation Protocol

The client C signs and sends the revocation request Sige{REVOKE Cert¢ }
to the notary. Or the client C' calls the notary N and tells its certificate
revocation password. The notary N removes the certificate of C' from the
database of valid certificates and no longer signs signatures that use this
certificate. In fact the notary may even completely forget about the certificate
if no other rules prohibit it — the certificate is not needed any more by the
protocol.

17

Protocol 2.4. Certificate revocation protocol 1

1. C = N : Sigc{REVOKE Certc}

2.8 Disadvantages of Simple Notarization

The protocol assumes that the public key of N has been distributed to all the
participants and that the key is valid through the whole period of the use of
the protocols. This does not hold in real life. Another problem is scalability
— one notary can serve only a limited number of requests in a time period.
This may not be sufficient in real world.

We could build a simple hierarchy of the notaries — we require the signature
of a higher level notary on the signature of N. The signature of document
X would become

X, Sige{X}, Sign{Sigc{ X}, Certc},

Sign+{Sign{Sigc{ X}, Certc}, Certy}.

We can extend this method to create a tree of notaries. This method would
solve the problem of distributing most notaries’ keys automatically but it
doesn’t scale either. The upper level notaries must do the same amount of
work as all their clients together. When each notary in the hierarchy has
about the same number of clients (the other notaries inside the hierarchy
and the real clients as the leaves of the tree), the load of notaries rises expo-
nentially from bottom to top. Something must be done to reduce the load
on higher level notaries.

18

3 Accumulated Notarization

We now know that we probably want a hierarchical structure of the notaries.
We constructed a simple tree in section 2 but the tree was not scalable
enough. In this section we want to modify the simple notarization protocol to
a scalable protocol. The idea of this protocol comes with slight optimizations
from [Bul99|. The optimizations involve freeing the notary from the duty of
verifying the actual signatures, in our system the notary just certifies which
public key certificate was used. The actual verification is done by the verifier.

3.1 The Idea of Accumulated Notarization

The main idea of accumulated notarization is to make every notary do
roughly the same amount of work. To reduce the amount of work needed by
its parent notary, a client notary doesn’t send each of its own signatures to
the parent notary to sign. Instead, it groups the signatures into rounds. The
length of the round is limited either by time, by the number of signatures in
the round or by any other reasonable measure. At the end of each non-empty
round it sends a summary of the round to the parent notary to sign. When it
receives the answer it sends the summary of the round and the answer from
parent notary to each of the clients. In addition, each client is sent a proof
that its data was used to create the summary.

When every notary behaves this way and the tree of notaries is almost in
balance then all the notaries do roughly the same amount of work. Suppose
they have a round length of 1 second. The notaries receive requests, sign them
and add them to the summary in some way. At the end of the round they
submit the summary to the parent notary. When they receive the answer,
they send the answer with other data back to the client. They may work
on the next round while waiting for the answer of the previous round so the
work does not stop.

The top of the hierarchy has no parent so it must behave a little differently.
No rounds are necessary there since all the data is internal to the notary. So
the topmost notary may just answer each request as soon as it is received.

The delay between the request and the answer from the client viewpoint
raises from top to down. Each level in the hierarchy adds an additional delay
from 0 to the round length of this notary. If there is a round length of 1
second for every notary, the average delay at each level is 0.5 s and the total

19

delay is % seconds where k is the height of the hierarchy. This is not too

bad since k = O(logn) where n is the number of notaries in the hierarchy.

3.2 Group Hashes

Definition 3.1. A hash function is a computationally efficient function map-
ping binary strings of arbitrary length to binary strings of some fixed length,
called the hash values.

The group hashes are a generalization of hash functions of one argument.
Normal hash functions take one arbitrary-length bit string as an argument
and produce a fixed-length bit string as a result. H is the family of hash
functions that generate n-bit output:

H=1{h:{0,1}* — {0,1}"}

We use a subset of all possible hash functions — the cryptographic hash
functions. The most important property of cryptographic hash functions is
that it’s computationally infeasible to find collisions, i.e. to find an A for an
X such that h(A) = X or to find A and B such that h(A) = h(B). From
the moment somebody invents a way to find collisions, the hash functions is
not secure any more and is considered broken. Until the hash function has
not been broken, the output value is the evidence that the input value was
used to create the output value.

Group hash extends the hash functions to multiple arguments (a group of

arguments — hence the name). The family of group hash functions may be
defined as

G ={g:({0,1}")" — {0,1}"}
(the functions take some arbitrary length bit strings as input and produce a

n-bit result). Since we use the group hash values for evidence, we also require
the group hash functions to be collision-free.

But this alone is not sufficient. The other property of normal hash functions
— the output is the evidence that an input was used some way to create the
output — is not automatic. The group hash function must be built so that
for each input we can compute a proof that shows that the input was used
to create the output.

Definition 3.2. A group hash function is a hash function that takes multiple
arguments and provides a proof for each argument that the argument was
used to compute the result.

