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1 Introduction

1.1 Problem Statement

Nowadays, as a result of rapid decreasing of the price of storage devices, peoples prefer to
store their information digitally in databases. Those databases, which contain the personal,
medical and financial information of the data donors, are classified as sensitive. Only
authorized organizations have the right to process the sensitive data.

However, the extensive implementation of online information systems not only make
the use of data more convenient, but also provide an easier way to abuse the data. Hence,
a lot of research organizations try to devise their methods for processing the sensitive data
without compromising the privacy of individuals. In the last two decades, a lot of proto-
cols meeting this requirement have been proposed. Consequently, how to persuade other
persons that these protocols really keep the individuals’ privacy becomes a new problem.
In other words, they need to provide a method to prove the security of protocols.

In this thesis, we address the proof method on a specific infrastructure proposed by Dan
Bogdanov. In his master thesis [4], he considers protectingsensitive data as a multiparty
computation task. He also proposes several secret shared protocols for computing with
the data without leaking the privacy of any person under the assumption that only few
participants can be corrupted. Our goal is to devise a method, which can automatically
prove that in all secret shared protocols no party can figure out other parties’ secrets.

1.2 General Solutions

To give an impression of how to prove the soundness of a method, we will discuss two pos-
sible solutions. Suppose the method is written in a form as a protocol. For the multiparty
computation tasks, the protocols depict which parties participate in the computation and
what should they do. We want to give a persuasive proof of the security of these protocols.

Solution One: Informal proof. Let us denote the parties that can be corrupted by the
adversary at the same instance of running the protocol as corrupted set. In this solution,
we prove the security of a protocol by collecting all the messages generated and received
by parties in the corrupted set, then manually check if thoseparties working together can
somehow figure out the secrets they should not known. The proof result is presented in
human languages, which indicates whether those messages can compromise some secrets.
However, although the proof can be easily understood, it is not very convincing.

Solution Two: Formal proof. This solution is based on a theory that if for any ad-
versary that the output distribution of the protocol and theoutput distribution of an ideal
functionality are indistinguishable from each other, thenthe protocol is secure. We prove
the security of the protocol by stating that there exists a simulator which can translate any
message exchanging between the corrupted parties and the ideal functionality in such a
way that the corrupted parties can not tell if they are using the protocol or the ideal func-
tionality.

In this thesis, we build an implementation to prove the security of secret shared proto-
cols based on the second solution.
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1.3 Outline of the Thesis

In this thesis, we describes the concepts used in designing the secret shared protocols and
the theories used in designing our implementation. The content of this thesis is as follows:

• Chapter 2 introduces the notion related to multiparty computation. It contains the
basic definitions and the overview of the accomplishments inthis area. The basic
idea of how to prove the security of a protocol is also mentioned in this chapter as a
preliminary to the following chapters.

• Chapter 3 includes the secret sharing schemes. Besides the basic concepts of secret
sharing, we also introduce different secret sharing schemes and how to do computa-
tion on Shamir’s shares.

• Chapter 4 shows the infrastructure of Dan Bagdanov’s implementations and the pro-
tocols proposed by him. The informal proofs of the security of those protocols are
also presented here.

• Chapter 5 includes the basic theory of our method for proving. We introduce the
theory of universal composition and shows how to prove the security of a protocol
by constructing a simulator.

• Chapter 6 presents our implementation AutoProver, which can automatically gener-
ate the simulation result. In this chapter, we show the infrastructure of AutoProver,
and make a detailed introduction of each component of the program.

• Appendix A contains the introduction of how to use the AutoProver program.
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2 Secure Multiparty Computation

Suppose Alice and Bob are two millionaires, and they want to know who is richer. Clearly,
they could just decide to announce to each other how much money do they have, and both
of them could determine who is the richer one. However, revealing one’s net worth to the
other party means losing one’s face if the other party is muchricher.

In that case, what they need is a method allowing them to figureout who is richer in
such a way that both of them get no clue about the other party’snet worth. Sometimes,
they may even want to carry out this method over a distance.

In this section we will discuss such a method in detail. Section 2.1 contains the defini-
tions related to the multiparty computation. Section 2.2 discusses two-party computation
as a preliminary. The Real vs. Ideal world approach of evaluating secure multiparty com-
putation is presented in section 2.3. The detailed discussion of multiparty computation is
presented in section 2.4.

2.1 Definition

Assume there aren partiesP1, . . . , Pn work together to compute a multivariable function
F (x1, . . ., xn) = (y1, . . . , yn).

Definition 2.1. Secure Multiparty Computation is a protocol to evaluate function F in
such a way that both the maximum privacy of the inputs is preserved and the correctness
of the outputs is guaranteed.

In other words, except for the values of inputxi and outputyi, each partyPi can get
no more information.

In that case, we can model the two millionaires’ example as follows. Let Alice’s net
worth bex1 and Bob’s net worth bex2. According to the example, the functionF here is
a greater than function, which outputs the result of comparison without leaking any clue
about the values been compared. Several solutions have beenproposed by Yao [22].

Following the lines of [5, 10, 6, 8], in order to define what is the security of multiparty
computation, we must define an adversary first. An adversary is a malicious entity, whose
aim is to prevent the users from achieving their goals. An adversary may corrupt a set of
parties. Once a party is corrupted, the adversary gets all data held by the party, such as all
the messages the party has sent or received so far.

The adversaries can be distinguished as passive or active.Passive adversaries(also
called eavesdropping adversaries) gather information without modifying the behaviors of
the parties. Usually, they attack after the execution of a protocol has completed. However,
active adversariesdo not only read the messages, but also can modify the messages of
corrupted parties. The other distinction is between staticand dynamic adversaries.Static
adversaries(also called nonadaptive adversaries) control an arbitrary but fixed set of cor-
rupted parties.Dynamic Adversaries(also called adaptive adversaries) can choose which
party to corrupt during the execution of the protocol, basedon the information gathered so
far. Both passive and active adversaries can be static or dynamic.
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In order to let the parties collaborate on computing, the model of communication must
be taken into account. There are two basic models of communication. The first one is
cryptographic model. In this model, the adversary is able to read all messages sent between
all parties, and modify messages exchanged between the corrupted parties. No message
transmitted between honest parties can be modified by the adversary. The second one
is information-theoretic model. In this model, parties communicate with each other over
pairwise secure channels, which means the adversary can notget access to any message
exchanged between honest parties. Hence, unlike the cryptographic model whose security
can only be guaranteed in cryptographic sense, the second model is much stronger. Even an
adversary with unbounded computing power can not read the messages exchanged between
honest parties in the information-theoretic model.

However, if an adversary corrupts all parties, no protocol can be secure. Therefore, we
need to specify the limitation on the subsets that can be corrupted by adversaries, which
is denoted asthreshold adversary structure. Suppose the protocol is secure while no more
thant parties are corrupted and the set of all parties is denoted asP .

Definition 2.2. The threshold adversary structureα is a set of all subsets ofP , where
α = {R ⊆ P : |R| < t}, andR denotes the subset ofP .

The adversary may corrupt any one set of parties in the threshold adversary structure.
If the adversary can corrupt a set of partiesC, it can also corrupt all subsets ofC.

2.2 Two-Party Computation

In two-party computation, there is no need to take extra security considerations such as
collusion of parties into account. Hence secure two-party computation is considered as
a simple scenario in secure multiparty computation. In thissection, we will briefly talk
about the primitives, the security of two-party computation and Yao’s circuit evaluation as
the preliminary of the next subsection. For further discussions on two-party computation
please refer to papers [10, 16, 22].

2.2.1 Security Goal

According to the two millionaires’ example as we mentioned above, which is a typical
two-party computation scenario, secure two-party computation should meet the following
requirements:

1. Correctness: all parties should get the correct end results.

2. Privacy: each party learns nothing more than his input and what is implied by the
result.

3. Fairness: each party can get a result.

The first two requirements are compulsory, but in some systems such as the blind signature
scheme introduced in article [11], the requirement of fairness is not met.
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In order to achieve the correctness of the results, both of the parties should besemi-
honest, they follow the protocol but each of them tries to figure out the private value of the
other party.

2.2.2 Important Primitives

Usually secure two-party computation uses oblivious transfer, commitment schemes and
some other computationally expensive primitives. In the following, we make a brief intro-
duction of the first two primitives, both of them are based on the assumption that trapdoor
one-way functions exist.

A trapdoor one-way function is a function that is easy to compute, but difficult to find
its inverse without knowing a special information, called the "trapdoor". In other words,
in a trapdoor one-way functionf(x), when the value ofx is randomly chosen, the result
of f(x) can be computed in polynomial time. However, no probabilistic polynomial-time
algorithm can compute the preimage off(x) with a non-negligible probability, unless it
knows the "trapdoor".

Oblivious Transfer is a protocol by which a sender sends some information to a re-
ceiver, but remains oblivious about what is received. As a preliminary, we just talk about
the general process of "One Out of Two Oblivious Transfer" inthis thesis.

Suppose there are a senderS and a receiverR. S holds two secret inputss0 and
s1, andR holds a secret selection bitsr. After a number of exchanges of information
betweenS andR, R gets the secret inputssr at the end of the protocol without knowing
any information about the other secret inputs1−sr. On the other hand,S can not figure
out the value of the selection bitsr held byR. Hence, both the privacy of the sender and
receiver are guaranteed.

This process can be visualized asS puts two secret values into two boxes, each box
contains one value, thenS locks the boxes and passes them toR. R just has a key which
can open one of the boxes, he opens one box and gets the value.

In order to have a better understanding of what oblivious transfer is, we take the proto-
col proposed by Even, Goldreich, and Lempel [13] as an example. It is a general1-out-of-2
oblivious transfer protocol which can be instantiated withany public key algorithm as fol-
lows:

1. AssumeM is the message space. By using the public key algorithm,S generates a
public keypk and a secret keysk. ThenS randomly chooses two messagesx0 and
x1, wherex0, x1 ∈ M. After that,pk, x0 andx1 are sent toR.

2. R randomly generates a messagek ∈ M, and letc = Encpk(k). q = c + xb is
computed byR and sent toS, whereq ∈ M.

3. S computesk0 = Decsk(q − x0) andk1 = Decsk(q − x1), and sendss0 + k0 and
s1 + k1 to R. Note that all messages computed and sent are in the message space
M.

4. AsR knowskb, he can subtractkb from sb + kb sent byS to obtain the secretsb.
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Commitment Schemeis a method that allows a user to commit to a secret value while
preserving the user’s ability to reveal the committed valuelater.

The senderS sends an encrypted value to a receiverR. S may send the decryption key
to R after several message exchanges to reveal its secret. Hence, before the revealing,R
can not figure out what the secret is, andS can not change the encrypted value that has
already been sent toR.

This scheme can be imagined as follows:S puts a value in a locked box, and gives the
box toR. The values in the box is a secret, asR can not open the box. On the other hand,
becauseR obtains the box,S can not change the value in the box any more. WhenS wants
to show that he really puts in the box,S just needs to send the key of the box toR, thenR

can check the value by opening the box.
We take the bit commitment scheme proposed by Moni Naor [18] as an example. As-

sume that there is a cryptographically secure pseudo-random number generatorG, which
generates a3n-bit number from an bits input. Following the protocol, the senderS com-
mits to a bitb as follows:

1. Commitment:R selects a3n bit random numberr and sendsr to the receiverS.
ThenS generates an bit numberx and computesy = G(x). If b = 1, S sendsy to
R, otherwiseS sendsr ⊕ y to R.

2. Reveal: To reveal the secret,S sendsx to R, thenR computesG(x) and compares
the result with what he received fromS to get the value ofb.

2.2.3 Circuit Evaluation

Yehuda Lindell and Benny Pinkas [17] have given a detailed description and a sound proof
of Yao’s two-party computation protocol [22] in their work.Following their lines, in this
section, we will present Yao’s garbled circuit and show Yao’s general protocol in details.

