s

B,
ZKTHS

VETENSKAP
38 OCH KONST 9%

Bttt

KTH Computer Science
and Communication

Privacy Preserving Collaborative Anomaly Detection
Using Secure Multi-party Computation

ABU HAMED MOHAMMAD MISBAH UDDIN

Master's Thesis
Supervisors:

Dr. Peeter Laud, University of Tartu
Dan Bogdanov, Cybernetica AS
Dr. Mads Dam, The Royal Institute of Technology (KTH)






Abstract

The increasing volume of cyber attacks has become a major prob-
lem to the Internet world. Collaborative intrusion detection sys-
tems can help mitigating the problem to some extent. A mech-
anism to design such a system is aggregating attack traffic from
victim organizations and applying anomaly detection systems on
the aggregated data. To protect privacy of the users, the organi-
zations should aggregate in a secure environment. Secure multi-
party computation may be applied to such a task, but the general
consensus is that the computation and communication overhead
of such protocols makes them impractical for aggregation of large
datasets.

In our work, we present a novel way to aggregate attack traffic
in a privacy preserving manner using the primitives of secure
multiparty computation. Specifically, we have devised a protocol
independent algorithm that computes fast and secure set union
and intersection. We implemented our algorithm in Sharemind, a
fast privacy preserving virtual computer and support our claims
by experimental results.



Contents

Introduction

Background and Related Work
2.1 Homomorphic Secret Sharing . . . . .. ... ... ... ... L.
2.1.1 A trivial secret sharing scheme . . . . .. .. .. ... ... .....
2.1.2  Shamir’s Secret Sharing . . . . . ... ... . ... .. L.
2.1.3 Homomorphism of Secret Sharing . . . . ... ... ... ... ....
2.2 Secure Multiparty Computation . . . . . . .. .. .. ... ...
2.3 Sharemind . . . . . ...
2.4 Sorting Networks . . . . . . . . .. L
2.5 Outlier Detection . . . . . . . . . . L
2.6 Secure Set Operation . . . . . . . . . . . . . ... e

Algorithms
3.1 Problem Statement . . . . . . ...
3.2 Solution Formulation . . . . . . . .. ... L
3.2.1 Privacy and Performance Goals . . . . . . .. ... ... .......
3.3 Outlier Detection by LOCI . . . . . .. ... ... . ... ... ...
3.4 Important Preliminaries for Privacy Preserving Algorithms . . . . . . ...
341 Setup - - .. i e
3.4.2 Notational Convention . . . . . . .. ... ... ... ... ...
3.4.3 Oblivious Operations . . . . . . . . . . .. ... . . ...
3.4.4 Data Structure . . . . .. .. Lo
3.5 Privacy Preserving Algorithms . . . . . ... ... ... . ... . ...
3.5.1 Secure Set Union Algorithm . . . . . ... .. ... .. ... .....
3.5.2  Secure Set Intersection Algorithm . . . ... ... ... ... . ...
3.5.3 Oblivious Aggregation . . . . . . . . . ... ... ..
3.5.4 Oblivious Sorting . . . . . . . . . . ...
3.5.5 Secure Set Reduction . . .. ... ... ... Lo
3.6 Merging the Pieces . . . . . . . . .. ..
3.7 Privacy Level of the Algorithms . . . . . . . .. ... ... ... ... ....

Performance Evaluation

4.1 Introduction . . . . . . . . . . . . .
4.1.1 On Performance Analysis of Anomaly Detection System . . . . . ..
4.1.2  On Performance Analysis of Privacy Preserving Algorithms . . . . .

4.2 Outlier Detection by LOCI . . . . . . ... ... .. ... ...
4.2.1 Feature Construction . . . . . . . . . . .. ... .
4.2.2 Receiver Operating Characteristic Curve . . . . . . . ... ... ...

iv

[y

O 00 00 O Uk o W



CONTENTS v

4.3 Evaluation of LOCI . . . . . .. .. ... ... 38
4.4 Evaluation of the Privacy Preserving Algorithms . . . . . .. .. ... ... 40
4.4.1 Test Setup . . . . . . L e 40
4.4.2 Performance Evaluations . . . . ... .. ... ... ... . ... 41

5 Discussions 47

Bibliography 49

Appendix:

A Comparison Sequence Generators 53
A.1 Python script for odd-even merge sort sequence generator . . . . .. . ... 53
A.2 Python script for modified odd-even merge sorting network sequence generator 54

B Python Script for LOCI scheme 55

C Privacy Preserving Algorithms 57
C.1 SecreC code for ’oblivious aggregation algorithm’ . . . . . . ... ... ... 57
C.2 SecreC code for ’vectorized oblivious aggregation algorithm’ . . . . . . . .. 57
C.3 SecreC code for ’oblivious bubble sorting network” . . . . . ... ... ... 58
C.4 SecreC code for ’vectorized oblivious odd-even transposition sorting network’ 59
C.5 SecreC code for ’vectorized oblivious odd-even merge sorting network” . . . 60
C.6 Secure Set Reduction Operation . . . . ... ... ... .. ......... 62






Chapter 1

Introduction

Human communications have been revolutionized by the advent of the Internet. Public
and private service providers are increasingly transferring their services online for improved
availability and convenience. Low startup barriers, high consumer privacy and global out-
reach of this open network have made it possible to run completely online businesses and
services.

Unfortunately, these benefits have attracted all kinds of adversaries. The number of
cyber crimes are increasing at an alarming rate. According to MacAfee, "corporations
around the world face millions of cyber-attacks everyday" [25]. Some of these attacks are
orchestrated to harm a group of organizations e.g distributed network scanning. These
attacks can be defined as multi domain attacks. Multi domain attacks are relatively more
organized than the single domain attacks and often driven by political or ideological agendas.
Usually, they start by surveying the vulnerability of the networks and then mount large scale
attacks in the later stages. Therefore, it is important to detect the multi domain attacks at
the early stages to prevent further damages.

Usually, traffic logs of a victim of multi domain attack contain only the partial visibility
of the attacks. Therefore, when victim organizations apply intrusion detection system on
the local traffic, they often fail to differentiate between multi and single domain attacks.
To accurately detect multi domain attacks, the organizations need to aggregate traffic logs
containing attacks samples, so that intrusion detection systems have the complete picture
of the attacks.

But the organizations should not engage in such collaboration in non-privacy preserving
environment. Non-privacy preserving aggregation of network logs reveals crucial informa-
tion about the organizations, e.g. network topology, and crucial information about their
clients, e.g. internet usage behavior. Disclosing such information may arise various kinds
of complications such as legal ones.

Various methods exist for privacy preserving aggregation: one way hashing, commuta-
tive encryption, homomorphic encryption, secure multiparty computation (MPC) etc. Out
of all, MPC protocols have been unpopular for aggregation of large datasets even though it
provides a high level of privacy. MPC protocols suffer from high computation and commu-
nication overhead, which make them inapplicable in processing of large datasets.

In this project, we have focused on improving the speed of performance of MPC based
aggregation. Particularly, we tried to use MPC framework for fast aggregation of large
datasets. We have devised several algorithms that allow us to compute some secure set
operations using MPC framework within an acceptable time. Specifically, we have designed
privacy preserving aggregation, sorting and set reduction algorithm that can be assembled



2 CHAPTER 1. INTRODUCTION

to compute secure set union and intersection of multiple data sets. The algorithms are of
generic nature. That means they can be implemented on any MPC framework provided
that the framework supports some requirements. We state these requirements in the later
discussions. We used these privacy preserving set operation protocols to build our privacy
preserving anomaly detection system. Using the secure set operations protocols, we can
aggregate the attack traffic from multiple organizations.

Our privacy preserving anomaly detection system allows us to aggregate the attack
traffic from multiple organizations using the secure set operation protocols and to detect
the multi domain attacks using an anomaly detection system on the aggregated data. In our
project, we have chosen to use an outlier detection system named LOCI [31] as a network
anomaly detection system. LOCI is a density based nearest neighbor algorithm that can
be easily merged with the secure set operation algorithms to build the privacy preserving
system.

We have implemented the building blocks of our system to evaluate their performance.
The privacy preserving algorithms are implemented in Sharemind [9], a fast privacy pre-
serving MPC framework. We have also implemented LOCI scheme to detect outliers from
univariate attack features. The performance evaluation showed that our privacy preserving
algorithms have successfully achieved our goal. The evaluation also helped us to choose the
right configuration parameters for the LOCI scheme.

Rest of the report is organized as follows. In chapter two, we discuss the background
and related work of our project. In chapter three, we discuss the problem formulation
and design of the solution. In chapter four, we present the performance evaluation of our
algorithms. We conclude in chapter five by discussing the achievements and limitations of
our project.



Chapter 2

Background and Related Work

In this chapter, we discuss the theoretical concepts and related works necessary to un-
derstand our project. Our privacy preserving multi domain anomaly detection system is
designed using the functionalities of secure multiparty computation (MPC). We assume
that the MPC framework is based on secret sharing scheme and the MPC functionalities
are implemented using share computing methods. Therefore, we start by discussing the
basic concepts of secret sharing and secure multiparty computation in Sections 2.1 and 2.2.

We have devised some generic privacy preserving algorithms to design our anomaly
detection system. The algorithms are portable to any MPC framework provided that the
framework supports some requirements mentioned in chapter three. In this project, we
implemented our scheme in the Sharemind framework [9]. We provide a brief description of
the Sharemind framework in Section 2.3.

Our privacy preserving anomaly detection system needs to sort a sequence of values.
Due to privacy constraint, the sorting operation should not depend on the value of the
data. Sorting network is a data independent sorting model that can be easily incorporated
to our system. Hence, we discuss the basic concepts of sorting network and some examples
of sorting network in Section 2.4.

For anomaly detection, we have used the concept of outlier detection. Particularly we
have used an outlier detection scheme named LOCI [31]. Therefore, in Section 2.5 we
provide a brief discussion on outlier detection systems. Finally, we have assembled our
privacy preserving algorithms to design secure set union and set intersection protocols to
aggregate multi-domain attack data. In Section 2.6, we provide a brief overview of some
earlier scientific researches in the area of secure set intersection computation.

2.1 Homomorphic Secret Sharing

Homomorphic secret sharing plays an important role in the project. Our secure set inter-
section protocol assumes private data is in the secret shared format and implements the
subprotocols accordingly. In this section, we give a brief overview of secret sharing schemes
and their homomorphisms.

Secret sharing is a useful method for protecting the privacy of sensitive data, indepen-
dently proposed by Adi Shamir [34] and G.R. Blakley [7] in 1979. In simple terms, a secret
sharing scheme includes a dealer who divides a secret value into n number of shares and
distributes them to n parties. A predefined group of participants of size m (m < n) can
cooperate to reconstruct the shares at any given time, while ensuring that no group of less
than m can learn the secret. This group is called an access structure. We give a brief



4 CHAPTER 2. BACKGROUND AND RELATED WORK

overview of some secret sharing methods in the following section.

2.1.1 A trivial secret sharing scheme

A secret sharing scheme is considered trivial when all shares are necessary to recover the
secret. This is also known as a (n,n) secret sharing protocol. A simple, yet efficient, trivial
secret sharing scheme is given as follows. Let us assume there are n number of parties, each
denoted by P;, where i = 1...n. One of the parties acts as a dealer, who holds a secret S
from a group G, and picks a set of random numbers s; (i = 1...n — 1), where each s; is as
large as S. The dealer calculates s,, = S — > s; and distributes the shares by giving each s;
to P;. When the secret needs to be reconstructed, all P; send their shares s;, to the dealer
which adds them to obtain S. Since each share is random, they carry no information about
the secret. An adversary cannot deduce the secret unless it manages to corrupt all of the
parties. This scheme is, secure but not convenient, as it requires all parties to be present
during the reconstruction phase.

2.1.2 Shamir’s Secret Sharing

Shamir introduced the concept of secret sharing with the scheme described in [34]. It is a
(t,n) threshold scheme, where only ¢ out of n shares are needed to reconstruct the secret.
Shamir’s scheme is based on polynomial evaluation. Let S be a secret from some Zp, owned
by the dealer. The dealer selects a random polynomial, f(x) = fo+ fix+ fox®+.. .+ frxt ™1,
where f(0) = S. The dealer evaluates the polynomial s; = f(i), and gives each s; to a party
P;, where i = 1...n. Therefore each party obtains a share of the secret.

The size of the access structure is ¢, which is same as the degree of the polynomial,
where ¢t < n. For reconstruction of the secret, the Lagrange interpolation formula [6] is
used. Given ¢ points, (x;,v;), ¢ = 1...t, the polynomial can be regenerated by using the
formula presented in Equation 2.1.

%
_— 2.1
Z w11 - P (2.1)
=1 j=1,j#i
Thus, k parties can recreate the secret S with Equation 2.2.

f(@) = Z H

Any party holding a share can construct the secret by collaborating with (¢ — 1) other
parties, whether the dealer is included or not. As any subset of up to (¢ — 1) shares does not
leak any information about the secret, it is secure in presence of computationally bounded
adversaries. This scheme is more convenient than the trivial one, since the secret can be
reconstructed by a subset of the parties.

(2.2)
] —1

2.1.3 Homomorphism of Secret Sharing

A homomorphism is a structure preserving map between two algebraic structures, such that
for every kind of manipulation of the original data, there is a corresponding manipulation of
the transformed data. In [11], Benaloh showed that Shamir [34], Blakley [7] and some other
secret sharing schemes are homomorphic for some basic operation. Based on Benaloh’s
discussion, we define such homomorphic secret sharing as follows.



2.2. SECURE MULTIPARTY COMPUTATION 5

Let us assume two secrets, S and T, each being divided into n shares, denoted by s1 ... s,
and t1...t,. For any binary operations ® and ®, a secret sharing scheme is (®,®)-
homomorphic, if the reconstructed value of the shares s; @ t1...5, ® t, is same as the
value of S T.

We can also define a homomorphic secret sharing scheme with a constant as follows.

Let us assume a secret S and a constant C, where S is divided into n shares denoted
by $1...8,. For any binary operations @ and ®, a secret sharing scheme is (®,R)-
homomorphic, if the reconstructed value of the shares s; ® C...s, ® C is same as the
value of S & C.

The homomorphism properties of secret sharing schemes allows integrity preserving
operations on a secret by computations on the shares. Benaloh successfully argued that it is
much more secure to exchange and compute on the shares than to do the same on the secret
itself, as the secret cannot be retrieved from less than ¢ shares in (¢,7n) threshold schemes.
Therefore, it is possible to efficiently implement a multi party computation protocol with
homomorphic secret sharing scheme such as Shamir’s.

2.2 Secure Multiparty Computation

Our privacy preserving scheme is built upon the secure multiparty computation (MPCQC)
framework. The MPC problem was initially suggested by Andrew C. Yao in 1982, in terms
of the millionaires’ problem [38]. According to the millionaires’ problem, Alice and Bob are
two millionaires, who are trying to find out who is richer, without revealing information
about their wealth. Yao proposed a two party protocol, that solves the problem with the
given constraints. The solution of the millionaire problem lead to a generalization to multi-
party protocols.

Based on Goldreich’s discussion in [20], we give a brief overview of the basics of MPC
as follows. MPC is an M party cryptographic protocol that maps M inputs to M outputs
using a random process. The M inputs are local inputs of the parties and M outputs are
their corresponding expected local outputs. The random process is the desired functionality
of the protocol. The functionality allows distrustful parties to emulate by themselves the
behavior of some external trusted third party who computes the outcome of the process
using M inputs and returns each party the corresponding outputs.

