
Priva
y Preserving Collaborative Anomaly Dete
tionUsing Se
ure Multi-party Computation

ABU HAMED MOHAMMAD MISBAH UDDIN
Master's ThesisSupervisors:

Dr. Peeter Laud, University of Tartu
Dan Bogdanov, Cybernetica AS

Dr. Mads Dam, The Royal Institute of Technology (KTH)





AbstractThe in
reasing volume of 
yber atta
ks has be
ome a major prob-lem to the Internet world. Collaborative intrusion dete
tion sys-tems 
an help mitigating the problem to some extent. A me
h-anism to design su
h a system is aggregating atta
k tra�
 fromvi
tim organizations and applying anomaly dete
tion systems onthe aggregated data. To prote
t priva
y of the users, the organi-zations should aggregate in a se
ure environment. Se
ure multi-party 
omputation may be applied to su
h a task, but the general
onsensus is that the 
omputation and 
ommuni
ation overheadof su
h proto
ols makes them impra
ti
al for aggregation of largedatasets.In our work, we present a novel way to aggregate atta
k tra�
in a priva
y preserving manner using the primitives of se
uremultiparty 
omputation. Spe
i�
ally, we have devised a proto
olindependent algorithm that 
omputes fast and se
ure set unionand interse
tion. We implemented our algorithm in Sharemind, afast priva
y preserving virtual 
omputer and support our 
laimsby experimental results.



Contents

1 Introdu
tion 12 Ba
kground and Related Work 32.1 Homomorphi
 Se
ret Sharing . . . . . . . . . . . . . . . . . . . . . . . . . . 32.1.1 A trivial se
ret sharing s
heme . . . . . . . . . . . . . . . . . . . . . 42.1.2 Shamir's Se
ret Sharing . . . . . . . . . . . . . . . . . . . . . . . . . 42.1.3 Homomorphism of Se
ret Sharing . . . . . . . . . . . . . . . . . . . . 42.2 Se
ure Multiparty Computation . . . . . . . . . . . . . . . . . . . . . . . . . 52.3 Sharemind . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62.4 Sorting Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82.5 Outlier Dete
tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82.6 Se
ure Set Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 Algorithms 133.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133.2 Solution Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153.2.1 Priva
y and Performan
e Goals . . . . . . . . . . . . . . . . . . . . . 173.3 Outlier Dete
tion by LOCI . . . . . . . . . . . . . . . . . . . . . . . . . . . 183.4 Important Preliminaries for Priva
y Preserving Algorithms . . . . . . . . . 193.4.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203.4.2 Notational Convention . . . . . . . . . . . . . . . . . . . . . . . . . . 203.4.3 Oblivious Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . 203.4.4 Data Stru
ture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213.5 Priva
y Preserving Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . 213.5.1 Se
ure Set Union Algorithm . . . . . . . . . . . . . . . . . . . . . . . 213.5.2 Se
ure Set Interse
tion Algorithm . . . . . . . . . . . . . . . . . . . 233.5.3 Oblivious Aggregation . . . . . . . . . . . . . . . . . . . . . . . . . . 233.5.4 Oblivious Sorting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263.5.5 Se
ure Set Redu
tion . . . . . . . . . . . . . . . . . . . . . . . . . . 303.6 Merging the Pie
es . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313.7 Priva
y Level of the Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . 324 Performan
e Evaluation 354.1 Introdu
tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354.1.1 On Performan
e Analysis of Anomaly Dete
tion System . . . . . . . 354.1.2 On Performan
e Analysis of Priva
y Preserving Algorithms . . . . . 354.2 Outlier Dete
tion by LOCI . . . . . . . . . . . . . . . . . . . . . . . . . . . 364.2.1 Feature Constru
tion . . . . . . . . . . . . . . . . . . . . . . . . . . . 364.2.2 Re
eiver Operating Chara
teristi
 Curve . . . . . . . . . . . . . . . . 37iv



CONTENTS v4.3 Evaluation of LOCI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 384.4 Evaluation of the Priva
y Preserving Algorithms . . . . . . . . . . . . . . . 404.4.1 Test Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404.4.2 Performan
e Evaluations . . . . . . . . . . . . . . . . . . . . . . . . 415 Dis
ussions 47Bibliography 49Appendix:A Comparison Sequen
e Generators 53A.1 Python s
ript for odd-even merge sort sequen
e generator . . . . . . . . . . 53A.2 Python s
ript for modi�ed odd-even merge sorting network sequen
e generator 54B Python S
ript for LOCI s
heme 55C Priva
y Preserving Algorithms 57C.1 Se
reC 
ode for 'oblivious aggregation algorithm' . . . . . . . . . . . . . . . 57C.2 Se
reC 
ode for 've
torized oblivious aggregation algorithm' . . . . . . . . . 57C.3 Se
reC 
ode for 'oblivious bubble sorting network' . . . . . . . . . . . . . . 58C.4 Se
reC 
ode for 've
torized oblivious odd-even transposition sorting network' 59C.5 Se
reC 
ode for 've
torized oblivious odd-even merge sorting network' . . . 60C.6 Se
ure Set Redu
tion Operation . . . . . . . . . . . . . . . . . . . . . . . . 62





Chapter 1

IntroductionHuman 
ommuni
ations have been revolutionized by the advent of the Internet. Publi
and private servi
e providers are in
reasingly transferring their servi
es online for improvedavailability and 
onvenien
e. Low startup barriers, high 
onsumer priva
y and global out-rea
h of this open network have made it possible to run 
ompletely online businesses andservi
es.Unfortunately, these bene�ts have attra
ted all kinds of adversaries. The number of
yber 
rimes are in
reasing at an alarming rate. A

ording to Ma
Afee, "
orporationsaround the world fa
e millions of 
yber-atta
ks everyday" [25℄. Some of these atta
ks areor
hestrated to harm a group of organizations e.g distributed network s
anning. Theseatta
ks 
an be de�ned as multi domain atta
ks. Multi domain atta
ks are relatively moreorganized than the single domain atta
ks and often driven by politi
al or ideologi
al agendas.Usually, they start by surveying the vulnerability of the networks and then mount large s
aleatta
ks in the later stages. Therefore, it is important to dete
t the multi domain atta
ks atthe early stages to prevent further damages.Usually, tra�
 logs of a vi
tim of multi domain atta
k 
ontain only the partial visibilityof the atta
ks. Therefore, when vi
tim organizations apply intrusion dete
tion system onthe lo
al tra�
, they often fail to di�erentiate between multi and single domain atta
ks.To a

urately dete
t multi domain atta
ks, the organizations need to aggregate tra�
 logs
ontaining atta
ks samples, so that intrusion dete
tion systems have the 
omplete pi
tureof the atta
ks.But the organizations should not engage in su
h 
ollaboration in non-priva
y preservingenvironment. Non-priva
y preserving aggregation of network logs reveals 
ru
ial informa-tion about the organizations, e.g. network topology, and 
ru
ial information about their
lients, e.g. internet usage behavior. Dis
losing su
h information may arise various kindsof 
ompli
ations su
h as legal ones.Various methods exist for priva
y preserving aggregation: one way hashing, 
ommuta-tive en
ryption, homomorphi
 en
ryption, se
ure multiparty 
omputation (MPC) et
. Outof all, MPC proto
ols have been unpopular for aggregation of large datasets even though itprovides a high level of priva
y. MPC proto
ols su�er from high 
omputation and 
ommu-ni
ation overhead, whi
h make them inappli
able in pro
essing of large datasets.In this proje
t, we have fo
used on improving the speed of performan
e of MPC basedaggregation. Parti
ularly, we tried to use MPC framework for fast aggregation of largedatasets. We have devised several algorithms that allow us to 
ompute some se
ure setoperations using MPC framework within an a

eptable time. Spe
i�
ally, we have designedpriva
y preserving aggregation, sorting and set redu
tion algorithm that 
an be assembled1



2 CHAPTER 1. INTRODUCTIONto 
ompute se
ure set union and interse
tion of multiple data sets. The algorithms are ofgeneri
 nature. That means they 
an be implemented on any MPC framework providedthat the framework supports some requirements. We state these requirements in the laterdis
ussions. We used these priva
y preserving set operation proto
ols to build our priva
ypreserving anomaly dete
tion system. Using the se
ure set operations proto
ols, we 
anaggregate the atta
k tra�
 from multiple organizations.Our priva
y preserving anomaly dete
tion system allows us to aggregate the atta
ktra�
 from multiple organizations using the se
ure set operation proto
ols and to dete
tthe multi domain atta
ks using an anomaly dete
tion system on the aggregated data. In ourproje
t, we have 
hosen to use an outlier dete
tion system named LOCI [31℄ as a networkanomaly dete
tion system. LOCI is a density based nearest neighbor algorithm that 
anbe easily merged with the se
ure set operation algorithms to build the priva
y preservingsystem.We have implemented the building blo
ks of our system to evaluate their performan
e.The priva
y preserving algorithms are implemented in Sharemind [9℄, a fast priva
y pre-serving MPC framework. We have also implemented LOCI s
heme to dete
t outliers fromunivariate atta
k features. The performan
e evaluation showed that our priva
y preservingalgorithms have su

essfully a
hieved our goal. The evaluation also helped us to 
hoose theright 
on�guration parameters for the LOCI s
heme.Rest of the report is organized as follows. In 
hapter two, we dis
uss the ba
kgroundand related work of our proje
t. In 
hapter three, we dis
uss the problem formulationand design of the solution. In 
hapter four, we present the performan
e evaluation of ouralgorithms. We 
on
lude in 
hapter �ve by dis
ussing the a
hievements and limitations ofour proje
t.



Chapter 2

Background and Related WorkIn this 
hapter, we dis
uss the theoreti
al 
on
epts and related works ne
essary to un-derstand our proje
t. Our priva
y preserving multi domain anomaly dete
tion system isdesigned using the fun
tionalities of se
ure multiparty 
omputation (MPC). We assumethat the MPC framework is based on se
ret sharing s
heme and the MPC fun
tionalitiesare implemented using share 
omputing methods. Therefore, we start by dis
ussing thebasi
 
on
epts of se
ret sharing and se
ure multiparty 
omputation in Se
tions 2.1 and 2.2.We have devised some generi
 priva
y preserving algorithms to design our anomalydete
tion system. The algorithms are portable to any MPC framework provided that theframework supports some requirements mentioned in 
hapter three. In this proje
t, weimplemented our s
heme in the Sharemind framework [9℄. We provide a brief des
ription ofthe Sharemind framework in Se
tion 2.3.Our priva
y preserving anomaly dete
tion system needs to sort a sequen
e of values.Due to priva
y 
onstraint, the sorting operation should not depend on the value of thedata. Sorting network is a data independent sorting model that 
an be easily in
orporatedto our system. Hen
e, we dis
uss the basi
 
on
epts of sorting network and some examplesof sorting network in Se
tion 2.4.For anomaly dete
tion, we have used the 
on
ept of outlier dete
tion. Parti
ularly wehave used an outlier dete
tion s
heme named LOCI [31℄. Therefore, in Se
tion 2.5 weprovide a brief dis
ussion on outlier dete
tion systems. Finally, we have assembled ourpriva
y preserving algorithms to design se
ure set union and set interse
tion proto
ols toaggregate multi-domain atta
k data. In Se
tion 2.6, we provide a brief overview of someearlier s
ienti�
 resear
hes in the area of se
ure set interse
tion 
omputation.
2.1 Homomorphic Secret SharingHomomorphi
 se
ret sharing plays an important role in the proje
t. Our se
ure set inter-se
tion proto
ol assumes private data is in the se
ret shared format and implements thesubproto
ols a

ordingly. In this se
tion, we give a brief overview of se
ret sharing s
hemesand their homomorphisms.Se
ret sharing is a useful method for prote
ting the priva
y of sensitive data, indepen-dently proposed by Adi Shamir [34℄ and G.R. Blakley [7℄ in 1979. In simple terms, a se
retsharing s
heme in
ludes a dealer who divides a se
ret value into n number of shares anddistributes them to n parties. A prede�ned group of parti
ipants of size m (m ≤ n) 
an
ooperate to re
onstru
t the shares at any given time, while ensuring that no group of lessthan m 
an learn the se
ret. This group is 
alled an a

ess stru
ture. We give a brief3



4 CHAPTER 2. BACKGROUND AND RELATED WORKoverview of some se
ret sharing methods in the following se
tion.
2.1.1 A trivial secret sharing schemeA se
ret sharing s
heme is 
onsidered trivial when all shares are ne
essary to re
over these
ret. This is also known as a (n, n) se
ret sharing proto
ol. A simple, yet e�
ient, trivialse
ret sharing s
heme is given as follows. Let us assume there are n number of parties, ea
hdenoted by Pi, where i = 1 . . . n. One of the parties a
ts as a dealer, who holds a se
ret Sfrom a group G, and pi
ks a set of random numbers si (i = 1 . . . n− 1), where ea
h si is aslarge as S. The dealer 
al
ulates sn = S−

∑

si and distributes the shares by giving ea
h sito Pi. When the se
ret needs to be re
onstru
ted, all Pi send their shares si, to the dealerwhi
h adds them to obtain S. Sin
e ea
h share is random, they 
arry no information aboutthe se
ret. An adversary 
annot dedu
e the se
ret unless it manages to 
orrupt all of theparties. This s
heme is, se
ure but not 
onvenient, as it requires all parties to be presentduring the re
onstru
tion phase.
2.1.2 Shamir’s Secret SharingShamir introdu
ed the 
on
ept of se
ret sharing with the s
heme des
ribed in [34℄. It is a
(t, n) threshold s
heme, where only t out of n shares are needed to re
onstru
t the se
ret.Shamir's s
heme is based on polynomial evaluation. Let S be a se
ret from some ZP , ownedby the dealer. The dealer sele
ts a random polynomial, f(x) = f0+f1x+f2x

2+ . . .+ftx
t−1,where f(0) = S. The dealer evaluates the polynomial si = f(i), and gives ea
h si to a party

Pi, where i = 1 . . . n. Therefore ea
h party obtains a share of the se
ret.The size of the a

ess stru
ture is t, whi
h is same as the degree of the polynomial,where t ≤ n. For re
onstru
tion of the se
ret, the Lagrange interpolation formula [6℄ isused. Given t points, (xi, yi), i = 1 . . . t, the polynomial 
an be regenerated by using theformula presented in Equation 2.1.
f(x) =

t
∑

i=1

yi

t
∏

j=1,j 6=i

x− xj

xi − xj

(2.1)Thus, k parties 
an re
reate the se
ret S with Equation 2.2.
f(x) =

t
∑

i=1

f(i)

t
∏

j=1,j 6=i

j

j − i
(2.2)Any party holding a share 
an 
onstru
t the se
ret by 
ollaborating with (t − 1) otherparties, whether the dealer is in
luded or not. As any subset of up to (t−1) shares does notleak any information about the se
ret, it is se
ure in presen
e of 
omputationally boundedadversaries. This s
heme is more 
onvenient than the trivial one, sin
e the se
ret 
an bere
onstru
ted by a subset of the parties.

2.1.3 Homomorphism of Secret SharingA homomorphism is a stru
ture preserving map between two algebrai
 stru
tures, su
h thatfor every kind of manipulation of the original data, there is a 
orresponding manipulation ofthe transformed data. In [11℄, Benaloh showed that Shamir [34℄, Blakley [7℄ and some otherse
ret sharing s
hemes are homomorphi
 for some basi
 operation. Based on Benaloh'sdis
ussion, we de�ne su
h homomorphi
 se
ret sharing as follows.