Assume there are two parties, Alice and Bob. Alice’s input isxA, and Bob’s input
is xB, wherexA ∈ {0, 1}nA and xB ∈ {0, 1}nB . They want to get the result of the
computation on these two inputs, without leaking their inputs to the other party. Hence
Alice (or Bob) constructs a garbled circuitC, which evaluates the functionf : {0, 1}nA ×
{0, 1}nB → {0, 1}n.

There are three kinds of gates inC: input gate, internal gate and output gate. Each gate
has two input wires and an output wire. The values of input gates are the bits ofxA andxB .
The internal gates, which are determined by the function they compute, take inputs from
other two gates. The output value of an output gate is its input, and its output wires can not
be used as input wires of any other gates. In a word, a garbled circuit C is composed by a
number of garbled gates.

As C is a boolean circuit, what each internal gateg needs to compute is a function
fg : {0, 1} × {0, 1} → {0, 1}. Assumeg takes inputs from wiresw1 andw2, and delivers
output to the wirew3. In order to keep the privacy of data, two random valuesk0

wi
andk1

wi

are specified for each wirewi as the keys. They are generated in such a way that even if
one party knows the valuekb

wi
, whereb ∈ {0, 1}, he can not figure out ifb = 0 or b = 1.
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Assumeg gets two inputskα
1 and k

β
2 . What g wants to compute iskfg(α,β)

3 , while

hiding other three valueskfg(1−α,β)
3 , k

fg(α,1−β)
3 and k

fg(1−α,1−β)
3 . As a result of that,

we need to implement a special private key encryption scheme(G,E,D), in which the
distribution ranges of the plaintext encrypted by different keys are different and the ranges
of corresponding cyphertexts are elusive from each other, and the ciphertext can only be
correctly decrypted by the correct key, otherwise the output will be ⊥. Therefore, we use
the four possible inputsk0

1 , k1
1 , k0

2, k1
2 as encryption keys and build a garbled computation

table as Table 1:

Input Wirew1 Input Wirew2 Output Wirew3 Garbled Computation

k0
1 k0

2 k
fg(0,0)
3 Ek0

1

(Ek0

2

(k
fg(0,0)
3 ))

k0
1 k1

2 k
fg(0,1)
3 Ek0

1

(Ek1

2

(k
fg(0,1)
3 ))

k1
1 k0

2 k
fg(1,0)
3 Ek1

1

(Ek0

2

(k
fg(1,0)
3 ))

k1
1 k1

2 k
fg(1,1)
3 Ek1

1

(Ek1

2

(k
fg(1,1)
3 ))

Table 1: Garbled Computation Table

According to the table, the outputk
fg(α,β)
3 of gateg is computed as follows: for each

possible garbled computation value in the fourth column of Table 1, compute

D
kβ
2

(Dkα
1
(Eki

1

(E
kj
2

(k
fg(i,j)
3 )))), wherei, j ∈ {0, 1}. If less than three decryptions return

⊥, then abort the output. Otherwise, the decrypted non-⊥ value is the value ofkfg(α,β)
3 .

As mentioned above, a garbled circuit is composed from a number of garbled gates.
Hence,C is constructed according to the following rules:

1. AsC is constructed to evaluate the functionf : {0, 1}nA × {0, 1}nB → {0, 1}n, it
containsnA + nB input gates andn output gates.

2. There arem wires inC, which are in charge of transferring the data between gates.
The rule of labeling wires is that the output wires of the samegate are using the same
label. The wires of the same label hold the same pair of keys, and all keys are chosen
independently on the others.

3. The outputs of input gates and internal gates can be the inputs to an arbitrary number
of other gates. However, the outputs of output gates can not be used as inputs.

4. A garbled computation table is built for each gate, and theoutput tables which depict
how to decrypt the circuit outputs are created.

In a word, the entire garbled circuitC of function f consists of garbled gates, a garbled
computation table for each gate and the output tables.

Now let us have a look at Yao’s general two party computation protocol, which imple-
ments the garbled circuit to compute the functionf and uses oblivious transfer to keep the
privacy of the input data. The protocol is as follows:
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1. Alice constructs a garbled circuitC, which evaluates the functionf : {0, 1}nA ×
{0, 1}nB → {0, 1}n as described above, and sendsC to Bob.

2. Set the output wires of Alice’s input gates be denoted asw1, . . . , wnA
, which corre-

spond to Alice’s input bitsxA1
, . . . , xAnA

. Alice sends Bob the keysk
xA1

1 , . . . , k
xAnA
nA

.

3. Let the output wires of Bob’s input gates bewnA+1, . . . , wnA+nB
. Alice and Bob

execute a 1-out-2 oblivious transfer protocol to obliviously transfer the keyskbi

n+i to
Bob, wherebi is theith bit of Bob’s input.

4. After Bob receives the garbled circuitC and thenA + nB keys, he computes the
circuit and gets the resultf(xA, xB). After that, Bob sendsf(xA, xB) to Alice, then
both of them output the result.

2.3 Approach of Evaluating Security

Great effort has been put into formulating definitions that can adequately express the intu-
itive notion of the security of multiparty computation in different adversary models. The
basic idea underlying all these efforts is to guarantee thatthe computational distance be-
tween running a secure protocol and carrying out an idealized computational process where
security is guaranteed is negligible.

Beaver [1] introduced the following methodology for defining secure multiparty com-
putation. First, an ideal model is formulated. In this model, the evaluation of a multiparty
function is perfectly secure. Second, we execute a secure protocolπ for evaluating some
functions of parties’ inputs in the real-life setting, under the requirement that it is "equiva-
lent" to evaluating the function in the ideal model. In otherwords, an ideal world specifies
the required behavior of a protocol and rules out unwanted ones, while the real world is
where protocols and attacks are executed on. When the protocol π is secure, its output is
indistinguishable from the output of the ideal world.

Based on the work of Cramer and Damgård [11], in the followingpart of this section,
we will introduceThe Ideal vs. Real World Approach in detail.

As shown in Figure 1, we assume that there is an incorruptibleparty calledIdeal Func-
tionality F in the ideal world structure. There is no communication between the parties,
instead they hand their inputs toF , who computes the desired outputs and hands them
back. AsF is incorruptible, it always correctly executes the required commands in such a
way that except for what is supposed to be sent to the party, nomore information is leaked.
F contains the following interfaces: an input and an output port for each party, and the
input and output ports for communicating with the adversary. On the right part of Figure
1 is the structure of the real world. In the real world, all parties directly communicate with
each other.

In both ideal world and real world, the adversary controls a set of corrupted parties.
It only learns (passive adversary) and perhaps modifies (active adversary) the inputs and
outputs of corrupted parties. In the ideal world, the adversary exchanges messages with
ideal functionalityF on behalf of corrupted parties through corrupted input and output
ports. In the real world, except for the ports for communicating with other parties, each
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Figure 1: Structure of Ideal and Real world

party has corrupted input and output ports to exchange information with the adversary. We
suppose the corrupted parties still follow the protocol, noparty may abort the protocol
before completing the computation.

Each round in the ideal world follows the following rules:

1. Input: Each party initializes its inputs. The corrupted parties send their inputs to the
adversary.F reads input of uncorrupted partyPi from portIi. F gets the inputs of
corrupted parties through portIA.

2. Compute: F does the computation on inputs and get the outputs.

3. Output: F sends output to each uncorrupted partyPi on portOi, the outputs of
corrupted parties are sent on portOA.

Each round in real world follows the following rules:

1. Input: According to the protocol, all parties send messages to the parties they should
send to.

2. Compute: Each party locally does computation on its inputs and gets the outputs.

3. Output: Each party sends the output to other parties according to theprotocol. The
corrupted parties send their inputs, outputs and received messages to the adversary.

We say that a protocolπ is perfectly secureif for any adversary attackingπ in the real
world, there is an adversary in ideal world that can induce the same output distribution in
the ideal world as the output distribution of the real world.In other words, the protocolπ is
perfectly secure if using the protocol and using the ideal functionality are indistinguishable
to the real world adversary. How to simulate this process will be discussed in section 5 in
detail.
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2.4 General Multiparty Computation

Usually an-party computation, wheren is larger than two, is an extension of two-party
computation. However, under the condition ofn parties computing together, more security
considerations such as collusion of parties should be takeninto account. The problem
of secure multiparty computation takes different forms according to the difference of the
power of adversaries, the underlying network, the amount ofdistrust the parties have in
each other and in the network.

In the past few decades, a lot of works on multi-party computation in various security
models have been done. A breakthrough was achieved by Ben-Or, Goldwasser, Wigderson
[2] and Chaum, Crepeau, Damgård [8] independently in late 1980s. They demonstrated
that there exists a protocol that evaluates a functionf with perfect security while less than
a third of the total number of parties are corrupted. More specifically, the protocol can
tolerate a malicious subset of sizen

2 with an adaptive and passive adversary, and tolerate a
malicious subset of sizen3 with an adaptive and active adversary. A year later, Rabin and
Ben-Or [20] proved that in the presence of authenticated broadcast channels, statistical
security of any function is guaranteed while less thann

2 partes are corrupted by active
adversaries.

In the following part, we will discuss the multiparty computation protocols in semi-
honest nonadaptive adversary case and semi-honest adaptive adversary case separately.
The definition of these protocols follows the Ideal vs. Real world approach as we men-
tioned above. For Further reading on the composition of multiparty computation protocols
please refer to papers [6, 5].

2.4.1 Nonadaptive Case

In this section, we define the semi-honest nonadaptive adversary case in the Ideal vs. Real
world approach presented in section 2.3. We first describe the power of ideal adversary and
the ideal process. After that, we present the real world adversary and real world model.

The goal of Ideal vs. Real world approach is to let the protocol and ideal functionality
be indistinguishable in the entire environment. The environment contains not only the
adversary, but also other objects such as the system that implements the protocol. Hence,
we also need to consider auxiliary input from the environment.

Ideal Adversary V is a computationally unbounded machine, which controls thebe-
havior of corrupted parties. As a nonadaptive adversary, suppose thatV has already cor-
rupted less thant parties (t < n

2 ), and it can not corrupt more parties since the protocol
is executed. OnceV corrupts a party, it gets the party’s input, output and all messages
sent and received by that party. A corrupted party stays being corrupted until the end of
the protocol. As a semi-honest adversary,V represents the corrupted parties to follow the
protocol while wondering about what the secret is.V can not modify any messages.

In The ideal processof semi-honest nonadaptive case, similar to what we mentioned
in section 2.3, there is an incorruptible third partyT which implements the ideal function-
ality F as defined in section 2.1. The trusted third party is in chargeof computation and
communication with parties and the adversary. The ideal process is as follows:
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1. Input: Each partyPi gets its private dataSi. Note that the private data can be se-
crets generated byPi itself, or shares computed from secrets by using secret sharing
schemes introduced in section 3. The adversaryV sees all the inputs of corrupted
parties, but it can not get any information about uncorrupted parties’ inputs.

2. Computation: Each party sends its input to the incorruptible third partyT . After
evaluating the function,T sends the output to corresponding parties.

3. Output: Each honest party follows the protocol and outputsyi, however the cor-
rupt parties outputyj = ⊥, meanwhile the adversary outputs some function of the
information gathered during the computation in the ideal process.

Denote the auxiliary input from the environment asz. Let ADVF,V (x1, . . . , xn, z)
denotes the output of ideal adversaryV on auxiliary inputz, while interacting with each
partyPi, whose input isSi, and the ideal functionalityF . Let IDEALF,V (x1, . . . , xn, z)
denote the output of ideal process, where

IDEALF,V (x1, . . . , xn, z) = (ADVF,V (x1, . . . , xn, z), y1, . . . , yn)

TheReal AdversaryA is similar to the ideal adversaryV . A is also a computationally
unbounded machine that controls the behavior of corrupted parties. A is an adversary,
who halts when more thant parties are corrupted. As a nonadaptive adversary,A can just
choose one subset of parties to corrupt. Once a party is corrupted, it stays as corrupted
until the end of the protocol. Besides learning all information held by corrupted parties,A

can also get auxiliary input from the environment.
Now we describeThe Real Process. The protocol we need to evaluate is denoted asπ.