To elaborate the emulation process, we introduce two distinct settings: real and ideal.
The real setting is the actual execution of the protocol, whereas the ideal setting is an
imaginary execution of the ideal protocol for computing desired functionality with the help
of a trusted third party. The protocol is deemed secure, and hence emulates the ideal
setting, if whatever the adversaries can feasibly obtain from the real setting can also be
drawn from the ideal setting. Here, an adversary is a malicious party, whose objective is
to prevent the users from achieving their goals by corrupting a set of parties. The security
objectives are preservation of privacy of the local input by the parties and correctness of
the local output by the honest parties.

The extent of emulation of the trusted third party by the mutually distrustful parties
in MPC protocols varies according to adversary and communication channel models. Pri-
marily, there are two main classes of adversary models: passive and active. In the passive
adversary model, an adversary only gathers information from the corrupted parties without
modifying their behavior. On the other hand, in the active adversary model, adversaries not



6 CHAPTER 2. BACKGROUND AND RELATED WORK

only read the messages, but also can modify the messages of the corrupted parties. Further,
active and passive adversaries can be adaptive or non-adaptive. A non-adaptive adversary
controls an arbitrary but fixed, set of corrupted parties before execution of the protocol,
whereas an adaptive adversary can choose which party to corrupt during the execution of
the protocol, based on the information gathered so far.

There are two basic models of communication. The first one is a cryptographic model,
where an adversary is able to access all messages exchanged between the parties, and mod-
ify messages of the corrupted parties. The second one is an information-theoretic model
where parties communicate with each other over pairwise secure channels. A secure channel
prevents an adversary from reading any messages exchanged between the honest parties,
even when the adversary is computationally unbounded.

Some models for general secure multi party protocol is given as follows:

e Models for passive and active adversary for any number of dishonest parties, assuming
that adversary is non-adaptive, and computationally bounded and communication
channels are cryptographically secure.

e Models for passive and active adversary that may control only a strict minority of the
parties, assuming that adversary is adaptive, and computationally unbounded and
communication channels are information theoretically secure.

The models can be easily applied to a reactive computational model, where a high level
application interacts with the parties. The parties adaptively receive some inputs from the
application and return the corresponding outputs. The application iterates this process
reactively for some time. The outputs of each iteration may also depend on some global
state, which may consist of the inputs and outputs of previous rounds. Therefore, the
global state may be updated at each iteration. The state may only be partially known to
individual parties and can be maintained by themselves in a secret sharing manner.

Some earlier protocols following this process use an unbounded number of iterations
[32]. To achieve efficiency, some subsequent work obtained constant round protocols in
some cases [5, 18, 27, 12]. Efficiency of the reactive computational protocoll can also be
improved by using large sized packets exchanged during the execution of the protocol and
optimizing the local computation time. In this project, we are not designing our own MPC
protocol, but merely using such protocols as an aggregation tool. Hence, we will not provide
any more discussion and refer to [20] for further reading.

2.3 Sharemind

Sharemind is a secure multi-party computation framework designed with a strong focus
towards speed, scalability and ease of application development [9]. Sharemind uses secret
sharing to split confidential information among several computing nodes denoted as miners.
The data donors do not need to trust the miners provided that the number of corrupted
miners colluding with each other is always less than a prescribed threshold, ¢, where the
number of computing parties, n > 3t. The framework achieves provable security in semi
honest model for information theoretically secure communication channels. In practice,
models with three to five miner nodes in semi honest setting are common, where three
miner models are comparatively communication-efficient. As Sharemind is strongly concen-
trated in improving processing efficiency in terms of speed, current implementation of the
framework consists of three miner nodes.



2.3. SHAREMIND

— S Miner1
""" Miner3
“nstructions |
- - - — — — A “‘»Re t

—
Storage [~"~

AN

-

Miner2

Input Dat? RS

Figure 2.1. Deployment diagram of Sharemind (adapted from [9]).

Sharemind uses 32 bit integers as input to achieve efficiency in local computation time.
Since Shamir secret sharing scheme does not work over 32 bit integers, an additive secret
sharing scheme similar to the scheme presented in Section 2.1.1 is used by the framework.
Figure 2.1 depicts the Sharemind framework. As said earlier, the framework consists of
three miners. All secret values provided by the data donors are shared to the miners by the
additive secret sharing given in Equation 2.3, where each miner, P;, receives a share, s;, of
a secret s.

232

81 + 82 + s3 = s mod (2.3)

The Sharemind protocols are implemented in a framework given in Figure 2.1. The
framework consists of three computing parties defined as miners. The miners stores the
shares of secret values in a secure storage. If the input values are not confidential then they
are replicated to each miners in a publically accessible storage.

Sharemind implements its MPC functionality using constant round share computing
protocols. The share computing functions provided by the framework are addition, multi-
plication and comparison operations. The miners are equipped with a runtime environment
to implement the functions. Privacy preserving algorithms are designed using these share
computing operations.

During data processing, the shares of the secret values are pushed to a secure stack and
privacy preserving algorithm is executed on them. Intermediate and final result generated by
each instruction of privacy preserving algorithm are also shares and stored in the same secure
stack. When the execution is over, the miners collaborate with each other to reconstruct the
final result. Sharemind provides a declassifying function for such reconstruction. Unless
this function is explicitly invoked, the parties cannot reconstruct any secret value. The
reconstructed result is publically accessible.

The share computation functions are complicated and hence kept hidden from the ap-
plication developers. A controller library, provided by the framework, interfaces these op-
erations to the application developers, so that they can be used without knowing their
underlying details. For efficiency reasons, vectorized operations have been added to the
framework, so that the same protocol can be executed in parallel with many inputs. This
reduces the number of iteration significantly for larger datasets.

For privacy preserving application development, the framework provides a programming
environment including an assembly and a high level language [21]. The framework also pro-
vides controller libraries for data distribution, program execution and performance analysis.



8 CHAPTER 2. BACKGROUND AND RELATED WORK

Several privacy preserving application have been designed using Sharemind. A Sharemind
version of histogram computation and frequent itemset mining applications is presented in
[8]. Other application examples have been suggested in [13, 35].

2.4 Sorting Networks

Our secure set intersection protocol requires sorting of data elements with the constraint
that sorting has to be executed without looking into the comparison results. This constraint
inhibits the use of optimal comparison based sorting. A sorting network is an alternate
sorting model, that can solve the problem, while satisfying the given constraint.

A sorting network is a data-independent sorting technique, where the comparison se-
quence is generated in advance and executed regardless of the outcome of the past compar-
isons. A sorting network consists of two components: comparators and wires. A wire acts
as a carrier of data element. The number of wires in a set is equal to the input size and
each wire is initialized to one of the input values. The comparators act as operational units,
each taking a pair of wires as an input, comparing their values and writing the outcome to
the same wire pair.

We use the following definition to formally define a comparator. Let us assume a data
sequence of size n is represented by A™ = [ag . ..a,], whose indexes are represented by the
set, J =[0...n — 1]. A comparator is a mapping (i,j) : A" — A" 4,j € J with

a; = min(a;,a;)
a; = max(a;, a;)
ar = ay, for all k with k £ i, k # j

A set of comparators is used to compose a stage. This composition, S = [(i1, j1)-.-(ik, J& )],
must be organized in such a way that each i, # js, i, # is and j- # js. A set of comparator
stages is used to compose a comparator network. A sorting network is a comparator net-
work that sorts a whole input sequence. Usually all comparators in a stage are independent.
Therefore a sorting network may be parallelized.

Figure 2.2 illustrates three examples of sorting networks: bubble sort [24], odd-even
transposition sort [24] and odd-even merge sort [4] for eight inputs. Figure 2.2(a) represents
a bubble sort sorting network. It consists of {1 -n(n—1)} comparators and (2n — 3) stages.
Figure 2.2(b) shows odd-even transposition sort, which consists of the same number of
comparators as the bubble sort but has fewer stages (n — 1). A odd-even transposition
sort, contains more comparators per stage, it is more parallelizable than bubble sort. The
algorithms are easy to implement, but suffer from poor performance in case of large inputs.

The efficiency of a sorting network can be measured by its size, defined in terms of the
total number of comparators in the network. Both bubble sort and odd-even transposition
sort have the size O(n?/2). The best known sorting network, called an AKS Network [2],
achieves the size, O(n logn) for n inputs, but has large linear constants hidden behind
the O notation, which makes it impractical. Several practical sorting networks exist which
bound the complexity to O(n log>n). Odd-even merge sort presented in Figure 2.2(c) is
an example of such an algorithm. It achieves the size n log® n and log? n stages. For this
reason, odd-even merge sort is both practical and highly parallelizable.

2.5 Outlier Detection

Anomaly detection is a crucial part of our project. We designed our anomaly detection
system by a nearest neighbor (NN) based outlier detection scheme. In this section, we give



2.5. OUTLIER DETECTION 9

SR N N S T N T
S A A A R S S
RS N N S S S S S
S S T T T
6 6
° L S T T
! ! A S '
(@) (b)
1
!
i I !
:
; "
s g
: ; ;
A"

(©

Figure 2.2. Sorting Networks

. ® . s ®
o:o...

01 0"’
.o..o
LY

* e

. e
LRy

st

0..

c2

Figure 2.3. Outliers

a brief overview of nearest neighbor based outlier detection schemes. We start by giving a
definition of outliers. In statistics, an outlier is an observation that is numerically distant
from the rest of the data [3]. For example, let us consider the points in cluster C1 in Figure
2.3. Each point represents a statistical (bivariate) observation of some event. Point O1 is
visibly distant from all other points in the cluster. Hence, point O1 is an outlier.

We can correlate some network anomalies (e.g. denial of service attack, IP sweep) with
the outliers, as their traffic patterns are significantly different than that of the normal
traffic. So, outlier detection systems can be used for anomaly detection. Anomaly events in
networks are sporadic and it is difficult to train a machine to classify such events correctly.
Therefore, unsupervised learning outlier detection systems such as nearest neighborhood
schemes, are practical choice for detection of anomalies.

Traditional nearest neighborhood based techniques, such as k" nearest neighborhood
(KNN) scheme [23], detects outlier using the distance to the k*" nearest neighbor from a



10 CHAPTER 2. BACKGROUND AND RELATED WORK

given point. According to the KNN scheme, a point, p, in a dataset, D, is an outlier, if at
least T percentage of the points in D lie outside the distance (usually Euclidean) to the k"
nearest neighbor of the point p (k-distance). However, if a given dataset has both sparse
and dense regions, the scheme generates inaccurate results. This can be explained by Figure
2.3.

The dataset in Figure 2.3 has two regions of points marked as clusters C1 and C2. This
points are statistical (bivariate) observations of some event. The density of C1 is sparse
and C2 is dense. There are two points, O1 and O2, which are potential candidate outliers.
The KNN scheme, defined above, uses the same threshold, T', to detect outliers for both
of the clusters. It detects point O1 as an outlier for cluster C'1. On the other hand, C2 is
densely populated and there is a chance that number of points outside k-distance of O2 are
below the threshold. Therefore, it may not detect O2 as an outlier, despite the fact that
02 is in fact an outlier for cluster C2.

To alleviate this problem, Breunig et al. [10] have come up with a more robust scheme:
density based nearest neighbor technique. This class of outlier detection uses the concept of
local neighborhood density. A local neighborhood is a circular area whose radius is deter-
mined by a local distance, usually a fraction of the k-distance. Local neighborhood density
is the number neighbors (points) lying within the perimeter of the local neighborhood. Sev-
eral methods exist in this class: LOF [10], COF [36] and LOCI [31]. These schemes define
a degree of being an outlier of a point, rather than directly considering a point an outlier.
Outliers are selected based on a cut-off threshold on the degree, which makes them more
robust in scenarios, such as the one shown in Figure 2.3.

However for LOF and COF scheme, the cut-off threshold is manually selected, which is
a weakness for automatic detection of outliers. This problem does not exist in LOCI, since
it uses automatic data dictated cut-off threshold to determine whether a point is an outlier.
We have chosen to use the density based KNN scheme LOCI as our anomaly detection
system for the scheme’s robustness.

2.6 Secure Set Operation

We have devised several privacy preserving subprotocols that can be assembled to design
secure set operation protocol, specifically secure set union and intersection protocol. We
use these set operation protocols to aggregate multi domain attack traffic. In this section,
we discuss some earlier researches in this area. For our convenience, we divide the protocols
into two classes:

1. Absolutely secure protocols that leak minimum amount of information. These proto-
cols only disclose the result of the set operation and nothing else. A party can only
learn information that can only be deduced from its input and the final output.

2. Less secure protocols that may reveal some more information other than the result
of the set operation, e.g. input length of each party. This information may aid in
revealing private inputs.

We discuss the following protocols based on our classification. In [1], Agrawal et el.
proposed a two party secure set operation protocol using commutative encryption. The
solution is easy to implement in databases and requires linear communication complexity.
Another secure set operation protocol, based on additive homomorphic encryption and
polynomial evaluation, is presented by Kissner et el. [22]. Both of the protocols employ



2.6. SECURE SET OPERATION 11

expensive cryptographic primitives, and hence suffer from weak performance in processing
large datasets.

In [16], Emecki et el. a secure set operation protocol is defined using Shamir’s secret
sharing scheme [34]. The protocol replaces the trusted third party with a P2P network
for query processing that works on the shared values of the private input. This protocol
gives much better performance, compared to the first two protocols since it does not use
the asymmetric cryptography. All of the above mentioned protocols leak the size of the
input-set for each party, and hence belong to the second class defined above.

Naor et el. proposed a two party set operation protocol, using oblivious transfer and
polynomial evaluation in [30]. The parties learn only the outcome of the operation and
nothing else. Therefore, the protocol belongs to the first class. Unfortunately, the protocol
is significantly slow compared to the previous protocols, which makes it impractical for
large datasets. Our set operation protocol leaks minimum information (similar to first
class), while achieving acceptable performance for large datasets.






Chapter 3

Algorithms

3.1 Problem Statement

Multi domain network attacks are increasing [26]. Such attacks include distributed denial
of service (DDoS), spamming and scanning attacks to networks of multiple organizations.
Often, traffic logs of a single victim contain only the partial evidence of the whole incident.
When intrusiond detection system is applied on single domain traffic logs, they fail to grasp
the complete visualization of the attack, which makes the detection result of the system
less credible in case of multi domain attacks. Aggregating traffic logs of multiple victim
organizations and applying intrusion detection system on them, can increase the strength
of multidomain intrusion detection.

Anomaly detection is an intrusion detection technique, in which deviations from nor-
mal pattern in network traffic suggest malicious behavior. So, we define multi domain
anomaly detection system as an intrusion detection system which detects multidomain net-
work threats by detecting the deviation from normal pattern in aggregated traffic.

Aggregation of network traffic should be performed in privacy preserving manner. Traf-
fic logs contain usage statistics of network users, and aggregating this kind of information
openly may lead to legal problems. Secure multi party computation (MPC) is a crypto-
graphic technique that allow information aggregation from multiple organizations with a
high degree of privacy. In this project, we aim to design a privacy preserving collaborative
anomaly detection system, that aggregates traffic logs from multiple organizations, using
a MPC protocol, and detects multidomain network intrusions in the aggregated features,
using an anomaly detection system. We formulate our solution with a use case. Then we
expand our design to generalize the solution.

Let us assume we want to detect a multidomain IPsweep attack. An IPsweep is a
surveillance sweep to determine the active hosts in a network. This information is useful
for an attacker to orchestrate attacks and search for vulnerable machines. There are several
methods to perform an IPsweep. The most common method is to send ICMP echo requests
to every usable address in a subnet and wait to see which hosts respond. When a remote
host performs an IPsweep in multiple subnets, then the attack may be classified as a multi-
domain sweep. The detection signature of an IPsweep attack is

If a remote host probes a high number of local hosts in a network by ICMP packets within
a given period of time, then the host can be classified as an IPsweeper.