2.2. SECURE MULTIPARTY COMPUTATION 5Let us assume two se
rets, S and T , ea
h being divided into n shares, denoted by s1 . . . snand t1 . . . tn. For any binary operations ⊕ and ⊗, a se
ret sharing s
heme is (⊕,⊗)-homomorphi
, if the re
onstru
ted value of the shares s1 ⊗ t1 . . . sn ⊗ tn is same as thevalue of S ⊕ T .We 
an also de�ne a homomorphi
 se
ret sharing s
heme with a 
onstant as follows.Let us assume a se
ret S and a 
onstant C, where S is divided into n shares denotedby s1 . . . sn. For any binary operations ⊕ and ⊗, a se
ret sharing s
heme is (⊕,⊗)-homomorphi
, if the re
onstru
ted value of the shares s1 ⊗ C . . . sn ⊗ C is same as thevalue of S ⊕ C.The homomorphism properties of se
ret sharing s
hemes allows integrity preservingoperations on a se
ret by 
omputations on the shares. Benaloh su

essfully argued that it ismu
h more se
ure to ex
hange and 
ompute on the shares than to do the same on the se
retitself, as the se
ret 
annot be retrieved from less than t shares in (t, n) threshold s
hemes.Therefore, it is possible to e�
iently implement a multi party 
omputation proto
ol withhomomorphi
 se
ret sharing s
heme su
h as Shamir's.
2.2 Secure Multiparty ComputationOur priva
y preserving s
heme is built upon the se
ure multiparty 
omputation (MPC)framework. The MPC problem was initially suggested by Andrew C. Yao in 1982, in termsof the millionaires' problem [38℄. A

ording to the millionaires' problem, Ali
e and Bob aretwo millionaires, who are trying to �nd out who is ri
her, without revealing informationabout their wealth. Yao proposed a two party proto
ol, that solves the problem with thegiven 
onstraints. The solution of the millionaire problem lead to a generalization to multi-party proto
ols.Based on Goldrei
h's dis
ussion in [20℄, we give a brief overview of the basi
s of MPCas follows. MPC is an M party 
ryptographi
 proto
ol that maps M inputs to M outputsusing a random pro
ess. The M inputs are lo
al inputs of the parties and M outputs aretheir 
orresponding expe
ted lo
al outputs. The random pro
ess is the desired fun
tionalityof the proto
ol. The fun
tionality allows distrustful parties to emulate by themselves thebehavior of some external trusted third party who 
omputes the out
ome of the pro
essusing M inputs and returns ea
h party the 
orresponding outputs.To elaborate the emulation pro
ess, we introdu
e two distin
t settings: real and ideal.The real setting is the a
tual exe
ution of the proto
ol, whereas the ideal setting is animaginary exe
ution of the ideal proto
ol for 
omputing desired fun
tionality with the helpof a trusted third party. The proto
ol is deemed se
ure, and hen
e emulates the idealsetting, if whatever the adversaries 
an feasibly obtain from the real setting 
an also bedrawn from the ideal setting. Here, an adversary is a mali
ious party, whose obje
tive isto prevent the users from a
hieving their goals by 
orrupting a set of parties. The se
urityobje
tives are preservation of priva
y of the lo
al input by the parties and 
orre
tness ofthe lo
al output by the honest parties.The extent of emulation of the trusted third party by the mutually distrustful partiesin MPC proto
ols varies a

ording to adversary and 
ommuni
ation 
hannel models. Pri-marily, there are two main 
lasses of adversary models: passive and a
tive. In the passiveadversary model, an adversary only gathers information from the 
orrupted parties withoutmodifying their behavior. On the other hand, in the a
tive adversary model, adversaries not



6 CHAPTER 2. BACKGROUND AND RELATED WORKonly read the messages, but also 
an modify the messages of the 
orrupted parties. Further,a
tive and passive adversaries 
an be adaptive or non-adaptive. A non-adaptive adversary
ontrols an arbitrary but �xed, set of 
orrupted parties before exe
ution of the proto
ol,whereas an adaptive adversary 
an 
hoose whi
h party to 
orrupt during the exe
ution ofthe proto
ol, based on the information gathered so far.There are two basi
 models of 
ommuni
ation. The �rst one is a 
ryptographi
 model,where an adversary is able to a

ess all messages ex
hanged between the parties, and mod-ify messages of the 
orrupted parties. The se
ond one is an information-theoreti
 modelwhere parties 
ommuni
ate with ea
h other over pairwise se
ure 
hannels. A se
ure 
hannelprevents an adversary from reading any messages ex
hanged between the honest parties,even when the adversary is 
omputationally unbounded.Some models for general se
ure multi party proto
ol is given as follows:� Models for passive and a
tive adversary for any number of dishonest parties, assumingthat adversary is non-adaptive, and 
omputationally bounded and 
ommuni
ation
hannels are 
ryptographi
ally se
ure.� Models for passive and a
tive adversary that may 
ontrol only a stri
t minority of theparties, assuming that adversary is adaptive, and 
omputationally unbounded and
ommuni
ation 
hannels are information theoreti
ally se
ure.The models 
an be easily applied to a rea
tive 
omputational model, where a high levelappli
ation intera
ts with the parties. The parties adaptively re
eive some inputs from theappli
ation and return the 
orresponding outputs. The appli
ation iterates this pro
essrea
tively for some time. The outputs of ea
h iteration may also depend on some globalstate, whi
h may 
onsist of the inputs and outputs of previous rounds. Therefore, theglobal state may be updated at ea
h iteration. The state may only be partially known toindividual parties and 
an be maintained by themselves in a se
ret sharing manner.Some earlier proto
ols following this pro
ess use an unbounded number of iterations[32℄. To a
hieve e�
ien
y, some subsequent work obtained 
onstant round proto
ols insome 
ases [5, 18, 27, 12℄. E�
ien
y of the rea
tive 
omputational proto
oll 
an also beimproved by using large sized pa
kets ex
hanged during the exe
ution of the proto
ol andoptimizing the lo
al 
omputation time. In this proje
t, we are not designing our own MPCproto
ol, but merely using su
h proto
ols as an aggregation tool. Hen
e, we will not provideany more dis
ussion and refer to [20℄ for further reading.
2.3 SharemindSharemind is a se
ure multi-party 
omputation framework designed with a strong fo
ustowards speed, s
alability and ease of appli
ation development [9℄. Sharemind uses se
retsharing to split 
on�dential information among several 
omputing nodes denoted as miners.The data donors do not need to trust the miners provided that the number of 
orruptedminers 
olluding with ea
h other is always less than a pres
ribed threshold, t, where thenumber of 
omputing parties, n > 3t. The framework a
hieves provable se
urity in semihonest model for information theoreti
ally se
ure 
ommuni
ation 
hannels. In pra
ti
e,models with three to �ve miner nodes in semi honest setting are 
ommon, where threeminer models are 
omparatively 
ommuni
ation-e�
ient. As Sharemind is strongly 
on
en-trated in improving pro
essing e�
ien
y in terms of speed, 
urrent implementation of theframework 
onsists of three miner nodes.



2.3. SHAREMIND 7

Figure 2.1. Deployment diagram of Sharemind (adapted from [9℄).Sharemind uses 32 bit integers as input to a
hieve e�
ien
y in lo
al 
omputation time.Sin
e Shamir se
ret sharing s
heme does not work over 32 bit integers, an additive se
retsharing s
heme similar to the s
heme presented in Se
tion 2.1.1 is used by the framework.Figure 2.1 depi
ts the Sharemind framework. As said earlier, the framework 
onsists ofthree miners. All se
ret values provided by the data donors are shared to the miners by theadditive se
ret sharing given in Equation 2.3, where ea
h miner, Pi, re
eives a share, si, ofa se
ret s.
s1 + s2 + s3 = s mod 232 (2.3)The Sharemind proto
ols are implemented in a framework given in Figure 2.1. Theframework 
onsists of three 
omputing parties de�ned as miners. The miners stores theshares of se
ret values in a se
ure storage. If the input values are not 
on�dential then theyare repli
ated to ea
h miners in a publi
ally a

essible storage.Sharemind implements its MPC fun
tionality using 
onstant round share 
omputingproto
ols. The share 
omputing fun
tions provided by the framework are addition, multi-pli
ation and 
omparison operations. The miners are equipped with a runtime environmentto implement the fun
tions. Priva
y preserving algorithms are designed using these share
omputing operations.During data pro
essing, the shares of the se
ret values are pushed to a se
ure sta
k andpriva
y preserving algorithm is exe
uted on them. Intermediate and �nal result generated byea
h instru
tion of priva
y preserving algorithm are also shares and stored in the same se
uresta
k. When the exe
ution is over, the miners 
ollaborate with ea
h other to re
onstru
t the�nal result. Sharemind provides a de
lassifying fun
tion for su
h re
onstru
tion. Unlessthis fun
tion is expli
itly invoked, the parties 
annot re
onstru
t any se
ret value. There
onstru
ted result is publi
ally a

essible.The share 
omputation fun
tions are 
ompli
ated and hen
e kept hidden from the ap-pli
ation developers. A 
ontroller library, provided by the framework, interfa
es these op-erations to the appli
ation developers, so that they 
an be used without knowing theirunderlying details. For e�
ien
y reasons, ve
torized operations have been added to theframework, so that the same proto
ol 
an be exe
uted in parallel with many inputs. Thisredu
es the number of iteration signi�
antly for larger datasets.For priva
y preserving appli
ation development, the framework provides a programmingenvironment in
luding an assembly and a high level language [21℄. The framework also pro-vides 
ontroller libraries for data distribution, program exe
ution and performan
e analysis.



8 CHAPTER 2. BACKGROUND AND RELATED WORKSeveral priva
y preserving appli
ation have been designed using Sharemind. A Sharemindversion of histogram 
omputation and frequent itemset mining appli
ations is presented in[8℄. Other appli
ation examples have been suggested in [13, 35℄.
2.4 Sorting NetworksOur se
ure set interse
tion proto
ol requires sorting of data elements with the 
onstraintthat sorting has to be exe
uted without looking into the 
omparison results. This 
onstraintinhibits the use of optimal 
omparison based sorting. A sorting network is an alternatesorting model, that 
an solve the problem, while satisfying the given 
onstraint.A sorting network is a data-independent sorting te
hnique, where the 
omparison se-quen
e is generated in advan
e and exe
uted regardless of the out
ome of the past 
ompar-isons. A sorting network 
onsists of two 
omponents: 
omparators and wires. A wire a
tsas a 
arrier of data element. The number of wires in a set is equal to the input size andea
h wire is initialized to one of the input values. The 
omparators a
t as operational units,ea
h taking a pair of wires as an input, 
omparing their values and writing the out
ome tothe same wire pair.We use the following de�nition to formally de�ne a 
omparator. Let us assume a datasequen
e of size n is represented by An = [a0 . . . an], whose indexes are represented by theset, J = [0 . . . n− 1]. A 
omparator is a mapping (i, j) : An → An, i, j ∈ J with

ai = min(ai, aj)
aj = max(ai, aj)

ak = ak for all k with k 6= i, k 6= jA set of 
omparators is used to 
ompose a stage. This 
omposition, S = [(i1, j1)...(ik, jk)],must be organized in su
h a way that ea
h ir 6= js, ir 6= is and jr 6= js. A set of 
omparatorstages is used to 
ompose a 
omparator network. A sorting network is a 
omparator net-work that sorts a whole input sequen
e. Usually all 
omparators in a stage are independent.Therefore a sorting network may be parallelized.Figure 2.2 illustrates three examples of sorting networks: bubble sort [24℄, odd-eventransposition sort [24℄ and odd-even merge sort [4℄ for eight inputs. Figure 2.2(a) representsa bubble sort sorting network. It 
onsists of { 12 ·n(n− 1)} 
omparators and (2n− 3) stages.Figure 2.2(b) shows odd-even transposition sort, whi
h 
onsists of the same number of
omparators as the bubble sort but has fewer stages (n − 1). A odd-even transpositionsort 
ontains more 
omparators per stage, it is more parallelizable than bubble sort. Thealgorithms are easy to implement, but su�er from poor performan
e in 
ase of large inputs.The e�
ien
y of a sorting network 
an be measured by its size, de�ned in terms of thetotal number of 
omparators in the network. Both bubble sort and odd-even transpositionsort have the size O(n2/2). The best known sorting network, 
alled an AKS Network [2℄,a
hieves the size, O(n logn) for n inputs, but has large linear 
onstants hidden behindthe O notation, whi
h makes it impra
ti
al. Several pra
ti
al sorting networks exist whi
hbound the 
omplexity to O(n log2 n). Odd-even merge sort presented in Figure 2.2(
) isan example of su
h an algorithm. It a
hieves the size n log2 n and log2 n stages. For thisreason, odd-even merge sort is both pra
ti
al and highly parallelizable.
2.5 Outlier DetectionAnomaly dete
tion is a 
ru
ial part of our proje
t. We designed our anomaly dete
tionsystem by a nearest neighbor (NN) based outlier dete
tion s
heme. In this se
tion, we give



2.5. OUTLIER DETECTION 9

Figure 2.2. Sorting Networks

Figure 2.3. Outliersa brief overview of nearest neighbor based outlier dete
tion s
hemes. We start by giving ade�nition of outliers. In statisti
s, an outlier is an observation that is numeri
ally distantfrom the rest of the data [3℄. For example, let us 
onsider the points in 
luster C1 in Figure2.3. Ea
h point represents a statisti
al (bivariate) observation of some event. Point O1 isvisibly distant from all other points in the 
luster. Hen
e, point O1 is an outlier.We 
an 
orrelate some network anomalies (e.g. denial of servi
e atta
k, IP sweep) withthe outliers, as their tra�
 patterns are signi�
antly di�erent than that of the normaltra�
. So, outlier dete
tion systems 
an be used for anomaly dete
tion. Anomaly events innetworks are sporadi
 and it is di�
ult to train a ma
hine to 
lassify su
h events 
orre
tly.Therefore, unsupervised learning outlier dete
tion systems su
h as nearest neighborhoods
hemes, are pra
ti
al 
hoi
e for dete
tion of anomalies.Traditional nearest neighborhood based te
hniques, su
h as kth nearest neighborhood(KNN) s
heme [23℄, dete
ts outlier using the distan
e to the kth nearest neighbor from a



10 CHAPTER 2. BACKGROUND AND RELATED WORKgiven point. A

ording to the KNN s
heme, a point, p, in a dataset, D, is an outlier, if atleast T per
entage of the points in D lie outside the distan
e (usually Eu
lidean) to the kthnearest neighbor of the point p (k-distan
e). However, if a given dataset has both sparseand dense regions, the s
heme generates ina

urate results. This 
an be explained by Figure2.3.The dataset in Figure 2.3 has two regions of points marked as 
lusters C1 and C2. Thispoints are statisti
al (bivariate) observations of some event. The density of C1 is sparseand C2 is dense. There are two points, O1 and O2, whi
h are potential 
andidate outliers.The KNN s
heme, de�ned above, uses the same threshold, T , to dete
t outliers for bothof the 
lusters. It dete
ts point O1 as an outlier for 
luster C1. On the other hand, C2 isdensely populated and there is a 
han
e that number of points outside k-distan
e of O2 arebelow the threshold. Therefore, it may not dete
t O2 as an outlier, despite the fa
t that
O2 is in fa
t an outlier for 
luster C2.To alleviate this problem, Breunig et al. [10℄ have 
ome up with a more robust s
heme:density based nearest neighbor te
hnique. This 
lass of outlier dete
tion uses the 
on
ept oflo
al neighborhood density. A lo
al neighborhood is a 
ir
ular area whose radius is deter-mined by a lo
al distan
e, usually a fra
tion of the k-distan
e. Lo
al neighborhood densityis the number neighbors (points) lying within the perimeter of the lo
al neighborhood. Sev-eral methods exist in this 
lass: LOF [10℄, COF [36℄ and LOCI [31℄. These s
hemes de�nea degree of being an outlier of a point, rather than dire
tly 
onsidering a point an outlier.Outliers are sele
ted based on a 
ut-o� threshold on the degree, whi
h makes them morerobust in s
enarios, su
h as the one shown in Figure 2.3.However for LOF and COF s
heme, the 
ut-o� threshold is manually sele
ted, whi
h isa weakness for automati
 dete
tion of outliers. This problem does not exist in LOCI, sin
eit uses automati
 data di
tated 
ut-o� threshold to determine whether a point is an outlier.We have 
hosen to use the density based KNN s
heme LOCI as our anomaly dete
tionsystem for the s
heme's robustness.
2.6 Secure Set OperationWe have devised several priva
y preserving subproto
ols that 
an be assembled to designse
ure set operation proto
ol, spe
i�
ally se
ure set union and interse
tion proto
ol. Weuse these set operation proto
ols to aggregate multi domain atta
k tra�
. In this se
tion,we dis
uss some earlier resear
hes in this area. For our 
onvenien
e, we divide the proto
olsinto two 
lasses:1. Absolutely se
ure proto
ols that leak minimum amount of information. These proto-
ols only dis
lose the result of the set operation and nothing else. A party 
an onlylearn information that 
an only be dedu
ed from its input and the �nal output.2. Less se
ure proto
ols that may reveal some more information other than the resultof the set operation, e.g. input length of ea
h party. This information may aid inrevealing private inputs.We dis
uss the following proto
ols based on our 
lassi�
ation. In [1℄, Agrawal et el.proposed a two party se
ure set operation proto
ol using 
ommutative en
ryption. Thesolution is easy to implement in databases and requires linear 
ommuni
ation 
omplexity.Another se
ure set operation proto
ol, based on additive homomorphi
 en
ryption andpolynomial evaluation, is presented by Kissner et el. [22℄. Both of the proto
ols employ



2.6. SECURE SET OPERATION 11expensive 
ryptographi
 primitives, and hen
e su�er from weak performan
e in pro
essinglarge datasets.In [16℄, Eme
ki et el. a se
ure set operation proto
ol is de�ned using Shamir's se
retsharing s
heme [34℄. The proto
ol repla
es the trusted third party with a P2P networkfor query pro
essing that works on the shared values of the private input. This proto
olgives mu
h better performan
e, 
ompared to the �rst two proto
ols sin
e it does not usethe asymmetri
 
ryptography. All of the above mentioned proto
ols leak the size of theinput-set for ea
h party, and hen
e belong to the se
ond 
lass de�ned above.Naor et el. proposed a two party set operation proto
ol, using oblivious transfer andpolynomial evaluation in [30℄. The parties learn only the out
ome of the operation andnothing else. Therefore, the proto
ol belongs to the �rst 
lass. Unfortunately, the proto
olis signi�
antly slow 
ompared to the previous proto
ols, whi
h makes it impra
ti
al forlarge datasets. Our set operation proto
ol leaks minimum information (similar to �rst
lass), while a
hieving a

eptable performan
e for large datasets.