20

The classical example of group hash functions is the algorithm of Benaloh
and de Mare [BAMO94|. It relies on the fact that RSA is hard to break. The
group hash function g is defined as follows:

91, yn) =g mod m

and the proof that y; was used is

Gyl Un) = g YT mod m
» 91,) 0

where z(is a constant and m = pq is an RSA modulus factoring of which is

unknown to any party. The value p(i,Y) is given to the verifier that wants
to verify whether y; was used to calculate g(Y). The verification succeeds iff

p(4, Y)Y mod m = g(Y).

This scheme uses linear storage size for the proof. Better schemes like loga-
rithmic and constant size also exist [Jus98b]. In practice there may be other
needs for the group hashes — like the need of being able to distinguish the
order of the inputs when the inputs come in sequentially.

The accumulated notarization protocol just uses the facts that the group
hashes have smaller size than the total size of inputs and there exists a proof
for every input that says the input was used to create the output.

3.3 Certification Protocol

The client C' generates a pair of a private key and a public key. It contacts
the notary and gives the certificate request to N. The notary must have some
way to identify the client and check that the identity of the user is correct —
else anybody could fake its identity and the certification would be no good.
The certificate request consists of client’s public key PK, identity ID¢ and
credentials Authe. The notary adds the certificate to its database of valid
certificates and acknowledges the certification.

Protocol 3.1. Certification protocol 2

1. C = N : PKg,IDg, Authe

2. C<< N : ACK

We assume that all the notaries (V) in the tree have registered at their parent
notary before any notarization involving the notary N begin.

21

3.4 Notarization Protocol

The same protocol is used between the final client of the notary service and
between the notaries in the hierarchy. We choose a notary from the tree and
call it N. C' is a client of its and N* it its parent notary.

The protocol begins as in section 2.5. The client C signs a document X
and sends the signature Y = Sigc{X} to the notary N. The notary checks
whether the certificate of C is in its database of valid certificates.

When no problems are found, N accumulates Sign{Y, Certc} to the current
group hash. When the current round ends, /V calculates the group hash L and
sends the pair {L, Certy} to the parent notary N* as a normal notarization
request. It gets {Sign+{L, Certy}, L*,T*, R*} in response. L* is the value of
the group hash for N* (like L is for N). T* is the proof that L* is one-way
dependent from L. R* is the rest — the proof information from upper layers.

Protocol 3.2. Notarization protocol 2

1. C computes Y = Sige{X}
2.C 5N : Y, Certo
3. N computes the group hash value L = h(...,Y,...)

4. N X N*: L, Certy

5. N <~ N*: Sigy-{L,Certy}, L*,T*, R*

6. N compiles R = {Sign+{L, Certy}, Certy, L*, T*, R*}
and the proof T'.

7.C & N : Sigy{Y,Certc},L,T,R

8. C compiles its own R’ = {Sign{Y, Cert¢}, Certc, L, T, R}
The root notary just responds with empty R since it has no parent notaries

and thus the rest of the chain is empty. The root notary may still want to
use rounds so it doesn’t differ from the others too much.

We carry the certificate information along at all the levels. This is because
some information is needed about the public key that was used to create the

22

corresponding signature. It should be possible to reduce the amount of this
information, like with using message digests of the certificate and storing the
whole certificate somewhere where it is accessible to the verifiers.

The size of R (and thus the size of the whole notarized signature) is linear
to the height of the notarization tree. As the height k = O(logn) where n is
the number of notaries, it’s still only logarithmic to the number of notaries.
So it’s not too bad but it could be smaller.

3.5 Verification Protocol

Here C denotes the final client — the leaf of the tree.

C sends the document X to V. It also sends Sige{X } and R'. R'is essentially
a chain of signatures from all the notaries from the notary of C to the top of
the hierarchy.

Protocol 3.3. Signature verification protocol 2

1

1.5V : X,Sige{X}, R

V' checks the following criteria:

1. Sige{X}(=Y) matches X and Cert¢

2. Authe (contained in Certe) permits this kind of signing

3. Signy{Y} matches Y and Certy

4. Authy (contained in Certy) permits this kind of signing

5. T shows that Sign{Y } was used to create L

6. ... (repeat last three lines for every level up to the root)

7. The certificate of the root notary matches the published and well-known

one

If all these conditions are met then the signature is considered valid.

23

In fact the verifier checks that on each level, the higher level notary has prop-
erly notarized the signature and that the higher level notary had permission
to notarize it at this moment. The latter is achieved by verifying that the
notary signed the data given to it and submitted the data to a higher level
notary for approval. All this is essentially the same as in the simple protocol.
The difference is in the technique of submitting the notarized bit string for
approval. Here the group hash helps to track that it was really approved.

3.6 Certificate Revocation Protocol

C sends N a signed revocation request or just calls NV and tells its revocation
password. N deletes the certificate of C' from its database of valid certificates
and doesn’t respond to requests with certificate Certe any more.

Protocol 3.4. Certificate revocation protocol 2

1

1. C — N : REVOKE Cert¢, Sigc{REVOKE Cert¢}

The certificate in REVOKE request is needed to determine which certificate
should be revoked. The signature is needed to avoid forgery of the revocation
request (otherwise anybody could revoke my certificate if he knew my certifi-
cate from earlier communication). When the private key of a user has been
compromised then anyone knowing the private key can revoke the certificate.
This is only good since the certificate really needs revocation in this case.