Usually, the time period is user defined but they can be as small as five to ten seconds.
IPsweepers generally show recognizable abnormal patterns, and victim organizations can

13



14 CHAPTER 3. ALGORITHMS

hence easily detect them without any collaboration. Sometimes, attackers hide their actions
by mounting small scale attacks. In this case, intrusion detection systems generally fail to
detect the anomaly event [33]. However, if an attacker runs an undetectable small scale
IPsweep over multiple networks, then counting the aggregate number of destination IP
addresses in the ICMP traffic sent by the attacker to the networks may help to reveal the
anomaly event.

Counting the frequency of an IPsweeping host over the domains reveals how many net-
works have been probed. If the frequency count is higher than the normal count (where
boundary between normal and abnormal is set by a threshold), the host is classified as a
multidomain IPsweeper. We revise the previously defined detection signature as follows:

If a remote host has a high number of destination IP addresses in the ICMP packets in
a multidomain aggregated log within a defined interval and appears in multiple networks,
then the host can be classified as a multi domain IP sweeper.

From now we will use the term frequency count to reflect the number appearence of a
host in multiple networks. Implementing such signature to detect the attackers requires
aggregation over multiple domains. We explain the aggregation scenario using Figure 3.1.
Let us assume, there are five networks (A-E), that are victims of IPsweeping attack. Remote
hosts sending ICMP packets to these networks can be divided into three classes:

e Multi Domain Sweeper: IP sweepers which have scanned multiple networks. The
bold line from the multidomain sweeper to the networks represents a multidomain
sweeping event.

e Single Domain Sweeper: IP sweepers which have scanned one or two networks
only. The thin lines from the single domain attackers to the networks represent single
domain sweeping events.

¢ Benign Hosts: Some remote normal hosts which sent random ICMP packets. The
dotted line from the benign host to the networks reflects the random ICMP events.

The victim organizations want to detect the multidomain attackers. Therefore, they ag-
gregate the destination and frequency count of each remote host, using a privacy preserving
MPC system. Some or all of the victim parties can be the computing parties of the MPC
system, which means they can run the MPC protocol by themselves. MPC system can also
be implemented by some external third parties. In this scenerio, we assume that the data
donors (the victims) and the computing parties are separate entity.

The dashed flow lines from the networks to the MPC framework show the input (contain-
ing the attack features) to the MPC protocol. The MPC protocol aggregates the features of
the identical IP addresses in a privacy preserving manner. Such operation can be termed a
secure set union operation. The bold dashed lines between the computing parties (P1-P3)
in the MPC framework reflects the message flow in the set union computation. After the
aggregation, the output is fed into an anomaly detection system. The thin line between the
MPC framework and anomaly detection system shows such event. The anomaly detection
system is executed in public. The reason is given in the following discussion:

A MPC protocol is suitable for simple privacy preserving data mining and counting
operations. It is possible to implement simple anomaly detection systems (e.g k*" nearest
neighborhood scheme [23]) in MPC frameworks. But this approach is not scalable. Imple-
menting scalable anomaly detection systems, such as LOCI [31], in MPC framework is very
difficult, and even if it is done, will give poor performance in terms of speed.



3.2. SOLUTION FORMULATION 15

Anomaly Detection
System

Multi DOMAIN  p— A B
Sweeper v

R4 framework
"
T
\
|
[
\
|
E
A

Benign Hosts

Single Domain Single Domain Single Domain Single Domain
Sweeper Sweeper Sweeper Sweeper

Figure 3.1. A scenerio for privacy preserving anomaly detection

We have designed our privacy preserving collaborative anomaly detection system using
the two components: a MPC framework and an anomaly detection algorithm. We explain
the design strategy in the next section.

3.2 Solution Formulation

As we said, our target is to build a secure collaborative intrusion detection system using a
MPC framework and an anomaly detection algorithm. We skipped constructing our own
MPC protocol. Rather, we design a generic algorithm, that can be executed using any
secret sharing based MPC protocol. As for the anomaly detection system, we use a nearest
neighbor based outlier detection algorithm, called LOCI. We build our system using the
following scheme:

1. We perform a privacy preserving set union computation on the private multi-domain
input, using a MPC based generic algorithm. The multi-domain input is a multiset
formed by merging local inputs from each party, consisting of series of IP addresses,
their destination, and frequency counts. This operation aggregates destination and
frequency count of identical candidates in a privacy preserving manner.

2. We publish the aggregated destination counts of the union-set. We detect IPsweep-
ers in a non-privacy preserving environment, by applying the LOCI scheme to the



16 CHAPTER 3. ALGORITHMS

published counts.

3. Using the list of detected sweepers from step 2 and a user defined threshold, we
perform a set reduction operation (explained later) in privacy preserving manner on
the private union-set (obtained from step 1) by the MPC protocol, to obtain a list of
possible multidomain IP sweepers.

The threshold in step 3 reflects the minimum appearance count for a multi domain
attacker. If the value of the threshold is equal to the number of victim organizations, the
threshold based set reduction operation can be reduced to a set intersection operation.
Thus, we are actually using a variant of a set intersection operation for network anomaly
detection.

As outlined in the scheme, we need two generic MPC based algorithms: one for set union
and one for set reduction. We define some secure set operations based on Kissner and Song
[22] before describing the algorithms. We assume there are n parties, each having an input
set denoted by S; (1 >4 > N). Elements in the sets are private values of some common
attributes.

Secure Set Union: Secure set union is a multi party operation, which at the end allows
all parties to learn the multiset union of the private sets (S1US2U...USy), without gaining
additional information.

Secure Set Intersection: Secure set intersection is a multi party operation, which at
the end allows all parties to learn the multiset intersection of the private sets (S1NSaN...N
SN), without gaining additional information.

Secure QOver-threshold Set Union: Secure over-threshold set union is a variant of
the secure Set Intersection operation, which at the end allows all parties to learn elements
that appear in the multiset union of the private sets (S1US2U...USN) at least t (a threshold
number) times, without gaining additional information.

Therefore, the privacy preserving generic algorithms we need to develop are: secure set
union and secure over-threshold set union. If the threshold in a privacy preserving over-
threshold set union is equal to the number of parties, then the operation can be reduced to
secure set intersection. Therefore, we use the term secure set intersection instead of secure
over-threshold set union from now on.

We restate this scheme as Algorithm 3.2.1. To understand the notational convention
and other related issues of this algorithm in detail, refer to the discussion in Section 3.4.

Algorithm 3.2.1: PRIVACY PRESERVING ANOMALY DETECTION(||D||)

1. ||Al| + SecureSetUnion(||D]|)

2. C « PublishCount (]| A||)

3.0 «+ LOCI(C)

4. ||F|| <= SecureSetIntersection(||A], O, t)
5. output (|| F||)




3.2. SOLUTION FORMULATION 17

Here, ||D|| is a private multiset formed by merging the private local inputs from each
party. ||D|| is represented by a two dimensional array of 3 columns and N rows. Each row
consists of an IP address, its destination and frequency count. || D]| is fed into the function
defined in step 1 to compute privacy preserving a set union. The function aggregates the
destination and frequency counts of the identical IP addresses, which are stored in the
private vector ||A]|. In step 2, the column consisting of the aggregated destination counts
is published in the public environment. In step 3, an anomaly detection scheme based on
LOCIT is applied to the published count. The function calculates openly and exposes the
detected attackers (O).

In step 4, we performs privacy preserving set reduction operation on the union-set || Al
based on the outlier list O and predefined threshold 7. The output is stored in private vector
| F']|, which is our desired multi-domain sweeper (outlier) list. If T" is equal to the number
of victim organizations, then the set reduction operation can also be termed a secure set
intersection. This means, when T is equal to the number of victim parties, the detected
attacker performed IPsweeping in all of the networks. The final step, declassifies the private
result || F|| in a public environment. We will state our privacy goals for our project in the
next section.

3.2.1 Privacy and Performance Goals

We will start by discussing our privacy goals. Our privacy preserving algorithms are generic
and their privacy guarantees strongly depend on the MPC framework over which they are
implemented. Therefore, unless the framework leaks information during computation, the
privacy of the inputs are preserved. The only privacy concern for our scheme is whether
the output of each step (steps of Algorithm 3.2.1) leaks sensitive information.

According to our previous discussion, we are aggregating a list 3-tuples: IP Address,
Destination Count and Frequency Count. Our target is to aggregate the list and then apply
anomaly detection system on the aggregated value. It would be ideal, if our scheme allows
the computing parties to learn only the IP address and other attributes of the multidomain
attackers and nothing else. Since our anomaly detection scheme is executed in non-privacy
preserving manner, such privacy assurance is not possible, as a non-privacy preserving
anomaly detection system needs to use aggregated counts (e.g. destination count) in public
environment. But, even if the aggregated counts are published, they do not breach privacy of
the clients or networks, unless the associated IP addresses are disclosed. In that perspective,
we can state our following privacy goals of our scheme:

1. The scheme should not explicitly disclose any host IP address at the beginning or
intermediate stages of the computation.

2. The scheme should not leak any information that may aid in disclosing the IP address
of the hosts.

3. The scheme should only disclose the IP address of the detected multidomain attacker
as the final result.

If our scheme satisfies the above mentioned goals then we can say that privacy goal is
achieved. We give a detailed description of each step of Algorithm 3.2.1 in the following
discussion. We start our discussion with the LOCI algorithm.



18 CHAPTER 3. ALGORITHMS

3.3 Outlier Detection by LOCI

LOCIT is a density based nearest neighbor scheme for outlier detection, where it uses the
concept of local neighborhood density for outlier detection. As said earlier, local neighbor-
hood is a circular area. The radius of the circle is defined by a fraction of the distance
(usually euclidean) to the k nearest neighbor. Local neighborhood density is defined by the
number of neighbors within in the perimeter of the circle.

Like other density based schemes [10, 36], LOCI uses a term to define local neighbor-
hood density - Multi-granularity deviation factor (MDEF). MDEF is defined as the relative
deviation of local neighborhood density of a point from the average local neighborhood
density in its k-neighborhood. Here, the k-neighborhood is a circle with radius & (distance
to the k-nearest neighbor from the point). The local neighborhood is a smaller circle within
the k-neighborhood having the radius ak (a fraction of the k-distance). Here, « is a user
defined constant term that determines the fraction of k-distance.

If the local neighborhood of a point is closer to the average local neighborhood density,
then its MDEF is closer to zero, and far from zero otherwise. Therefore, a small MDEF
value reflects a smaller degree of outlierness, whereas a big MDEF value reflects a higher
degree. We explain the formulation of the LOCI scheme with a scenerio (given in figure
3.1) in the following discussion. We start by formulating the MDEF.

mppp=t=nl 1 (3.1)
I I
where, n = local neighborhood density of a point
1 = average local neighborhood density of the K-neighborhood of a point

The scheme also introduces a term called normalized standard deviation, denoted by
9 MDEF"
g

TMDEF =, (3.2)

where,c = standard deviation of the local neighborhood densities in the k-neighborhood of
a point
= average local neighborhood density of the K-neighborhood of a point

To automatically flag a point as an outlier, we use the inequality shown in equation 3.3.

MDEF > \- O MDEF (33)

Here, )\ is a constant to reflect the extent of deviation. Interestingly, equation 3.3 can
be simplified easily. Using equation 3.1 on the left hand side and 3.2 on the right hand side
of the equation 3.3, we get,

[
7 1
=|lp—n|>A0o (3.4)

Equation 3.4 reflects the classical definition of outliers presented in [14], which states,
"an observation is an outlier if it is three standard deviation from its mean". Therefore,
the LOCI scheme utilizes the classical definition of outliers in the context of the local



3.4. IMPORTANT PRELIMINARIES FOR PRIVACY PRESERVING ALGORITHMS 19

Figure 3.2. An outlier detection scenario

neighborhood density. Using the above definition and equation 3.4, we can set A to three
(which is same as [31] suggested).

We illustrate how the LOCI scheme flags a point as an outlier in the scenario explained
by figure 3.2. We want to find out whether a point, denoted by P, is outlier. Points in
the k-neighborhood of P are pl, p2, p3 and P itself. The smaller circles around the points
denote local neighborhoods. Local neighborhood densities of the points are 1, 2, 5 and 4, re-
1+215+4 (1-3)24(2-3)2+(5-3)2+(4-3)% _

spectively. Now we have,n =1, u = =3and o = \/ m
1.12. Applying equation 3.4 to these values, we find out that point P is not an outlier.

But the LOCI scheme presented in equation 3.4 has a problem. Mean and standard
deviation are not robust statistics for outlier detection, as they are strongly influenced by
the same outliers they are trying to detect. This is known as the masking affect, where the
outliers hide their presence by changing the mean and standard deviation to such degree
that they become undetectable [14].

One workaround to handle the masking problem is to choose a smaller value of A (cur-
rently set to 3), the constant to reflect the extent of the deviation. Another way is choosing
an alternate set of statistics that are less vulnerable to extreme values. The median and
median absolute deviation (MAD) are such functions [37]. If we replace mean by median
and standard deviation in equation 3.4 by MAD, we arrive at 3.5. However we cannot use
the same value for A (= 3). In such case, Davies and Gather mentioned in [14] to set A = 5.2
as a general all purpose value.

median —n > X - MAD (3.5)

Unfortunately, both of the solutions to minimize the masking problem have drawbacks.
While they try to improve the success rate by increasing the number of true positives,
they increase the number of false positives as well. In fact, choosing a right value for the
configuration parameters for outlier detection is always a trade off between the true positive
and false positive ratio. Therefore, different versions of LOCI is tried in this work, to pick
the right scheme for our anomaly detector in chapter four.

3.4 Important Preliminaries for Privacy Preserving Algorithms

Let us begin by discussing some fundamental issues of privacy preserving algorithms.



20 CHAPTER 3. ALGORITHMS

3.4.1 Setup

We assume there is a MPC protocol and some computing parties. Each party contains
some libraries to execute the MPC functionality (e.g. arithmetic and relational operation)
and a secure data storage. Privacy of the input is preserved by secret sharing, and hence
MPC functionalities are implemented by homomorphic share computing protocols. Data
sources apply a common secret sharing algorithm on their input and distribute the shares
to the computing parties. Data analysis algorithms are built using the MPC functionality
and replicated to each party.

We assume the MPC protocol executes the algorithms in a constant number of rounds.
In each round, the algorithm operates over some input shares and generates output shares
that can be combined to form a result. The MPC protocol may exchange messages between
the parties after each round, if the MPC functionality requires shares from other parties
(e.g. multiplication operation [19, 15]). The exchange of the shares is performed in such
a manner that no party can use the share to derive unauthorized knowledge. Without
explicit disclosure, output shares are not recombined, and hence privacy is preserved. The
algorithms use some public values, e.g. iteration limit and threshold value. Finally, we
assume that the MPC framework supports vectorization of mathematical and relational
operations (element wise operation over the whole array).

3.4.2 Notational Convention

Following conventions are used. All private values (secret shared inputs and the output
shares generated from them) are enclosed within parallel lines, whereas the public coun-
terparts are represented as it is. Variables are represented by lowercase and arrays by
uppercase letters. For example, ||b|| is a variable in secret shared form, ||B|| is an array in
secret shared form and c is a public variable.

The indexing operator ('[..]) is used to select rows, columns or elements of an array.
Array indexing starts from 1. For example, ||B||[1] means 15! element of the one dimensional
private array B and C[1,2] represents an element, from the 1%¢ column and 2"? row of two
dimensional public array C. A wildcard symbol is used to select all values in a row or a
column. For example, || D||[5,*] means the 5! column of private array D and ||B||[*,1] means
the 1% row of private array B.