In the real world, there is no trusted third party. All parties and the adversary communicate
with each other directly. The computation proceeds in rounds. In each round, the corrupted
parties send their own messages after they get and learn the messages sent by uncorrupted
parties. Each round works as follows:

1. Input: All parties generate their messages for this round according to the protocol.
Then each party follows the protocol and sends the messages to other parties. At
the end of this phase, uncorrupted parties receive all the messages that should be
addressed to them in this round. Then the corrupted parties send all messages they
hold, including the messages they generated and received, to the adversary.

2. Computation: All parties compute their output locally as required by the protocol.

3. Output: The uncorrupted parties output the results they computed inthis round. On
the other hand, the corrupted parties send their output to the adversary and output⊥.
Then the adversary outputs some arbitrary function of all the data it knows.

The whole process of real world model, which integrates all rounds, is as follows:

1. Input: Each partyPi gets its private dataSi. Note that the private data can be se-
crets generated byPi itself, or shares computed from secrets by using secret sharing
schemes introduced in section 3. The adversaryA sees all the inputs of corrupted
parties and the auxiliary inputz from the environment.
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2. Computation: Computation proceeds in rounds:

• Initialize the round number as0.

• According to the protocol, if any uncorrupted party has not finished its compu-
tation, do one round of computation as described above and increase the round
number by1

3. Output: The honest parties follow the protocol and outputyi, while the corrupt
parties outputyj = ⊥. The adversary outputs some function of the information,
which is gathered during the computation in the real world process.

Let ADVπ,A(x1, . . . , xn, z) denote the output of real adversaryA on auxiliary input
z, while interacting with each partyPi, whose input isSi, running a protocolπ. Let
REALπ,A(x1, . . . , xn, z) denote the output of real process, where

REALπ,A(x1, . . . , xn, z) = (ADVπ,A(x1, . . . , xn, z), y1, . . . , yn) .

We require that for any real world adversaryA there exists an ideal adversaryV such
that the output of real world model is computationally indistinguishable from the output of
the ideal world model. More specifically, for any auxiliary inputz, the difference between
the distribution ofREALπ,A(x1, . . . , xn, z) andIDEALF,V (x1, . . . , xn, z) are negligi-
ble.

Definition 2.3. Let us have an ideal functionalityF and a n-party protocolπ. If for any
semi-honest nonadaptive real world adversaryA, there exists a semi-honest nonadaptive
ideal world adversaryV such thatREALπ,A(x1, . . . , xn, z) andIDEALF,V (x1, . . . , xn,

z) are computationally indistinguishable, whereV ’s running time is polynomial in the run-
ning time ofA, we say that the protocolπ is perfectly secure in semi-honest nonadaptive
case.

2.4.2 Adaptive Case

In this section, we define the semi-honest adaptive adversary case using the same approach
as the one used in the nonadaptive case. As an extension of thenonadaptive case, it is more
complex. Thus more security concerns need to be considered:

1. The adversary may decide if he can get more information by corrupting one party
than corrupting other parties based on the information it handled.

2. After several rounds of computation have taken place, theadversary may have ad-
vantages of figuring out the secrets, when it sees the internal data of newly corrupted
parties.

In a word, as new parties are corrupted while proceeding withthe computation, the private
data of uncorrupted parties can not be regarded as safe.

As the adaptive case are quite similar with the nonadaptive one, in this section, we will
concentrate on their difference. For the similar notation,please refer to the former section.
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In the adaptive case, as an adaptive adversary,Ideal Adversary V can iteratively corrupt
up tot parties (t < n

2 ).
Similar to nonadaptive case, there is an uncorrectable third partyT which implements

the ideal functionalityF in the Ideal Process. The ideal process of Adaptive Case is as
follows:

1. First Corruption: Before proceeding with the computation,V gets auxiliary input
z from the environment. Based onz it decides the first subset of parties to corrupt.
The corrupting process is done iteratively according to what informationV gathered
so far. A corrupted party remains corrupted for the rest of the computation. After
repeating this process several times, the adversary gets its original set of corrupted
parties at the end of this stage.

2. Input: Each partyPi gets its private dataSi. Each private data can be secrets gener-
ated byPi itself, or shares computed from secrets by using secret sharing schemes.
The adversaryV sees all the inputs of corrupted parties, but it can not get any infor-
mation about uncorrupted parties’ inputs right now.

3. Computation: Each party sends its input to the incorruptible third partyT . After
evaluating the function,T sends the output to corresponding parties.

4. Second Corruption: After V gets computation outputs from the trusted third party,
a new iteration of corruption begins.V decides the next party to corrupt based on
the messages gathered. While a new party is corrupted,V sees new data, which
includes the party’s input, output and all exchanged messages. As required, the
number of corrupted parties can not exceedt.

5. Output: Each honest party follows the protocol and outputsyi, however each cor-
rupt party outputsyj = ⊥, meanwhile the adversary outputs some function of the
information gathered during the computation in the ideal process.

As defined in nonadaptive case, letADVF,V (x1, . . . , xn, z) denote the output of ideal
adversaryV on auxiliary inputz, while interacting with each partyPi, whose input isSi,
and then-party computation functionF . LetIDEALF,V (x1, . . . , xn, z) denote the output
of ideal process, where

IDEALF,V (x1, . . . , xn, z) = (ADVF,V (x1, . . . , xn, z), y1, . . . , yn) .

TheReal AdversaryA is an adaptive adversary, which collects auxiliary inputz from
the environment ahead. ThenA iteratively chooses the original subset of parties to cor-
rupt, the number of corrupted parties grows while executingthe protocol. Once a party is
corrupted, it stays as corrupted until the end of the protocol.

. In the real world process, the protocol we need to evaluate is denoted asπ. The
computation proceeds in rounds as follows:
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1. Input: All parties generate their messages for this round according to the protocol.
Then each party follows the protocol and sends the message toother parties. It is
required that uncorrupted parties should receive all the messages addressed to them
in this round. Then the corrupted parties send all messages they hold, which include
the messages they generated and received, to the adversaryA.

2. Computation All parties compute their output locally as required by the protocol.

3. Second Corruption: All corrupted parties send their outputs of this round to ad-
versaryA, then a new iteration of corruption begins.A decides who is the next
corrupted party based on the messages gathered so far.A can get the following
new information from the new corrupted party: the party’s input, output and all ex-
changed messages. As required, the number of corrupted parties can not exceed
t.

4. Output The uncorrupted parties output the results they computed inthis round.
Meanwhile, the corrupted parties send their outputs to the adversary and output⊥.
Finally, the adversary outputs some arbitrary function of all data it knows.

The whole process of real world model, which integrates all rounds, is as follows:

1. First Corruption: Before proceeding with the computation,A gets auxiliary inputz
from the environment. Based onz it may decide the first subset of parties to corrupt.
The corrupting process is done iteratively according to theinformationA gathered
so far. A corrupted party remains corrupted for the rest of the computation. After
repeating this process several times, the adversary gets its original set of corrupted
parties at the end of this phase.

2. Input: Each partyPi gets its private dataSi. The adversaryA sees all the inputs
of corrupted parties, but he can not get any information about uncorrupted parties’
inputs right now.

3. Thecomputation andadaptive corruption proceeds in rounds:

• Initialize the round number as0.

• While any uncorrupted party has not finished its final computation in the pro-
tocol, execute one round of computation mentioned above, and increase the
round number by1.

4. Output: The honest parties follow the protocol and outputyi, however the corrupt
parties outputyj = ⊥, then the adversary outputs some function of the information
gathered during the computation in the ideal process.

Let ADVπ,A(x1, . . . , xn, z) denotes the output of the real adversaryA on auxiliary
input z, while interacting with each partyPi, whose input isSi, π is the protocol to be
evaluated. LetREALπ,A(x1, . . . , xn, z) denote the output of real process, where

REALπ,A(x1, . . . , xn, z) = (ADVπ,A(x1, . . . , xn, z), y1, . . . , yn) .
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We require that for any real world adversaryA there exists an ideal adversaryV such
that the output of real world model is computationally indistinguishable from the output of
the ideal world model.

Definition 2.4. Let us have an ideal functionalityF and a n-party protocolπ. If for any
semi-honest adaptive real world adversaryA, there exists a semi-honest adaptive ideal
world adversaryV such thatREALπ,A(x1, . . . , xn, z) andDEALF,V (x1, . . . , xn, z) are
computationally indistinguishable, whereV ’s running time is polynomial in the running
time ofA, we say that the protocolπ is perfectly secure in semi-honest adaptive case.
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3 Secret Sharing

Secret sharing, proposed by A. Shamir [21] and G.R.Blakley [3] in 1979, refers to any
method for distributing a secret among a group of participants. In the end, each of the
parties gets a share of the secret. Individual share is useless, the secret can only be recon-
structed while enough number of shares are combined together. It is a useful technique to
protect sensitive data. By distributing the secret into several shares and spreading shares
among several parties, the adversary needs to compromise atleast a threshold number of
parties to gain the information of the secret, otherwise nothing can be figured out. We can
say that while spreading the shares, the risk of compromising the secret is spreading with
them.

Being a good technique to preserve the privacy of the data, secret sharing is an impor-
tant component of multiparty computation. In this section,we will explore the possibility
of getting correct output by performing operations on shares without reconstructing the se-
cret value all the time. In Section 3.1, some definitions of secret sharing are introduced as
preliminaries. Sections 3.2 and 3.3 present Shamir’s Scheme and Verifiable Secret Sharing
in detail. How to compute with Shamir’s shares is discussed in section 3.4.

3.1 Definition

Formally, in a secret sharing scheme, there is a dealer and a set of parties. The dealer holds
a secrets, and distributes shares ofs privately to parties. Only certain specific subsets of
parties polling their shares together can figure out what thesecret is, while others have no
information about it.

Following the lines of Shamir’s paper [21], we define(t, n)-threshold scheme as fol-
lows:

Definition 3.1. Assume a schemeA is able to divide a secretS into n piecesS1, . . . , Sn

in a way that:

1. From any subset of shares, while the size of the subset is atleastt, t ≤ n, secretS
can be reconstructed uniquely and efficiently.

2. From the subsets containing less thant shares, no information ofS can be released.

Such a scheme is called a(t, n)-threshold scheme.

Shamir [21] illustrated a classical example of this scheme.Assume all cheques in a
company need to be digitally signed. Each executive holds a magnetic card, and each card
is entitled with different access right according to the holder’s position. The company’s
signature generating device can be triggered while at leastone of the following events
happens: (1)The president presents his or her card; (2)The vice president and a board
member present their cards together; (3)Three board members show their cards together.

This problem can be easily solved by using the(3, n)-threshold scheme, wheren is the
number of shares. To meet the requirement, we set that the card of the president to contain
three shares, the vice president’s card holds two shares andcards of board members each
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has one share. The signature generating device is perfectlysecure, as it does not contain
any internal sensitive data. No executive remembers the secret key. In that case, except
for the president, only one person colluding with a malicious adversary can not sign the
cheque.

In most cases, secret sharing schemes are threshold schemeswith different threshold
values. As we mentioned in section 2.4, the secure multiparty computation protocols can
be perfectly secure while a passive adversary corrupts lessthan n

2 parties or an active
adversary corrupts less thann

3 parties. In order to meet this requirement, the thresholds of
secret sharing schemes must be at leastn

2 or n
3 in corresponding adversary models.

In multiparty computation, we are more interested in the relation between computing
on shares and computing on secrets. Because of the properties of (t, n)-threshold schemes
that any single share is useless and the secret can not be retrieved from less thant shares,
it is much more secure to transfer and compute on the shares than do the same operation
on secrets. Hence, we prefer homomorphic secret sharing scheme, which is defined as:

Definition 3.2. Let us have two secretsS andT , each of them being divided inton shares
denoted asS1, . . . , Sn and T1, . . . , Tn. For any binary operations⊕ and ⊗, a scheme
is (⊕,⊗)-homomorphic secret sharing scheme, if the reconstructedvalue of sharesS1 ⊗
T1, . . . , Sn ⊗ Tn is the same as the value ofS ⊕ T .