Chapter 3

Algorithms

3.1 Problem StatementMulti domain network atta
ks are in
reasing [26℄. Su
h atta
ks in
lude distributed denialof servi
e (DDoS), spamming and s
anning atta
ks to networks of multiple organizations.Often, tra�
 logs of a single vi
tim 
ontain only the partial eviden
e of the whole in
ident.When intrusiond dete
tion system is applied on single domain tra�
 logs, they fail to graspthe 
omplete visualization of the atta
k, whi
h makes the dete
tion result of the systemless 
redible in 
ase of multi domain atta
ks. Aggregating tra�
 logs of multiple vi
timorganizations and applying intrusion dete
tion system on them, 
an in
rease the strengthof multidomain intrusion dete
tion.Anomaly dete
tion is an intrusion dete
tion te
hnique, in whi
h deviations from nor-mal pattern in network tra�
 suggest mali
ious behavior. So, we de�ne multi domainanomaly dete
tion system as an intrusion dete
tion system whi
h dete
ts multidomain net-work threats by dete
ting the deviation from normal pattern in aggregated tra�
.Aggregation of network tra�
 should be performed in priva
y preserving manner. Traf-�
 logs 
ontain usage statisti
s of network users, and aggregating this kind of informationopenly may lead to legal problems. Se
ure multi party 
omputation (MPC) is a 
rypto-graphi
 te
hnique that allow information aggregation from multiple organizations with ahigh degree of priva
y. In this proje
t, we aim to design a priva
y preserving 
ollaborativeanomaly dete
tion system, that aggregates tra�
 logs from multiple organizations, usinga MPC proto
ol, and dete
ts multidomain network intrusions in the aggregated features,using an anomaly dete
tion system. We formulate our solution with a use 
ase. Then weexpand our design to generalize the solution.Let us assume we want to dete
t a multidomain IPsweep atta
k. An IPsweep is asurveillan
e sweep to determine the a
tive hosts in a network. This information is usefulfor an atta
ker to or
hestrate atta
ks and sear
h for vulnerable ma
hines. There are severalmethods to perform an IPsweep. The most 
ommon method is to send ICMP e
ho requeststo every usable address in a subnet and wait to see whi
h hosts respond. When a remotehost performs an IPsweep in multiple subnets, then the atta
k may be 
lassi�ed as a multi-domain sweep. The dete
tion signature of an IPsweep atta
k isIf a remote host probes a high number of lo
al hosts in a network by ICMP pa
kets withina given period of time, then the host 
an be 
lassi�ed as an IPsweeper.Usually, the time period is user de�ned but they 
an be as small as �ve to ten se
onds.IPsweepers generally show re
ognizable abnormal patterns, and vi
tim organizations 
an13



14 CHAPTER 3. ALGORITHMShen
e easily dete
t them without any 
ollaboration. Sometimes, atta
kers hide their a
tionsby mounting small s
ale atta
ks. In this 
ase, intrusion dete
tion systems generally fail todete
t the anomaly event [33℄. However, if an atta
ker runs an undete
table small s
aleIPsweep over multiple networks, then 
ounting the aggregate number of destination IPaddresses in the ICMP tra�
 sent by the atta
ker to the networks may help to reveal theanomaly event.Counting the frequen
y of an IPsweeping host over the domains reveals how many net-works have been probed. If the frequen
y 
ount is higher than the normal 
ount (whereboundary between normal and abnormal is set by a threshold), the host is 
lassi�ed as amultidomain IPsweeper. We revise the previously de�ned dete
tion signature as follows:If a remote host has a high number of destination IP addresses in the ICMP pa
kets ina multidomain aggregated log within a de�ned interval and appears in multiple networks,then the host 
an be 
lassi�ed as a multi domain IP sweeper.From now we will use the term frequen
y 
ount to re�e
t the number appearen
e of ahost in multiple networks. Implementing su
h signature to dete
t the atta
kers requiresaggregation over multiple domains. We explain the aggregation s
enario using Figure 3.1.Let us assume, there are �ve networks (A-E), that are vi
tims of IPsweeping atta
k. Remotehosts sending ICMP pa
kets to these networks 
an be divided into three 
lasses:� Multi Domain Sweeper: IP sweepers whi
h have s
anned multiple networks. Thebold line from the multidomain sweeper to the networks represents a multidomainsweeping event.� Single Domain Sweeper: IP sweepers whi
h have s
anned one or two networksonly. The thin lines from the single domain atta
kers to the networks represent singledomain sweeping events.� Benign Hosts: Some remote normal hosts whi
h sent random ICMP pa
kets. Thedotted line from the benign host to the networks re�e
ts the random ICMP events.The vi
tim organizations want to dete
t the multidomain atta
kers. Therefore, they ag-gregate the destination and frequen
y 
ount of ea
h remote host, using a priva
y preservingMPC system. Some or all of the vi
tim parties 
an be the 
omputing parties of the MPCsystem, whi
h means they 
an run the MPC proto
ol by themselves. MPC system 
an alsobe implemented by some external third parties. In this s
enerio, we assume that the datadonors (the vi
tims) and the 
omputing parties are separate entity.The dashed �ow lines from the networks to the MPC framework show the input (
ontain-ing the atta
k features) to the MPC proto
ol. The MPC proto
ol aggregates the features ofthe identi
al IP addresses in a priva
y preserving manner. Su
h operation 
an be termed ase
ure set union operation. The bold dashed lines between the 
omputing parties (P1-P3)in the MPC framework re�e
ts the message �ow in the set union 
omputation. After theaggregation, the output is fed into an anomaly dete
tion system. The thin line between theMPC framework and anomaly dete
tion system shows su
h event. The anomaly dete
tionsystem is exe
uted in publi
. The reason is given in the following dis
ussion:A MPC proto
ol is suitable for simple priva
y preserving data mining and 
ountingoperations. It is possible to implement simple anomaly dete
tion systems (e.g kth nearestneighborhood s
heme [23℄) in MPC frameworks. But this approa
h is not s
alable. Imple-menting s
alable anomaly dete
tion systems, su
h as LOCI [31℄, in MPC framework is verydi�
ult, and even if it is done, will give poor performan
e in terms of speed.



3.2. SOLUTION FORMULATION 15

Figure 3.1. A s
enerio for priva
y preserving anomaly dete
tionWe have designed our priva
y preserving 
ollaborative anomaly dete
tion system usingthe two 
omponents: a MPC framework and an anomaly dete
tion algorithm. We explainthe design strategy in the next se
tion.
3.2 Solution FormulationAs we said, our target is to build a se
ure 
ollaborative intrusion dete
tion system using aMPC framework and an anomaly dete
tion algorithm. We skipped 
onstru
ting our ownMPC proto
ol. Rather, we design a generi
 algorithm, that 
an be exe
uted using anyse
ret sharing based MPC proto
ol. As for the anomaly dete
tion system, we use a nearestneighbor based outlier dete
tion algorithm, 
alled LOCI. We build our system using thefollowing s
heme:1. We perform a priva
y preserving set union 
omputation on the private multi-domaininput, using a MPC based generi
 algorithm. The multi-domain input is a multisetformed by merging lo
al inputs from ea
h party, 
onsisting of series of IP addresses,their destination, and frequen
y 
ounts. This operation aggregates destination andfrequen
y 
ount of identi
al 
andidates in a priva
y preserving manner.2. We publish the aggregated destination 
ounts of the union-set. We dete
t IPsweep-ers in a non-priva
y preserving environment, by applying the LOCI s
heme to the



16 CHAPTER 3. ALGORITHMSpublished 
ounts.3. Using the list of dete
ted sweepers from step 2 and a user de�ned threshold, weperform a set redu
tion operation (explained later) in priva
y preserving manner onthe private union-set (obtained from step 1) by the MPC proto
ol, to obtain a list ofpossible multidomain IP sweepers.The threshold in step 3 re�e
ts the minimum appearan
e 
ount for a multi domainatta
ker. If the value of the threshold is equal to the number of vi
tim organizations, thethreshold based set redu
tion operation 
an be redu
ed to a set interse
tion operation.Thus, we are a
tually using a variant of a set interse
tion operation for network anomalydete
tion.As outlined in the s
heme, we need two generi
 MPC based algorithms: one for set unionand one for set redu
tion. We de�ne some se
ure set operations based on Kissner and Song[22℄ before des
ribing the algorithms. We assume there are n parties, ea
h having an inputset denoted by Si (1 ≥ i ≥ N). Elements in the sets are private values of some 
ommonattributes.Se
ure Set Union: Se
ure set union is a multi party operation, whi
h at the end allowsall parties to learn the multiset union of the private sets (S1∪S2∪ ...∪SN ), without gainingadditional information.Se
ure Set Interse
tion: Se
ure set interse
tion is a multi party operation, whi
h atthe end allows all parties to learn the multiset interse
tion of the private sets (S1 ∩S2∩ ...∩
SN ), without gaining additional information.Se
ure Over-threshold Set Union: Se
ure over-threshold set union is a variant ofthe se
ure Set Interse
tion operation, whi
h at the end allows all parties to learn elementsthat appear in the multiset union of the private sets (S1∪S2∪ ...∪SN ) at least t (a thresholdnumber) times, without gaining additional information.Therefore, the priva
y preserving generi
 algorithms we need to develop are: se
ure setunion and se
ure over-threshold set union. If the threshold in a priva
y preserving over-threshold set union is equal to the number of parties, then the operation 
an be redu
ed tose
ure set interse
tion. Therefore, we use the term se
ure set interse
tion instead of se
ureover-threshold set union from now on.We restate this s
heme as Algorithm 3.2.1. To understand the notational 
onventionand other related issues of this algorithm in detail, refer to the dis
ussion in Se
tion 3.4.Algorithm 3.2.1: Priva
y Preserving Anomaly Dete
tion(‖D‖)

1. ‖A‖ ← SecureSetUnion(‖D‖)
2. C ← PublishCount(‖A‖)
3. O ← LOCI(C)
4. ‖F‖ ← SecureSetIntersection(‖A‖, O, t)
5. output (‖F‖)



3.2. SOLUTION FORMULATION 17Here, ‖D‖ is a private multiset formed by merging the private lo
al inputs from ea
hparty. ‖D‖ is represented by a two dimensional array of 3 
olumns and N rows. Ea
h row
onsists of an IP address, its destination and frequen
y 
ount. ‖D‖ is fed into the fun
tionde�ned in step 1 to 
ompute priva
y preserving a set union. The fun
tion aggregates thedestination and frequen
y 
ounts of the identi
al IP addresses, whi
h are stored in theprivate ve
tor ‖A‖. In step 2, the 
olumn 
onsisting of the aggregated destination 
ountsis published in the publi
 environment. In step 3, an anomaly dete
tion s
heme based onLOCI is applied to the published 
ount. The fun
tion 
al
ulates openly and exposes thedete
ted atta
kers (O).In step 4, we performs priva
y preserving set redu
tion operation on the union-set ‖A‖based on the outlier list O and prede�ned threshold T . The output is stored in private ve
tor
‖F‖, whi
h is our desired multi-domain sweeper (outlier) list. If T is equal to the numberof vi
tim organizations, then the set redu
tion operation 
an also be termed a se
ure setinterse
tion. This means, when T is equal to the number of vi
tim parties, the dete
tedatta
ker performed IPsweeping in all of the networks. The �nal step, de
lassi�es the privateresult ‖F‖ in a publi
 environment. We will state our priva
y goals for our proje
t in thenext se
tion.
3.2.1 Privacy and Performance GoalsWe will start by dis
ussing our priva
y goals. Our priva
y preserving algorithms are generi
and their priva
y guarantees strongly depend on the MPC framework over whi
h they areimplemented. Therefore, unless the framework leaks information during 
omputation, thepriva
y of the inputs are preserved. The only priva
y 
on
ern for our s
heme is whetherthe output of ea
h step (steps of Algorithm 3.2.1) leaks sensitive information.A

ording to our previous dis
ussion, we are aggregating a list 3-tuples: IP Address,Destination Count and Frequen
y Count. Our target is to aggregate the list and then applyanomaly dete
tion system on the aggregated value. It would be ideal, if our s
heme allowsthe 
omputing parties to learn only the IP address and other attributes of the multidomainatta
kers and nothing else. Sin
e our anomaly dete
tion s
heme is exe
uted in non-priva
ypreserving manner, su
h priva
y assuran
e is not possible, as a non-priva
y preservinganomaly dete
tion system needs to use aggregated 
ounts (e.g. destination 
ount) in publi
environment. But, even if the aggregated 
ounts are published, they do not brea
h priva
y ofthe 
lients or networks, unless the asso
iated IP addresses are dis
losed. In that perspe
tive,we 
an state our following priva
y goals of our s
heme:1. The s
heme should not expli
itly dis
lose any host IP address at the beginning orintermediate stages of the 
omputation.2. The s
heme should not leak any information that may aid in dis
losing the IP addressof the hosts.3. The s
heme should only dis
lose the IP address of the dete
ted multidomain atta
keras the �nal result.If our s
heme satis�es the above mentioned goals then we 
an say that priva
y goal isa
hieved. We give a detailed des
ription of ea
h step of Algorithm 3.2.1 in the followingdis
ussion. We start our dis
ussion with the LOCI algorithm.



18 CHAPTER 3. ALGORITHMS
3.3 Outlier Detection by LOCILOCI is a density based nearest neighbor s
heme for outlier dete
tion, where it uses the
on
ept of lo
al neighborhood density for outlier dete
tion. As said earlier, lo
al neighbor-hood is a 
ir
ular area. The radius of the 
ir
le is de�ned by a fra
tion of the distan
e(usually eu
lidean) to the k nearest neighbor. Lo
al neighborhood density is de�ned by thenumber of neighbors within in the perimeter of the 
ir
le.Like other density based s
hemes [10, 36℄, LOCI uses a term to de�ne lo
al neighbor-hood density - Multi-granularity deviation fa
tor (MDEF). MDEF is de�ned as the relativedeviation of lo
al neighborhood density of a point from the average lo
al neighborhooddensity in its k-neighborhood. Here, the k-neighborhood is a 
ir
le with radius k (distan
eto the k-nearest neighbor from the point). The lo
al neighborhood is a smaller 
ir
le withinthe k-neighborhood having the radius αk (a fra
tion of the k-distan
e). Here, α is a userde�ned 
onstant term that determines the fra
tion of k-distan
e.If the lo
al neighborhood of a point is 
loser to the average lo
al neighborhood density,then its MDEF is 
loser to zero, and far from zero otherwise. Therefore, a small MDEFvalue re�e
ts a smaller degree of outlierness, whereas a big MDEF value re�e
ts a higherdegree. We explain the formulation of the LOCI s
heme with a s
enerio (given in �gure3.1) in the following dis
ussion. We start by formulating the MDEF.

MDEF =
|µ− n|

µ
= 1−

n

µ
(3.1)where, n = lo
al neighborhood density of a point

µ = average lo
al neighborhood density of the K-neighborhood of a pointThe s
heme also introdu
es a term 
alled normalized standard deviation, denoted by
σMDEF:

σMDEF =
σ

µ
(3.2)where,σ = standard deviation of the lo
al neighborhood densities in the k-neighborhood ofa point

µ = average lo
al neighborhood density of the K-neighborhood of a pointTo automati
ally �ag a point as an outlier, we use the inequality shown in equation 3.3.
MDEF > λ · σMDEF (3.3)Here, λ is a 
onstant to re�e
t the extent of deviation. Interestingly, equation 3.3 
anbe simpli�ed easily. Using equation 3.1 on the left hand side and 3.2 on the right hand sideof the equation 3.3, we get,
|µ− n|

µ
> λ ·

σ

µ

⇒ |µ− n| > λ · σ (3.4)Equation 3.4 re�e
ts the 
lassi
al de�nition of outliers presented in [14℄, whi
h states,"an observation is an outlier if it is three standard deviation from its mean". Therefore,the LOCI s
heme utilizes the 
lassi
al de�nition of outliers in the 
ontext of the lo
al



3.4. IMPORTANT PRELIMINARIES FOR PRIVACY PRESERVING ALGORITHMS 19

Figure 3.2. An outlier dete
tion s
enarioneighborhood density. Using the above de�nition and equation 3.4, we 
an set λ to three(whi
h is same as [31℄ suggested).We illustrate how the LOCI s
heme �ags a point as an outlier in the s
enario explainedby �gure 3.2. We want to �nd out whether a point, denoted by P, is outlier. Points inthe k-neighborhood of P are p1, p2, p3 and P itself. The smaller 
ir
les around the pointsdenote lo
al neighborhoods. Lo
al neighborhood densities of the points are 1, 2, 5 and 4, re-spe
tively. Now we have, n = 1, µ = 1+2+5+4
4 = 3 and σ =

√

(1−3)2+(2−3)2+(5−3)2+(4−3)2

µ
=

1.12. Applying equation 3.4 to these values, we �nd out that point P is not an outlier.But the LOCI s
heme presented in equation 3.4 has a problem. Mean and standarddeviation are not robust statisti
s for outlier dete
tion, as they are strongly in�uen
ed bythe same outliers they are trying to dete
t. This is known as the masking a�e
t, where theoutliers hide their presen
e by 
hanging the mean and standard deviation to su
h degreethat they be
ome undete
table [14℄.One workaround to handle the masking problem is to 
hoose a smaller value of λ (
ur-rently set to 3), the 
onstant to re�e
t the extent of the deviation. Another way is 
hoosingan alternate set of statisti
s that are less vulnerable to extreme values. The median andmedian absolute deviation (MAD) are su
h fun
tions [37℄. If we repla
e mean by medianand standard deviation in equation 3.4 by MAD, we arrive at 3.5. However we 
annot usethe same value for λ (= 3). In su
h 
ase, Davies and Gather mentioned in [14℄ to set λ = 5.2as a general all purpose value.
median− n > λ ·MAD (3.5)Unfortunately, both of the solutions to minimize the masking problem have drawba
ks.While they try to improve the su

ess rate by in
reasing the number of true positives,they in
rease the number of false positives as well. In fa
t, 
hoosing a right value for the
on�guration parameters for outlier dete
tion is always a trade o� between the true positiveand false positive ratio. Therefore, di�erent versions of LOCI is tried in this work, to pi
kthe right s
heme for our anomaly dete
tor in 
hapter four.

3.4 Important Preliminaries for Privacy Preserving AlgorithmsLet us begin by dis
ussing some fundamental issues of priva
y preserving algorithms.