Let us define operations over all elements in an array as vector operations. Vector
operations are done element wise, unless otherwise specified. For example, ||B|| - ||D] is
element wise multiplication of private vector, B and D. In some cases, a subset of private
values are needed. This is represented as: ||D||[i:j], which is a subarray formed by the items
from i to j of private vector D.

3.4.3 Oblivious Operations

Performing set union and intersection requires multiple numbers of comparison between
the set elements. The secrecy requirements preclude us from using well known branching
operation, such as:

If (predicate) Then
(consequent)
Else
(alternative)



3.5. PRIVACY PRESERVING ALGORITHMS 21

There is an alternate and more efficient way to implement branching, using the boolean
value generated by the comparison operation, which we call an oblivious operation. The
following statement implements an oblivious way of determining the maximum of two num-
bers.

mar=a-(a>b)+b-(1—(a>0))

This statement evaluates (a > b), and based on the evaluation, it either assigns a to
mazx (if evaluation is TRUE) or assigns b to max (if evaluation is FALSE). If the evaluation
result is privacy preserved (secret shared), then no party learns who is greater and what is
assigned to max. We implement branching operations, using such oblivious operations, to
design our privacy preserving algorithms.

3.4.4 Data Structure

Let us define the data structure of the input values. The input set from each data source
contains a series of 3-tuples: {IP, Count, Freq}. The 1% tuple is the IP address of the
remote host, the 2"? element is the feature count (e.g. destination count) of the remote
host and the 377 element is the frequency count of the remote host (potential attacker) in
the set. Initially, the frequency count for each host is set to 1. The size of the input set
may vary from one source to another. We set this length to a fixed size, so that none of
the computing parties in the MPC protocol can learn about the input length from any data
source. In case the number of remote hosts are less than the fixed length, empty slots is
filled with dummy private IP addresses with zero count and frequency. The range of private
IP addresses should be different for different domains.

When all of the sources have provided their input set to a data storage of the MPC
protocol, the computing parties see a merged set of size N (= ny + ... + n,,, where the
number of data sources are m). We call this merged set the multiset ||D||, represented by
a 2 dimensional array of N rows and 3 columns. The set operation algorithms use this
multiset to generate the desired output.

3.5 Privacy Preserving Algorithms

We need two privacy preserving algorithms: secure set union and secure set intersection. To
implement such schemes we need several subprotocols. In this section, we discuss the formu-
lation of the algorithms using the subprotocols and schemes, to implement the subprotocols.
We start by formulating the secure set union and intersection algorithms.

3.6.1 Secure Set Union Algorithm

In our problem statement, we discussed that the secure set union is the aggregation of
attributes of common elements in a multiset, without compromising the privacy of the
input values. As private inputs are secret (represented in secret shared form) and the
computation results on input values are also secret, we cannot implement a straightforward
compare and aggregate method. We resorted to a novel method of oblivious aggregation as
presented in Algorithm 3.5.1.



22 CHAPTER 3. ALGORITHMS

(a) Party A (b) Party B
IP | Cnt | Freq IP | Cnt | Freq
1IP1 10 1 1P3 10 1
P2 | 20 1 P4 | 20 1
IP3 | 30 1 IP5 | 30 1
P4 | 40 1 IP6 | 40 1

Table 3.1. Input from party A and B

(a) Input Multiset (b) After step 1 (c) After step 2 (d) After step 4
IP | Cnt | Freq IP | Cnt | Freq IP | Cnt | Freq IP | Cnt | Freq
IP1 | 10 1 IP1 | 10 1 IP3 0 0 IP1 | 10 1
P2 | 20 1 P2 | 20 1 P4 0 0 P2 | 20 1
IP3 | 30 1 IP3 | 40 2 IP1 10 1 IP5 | 50 1
P4 | 40 1 P4 | 60 2 P2 | 20 1 IP6 | 60 1
IP3 | 10 1 IP3 0 0 IP5 | 50 1 IP3 | 40 2
IP4 | 20 1 P4 0 0 IP6 | 60 1 IP4 | 60 2
IP5 | 30 1 IP5 | 30 1 IP3 | 40 2

IP6 | 40 1 IP6 | 40 1 P4 | 60 2

Table 3.2. An example of secure set union using Algorithm 3.5.1 and Table 3.1

Algorithm 3.5.1: SECURESETUNION(|| D))

comment: || D| is a private multiset input

1. ||D|| + ObliviousAggregate(||D||)
2. || D|| + ObliviousSort(||D||)

3. [|D|| + SecureSetReduction(||D]|,t)
return (||D]])

We explain each step of the Algorithm 3.5.1 with a simple example. Let us assume there
are two parties, A and B, who want to perform a secure set union on their traffic to detect
anomalies. Input from each party contains 4 rows (see Table 3.1), which are merged by
the MPC protocol as Table 3.2(a), assuming all of the values are actually stored in secret
shared form. The secure set union function takes the merged table (=||D||) as an input.

In the first step, the algorithm obliviously aggregates attributes (count and frequency
in this case) of identical IP addresses. The aggregated values are assigned to the first row
from the rows with identical IP addresses, while the attributes of the rest of the rows are
zeroed. The output of this step is presented in Table 3.2(b). In the second step, the rows
are sorted obliviously in ascending order, according to the frequency count. After this step,
IP addresses with zeroed attributes are pushed to the top of the list, while rest of the rows
are placed after them in a sorted manner. This is shown in Table 3.2(c). Finally, rows with
zeroed attributes are removed. This is done by counting the number of rows with zeroed
attributes and then removing the corresponding number of times. The output of this step
is given Table 3.2(d).



3.5. PRIVACY PRESERVING ALGORITHMS 23

(a) Union-set (b) Outliers (c) After step 1 (d) After step 2
IP | Cnt | Freq Index IP | Cnt | Freq IP | Cnt | Freq
1IP1 10 1
P2 | 20 1 3 IP5 | 50 1
IP5 | 50 1 4 IP6 | 60 1 IP3 | 40 2
IP6 | 60 1 ) IP3 | 40 2 P4 | 60 2
IP3 | 40 2 6 IP4 | 60 2
IP4 | 60 2

Table 3.3. An example of secure set intersection using Algorithm 3.5.2

3.56.2 Secure Set Intersection Algorithm

The secure set intersection algorithm detects the attackers that are found in some or all of
the domains. This is achieved by performing a secure set reduction twice over the union-
set obtained from the secure set union algorithm. The set reduction function in step 1, is
an indexed set reduction operation, which is performed based on the output the anomaly
detection system. This operation isolates the possible attackers. The function in step 2,
is a secure threshold based set reduction operation, where the threshold value reflects the
boundary of single domain and multidomain sweepers. This reduction rules out the single
domain attackers. The scheme is given in Algorithm 3.5.2.

Algorithm 3.5.2: SECURESETINTERSECTION(||D||, O, t)

comment: || D|| is a private union-set, O list of index of outliers, t is a threshold

1. ||D|| - IndexedSet Reduction(|| D], O)
2. ||D|| + SecureSetReduction(||D]|,t)
return (||D]])

We give a simple demonstration of this algorithm using the input from Table 3.1. Let
us assume a union-set has been computed by Algorithm 3.5.1 and the result is given in
Table 3.3(a) (which is same as 3.2(d)). Using the destination counts of this union-set, the
outlier detector detected some outliers, the index of which is given in Table 3.3 (b). In the
first step, the scheme deleted all the elements whose indexes are not in the outlier list. The
result of this step is shown in Table 3.3(c). In the final step, the output from the previous
step is reduced based on a threshold ¢, which is set to 2, in this example. The output is
given in Table 3.3(d). This is our desired list of multidomain sweepers, which probed in
networks of both Parties A and B. Now, we explain the subprotocols necessary to implement
Algorithms 3.5.1 and 3.5.2.

3.56.3 Oblivious Aggregation

We start with the first subprotocol in the secure set union: Oblivious Aggregation. The ob-
jective of this algorithm is to aggregate features of identical elements in a privacy preserving
manner. We designed a novel oblivious aggregation method, given in Algorithm 3.5.3.



24 CHAPTER 3. ALGORITHMS

Algorithm 3.5.3: OBLIVIOUSAGGREGATE(||D||)

comment: || D|| is a seqeuence of 3-tuples: {IP, count, frequency}

1. n «+ length(||D]|)
2.for i+ 1ton

3. for j<1ton

4. Alipa|ls lipall < |DII[L, 4], [ DII[L, j + 1]

5. lenta|, [[enta| < IDII[2, 4], [ DII[2, 5 + 1]

6. el < (lipa]| == llip2|)

7. IDN(2, 4] <= ([[enta|| + [lenta]) - [le]l + [lent ]| - (1 — i)
8. [ID|I[2, 4] + [enta[ - (1 — [|e[])

return (||D]])

The key lines in Algorithm 3.5.3 are steps 6 to 8, which implement the oblivious ag-
gregation. Here, || D] is the multiset input, where IPs are placed in column 1, counts are
placed in column 2 and frequencies are placed in column 3. In step 6, we check equality
of two IP addresses and store the result in the private boolean variable ||c||. Step 7 and 8
implement oblivious aggregation based on this value.

Step 7 is formulated in such a manner, that based on the value of ||¢|| (1 or 0), it makes
one part of the statement (either ||cnti|| + ||entz|| or ||ent1]]) zero. If two IP addresses are
equal, then ||c|| is 1, and the right part of step 8 ( ||ent1||) be zero, as it be multiplied with
(I —|leJl =1 =1 =) 0. Therefore, ||D||[2,] is assigned the value: |enti|| + |lentz||, which
is the aggregated destination count of two identical IPs. Similarly, in step 8, ||D]|[2,4] is
assigned the value: |entz|| — ||ents||, which is zero. On the other hand, if ||c[| = 0, then
[ID]|I[2,4] is assigned |lcnti|| and ||D]|[2,7] is assigned ||cntz||. This means, when two IP
addresses are not equal, their respective destination count does not change.

After a complete iteration, we get an output as Table 3.2(b) for input as Table 3.2(a).
This scheme is very slow since it contains N? comparisons and 8 - N2 multiplications for
N recordsets. Multiplication and comparison in MPC requires multiple rounds of local
computation and message exchanges, and is expensive in terms of execution time. So,
implementing such a high number of expensive operations definitely gives poor performance.

An easy solution to the problem is a complete vectorization of Algorithm [9]. Vec-
torization is a special case of parallelization, in which programs that by default perform
one operation at a time on a single thread are modified to perform multiple operations
simultaneously. This gives significant performance enhancement, even in current conven-
tional computers. As we assumed our chosen MPC protocol to have vectorized versions of
all mathematical and relational operations, we can design vectorized oblivious aggregation
algorithms. Vectorized applications allow sending bigger chunks of messages during the
protocol execution, which reduces the number of messages exchanged during the MPC pro-
tocol execution. Goldreich has pointed the issue of improving performance through bigger
messages in [20]. That is why, we believe vectorization improves the execution speed of our
algorithm significantly. Algorithm 3.5.4 presents a novel vectorized oblivious aggregation
algorithm.



3.5. PRIVACY PRESERVING ALGORITHMS 25

(a) Input Multiset (b) Tteration 3 of Algorithm 3.5.4
1P Cnt 1P I C Cnt A Cnt
Step 4 | Step 5 | Step 6 | Step 7-8 | Step 9

1IP1 10 IP1 1IP3 0 10 0 10
P2 20 P2 IP3 0 20 0 20
IP3 30 IP3 IP3 1 40 0 40
P4 40 P4 1IP3 0 40 0 40
1IP3 10 1IP3 1IP3 1 10 10 0
P4 20 P4 1IP3 0 20 0 20
IP5 30 IP5 IP3 0 30 0 30
IP6 40 IP6 IP3 0 40 0 40

Table 3.4. An iteration of vectorized oblivious aggregation by Algorithm 3.5.4

Algorithm 3.5.4: OBLIVIOUSAGGREGATE(||D||)

comment: || D|| is a seqeuence of 3-tuples: {IP, count, frequency}

1. n « length(||D||)

2. |IPY, [CNT| - DI, ¢, | D2,
3.fori+ 1ton

[ 2] = ([ L PI|[1]

[CNl « (ILP]| == [1]))
|CNT||[i], < col Sum(||CNTS|| - [|C])
[A] = [ONT]| - [|C]]

|| All[i] - 0

9. ||ONT|| «+ [[CNT| — [|A]
10.[|D||[2,#] < [[CNT||

return (||D]])

®© N ot

The algorithm works with the same input as Algorithm 3.5.3, and the key concept is
similar. If an IP address is identical to some other IP address in the list, then their feature
counts are aggregated, othewise the feature counts are left as it is. We explain the steps of
Algorithm 3.5.4 with a complete iteration. The input set is presented in Table 3.4(a). We
observe the step by step execution of iteration number 3 in example.

In this iteration, the third IP address (IP3) is duplicated for element wise comparison
(step 4). The output of this step is given in the 2"¢ column of Table 3.4(b). In step 5, we
compare the IP vector and the duplicated vector, where the comparison generates a vector
of zero (where elements are not equal) and one (where elements are equal). Observe the
output of this step in the 3"¢ column of Table 3.4(b). By taking an element wise product
of the resultant vector with the packet count and taking sum over the product vector, we
obtain the aggregated packet count for IP3. The aggregated count is copied to the current
index. This is shown in the 4" column of Table 3.4(b).

As the iteration covers all of the IP addresses, occurrence of the IP3 in further iterations
is affected by this aggregated value. To keep only one correct instance of the aggregated
value, we create a temporary vector ||Al|, where the counts are zeroed for the current index
and indexes whose IP does not match with the current IP. This is shown in the 5" column
of Table 3.4(b). By subtracting the temporary vector ||A|| with the actual vectors |CNT||,



26 CHAPTER 3. ALGORITHMS

we obtain the desired vectors for each iteration. The output is given in the last column of
Table 3.4(b).

Algorithms 3.5.3 and 3.5.4 only show how to aggregate the destination count. We can
perform frequency count aggregation as well with some minor adjustments. Both algorithms
use n? comparisons for aggregation, but the latter executes n comparisons in parallel, which
in our opinion improves the speed of execution. We have verified our assumption about the
performance improvement in chapter four.

3.5.4 Oblivious Sorting

From the oblivious aggregation, we obtain our desired aggregated values with some residues
(nullified values). To obtain secure set union, we need to get rid of the residues. An easy
way to eliminate null values is pushing the null values to the top, and then simply popping
them. Pushing the null values to the top of a list can be achieved by sorting the values in
ascending order.

Implementing sorting in MPC protocols is complicated because of the privacy con-
straints. Since we are not allowed to see the results of the comparisons, optimal comparison
based sorting cannot be applied. An alternate way to sort a list is using a sorting network,
as discussed in Section 2.4. Sorting networks have two important attributes:

1. A sorting network is data independent. It only depends on the input size. So, the
comparison sequence can be generated in advance.

2. Comparisons can be divided into multiple rounds, where all of the comparisons in one
round can be executed in parallel.

This first attribute makes sorting networks a perfect choice to implement sorting on MPC
platforms. The second attribute allows them to be vectorized for performance speedup. To
implement a sorting network in MPC, we need an oblivious swapping technique such as:

c=(a>Db)
a=a-(1—c)+b-c
b=b-1—-c)+a-c

This is a novel approach to perform swapping operation between two elements. Al-
gorithm 3.5.5 shows a simple implementation of Bubble sorting network, using the novel
oblivious swapping. Each inner iteration moves the lowest value to the last position. The
remaining n — 1 elements are sorted iteratively by applying the same procedure.