We can also define homomorphic secret sharing scheme with a constant as:

Definition 3.3. Let us have a secretS and a constantC, whereS is divided inton

shares denoted asS1, . . . , Sn. For any binary operations⊕ and⊗, a scheme is (⊕,⊗)-
homomorphic secret sharing scheme, if the reconstructed value of sharesS1⊗C, . . . , Sn⊗
C is the same as the value ofS ⊕ C.

3.2 Shamir’s Scheme

Shamir’s scheme is a(t, n)-threshold scheme, which was proposed in paper [21]. It is
based on Lagrange interpolation polynomial over finite fields. A Lagrange interpolation
polynomial is an interpolation polynomial for a given set ofdata points in the Lagrange
form, which is defined as follows:

Definition 3.4. Let us have a finite fieldF . For any set of numbersx1, . . . , xn ∈ F , the
Lagrange basis polynomials are in the form:

lj(x) =
∏

k 6=j

x − xk

xj − xk

Definition 3.5. Let us have a set of t data points(x1, y1), . . . , (xt, yt), where allxi are
different. TheLagrange interpolation polynomial is a linear combination of Lagrange
basis polynomials:

q(x) =

t∑

j=1

yjlj(x)
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Theorem 3.1. Let x1, y1, . . . , xt, yt ∈ F , whereF is a finite field, such that the values
x1, . . . , xt are all different. There exists exactly one polynomialq of degree at mostt − 1,
such thatq(xi) = yi for all i ∈ {1, . . . , t}.

Let F be a finite field, then parties participate in Shamir’s(t, n)- scheme are denoted
asP1, . . . , Pn, wheren < |F|. The fieldF , thresholdt, names of parties, and the content
of the protocol are known to all parties.

The dealer plays an important role in this scheme. It computes shares of input secrets
and distributes them to the parties. While the secrets need to be reconstructed, parties send
their shares to the dealer, then the dealer can retrieve the secret. We assume that there is
a separate private communication channel between each party and the dealer, hence the
adversary can not eavesdrop the channel.

The protocol has two phases:

1. Distribution: The dealer has a secretS ∈ F , let f0 = S. The dealer randomly gen-
erates valuesf1, . . . , ft−1 ∈ F as the coefficients. Then he defines the polynomial
asq(x) = f0 + f1x + f2x

2 + . . . + ft−1x
t−1. The dealer secretely sends to eachPi

his shareSi = q(i).

2. Reconstruction: The partiesPi1 , . . . , Pit together know thatq(i1) = Si1 , . . . , q(it) =
Sit and the degree ofq(x) is less thant. From a collection of no less thant shares,
the dealer can find the coefficients ofq(x) by interpolation, whereq(0) = S.

Theorem 3.2. The reconstruction phase of Shamir’s secret sharing schemecan correctly
reconstruct the secret.

Proof. By analyzing the distribution phase, we can get thatxi = i, wherei ∈ {1, . . . , n},
hence allxi are different. According to Theorem 3.1, the polynomialq(x) of degree at
mostt−1 is uniquely determined. By Lagrange interpolation, it is clear that reconstruction
works correctly. If no less thant points are given, the polynomial of degreet−1 that passes
through these points is of course that unique polynomialq(x).

Theorem 3.3. In Shamir’s secret sharing scheme, the secret can only be retrieved whilet

or more shares combining together.

Proof. Suppose the dealer collects onlyt − 1 shares, denoted asSi1 , . . . , Sit−1
. Then for

each possible secretS′ ∈ F , there aret points(0, S′), (i1, Si1), . . . , (it−1, Sit−1
) uniquely

determining a polynomialqi(x) of degree at mostt − 1 that passes through all of them.
As the coefficientsf1, . . . , ft−1 ∈ F are randomly chosen, from thet − 1 shares

collected from parties, each possible value of the secret isuniformly distributed. So the
real secretS can not be retrieved fromt − 1 shares. Similarly, collecting even less shares
can not reconstruct the secret either.

An important property of Shamir’s scheme is that it is possible to computeS with-
out reconstructing the full polynomialq(x). Assume that what the partiesPi1 , . . . , Pit are
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interested in is the secret valueq(0), not the polynomial. According to Lagrange interpo-
lation formula

S =

t∑

j=1

Sij

∏

k 6=j

ik

ik − ij
,

where the secret is computed as a linear combination over theshares with public coeffi-
cients.

3.3 Verifiable Secret Sharing

When participants in Shamir’s scheme are malicious, there are two threats must be consid-
ered:

1. Malicious dealer may send inconsistent shares to parties.

2. A malicious party can input a wrong share to the recovery protocol.

If any of them happens, the reconstructed result is not equalto the secret, and the honest
parties may not figure out who are malicious. As a remedy, the verifiable secret sharing
schemes, in which the parties commit to the shares they have sent, were first proposed by
Chor, Goldwasser, Micali and Awerbuch [9] in 1985.

A secret sharing scheme is verifiable if auxiliary information is provided to let parties
verify the consistency of their shares. It ensures that if the dealer is honest, the cheaters
can not get any information of the secretS, and all honest parties are able to reconstructS

no matter what actions the cheaters have taken. If the dealeris malicious, either the honest
parties can discriminate it from honest one and abort the protocol, orS is uniquely fixed
by the shares held by honest parties and reconstructed correctly regardless of cheaters’
behaviors.

As we mentioned in section 2, multiparty computation is accomplished by implement-
ing secret sharing schemes on inputs, and manipulating the shares to evaluate the compu-
tation function. Verifiable secret sharing is an important component of secure multiparty
computation, especially when adversaries are active and take full control of corrupted par-
ties. As the shares need to be verifiable, the correctness of results is guaranteed.

3.3.1 General Scheme

There are four important primitives in verifiable secret sharing scheme:(t, n)-threshold se-
cret sharing schemes, commitment schemes, zero-knowledgeinteractive proofs and point-
to-point channels. The first two primitives have been introduced in former sections, the
introduction of zero-knowledge interactive proof and point-to-point channels is as follows.

Zero-knowledge Interactive Proof is an interactive method for one party to prove to
another party that a statement is true without revealing thecontent of the secret presented
by this statement. In a zero-knowledge proof, if a statementis false, the probability of a
cheating prover convincing the honest verifier that it is true is very small. If the statement
is true, the honest verifier will be convinced of the statement’s veracity by honest prover,
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and cheating verifier learns nothing more than this fact. Forfurther reading please refer to
[19].

Point-to-point Channel is also called a broadcast channel. We assume that not only
private channels exist between the dealer and the parties, but there are also private channels
between each pair of the parties. Hence, each party can send messages to all other parties,
and each message is sent in such a way that, during the transmission, even malicious ad-
versary can not change its content. The originator of messages can be easily established
by recipients.

As we have handled all the primitives, we can now build the general verifiable secret
sharing protocol as follows:

1. Distribution: The dealer holds a secretS ∈ F , then he computes sharesS1, . . . , Sn

by using a(t, n)-threshold secret sharing scheme. For eachSi, a commitmentCi is
computed. After that, the dealer broadcasts the commitments to all parties, then he
uses the zero-knowledge interactive proof scheme to convince all partiesP1, . . . , Pn

that the commitments contain shares that are consistent with the secret. When the
proof is accepted, the dealer sendsSi andCi to eachPi.

2. Reconstruction: Not like a simple secret sharing scheme, reconstruction is not only
done by the dealer. In this phase, each partyPi broadcast his shareSi and the open-
ing information forCi. Only the share, whose commitment is opened successfully,
can be accepted by the honest parties to reconstruct the secret S.

In the general verifiable secret sharing protocol, the honest parties can detect the ma-
licious dealer and abort the protocol. On the other hand, with a honest dealer, all honest
parties are able to reconstruct the secret despite the actions of cheaters, while the malicious
parties can not get any information.

Indeed, in the distribution phase, the dealer broadcasts commitments to all parties.
Hence, each party acts as a verifier in a zero-knowledge proofscheme independently. Then
they broadcast their proof results. In order to meet the security requirement as malicious
parties can not figure out what the secret is, we suppose that the number of corrupted
parties is less thant, wheret is the threshold of the secret sharing scheme.

If the dealer is honest, all honest parties verify the consistency of shares. Even if all
corrupted parties cheat, there are less thant parties complaining about the inconsistency of
the shares. Hence the dealer is proved to be honest, and no honest party aborts the protocol.
If the dealer is malicious, the honest parties can prove and report the inconsistency of
shares except with negligible probability of error. Whilem (m ≥ t) parties report the
inconsistency, the honest parties accuse the dealer and abort the protocol.

In other words, if the dealer is honest, the distribution phase succeeds. If the cor-
rupted parties are probabilistic polynomial time bounded,they can not get the content of
commitments. Hence the commitment scheme,(t, n)-threshold secret sharing scheme and
zero-knowledge proof guarantee the privacy of the secret.

In the reconstruction phase, assume that the shares are successfully distributed. If a
party cheats, it can be easily detected while its commitmentis not consistent with the
share. Then the honest party may broadcast its complaint, the malicious party is pointed
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out whenm parties complain. Then the false shares are ignored while reconstructing the
secret.

To sum up, the only malicious action the corrupted parties can undertake is to abort the
protocol in the reconstruction phase. As there are only lessthant corrupted parties, where
t < n

2 or t < n
3 in the presence of passive or active adversary, there are alwayst honest

parties to reconstruct the secretS.

3.3.2 Feldman’s Scheme

We briefly introduce Feldman’s Scheme [14] as an example in this section. Feldman’s
scheme is based on Shamir’s secret sharing scheme and any homomorphic encryption
scheme. LetZp be a finite field andG a cyclic group of prime orderp. The discrete
logarithm is hard inG, andg is a generator ofG.

Based on these assumption, the Feldman’s scheme is as follows:

1. Distribution: The dealer uses Shamir’s scheme to share a secretS. For the detailed
process please refer to section 3.2. Then the dealer computes and broadcasts the
following commitment

y0 = gS , y1 = gf1 , . . . , yt−1 = gft−1

and sends the shareSi to partyPi.

2. Verification: When partyPi gets its shareSi, it verifies the consistency of its share
by checking if the following equation holds

gSi =

t−1∏

j=0

yij
j .

If it holds, the share is accepted, else the party broadcastsa complaint.

In Feldman’s scheme, no one can survive cheating, as the commitmentsy0, . . . , yt−1

uniquely determine the polynomialq(x). Hence, everyone can check if the share is con-
sistent. However, this scheme is only secure for computationally bounded adversaries, and
the public valuey0 = gS leaks some information aboutS.

3.4 Computation with Shamir’s Shares

Assume that the Shamir’s secret sharing scheme is used to compute shares of two secrets
S and T as S1, . . . , Sn and T1, . . . , Tn, and each partyPi gets sharesSi and Ti. We
can observe that Shamir’s scheme is homomorphic on additionand multiplication by a
constant. The computation algorithms are as follows:

1. Addition of Shares: Each partyPi computesRi = Si + Ti locally. SupposeR is
the reconstructed value of secretR1, . . . , Rn, thenR = S + T .
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2. Multiplication by a Constant: Suppose there is a public constantc. Each party
Pi computesRi = Si ∗ c locally. SupposeR is the reconstructed value of secret
R1, . . . , Rn, thenR = S ∗ c.

3. Multiplication of Shares: As introduced in section 3.2, Shamir’s scheme imple-
ments polynomials to compute the shares. Hence multiplication of shares is not a
linear transformation any more. How to do the multiplication on Shamir’s shares
will be introduced in detail in the following part.