20 CHAPTER 3. ALGORITHMS
3.4.1 SetupWe assume there is a MPC proto
ol and some 
omputing parties. Ea
h party 
ontainssome libraries to exe
ute the MPC fun
tionality (e.g. arithmeti
 and relational operation)and a se
ure data storage. Priva
y of the input is preserved by se
ret sharing, and hen
eMPC fun
tionalities are implemented by homomorphi
 share 
omputing proto
ols. Datasour
es apply a 
ommon se
ret sharing algorithm on their input and distribute the sharesto the 
omputing parties. Data analysis algorithms are built using the MPC fun
tionalityand repli
ated to ea
h party.We assume the MPC proto
ol exe
utes the algorithms in a 
onstant number of rounds.In ea
h round, the algorithm operates over some input shares and generates output sharesthat 
an be 
ombined to form a result. The MPC proto
ol may ex
hange messages betweenthe parties after ea
h round, if the MPC fun
tionality requires shares from other parties(e.g. multipli
ation operation [19, 15℄). The ex
hange of the shares is performed in su
ha manner that no party 
an use the share to derive unauthorized knowledge. Withoutexpli
it dis
losure, output shares are not re
ombined, and hen
e priva
y is preserved. Thealgorithms use some publi
 values, e.g. iteration limit and threshold value. Finally, weassume that the MPC framework supports ve
torization of mathemati
al and relationaloperations (element wise operation over the whole array).
3.4.2 Notational ConventionFollowing 
onventions are used. All private values (se
ret shared inputs and the outputshares generated from them) are en
losed within parallel lines, whereas the publi
 
oun-terparts are represented as it is. Variables are represented by lower
ase and arrays byupper
ase letters. For example, ‖b‖ is a variable in se
ret shared form, ‖B‖ is an array inse
ret shared form and 
 is a publi
 variable.The indexing operator (′[..]′) is used to sele
t rows, 
olumns or elements of an array.Array indexing starts from 1. For example, ‖B‖[1℄ means 1st element of the one dimensionalprivate array B and C[1,2℄ represents an element from the 1st 
olumn and 2nd row of twodimensional publi
 array C. A wild
ard symbol is used to sele
t all values in a row or a
olumn. For example, ‖D‖[5,*℄ means the 5th 
olumn of private array D and ‖B‖[*,1℄ meansthe 1st row of private array B.Let us de�ne operations over all elements in an array as ve
tor operations. Ve
toroperations are done element wise, unless otherwise spe
i�ed. For example, ‖B‖ · ‖D‖ iselement wise multipli
ation of private ve
tor, B and D. In some 
ases, a subset of privatevalues are needed. This is represented as: ‖D‖[i:j℄, whi
h is a subarray formed by the itemsfrom i to j of private ve
tor D.
3.4.3 Oblivious OperationsPerforming set union and interse
tion requires multiple numbers of 
omparison betweenthe set elements. The se
re
y requirements pre
lude us from using well known bran
hingoperation, su
h as:If (predi
ate) Then(
onsequent)Else(alternative)



3.5. PRIVACY PRESERVING ALGORITHMS 21There is an alternate and more e�
ient way to implement bran
hing, using the booleanvalue generated by the 
omparison operation, whi
h we 
all an oblivious operation. Thefollowing statement implements an oblivious way of determining the maximum of two num-bers.
max = a · (a ≥ b) + b · (1 − (a ≥ b))This statement evaluates (a ≥ b), and based on the evaluation, it either assigns a to

max (if evaluation is TRUE) or assigns b to max (if evaluation is FALSE). If the evaluationresult is priva
y preserved (se
ret shared), then no party learns who is greater and what isassigned to max. We implement bran
hing operations, using su
h oblivious operations, todesign our priva
y preserving algorithms.
3.4.4 Data StructureLet us de�ne the data stru
ture of the input values. The input set from ea
h data sour
e
ontains a series of 3-tuples: {IP , Count, Freq}. The 1st tuple is the IP address of theremote host, the 2nd element is the feature 
ount (e.g. destination 
ount) of the remotehost and the 3rd element is the frequen
y 
ount of the remote host (potential atta
ker) inthe set. Initially, the frequen
y 
ount for ea
h host is set to 1. The size of the input setmay vary from one sour
e to another. We set this length to a �xed size, so that none ofthe 
omputing parties in the MPC proto
ol 
an learn about the input length from any datasour
e. In 
ase the number of remote hosts are less than the �xed length, empty slots is�lled with dummy private IP addresses with zero 
ount and frequen
y. The range of privateIP addresses should be di�erent for di�erent domains.When all of the sour
es have provided their input set to a data storage of the MPCproto
ol, the 
omputing parties see a merged set of size N (= n1 + . . . + nm, where thenumber of data sour
es are m). We 
all this merged set the multiset ‖D‖, represented bya 2 dimensional array of N rows and 3 
olumns. The set operation algorithms use thismultiset to generate the desired output.
3.5 Privacy Preserving AlgorithmsWe need two priva
y preserving algorithms: se
ure set union and se
ure set interse
tion. Toimplement su
h s
hemes we need several subproto
ols. In this se
tion, we dis
uss the formu-lation of the algorithms using the subproto
ols and s
hemes, to implement the subproto
ols.We start by formulating the se
ure set union and interse
tion algorithms.
3.5.1 Secure Set Union AlgorithmIn our problem statement, we dis
ussed that the se
ure set union is the aggregation ofattributes of 
ommon elements in a multiset, without 
ompromising the priva
y of theinput values. As private inputs are se
ret (represented in se
ret shared form) and the
omputation results on input values are also se
ret, we 
annot implement a straightforward
ompare and aggregate method. We resorted to a novel method of oblivious aggregation aspresented in Algorithm 3.5.1.



22 CHAPTER 3. ALGORITHMS(a) Party AIP Cnt FreqIP1 10 1IP2 20 1IP3 30 1IP4 40 1
(b) Party BIP Cnt FreqIP3 10 1IP4 20 1IP5 30 1IP6 40 1Table 3.1. Input from party A and B(a) Input MultisetIP Cnt FreqIP1 10 1IP2 20 1IP3 30 1IP4 40 1IP3 10 1IP4 20 1IP5 30 1IP6 40 1

(b) After step 1IP Cnt FreqIP1 10 1IP2 20 1IP3 40 2IP4 60 2IP3 0 0IP4 0 0IP5 30 1IP6 40 1
(
) After step 2IP Cnt FreqIP3 0 0IP4 0 0IP1 10 1IP2 20 1IP5 50 1IP6 60 1IP3 40 2IP4 60 2

(d) After step 4IP Cnt FreqIP1 10 1IP2 20 1IP5 50 1IP6 60 1IP3 40 2IP4 60 2Table 3.2. An example of se
ure set union using Algorithm 3.5.1 and Table 3.1Algorithm 3.5.1: Se
ureSetUnion(‖D‖)
omment: ‖D‖ is a private multiset input
1. ‖D‖ ← ObliviousAggregate(‖D‖)
2. ‖D‖ ← ObliviousSort(‖D‖)
3. ‖D‖ ← SecureSetReduction(‖D‖, t)return (‖D‖)We explain ea
h step of the Algorithm 3.5.1 with a simple example. Let us assume thereare two parties, A and B, who want to perform a se
ure set union on their tra�
 to dete
tanomalies. Input from ea
h party 
ontains 4 rows (see Table 3.1), whi
h are merged bythe MPC proto
ol as Table 3.2(a), assuming all of the values are a
tually stored in se
retshared form. The se
ure set union fun
tion takes the merged table (=‖D‖) as an input.In the �rst step, the algorithm obliviously aggregates attributes (
ount and frequen
yin this 
ase) of identi
al IP addresses. The aggregated values are assigned to the �rst rowfrom the rows with identi
al IP addresses, while the attributes of the rest of the rows arezeroed. The output of this step is presented in Table 3.2(b). In the se
ond step, the rowsare sorted obliviously in as
ending order, a

ording to the frequen
y 
ount. After this step,IP addresses with zeroed attributes are pushed to the top of the list, while rest of the rowsare pla
ed after them in a sorted manner. This is shown in Table 3.2(
). Finally, rows withzeroed attributes are removed. This is done by 
ounting the number of rows with zeroedattributes and then removing the 
orresponding number of times. The output of this stepis given Table 3.2(d).



3.5. PRIVACY PRESERVING ALGORITHMS 23(a) Union-setIP Cnt FreqIP1 10 1IP2 20 1IP5 50 1IP6 60 1IP3 40 2IP4 60 2
(b) OutliersIndex3456

(
) After step 1IP Cnt FreqIP5 50 1IP6 60 1IP3 40 2IP4 60 2
(d) After step 2IP Cnt FreqIP3 40 2IP4 60 2Table 3.3. An example of se
ure set interse
tion using Algorithm 3.5.2

3.5.2 Secure Set Intersection AlgorithmThe se
ure set interse
tion algorithm dete
ts the atta
kers that are found in some or all ofthe domains. This is a
hieved by performing a se
ure set redu
tion twi
e over the union-set obtained from the se
ure set union algorithm. The set redu
tion fun
tion in step 1, isan indexed set redu
tion operation, whi
h is performed based on the output the anomalydete
tion system. This operation isolates the possible atta
kers. The fun
tion in step 2,is a se
ure threshold based set redu
tion operation, where the threshold value re�e
ts theboundary of single domain and multidomain sweepers. This redu
tion rules out the singledomain atta
kers. The s
heme is given in Algorithm 3.5.2.Algorithm 3.5.2: Se
ureSetInterse
tion(‖D‖, O, t)
omment: ‖D‖ is a private union-set, O list of index of outliers, t is a threshold
1. ‖D‖ ← IndexedSetReduction(‖D‖, O)
2. ‖D‖ ← SecureSetReduction(‖D‖, t)return (‖D‖)We give a simple demonstration of this algorithm using the input from Table 3.1. Letus assume a union-set has been 
omputed by Algorithm 3.5.1 and the result is given inTable 3.3(a) (whi
h is same as 3.2(d)). Using the destination 
ounts of this union-set, theoutlier dete
tor dete
ted some outliers, the index of whi
h is given in Table 3.3 (b). In the�rst step, the s
heme deleted all the elements whose indexes are not in the outlier list. Theresult of this step is shown in Table 3.3(
). In the �nal step, the output from the previousstep is redu
ed based on a threshold t, whi
h is set to 2, in this example. The output isgiven in Table 3.3(d). This is our desired list of multidomain sweepers, whi
h probed innetworks of both Parties A and B. Now, we explain the subproto
ols ne
essary to implementAlgorithms 3.5.1 and 3.5.2.

3.5.3 Oblivious AggregationWe start with the �rst subproto
ol in the se
ure set union: Oblivious Aggregation. The ob-je
tive of this algorithm is to aggregate features of identi
al elements in a priva
y preservingmanner. We designed a novel oblivious aggregation method, given in Algorithm 3.5.3.



24 CHAPTER 3. ALGORITHMSAlgorithm 3.5.3: ObliviousAggregate(‖D‖)
omment: ‖D‖ is a seqeuen
e of 3-tuples: {IP, 
ount, frequen
y}
1. n← length(‖D‖)
2. for i← 1 to n
3. for j ← 1 to n
4. ‖ip1‖, ‖ip2‖ ← ‖D‖[1, j], ‖D‖[1, j + 1]
5. ‖cnt1‖, ‖cnt2‖ ← ‖D‖[2, j], ‖D‖[2, j + 1]
6. ‖c‖ ← (‖ip1‖ == ‖ip2‖)
7. ‖D‖[2, i]← (‖cnt1‖+ ‖cnt2‖) · ‖c‖+ ‖cnt1‖ · (1− ‖c‖)
8. ‖D‖[2, j]← |cnt2‖ · (1 − ‖c‖)return (‖D‖)

The key lines in Algorithm 3.5.3 are steps 6 to 8, whi
h implement the oblivious ag-gregation. Here, ‖D‖ is the multiset input, where IPs are pla
ed in 
olumn 1, 
ounts arepla
ed in 
olumn 2 and frequen
ies are pla
ed in 
olumn 3. In step 6, we 
he
k equalityof two IP addresses and store the result in the private boolean variable ‖c‖. Step 7 and 8implement oblivious aggregation based on this value.Step 7 is formulated in su
h a manner, that based on the value of ‖c‖ (1 or 0), it makesone part of the statement (either ‖cnt1‖ + ‖cnt2‖ or ‖cnt1‖) zero. If two IP addresses areequal, then ‖c‖ is 1, and the right part of step 8 ( ‖cnt1‖) be zero, as it be multiplied with(1 − ‖c‖ = 1 − 1 =) 0. Therefore, ‖D‖[2, i] is assigned the value: ‖cnt1‖ + ‖cnt2‖, whi
his the aggregated destination 
ount of two identi
al IPs. Similarly, in step 8, ‖D‖[2, i] isassigned the value: ‖cnt2‖ − ‖cnt2‖, whi
h is zero. On the other hand, if ‖c‖ = 0, then
‖D‖[2, i] is assigned ‖cnt1‖ and ‖D‖[2, j] is assigned ‖cnt2‖. This means, when two IPaddresses are not equal, their respe
tive destination 
ount does not 
hange.After a 
omplete iteration, we get an output as Table 3.2(b) for input as Table 3.2(a).This s
heme is very slow sin
e it 
ontains N2 
omparisons and 8 · N2 multipli
ations forN re
ordsets. Multipli
ation and 
omparison in MPC requires multiple rounds of lo
al
omputation and message ex
hanges, and is expensive in terms of exe
ution time. So,implementing su
h a high number of expensive operations de�nitely gives poor performan
e.An easy solution to the problem is a 
omplete ve
torization of Algorithm [9℄. Ve
-torization is a spe
ial 
ase of parallelization, in whi
h programs that by default performone operation at a time on a single thread are modi�ed to perform multiple operationssimultaneously. This gives signi�
ant performan
e enhan
ement, even in 
urrent 
onven-tional 
omputers. As we assumed our 
hosen MPC proto
ol to have ve
torized versions ofall mathemati
al and relational operations, we 
an design ve
torized oblivious aggregationalgorithms. Ve
torized appli
ations allow sending bigger 
hunks of messages during theproto
ol exe
ution, whi
h redu
es the number of messages ex
hanged during the MPC pro-to
ol exe
ution. Goldrei
h has pointed the issue of improving performan
e through biggermessages in [20℄. That is why, we believe ve
torization improves the exe
ution speed of ouralgorithm signi�
antly. Algorithm 3.5.4 presents a novel ve
torized oblivious aggregationalgorithm.



3.5. PRIVACY PRESERVING ALGORITHMS 25(a) Input MultisetIP CntIP1 10IP2 20IP3 30IP4 40IP3 10IP4 20IP5 30IP6 40
(b) Iteration 3 of Algorithm 3.5.4IP I C Cnt A CntStep 4 Step 5 Step 6 Step 7-8 Step 9IP1 IP3 0 10 0 10IP2 IP3 0 20 0 20IP3 IP3 1 40 0 40IP4 IP3 0 40 0 40IP3 IP3 1 10 10 0IP4 IP3 0 20 0 20IP5 IP3 0 30 0 30IP6 IP3 0 40 0 40Table 3.4. An iteration of ve
torized oblivious aggregation by Algorithm 3.5.4Algorithm 3.5.4: ObliviousAggregate(‖D‖)
omment: ‖D‖ is a seqeuen
e of 3-tuples: {IP, 
ount, frequen
y}

1. n← length(‖D‖)
2. ‖IP‖, ‖CNT ‖ ← ‖D‖[1, ∗], ‖D‖[2, ∗]
3. for i← 1 to n
4. ‖I‖ ← ‖IP‖[1]
5. ‖C‖ ← (‖IP‖ == ‖I‖)
6. ‖CNT ‖[i],← colSum(‖CNTS‖ · ‖C‖)
7. ‖A‖ ← ‖CNT ‖ · ‖C‖
8. ‖A‖[i]← 0
9. ‖CNT ‖ ← ‖CNT ‖ − ‖A‖
10.‖D‖[2, ∗]← ‖CNT ‖return (‖D‖)The algorithm works with the same input as Algorithm 3.5.3, and the key 
on
ept issimilar. If an IP address is identi
al to some other IP address in the list, then their feature
ounts are aggregated, othewise the feature 
ounts are left as it is. We explain the steps ofAlgorithm 3.5.4 with a 
omplete iteration. The input set is presented in Table 3.4(a). Weobserve the step by step exe
ution of iteration number 3 in example.In this iteration, the third IP address (IP3) is dupli
ated for element wise 
omparison(step 4). The output of this step is given in the 2nd 
olumn of Table 3.4(b). In step 5, we
ompare the IP ve
tor and the dupli
ated ve
tor, where the 
omparison generates a ve
torof zero (where elements are not equal) and one (where elements are equal). Observe theoutput of this step in the 3rd 
olumn of Table 3.4(b). By taking an element wise produ
tof the resultant ve
tor with the pa
ket 
ount and taking sum over the produ
t ve
tor, weobtain the aggregated pa
ket 
ount for IP3. The aggregated 
ount is 
opied to the 
urrentindex. This is shown in the 4th 
olumn of Table 3.4(b).As the iteration 
overs all of the IP addresses, o

urren
e of the IP3 in further iterationsis a�e
ted by this aggregated value. To keep only one 
orre
t instan
e of the aggregatedvalue, we 
reate a temporary ve
tor ‖A‖, where the 
ounts are zeroed for the 
urrent indexand indexes whose IP does not mat
h with the 
urrent IP. This is shown in the 5th 
olumnof Table 3.4(b). By subtra
ting the temporary ve
tor ‖A‖ with the a
tual ve
tors ‖CNT ‖,