3.7 Addition and Deletion of Notaries

The addition and deletion of the notaries is extremely simple with the current
model of the protocol. The addition process has been already covered with
the certification protocol — the same protocol applies to both notaries and
real clients.

The deletion is also simple — the notary that wants to quit doesn’t respond
to any requests any more and it revokes its certificate at the parent notary.
That’s all. All issued signatures continue to hold since a higher level notary
has signed them. No more signatures can be issued since the certificate has
been revoked.

24

The protocol doesn’t require any archive of the leaving notary to be kept so
there’s also no archive to transfer to any other notary. Note that while the
protocol doesn’t require any archives to be saved, some legal acts may still
require them.

3.8 The Advantages of Accumulated Notarization

e It’s scalable — all the notaries do roughly the same amount of work.
So the upper level notaries don’t have to do more work then the lower
level notaries.

e No additional information is needed to check the signature if the nota-
rization chain is given with the signed document. No CRLs, no time
stamps.

e No protocol needs negative proofs (like "the certificate of A is not in
any kind of blacklist")

25

4 Notarization with Temporal Authentication

It’s interesting to note that we can use the linking schemes from time-
stamping systems with rounds from section 1.3 as the group hashes. The
reason we do this is because the notarization chain in accumulated nota-
rization protocol has the same structure as one half of the time-stamping
chain. We look at the notarization chain in terms of time-stamping and add
another chain for the other direction of one-way dependence to integrate the
properties of time-stamping into the notarization hierarchy.

Let’s enumerate the client requests. At first the order of the requests is not
significant — we can use just any order. Then we apply the linking scheme to
the sequence of inputs. Since we have no connection to the earlier rounds of
the notary at the moment we can use just any value for the first (initial) value
as long as it is fixed. We obtain the round value and a head and a tail (as
defined in [BLLV98]|) for each of the inputs. For any input, the combination
of the initial value, head, tail and the hash value is sufficient to prove that
the input was used to calculate the hash value.

This kind of group hash doesn’t guarantee anything more than we already
have. But this approach gives us the hints where to look further if we also
want the temporal authentication of the inputs.

4.1 The Construction
4.1.1 Step 1

Let’s concentrate on a single notary. It receives requests from its clients,
processes them by rounds and requests notarization of the group hash from
its parent notary. The client requests are hashed together with a group
hash. So far the only requirement for the group hash was that the clients
could verify the fact that their request was used to create the hash value.
Now we set up more strict requirements — the temporal order of the requests
must be verifiable in the future.

We showed that we can use a linking scheme from time-stamping systems
as the group hash but since we didn’t connect the beginning of the chain
to anything we didn’t use a half of the power of the linking schemes. We
could verify the order of inputs inside a round if we enumerated them in the

26

natural (incoming) order. But this was all, we couldn’t get further into the
future or into the past.

The obvious next step is to connect the subsequent rounds together (figure
3). We use the hash value of (n — 1)-th round to get the first value of the
nth round.

Figure 3: A chain with linked rounds

The way how the round summaries are connected is not important here. We
can use any linking scheme that is efficient for us. The following protocols
just require that the documents in the chain must be comparable. The choice
of the linking schemes is out of the scope of this paper, both for intra-round
and inter-round linking.

The linking schemes may require some intermediate round summaries to be
present for inter-round dependency verification. We further assume that the
information is kept available.

4.1.2 Step 2

Now let’s have a look at the connections between the notaries. We continue
to use the same hierarchy that connected the notaries in section 3. The
submission of the group hash value to the parent notary can be seen as a link
between the linking chains of these two notaries. We name these links the
upward links — the direction of information goes from a lower level notary
to its parent. This means that the element in the parent chain where the
upward link ends is one-way dependent from the summary of the current
round of the client notary.

A A

Figure 4: Two upwards linked chains

27

Figure 4 illustrates this. The upper chain denotes the parent notary and the
lower chain denotes a client of its. The parent notary has the round length
of 5 and the client notary has the round length of 4. The round lengths
at each notary are not related at all — each notary may use even its own
linking scheme inside and between its rounds. To be usable by the clients, the
schemes must be published and know to the clients otherwise they couldn’t
check the correctness of the temporal dependency and signatures.

The time goes from left to right on this figure and all the other figures where
time is important. At the end of each round the client computes the group
hash and sends it to the parent to sign. The arrows don’t go directly up but
to the right since the transmission of the data takes some time. It gets the
first empty place in the parent’s current round.

4.1.3 Step 3

Now we want to add the downward links — the links that go from the parent
notary to the client notary and carry linking information. These links are
needed for achieving temporal dependence from the documents in the past —
the dependency information comes through these links. There is also some
other information transferred from the parent to the client — the signed
answer to upward links — but this is not important for the linking and so
the other information is not considered here.

The downward arrows create a one-way dependency between the group hash
of the parent’s last finished round and the client’s freshly starting round. The
client requests this information from the parent in some way that is again
not important to the linking but is easily doable. This one-way dependency
can be used to show that an element in the client chain has been notarized
later than some previous elements in the parent chain.