Now, this algorithm suffers from two problems. The algorithm uses n?/2 comparisons
and consists of 2n — 3 stages. Hence, it is very inefficient for large datasets, and cannot
be parallelized to improve the performance. To efficiently implement sorting operation, we
need a sorting network that can be vectorized. Odd-even transposition sorting, discussed in
chapter 2.4, is such a network. It uses a similar number of comparisons, but has fewer stages
(n—1). We can implement a vectorized odd-even merge sort by executing the comparisons
in a single stage in parallel.

Algorithm 3.5.6 gives a vectorized implementation of a odd-even transposition sorting
network. It has n/2 iterations, where each iteration consists of two stages. In the first stage,
n/2 comparisons are executed in parallel, while in the second stage, (n — 2)/2 comparisons
are executed in parallel. We use a small example to demonstrate the algorithm. Let us
assume we have a private list of four values, ||L|| = {40, 30,20, 10} and we want to sort it
in ascending order, using Algorithm 3.5.6. According to the scheme, we need two iterations



3.5. PRIVACY PRESERVING ALGORITHMS 27

with two stages for the given list. As we said earlier, we can generate the comparison
sequence (per stage) in advance, as is given below.

Iteration 1
Stage 1: (1,2),(3,4)
Stage 2: (2,3)

Iteration 2
Stage 1: (1,2),(3,4)
Stage 2: (2,3)

Algorithm 3.5.5: OBLIVIOUSSORTING(||L]|)

comment: Bubble Sorting Network
comment: ||L|| is a 1d array of private values

1. n « length(||L]])
2.for i+ ntol
3. for j<—1toi—1

4. Aall, [|l] <= (ILIL LI+ 1]

5. el < (llall = lb]l)

6. LI, 5] < [lall - (1 = [lel]) + [1B]] - [[<]|

7o LN, g+ 1) = fIbl - (1 = [lell) + llall - (el
return (||L])

Observe that iterations 1 and 2 are identical. In fact, each iteration generates identical
comparison sequences for the input size. As shown in list mentioned above, each pair of
indices, enclosed by brackets in each stage, is compared with each other in parallel. The
parallel pairwise comparison is implemented with the help of a temporary vector, ||O]| (Table
3.5(a)). ||O|| is compared with vector ||L|| and the comparison result is stored in a boolean
vector, ||C|| (step 5). The value of ||C|| is modified a bit (step 6-7). Observe the value of
[IC|| in Table 3.5(a) after modification. Vectorized oblivious sorting is implemented in step
8, using a vectorized version of the oblivious swapping scheme described earlier. The result
of this step is given in the 4" column of Table 3.5(a).



28

CHAPTER 3. ALGORITHMS

(a) Stage 1 Iteration 1 (b) Stage 2 Iteration 1
IZI [ Tol [ Il [ TE0_| [T JP1_[_IDI | M ] 1]
Step 4 | Step 7 | Step 8 Step 12 | Step 15 | Step 16 | Step 17
40 30 1 30 - - - - 30
30 40 1 40 40 10 1 10 10
20 10 1 10 10 40 1 40 40
10 20 1 20 - - - - 20
c) Stage 1 Iteration 2 (d) Stage 2 Tteration 2
IZI [ 1ol [ el [ 20| [TMI] TPI_[ DI | M ] _JiZ]
Step 4 | Step 7 | Step 8 Step 12 | Step 15 | Step 16 | Step 17
30 10 1 10 - - - - 10
10 30 1 30 30 20 1 20 20
40 20 1 20 20 30 1 30 30
20 40 1 40 - - - - 40

Table 3.5. Oblivious sorting by Algorithm 3.5.6

Algorithm 3.5.6: OBLIVIOUS SORTING(||L]|)

comment: Vectorized Odd-even transposition sorting network

comment: ||L|| is a 1d array of private values

1. n « length(||L])
2.for i« 1ton/2

for i + 1 to n/2 Step by 2

JON), 0N + 1] + LI + 11, LI
1Cll < (1L >=[O])
for i < 1 to n Step by 2

ICN[i + 1] « [|C][4]
LI = ILA - = iel) + )l - o]
[lm|| +n —2
M| [IL]Ili +1:n—1]

. for i <+ 1 to m/2 Step by 2

[ PII[2], | PII[ 4 1) <= [|M|[i + 1], [|[ M| [2]
| D = ([[M]| >= [|P[])
for i + 1 to m Step by 2

[ D[|[i + 1] « [|D]|[z]
[ M| <= M- (L= [|D]) + | DI - || Pl
ILII[L: N = 1] « [|M]]

return (||L])

Stage

2 operations are similar (Table 3.5(b)) and implemented on a subarray of ||L]|,

which is formed by removing the top and bottom element. The subarray is denoted by
|[M]]. The complete sorted list is obtained after all the iterations. Processing of each stage
of each iteration is given in Table 3.5(a), (b), (c) and (d)).

Both of the algorithms mentioned above are derived from the schemes with O(n?) com-
plexity [24]. This is a major drawback. We need a parallelizable network that has lower



3.5. PRIVACY PRESERVING ALGORITHMS 29

complexity. Odd-even merge sort is such a network. Odd-even merge sort is a variant of
the merge sort algorithm that merges two sorted equal length sequence into a completely
sorted sequence. Its complexity is O(n log,‘2 n), which means we have to execute fewer com-
parisons. It uses 10g2n rounds which means it is parallelizable. The only problem with
odd-even merge sort is that it is a recursive algorithm. It is very difficult to vectorize re-
cursive functions. Converting a recursive algorithm to an iterative one is a sensible way to
address this problem. We can perform this conversion in the following manner.

e Generate the comparison sequence for each round beforehand by executing the recur-
sive algorithm.

e Sort iteratively by using the pre-generated comparisons in each sequence in parallel.

We implemented a recursive odd-even merge sort to generate a comparison sequence per
stage for input size of 2™ (see Appendix A.1). An example of the comparison seugence for
a list of four elements is given as follows:

1. Tteration 1: (1,2),(3,4)
2. Tteration 2: (1,3),(2,4)

3. Iteration 3: (2,3)

Observe that the number of sequences is one less than for the odd-even transposition
sort. This difference increases as the input size increases. The sequence and the private
input is fed into the function defined in Algorithm 3.5.7, which is almost identical to Al-
gorithm 3.5.6 with some minor changes. Since the number of comparison sequences of this
scheme is smaller than the previous scheme, we expect improved performance. We test the
performance of all of the sorting algorithm in chapter four.

Algorithm 3.5.7: OBLIVIOUSSORTING(||L||, SEQ)

comment: Vectorized Odd-even merge sorting network
comment: || L| is a 1d array of private values
comment: SEQ is a comparison sequence generated by odd-even mergesorting network

1. n « length(||L]])
2. for i + 1 to len(SEQ)/n
3. for j<—1ton

4. |Oll5] < ILISEQL, j]]

5 (cl = dLI>=1ol)

6. for j<—1ton

7. |CISEQI, 1] = ICI[5]

8. |ILII=LI-A—=lch=+Ilol-lc]
return (||L])

We can use any of these algorithms to perform oblivious sorting. The sorting algorithms
are designed to operate on one dimensional arrays. Two dimensional array sorting can
implemented by some simple modifications.



30 CHAPTER 3. ALGORITHMS

3.5.5 Secure Set Reduction

After oblivious aggregation, we obtain a list, where values in some rows are zero and some
are non zero. The rows with zero values are residues of the aggregation and they must be
removed in a privacy preserving manner. Since, we sort the list after aggregation, the rows
with zero values are pushed to the top and the rest of the rows are placed at the bottom.
This allows us to securely eliminate the rows, as we can remove from the top without having
to access the values. We define this process as secure set reduction.

However, to implement secure set intersection (as given in Algorithm 3.5.2), we need
to implement two more row elimination process, one of which is a threshold based set
reduction. The threshold based set reduction operation is actually a variation of the secure
set reduction operation defined above. The threshold based elimination operation removes
rows, whose feature counts are less than or equal to a threshold. Since the list is sorted (due
to oblivious sorting in the secure set union), rows with feature counts below or equal to the
threshold, are in the top of the list. Therefore, we can eliminate these rows by removing
from top. This is similar to the previous set reduction process.

Algorithm 3.5.8: SECURESETREDUCTION(||D]||, )

comment: || D|| is a union-set obtained from Algorithm 3.5.1, t = [0, #4]

LA = [ID11[3, ]

2. [Cll < (IFll ==1)
3. n + vecSum(||C||)
4.for i< 1ton

5. wvecRemove(D,1)
return (|| DJ])

We can generalize the row elimination process for both of the cases. The generic al-
gorithm is a threshold based set reduction scheme, where in the first case the threshold ¢,
is set to zero and in the second case, is set to some user defined limit ;. We present the
generic scheme in Algorithm 3.5.8. Here, the scheme determines the number of rows, with
values equal to or less than ¢, in step 3. The number is denoted by n. Then, the algorithm
uses a pop function (vecRemove()) to remove n records from the top of the list.

The other row elimination process in secure set intersection, is a simple index based
elimination. The indexes are generated by the outlier detection scheme, which indicates
some IP address in the private list as anomalous. We eliminate the items, that are not
represented in this outlier list. An index based row elimination process is presented in
Algorithm 3.5.9. The algorithm is self explanatory.

Algorithm 3.5.9: INDEXEDSETREDUCTION(||D||, O)

comment: || D] is a union-set obtained from Algorithm 3.5.1, O is an index list

Il ¢ length(|D])
2.fori<1ton

3. if(i#0)

4. vecRemove(D, 1)
return (||D]])




3.6. MERGING THE PIECES 31

® Secure Set Intersection

Indexed
Set Reduction

A

Non Privacy Preserving
Outlier Detection

-

> Secure Set Union -

Oblivious Aggregation Oblivious Sorting Secure Set Reduction

Figure 3.3. Merging the pieces

3.6 Merging the Pieces

A privacy preserving collaborative anomaly detection system can be implemented by merg-
ing the subprotocols defined in Sections 3.3 and 3.5. To demonstrate the merging process,
we use Figure 3.3. We start from the bottom. We form the secure set union by merging
the oblivious aggregation, oblivious sorting and secure set reduction algorithms, defined in
Sections 3.5.3, 3.5.4 and 3.5.5 respectively. We can choose any of the aggregation algorithms
from Algorithms 3.5.3 and 3.5.4 for the oblivious aggregation operation. Similarly, we can
choose any of the sorting algorithms from Algorithms 3.5.5, 3.5.6 and 3.5.7, for the oblivious
sorting operation. Finally, we have to choose algorithm 3.5.8 with threshold t, set to zero,
for secure set reduction.

The anomaly detection mechanism use a part of the aggregated output of the secure set
union. The outliers revealed by the scheme acts as an input for the indexed set reduction
operation (given in Algorithm 3.5.9). The secure set intersection is implemented by merging
this indexed set reduction algorithm with the secure set union and secure set reduction
algorithms. The secure set reduction algorithm sets the threshold ¢, to some user defined

As there are several schemes for some of the subprotocols, we have several possible
combinations for the privacy preserving anomaly detection scheme. The combination varies
in performance in terms of execution time. We have to evaluate the performance of different
combinations, to find the best performing scheme.

Our scheme detects multi domain IP sweepers. With some simple modifications, we can
implement the scheme to detect any kind of signature based multi domain anomalies, i.e.
distributed denial of service (DDoS), spamming, multidomain port sweeping etc. Observe
the Table 3.2(a). We can extend Table 3.2(a) as Table 3.6, to detect a wide range of multi
domain attacks. This table contains feature counts for n number of anomalies and m IP



32 CHAPTER 3. ALGORITHMS

Input Multiset
IP | Feature 1 | Feature 2 | ... | ... | Feature n | Freq
1P1 10 15 AU 40 1
P2 23 20 AU 80 1
IP3 30 50 AU 10 1
IPm 55 35 AU 37 1

Table 3.6. Input table for generalized anomaly detection system

addresses. The last column is reserved for the frequency counts and rest of the columns
contain some anomaly event feature count, e.g. features for Neptune attack', Mail Bombing?
and Port Sweeping?.

To generalize the detection scheme, we compute the set union of Table 3.6, using secure
set union algorithm (defined in Algorithm 3.5.1) and then implement the anomaly detection
scheme (given in Section 3.3) to identify the possible attackers for each of the threats
considered. We perform secure set intersection separately for each column as list of outliers
and the user defined threshold may be different for different kind of anomalies.

In the next chapter, we present the performance evaluation of the algorithms.

3.7 Privacy Level of the Algorithms

In an ideal MPC setting, each party learns only the output of the computation and nothing
else. Even though we wanted to achieve that level of privacy, some part our scheme given
in Algorithm 3.2.1, failed to reach that. Following list shows the information leaked by the
different parts of our scheme.

e Oblivious aggregation algorithms: These algorithms (Algorithms 3.5.3 and 3.5.4) do
not leak any information unless the MPC framework on which the algorithms are
implemented leaks information.

e Oblivious sorting algorithms: These algorithms (Algorithms 3.5.5, 3.5.6 and 3.5.7)
do not leak any information unless the MPC framework on which the algorithms are
implemented leaks information.

e Secure set reduction algorithms: These algorithms (Algorithms 3.5.8 and 3.5.9) leak
information. Secure set reduction algorithm (Algorithms 3.5.8) leaks the number of
the inputs which are lower and higher than the threshold value. Indexed set reduction
algorithm (Algorithms 3.5.9) leaks the number of the outlier and non-outlier points
and ofcourse the index of the outlier points, where each index represents an outlier
point from a given set.

Therefore, we observe that, when we merge the pieces to design a privacy preserving
anomaly detection system, we do not leak much information during the aggregation phase
(the first two steps in secure set union Algorithm 3.5.1) but we leak information during
the set reduction phase (the last step in secure set union Algorithm 3.5.1 and both steps

IDDoS attack by SYN flooding. See ’hitp : //tools.ietf.org/html/r fc4987 for details.
2DDoS attack to mail servers by high number of emails. See *www.cert.org/tech_tips/’ for details.
3Scanning to find open ports in a host. See www.linuzjournal.com/article/4234’ for details.



3.7. PRIVACY LEVEL OF THE ALGORITHMS 33

in secure set intersection Algorithm 3.5.2). Moreover, as we are implementing the outlier
detection scheme in public, we are disclosing the packet counts as well. So from an execution
of the whole scheme, each party learns the following information:

e Before execution: Each parties’ own input.

e After secure set union operation (after step 1): The number of residues (values that
are equal to zero).

e Before outlier detection (after step 2): The aggregated packet counts.

o After outlier detection (after step 3): The index of the IP addresses that are potential
outliers, the number of outliers and the number of non-outliers.

e After secure set intersection operation (after step 4): The number of single and multi
domain attackers.

e When execution ends (after step 5): IP address and other information of the potential
multidomain attackers.

Having this information, a dishonest party may have a leverage to declassify the private
input from other parties. However none of the leaked information aid in leaking the IP
addresses of the single domain attackers and non-attackers. Morever, as the list is shuffled
by the sorting operation, it is no possible for an adversary to disclose classified values by
correlation. Therefore, we can say that even if our scheme leaks some information and
fails to achieve the desired level of privacy but it still protects privacy of the inputs to an
acceptable level.






Chapter 4

Performance Evaluation

4.1 Introduction

In the last chapter, we designed schemes for our privacy preserving anomaly detection
system. We evaluate the performance of these schemes in this chapter. The algorithms, can
be divided into two classes.

1. Schemes for network anomaly detection.

2. Schemes for privacy preserving aggregation.

We explain the performance analysis of these schemes in the following discussion.