26 CHAPTER 3. ALGORITHMSwe obtain the desired ve
tors for ea
h iteration. The output is given in the last 
olumn ofTable 3.4(b).Algorithms 3.5.3 and 3.5.4 only show how to aggregate the destination 
ount. We 
anperform frequen
y 
ount aggregation as well with some minor adjustments. Both algorithmsuse n2 
omparisons for aggregation, but the latter exe
utes n 
omparisons in parallel, whi
hin our opinion improves the speed of exe
ution. We have veri�ed our assumption about theperforman
e improvement in 
hapter four.
3.5.4 Oblivious SortingFrom the oblivious aggregation, we obtain our desired aggregated values with some residues(nulli�ed values). To obtain se
ure set union, we need to get rid of the residues. An easyway to eliminate null values is pushing the null values to the top, and then simply poppingthem. Pushing the null values to the top of a list 
an be a
hieved by sorting the values inas
ending order.Implementing sorting in MPC proto
ols is 
ompli
ated be
ause of the priva
y 
on-straints. Sin
e we are not allowed to see the results of the 
omparisons, optimal 
omparisonbased sorting 
annot be applied. An alternate way to sort a list is using a sorting network,as dis
ussed in Se
tion 2.4. Sorting networks have two important attributes:1. A sorting network is data independent. It only depends on the input size. So, the
omparison sequen
e 
an be generated in advan
e.2. Comparisons 
an be divided into multiple rounds, where all of the 
omparisons in oneround 
an be exe
uted in parallel.This �rst attribute makes sorting networks a perfe
t 
hoi
e to implement sorting on MPCplatforms. The se
ond attribute allows them to be ve
torized for performan
e speedup. Toimplement a sorting network in MPC, we need an oblivious swapping te
hnique su
h as:

c = (a ≥ b)
a = a · (1 − c) + b · c
b = b · (1− c) + a · cThis is a novel approa
h to perform swapping operation between two elements. Al-gorithm 3.5.5 shows a simple implementation of Bubble sorting network, using the noveloblivious swapping. Ea
h inner iteration moves the lowest value to the last position. Theremaining n− 1 elements are sorted iteratively by applying the same pro
edure.Now, this algorithm su�ers from two problems. The algorithm uses n2/2 
omparisonsand 
onsists of 2n − 3 stages. Hen
e, it is very ine�
ient for large datasets, and 
annotbe parallelized to improve the performan
e. To e�
iently implement sorting operation, weneed a sorting network that 
an be ve
torized. Odd-even transposition sorting, dis
ussed in
hapter 2.4, is su
h a network. It uses a similar number of 
omparisons, but has fewer stages

(n− 1). We 
an implement a ve
torized odd-even merge sort by exe
uting the 
omparisonsin a single stage in parallel.Algorithm 3.5.6 gives a ve
torized implementation of a odd-even transposition sortingnetwork. It has n/2 iterations, where ea
h iteration 
onsists of two stages. In the �rst stage,
n/2 
omparisons are exe
uted in parallel, while in the se
ond stage, (n− 2)/2 
omparisonsare exe
uted in parallel. We use a small example to demonstrate the algorithm. Let usassume we have a private list of four values, ‖L‖ = {40, 30, 20, 10} and we want to sort itin as
ending order, using Algorithm 3.5.6. A

ording to the s
heme, we need two iterations



3.5. PRIVACY PRESERVING ALGORITHMS 27with two stages for the given list. As we said earlier, we 
an generate the 
omparisonsequen
e (per stage) in advan
e, as is given below.Iteration 1 Stage 1: (1,2),(3,4)Stage 2: (2,3)Iteration 2 Stage 1: (1,2),(3,4)Stage 2: (2,3)
Algorithm 3.5.5: ObliviousSorting(‖L‖)
omment:Bubble Sorting Network
omment: ‖L‖ is a 1d array of private values
1. n← length(‖L‖)
2. for i← n to 1
3. for j ← 1 to i− 1
4. ‖a‖, ‖b‖ ← ‖L‖[j], ‖L‖[j + 1]
5. ‖c‖ ← (‖a‖ ≥ ‖b‖)
6. ‖L‖[1, j]← ‖a‖ · (1− ‖c‖) + ‖b‖ · ‖c‖
7. ‖L‖[1, j + 1]← ‖b‖ · (1− ‖c‖) + ‖a‖ · ‖c‖return (‖L‖)

Observe that iterations 1 and 2 are identi
al. In fa
t, ea
h iteration generates identi
al
omparison sequen
es for the input size. As shown in list mentioned above, ea
h pair ofindi
es, en
losed by bra
kets in ea
h stage, is 
ompared with ea
h other in parallel. Theparallel pairwise 
omparison is implemented with the help of a temporary ve
tor, ‖O‖ (Table3.5(a)). ‖O‖ is 
ompared with ve
tor ‖L‖ and the 
omparison result is stored in a booleanve
tor, ‖C‖ (step 5). The value of ‖C‖ is modi�ed a bit (step 6-7). Observe the value of
‖C‖ in Table 3.5(a) after modi�
ation. Ve
torized oblivious sorting is implemented in step8, using a ve
torized version of the oblivious swapping s
heme des
ribed earlier. The resultof this step is given in the 4th 
olumn of Table 3.5(a).



28 CHAPTER 3. ALGORITHMS(a) Stage 1 Iteration 1
‖L‖ ‖O‖ ‖C‖ ‖L‖Step 4 Step 7 Step 840 30 1 3030 40 1 4020 10 1 1010 20 1 20

(b) Stage 2 Iteration 1
‖M‖ ‖P‖ ‖D‖ ‖M‖ ‖L‖Step 12 Step 15 Step 16 Step 17- - - - 3040 10 1 10 1010 40 1 40 40- - - - 20(
) Stage 1 Iteration 2

‖L‖ ‖O‖ ‖C‖ ‖L‖Step 4 Step 7 Step 830 10 1 1010 30 1 3040 20 1 2020 40 1 40
(d) Stage 2 Iteration 2

‖M‖ ‖P‖ ‖D‖ ‖M‖ ‖L‖Step 12 Step 15 Step 16 Step 17- - - - 1030 20 1 20 2020 30 1 30 30- - - - 40Table 3.5. Oblivious sorting by Algorithm 3.5.6Algorithm 3.5.6: Oblivious Sorting(‖L‖)
omment:Ve
torized Odd-even transposition sorting network
omment: ‖L‖ is a 1d array of private values
1. n← length(‖L‖)
2. for i← 1 to n/2
3. for i← 1 to n/2 Step by 2
4. ‖O‖[i], ‖O‖[i+ 1]← ‖L‖[i+ 1], ‖L‖[i]
5. ‖C‖ ← (‖L‖ >= ‖O‖)
6. for i← 1 to n Step by 2
7. ‖C‖[i+ 1]← ‖C‖[i]
8. ‖L‖ ← ‖L‖ · (1 − ‖C‖) + ‖C‖ · ‖O‖
9. ‖m‖ ← n− 2
10. ‖M‖ ← ‖L‖[i+ 1 : n− 1]
11. for i← 1 to m/2 Step by 2
12. ‖P‖[i], ‖P‖[i+ 1]← ‖M‖[i+ 1], ‖M‖[i]
13. ‖D‖ ← (‖M‖ >= ‖P‖)
14. for i← 1 to m Step by 2
15. ‖D‖[i+ 1]← ‖D‖[i]
16. ‖M‖ ← ‖M‖ · (1− ‖D‖) + ‖D‖ · ‖P‖
17. ‖L‖[1 : N − 1]← ‖M‖return (‖L‖)Stage 2 operations are similar (Table 3.5(b)) and implemented on a subarray of ‖L‖,whi
h is formed by removing the top and bottom element. The subarray is denoted by

‖M‖. The 
omplete sorted list is obtained after all the iterations. Pro
essing of ea
h stageof ea
h iteration is given in Table 3.5(a), (b), (
) and (d)).Both of the algorithms mentioned above are derived from the s
hemes with O(n2) 
om-plexity [24℄. This is a major drawba
k. We need a parallelizable network that has lower



3.5. PRIVACY PRESERVING ALGORITHMS 29
omplexity. Odd-even merge sort is su
h a network. Odd-even merge sort is a variant ofthe merge sort algorithm that merges two sorted equal length sequen
e into a 
ompletelysorted sequen
e. Its 
omplexity is O(n log2 n), whi
h means we have to exe
ute fewer 
om-parisons. It uses log2 n rounds whi
h means it is parallelizable. The only problem withodd-even merge sort is that it is a re
ursive algorithm. It is very di�
ult to ve
torize re-
ursive fun
tions. Converting a re
ursive algorithm to an iterative one is a sensible way toaddress this problem. We 
an perform this 
onversion in the following manner.� Generate the 
omparison sequen
e for ea
h round beforehand by exe
uting the re
ur-sive algorithm.� Sort iteratively by using the pre-generated 
omparisons in ea
h sequen
e in parallel.We implemented a re
ursive odd-even merge sort to generate a 
omparison sequen
e perstage for input size of 2n (see Appendix A.1). An example of the 
omparison seuqen
e fora list of four elements is given as follows:1. Iteration 1: (1,2),(3,4)2. Iteration 2: (1,3),(2,4)3. Iteration 3: (2,3)Observe that the number of sequen
es is one less than for the odd-even transpositionsort. This di�eren
e in
reases as the input size in
reases. The sequen
e and the privateinput is fed into the fun
tion de�ned in Algorithm 3.5.7, whi
h is almost identi
al to Al-gorithm 3.5.6 with some minor 
hanges. Sin
e the number of 
omparison sequen
es of thiss
heme is smaller than the previous s
heme, we expe
t improved performan
e. We test theperforman
e of all of the sorting algorithm in 
hapter four.Algorithm 3.5.7: ObliviousSorting(‖L‖, SEQ)
omment:Ve
torized Odd-even merge sorting network
omment: ‖L‖ is a 1d array of private values
omment: SEQ is a 
omparison sequen
e generated by odd-even mergesorting network
1. n← length(‖L‖)
2. for i← 1 to len(SEQ)/n
3. for j ← 1 to n
4. ‖O‖[j]← ‖L‖[SEQ[i, j]]
5. ‖C‖ = (‖L‖ >= ‖O‖)
6. for j ← 1 to n
7. ‖C‖[SEQ[i, j]] = ‖C‖[j]
8. ‖L‖ = ‖L‖ · (1− ‖C‖) + ‖O‖ · ‖C‖return (‖L‖)We 
an use any of these algorithms to perform oblivious sorting. The sorting algorithmsare designed to operate on one dimensional arrays. Two dimensional array sorting 
animplemented by some simple modi�
ations.



30 CHAPTER 3. ALGORITHMS
3.5.5 Secure Set ReductionAfter oblivious aggregation, we obtain a list, where values in some rows are zero and someare non zero. The rows with zero values are residues of the aggregation and they must beremoved in a priva
y preserving manner. Sin
e, we sort the list after aggregation, the rowswith zero values are pushed to the top and the rest of the rows are pla
ed at the bottom.This allows us to se
urely eliminate the rows, as we 
an remove from the top without havingto a

ess the values. We de�ne this pro
ess as se
ure set redu
tion.However, to implement se
ure set interse
tion (as given in Algorithm 3.5.2), we needto implement two more row elimination pro
ess, one of whi
h is a threshold based setredu
tion. The threshold based set redu
tion operation is a
tually a variation of the se
ureset redu
tion operation de�ned above. The threshold based elimination operation removesrows, whose feature 
ounts are less than or equal to a threshold. Sin
e the list is sorted (dueto oblivious sorting in the se
ure set union), rows with feature 
ounts below or equal to thethreshold, are in the top of the list. Therefore, we 
an eliminate these rows by removingfrom top. This is similar to the previous set redu
tion pro
ess.Algorithm 3.5.8: Se
ureSetRedu
tion(‖D‖, t)
omment: ‖D‖ is a union-set obtained from Algorithm 3.5.1, t = [0, t1℄

1. ‖F‖ ← ‖D‖[3, ∗]
2. ‖C‖ ← (‖F‖ == t)
3. n← vecSum(‖C‖)
4. for i← 1 to n
5. vecRemove(D, 1)return (‖D‖)We 
an generalize the row elimination pro
ess for both of the 
ases. The generi
 al-gorithm is a threshold based set redu
tion s
heme, where in the �rst 
ase the threshold t,is set to zero and in the se
ond 
ase, is set to some user de�ned limit t1. We present thegeneri
 s
heme in Algorithm 3.5.8. Here, the s
heme determines the number of rows, withvalues equal to or less than t, in step 3. The number is denoted by n. Then, the algorithmuses a pop fun
tion (ve
Remove()) to remove n re
ords from the top of the list.The other row elimination pro
ess in se
ure set interse
tion, is a simple index basedelimination. The indexes are generated by the outlier dete
tion s
heme, whi
h indi
atessome IP address in the private list as anomalous. We eliminate the items, that are notrepresented in this outlier list. An index based row elimination pro
ess is presented inAlgorithm 3.5.9. The algorithm is self explanatory.Algorithm 3.5.9: IndexedSetRedu
tion(‖D‖, O)
omment: ‖D‖ is a union-set obtained from Algorithm 3.5.1, O is an index list
1. ‖n‖ ← length(‖D‖)
2. for i← 1 to n
3. if(i 6= O)
4. vecRemove(D, i)return (‖D‖)



3.6. MERGING THE PIECES 31

Figure 3.3. Merging the pie
es
3.6 Merging the PiecesA priva
y preserving 
ollaborative anomaly dete
tion system 
an be implemented by merg-ing the subproto
ols de�ned in Se
tions 3.3 and 3.5. To demonstrate the merging pro
ess,we use Figure 3.3. We start from the bottom. We form the se
ure set union by mergingthe oblivious aggregation, oblivious sorting and se
ure set redu
tion algorithms, de�ned inSe
tions 3.5.3, 3.5.4 and 3.5.5 respe
tively. We 
an 
hoose any of the aggregation algorithmsfrom Algorithms 3.5.3 and 3.5.4 for the oblivious aggregation operation. Similarly, we 
an
hoose any of the sorting algorithms from Algorithms 3.5.5, 3.5.6 and 3.5.7, for the oblivioussorting operation. Finally, we have to 
hoose algorithm 3.5.8 with threshold t, set to zero,for se
ure set redu
tion.The anomaly dete
tion me
hanism use a part of the aggregated output of the se
ure setunion. The outliers revealed by the s
heme a
ts as an input for the indexed set redu
tionoperation (given in Algorithm 3.5.9). The se
ure set interse
tion is implemented by mergingthis indexed set redu
tion algorithm with the se
ure set union and se
ure set redu
tionalgorithms. The se
ure set redu
tion algorithm sets the threshold t, to some user de�nedlimit t1.As there are several s
hemes for some of the subproto
ols, we have several possible
ombinations for the priva
y preserving anomaly dete
tion s
heme. The 
ombination variesin performan
e in terms of exe
ution time. We have to evaluate the performan
e of di�erent
ombinations, to �nd the best performing s
heme.Our s
heme dete
ts multi domain IP sweepers. With some simple modi�
ations, we 
animplement the s
heme to dete
t any kind of signature based multi domain anomalies, i.e.distributed denial of servi
e (DDoS), spamming, multidomain port sweeping et
. Observethe Table 3.2(a). We 
an extend Table 3.2(a) as Table 3.6, to dete
t a wide range of multidomain atta
ks. This table 
ontains feature 
ounts for n number of anomalies and m IP



32 CHAPTER 3. ALGORITHMSInput MultisetIP Feature 1 Feature 2 . . . . . . Feature n FreqIP1 10 15 . . . . . . 40 1IP2 23 20 . . . . . . 80 1IP3 30 50 . . . . . . 10 1
. . . . . . . . . . . . . . . . . . . . .IPm 55 35 . . . . . . 37 1Table 3.6. Input table for generalized anomaly dete
tion systemaddresses. The last 
olumn is reserved for the frequen
y 
ounts and rest of the 
olumns
ontain some anomaly event feature 
ount, e.g. features for Neptune atta
k1, Mail Bombing2and Port Sweeping3.To generalize the dete
tion s
heme, we 
ompute the set union of Table 3.6, using se
ureset union algorithm (de�ned in Algorithm 3.5.1) and then implement the anomaly dete
tions
heme (given in Se
tion 3.3) to identify the possible atta
kers for ea
h of the threats
onsidered. We perform se
ure set interse
tion separately for ea
h 
olumn as list of outliersand the user de�ned threshold may be di�erent for di�erent kind of anomalies.In the next 
hapter, we present the performan
e evaluation of the algorithms.

3.7 Privacy Level of the AlgorithmsIn an ideal MPC setting, ea
h party learns only the output of the 
omputation and nothingelse. Even though we wanted to a
hieve that level of priva
y, some part our s
heme givenin Algorithm 3.2.1, failed to rea
h that. Following list shows the information leaked by thedi�erent parts of our s
heme.� Oblivious aggregation algorithms: These algorithms (Algorithms 3.5.3 and 3.5.4) donot leak any information unless the MPC framework on whi
h the algorithms areimplemented leaks information.� Oblivious sorting algorithms: These algorithms (Algorithms 3.5.5, 3.5.6 and 3.5.7)do not leak any information unless the MPC framework on whi
h the algorithms areimplemented leaks information.� Se
ure set redu
tion algorithms: These algorithms (Algorithms 3.5.8 and 3.5.9) leakinformation. Se
ure set redu
tion algorithm (Algorithms 3.5.8) leaks the number ofthe inputs whi
h are lower and higher than the threshold value. Indexed set redu
tionalgorithm (Algorithms 3.5.9) leaks the number of the outlier and non-outlier pointsand of
ourse the index of the outlier points, where ea
h index represents an outlierpoint from a given set.Therefore, we observe that, when we merge the pie
es to design a priva
y preservinganomaly dete
tion system, we do not leak mu
h information during the aggregation phase(the �rst two steps in se
ure set union Algorithm 3.5.1) but we leak information duringthe set redu
tion phase (the last step in se
ure set union Algorithm 3.5.1 and both steps1DDoS atta
k by SYN �ooding. See 'http : //tools.ietf.org/html/rfc4987' for details.2DDoS atta
k to mail servers by high number of emails. See 'www.cert.org/tech_tips/' for details.3S
anning to �nd open ports in a host. See 'www.linuxjournal.com/article/4234' for details.