Since the round lengths of the parent and the client don’t have to be the same,
it may happen that some round at the parent’s chain is giving the downward
linking information to several consequent rounds at the client chain when the
client round length is smaller. Similarly, when the client’s round length is
larger that the parent’s round length then it may happen that some round at
the parent chain gives no linking information to the client. This good since
the client gets the latest information always and so the probability of being
able to compare two documents becomes larger.

28

Figure 5: Two fully linked chains — like figure 4 but with downward links

4.1.4 Step 4

Now we have described the links between notaries and so we are able to put
together a big tree of notaries all linked together. Each two notaries are
connected the way we just described iff they were connected in section 3.
There are no other connections in the tree.

The top-level notary has no upward links since it is the authority itself and
doesn’t need a signature from something else. The same goes for the time-
stamping information — the top-level notary manages the "master" chain of
linking information.

Similarly there must be the lowest level in the hierarchy with no downward
links.

This is illustrated by figure 6. The figure shows that the resulting graph is
similar to a sheet of paper folded into two in the top and broken into three
at point C and just folded a little at point B. All the arrows are on the sheets
of paper but not between the sheets.

The figures 7 and 8 illustrate the dependency paths in the graph. Figure
7 shows the maximum predecessors of a top-level linking element. There
exists a one-way dependency from all the predecessors in the figure and all
the earlier elements on their levels to the top-level element. There exist no
such proof for any later element at any level. Similarly, figure 8 represents all
minimal successors of a top-level element. There exists a one-way dependency
from the top-level element to any of the successors in the figure and any
element right of them and there doesn’t exist such a proof for any earlier
element.

The figures together give a good view about how the dependency propagates
in the graph: from the earlier element up to a common notary, then some
time along the chain of the notary and then down to the later element. It’s

29

0€

Figure 6: The general schema with 6 notaries and all upward and downward links

Figure 7: The predecessors of an element

c/g)

!

]

9

Figure 8: The successors of an element

31

sufficient to go up only until there is a common notary, i.e. a notary that is in
the path from the earlier element to the top and in the path from the top to
the later element. In the worst case the top-level notary is the only common
notary. In the best case the elements are clients of the same lowest-level
notary and no up-down links between the notaries are necessary at all.

The upward path of the document is the linking information for compar-
ing against future documents and the downward path is for comparing with
past documents. The client connects a downward path and an upward path
together with the document signature. It first asks the downward linking
information from the notary, adds it to the document information (the doc-
ument itself or a message digest) and notarizes the result. This creates the
signature on the document and also adds the upward path. The triple con-
sisting of downward path, document and upward path (also contains the
signature) is the whole unit of temporal authentication.

The conventional time-stamping system that was orthogonal to PKI had an
annoying property: it required two time stamps on a signed document: one
before the signing (for showing that the signature was made later than some
documents) and one after the signing (for proving that the signature was
made before some other document). Our integrated system removes this
need since we really need only one half of each time stamp.

4.2 Certification Protocol

The certification protocol is the same as the certification protocol in section
3.3. The client C' generates a pair of a private key and a public key. It
contacts the notary and gives the certificate request to N. The notary must
have some way to identify the client and check that the identity of the user is
correct — else anybody could fake its identity and the certification would be
no good. The certificate request consists of client’s public key PK¢, identity
ID¢ and credentials Authe. The notary adds the certificate to its database
of valid certificates and acknowledges the certification.

Protocol 4.1. Certification Protocol 3

1. C— N : PKc,IDc,AuthC

2. C+ N : ACK

32

We again assume that all the notaries (/V) in the tree have registered at their
parent notary before any notarization involving N begin.

4.3 Downlink Protocol

The downlink protocol is for making the downward links in the graph. At
the beginning of a new round each notary (except the top-level notary) asks
the group hash value of the last finished round from its parent notary. The
parent notary gives the value as the answer (G), the group hash value from its
parent’s last finished round (G*), the proof (H) that G* was used to compute
the value of G and the rest (S). The rest is the downlink information that
came with G*.

The downlink information G is used as the initial value of the new round of
N. It is also used by the final clients to associate it with the documents that
are to be signed.

Protocol 4.2. Downlink protocol 3
1. N 5 N*: REQUEST

2. N& N*: G,G*H,S

3. N computes its own S’ = {G,G*, H, S}

When a client asks the downlink information from the notary N, N answers
with G, G* and H from its last finished round and uses S’ for the rest. So
the rest gathers into S on the way down.

The top-level notary must have G in the answer since G is used as a seed on
lower levels. It may not have G* and H since it may give out just its latest
element in the linking chain as the seed for lower levels. But the top-level
notary may use rounds and G* and H as well if it chooses so.

The one thing that is certainly different about the top-level notary is that
it doesn’t have anything to add in S. Instead it should sign the G that it
puts in the answer and put the signature into S. This is necessary to for any
lower level clients for deciding whether to trust the downlink chain that it gets
from the parent notary. Otherwise the notaries in the path from the top-level
notary to some other fixed notary may choose to provide false information

33

that can not be used by the client later because it has no proof value. Adding
the signature of the top-level notary helps against false linking information
but doesn’t help against too old linking information. So the clients should
regularly check whether their documents are reliably comparable with respect
to temporal order. Documents notarized at different notaries must be used
for this kind of check else the linking information is not used in the checks.