Suppose there are two polynomials, one with degreed, the other with degreee. After
multiplying two polynomials, the degree of the resulting polynomiald+ e. If d+ e > n, it
is not possible to reconstruct the secret. In order to solve this problem, re-sharing of shares
is used to make multiplication possible.

Here we introduce theGennaro-Rabin-Rabin multiplication protocol[15] to give a
brief overview of how to multiply Shamir’s shares. The protocol is as follows:

• Computation: Each partyPi computesR′
i = Si ∗ Ti.

• Re-sharing: Each partyPi secretly sharesR′
i by using Shamir’s scheme and gets

sharesR′
i1

, . . . , R′
in

. Then it sends shareR′
ij

to each partyPj

• Recombination: There exist public reconstruction parametersr1, . . . , rn, where

ri =
∏

1≤j≤n,j 6=i

j

j − i
.

Each partyPi then computes share

Ri =
n∑

j=1

rj ∗ R′
ji

.

SupposeR is the reconstructed value of the secretsR1, . . . , Rn, thenR = S ∗ T .

Theorem 3.4. Addition of Shares algorithm and Multiplication by a Constant algorithm
are correct.

Proof. While sharing the secrets, the Shamir’s secret sharing scheme computes shares by
evaluating the polynomial withn different inputs. This evaluating processf is a linear
transformation, which has the additivity and homogeneity properties.

Hence in the Addition of Shares algorithm,f(R) = f(S + T ) = f(S) + f(T ). In
Multiplication with a Constant algorithm,f(R) = f(S ∗ c) = c ∗ f(S). So Addition of
Shares algorithm and Multiplication with a Constant algorithm are correct.

Theorem 3.5. Gennaro-Rabin-Rabin multiplication protocol is correct,and it guarantees
the privacy of the secret.
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Proof. In the re-sharing phase, each partyPi randomly generates a polynomialfi of degree
at mostt − 1, wherefi(0) = Si ∗ Ti. Then it sends the sharefi(j) to partyPj . Hence,
after the re-sharing phase, each partyPi gets sharesf1(i), . . . , fn(i).

ThenPi computes

Ri =

n∑

j=1

∏

1≤i≤n,i6=j

i

i − j
∗ fj(i) .

According to theorem 3.1, (R1, 1, R2, 2, . . . , Rn, n) uniquely determines the polynomial

f(x) =
n∑

i=1

ri ∗ fi(x) .

If x = 0, we have

f(0) =

n∑

i=1

ri ∗ fi(0) =

n∑

i=1

ri ∗ Si ∗ Ti = S ∗ T = R .

We can observe that the polynomial shares the secretS ∗ T = R, therefore this protocol
works correctly.

On the re-sharing phase, as each partyPi implements the Shamir’s scheme indepen-
dently and separately, all the sharesR′

11
, . . . , R′

1n
, . . . , R′

n1
, . . . , R′

nn
are uniformly dis-

tributed and independent with each other. As a result of that, in the recombination phase,
theRi computed based on the valuesR′

1i
, . . . , R′

ni
is also uniformly distributed. Hence, no

party can get more information than he has originally known.Since at leastt of the values
r1, . . . , rn are non-zero, according to the theorem 3.1, a unique(t, n)-threshold polynomial
is determined, which keeps the correctness and privacy of the secret data.
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4 Sharemind Secure Computation Protocol

Based on what has been introduced in the former sections, we will make a detailed de-
scription of SHAREMIND multiparty computation protocols,which are proposed by Dan
Bogdanov in his master thesis [4]. Although Dan Bogdanov gives a detailed introduction
of all the protocols, he just presents a informal security proof for each protocol. In the
informal proof, the messages generated and received by the corrupted parties are analyzed
manually, and the proof results are written in human language. Even though this informal
proof can be easily understood, it has the following two disadvantages:

1. It is not suitable for complex protocols, because there would be too many messages
to be analyzed manually.

2. It is not convincing, as its validity is hard to be checked.

Hence, what we need to do is to figure out a method to automatically analyze these
protocols in such a way that the correctness of the results can be easily checked. The
method and result of analyzing SHAREMIND protocols are shown in section 5 and section
6. Note that throughout this paper, all parties are semi-honest, which follow the protocol
while wondering what the secret is.

Before presenting the SHAREMIND secure computation protocols, information re-
lated to additive secret sharing scheme is shown in section 4.1. The infrastructure of
SHAREMIND is introduced in section 4.2. The detailed descriptions of SHAREMIND
secure computation protocols are shown in the following parts. As what we are interested
in is the security proof of those protocols, for the correctness proof of SHAREMIND pro-
tocols, please refer to Bogdanov’s thesis [4]. As this section is presented as a preliminary
of the next two sections, only informal proofs are included here. For formal proofs, please
refer to section 5.

4.1 Additive Secret Sharing

In SHAREMIND protocols, an-out-of-n additive secret sharing scheme is used to share
the secrets. The additive secret sharing scheme is very simple and efficient. There is no
complex algorithm to compute shares, and no single share leaks any information about the
secret. However, it is not very convenient, since the secretcan only be reconstructed while
all parties are presenting and combining their shares together.

The formal definition of this scheme is as follows:

1. Distribution: Assume there aren parties,P1, . . . , Pn, sharing the secretS. The
dealer first generatesn − 1 uniformly distributed random valuesS1, . . . , Sn−1, then
computes the last share asSn = S − S1 − . . . − Sn−1. Each partyPi gets the share
Si.

2. Reconstruction: All parties send their shares to the dealer, the dealer reconstructs
the secret by adding all shares together.
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Theorem 4.1. The n-out-of-n secret sharing scheme is a(+,+)-homomorphic secret
sharing scheme.

Proof. Suppose there are two secretsS andT . By using then-out-of-n secret sharing
scheme, we get the sharesS1, . . . , Sn and T1, . . . , Tn, whereS1 + . . . + Sn = S and
T1 + . . . + Tn = T . After each partyPi gets its shares, it computesRi = Si + Ti locally.
HenceR = R1 + . . . + Rn = S1 + T1 + . . . + Sn + Tn = S + T .

Theorem 4.2. According to definition 3.3, while multiplying the secret bya constant, the
n-out-of-n secret sharing scheme is a(×,×)-homomorphic secret sharing scheme.

Proof. Assume then-out-of-n secret sharing scheme distributes secretS into sharesS1, . . .

, Sn, whereS1 + . . . + Sn = S. There is a public constantc. After each partyPi gets its
share, it computesRi = Si×c locally. HenceR = R1+. . .+Rn = S1×c+. . .+Sn×c =
S × c.

However, while multiplying the shares of two secrets, then-out-of-n secret sharing
scheme is not(×,×)-homomorphic any more. Hence, for this more complex scenario, we
will discuss it in detail in the following parts of this chapter.

4.2 Introduction of SHAREMIND

In 2007, Dan Bogdanov has proposed a framework for secure computations in his master
thesis [4]. As shown in Figure 2, in SHAREMIND, there are several controllers and
miners. The number of controllers is not restricted, each ofthem provides data to and gets
analyze results from miners. In the latest version of SHAREMIND, there are only one
controller and three miners. The miners work together to perform computations and run
data mining algorithms on the data. It is assumed that each miner is semi-honest, and they
perform the computation synchronously. The number of miners is extensible based on the
number of corrupted miners. Suppose the adversary can corrupt n miners, there should be
at least2n + 1 miners to keep the privacy of data.

Figure 2: The infrastructure of SHAREMIND
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We can observe that there are private communication channels between each pair of
miners, and the communication channels exist between each controller and all miners.
As the controllers work as data providers, we suppose that they are concerned with their
privacy. Hence, there is no need to provide communication channels between controllers.

Each miner has a local database for saving shares and a stack for saving intermediate
messages. Once a controller inputs a data, it would compute the shares of it by using
the additive secret sharing scheme and distribute the shares to miners respectively. Then
the miners would check the validity of shares and save them intheir local database. It
is required that all shares saved in databases and stacks should be inZ232 , and the Share
Conversion protocol, which will be introduced in section 4.4, is proposed to convert the
shares inZ2 into Z232 .

As each miner is only capable of running a number of basic operations, the SHARE-
MIND secure computation protocols are proposed to direct miners to get correct results by
following complex algorithms built from these basic operations.

4.3 Multiplication Protocol of Three Parties

Assume Alice, Bob and Charlie are three participants of a multiparty computation proto-
col. We denote Alice asA, Bob asB and Charlie asC. There are two secretsu andv.
By using the3-out-of-3 additive secret sharing scheme,u andv are shared asuA, uB , uC

andvA, vB , vC , which are held by Alice, Bob and Charlie, respectively. Themessages ex-
changed between parties are denoted asnamexy, wherename is the name of the message,
x is the index of the party who sends the message, andy is the index of the party who gets
it, x, y ∈ {1, 2, 3} andx 6= y.

As a semi-honest adversary, the adversary can only corrupt at most one party. Once
a party is corrupted, the adversary can get its shares, outputs and all internal data such as
the random numbers generated by that party, and the messagessent to or received by it.
The adversary always tries to get some information about thesecret through what it gets.
Figure 3 shows the model of three party computation.

Figure 3: Communications Between Three Parties in the Real World

As shown in section 4.1, addition of shares and multiplying shares by a constant can
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be easily executed. Hence, we omit them here. In the following parts, we will discuss the
multiplication of two secrets in detail.

What we want to compute is

u ∗ v =(uA + uB + uC) ∗ (vA + vB + vC)

=uA ∗ vA + uA ∗ vB + uA ∗ vC + uB ∗ vA + uB ∗ vB + uB ∗ vC + uC ∗ vA+

uC ∗ vB + uC ∗ vC

However, each party just knows its own shares. The problem weneed to solve is how to
computeuivj in such a way that none of them can figure out another party’s secret, where
i, j ∈ {A,B,C} andi 6= j?

The protocol proposed by Du and Atallah [12] is the right answer to the question.
It assumes that two partiesP1 andP2 want to secretly multiply two valuesx1 andx2.
There is a third partyP3, who works as a random number distributor. Let us denote the
multiplication result asS, and its shares are denoted asS1, S2 andS3. Hence, they follow
the following protocol 1:

Protocol 1 Du and Atallah Protocol
Input: P1: x1, P2: x2 ∈ Z232

Output: P1: S1, P2: S2 andP3: S3

Round One
P3 generates two uniformly distributed random numbersa1 anda2 ∈ Z232

P3 sendsa1 to P1 anda2 to P2

Round Two
P1 computesx1 + a1 and sends the result toP2

P2 computesx2 + a2 and sends the result toP1

Round Three
P1 computesS1 = −(x1 + a1) ∗ (x2 + a2) + x1 ∗ (x2 + a2)
P2 computesS2 = x2 ∗ (x1 + a1)
P3 computesS3 = a1 ∗ a2

Theorem 4.3. In Du and Atallah protocol, the privacy of secret data is guaranteed.

Proof. In the first round,P1 receives a uniformly distributed numbera1, andP2 receives a
uniformly distributed numbera2. Hence, both ofP1 andP2 can not figure out other party’s
secret.