4.1.1 On Performance Analysis of Anomaly Detection System

We built our anomaly detection system using LOCI [31], which is an outlier detection
algorithm. The performance of LOCI should be evaluated based on its costs and benefits.
By benefit, we mean how many network anomalies are detected correctly from a given set, of
anomalies. By cost, we mean the number of normal hosts it wrongly detects as anomalies.
The cost-benefit analysis of anomaly detection system can be done by the receiver operating
characteristic (ROC) curve [17].

We have argued in Section 3.3 that changing configuration parameters influences the
accuracy of the LOCI scheme. Therefore, we experiment with different configurations of
LOCT on the same set of test cases to evaluate the performance of each one. The evaluation
helps us to choose the right configuration parameters for LOCI.

4.1.2 On Performance Analysis of Privacy Preserving Algorithms
We implemented several privacy preserving algorithms, as given in following list:
e Secure Set Union

— Oblivious Aggregation (Algorithm 3.5.3 and 3.5.4)
— Oblivious Sorting (Algorithm 3.5.5, 3.5.6 and 3.5.7)
— Secure Set Reduction (Algorithm 3.5.8)

e Secure Set Intersection

35



36 CHAPTER 4. PERFORMANCE EVALUATION

We built these algorithms in such a way, that they can be ported to any secure multi
party computation (MPC) framework, provided that the framework satisfies some require-
ments (see Section 3.4.1 for the list of requirements). MPC protocols have been known
for being slow in performing data analysis on large datasets. We therefore designed our
algorithms with efficiency in mind. Performance of MPC based algorithms is influenced by
the following classes of operations [9]:

1. Local Operations: Operations that have one round of local computations, e.g.
addition operation.

2. Multi party operations: Operations that have multiple rounds of local computa-
tions with messages exchanged among the parties between the rounds, e.g. comparison
operations.

Execution times of the local operations are significantly lower compared to that of the
multi party operations. So, if a scheme is built using both kinds of operations, the multi
party operations have significantly more impact than the local operations on the overall
performance. The Subprotocols for our privacy preserving algorithms use both kinds of
operations to some extent. For example, the oblivious sorting algorithm uses more multi
party operations than the set reduction algorithm. Out of the three algorithms used by the
secure set union protocol, two of them (oblivious aggregation and sorting algorithm) rely
heavily on the multi party operations. Therefore, the performance of the secure set union
protocol is strongly influenced by these algorithms.

On the other hand, the set intersection protocol performs the set reduction operation
over the output of the set union protocol. The set reduction algorithm has a few multi
party operations, and hence execute faster compared to the algorithms used in the secure
set union protocol. We believe performance evaluation of secure set union gives an idea of
the performance of secure set intersection. So we skipped the performance evaluation of
secure set intersection.

4.2 Qutlier Detection by LOCI

In this section, we compare the performance of different configurations of the LOCI scheme.
We have limited our experiments scope to IP Sweepers. Before discussing the test evalua-
tion, we give a brief background on the test data and performance analysis tools.

4.2.1 Feature Construction

We applied our anomaly detection system to the 1998 and 1999 Darpa intrusion detection
evaluation data [29, 28]. Both of the sets contain several weeks of simulated training and
testing data to measure the probability of detection and false alarm rate of intrusion de-
tection systems. The training set contains normal traffic samples, as well as several weeks
of (simulated) network based attacks. These network based attacks are various kinds of
scanning (probing) attacks!, denial of service attacks?, user to root attacks® and remote to
local attacks?.

L Automatically scan a network of computers to gather information or find known vulnerabilities

2An attack in which the attacker makes some computing or memory resource too busy or too full to
handle legitimate requests, or denies legitimate users access to a machine

3A class of exploit in which the attacker starts out with access to a normal user account on the system
and is able to exploit some vulnerability to gain root access to the system

4An attack in which an attacker who can send packets to a machine over a network but does not have
an account on that machine exploits some vulnerability to gain local access as a user of that machine



4.2. OUTLIER DETECTION BY LOCI 37

LOCI is an unsupervised machine learning scheme for outlier detection. So, we avoided
training LOCI using the normal data samples. We applied our system on the labeled training
set, containing attack traces. As we have limited our detection to IPsweeps, we have used
only those samples that contained traces of such attacks. For our tests, we picked five sets
of IPsweep data.

We have stated the detection signature of IPsweep attack in the Section 3.1. We have
written a small python script to extract the features of the attack from the traffic logs
(tcpdump files®). The feature set generated by the script is a series of 2-tuples: {IP address,
Destination Count}. The first element represents the remote hosts which send the ICMP
packets, and the second element represents the number of destinations probed by the remote
hosts.

We obtained five feature sets from the five attack logs. As the samples are labeled, the
attackers are known. This helps us to evaluate the probability of detection and false alarm
by the anomaly detection system. Out of these five sets, only one set contains three IP
sweepers and rest of them contain one sweeper each. Having a small number of attackers
is troublesome for anomaly detection system evaluation, so we merged the five sets. The
merged set consists of 7 unique IPsweepers and 97 unique normal hosts. We test different
configurations of LOCI on this merged set and evaluate their performance.

4.2.2 Receiver Operating Characteristic Curve

We analyze the performance of LOCI in terms of true and false positives. We represent
these terms as benefit and cost of the anomaly detection system. Following definitions are
used to define these terms.

e Detected Attacker Set: A set of observations which are flagged as anomalies by an
outlier detection scheme.

e Actual Attacker Set: A set of observations which are actual anomalies.

e Actual Non-attacker Set: A set of benign observations.
We introduce some more terms using these sets.

o Actual True Positives: The size of the actual attacker set.
e Actual False Positives: The size of the actual non-attacker set.

e Calculated True Positives: The size of the set intersection of the detected attacker
set and the actual attacker set.

e Calculated False Positives: The size of the set intersection of the detected attacker
set and the actual non-attacker set.

Now, the benefit of an anomaly detection system is defined in terms of true positive
ratio (TPR), which is a ratio between the calculated and the actual true positives. The cost
is defined in terms of false positives ratio (FPR), which is a ratio between the calculated
and the actual false positives.

We can evaluate the performance of the LOCI based anomaly detection system in terms
of benefit and cost using a ROC curve. A ROC curve is a two dimensional curve, where the

Shttp://www.tcpdump.org/



38 CHAPTER 4. PERFORMANCE EVALUATION

X axis represents FPR and Y axis represents TPR. Thus, it depicts the trade-off between
cost and benefit. The space enclosed by the X and Y axis, is called a ROC space. A pair
(FPR, TPR) represents a point in the ROC space. For multiple executions of the system,
we have a set of value-pair represented as a set of points in the ROC space.

A diagonal line is drawn from the bottom left corner to the top right corner. This
line is defined as the line of no discrimination. Points above the line are considered good
and points below the lines are considered bad. An anomaly detection system is considered
good if most of the points fall above the line. Similarly, the system is considered bad if a
significant amount of points fall below the line.

4.3 Evaluation of LOCI

In Section 3.3, we have simplified the LOCI scheme to the formula given in Equation
3.4. The equation used A = 3, according to [31]. We have argued that this equation
is affected by the masking effect and we have suggested using a smaller value for A to
minimize the problem. We have also suggested using an alternate form of the formula, as
given in Equation 3.5, using A = 5.2.

In this section, we evaluate the performance of the LOCI scheme for both formulas, for
different value of A, to find out the best parameter configuration for LOCI. Following list
shows these cases:

e Configuration 1: LOCI scheme using the mean function, the standard deviation func-
tion (Eq. 3.4) and A = 3.

o Configuration 2: LOCI scheme using the mean function, the standard deviation func-
tion (Eq. 3.4) and A = 2.

e Configuration 3: LOCI scheme using the median function, the median absolute devi-
ation function (Eq. 3.5) and A = 5.2.

There are other parameters to consider: the value of k that determines the k-neighborhood
and the fraction « that determines the local neighborhood. The parameters are explained
in Section 3.3. The best choice of k for k*" nearest neighborhood schemes (kNN) is data
dependent, but the general consensus is that larger values of k reduce the effect of noise on
the classification. On the other hand, a high value for & makes boundaries between classes
less distinct. We picked five random, high odd values for k: 69, 75, 79, 85 and 89. We
execute the three configurations of LOCI scheme, using o = 0.125, for all five values of k.

We have written a python script that implements the LOCI scheme for the configurations
mentioned above (see Appendix B). The script is designed to detect IPsweeping hosts from
a given sample of features. The method of feature extraction is described in Section 4.2.1.
The script generates the following outputs for the values of k, defined above, for all three
configurations:

1. Detected outliers
2. FPR
3. TPR

The first output is a list of IP addresses marked as outliers. This list may contain false
positives. The second and third outputs are calculated based on the definitions given in



4.3. EVALUATION OF LOCI

Configuration 1 Configuration 2 Configuration 3
k | TPR(%) | FPR(%) | TPR(%) | FPR(%) | TPR(%) | FPR(%)
69 57.1 3.1 71.4 7.2 85.7 13.4
75 71.4 8.3 71.4 124 100.0 16.5
79 71.4 11.3 85.7 11.3 100.0 17.5
85 714 15.5 85.7 14.4 100.0 19.6
89 85.7 17.5 100.0 18.6 100.0 22.7

Table 4.1. Performance of the LOCI scheme for different configurations and k values

100 BGa :
Line of no discrimination
Configuration 1
Configuration 2 X
XoX A Configuratig o]
80 -
A
60 - B
A
o
a
=
40 + E
20 - B
0 1 1 1 1
0 20 40 60 80 100

FPR

Figure 4.1. ROC curve for different configuration of the LOCI scheme, for different k values

Section 4.2.2, using the detected outlier list. The results are presented in Table 4.1. We
observe that the, TPR and FPR increase with the increment of k for all three configuration,
with some minor exceptions. Configuration 1 achieves lower success rate with the benefit of
lower amount of false positives. On the other hand, configuration 3 achieves higher success
rate with the cost of high number of false positives. The performance of configuration 2,
falls between configurations 1 and 2. Configuration 3 achieved 100 percent success in most
of the cases, whereas, configuration 2 achieved that only once. Configuration 1 failed to
achieve 100 percent success rate.

The values are plotted on a ROC curve, given in Figure 4.1. All of the points in the ROC
space lie above the line of no discrimination. Most of the points generated by configuration
3 are placed in the absolute top position of the space, which is a very desirable outcome for
an anomaly detection system. Based on the analysis of Table 4.1 and Figure 4.1, we can be
say that for anomaly detection, configuration 3 is the best choice.

Now, we analyze the detected outliers. For this particular test, we have chosen configu-
ration 3, with k set to 45. The test outcome is given in Figure 4.2. We create an imaginary
line called line of outlierness. Points above the line are the detected outliers and those below
the line are the hosts detected as benign. The scheme detected eleven points as outliers.
But the total number of actual IPsweepers are seven. The list of the outliers revealed,



40 CHAPTER 4. PERFORMANCE EVALUATION

250 T T
placement of a point —e—
line of outlierness

200 -

150 -

destination count

100

I 1 PO
I S N

120

Figure 4.2. Outliers detected by the LOCI scheme for configuration 3, k = 45

that all seven of the IPsweepers were detected successfully, which means the rest are false
positives. Actually, the four points, that are very close to the line of outlierness, are the
false positives. It is possible to eliminate these false positives by tweaking the configuration
parameters, but at the risk of lower success rate.

4.4 Evaluation of the Privacy Preserving Algorithms

We designed our privacy preserving algorithms with a strong focus towards minimizing
the processing delay. In this section, we test the performance of the privacy preserving
algorithms in terms of execution time.

4.4.1 Test Setup

We designed several generic privacy preserving algorithms that can be executed using any
MPC protocol, that supports several requirements, described in section 3.4.1. Sharemind is
a MPC platform that supports all of the requirements. Although we are supposed to evalu-
ate the performance of the schemes in a networked environment of three computing nodes,
we skip that for initial testing. We run each of our algorithms in a setting where all three
computing parties are emulated in a local machine. In this setting, the computing parties
are emulated by a separate process in a single computer, and MPC protocol is implemented
by message exchange between the processes. This approach has two drawbacks.

e It violates the privacy requirement.
e Processing time evaluation becomes flawed.

Since, privacy of the algorithms strongly depends on the security of the MPC platform,
we assume that in an actual implementation, the privacy is preserved by the MPC platform
used, so we can ignore the first drawback at the moment. For the second problem, only



4.4. EVALUATION OF THE PRIVACY PRESERVING ALGORITHMS 41

testing in a networked environment gives accurate statistics to evaluate the performance of
the schemes, but due to lack of time, we had to resort to more simplified testing. Never-
theless, we believe the tests performed give sufficient indication of the relative performance
of the algorithms.

For the implementation, we used a Dell Vostro 1320 model notebook, with a 2.66 GHz
Core 2 Duo CPU and a 4 GB RAM. Sharemind runs in several operating systems but
we have chosen to run it on Ubuntu 9.10. We have configured® the localized version of
Sharemind with the ’SecreC’ [21] compiler, where all three computing parties are emulated
on a single machine.

We have written our privacy preserving algorithms in SecreC. We have also written
a controller program, using the Sharemind controller library that stores private values in
the secure storage of the computing parties in the additive secret shared format. We have
written another controller program that executes the SecreC codes and returns execution
result. Any party, who wants to obtain the output of the privacy preserving algorithms,
have to use this program. This prevents the modification of privacy preserving algorithms
by the dishonest parties.

The algorithms are data independent. Therefore, it is not necessary to execute the
algorithms with real data for the purpose of performance evaluation. Therefore, we use
fabricated data for our tests. The fabricated data is a list of two tuple: { ID, CNT}.
Both of the elements are some randomly generated integers from a given range. The first
element represents an IP address and the second element represents a feature count of that
IP address.

4.4.2 Performance Evaluations

We have argued in Section 4.1.2, why we test only some of the algorithms. We execute the
following tests:

1. Testing performance of the different schemes for oblivious aggregation (Algorithms
3.5.3 and 3.5.4).

2. Testing performance of the different schemes for oblivious sorting (Algorithms 3.5.5,
3.5.6, 3.5.7).

3. Testing performance of the following assembly configurations for the secure set union
protocol:

a) Vectorized oblivious aggregation algorithm (Algorithm 3.5.4), vectorized odd-
even merge sorting networks (Algorithm 3.5.7) and secure set reduction algorithm
(Algorithm 3.5.8).

b) Vectorized oblivious aggregation algorithm (Algorithm 3.5.4), vectorized odd-
even transposition sorting network (Algorithm 3.5.6) and secure set reduction
algorithm (Algorithm 3.5.8).

For the first test, we executed the SecreC code of both versions of the oblivious aggrega-
tion algorithms given in Algorithm 3.5.3 and 3.5.4 (see Appendix C.1 and C.2). The latter
algorithm is the vectorization of the former one. For performance analysis, we measured the
processing time of each execution. The time is calculated by taking the difference between
the time when the execution starts and the time when the execution ends. Table 4.2 shows
the processing time for different sized input for each algorithm given in minutes.