The signature of the top-level notary is sufficient — no signatures from lower
level notaries are required. These signatures would not add any useful proofs
and they would require putting the certificates of the intermediate notaries
into S.

The downlink information is independent from the uplink information. There
are two points where the two directions meet: the client associates both
downward and upward linking information with the document and the verifier
finds a connection between the upward links of the older document and the
downward links of the newer document.

4.4 Notarization Protocol

The same protocol is used between the final client of the notary service and
between the notaries in the hierarchy. However, the final client has to prepare
for the protocol slightly differently. While normal notaries must have used
the downlink protocol to get the initial element for the round, the client must
use the downlink protocol too but it uses the information in creation of the
initial signature of the document.

We choose a notary from the tree and call it N. C' is a client of its and N*
it its parent notary of N.

The client C' has a document X and the current downlink information S. It
signs the pair {X, S} and sends the signature Y = Sigc{ X, S} to the notary
N. The notary checks whether the certificate of C' is in its database of valid
certificates.

When no problems are found, N accumulates Sign{Y, Certc} to the current
group hash. When the current round ends, N calculates the group hash L.
The calculation also yields Z that is the actual bit string that represents Y
in the group hash. Y can’t be used directly because the value in the hash
must depend on Y and the previous elements in the hash.

34

N sends the pair {L, Certy } to the parent notary N* as a normal notarization
request. It gets {Sign+«{L, Certy}, P*, Z*, L*, T*, R*} in response.

Z* is the representation of L in the group hash of the parent as described
above. L* is the value of the group hash for N* (like L is for N). T™* is the
proof that L* is one-way dependent from Z*. R* is the rest — the upward
linking information from the upper layers. P* is the previous element in the
chain of the parent notary. It is needed for checking the correctness of Z*. To
compute Z*, the parent notary used the input from client and some earlier
information from its chain — like the directly preceding element in the chain.
The client needs the earlier linking information to verify the correctness of
Z*. The previous element exists always even in the same round — for the
very first element of the round we use the initial values of the round as the
previous element (G).

Figure 9: The important variables of one round

The protocol:

Protocol 4.3. Notarization protocol 3

1. C computes Y = Sige{X, S}
2. C 5N : Y, Certe

3. N computes the group hash value L = h(...,P)Y,...),
this also yields Z and the new proof T

4. N 2 N*: L, Certy
5. N <~ N*: Sigy-{L,Certy}, P*, Z*,L* T* R*

35

6. N compiles R = {Sign+{L, Certy}, Certy, P*, Z*, L*,T*, R*}
7.C & N : Sigy{Y,Certc}, P, Z,L,T,R

8. C compiles its own R’ = {Sign{Y, Cert¢}, Certe, P, Z, L, T, R}

4.5 Temporal Verification Protocol

The input of temporal verification protocol is a pair of notarized documents,
the notarized signatures of both documents and the downlink information
the documents. The goal is to determine if the supposedly later document is
really later than the supposedly earlier document.

The client C sends two documents X; and X, to the verifier V. It also sends
1, R5, S1 and Sp. R and R} are the upward links for X; and S; and S5
are the downward links for X; and Xs.

Protocol 4.4. Temporal verification protocol 3

1. C5HV ¢ Xy, X, S1,5,Sige, {X1, 51}, Sige, { X, So}, R}, R,

Here C; and Cs are the signers of X; and X5. They don’t have to be equal
to neither each other nor C'. The verification algorithm uses the following
scheme:

1. The verifier checks that the documents X; and X, have correct sig-
natures from their respective owners. The validity of the signatures
is not checked — just the fact that the signatures match the docu-
ments. S; and Sy are needed for this since they were used for signing
and so must be used for signature verification. If any of the signatures
doesn’t match then we can’t continue the verification and the answer
is negative.

2. The verifier finds the lowest common notary of X; and X, by following
the chains R} and S, from bottom to top. We call this common notary
N. 1If there’s no common notary then the temporal order can’t be
determined and the answer is negative. This is the case only when the
documents have been notarized in different notarization hierarchies or
when some linking information is forged.

36

3. The verifier checks the one-way dependency from Sig{ X3, S1} to the
data item in R} that corresponds to N. We name the already verified
data D. At the beginning of the chain D = {Sigc{X1, S1}, Certc}. The
verifier uses iterative method. Each step uses the following scheme until
it has checked the Z given by N.

e check that Z = h(P,D) where h is the hash function used to
compute Z

e check that T proves that Z was used to compute L
e D :={L,Certy} where M is the current notary

If any of these checks fail then the answer is negative. If the checks
succeed then the verifier has found that the value of Z in N’s chain is
dependent from the document Xj.

4. The verifier checks the one-way dependency from the round summary
of N (the summary is contained in S3) to Sig{X5s, S>}. We name the
already verified data D. At the beginning of the check D = G where
G is the downlink information that came from N. If for R’ we checked
from the beginning of the chain to the inside of the structure then
here we take the initial value from deep inside the chain structures and
iterate until we reach the outmost structure level. At each level we
have the current values of G, G*, H and S. The verifier must use the
following scheme at each level:

e check that H proves that G* was used to compute G

If any of these checks fail then the answer is negative. If the checks
succeed then the verifier has found that the last G in the chain is
one-way dependent from the G from N. That means S, is one-way
dependent from the G in N’s chain.