In the second round,P1 getsx2 + a2. As P1 does not know the value of uniformly
distributed numbera2, x2 + a2 is uniformly distributed to him. For the same reason,
x1 + a1 is uniformly distributed toP2. P3 has no incoming messages. Consequently, all
three parties can not figure out other parties’ secrets.
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As mentioned above, Du and Atallah protocol is what we need tosecurely compute
uivj , wherei, j ∈ {A,B,C} andi 6= j. While composing three party share multiplication
protocol, we import Du and Atallah protocol as a sub-protocol in the formSubprotocol :
A : ShareName1, B : ShareName2, C : ShareName3 = DuAtallah(Name1 :
(Input1), Name2 : (Input2)), which means that the party with nameName1 and
the party with nameName2 import a instance of Du and Atallah protocol to compute
Input1 ∗ Input2. After running the instance of sub-protocol, Alice gets result share
ShareName1, Bob getsShareName2 and Charlie getsShareName3. Following the
lines of Dan Bogdanov’s master thesis [4], the protocol of three party multiplication we
mentioned above is as follows:

Protocol 2 Three Party Share Multiplication Protocol
Input: Alice: uA, VA; Bob: uB, VB ; Charlie:uC , VC ∈ Z232

Output: Alice: dA, Bob: dB , Charlie:dC ∈ Z232

Round One
Alice computessA = uA ∗ vA locally
Bob computessB = uB ∗ vB locally
Charlie computessC = uC ∗ vC locally

Round Two
Assume that all random numbers are uniformly distributed and independent
Subprotocol:A : a12, B : b12, C : c12 = DuAtallah(A : (uA), B : (vB))
Subprotocol:A : a13, B : b13, C : c13 = DuAtallah(A : (uA), C : (vC))
Subprotocol:A : a21, B : b21, C : c21 = DuAtallah(B : (uB), A : (vA))
Subprotocol:A : a23, B : b23, C : c23 = DuAtallah(B : (uB), C : (vC))
Subprotocol:A : a31, B : b31, C : c31 = DuAtallah(C : (uC), A : (vA))
Subprotocol:A : a32, B : b32, C : c32 = DuAtallah(C : (uC), B : (vB))

Round Three
Alice computesdA = sA + a12 + a13 + a21 + a23 + a31 + a32.
Bob computesdB = sB + b12 + b13 + b21 + b23 + b31 + b32.
Charlie computesdC = sC + c12 + c13 + c21 + c23 + c31 + c32.

Theorem 4.4. In the three party share multiplication protocol, the privacy of secret data
is guaranteed.

Proof. We start by proving that except foruA, vA, Alice does not know the secrets of other
parties. As this protocol is symmetrical, if we prove that ineach round the messages re-
ceived by Alice are all independent and uniformly distributed, so are the messages received
by Bob and Charlie.

In round one, Alice has not received any messages. In round two, it is assumed that
every random number is uniformly distributed, therefore ineach call of Du and Atal-
lah protocol, new random numbers are generated. According to Theorem 4.5, shares
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a12, a13, a21, a23, a31 anda32 are uniformly distributed and independent of each other. As
a consequence of that, the incoming messages of Alice are alluniformly distributed and
independent. Hence, the privacy of secret data is guaranteed.

4.4 SHAREMIND Share Conversion and Bit Extraction Protocols

Besides the binary operations on secrets we mentioned above, the operations on bits are
also very important. In this section, we will introduce Share Conversion protocol and Bit
Extraction protocol. The former one is used to convert a bit share of value in rangeZ2 into
rangeZ232 , and the later one is in charge of extract the shares of the bits of a share in range
Z232 .

As a data donor, each controller in SHAREMIND infrastructure can input boolean
numbers inZ2 as the secrets. By using the additive secret sharing scheme,the shares each
miner gets are inZ2 too. As we mentioned above, the valid data must be inZ232 . Hence,
we must implement a protocol to convert the secrets inZ2 to be uniform inZ232 while
keeping the privacy of these secrets.

Assume there is a boolean numberu, anduA, uB , uC ∈ Z2 are computed from it by
using the additive secret sharing scheme. We can use the following equation to convert the
shares intoZ232 :

f(uA, uB , uC) = uA + uB + uC − 2uAuB − 2uAuC − 2uBuC + 4uAuBuC .

Hence, we can use Du and Atallah protocol to compute shares ofuAuB , uBuC anduAuC .
On the other hand, we can let Charlie additively sharesuC into three shares, then run the
Three Party Share Multiplication Protocol to get the sharesof uAuBuC . To sum up, the
Share Conversion Protocol is as follows:
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Protocol 3 Share Conversion Protocol
Input: Alice: uA, Bob: uB, Charlie:uC ∈ Z2

Output: Alice: dA, Bob: dB , Charlie:dC ∈ Z232

Round One
Charlie generate two uniformly distributed numbersc31, c32 ∈ Z232

Charlie computes the third share ofuC asc33 = uC − c31 − c32

Charlie sendsc31 Alice andc32 to Bob

Round Two
Assume that all random numbers are uniformly distributed and independent inZ232

Subprotocol:A : xA, B : xB , C : xC = DuAtallah(A : (uA), B : (uB))
Subprotocol:A : yA, B : yB, C : yC = DuAtallah(C : (uC), A : (uA))
Subprotocol:A : zA, B : zB , C : zC = DuAtallah(B : (uB), C : (uC))
Subprotocol: A : wA, B : wB , C : wC = Multiplication(A : (xA, c31), B :

(xB , c32),C : (xC , c33))

Round Four
Alice computes its sharedA = uA−xA−xA−yA−yA−zA−zA+wA+wA+wA+wA

Bob computes its sharedB = uB−xB−xB−yB−yB−zB−zB+wB+wB+wB+wB

Charlie computes its sharedC = uC − xC − xC − yC − yC − zC − zC + wC +
wC + wC + wC

Theorem 4.5. In the Share Conversion protocol, no party can figure out the value of other
parties’ secret.

Proof. This protocol is not symmetric to all parties, as Charlie hasto implement additive
secret sharing scheme to share its shareuC into three sub-shares. However, as Charlie
does not receive as many messages as the other two parties, itis trivial that Charlie’s view
is secure if we prove that Alice and Bob’s views are secure.

For Alice, in round one, what Alice get is a uniformly distributed number, hence no
secret is compromised. In round two, three Du and Atallah protocols and one Three Party
Share Multiplication Protocol are called. According to theorem 4.3 and 4.4, the privacy of
secrets are kept, hence no other secrets are leaked to Alice.In the last round, Alice gets no
new messages. To sum up, Alice can not figure out the secret of other parties.

For the same reason, Bob also can not get secrets he should notknow. Consequently,
we can say that the privacy of secrets is guaranteed in the Share Conversion protocol.

Although Share Conversion protocol is very useful to convert Z2 shares intoZ232 ones,
it can not handle all the bitwise operations. Hence, we need the Bit Extraction protocol as
the basics of complex bitwise operations. As shown in Protocol 4, the Bit Extraction proto-
col can extract shares of each bit of a shareu in Z232 , whereu(0)

A , . . . , u
(31)
A , u(0)

B , . . . , u
(31)
B

andu
(0)
C , . . . , u

(31)
C denote the shares of the1st to32nd bit of the shareu.
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Protocol 4 Bit Extraction Protocol
Input: Alice: uA, Bob: uB, Charlie:uC ∈ Z232

Output: Alice: u
(0)
A , . . . , u

(31)
A ; Bob: u(0)

B , . . . , u
(31)
B ; Charlie:u(0)

C , . . . , u
(31)
C ∈ Z232

Round One
Alice generates uniformly distributed numbersr

(0)
A , . . . , r

(31)
A ∈ Z2.

Alice converts all these numbers intoZ232 by using the Share Conversion protocol,
and the result shares are denoted ast

(0)
A , . . . , t

(31)
A .

Bob generates uniformly distributed numbersr
(0)
B , . . . , r

(31)
B ∈ Z2.

Bob converts all these numbers intoZ232 by using the Share Conversion protocol,
and the result shares are denoted ast

(0)
B , . . . , t

(31)
B .

Charlie generates uniformly distributed numbersr
(0)
C , . . . , r

(31)
C ∈ Z2.

Charlie converts all these numbers intoZ232 by using the Share Conversion protocol,
and the result shares are denoted ast

(0)
C , . . . , t

(31)
C

Round Two
Alice computesrA =

∏31
j=0 2jt

(j)
A .

Alice computesv11 = uA − rA.
Bob computesrB =

∏31
j=0 2jt

(j)
B .

Bob computesv21 = uB − rB, and sendsv21 to Alice.
Charlie computesrC =

∏31
j=0 2jt

(j)
C .

Charlie computesv31 = uC − rC , and sendsv31 to Alice.

Round Three
Alice computesaA = v11 + v21 + v31 and finds its bitsa(0)

A , . . . , a
(31)
A , and output

u
(i)
A = a

(i)
A + t

(i)
A for i ∈ {0, . . . , 31}.

Bob outputsu(i)
B = t

(i)
B for i ∈ {0, . . . , 31}.

Charlie outputsu(i)
C = t

(i)
C for i ∈ {0, . . . , 31}.

Theorem 4.6. The Bit Extraction protocol is perfectly secure.

Proof. In round one, each party generates32 uniformly distributed numbers inZ2, and
converts them by using the Share Conversion protocol. According to Theorem 4.5, no
party can figure out other parties’ secret while converting shares, hence no secrets are
exposed in this phase, and all shares inZ232 are uniformly distributed and independent
from each other.

In round two, as the values of sharesrA, rB andrC are computed on uniformly dis-
tributed and independent random numbers, they are uniformly distributed and independent
from each other. As a result of that, the values ofv11, v21 andv31, which are computed by
subtracting a uniformly distributed numbers from a secret,are also uniformly distributed.
Hence, although Alice getsv11, v21 andv31, what she can get is only the difference be-
tween the randomly generated numberr and the secretu. In a word, Alice gets no more
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secret. As Bob and Charlie get no information in this round, their view is secure.
In round three, there are no messages exchanged between parties. To sum up, in this Bit

Extraction protocol, no party is capable of getting other parties’ secret, hence it is perfectly
secure.
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5 Simulation

As discussed in section 2.3, a protocolπ is perfectly secure if for any adversary attacking
π in the real world, the output distribution of the real world is indistinguishable from the
output distribution of the ideal world. In other words, if the protocolπ is perfectly secure,
then the environment is not able to tell the real world model and the ideal world model
apart. To achieve this requirement, we can use a simulator totranslate the messages sent
and received by the real world adversary to the ideal world model, while keeping the real
world adversary thinking that he works in the real world.

In the following part, we will make an elaborate discuss on the approach of simulation.
The notion of universal composition is presented in section5.1 as a preliminary. In section
5.2, we will show how to simulate the real world. After that, we will present the formal
proof of the protocols shown in the former chapter by importing the notion of simulation.

5.1 Universal Composition

In 2001, Ran Canetti [7] proposed a framework to represent and analyze the security of
cryptographic protocols. This framework is called universal composable security frame-
work. Within this framework, a method called universal composition, which composes
protocols in such a way that the security is preserved while composing, is defined. The
definitions of security in this framework have the property of universal composablility.
Another definition of universal composability was presented by Ronald Cramer and Ivan
Damgård [11], which covers both information theoretic and cryptographic models in syn-
chronous communication model. The following discussion isbased on their works.

First, let us have a look at the general universal composablesecurity framework in
Figure 4, which is similar to the structure in the Ideal and Real world approach introduced
in section 2.3.

Figure 4: General Universal Composable Security Framework

Assume there is an environmentZ, which contains everything that is external to the
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protocol execution, such as the adversaries and users who supply inputs to the protocol.
Since adversaries are included,Z is capable of doing anything the adversaries can do.
In other words,Z can actively (or passively) and adaptively (or non-adaptively) corrupt
parties, which are constrained by the adversary structureA.

In the real world, besides the environmentZ, there aren parties denoted asP1, . . . , Pn.
which are modeled as interactive Turing Machines. All parties communicate with each
other in a synchronous communication model. While executing the protocolπ, the adver-
sary in the environmentZ corrupts a set of parties according to the adversary structureA.
Meanwhile, all honest parties follow the protocolπ. Hence, the environmentZ interacts
twice with the honest parties in each round, it first chooses random inputs and sends them
to each party, then it collects the outputs from the parties.

In the ideal world, there is an ideal functionalityF and a simulatorS. As introduced
in section 2.3,F is incorruptible and it provides perfect security. Since parties do not
communicate with each other directly, and all data are collected and sent out by the ideal
functionality F , we suppose that there are no parties in the ideal world. Instead, we set a
simulatorS, which is in charge of translating the traffics between the environmentZ and
the ideal functionalityF .

After the computation process is finished,Z outputs a single bit to indicate whetherZ

thinks itself has interacted with the protocolπ or the ideal functionalityF . This bit is a
random variable, whose distribution depends on the protocol π and the environmentZ in
the real world, and the ideal functionF , simulatorS and environmentZ in the ideal world.