3.7. PRIVACY LEVEL OF THE ALGORITHMS 33in se
ure set interse
tion Algorithm 3.5.2). Moreover, as we are implementing the outlierdete
tion s
heme in publi
, we are dis
losing the pa
ket 
ounts as well. So from an exe
utionof the whole s
heme, ea
h party learns the following information:� Before exe
ution: Ea
h parties' own input.� After se
ure set union operation (after step 1): The number of residues (values thatare equal to zero).� Before outlier dete
tion (after step 2): The aggregated pa
ket 
ounts.� After outlier dete
tion (after step 3): The index of the IP addresses that are potentialoutliers, the number of outliers and the number of non-outliers.� After se
ure set interse
tion operation (after step 4): The number of single and multidomain atta
kers.� When exe
ution ends (after step 5): IP address and other information of the potentialmultidomain atta
kers.Having this information, a dishonest party may have a leverage to de
lassify the privateinput from other parties. However none of the leaked information aid in leaking the IPaddresses of the single domain atta
kers and non-atta
kers. Morever, as the list is shu�edby the sorting operation, it is no possible for an adversary to dis
lose 
lassi�ed values by
orrelation. Therefore, we 
an say that even if our s
heme leaks some information andfails to a
hieve the desired level of priva
y but it still prote
ts priva
y of the inputs to ana

eptable level.





Chapter 4

Performance Evaluation

4.1 IntroductionIn the last 
hapter, we designed s
hemes for our priva
y preserving anomaly dete
tionsystem. We evaluate the performan
e of these s
hemes in this 
hapter. The algorithms, 
anbe divided into two 
lasses.1. S
hemes for network anomaly dete
tion.2. S
hemes for priva
y preserving aggregation.We explain the performan
e analysis of these s
hemes in the following dis
ussion.
4.1.1 On Performance Analysis of Anomaly Detection SystemWe built our anomaly dete
tion system using LOCI [31℄, whi
h is an outlier dete
tionalgorithm. The performan
e of LOCI should be evaluated based on its 
osts and bene�ts.By bene�t, we mean how many network anomalies are dete
ted 
orre
tly from a given set ofanomalies. By 
ost, we mean the number of normal hosts it wrongly dete
ts as anomalies.The 
ost-bene�t analysis of anomaly dete
tion system 
an be done by the re
eiver operating
hara
teristi
 (ROC) 
urve [17℄.We have argued in Se
tion 3.3 that 
hanging 
on�guration parameters in�uen
es thea

ura
y of the LOCI s
heme. Therefore, we experiment with di�erent 
on�gurations ofLOCI on the same set of test 
ases to evaluate the performan
e of ea
h one. The evaluationhelps us to 
hoose the right 
on�guration parameters for LOCI.
4.1.2 On Performance Analysis of Privacy Preserving AlgorithmsWe implemented several priva
y preserving algorithms, as given in following list:� Se
ure Set Union� Oblivious Aggregation (Algorithm 3.5.3 and 3.5.4)� Oblivious Sorting (Algorithm 3.5.5, 3.5.6 and 3.5.7)� Se
ure Set Redu
tion (Algorithm 3.5.8)� Se
ure Set Interse
tion 35



36 CHAPTER 4. PERFORMANCE EVALUATIONWe built these algorithms in su
h a way, that they 
an be ported to any se
ure multiparty 
omputation (MPC) framework, provided that the framework satis�es some require-ments (see Se
tion 3.4.1 for the list of requirements). MPC proto
ols have been knownfor being slow in performing data analysis on large datasets. We therefore designed ouralgorithms with e�
ien
y in mind. Performan
e of MPC based algorithms is in�uen
ed bythe following 
lasses of operations [9℄:1. Lo
al Operations: Operations that have one round of lo
al 
omputations, e.g.addition operation.2. Multi party operations: Operations that have multiple rounds of lo
al 
omputa-tions with messages ex
hanged among the parties between the rounds, e.g. 
omparisonoperations.Exe
ution times of the lo
al operations are signi�
antly lower 
ompared to that of themulti party operations. So, if a s
heme is built using both kinds of operations, the multiparty operations have signi�
antly more impa
t than the lo
al operations on the overallperforman
e. The Subproto
ols for our priva
y preserving algorithms use both kinds ofoperations to some extent. For example, the oblivious sorting algorithm uses more multiparty operations than the set redu
tion algorithm. Out of the three algorithms used by these
ure set union proto
ol, two of them (oblivious aggregation and sorting algorithm) relyheavily on the multi party operations. Therefore, the performan
e of the se
ure set unionproto
ol is strongly in�uen
ed by these algorithms.On the other hand, the set interse
tion proto
ol performs the set redu
tion operationover the output of the set union proto
ol. The set redu
tion algorithm has a few multiparty operations, and hen
e exe
ute faster 
ompared to the algorithms used in the se
ureset union proto
ol. We believe performan
e evaluation of se
ure set union gives an idea ofthe performan
e of se
ure set interse
tion. So we skipped the performan
e evaluation ofse
ure set interse
tion.
4.2 Outlier Detection by LOCIIn this se
tion, we 
ompare the performan
e of di�erent 
on�gurations of the LOCI s
heme.We have limited our experiments s
ope to IP Sweepers. Before dis
ussing the test evalua-tion, we give a brief ba
kground on the test data and performan
e analysis tools.
4.2.1 Feature ConstructionWe applied our anomaly dete
tion system to the 1998 and 1999 Darpa intrusion dete
tionevaluation data [29, 28℄. Both of the sets 
ontain several weeks of simulated training andtesting data to measure the probability of dete
tion and false alarm rate of intrusion de-te
tion systems. The training set 
ontains normal tra�
 samples, as well as several weeksof (simulated) network based atta
ks. These network based atta
ks are various kinds ofs
anning (probing) atta
ks1, denial of servi
e atta
ks2, user to root atta
ks3 and remote tolo
al atta
ks4.1Automati
ally s
an a network of 
omputers to gather information or �nd known vulnerabilities2An atta
k in whi
h the atta
ker makes some 
omputing or memory resour
e too busy or too full tohandle legitimate requests, or denies legitimate users a

ess to a ma
hine3A 
lass of exploit in whi
h the atta
ker starts out with a

ess to a normal user a

ount on the systemand is able to exploit some vulnerability to gain root a

ess to the system4An atta
k in whi
h an atta
ker who 
an send pa
kets to a ma
hine over a network but does not havean a

ount on that ma
hine exploits some vulnerability to gain lo
al a

ess as a user of that ma
hine



4.2. OUTLIER DETECTION BY LOCI 37LOCI is an unsupervised ma
hine learning s
heme for outlier dete
tion. So, we avoidedtraining LOCI using the normal data samples. We applied our system on the labeled trainingset, 
ontaining atta
k tra
es. As we have limited our dete
tion to IPsweeps, we have usedonly those samples that 
ontained tra
es of su
h atta
ks. For our tests, we pi
ked �ve setsof IPsweep data.We have stated the dete
tion signature of IPsweep atta
k in the Se
tion 3.1. We havewritten a small python s
ript to extra
t the features of the atta
k from the tra�
 logs(t
pdump �les5). The feature set generated by the s
ript is a series of 2-tuples: {IP address,Destination Count}. The �rst element represents the remote hosts whi
h send the ICMPpa
kets, and the se
ond element represents the number of destinations probed by the remotehosts.We obtained �ve feature sets from the �ve atta
k logs. As the samples are labeled, theatta
kers are known. This helps us to evaluate the probability of dete
tion and false alarmby the anomaly dete
tion system. Out of these �ve sets, only one set 
ontains three IPsweepers and rest of them 
ontain one sweeper ea
h. Having a small number of atta
kersis troublesome for anomaly dete
tion system evaluation, so we merged the �ve sets. Themerged set 
onsists of 7 unique IPsweepers and 97 unique normal hosts. We test di�erent
on�gurations of LOCI on this merged set and evaluate their performan
e.
4.2.2 Receiver Operating Characteristic CurveWe analyze the performan
e of LOCI in terms of true and false positives. We representthese terms as bene�t and 
ost of the anomaly dete
tion system. Following de�nitions areused to de�ne these terms.� Dete
ted Atta
ker Set: A set of observations whi
h are �agged as anomalies by anoutlier dete
tion s
heme.� A
tual Atta
ker Set: A set of observations whi
h are a
tual anomalies.� A
tual Non-atta
ker Set: A set of benign observations.We introdu
e some more terms using these sets.� A
tual True Positives: The size of the a
tual atta
ker set.� A
tual False Positives: The size of the a
tual non-atta
ker set.� Cal
ulated True Positives: The size of the set interse
tion of the dete
ted atta
kerset and the a
tual atta
ker set.� Cal
ulated False Positives: The size of the set interse
tion of the dete
ted atta
kerset and the a
tual non-atta
ker set.Now, the bene�t of an anomaly dete
tion system is de�ned in terms of true positiveratio (TPR), whi
h is a ratio between the 
al
ulated and the a
tual true positives. The 
ostis de�ned in terms of false positives ratio (FPR), whi
h is a ratio between the 
al
ulatedand the a
tual false positives.We 
an evaluate the performan
e of the LOCI based anomaly dete
tion system in termsof bene�t and 
ost using a ROC 
urve. A ROC 
urve is a two dimensional 
urve, where the5http://www.t
pdump.org/



38 CHAPTER 4. PERFORMANCE EVALUATIONX axis represents FPR and Y axis represents TPR. Thus, it depi
ts the trade-o� between
ost and bene�t. The spa
e en
losed by the X and Y axis, is 
alled a ROC spa
e. A pair(FPR, TPR) represents a point in the ROC spa
e. For multiple exe
utions of the system,we have a set of value-pair represented as a set of points in the ROC spa
e.A diagonal line is drawn from the bottom left 
orner to the top right 
orner. Thisline is de�ned as the line of no dis
rimination. Points above the line are 
onsidered goodand points below the lines are 
onsidered bad. An anomaly dete
tion system is 
onsideredgood if most of the points fall above the line. Similarly, the system is 
onsidered bad if asigni�
ant amount of points fall below the line.
4.3 Evaluation of LOCIIn Se
tion 3.3, we have simpli�ed the LOCI s
heme to the formula given in Equation3.4. The equation used λ = 3, a

ording to [31℄. We have argued that this equationis a�e
ted by the masking e�e
t and we have suggested using a smaller value for λ tominimize the problem. We have also suggested using an alternate form of the formula, asgiven in Equation 3.5, using λ = 5.2.In this se
tion, we evaluate the performan
e of the LOCI s
heme for both formulas, fordi�erent value of λ, to �nd out the best parameter 
on�guration for LOCI. Following listshows these 
ases:� Con�guration 1: LOCI s
heme using the mean fun
tion, the standard deviation fun
-tion (Eq. 3.4) and λ = 3.� Con�guration 2: LOCI s
heme using the mean fun
tion, the standard deviation fun
-tion (Eq. 3.4) and λ = 2.� Con�guration 3: LOCI s
heme using the median fun
tion, the median absolute devi-ation fun
tion (Eq. 3.5) and λ = 5.2.There are other parameters to 
onsider: the value of k that determines the k-neighborhoodand the fra
tion α that determines the lo
al neighborhood. The parameters are explainedin Se
tion 3.3. The best 
hoi
e of k for kth nearest neighborhood s
hemes (kNN) is datadependent, but the general 
onsensus is that larger values of k redu
e the e�e
t of noise onthe 
lassi�
ation. On the other hand, a high value for k makes boundaries between 
lassesless distin
t. We pi
ked �ve random, high odd values for k: 69, 75, 79, 85 and 89. Weexe
ute the three 
on�gurations of LOCI s
heme, using α = 0.125, for all �ve values of k.We have written a python s
ript that implements the LOCI s
heme for the 
on�gurationsmentioned above (see Appendix B). The s
ript is designed to dete
t IPsweeping hosts froma given sample of features. The method of feature extra
tion is des
ribed in Se
tion 4.2.1.The s
ript generates the following outputs for the values of k, de�ned above, for all three
on�gurations:1. Dete
ted outliers2. FPR3. TPRThe �rst output is a list of IP addresses marked as outliers. This list may 
ontain falsepositives. The se
ond and third outputs are 
al
ulated based on the de�nitions given in



4.3. EVALUATION OF LOCI 39Con�guration 1 Con�guration 2 Con�guration 3k TPR(%) FPR(%) TPR(%) FPR(%) TPR(%) FPR(%)69 57.1 3.1 71.4 7.2 85.7 13.475 71.4 8.3 71.4 12.4 100.0 16.579 71.4 11.3 85.7 11.3 100.0 17.585 71.4 15.5 85.7 14.4 100.0 19.689 85.7 17.5 100.0 18.6 100.0 22.7Table 4.1. Performan
e of the LOCI s
heme for di�erent 
on�gurations and k values

 0

 20

 40

 60

 80

 100

 0  20  40  60  80  100

T
P

R

FPR

Line of no discrimination
Configuration 1
Configuration 2
Configuration 3

Figure 4.1. ROC 
urve for di�erent 
on�guration of the LOCI s
heme, for di�erent k valuesSe
tion 4.2.2, using the dete
ted outlier list. The results are presented in Table 4.1. Weobserve that the, TPR and FPR in
rease with the in
rement of k for all three 
on�guration,with some minor ex
eptions. Con�guration 1 a
hieves lower su

ess rate with the bene�t oflower amount of false positives. On the other hand, 
on�guration 3 a
hieves higher su

essrate with the 
ost of high number of false positives. The performan
e of 
on�guration 2,falls between 
on�gurations 1 and 2. Con�guration 3 a
hieved 100 per
ent su

ess in mostof the 
ases, whereas, 
on�guration 2 a
hieved that only on
e. Con�guration 1 failed toa
hieve 100 per
ent su

ess rate.The values are plotted on a ROC 
urve, given in Figure 4.1. All of the points in the ROCspa
e lie above the line of no dis
rimination. Most of the points generated by 
on�guration3 are pla
ed in the absolute top position of the spa
e, whi
h is a very desirable out
ome foran anomaly dete
tion system. Based on the analysis of Table 4.1 and Figure 4.1, we 
an besay that for anomaly dete
tion, 
on�guration 3 is the best 
hoi
e.Now, we analyze the dete
ted outliers. For this parti
ular test, we have 
hosen 
on�gu-ration 3, with k set to 45. The test out
ome is given in Figure 4.2. We 
reate an imaginaryline 
alled line of outlierness. Points above the line are the dete
ted outliers and those belowthe line are the hosts dete
ted as benign. The s
heme dete
ted eleven points as outliers.But the total number of a
tual IPsweepers are seven. The list of the outliers revealed,



40 CHAPTER 4. PERFORMANCE EVALUATION

 0

 50

 100

 150

 200

 250

 0  20  40  60  80  100  120

de
st

in
at

io
n 

co
un

t

point index

placement of a point
line of outlierness

Figure 4.2. Outliers dete
ted by the LOCI s
heme for 
on�guration 3, k = 45that all seven of the IPsweepers were dete
ted su

essfully, whi
h means the rest are falsepositives. A
tually, the four points, that are very 
lose to the line of outlierness, are thefalse positives. It is possible to eliminate these false positives by tweaking the 
on�gurationparameters, but at the risk of lower su

ess rate.
4.4 Evaluation of the Privacy Preserving AlgorithmsWe designed our priva
y preserving algorithms with a strong fo
us towards minimizingthe pro
essing delay. In this se
tion, we test the performan
e of the priva
y preservingalgorithms in terms of exe
ution time.
4.4.1 Test SetupWe designed several generi
 priva
y preserving algorithms that 
an be exe
uted using anyMPC proto
ol, that supports several requirements, des
ribed in se
tion 3.4.1. Sharemind isa MPC platform that supports all of the requirements. Although we are supposed to evalu-ate the performan
e of the s
hemes in a networked environment of three 
omputing nodes,we skip that for initial testing. We run ea
h of our algorithms in a setting where all three
omputing parties are emulated in a lo
al ma
hine. In this setting, the 
omputing partiesare emulated by a separate pro
ess in a single 
omputer, and MPC proto
ol is implementedby message ex
hange between the pro
esses. This approa
h has two drawba
ks.� It violates the priva
y requirement.� Pro
essing time evaluation be
omes �awed.Sin
e, priva
y of the algorithms strongly depends on the se
urity of the MPC platform,we assume that in an a
tual implementation, the priva
y is preserved by the MPC platformused, so we 
an ignore the �rst drawba
k at the moment. For the se
ond problem, only



4.4. EVALUATION OF THE PRIVACY PRESERVING ALGORITHMS 41testing in a networked environment gives a

urate statisti
s to evaluate the performan
e ofthe s
hemes, but due to la
k of time, we had to resort to more simpli�ed testing. Never-theless, we believe the tests performed give su�
ient indi
ation of the relative performan
eof the algorithms.For the implementation, we used a Dell Vostro 1320 model notebook, with a 2.66 GHzCore 2 Duo CPU and a 4 GB RAM. Sharemind runs in several operating systems butwe have 
hosen to run it on Ubuntu 9.10. We have 
on�gured6 the lo
alized version ofSharemind with the 'Se
reC' [21℄ 
ompiler, where all three 
omputing parties are emulatedon a single ma
hine.We have written our priva
y preserving algorithms in Se
reC. We have also writtena 
ontroller program, using the Sharemind 
ontroller library that stores private values inthe se
ure storage of the 
omputing parties in the additive se
ret shared format. We havewritten another 
ontroller program that exe
utes the Se
reC 
odes and returns exe
utionresult. Any party, who wants to obtain the output of the priva
y preserving algorithms,have to use this program. This prevents the modi�
ation of priva
y preserving algorithmsby the dishonest parties.The algorithms are data independent. Therefore, it is not ne
essary to exe
ute thealgorithms with real data for the purpose of performan
e evaluation. Therefore, we usefabri
ated data for our tests. The fabri
ated data is a list of two tuple: { ID, CNT}.Both of the elements are some randomly generated integers from a given range. The �rstelement represents an IP address and the se
ond element represents a feature 
ount of thatIP address.
4.4.2 Performance EvaluationsWe have argued in Se
tion 4.1.2, why we test only some of the algorithms. We exe
ute thefollowing tests:1. Testing performan
e of the di�erent s
hemes for oblivious aggregation (Algorithms3.5.3 and 3.5.4).2. Testing performan
e of the di�erent s
hemes for oblivious sorting (Algorithms 3.5.5,3.5.6, 3.5.7).3. Testing performan
e of the following assembly 
on�gurations for the se
ure set unionproto
ol:a) Ve
torized oblivious aggregation algorithm (Algorithm 3.5.4), ve
torized odd-even merge sorting networks (Algorithm 3.5.7) and se
ure set redu
tion algorithm(Algorithm 3.5.8).b) Ve
torized oblivious aggregation algorithm (Algorithm 3.5.4), ve
torized odd-even transposition sorting network (Algorithm 3.5.6) and se
ure set redu
tionalgorithm (Algorithm 3.5.8).For the �rst test, we exe
uted the Se
reC 
ode of both versions of the oblivious aggrega-tion algorithms given in Algorithm 3.5.3 and 3.5.4 (see Appendix C.1 and C.2). The latteralgorithm is the ve
torization of the former one. For performan
e analysis, we measured thepro
essing time of ea
h exe
ution. The time is 
al
ulated by taking the di�eren
e betweenthe time when the exe
ution starts and the time when the exe
ution ends. Table 4.2 showsthe pro
essing time for di�erent sized input for ea
h algorithm given in minutes.6A 
on�guration tutorial is given in http://resear
h.
yber.ee/sharemind/do
s/sharemind-1.9/