5. The verifier checks the notarization of Sige,{ X2, S2} using the infor-
mation in Rj. The scheme is exactly the same as for checking R but
now we want to check until we reach the top. If there are any problems
reaching the top-level notary, the answer is negative. If the notariza-
tion from top-level notary cannot be verified with the publicly known
certificate of the top-level notary then the answer is negative.

This step is needed to check that S; and X, are bound together. The
notarized signature on the pair them binds the pair together.

37

6. The last thing to be checked is the temporal dependency in the time-
stamping chain of N. We have one upward link ending in the chain of
N and one downward link starting there. We want to know if the end
of the upward link is there before the beginning of the downward link.
For this we must use the inter-round linking scheme of N. This is the
only step in the verification that may need network access because we
might need to retrieve some intermediate round summaries from the
notary N or from an archive-keeper. If the check fails then the answer
is negative.

7. If nothing failed then the answer is positive — X3 is later than X;.

4.6 Signature Verification Protocol

The input of the signature verification protocol is a notarized document. The
goal is to determine if the signature is valid. This is similar to the verification
protocol in section 3.5.

Here C' denotes again the final client — the leaf of the tree.

C sends the document X to V. It also sends Sigc{X} and R’ as defined in
section 4.4. R’ is essentially a chain of signatures from all the notaries in the
path from the notary of C to the top of the hierarchy. S’ is not important for
signature verification since the proof of signature validity comes only from
upward links.

Protocol 4.5. Signature verification protocol 3

1. C 5V : X, Sige{X},R

V' checks the following criteria:

1. Sige{X}(=Y) matches X and Cert¢

2. Authe (contained in Certe) permits this kind of signing
3. Signy{Y} matches Y and Certy

4. Authy (contained in Certy) permits this kind of signing

5. T shows that Sign{Y '} was used to create L

38

6. ... (repeat last three lines for every level up to the root)

7. The certificate of the root notary matches the published and well-known
one

If all these conditions are met then the signature is considered valid.

4.7 Certificate Revocation Protocol

The certificate revocation protocol is the same as in section 3.6. C' sends N a
signed revocation request or just calls /V and tells its revocation password. N
deletes the certificate of C from its database of valid certificates and doesn’t
respond to requests with certificate Certo any more.

Protocol 4.6. Certificate revocation protocol 3

1

1. C — N : REVOKE Cert¢, Sigc{REVOKE Cert¢}

4.8 Addition and Deletion of Notaries

Addition of notaries is still simple as in the case of accumulated notarization
— the protocol was described in section 4.2. To keep the tree efficient, new
notaries should be added in a way that keeps the tree mostly in balance. A
central advisor may help in choosing the parent notary for the new node.

The simple accumulated notary system allowed deleting the notaries in a
clean way. Here the situation is not so brilliant — the time-stamping chains
keep us from just deleting the notary and its data. The summaries of the
rounds must be saved for later retrieval because the intermediate values might
be needed when comparing two distant elements in the chain.

So in addition to revoking its certificate the leaving notary must give all its
round summaries to some other authority that keeps the summaries available.
This may be another notary but since the archival is not a key part of the
proposed notary service, some other party might be the archive-keeper. Even
more, the notaries might give all their summaries to the archive-keeper at
once after the creation. In this case the archive-keepers are the only parties
which serve the summaries and in such case the notaries may leave easily
again.

39

The archive-keepers (archiving authorities) must be trusted to keep all the
information available. There’s no need to trust them more because they can’t
forge the data they serve since the linking information binds the data items
together with a secure linking scheme.

4.9 Differences Between the Notaries

All the notaries may use different group hash functions and linking schemes
for their internal time-stamping chains. For the clients to be able to verify
the computations and time-stamping links, the notaries must put some iden-
tification of the algorithms used into the data that is computed using the
algorithm. It means that the item Z in notarization protocol must carry the
hash function identifier that was used to link the bits from the document
into the chain; the item 7" must include the group hash function identifier
that is used inside the rounds; L must include the identifier about the link-
ing scheme that connects the rounds together; the item H must include the
group hash identifier that it is proof for. We do not need to include the
linking scheme identifier in G since this is the same as for L as far as the
notary doesn’t change the inter-round linking scheme. This is a reasonable
assumption because changing the inter-round linking scheme would be very
difficult and it’s easier to just retire, ask a new certificate and use the new
linking scheme in the future.

If different linking schemes and group hashes are used then the verification
procedure must check whether it understands the schemes and whether it
trusts the schemes. The users must understand that a verifier with more
restrictive security policy may not accept proofs that some notaries produce.

4.10 The Top of the Hierarchy

The proposed system doesn’t solve the problems with the top of the hierarchy.
All the participants must unconditionally trust the top of the hierarchy; it is
assumed that the public key of the top-level notary has been distributed to
every participant.