We can say that a protocolπ securely realizes an ideal functionalityF , if there is a
polynomial time simulatorS such that for any environmentZ, Z can not distinguish the
output of protocolπ from the output of ideal functionalityF .

Hence, requiring that the outputs of corrupted parties in real world and ideal world are
distributed indistinguishably from each other grantees data secrecy. It forces the informa-
tion gathered by the real world adversary to be computable inthe ideal process, hence the
protocol does not release more information to corrupted parties than it should. On the other
hand, correctness of results is guaranteed by requiring that the outputs of honest parties in
real world are distributed similarly to the outputs of honest party in ideal world. Since if
the real world adversary has more influence on the outputs than the ideal world adversary,
the environmentZ can easily tell the real world and the ideal world apart.

Before presenting the universal composition theorem, let us have a look at a special
model, which is a hybrid between ideal world model and real world model. It is called
G-hybrid model, which includes subroutine calls to the idealfunctionalityG. This model
can invoke several instances ofG, and these instances may run concurrently. Letπ be a real
world protocol that uses subroutine calls to the ideal functionality G. Hence as described
in the ideal world, each honest partyPi communicates with ideal functionalityG through
portsIi andOi, and the adversary represents the corrupted parties to communicate withG
through portsIA andOA.

Now let ρ be a protocol that securely realizes an ideal functionalityG. Therefore, we
can compose a protocolπρ/G , which means that the protocolπ calls protocolρ instead of
the ideal functionalityG. In that case, the protocolπ is modified to send all inputs provided
for G to protocolρ, and to treat outputs received from protocolρ as outputs received from
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G. Hence, we can give the following definition:

Definition 5.1. The composed protocolπρ/G universal composably emulates protocolπ,
if π is aG-hybrid protocol and protocolρ securely realizes the ideal functionalityG.

Assume that protocolπ securely realizes an ideal functionalityF , hence the following
definition can be generalized:

Definition 5.2. The composed protocolπρ/G securely realizes an ideal functionalityF , if
π is aG-hybrid protocol, which securely realizesF , and protocolρ securely emulates ideal
functionalityG

5.2 Simulating the real world

As mentioned above, a protocolπ is considered as perfectly secure if the environmentZ

can not distinguish the outputs of using the protocolπ from the outputs of using an ideal
functionalityF . Therefore, we require that the messages the environmentZ gets in the real
world have the same distribution as messages it gets in the ideal world. In other words,
Z can act in the same way no matter if it is in the real world or in the ideal world, and
the distribution of the outputs he gets form the two worlds are indistinguishable from each
other. One way to achieve this requirement is to simulate thereal world on the ideal world.

As described in the former section, in the ideal world, thereis a simulatorS that trans-
lates messages between the environmentZ and the ideal functionalityF . The function
of the simulatorS is to communicate with environmentZ in such a way thatZ can not
find out that it is in the ideal world. Therefore, while communicating withZ, S needs to
provide messages in the form that is exactly the same as whatZ should see. Hence,S
must know the protocol in advance, then it can go through the protocol and send the valid
messages toZ in the right order and right time.

However, before we can do the simulation, we need to know how environmentZ acts.
We can observe that there are two kinds of activities ofZ. First,Z provides inputs to honest
parties, and gets output from them. This action is easy to handle, what we need to do is
to send inputs and outputs to the relevant input and output ports of the ideal functionality
F . Second, asZ includes the adversary, it can corrupt parties and see all their internal
data, which contain the inputs, outputs and messages they send and receive. Hence, the
simulatorS is in charge of communicating withZ on behalf of the corrupted parties.
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Figure 5: Simulating the Real World

As shown in Figure 5, what the simulator does is representingthe corrupted parties
to use the corrupt input and output ports of the ideal functionality F to provide inputs to
and get outputs fromF . In other words, in each round,S relays the inputs of corrupted
parties chosen byZ to F , and after the computation,S sends the outputs of corrupted
parties generated byF to Z. While Z requests to corrupt partyPi, it notifies bothS and
F . ThenF sends all inputs and outputs ofPi to S through portOi. After that,S represents
the corrupted partyPi to exchange messages withF on corrupted input and output ports.

5.3 Formal Proof of SHAREMIND Protocols

As mentioned above, if we can simulate the real world on the ideal world so that the real
world adversary can not distinguish which world it is in, thereal world protocolπ is proved
to be secure. Hence, while simulating a real world protocol,we need to do the following
things:

1. First, construct the real world and define the power of the real world adversaryA.

2. Then, define the ideal functionalityF in the ideal world.

3. At last, build a simulator which communicates with bothF andA in such a way that
each message required byA is computable inF .

Based on this approach, we will do simulation on the SHAREMIND protocols and prove
their security properties by showing that they are perfectly simulatable.

As shown in Protocol 1, there are three partiesP1, P2 andP3 participate in Du and
Atallah protocol, two partiesP1 andP2 want to compute the multiplication valueS of their
inputsx1 andx2. Let us denote this three party function asF (x1, x2, null) = (S1, S2, S3),
whereS = S1 + S2 + S3. It is supposed that all parties are semi-honest, and the adversary
can only corrupt one party. Since this protocol is not symmetric to every party, in the
following part, we will discuss the simulation on each partyseparately.
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As the simulator must know the Du and Atallah protocol in advance and follow the
protocol while communicating with the real world adversaryA, we rewrite Protocol 1 to
the following form, which is easier to follow while processing computations:

Protocol 5 Formal Du and Atallah Protocol
Input: P1: x1, P2: x2

Output: P1: S1, P2: S2 andP3: S3

Round One
P3: Random(a1, a2);
P3 → P1: a1;
P3 → P2: a2;

Round Two
P1: r12 =x1 + a1;
P1 → P2: r12;
P2: r21 =x2 + a2;
P2 → P1: r21;

Round Three
P1: S1 = −(x1 + a1) ∗ (x2 + a2) + x1 ∗ (x2 + a2);
P2: S2 = x2 ∗ (x1 + a1);
P3: S3 = a1 ∗ a2;

In this formal protocol, we can see that there are three typesof actions: First, generating
random items, which is denoted as "Random(. . .)", the items inside the parentheses are the
random items to be generated. Second, sending item from one party to another, which is
denoted as "Sender→ Receiver", and the item after the ":" is the item to be sent. Third,
computing the values, which is denoted as mathematical expressions.

Assume thatP1 is corrupted by the real world adversaryA, therefore,A knows all the
internal data ofP1. While executing the protocol,P1 gets the following messages from
other parties:a1 andr21. It is trivial that based on whatP1 knows, it can not compute
the secret valuex2. Hence, inP1’s view, each message is random and independent from
each other. As a result of that, while communicating withA, the simulator just needs to
generate a random item and send it toA at each timeA needs to get a message. Therefore,
we can do the simulation as follows:
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Protocol 6 Simulating Du and Atallah Protocol whileP1 is corrupted
Input: P1: x1, P2: x2

Output: P1: S1

Round One
Simulator: Random(a1);
Simulator → P1: a1;

Round Two
P1: r12 =x1 + a1;
P1 → Simulator: r12;
Simulator: Random(r21);
Simulator → P1: r21;

Round Three
P1: S1 = −(x1 + a1) ∗ r21 + x1 ∗ r21;

Theorem 5.1. The Du and Atallah protocol is perfectly secure.

Proof. By observing Protocol 6 and Protocol 5, we can conclude that the incoming mes-
sages ofP1 from Protocol 6 and incoming messages ofP1 from Protocol 5 are indistin-
guishable. As the ideal functionalityF is incorruptible, any computation can be executed
securely. Since the same function is evaluated in both real world and ideal world, the out-
put of honest parties should be the same. We can say that whileP1 is corrupted, Du and
Atallah protocol is perfectly secure.

The simulation is similar whileP2 is corrupted, hence we can infer that Du and Atallah
protocol is perfectly secure whileP2 is corrupted. AsP3 just works as a random item
distributor, it gets no incoming messages, thus it is trivial that the protocol is perfectly
secure ifA corruptsP3. To sum up, we can conclude that Du and Atallah Protocol is
perfectly secure under the condition that the semi-honest adversaryA can only corrupt one
party.

Theorem 5.2. The Three Party Share Multiplication protocol is perfectlysecure.

Proof. By obseeving the Three Party Share Multiplication protocolshown in Protocol 2,
we can get that the messages are exchanged only in round two. Precisely speaking, the
messages are exchanged in the six instances of Du and Atallahprotocols, which are im-
ported by Three Party Share Multiplication protocol as sub-protocols. As shown in the
proof of Theorem 5.1, each party of the Du and Atallah protocol is simulatable. It is re-
quired that all random numbers in all instances of Du and Atallah protocols are uniformly
distributed and independent from each other, so the output shares of each instance are
uniformly distributed and independent from each other.

Hence, while simulating the Three Party Share Multiplication protocol, we just need to
construct a simulator which takes the simulator of each instance of Du and Atallah protocol
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as its component. Assume that the Du and Atallah protocol securely realizes an ideal func-
tionality F . Let us denote the ideal functionality of three party multiplying additive shares
asT , which contains six instances ofF . According to the theory of universal composi-
tion, we can get that the Three Party Share Multiplication protocol universal composably
emulatesT . Hence, the Three Party Share Multiplication protocol is perfectly secure.

Theorem 5.3. The Share Conversion protocol is perfectly secure.

Proof. As shown in Protocol 3, in the first round, what Alice and Bob get are uniformly
distributed random numbers. In the second round, three instance of Du and Atallah proto-
cols and one instance of Three Party Share Multiplication protocol are imported.

Hence, while simulating the Share Conversion protocol, we just need to follow the
protocol and import the simulation on the sub protocols in the right time. Hence, each party
is simulatable and none of them can figure out more secrets. Onthe other hand, the output
distribution of honest parties form the ideal world and realworld are indistinguishable. To
sum up, the Share Conversion Protocol is perfectly secure.

Theorem 5.4. The Bit Extraction protocol is perfectly secure.

Proof. According to the Protocol 4, as the Share Conversion protocol is perfectly secure,
while simulating the round one of Bit Extraction protocol, we just need to import the
simulator of each instance of Share Conversion protocols.

In the round two, Alice gets two messagesv21 andv31, and other two parties have
no incoming messages. Hence, the simulation on Bob and Charlie is done in round one,
and their views are perfectly secure. To Alice, the incomingmessagesv21 andv31 are
uniformly distributed random numbers, since they are computed by subtracting a uniformly
distributed random number from a secret. Therefore, while simulating Alice in round two,
the simulator just needs to follow the protocol to generate and send the random numbers at
the right time. So Alice is not able to figure out more secrets.

According to the theorem of universal composition, since the Share Conversion proto-
col is perfectly secure, the Bit Extraction protocol is perfectly secure.
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6 Overview of Our Implementation

Based on the theory of universal composition, which was given in the former chapter, we
have built an implementation called AutoProver to analyze the SHAREMIND protocols.
The name of the implementation shows its functionality as the automatic prover of the
security of secret shared protocols.

Our implementation is a software program, which can be executed on personal com-
puters. The software can be divided into three components. In the following parts, the
infrastructure of the software is introduced in section 6.1, and the introduction of each
component is shown in section 6.3 to 6.6.

As a new grammar is defined in our implementation, all the SHAREMIND protocols
described above must be rewritten in our grammar manually. Only the valid protocols can
be analyzed by our program. Besides the SHAREMIND protocols, the AutoProver also
can analyze other valid protocols. The grammar of the protocols is introduced in section
6.3.

6.1 AutoProver Infrastructure

The infrastructure of our implementation is shown in Figure6. There are three compo-
nents, the protocol parser, the security analyzer and the simulation generator. The protocol
parser parses the input protocols and checks if there is any grammar error. The security
analyzer is in charge of analyzing the valid protocols to seeif the corrupted parties, which
are designated by the user input, can figure out more secrets than they should know. The
simulation generator can generate the simulation results based on the analysis results.