42 CHAPTER 4. PERFORMANCE EVALUATIONExe
ution Time (minutes)Input Oblivious Aggregation Ve
torized Oblivious Aggregationsize (Algorithm 3.5.3) (Algorithm 3.5.4)32 12.2 0.264 39.6 0.4128 142.3 1.2256 321.8 3.4512 - 12.41024 - 39.42048 - 85.2Table 4.2. Performan
e of oblivious aggregation algorithms

 0

 50

 100

 150

 200

 250

 300

 350

 0  500  1000  1500  2000  2500

ex
ec

ut
io

n 
tim

e 
(m

in
ut

es
)

size of input (units)

Algorithm 3.5.3
Algorithm 3.5.4

Figure 4.3. Performan
e of oblivious aggregation algorithmsFrom Table 4.2, we observe that unve
torized oblivious aggregation is extremely slow,while the ve
torized version is signi�
antly faster. We did not exe
ute the unve
torizedaggregation for input size larger than 256 be
ause of its high pro
essing time. We plotthese values in Figure 4.3. We observe that the exe
ution times for the ve
torized algorithms
ales mu
h better with the input size. Therefore, it is 
lear that the ve
torized algorithmshould be 
hosen for oblivious aggregation.For the se
ond test, we exe
uted the Se
reC 
ode of all three versions of the oblivioussorting Algorithms 3.5.5, 3.5.6 and 3.5.7 (see Appendix C.3, C.4 and C.5). The �rst algo-rithm is a bubble sorting network, the se
ond is a ve
torized odd-even transposition sortingnetwork and the last one is a ve
torized odd-even merge sorting network. Like the perfor-man
e analysis of the oblivious aggregation, we 
al
ulated the pro
essing time for di�erent



4.4. EVALUATION OF THE PRIVACY PRESERVING ALGORITHMS 43Exe
ution Time (minutes)Ve
torized Ve
torizedInput Bubble Odd-even Transposition Ve
torized Odd-even Mergesize Sorting Network Sorting Network Sorting Network(Algorithm 3.5.5) (Algorithm 3.5.6) (Algorithm 3.5.7)32 14.5 0.2 0.164 42.5 0.5 0.2128 157.2 1.3 0.5256 341.1 3.7 1.2512 - 13.1 4.61024 - 41.5 18.92048 - 91.2 37.3Table 4.3. Performan
e of oblivious sorting algorithms

 0

 50

 100

 150

 200

 250

 300

 350

 0  500  1000  1500  2000  2500

ex
ec

ut
io

n 
tim

e 
(m

in
ut

es
)

size of input (units)

Algorithm 3.5.5
Algorithm 3.5.6
Algorithm 3.5.7

Figure 4.4. Performan
e of oblivious sorting algorithmssizes of inputs. Table 4.3 presents these times in minutes.We observe that, like the unve
torized aggregation algorithm, the unve
torized oblivioussorting network (Bubble sorting network) is signi�
antly slower than the ve
torized ones.Due to its high pro
essing time, we did not exe
ute the oblivious bubble sorting network forsize of input data larger than 256 units. Between the two ve
torized algorithms, odd-evenmerge sort (whi
h has relatively lower 
omplexity) gives better performan
e. To analyzethis 
learly, we plotted the values in Figure 4.4.Again, we observe more favorable s
aling properties for the ve
torized algorithms. Ofthe two, we observe that odd-even merge sort performs noti
ably better.



44 CHAPTER 4. PERFORMANCE EVALUATIONExe
ution Time (minutes)Input size Con�guration 1 Con�guration 232 0.27 0.4864 0.68 1.08128 1.55 3.08256 5.67 9.83512 21.62 35.981024 70.37 132.002048 230.2 347.57Table 4.4. Performan
e of the se
ure set union algorithmFor the third test, we exe
uted the se
ure set union proto
ol, using both of the assembly
on�gurations mentioned in Se
tion 4.3.2. An implementation of the building blo
ks forboth of these 
on�gurations is given in Appendix C. We de�ne these assembly 
on�gurationsas 'Con�guration 1' and 'Con�guration 2'. We measured the pro
essing time for these
on�gurations for di�erent sizes of input and present them in Table 4.4. The times aregiven in minutes.The 
on�gurations used the same aggregation and set redu
tion algorithms (Algorithms3.5.4 and 3.5.8), but di�erent versions of the oblivious sorting algorithms (Algorithms 3.5.6and 3.5.7). Con�guration 1 uses ve
torized oblivious odd-even merge sort, whereas 
on�g-uration 2 uses ve
torized oblivious odd-even transposition sort. We have already shown inSe
tion 4.3.4 that the former algorithm gives better performan
e, 
ompared to the latter.So, it 
an be easily predi
ted that 
on�guration 1 gives better performan
e. As seen in Table4.4, the 
on�guration 1 attains lower pro
essing delay than 
on�guration 2, as predi
ted.This is shown in Figure 4.5.



4.4. EVALUATION OF THE PRIVACY PRESERVING ALGORITHMS 45

 0

 50

 100

 150

 200

 250

 300

 350

 0  500  1000  1500  2000  2500

ex
ec

ut
io

n 
tim

e 
(m

in
ut

es
)

size of input (units)

Conf. 1
Conf. 2

Figure 4.5. Performan
e of the se
ure set union algorithm





Chapter 5

DiscussionsIn this thesis, we have designed and implemented a novel method to 
ompute priva
y pre-serving set union and interse
tion using se
ure multiparty 
omputation (MPC). We havedesigned several subproto
ols to implement these set operations. We used these solutionsin 
onjun
tion with an outlier dete
tion system to design a priva
y preserving 
ollabora-tive anomaly dete
tion system. We implemented the priva
y preserving algorithms in theSharemind framework [9℄ and the anomaly dete
tion system using the LOCI s
heme [31℄.Our main a
hievement in this proje
t, is a novel approa
h to implement priva
y pre-serving sorting operations in se
ure multiparty 
omputation based frameworks. We havedesigned a novel oblivious swapping te
hnique that allows us to implement the sorting op-erations without 
omprimising the priva
y of the inputs. We have also designed ve
torizedversions of oblivious swapping, that improve the performan
e of the sorting operations. Wehave also designed a novel ve
torized oblivious algorithm for priva
y preserving aggregation.These two subproto
ols (oblivious aggregation, oblivious sorting) played an integral rolein designing the priva
y preserving set union and interse
tion operations. In our experi-ments, we showed that it is possible to 
ompose a fast priva
y preserving set union proto
olusing the ve
torized version of these algorithms. Finally, we have presented an alternateapproa
h to formulate the LOCI s
heme, using more robust statisti
s. We showed in ourexperiments that the modi�ed LOCI s
heme utilizing the median based statisti
s dete
tedthe network anomalies more su

essfully than the LOCI s
heme utilizing the mean basedstatisti
s.We have several limitations as well. The main obje
tive of our proje
t was to designa highly se
ure solution, that allows the parties to learn only the out
ome and nothingelse. But we failed to a
hieve that level of se
urity, as our priva
y preserving anomalydete
tion system leaks some information. Most of this information is leaked in exe
utingthe outlier dete
tion system (LOCI) in a publi
 environment. We 
an potentially eliminatethis problem by implementing the LOCI s
heme in a priva
y preserving manner. As westated earlier, implementing the LOCI s
heme in MPC frameworks (e.g. Sharemind) 
anbe very 
ompli
ated and 
an signi�
antly deteriorate the performan
e of the system.Another limitation of our system is that our aggregation algorithms uses n2 
ompar-isons. We 
an redu
e the number of 
omparisons to n log2 n by modifying the odd-evenmerge sorting network to generate the 
omparison sequen
e. See Appendix A.2 for su
han implementation. Due to la
k of time, we 
ould not implement the optimized priva
ypreserving aggregation algorithm. We leave this implementation for future work.We tested our anomaly dete
tion system in an isolated setting as we 
ould not obtainmultidomain atta
k tra
es. Finally, we tested our priva
y preserving algorithms in an47



48 CHAPTER 5. DISCUSSIONSlo
alized setting by emulating the 
omputing parties on a single 
omputer. Sin
e, thereis no real network delay involved, the performan
e given by the algorithms at best anindi
ation of their relative performan
e. We leave testing in a real networked environmentfor future work.Although we tested our priva
y preserving s
hemes are tested in fabri
ated data, butthey give similar performan
e for real data set. The fabri
ated data that we used fortesting are all 32 bit integers. In 
ase of real data, the pa
ket and the frequen
y 
ounts arerepresented by 32 bit integers, and IP addresses 
an be easily 
onverted to 32 bit integers.Sin
e all of the values in real data 
an be represented by 32 bit integers, our s
heme givethe same performan
e.We showed in our performan
e evaluation that the fastest version of our priva
y preserv-ing algorithm gives 
omputation result for 1024 and 2048 units of input within an a

eptabletime. However, it is 
lear from the test results that our algorithm produ
es very slow outputfor higher number of inputs. Therefore, we 
an say that our 
urrent implementation of thepriva
y preserving algorithms are not pra
ti
al in pro
essing input set of large number ofvalues e.g. 10000 items.



Bibliography[1℄ Rakesh Agrawal, Alexandre Ev�mievski, and Ramakrishnan Srikant. Information shar-ing a
ross private databases. In SIGMOD '03: Pro
eedings of the 2003 ACM SIGMODinternational 
onferen
e on Management of data, pages 86�97, New York, NY, USA,2003. ACM.[2℄ M. Ajtai, J. Komlós, and E. Szemerédi. An 0(n log n) sorting network. In STOC '83:Pro
eedings of the �fteenth annual ACM symposium on Theory of 
omputing, pages1�9, New York, NY, USA, 1983. ACM.[3℄ V. Barnett and T Lewis. Outliers in Statisti
al Data. John Wiley & Sons, 3rd editionedition, 1994.[4℄ K. E. Bat
her. Sorting networks and their appli
ations. In AFIPS '68 (Spring): Pro-
eedings of the April 30�May 2, 1968, spring joint 
omputer 
onferen
e, pages 307�314,New York, NY, USA, 1968. ACM.[5℄ D. Beaver, S. Mi
ali, and P. Rogaway. The round 
omplexity of se
ure proto
ols. InSTOC '90: Pro
eedings of the twenty-se
ond annual ACM symposium on Theory of
omputing, pages 503�513, New York, NY, USA, 1990. ACM.[6℄ Jean-Paul Berrut and Lloyd N. Trefethen. Bary
entri
 lagrange interpolation. SIAMReview, 46(3):501�517, 2004.[7℄ G. R. Blakley. Safeguarding 
ryptographi
 keys. Managing Requirements Knowledge,International Workshop on, 0:313, 1979.[8℄ Dan Bogdanov, Roman Jagomägis, and Sven Laur. Priva
y-preserving histogram 
om-putation and frequent itemset mining with sharemind. Te
hni
al Report Cyberneti
aresear
h report T-4-8, Cyberneti
a AS, 2009.[9℄ Dan Bogdanov, Sven Laur, and Jan Willemson. Sharemind: A Framework for FastPriva
y-Preserving Computations, volume 5283/2008 of Computer Se
urity - ESORICS2008. Springer Berlin / Heidelberg, O
tober 2008.[10℄ Markus M. Breunig, Hans-Peter Kriegel, Raymond T. Ng, and Jörg Sander. Lof:identifying density-based lo
al outliers. SIGMOD Re
., 29(2):93�104, 2000.[11℄ Josh Cohen Benaloh. Se
ret sharing homomorphisms: keeping shares of a se
ret se
ret.In Pro
eedings on Advan
es in 
ryptology�CRYPTO '86, pages 251�260, London, UK,1987. Springer-Verlag.[12℄ Ronald Cramer and Ivan Damgård. Se
ure distributed linear algebra in a 
onstantnumber of rounds. In CRYPTO '01: Pro
eedings of the 21st Annual International49



50 BIBLIOGRAPHYCryptology Conferen
e on Advan
es in Cryptology, pages 119�136, London, UK, 2001.Springer-Verlag.[13℄ Bogdanov Dan and Ri
hard Sassoon. Priva
y-preserving 
ollaborative �ltering withsharemind. Te
hni
al Report Cyberneti
a resear
h report T-4-2, Cyberneti
a AS, 2008.[14℄ Laurie Davies and Ursula Gather. Robust statisti
s. Handbook of ComputationalStatisti
s: Con
epts and Methods, pages 670�672, 2004.[15℄ Wenliang Du and Mikhail J. Atallah. Proto
ols for se
ure remote database a

ess withapproximate mat
hing. Te
hni
al report, CERIAS, Purdue University, 2000.[16℄ Fatih Emek
i, Divyakant Agrawal, Amr El Abbadi, and Aziz Gulbeden. Priva
y pre-serving query pro
essing using third parties. In ICDE '06: Pro
eedings of the 22ndInternational Conferen
e on Data Engineering, page 27, Washington, DC, USA, 2006.IEEE Computer So
iety.[17℄ Arian R. Van Erkel and Peter M. Th. Pattynama. Re
eiver operating 
hara
teristi
(ro
) analysis: Basi
 prin
iples and appli
ations in radiology. European Journal ofRadiology, 27(2):88 � 94, 1998.[18℄ Rosario Gennaro, Yuval Ishai, Eyal Kushilevitz, and Tal Rabin. The round 
omplexityof veri�able se
ret sharing and se
ure multi
ast. In STOC '01: Pro
eedings of thethirty-third annual ACM symposium on Theory of 
omputing, pages 580�589, NewYork, NY, USA, 2001. ACM.[19℄ Rosario Gennaro, Mi
hael O. Rabin, and Tal Rabin. Simpli�ed vss and fast-tra
kmultiparty 
omputations with appli
ations to threshold 
ryptography. In PODC '98:Pro
eedings of the seventeenth annual ACM symposium on Prin
iples of distributed
omputing, pages 101�111, New York, NY, USA, 1998. ACM.[20℄ Oded Goldrei
h. Foundations of 
ryptography: a primer. Found. Trends Theor. Com-put. S
i., 1(1):1�116, 2005.[21℄ Roman Jagomägis. Se
re
: a priva
y-aware programming language with appli
ationsin data mining. Master's thesis, University of Tartu, 2010.[22℄ Lea Kissner and Dawn Song. Priva
y-preserving set operations. In in Advan
es inCryptology - CRYPTO 2005, LNCS, pages 241�257. Springer, 2005.[23℄ Edwin M. Knorr and Raymond T. Ng. Algorithms for mining distan
e-based outliersin large datasets. In Algorithms for Mining Distan
e-Based Outliers in Large Datasets,pages 392�403, 1998.[24℄ Donald E. Knuth. The Art of Computer Programming: Sorting and Sear
hing (Volume3). Addison-Wesley, 1998.[25℄ George Kurtz. Google atta
k is tip of i
eberg, January 2010. Available at:http://siblog.m
afee.
om/
to/google-atta
k-is-tip-of-i
eberg/, Last a

essed in May2010.[26℄ Adam J. Lee, Parisa Tabriz, and Nikita Borisov. A priva
y-preserving interdomainaudit framework. In WPES '06: Pro
eedings of the 5th ACM workshop on Priva
y inele
troni
 so
iety, pages 99�108, New York, NY, USA, 2006. ACM.