6A configuration tutorial is given in http://research.cyber.ee/sharemind/docs/sharemind-1.9/



42 CHAPTER 4. PERFORMANCE EVALUATION

Execution Time (minutes)

Input | Oblivious Aggregation | Vectorized Oblivious Aggregation
size (Algorithm 3.5.3) (Algorithm 3.5.4)

32 12.2 0.2

64 39.6 0.4

128 142.3 1.2

256 321.8 3.4

512 - 12.4

1024 - 39.4

2048 - 85.2

Table 4.2. Performance of oblivious aggregation algorithms

350 T
Algorithm 3.5.3 —%—

Algorithm 3.5.4 —e—

300 B
250 - b
200 B

150 - B

execution time (minutes)

100 *

50 B

0 | | | |
0 500 1000 1500 2000 2500

size of input (units)

Figure 4.3. Performance of oblivious aggregation algorithms

From Table 4.2, we observe that unvectorized oblivious aggregation is extremely slow,
while the vectorized version is significantly faster. We did not execute the unvectorized
aggregation for input size larger than 256 because of its high processing time. We plot
these values in Figure 4.3. We observe that the execution times for the vectorized algorithm
scales much better with the input size. Therefore, it is clear that the vectorized algorithm
should be chosen for oblivious aggregation.

For the second test, we executed the SecreC code of all three versions of the oblivious
sorting Algorithms 3.5.5, 3.5.6 and 3.5.7 (see Appendix C.3, C.4 and C.5). The first algo-
rithm is a bubble sorting network, the second is a vectorized odd-even transposition sorting
network and the last one is a vectorized odd-even merge sorting network. Like the perfor-
mance analysis of the oblivious aggregation, we calculated the processing time for different



4.4. EVALUATION OF THE PRIVACY PRESERVING ALGORITHMS 43

Execution Time (minutes)
Vectorized Vectorized
Input Bubble Odd-even Transposition | Vectorized Odd-even Merge
size Sorting Network Sorting Network Sorting Network
(Algorithm 3.5.5) (Algorithm 3.5.6) (Algorithm 3.5.7)
32 14.5 0.2 0.1
64 42.5 0.5 0.2
128 157.2 1.3 0.5
256 341.1 3.7 1.2
512 - 13.1 4.6
1024 - 41.5 18.9
2048 - 91.2 37.3

Table 4.3. Performance of oblivious sorting algorithms

350 T
Algorithm 3.5.5 —»—
Algorithm 3.5.6 —e—
Algorithm 3.5.7 —&—
300 B
250 —
o
[}
5
c
‘€ 200 - B
[}
£
c
2 150 - B
35
(5]
[}
x
(]
100 —
50 B
O PV | | |
0 500 1000 1500 2000 2500

size of input (units)

Figure 4.4. Performance of oblivious sorting algorithms

sizes of inputs. Table 4.3 presents these times in minutes.

We observe that, like the unvectorized aggregation algorithm, the unvectorized oblivious
sorting network (Bubble sorting network) is significantly slower than the vectorized ones.
Due to its high processing time, we did not execute the oblivious bubble sorting network for
size of input data larger than 256 units. Between the two vectorized algorithms, odd-even
merge sort (which has relatively lower complexity) gives better performance. To analyze
this clearly, we plotted the values in Figure 4.4.

Again, we observe more favorable scaling properties for the vectorized algorithms. Of
the two, we observe that odd-even merge sort performs noticably better.



44 CHAPTER 4. PERFORMANCE EVALUATION

Execution Time (minutes)
Input size | Configuration 1 | Configuration 2

32 0.27 0.48
64 0.68 1.08
128 1.55 3.08
256 5.67 9.83
512 21.62 35.98
1024 70.37 132.00
2048 230.2 347.57

Table 4.4. Performance of the secure set union algorithm

For the third test, we executed the secure set union protocol, using both of the assembly
configurations mentioned in Section 4.3.2. An implementation of the building blocks for
both of these configurations is given in Appendix C. We define these assembly configurations
as ’Configuration 1’ and ’Configuration 2’. We measured the processing time for these
configurations for different sizes of input and present them in Table 4.4. The times are
given in minutes.

The configurations used the same aggregation and set reduction algorithms (Algorithms
3.5.4 and 3.5.8), but different versions of the oblivious sorting algorithms (Algorithms 3.5.6
and 3.5.7). Configuration 1 uses vectorized oblivious odd-even merge sort, whereas config-
uration 2 uses vectorized oblivious odd-even transposition sort. We have already shown in
Section 4.3.4 that the former algorithm gives better performance, compared to the latter.
So, it can be easily predicted that configuration 1 gives better performance. As seen in Table
4.4, the configuration 1 attains lower processing delay than configuration 2, as predicted.
This is shown in Figure 4.5.



4.4. EVALUATION OF THE PRIVACY PRESERVING ALGORITHMS

execution time (minutes)

350

300

250

200

150

100

50

500 1000 1500 2000
size of input (units)

Figure 4.5. Performance of the secure set union algorithm

2500

45






Chapter 5

Discussions

In this thesis, we have designed and implemented a novel method to compute privacy pre-
serving set union and intersection using secure multiparty computation (MPC). We have
designed several subprotocols to implement these set operations. We used these solutions
in conjunction with an outlier detection system to design a privacy preserving collabora-
tive anomaly detection system. We implemented the privacy preserving algorithms in the
Sharemind framework [9] and the anomaly detection system using the LOCI scheme [31].

Our main achievement in this project, is a novel approach to implement privacy pre-
serving sorting operations in secure multiparty computation based frameworks. We have
designed a novel oblivious swapping technique that allows us to implement the sorting op-
erations without comprimising the privacy of the inputs. We have also designed vectorized
versions of oblivious swapping, that improve the performance of the sorting operations. We
have also designed a novel vectorized oblivious algorithm for privacy preserving aggregation.

These two subprotocols (oblivious aggregation, oblivious sorting) played an integral role
in designing the privacy preserving set union and intersection operations. In our experi-
ments, we showed that it is possible to compose a fast privacy preserving set union protocol
using the vectorized version of these algorithms. Finally, we have presented an alternate
approach to formulate the LOCI scheme, using more robust statistics. We showed in our
experiments that the modified LOCI scheme utilizing the median based statistics detected
the network anomalies more successfully than the LOCI scheme utilizing the mean based
statistics.

We have several limitations as well. The main objective of our project was to design
a highly secure solution, that allows the parties to learn only the outcome and nothing
else. But we failed to achieve that level of security, as our privacy preserving anomaly
detection system leaks some information. Most of this information is leaked in executing
the outlier detection system (LOCI) in a public environment. We can potentially eliminate
this problem by implementing the LOCI scheme in a privacy preserving manner. As we
stated earlier, implementing the LOCI scheme in MPC frameworks (e.g. Sharemind) can
be very complicated and can significantly deteriorate the performance of the system.

Another limitation of our system is that our aggregation algorithms uses n? compar-
isons. We can reduce the number of comparisons to n log®n by modifying the odd-even
merge sorting network to generate the comparison sequence. See Appendix A.2 for such
an implementation. Due to lack of time, we could not implement the optimized privacy
preserving aggregation algorithm. We leave this implementation for future work.

We tested our anomaly detection system in an isolated setting as we could not obtain
multidomain attack traces. Finally, we tested our privacy preserving algorithms in an

47



48 CHAPTER 5. DISCUSSIONS

localized setting by emulating the computing parties on a single computer. Since, there
is no real network delay involved, the performance given by the algorithms at best an
indication of their relative performance. We leave testing in a real networked environment
for future work.

Although we tested our privacy preserving schemes are tested in fabricated data, but
they give similar performance for real data set. The fabricated data that we used for
testing are all 32 bit integers. In case of real data, the packet and the frequency counts are
represented by 32 bit integers, and IP addresses can be easily converted to 32 bit integers.
Since all of the values in real data can be represented by 32 bit integers, our scheme give
the same performance.

We showed in our performance evaluation that the fastest version of our privacy preserv-
ing algorithm gives computation result for 1024 and 2048 units of input within an acceptable
time. However, it is clear from the test results that our algorithm produces very slow output
for higher number of inputs. Therefore, we can say that our current implementation of the
privacy preserving algorithms are not practical in processing input set of large number of
values e.g. 10000 items.



Bibliography

1]

2]

3]

[4]

[5]

[6]

7]

8]

[9]

[10]

[11]

[12]

Rakesh Agrawal, Alexandre Evfimievski, and Ramakrishnan Srikant. Information shar-
ing across private databases. In SIGMOD ’03: Proceedings of the 2003 ACM SIGMOD
international conference on Management of data, pages 86-97, New York, NY, USA,
2003. ACM.

M. Ajtai, J. Komlos, and E. Szemerédi. An 0(n log n) sorting network. In STOC ’83:
Proceedings of the fifteenth annual ACM symposium on Theory of computing, pages
1-9, New York, NY, USA, 1983. ACM.

V. Barnett and T Lewis. Qutliers in Statistical Data. John Wiley & Sons, 3rd edition
edition, 1994.

K. E. Batcher. Sorting networks and their applications. In AFIPS ’68 (Spring): Pro-
ceedings of the April 30-May 2, 1968, spring joint computer conference, pages 307-314,
New York, NY, USA, 1968. ACM.

D. Beaver, S. Micali, and P. Rogaway. The round complexity of secure protocols. In
STOC ’90: Proceedings of the twenty-second annual ACM symposium on Theory of
computing, pages 503-513, New York, NY, USA, 1990. ACM.

Jean-Paul Berrut and Lloyd N. Trefethen. Barycentric lagrange interpolation. STAM
Review, 46(3):501-517, 2004.

G. R. Blakley. Safeguarding cryptographic keys. Managing Requirements Knowledge,
International Workshop on, 0:313, 1979.

Dan Bogdanov, Roman Jagomégis, and Sven Laur. Privacy-preserving histogram com-
putation and frequent itemset mining with sharemind. Technical Report Cybernetica
research report T-4-8, Cybernetica AS, 2009.

Dan Bogdanov, Sven Laur, and Jan Willemson. Sharemind: A Framework for Fast
Privacy-Preserving Computations, volume 5283 /2008 of Computer Security - ESORICS
2008. Springer Berlin / Heidelberg, October 2008.

Markus M. Breunig, Hans-Peter Kriegel, Raymond T. Ng, and Jorg Sander. Lof:
identifying density-based local outliers. SIGMOD Rec., 29(2):93—-104, 2000.

Josh Cohen Benaloh. Secret sharing homomorphisms: keeping shares of a secret secret.
In Proceedings on Advances in cryptology— CRYPTO 86, pages 251-260, London, UK,
1987. Springer-Verlag.

Ronald Cramer and Ivan Damgard. Secure distributed linear algebra in a constant
number of rounds. In CRYPTO ’01: Proceedings of the 21st Annual International

49



50

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

BIBLIOGRAPHY

Cryptology Conference on Advances in Cryptology, pages 119-136, London, UK, 2001.
Springer-Verlag.

Bogdanov Dan and Richard Sassoon. Privacy-preserving collaborative filtering with
sharemind. Technical Report Cybernetica research report T-4-2, Cybernetica AS, 2008.

Laurie Davies and Ursula Gather. Robust statistics. Handbook of Computational
Statistics: Concepts and Methods, pages 670-672, 2004.

Wenliang Du and Mikhail J. Atallah. Protocols for secure remote database access with
approximate matching. Technical report, CERIAS, Purdue University, 2000.

Fatih Emekci, Divyakant Agrawal, Amr El Abbadi, and Aziz Gulbeden. Privacy pre-
serving query processing using third parties. In ICDE ’06: Proceedings of the 22nd
International Conference on Data Engineering, page 27, Washington, DC, USA, 2006.
IEEE Computer Society.

Arian R. Van Erkel and Peter M. Th. Pattynama. Receiver operating characteristic
(roc) analysis: Basic principles and applications in radiology. FEuropean Journal of
Radiology, 27(2):88 — 94, 1998.

Rosario Gennaro, Yuval Ishai, Eyal Kushilevitz, and Tal Rabin. The round complexity
of verifiable secret sharing and secure multicast. In STOC ’01: Proceedings of the
thirty-third annual ACM symposium on Theory of computing, pages 580-589, New
York, NY, USA, 2001. ACM.

Rosario Gennaro, Michael O. Rabin, and Tal Rabin. Simplified vss and fast-track
multiparty computations with applications to threshold cryptography. In PODC ’98:
Proceedings of the seventeenth annual ACM symposium on Principles of distributed
computing, pages 101-111, New York, NY, USA, 1998. ACM.

Oded Goldreich. Foundations of cryptography: a primer. Found. Trends Theor. Com-
put. Sci., 1(1):1-116, 2005.

Roman Jagomégis. Secrec: a privacy-aware programming language with applications
in data mining. Master’s thesis, University of Tartu, 2010.

Lea Kissner and Dawn Song. Privacy-preserving set operations. In in Advances in
Cryptology - CRYPTO 2005, LNCS, pages 241-257. Springer, 2005.

Edwin M. Knorr and Raymond T. Ng. Algorithms for mining distance-based outliers
in large datasets. In Algorithms for Mining Distance-Based Outliers in Large Datasets,
pages 392-403, 1998.

Donald E. Knuth. The Art of Computer Programming: Sorting and Searching (Volume
3). Addison-Wesley, 1998.

George Kurtz. Google attack is tip of iceberg, January 2010. Available at:
http://siblog.mcafee.com/cto/google-attack-is-tip-of-iceberg/, Last accessed in May
2010.

Adam J. Lee, Parisa Tabriz, and Nikita Borisov. A privacy-preserving interdomain
audit framework. In WPES ’06: Proceedings of the 5th ACM workshop on Privacy in
electronic society, pages 99-108, New York, NY, USA, 2006. ACM.



BIBLIOGRAPHY 51

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]
[35]

[36]

[37]

[38]

Yehuda Lindell. Parallel coin-tossing and constant-round secure two-party compu-
tation. In CRYPTO ’01: Proceedings of the 21st Annual International Cryptology
Conference on Advances in Cryptology, pages 171-189, London, UK, 2001. Springer-
Verlag.

Richard Lippmann, Joshua W. Haines, David J. Fried, Jonathan Korba, and Kumar
Das. The 1999 darpa off-line intrusion detection evaluation. Comput. Netw., 34(4):579-
595, 2000.

Richard P. Lippmann, David J. Fried, Isaac Graf, Joshua W. Haines, Kristopher R.
Kendall, David McClung, Dan Weber, Seth E. Webster, Dan Wyschogrod, Robert K.
Cunningham, and Marc A. Zissman. FEvaluating intrusion detection systems: The
1998 darpa off-line intrusion detection evaluation. DARPA Information Survivability
Conference and Ezxposition, 2:1012, 2000.

Moni Naor and Benny Pinkas. Oblivious transfer and polynomial evaluation. In STOC
’99: Proceedings of the thirty-first annual ACM symposium on Theory of computing,
pages 245-254, New York, NY, USA, 1999. ACM.

S. Papadimitriou, H. Kitagawa, P.B. Gibbons, and C. Faloutsos. Loci: fast outlier
detection using the local correlation integral. In Data Engineering, 2003. Proceedings.
19th International Conference on, pages 315 — 326, 5-8 2003.

P. Rogaway. The Round Complezity of Secure Protocols. PhD thesis, MIT, June 1991.
Available from www.cs.ucdavis.edu/ rogaway/papers/.

Stuart E. Schechter, Jaeyeon Jung, and Arthur W. Berger. Fast detection of scanning
worm infections. In RAID, pages 59-81, 2004.

Adi Shamir. How to share a secret. Commun. ACM, 22(11):612-613, 1979.

Riivo Talviste and Dan Bogdanov. An improved method for privacy-preserving web-
based data collection. Technical Report Cybernetica research report T-4-5, Cybernetica
As, 2009.

Jian Tang, Zhixiang Chen, Ada Wai-chee Fu, and David Cheung. A robust outlier de-
tection scheme for large data sets. In In 6th Pacific-Asia Conf. on Knowledge Discovery
and Data Mining, pages 6-8, 2001.

David Wagner. Resilient aggregation in sensor networks. In SASN ’04: Proceedings of
the 2nd ACM workshop on Security of ad hoc and sensor networks, pages 7887, New
York, NY, USA, 2004. ACM.