Secure multi-party computations and threshold schemes [Rab98| can be used
at the top-level notary to reduce the security risks coming from the high
trust level. With these methods we can achieve that no one knows the whole
secret key of the top-level notary and for the security of the root notary to

40

be compromised many key-piece holders must collaborate. If the number of
parties in the multi-party computation is high enough and the threshold is
not unreasonably low, pretty high level of security can be achieved.

The key distribution may use many broadcast channels (Internet, newspapers
etc) to distribute the key to everybody. The people can get the key from
several sources and trust it only when the majority of the sources agree on
the key.

4.11 Cross-notarization

The proposed system does not have cross-notarization methods built into
it. This doesn’t mean that cross-notarization between several hierarchies is
impossible.

First, the classical "brute-force" method applies — the client notarizes its
document at several notaries that belong to different hierarchies (like a bank-
ing hierarchy and some national hierarchies according to the possible usage
jurisdictions of the document). The internals of the protocol are not reached
with this method. This method is not practical enough since the user must
know before the signing which hierarchies may be needed in the future.

A slightly better cross-notarization method can be used. If we build our own
notary that automatically requests notarization from several notary hierar-
chies then we get essentially the same that we have with the previous method
— it’s just slightly easier for the final client to use it. But this method gives a
hint of building the hierarchy below this notary. The hierarchy should allow
several heads and several tails at each level. Now if we modify the protocols
to use more than one head and tail then we can make the crossing points
practically everywhere. This means that with some little modifications the
protocol gives us also a mechanism for some cross-notarization.

4.12 Disadvantages of Integrated Notarization

In summary, some disadvantages remain and some new disadvantages are
introduced with the proposed notarization protocol. Here are some disad-
vantages that may be problematic in some situations:

e The protocol assumes on-line operations. This is inevitable if we want

41

temporal authentication of data.

The protocols still use large amounts of data. This is different from
the CRL transport problem — most of the network bandwidth is used
during the signing process, the verification usually takes very little
bandwidth (if any). But the protocols that are provided here may be
optimized further. For example, hash values of some data items may
be used in some places. I have not made these optimizations to make
the scheme more understandable.

The suitable round lengths for time-stamping and notarization may be
too different and it may be hard to find a optimal round length for the
notaries. Notarization needs short rounds because long rounds make
the response time very long. On the contrary, time-stamping needs long
rounds because the short rounds make the summaries useless in time-
stamping chains since near-linear amounts of data should be searched
for verification in some cases. Good inter-round linking schemes may

help here ([BLS99], [Lip99]).

42

References

[BAMY4]

[BCF+94]

[Bul99]

[BL9S|

[BLLV98]

[BLS99]

[DH76]

[HS90]

[HS91]

[HFPD99)

Josh Benaloh, Michael de Mare, One-Way Accumulators: A De-
centralized Alternative to Digital Signatures, In Advances in Cryp-
tology — Eurocrypt’93, LNCS 765, pp. 274-285, Springer-Verlag,
Berlin, 1994.

Shimshon Berkovits, Santosh Chokhani, Judith A. Furlong, Jisoo
A. Geiter, Jonathan C. Guild, Public Key Infrastructure Study:
Final Report, Produced by the MITRE Corporation for NIST,
April 1994, http://csrc.nist.gov/pki/documents/mitre.ps

Ahto Buldas, Certificate revocation, revisited, manuscript, May 5,
1999

Ahto Buldas, Peeter Laud, New linking schemes for digital time-
stamping, in The 1st International Conference on Information Se-
curity and Cryptology, pages 3-14, December 1998

Ahto Buldas, Peeter Laud, Helger Lipmaa, Jan Villemson, Time-
Stamping with Binary Linking Schemes, In Advances in Cryptol-
ogy — CRYPTO’98, LNCS 1462, pp. 486-501, Springer-Verlag,
1998.

Ahto Buldas, Helger Lipmaa, Berry Schoenmakers, Optimally Ef-
ficient Accountable Time-Stamping, Submitted, May 1999

Whitfield Diffie, Martin E. Hellman, New directions in cryptogra-
phy, in IEEE Trans. Inform. Theory, IT-22, pp. 644-654, Novem-
ber 1976

Stuart Haber, W. Scott Stornetta, How to time-stamp a digital
document, In Advances in Cryptology—CRYPTO ’90, pp. 437—
455, Springer-Verlag, 1991

Stuart Haber, Wakefield Scott Stornetta, How to Time-Stamp a
Digital Document, Journal of Cryptology, vol. 3 (2), pp 99-111,
Springer-Verlag, 1991

R. Housley, W. Ford, W. Polk, D. Solo, Internet X.509 Public Key
Infrastructure: Certificate and CRL Profile, Internet RFC 2459,
January 1999, ftp://ftp.isi.edu/in-notes/rfc2459.txt

43

| Jus98a]

[Jus98b]

[Lip99]

[Mic96]

[Rab9g|

[RSATS]

[Vil99]

Michael K. Just, Some Timestamping Protocol Failures, in Pro-
ceedings of the Internet Society Symposium on Network and Dis-
tributed Security (NDSS ’98).