BIBLIOGRAPHY 51[27℄ Yehuda Lindell. Parallel 
oin-tossing and 
onstant-round se
ure two-party 
ompu-tation. In CRYPTO '01: Pro
eedings of the 21st Annual International CryptologyConferen
e on Advan
es in Cryptology, pages 171�189, London, UK, 2001. Springer-Verlag.[28℄ Ri
hard Lippmann, Joshua W. Haines, David J. Fried, Jonathan Korba, and KumarDas. The 1999 darpa o�-line intrusion dete
tion evaluation. Comput. Netw., 34(4):579�595, 2000.[29℄ Ri
hard P. Lippmann, David J. Fried, Isaa
 Graf, Joshua W. Haines, Kristopher R.Kendall, David M
Clung, Dan Weber, Seth E. Webster, Dan Wys
hogrod, Robert K.Cunningham, and Mar
 A. Zissman. Evaluating intrusion dete
tion systems: The1998 darpa o�-line intrusion dete
tion evaluation. DARPA Information SurvivabilityConferen
e and Exposition, 2:1012, 2000.[30℄ Moni Naor and Benny Pinkas. Oblivious transfer and polynomial evaluation. In STOC'99: Pro
eedings of the thirty-�rst annual ACM symposium on Theory of 
omputing,pages 245�254, New York, NY, USA, 1999. ACM.[31℄ S. Papadimitriou, H. Kitagawa, P.B. Gibbons, and C. Faloutsos. Lo
i: fast outlierdete
tion using the lo
al 
orrelation integral. In Data Engineering, 2003. Pro
eedings.19th International Conferen
e on, pages 315 � 326, 5-8 2003.[32℄ P. Rogaway. The Round Complexity of Se
ure Proto
ols. PhD thesis, MIT, June 1991.Available from www.
s.u
davis.edu/ rogaway/papers/.[33℄ Stuart E. S
he
hter, Jaeyeon Jung, and Arthur W. Berger. Fast dete
tion of s
anningworm infe
tions. In RAID, pages 59�81, 2004.[34℄ Adi Shamir. How to share a se
ret. Commun. ACM, 22(11):612�613, 1979.[35℄ Riivo Talviste and Dan Bogdanov. An improved method for priva
y-preserving web-based data 
olle
tion. Te
hni
al Report Cyberneti
a resear
h report T-4-5, Cyberneti
aAs, 2009.[36℄ Jian Tang, Zhixiang Chen, Ada Wai-
hee Fu, and David Cheung. A robust outlier de-te
tion s
heme for large data sets. In In 6th Pa
i�
-Asia Conf. on Knowledge Dis
overyand Data Mining, pages 6�8, 2001.[37℄ David Wagner. Resilient aggregation in sensor networks. In SASN '04: Pro
eedings ofthe 2nd ACM workshop on Se
urity of ad ho
 and sensor networks, pages 78�87, NewYork, NY, USA, 2004. ACM.[38℄ Andrew C. Yao. Proto
ols for se
ure 
omputations. In SFCS '82: Pro
eedings ofthe 23rd Annual Symposium on Foundations of Computer S
ien
e, pages 160�164,Washington, DC, USA, 1982. IEEE Computer So
iety.





Appendix A

Comparison Sequence Generators

A.1 Python script for odd-even merge sort sequence generatorimport sysimport mathdef mergesort(idxs, depth):logsize = int(math.log(len(idxs)) / math.log(2))assert 2**logsize == len(idxs)if depth > logsize and len(idxs) > 2:return mergesort(idxs[:len(idxs)/2℄, depth - logsize) +mergesort(idxs[len(idxs)/2:℄, depth - logsize)else:return oddevenmerge(idxs, depth)def oddevenmerge(idxs, depth):if len(idxs) <= 1:return [℄if depth == 1:if len(idxs) == 2:return [(idxs[0℄, idxs[1℄)℄return [ (idxs[i℄, idxs[i+1℄) for i in xrange(1, len(idxs) - 2, 2)℄else:return oddevenmerge(idxs[::2℄, depth - 1) +oddevenmerge(idxs[1::2℄, depth - 1)def main():tosort = range(2**int(sys.argv[1℄))maxdepth = 1while mergesort(tosort, maxdepth):maxdepth += 1maxdepth -= 1for i in xrange(maxdepth, 0, -1):print mergesort(tosort, i)if __name__ == '__main__':main() 53



54 APPENDIX A. COMPARISON SEQUENCE GENERATORS
A.2 Python script for modified odd-even merge sorting network

sequence generatorimport sysimport mathdef oddevenmerge(idxs, depth):if len(idxs) <= 1:return [℄if depth <= 2:return [ (idxs[i℄, idxs[i+1℄) for i in xrange(depth - 1, len(idxs) - 1, 2)℄else:return oddevenmerge(idxs[::2℄, depth - 2) +oddevenmerge(idxs[1::2℄, depth - 2)def main():tosort = range(2**int(sys.argv[1℄))maxdepth = 1while oddevenmerge(tosort, maxdepth):maxdepth += 1maxdepth -= 1for i in xrange(maxdepth, 0, -1):print oddevenmerge(tosort, i)if __name__ == '__main__':main()



Appendix B

Python Script for LOCI schemefrom numpy import *def outmean(n,np,l):lh = abs(np-mean(n))rh = l*std(n)s = 0if lh>rh: s = 1return sdef mad(n):m = zeros(len(n))m[0:len(n)℄ = median(n)m = abs(m - n)return median(m)def outmedian(n,np,l):lh = abs(np-median(n))rh = l*mad(n)s = 0if lh>rh: s = 1return sdef distan
e(v):d = zeros((len(v),len(v)),dtype=int)for i in range(len(v)):d[i℄[0:len(v)℄ = abs(v[i℄-v)return ddef flag_out(d,ind,k,a):n = [℄temp = sort(d[ind℄)kd = temp[k-1℄kad = kd*anp = float(len(array([where(d[ind℄<=kad)℄).ravel()))knn = array(where(d[ind℄<=kd)).ravel()for i in range(len(knn)):n.append(len(array(where(d[knn[i℄℄<=kad)).ravel()))n = array(n)lmean1=sqrt(2*log10(len(temp)))lmean2 = 3 55



56 APPENDIX B. PYTHON SCRIPT FOR LOCI SCHEMElmedian = 5.2s1=outmean(n,np,lmean1)s2=outmedian(n,np,lmedian)return s1,s2f = open("data.txt","r")ip=[℄origval=[℄for line in f:line = line.strip()line = line.split(",")ip.append(line[0℄)origval.append(float(line[1℄))val = sort(array(origval))N = len(val)O = 7a=0.25d=distan
e(val)s_mean = zeros(N)s_median = zeros(N)k = int(
eil(N*0.85))outval = [℄for k in range(27):for i in range(N):s_mean[i℄,s_median[i℄ = flag_out(d,i,k,a)if(s_median[i℄==1):outval.append(val[i℄)outval = unique(outval)outliers=[℄for i in range(len(outval)):ind=array(where(origval==outval[i℄)).ravel()for i in range(len(ind)):outliers.append(ip[ind[i℄℄)for i in outliers:mean_fpr = sum(s_mean[0:N-(O+1)℄)/(N-O)*100mean_tpr = sum(s_mean[N-O:N℄)/O*100median_fpr = sum(s_median[0:N-(O+1)℄)/(N-O)*100median_tpr = sum(s_median[N-O:N℄)/O*100print "K: ",k," MEAN TPR: ",mean_tpr,", MEAN FPR:",mean_fprprint "K: ",k," MED TPR: ",median_tpr,", MED FPR: ",median_fpr



Appendix C

Privacy Preserving Algorithms

C.1 SecreC code for ’oblivious aggregation algorithm’private int[℄[℄ aggregate (private int[℄[℄ d){publi
 int len; len = ve
Length(d); len = len/3;private int IP1; private int IP2;private int 
nt1; private int 
nt2;private int f1; private int f2;private bool 
omp; private int 
; private int inv
;publi
 int i;publi
 int j;publi
 int pub;for(j=0;j<len;j=j+1){for(i=0;i<len-1;i=i+1){IP1 = d[0℄[i℄;IP2 = d[0℄[i+1℄;
nt1 = d[1℄[i℄;
nt2 = d[1℄[i+1℄;f1 = d[2℄[i℄;f2 = d[2℄[i+1℄;
omp = (IP1==IP2);
 = boolToInt(
omp);inv
 = 1 - 
;d[1℄[i℄ = (
nt1+
nt2)*
 + 
nt1*inv
;d[1℄[i+1℄ = (
nt2-
nt2)*
 + 
nt2*inv
;d[2℄[i℄ = (f1+f2)*
 + f1*inv
;d[2℄[i+1℄ =(f2-f2)*
 + f2*(1-
);}}return d;}
C.2 SecreC code for ’vectorized oblivious aggregation algorithm’// Shaping the aggregation by eliminating dupli
ate entries 
reated in aggregate fun
tion57



58 APPENDIX C. PRIVACY PRESERVING ALGORITHMSprivate int[℄ shaping (private int[℄ d, private int[℄ 
, publi
 int ind){publi
 int len; len = ve
Length(d);private int[len℄ tmp;tmp = d*
;d[ind℄ = ve
Sum(tmp);tmp[ind℄ = 0;d = d - tmp;return d;}// Aggregate the 
ounts and frequen
ies whose IPs are equalprivate int[℄[℄ aggregate (private int[℄[℄ d){publi
 int len; len = ve
Length(d); len = len/3;private int[len℄ d0; d0 = d[0℄[*℄; private int[len℄ d1; d1 = d[1℄[*℄;private int[len℄ d2; d2 = d[2℄[*℄;private int[len℄ seed; private bool[len℄ 
omp; private int[len℄ 
; publi
 int i;for(i=0;i<len;i=i+1) {seed=d0[i℄;
omp = (d0==seed);
 = boolToInt(
omp);d1 = shaping(d1, 
, i);d2 = shaping(d2, 
, i);}d[1℄[*℄ = d1;d[2℄[*℄ = d2;return d;}
C.3 SecreC code for ’oblivious bubble sorting network’private int[℄[℄ sorting (private int[℄[℄ d){publi
 int len; len = ve
Length(d); len = len/3;private int IP1; private int IP2;private int 
nt1; private int 
nt2;private int f1; private int f2;private bool 
omp; private int 
; private int inv
;publi
 int i; publi
 int j;for(i=len-1;i>=1;i=i-1) {for(j=0;j<i;j=j+1) {IP1 = d[0℄[j℄; IP2 = d[0℄[j+1℄;
nt1 = d[1℄[j℄; 
nt2 = d[1℄[j+1℄;f1 = d[2℄[j℄; f2 = d[2℄[j+1℄;
omp = (f1>=f2);
 = boolToInt(
omp);inv
 = 1 - 
;d[0℄[j℄ = IP2*
 + IP1*inv
;d[0℄[j+1℄ = IP1*
 + IP2*inv
;d[1℄[j℄ = 
nt2*
 + 
nt1*inv
;



C.4. SECREC CODE FOR 'VECTORIZED OBLIVIOUS ODD-EVEN TRANSPOSITIONSORTING NETWORK' 59d[1℄[j+1℄ = 
nt1*
 + 
nt2*inv
;d[2℄[j℄ = f2*
 + f1*inv
;d[2℄[j+1℄ = f1*
 + f2*inv
;}} return d;}private int[℄[℄ sorting (private int[℄[℄ d){publi
 int len; len = ve
Length(d); len = len/3;private int IP1; private int IP2;private int 
nt1; private int 
nt2;private int f1; private int f2;private bool 
omp; private int 
; private int inv
;publi
 int i; publi
 int j;for(i=len-1;i>=1;i=i-1) {for(j=0;j<i;j=j+1) {IP1 = d[0℄[j℄; IP2 = d[0℄[j+1℄;
nt1 = d[1℄[j℄; 
nt2 = d[1℄[j+1℄;f1 = d[2℄[j℄; f2 = d[2℄[j+1℄;
omp = (f1>=f2);
 = boolToInt(
omp);inv
 = 1 - 
;d[0℄[j℄ = IP2*
 + IP1*inv
;d[0℄[j+1℄ = IP1*
 + IP2*inv
;d[1℄[j℄ = 
nt2*
 + 
nt1*inv
;d[1℄[j+1℄ = 
nt1*
 + 
nt2*inv
;d[2℄[j℄ = f2*
 + f1*inv
;d[2℄[j+1℄ = f1*
 + f2*inv
;}} return d;}
C.4 SecreC code for ’vectorized oblivious odd-even transposition

sorting network’//One sorting round a

ording to the frequen
yprivate int[℄[℄ sort_round(private int[℄[℄ d){publi
 int len; len = ve
Length(d); len = len/3;private int[len℄ IP; IP = d[0℄[*℄;private int[len℄ 
nt; 
nt = d[1℄[*℄;private int[len℄ freq; freq = d[2℄[*℄;private int[len℄ otherIP; private int[len℄ other
nt; private int[len℄ otherfreq;private bool[len℄ 
omp; private int[len℄ 
;private int[len℄ temp; temp = 1; publi
 int i;for(i=0;i<len;i=i+2){otherIP[i℄ = IP[i+1℄; otherIP[i+1℄ = IP[i℄;other
nt[i℄ = 
nt[i+1℄; other
nt[i+1℄ = 
nt[i℄;otherfreq[i℄ = freq[i+1℄; otherfreq[i+1℄ = freq[i℄;



60 APPENDIX C. PRIVACY PRESERVING ALGORITHMS}
omp = (freq>=otherfreq);for(i=0;i<len;i=i+2){
omp[i+1℄ = 
omp[i℄;}
 = boolToInt(
omp);IP = (temp-
)*IP+
*otherIP;
nt = (temp-
)*
nt+
*other
nt;freq = (temp-
)*freq+
*otherfreq;d[0℄[*℄ = IP; d[1℄[*℄ = 
nt; d[2℄[*℄ = freq;return d;}//sorting a ve
torprivate int[℄[℄ sorting (private int[℄[℄ d){publi
 int len; len = ve
Length(d); len = len/3;publi
 int i; publi
 int j; publi
 int k; k = len-2;private int[3℄[len-2℄ d_next; d_next = 0;for(i=0;i<len/3;i=i+1){d = sort_round(d);for(j=0;j<k;j=j+1){d_next[0℄[j℄ = d[0℄[j+1℄; d_next[1℄[j℄ = d[1℄[j+1℄; d_next[2℄[j℄ = d[2℄[j+1℄;}d_next = sort_round(d_next);for(j=0;j<k;j=j+1){d[0℄[j+1℄ = d_next[0℄[j℄; d[1℄[j+1℄ = d_next[1℄[j℄;d[2℄[j+1℄ = d_next[2℄[j℄;}}return d;}
C.5 SecreC code for ’vectorized oblivious odd-even merge sorting

network’Comments: This is a python based 
ode generator that generates the Se
reC 
ode foroblivious sorting, based on the 
omparison sequen
e generated by the odd-even merge sort-ing network sequen
e geneator (Appendix A.1).from numpy import *import sysf = open("newfile",'r')rounds=0num = pow(2,int(sys.argv[1℄))for s in f: rounds = rounds+1f.
lose()sn = zeros((rounds, num),'i')



C.5. SECREC CODE FOR 'VECTORIZED OBLIVIOUS ODD-EVEN MERGE SORTINGNETWORK' 61for i in range(rounds):for j in range(num):sn[i℄[j℄ = 32768f = open("newfile",'r')i=0for s in f:s = s.strip()s = s.strip('[')s = s.strip('℄')s = s.repla
e('(','')s = s.repla
e(')','')s = s.strip(' ')s = s.split(',')n = len(s)for j in range(0,n,2):sn[i℄[int(s[j℄)℄=int(s[j+1℄)sn[i℄[int(s[j+1℄)℄=int(s[j℄)i = i+1# start sharemind 
onversionprint "void main(){"print "publi
 int num;"print "num = "+str(rounds)+";"print "dbLoad(\"IPTables\");"print "publi
 int rows;"print "rows = dbRowCount(\"IPTables\");"print "private int[rows℄ IP;"print "IP= dbGetColumn (\"IP\", \"IPTables\");"print "private int[rows℄ 
nt;"print "
nt= dbGetColumn (\"CNT\", \"IPTables\");"print "private int[rows℄ freq;"print "freq= dbGetColumn (\"FREQ\", \"IPTables\");"print "private bool[rows℄ 
omp;"print "private int[rows℄ 
;"print "private int[rows℄ temp;"print "temp = 1;"print "private int[rows℄ otherIP;"print "private int[rows℄ otherCnt;"print "private int[rows℄ otherFreq;"print "private int[rows℄ tmpCnt;"print "private int[rows℄ tmpFreq;"print "private int[rows℄ seed;"print "private int[rows℄ th;"print "private int z;"print "th = 0;"print "publi
 int i;"print "publi
 int k;"print "publi
 int[num℄[rows℄ sn;"print "publi
 int[rows℄ pub;"



62 APPENDIX C. PRIVACY PRESERVING ALGORITHMSprint "publi
 int tmp;"for i in range(i):for j in range(num):print 'sn['+str(i)+'℄['+str(j)+'℄='+str(sn[i℄[j℄)+';'print "for(k=0;k<num;k=k+1){"print "for(i=0;i<rows;i=i+1){"print "tmp = sn[k℄[i℄;"print "if(tmp!=32768){"print "otherIP[i℄ = IP[tmp℄;"print "otherFreq[i℄ = freq[tmp℄;"print "}"print "else{"print "otherIP[i℄ = IP[i℄;"print "otherCnt[i℄ = 
nt[i℄;"print "otherFreq[i℄ = freq[i℄;"print "}"print "}"print "
omp = (freq>=otherFreq);"print "for(i=0;i<rows;i=i+1){"print "tmp = sn[k℄[i℄;"print "if(tmp!=32768){"print "
omp[tmp℄ = 
omp[i℄;"print "}"print "}"print "
 = boolToInt(
omp);"print "IP = 
*IP+(temp-
)*otherIP;"print "freq = 
*freq+(temp-
)*otherCnt;"print "freq = 
*freq+(temp-
)*otherFreq;"print "}"print "pub = de
lassify(
nt);"print "publish(\"Result\",pub);"print "}"
C.6 Secure Set Reduction Operation//redu
e the ve
tor if frequen
y is zero (important for set union and interse
tion)private int[℄[℄ redu
e(private int[℄[℄ d){publi
 int len; len = ve
Length(d); len = len/3;private int[len℄ IP; IP = d[0℄[*℄;private int[len℄ 
nt; 
nt = d[1℄[*℄;private int[len℄ f; f = d[2℄[*℄;private int[len℄ zeros; zeros = 0;private bool[len℄ 
ompzero;private int s; publi
 int z; publi
 int i; publi
 int ind; publi
 int[len℄ pub;
ompzero = (f==zeros); s = ve
Sum(
ompzero); z = de
lassify(s);for (i=0;i<z;i=i+1) {ve
Remove(IP,0);



C.6. SECURE SET REDUCTION OPERATION 63ve
Remove(
nt,0);ve
Remove(f,0);}publi
 int rows; rows = len - z;private int[3℄[rows℄ e;e[0℄[*℄ = IP;e[1℄[*℄ = 
nt;e[2℄[*℄ = f;return e;}