Andrew C. Yao. Protocols for secure computations. In SFCS ’82: Proceedings of
the 23rd Annual Symposium on Foundations of Computer Science, pages 160-164,
Washington, DC, USA, 1982. IEEE Computer Society.






Appendix A

Comparison Sequence Generators

A.1 Python script for odd-even merge sort sequence generator

import sys
import math
def mergesort(idxs, depth):
logsize = int(math.log(len(idxs)) / math.log(2))
assert 2**logsize == len(idxs)
if depth > logsize and len(idxs) > 2:
return mergesort(idxs[:len(idxs)/2], depth - logsize) +
mergesort (idxs[len(idxs)/2:], depth - logsize)
else:
return oddevenmerge(idxs, depth)
def oddevenmerge(idxs, depth):
if len(idxs) <= 1:
return []
if depth ==
if len(idxs) ==
return [(idxs[0], idxs[1])]
return [ (idxs[i], idxs[i+1]) for i in xrange(l, len(idxs) - 2, 2)]
else:
return oddevenmerge(idxs[::2], depth - 1) +
oddevenmerge (idxs[1::2], depth - 1)
def main():
tosort = range(2**int(sys.argv[1]))
maxdepth = 1
while mergesort(tosort, maxdepth):
maxdepth += 1
maxdepth -= 1
for i in xrange(maxdepth, 0, -1):
print mergesort(tosort, i)
if __name__ == ’__main__’:

main()

93



54 APPENDIX A. COMPARISON SEQUENCE GENERATORS

A.2 Python script for modified odd-even merge sorting network
sequence generator

import sys
import math
def oddevenmerge(idxs, depth):
if len(idxs) <= 1:
return []
if depth <= 2:
return [ (idxs[i], idxs[i+1]) for i in xrange(depth - 1, len(idxs) - 1, 2)]
else:
return oddevenmerge(idxs[::2], depth - 2) +
oddevenmerge (idxs[1::2], depth - 2)
def main():
tosort = range(2**int(sys.argv[1]))
maxdepth = 1
while oddevenmerge(tosort, maxdepth):
maxdepth += 1
maxdepth -= 1
for i in xrange(maxdepth, 0, -1):
print oddevenmerge(tosort, i)
if __name__ == ’__main__’:

main()



Appendix B

Python Script for LOCI scheme

from numpy import *

def

def

def

def

def

outmean (n,np,1):
1h = abs(np-mean(n))
rh = 1*std(n)
s =0
if 1h>rh: s =1
return s
mad (n) :
m = zeros(len(n))
m[0:1len(n)] = median(n)
m = abs(m - n)
return median(m)
outmedian(n,np,1):
1h = abs(np-median(n))
rh = 1*mad(n)
s =0
if 1h>rh: s =1
return s
distance(v):
d = zeros((len(v),len(v)),dtype=int)
for i in range(len(v)):
d[i][0:1len(v)] = abs(v[i]-v)
return d
flag out(d,ind,k,a):
n =[]
temp = sort(d[ind])
kd = temp[k-1]
kad = kd*a
np = float(len(array([where(d[ind]<=kad)]) .ravel()))
knn = array(where(d[ind]<=kd)) .ravel()
for i in range(len(knn)):
n.append (len(array(where(d[knn[i]]<=kad)) .ravel()))
n = array(n)
lmeanl=sqrt(2*1logl0(len(temp)))
Imean2 = 3

95



56 APPENDIX B. PYTHON SCRIPT FOR LOCI SCHEME

Imedian = 5.2
sl=outmean(n,np,lmeanl)
s2=outmedian(n,np,lmedian)
return si1,s2

f = open("data.txt","r")

ip=[]

origval=[]

for line in f:
line = line.strip(Q)
line = line.split(",")
ip.append(line[0])
origval.append(float(line[1]))

val = sort(array(origval))

N = len(val)
D=7
a=0.25

d=distance(val)
s_mean = zeros(N)
s_median = zeros(N)
k = int(ceil (N*0.85))
outval = []
for k in range(27):
for i in range(N):
s_mean[i] ,s_median[i] = flag_out(d,i,k,a)
if (s_median[i]==1):
outval.append(vall[i])
outval = unique(outval)
outliers=[]
for i in range(len(outval)):
ind=array (where (origval==outval[i])).ravel()
for i in range(len(ind)):
outliers.append(ip[ind[i]])
for i in outliers:
mean_fpr = sum(s_mean[0:N-(0+1)])/(N-0)*100
mean_tpr = sum(s_mean[N-0:N])/0%100
median_fpr = sum(s_median[0:N-(0+1)])/(N-0)*100
median_tpr = sum(s_median[N-0:N])/0%*100
print "K: ",k," MEAN TPR: ",mean_tpr,", MEAN FPR:",mean_fpr
print "K: ",k," MED TPR: ",median_tpr,", MED FPR: ",median_fpr



Appendix C

Privacy Preserving Algorithms

C.1 SecreC code for 'oblivious aggregation algorithm’

private int[][] aggregate (private int[][] d){
public int len; len = vecLength(d); len = len/3;
private int IP1; private int IP2;
private int cntl; private int cnt2;
private int fl; private int £f2;
private bool comp; private int c; private int invc;
public int i;
public int j;
public int pub;
for(j=0;j<len;j=j+1){

for(i=0;i<len-1;i=i+1){

IP1 = d4[0][i];

IP2 = d[0][i+1];

cntl = d[1][i];

cnt2 = d[1]1[i+1];

f1 = d[2]1[i];

f2 = d[2][i+1];

comp = (IP1==IP2);

¢ = boolToInt (comp);

invec = 1 - c;

d[11[i] = (cntl+cnt2)*c + cntl*invc;

d[11[i+1] = (cnt2-cnt2)*c + cnt2*invc;
d[2]1[i] = (f1+f2)*c + filxinvc;

d[2] [i+1] =(£f2-f2)*c + f2*(1-c);

}

}

return d;

C.2 SecreC code for 'vectorized oblivious aggregation algorithm’

// Shaping the aggregation by eliminating duplicate entries created in aggregate function

57



58 APPENDIX C. PRIVACY PRESERVING ALGORITHMS

private int[] shaping (private int[] d, private int[] ¢, public int ind){
public int len; len = vecLength(d);
private int[len] tmp;
tmp = d*c;
d[ind] = vecSum(tmp);
tmp[ind] = 0;
d =4 - tmp;
return d;

// Aggregate the counts and frequencies whose IPs are equal
private int[][] aggregate (private int[][] d){
public int len; len = vecLength(d); len = len/3;
private int[len] d0; dO = d[0][*]; private int[len] d1; d1 = d[1][*];private int[len] d2; ¢
private int[len] seed; private bool[len] comp; private int[len] c; public int i;
for(i=0;i<len;i=i+1) {
seed=d0[i];
comp = (d0==seed);
¢ = boolToInt (comp);
dl = shaping(dl, c, i);
d2 = shaping(d2, c, i);
}
d[11[*]1 = d1;
d[2]1[*] = a2;
return d;

C.3 SecreC code for 'oblivious bubble sorting network’

private int[][] sorting (private int[][] d){
public int len; len = vecLength(d); len = len/3;
private int IP1; private int IP2;
private int cntl; private int cnt2;
private int fl; private int £f2;
private bool comp; private int c; private int invc;
public int i; public int j;
for(i=len-1;i>=1;i=i-1) {
for(j=0;j<i;j=j+1) {
IP1 = d[0]1[j]; IP2 = d[0][j+1];
cntl = d[11[j]; cnt2 = d[1]1[j+1];
f1 = d[2]1[j]; £f2 = d[2][j+1];
comp = (£1>=£f2);
¢ = boolToInt (comp);
invec = 1 - c;
d[0][j] = IP2*c + IPilxinvc;
d[0] [j+1] = IP1%c + IP2*invc;
d[11[j] = cnt2*c + cntix*invc;



C.4. SECREC CODE FOR 'VECTORIZED OBLIVIOUS ODD-EVEN TRANSPOSITION
SORTING NETWORK’ 59

d[1]1[j+1] = cntl*c + cnt2*invc;
d[2]1[j] = f2*c + filxinvc;

d[2][j+1] = fi*c + f2*invc;
}

return d;

}private int[][] sorting (private int[][] d){
public int len; len = vecLength(d); len = len/3;
private int IP1; private int IP2;
private int cntl; private int cnt2;
private int f1; private int £2;
private bool comp; private int c; private int invc;
public int i; public int j;

for(i=len-1;i>=1;i=i-1) {

for(j=0;j<i;j=j+1) {

IP1 = d[0][j]; IP2 = 4[0][j+1];

cntl = d[11[j]; cnt2 = d[1]1[j+1];

f1 = d[2]1[j]; £2 = d[2][j+1];

comp = (£1>=£2);
¢ = boolToInt (comp);
invec = 1 - c;
d[0][j] = IP2*c + IP1lxinvc;
d[0] [j+1] = IP1xc + IP2*invc;
d[1]1[j] = cnt2*c + cntl*invc;
d[1]1[j+1] = cntl*c + cnt2*invc;
d[2]1[j] = f2*c + filxinvc;
d[2] [j+1] = filxc + f2*invc;
3
3

return d;

C.4 SecreC code for 'vectorized oblivious odd-even transposition
sorting network’

//0One sorting round according to the frequency
private int[][] sort_round(private int[][] d){
public int len; len = vecLength(d); len = len/3;
private int[len] IP; IP = d[0][*];
private int[len] cnt; cnt = d[1][*];
private int[len] freq; freq = d[2][*];
private int[len] otherIP; private int[len] othercnt; private int[len] otherfreq;
private bool[len] comp; private int[len] c;
private int[len] temp; temp = 1; public int ij;
for(i=0;i<len;i=i+2){
otherIP[i] = IP[i+1]; otherIP[i+1] = IP[i];
othercnt[i] = cnt[i+1]; othercnt[i+1] = cnt[i];
otherfreq[i] = freq[i+1]; otherfreql[i+1] = freq[il;



60 APPENDIX C. PRIVACY PRESERVING ALGORITHMS

}

comp = (freq>=otherfreq);

for(i=0;i<len;i=i+2){
comp[i+1] = comp[il;

¢ = boolToInt (comp);

IP = (temp-c)*IP+c*otherIP;
cnt = (temp-c)*cnt+c*xothercnt;

freq = (temp-c)*freq+c*otherfreq;
d[ol[*] = IP; d[11[*] = cnt; d[2][x] = freq;
return d;

}

//sorting a vector
private int[][] sorting (private int[][] d){
public int len; len = vecLength(d); len = len/3;
public int i; public int j; public int k; k = len-2;
private int[3][len-2] d_next; d_next = 0;
for(i=0;i<len/3;i=i+1){
d = sort_round(d);
for(j=0;j<k;j=j+1){
d_next[0][j] = d[0][j+1]1; d_next[1]1[j] = d[11[j+1]; d_next[2][j]1 = d[2]1[j+1];
}
d_next = sort_round(d_next);
for(j=0;j<k;j=j+1){
d[0][j+1] = d_next[0][j]; d[1]1[j+1] = d_next[1]1[j];d[2]1[j+1] = d_next[2][j];
}
}

return d;

C.5 SecreC code for 'vectorized oblivious odd-even merge sorting
network’

Comments: This is a python based code generator that generates the SecreC code for
oblivious sorting, based on the comparison sequence generated by the odd-even merge sort-
ing network sequence geneator (Appendix A.1).

from numpy import *
import sys

f = open("newfile",’r?’)
rounds=0

num = pow(2,int(sys.argv[1]))
for s in f: rounds = rounds+i1
f.close()

sn = zeros((rounds, num),’i’)



C.5. SECREC CODE FOR 'VECTORIZED OBLIVIOUS ODD-EVEN MERGE SORTING

NETWORK

for i

in range(rounds):

for j in range(num):

sn[i]l [j]1 = 32768

f = open("newfile",’r?)

B nn n n n non

.strip()
.strip(C’ [?)
.strip(?]1?)
.replace(’ (?,??)
.replace(’)?,??)
.strip(C ?)
.split (?,?)

= len(s)

1]
n n n n n n n

for j in range(0,n,2):

i

sn[i] [int(s[j1)I=int (s[j+1])
sn[i] [int(s[j+11)]1=int(s[j])
= i+l

# start sharemind conversion

print
print
print
print
print
print
print
print
print
print
print
print
print
print
print
print
print
print
print
print
print
print
print
print
print
print
print
print
print

"void main(){"

"public int num;"

"num = "+str(rounds)+";"

"dbLoad (\"IPTables\") ;"

"public int rows;"

"rows = dbRowCount (\"IPTables\");"
"private int[rows] IP;"

"IP= dbGetColumn (\"IP\", \"IPTables\");"

"private int[rows] cnt;"

"cnt= dbGetColumn (\"CNT\", \"IPTables\");"

"private int[rows] freq;"

"freq= dbGetColumn (\"FREQ\", \"IPTables\");"

"private bool[rows] comp;"
"private int[rows] c;"
"private int[rows] temp;"
"temp = 1;"

"private int[rows] otherIP;"
"private int[rows] otherCnt;"
"private int[rows] otherFreq;"
"private int[rows] tmpCnt;"
"private int[rows] tmpFreq;"
"private int[rows] seed;"
"private int[rows] th;"
"private int z;"

"th = 0;"

"public int i;"

"public int k;"

"public int[num] [rows] sn;"
"public int[rows] pub;"

61



62 APPENDIX C. PRIVACY PRESERVING ALGORITHMS

print "public int tmp;"
for i in range(i):
for j in range(num):
print ’sn[’+str(i)+’]1 [ +str(j)+’]1="+str(snlil [j1)+’;°

print "for(k=0;k<num;k=k+1){"

print "for(i=0;i<rows;i=i+1){"
print "tmp = snl[k][i];"

print "if (tmp!=32768){"

print "otherIP[i] = IP[tmp];"

print "otherFreq[i] = freq[tmp];"
print n}u

print "else{"

print "otherIP[i] = IP[i];"

print "otherCnt[i] = cnt[i];"

print "otherFreq[i] = freq[il;"
print n}u

print n}u

print "comp = (freg>=otherFreq);"
print "for(i=0;i<rows;i=i+1){"
print "tmp = snl[k][il;"

print "if (tmp!=32768){"

print "comp[tmp] = comp[i];"

print "3}"

print "3}"

print "c = boolToInt(comp) ;"

print "IP = c*IP+(temp-c)*otherIP;"
print "freq = c*freq+(temp-c)*otherCnt;"
print "freq = cxfreq+(temp-c)*otherFreq;"
print "3}"

print "pub = declassify(cnt);"
print "publish(\"Result\",pub);"
print n}u

C.6 Secure Set Reduction Operation

//reduce the vector if frequency is zero (important for set union and intersection)
private int[][] reduce(private int[J[] d){

public int len; len = vecLength(d); len = len/3;

private int[len] IP; IP = d[0][*];

private int[len] cnt; cnt = d[1][*];

private int[len] f; f = d[2][*];

private int[len] zeros; zeros = 0;

private bool[len] compzero;

private int s; public int z; public int i; public int ind; public int[len] pub;

compzero = (f==zeros); s = vecSum(compzero); z = declassify(s);

for (i=0;i<z;i=i+1) {

vecRemove (IP,0) ;



C.6. SECURE SET REDUCTION OPERATION

vecRemove(cnt,0) ;
vecRemove (f,0) ;
}
public int rows; rows = len - z;
private int[3] [rows] e;
e[0][*] = IP;

e[11[*] = cnt;
el[2]1[*] = f;
return e;

63