Michael K. Just, On the Temporal Authentication of Digital Data,
Ph.D. Thesis, School of Computer Science, Carleton University,
December 1998

Helger Lipmaa, Secure and Efficient Time-Stamping Systems,
Ph.D. Thesis, Tartu 1999

Silvio Micali, Efficient Certificate Revocation, Laboratory of
Computer Science, Massachusetts Institute of Technology, 1996,
available from ftp://ftp-pubs.lcs.mit.edu/pub/lcs-pubs/
tm.outbox/MIT-LCS-TM-542b.ps.gz

Tal Rabin, A Simplified Approach to Threshold and Proactive
RSA, Advances in Cryptology: CRYPTO’98, LNCS-1294, 440-
454

Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman, A
method for obtaining digital signatures and public-key cryptosys-
tems, Communications of the ACM, 21(2), pp. 120-126, 1978.

Jan Villemson, Certificate Revocation Paradigms, manuscript,
April 15, 1999

44

Ajatembelduse ja notariseerimise

ihendamisest
Meelis Roos

Kokkuvote

Kéesolev t00 uurib viimase aja probleeme ajatembelduse ning avaliku vot-
me infrastruktuuride alal. Alustuseks antakse liihike iilevaade ajatembelduse
tehnoloogiate arengust, et ndidata uurimuste iildist suunda. Selleks tutvusta-
takse kriiptograafiliselt seostamata ajatempleid, lineaarselt lingitud ajatemp-
leid ning joutakse binaarsete ja tildistatud linkimisskeemideni. Viimaste pu-
hul on tegemist kdesoleva aasta jooksvate tulemustega. Autor identifitseerib
ajatemplisiisteemide juures skaleeruvusprobleemi — teadaolevad kriiptograa-
filiselt turvalised siisteemid ei skaleeru iihest serverist iilespoole.

Avaliku votme infrastruktuuridest (PKI) tegeldakse de facto standardiks ole-
va X.509-ga ja antakse iilevaade selle protokollistiku {ihest problemaatilisest
tahust — sertifikaatide tiihistusnimekirjadest. Siin komistame X.509 algse
variandi off-line iilesehitusest paritud probleemide otsa: sertifikaatide tiihis-
tusinformatsiooni antakse vélja pikkade nimekirjadena perioodiliselt mingi
aja tagant. Kuna nimekirjad on pikad, siis tekivad probleemid vorguliiklu-
se mahuga jooksva informatsiooni saamiseks (iga kord tuleb véirskeima info
saamiseks terve nimekiri omale dra kopeerida ja teha selles nimekirjas li-
neaarne labivaatus). Tiihistusnimekirjade perioodilise iseloomu t&ttu ei ole
aegumisinfo perioodi pikkusest tdpsem ajaline autentimine iildse voimalik.

PKI probleemi lahenduseks pakutakse t66s (jarjekordselt) radikaalset abindu
— loobuda iildse tiihistusnimekirjadest ja ehitada kogu silisteem teisiti iiles,
arvestades seejuures ténapievaseid noudeid ja voimalusi. T66s pakutakse
lahenduseks notariseerimist — iga juriidilist joudu omav allkiri tuleb lasta
notaril kontrollida ja kinnitada ning edaspidi piisab allkirja kontrolliks notari
kinnitusest.

Esimese lahendusvariandina tuuakse dra primitiivne notariseerimisprotokoll,
mis ei lahenda probleemi, kuid annab ideid edasiseks. Selle protokolli eda-
siarendusena pakutakse vilja uus notariseerimise protokoll (akumuleeritud
notariseerimisprotokoll), mis lubab notaritest skaleeruva ja usaldatava hie-
rarhia moodustada. Usaldatavus garanteeritakse kriiptograafiliste meetodi-

45

tega, nii et ka notarid ise ei saa midagi voltsida ning nende t66 on taielikult
kontrollitav.

Pakutud siisteem lahendab probleemi PKI-ga ning tulemus sarnaneb oma
iilesehituselt ajatemplite linkimiseks kasutatavate skeemidega. Selgub, et no-
tariseermise hierarhia realiseerib automaatselt poole ajatemplisiisteemist. Au-
tor ehitab pakutud siisteemile juurde ka teise poole sellest siisteemist. Tu-
lemusena saadud protokoll (ajatembeldusega notariseerimisprotokoll) tagab
lisaks allkirjade oigsuse nditamisele ka allkirjastatavate dokumentide omava-
helise ajalise autentimise. Kuna siisteem on hierarhiline ja koosneb paljudest
viiksematest ajatemplisiisteemidest, siis on sellega leitud iiks voimalik lahen-
dus ka ajatemplisiisteemide skaleeruvuse probleemile.

T66 on jatkuks ajatemplialastele uuringutele Kiiberneetika ASis, kus ajatem-
beldust on uuritud paar viimast aastat. Uuringute kiigus on valminud aja-
templi kontseptsioon, rida artikleid ([BLLV98], [BL98], [BLS99] ja [Lip99])
ja ajatempliserveri spetsifikatsioon. Kéesoleva t66 autor on kirjutanud selle
jargi ka ajatemplite pilootserveri. Praegune uuringute suund on ajatemplite
rakendamine PKI-s. Aidatakse kaasa ka Eesti digitaaldokumentide seaduse
loomisel.

46