Figure 6: Infrastructure of AutoProver

The approach of processing the input protocol based on the designated corrupted actors
is as follows:
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1. First, the parser will parse the input protocol and check the grammar of the protocol.
If the input protocol imports other protocols as its sub-protocols, check the grammar
of the sub-protocols, too. If any grammar error is detected,the program halts and
reports the parsing error on screen.

2. If there is no grammar error of the protocol and its sub-protocols, the parser would
insert the content of the instances of sub-protocols into the input protocol. Then it
will output the full protocol and the syntax tree of the full protocol.

3. The analyzer takes the full protocol and the corrupted actors’ IDs as its input. Then
it analyzes if the corrupted actors can figure out more secrets than they should. After
finishing analyzing, the analyzer outputs the analysis report.

4. If the full protocol is analyzed to be secure, then the simulation generator takes the
analysis report as its input and does simulation based on it.

6.2 Implementation Notes

Our implementation is programmed in Java language. Hence, our implementation is plat-
form independent. Since our goal is to build a tool, which canautomatically evaluate the
security of secret shared protocols, there is no need to use computer networks. Therefore,
our implementation works on single computer.

The Java Compiler Compiler (JavaCC), which is a parser generator, is used as an im-
portant tool to generate our parser code. JavaCC can read thegrammar specification and
convert it to a Java parser program. The parser program can recognize the content that
matches the grammar. JavaCC also provides sub-tools related to the parser generation,
such as JJTree, which is in charge of tree building, and JJDoc, which can produce docu-
mentation for the BNF grammar. In our implementation, we useJavaCC version 4.0. It
works with any Java virtual machine, version 1.2 or greater.

The inputs and outputs of our implementation are controlledin the following approach.
We use theFileInputStreamclass injava.io package to obtain the inputs, and thePrint-
Writer class to print the outputs. Both the inputs and outputs are stored locally.

Our implementation can automatically generate the simulation results for the protocols
provided by us in advance. However, there is a restriction onthe current version of our
implementation. Because of the disadvantage of the grammarand the variable renaming
algorithm in the parser code, our implementation can only deal with the protocols with up
to five actors, and it can only generate the full protocol withless than 2025 variables. But
it can be extended easily by adding new actor tokens into the parser code and enlarging the
length of variable names.

6.3 The Parser

If we want to build a tool that can analyze any secret shared protocol in SHAREMIND, it
is important to use some uniform grammar. Hence, as the first component of our imple-
mentation, the parser is in charge of the following two things:
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1. Excluding and reporting the protocols which are not written in the valid form.

2. Importing the content of instances of sub-protocols and constructing the full protocol
of the valid input protocols.

As we mentioned above, the parser code is generated by JavaCC. Before we present the
approach of generating the parser code, let us have a look at JJTree in details. JJTree is a
very important sub-tool included in JavaCC. It generates code to construct parse tree nodes
and works as a preprocessor for JavaCC. JJTree takes input from the.jjt file and outputs a
.jj file, where the.jj file is used as the input of JavaCC. Hence, to generate the parser code,
we first define the actions of nodes in the.jjt file, then use the JJTree to generate the input
of JavaCC, and at last we use JavaCC to generate the parser.

In the following subsections, we will discuss the two function of the parser separately.

6.3.1 Introduction of the Grammar

Before we can define the grammar, we must constrain the valid form of the words used in
the protocol. Hence, we set that the following signs can be used:

Name Sign Name Sign Name Sign
LPAREN ( RPAREN ) SEMICOLON ;
COLON : COMMA , SENDTO ->
EQUALS = PLUS + MINUS -
TIMES * MOD % NUMBER (["0"-"9"])+

Table 2: Available Signs

As for the additive secret sharing scheme, the content of theshare multiplication proto-
col changes corresponding to the number of parties that can be corrupted by the adversary.
In our implementation, we just provide three party share multiplication protocol and five
party share multiplication protocol in advance. In the parser, we assume that there are five
actors, whose names are Alice, Bob, Charlie, David and Eve, and these names are denoted
asA, B, C, D andE separately.

We also need to formalize the names of different variables, which is shown as in Table
3.

Variable Format
VARIABLE (["a"-"z"])+["1"-"5"]["1"-"5"]
SHARE (["a"-"z"])+["A"-"E"]
BITS ["a"-"z"]["A"-"E"](["0"-"9"])+

Table 3: Valid Variable Names

TheVARIABLEis the defined as the name of random numbers or the name of the item
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computed by an assignment. TheSHAREis classified as the name of additive shares. The
BITSis used to represent the name of the bits extracted from a32 bit long data.

By observing the protocols in chapter 4, we can generalize the following common
actions:

1. The actors can generate uniformly distributed random numbers.

2. The actors may send messages to other actors.

3. The actors need to compute some results based on the information they already know.

4. The protocol may import other protocols as its sub protocols.

Correspondingly, we define the grammar for these actions as follows:

1. For presenting that an actor generates random numbers, weuse the sentence as

Actor_Name: Random( VARIABLE 1, . . . ,VARIABLE n ) .

The Actor_Nameis the name of the actor who generates the random numbers, the
actor name can beA, B, C, D or E. The signRandomindicates that the variables,
whose names are shown in the parenthesis, are initialized asuniformly distributed
random numbers.

For example, the statement

A: Random(r12, r13, r14)

means that Alice generates three uniformly distributed random numbers, whose
names arer12, r13 andr14.

2. To show that an actor sends a message to the other actor, we write a sentence as

Sender_Name→ Receiver_Name: Message_Name1, . . . , Message_Namen .

TheSender_NameandReceiver_Nameare actor names, which can be chosen from
A, . . . , E. The sign→ indicates that the messagesMessage_Name1, . . . , Message_Namen

are sent from the actorSender_Nameto the actorReceiver_Name. TheMessage_Name
can be in form ofVARIABLE, SHARE or BITS.

For example, the statement

A → B : r12, sA, rA0

means that Alice sends three messages to Bob, and these messages are a variable, a
share and a32 bit long message that represents the first bit of the sharerA.

3. For computing the assignment, we can use the sentence as
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Actor_Name: Result_Name = Expression.

The Actor_Nameis the name of the actor who computes theExpression. TheRe-
sult_Nameis the name of the computing result, which should be in the form of VARI-
ABLE. TheExpressioncan be any expression, as long as all the arithmetic signs used
in the expression are included in Table 2, and all the elements’ names are in the form
of what shown in Table 3.

For example, the statement

A : d12 = −2 ∗ a12(sA + b12)

means that Alice computes the expression−2 ∗ a12(sA + b12) and the result is
denoted asd12.

4. To import other protocols as sub protocols, we can use the following sentence

Subprotocol: Actor_Name1 : Output_Name1, . . . ,Output_Namen,

. . . ,Actor_Namen : Output_Name1, . . . ,Output_Namen

= Subprotocol_Name ( Actor_Name1 : (Input_Name1, . . . ,Input_Namen),

. . . ,Actor_Namen : (Input_Name1, . . . ,Input_Namen)) .

The signSubprotocolindicates that a call of an instance of the sub protocol, whose
name isSubprotocol_Name, is made. In current version of the program, theSubpro-
tocol_Nameshould beMultiplication, DuAtallah, TwoOutFiveor shareconversion.

The sentenceActor_Name : Output_Name1, . . . ,Output_Namen means that by im-
porting the instance of the sub protocol, the name of then outputs of an actor, whose
name isActor_Name, will be Output_Name1, . . . ,Output_Namen. It is required that
the outputs of all actors participating in the sub protocol should be specified.

On the other hand, the sentenceActor_Name : (Input_Name1, . . . ,Input_Namen)
means that the actorActor_Namewill input n messages, whose names areInput_Name1,
. . . ,Input_Namen while calling the instance of the sub protocol.

The setting of inputs and outputs of each actor should be in the same form as what
is declared in the original content of the sub protocol.

For example, the statement

Subprotocol: A:a12,B:b12,C:c12,D:d12,E:e12= TwoOutFive(A:(uA),B:(vB))

means that an instance ofTwoOutFiveprotocol is called as a sub protocol, and it is
specified that while Alice inputs shareuA and Bob inputs sharevB, the name of
the results of this instance ofTwoOutFiveprotocol should bea12, b12, c12, d12 and
e12.
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After we have shown the rules of how each sentence can be composed, we will present
the requirements of how to construct the whole protocol. Each protocol can be divided into
three parts:

1. Declaration of inputs: the grammar of declaring the form of inputs is

Input: Actor_Name1 : (Input_Name1, . . . ,Input_Namen),

. . . ,Actor_Namen : (Input_Name1, . . . ,Input_Namen)) .

The wordInput indicates that the following part of this sentence specifiedwhich
actors will submit inputs in this protocol and what are the names of those input
items.

2. Main body: the content of the protocol is written in this part. What actions each
actor takes and which instances of protocols are imported are specified here.

3. Declaration of outputs: the outputs are declared by using the sentence

Output: Actor_Name1 : Output_Name1, . . . ,Output_Namen,

. . . ,Actor_Namen : Output_Name1, . . . ,Output_Namen .

The wordOutputstates that the rest of this sentence defines the names of the outputs
of this protocol for all actors, who participate in this protocol.

Let us take the Du and Atallah protocol as an example. Following our grammar rules,
the Du and Atallah protocol can be written as:

Protocol 7 Du and Atallah Protocol
Input : A : (uA), B : (vB); //Declaration of input

C : Random(r31, r32);
C → A : r31;
C → B : r32;
A : f12 = uA + r31;
B : f21 = vB + r32;
A → B : f12;
B → A : f21;

A : dA = −f12 ∗ f21 + uA ∗ f21;
B : dB = vB ∗ f12;
C : dC = r31 ∗ r32;

Output : A : dA,B : dB,C : dC //Declaration of output

The last rule of writing a protocol is that except for the lastsentence, we must use
a semicolon to indicate that one statement ends. In other words, the sentence without a
semicolon would be taken as the last sentence.

49



6.3.2 Generating the Full Protocol

One of the special features of our implementation is that it can automatically import the
instances of other protocols that already exist in our program. Hence, while writing the
input protocol, we do not need to specify every message exchanged between the parties
any more. Instead, we can designate what instance of which protocol we need to import,
then the parser will generate the full protocol automatically and correctly.

As we mentioned in the former section, the statement of importing an instance of a sub
protocol is as follows:

Subprotocol: Actor_Name1 : Output_Name1, . . . ,Output_Namen,
. . . ,Actor_Namen : Output_Name1, . . . ,Output_Namen

= Subprotocol_Name ( Actor_Name1 : (Input_Name1, . . . ,Input_Namen),
. . . ,Actor_Namen : (Input_Name1, . . . ,Input_Namen)) .

This statement specifies the following information:

1. Which protocol will be imported as the sub protocol.

2. Who participates in this instance and who submits the inputs.

3. What are the names of inputs and outputs of the sub protocolinstance.

As shown in Figure 7, the full protocol is constructed using the following approach.

Figure 7: Approach of Constructing the Full Protocol

The input protocol is processed from statement to statement. Except for the statement
of importing a sub protocol, all other statements are copiedintactly into the full protocol. If
an instance of sub protocol needs to be imported, the contentof the designated sub protocol
saved in our system is modified to meet the requirement of the sub protocol importing
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statement. After that, the content of the instance of the protocol will be copied into the full
protocol.

The content of the full protocol must meet the following requirements:

1. There is no grammar error in the full protocol and different messages have different
names.

2. It is the exactly correct extension of the input protocol,and each instance of sub
protocols is correctly formed.

To meet these requirements, we implemented an algorithm to construct the instances of the
imported protocols as follows:

• First, while parsing the input protocol, the parser does notonly check the protocol’s
grammar, but also saves the name of each item of the input protocol into a vectorV .

• Second, after the grammar is checked, the construction of sub protocol instances
begins:

1. For each import statement, the algorithm first saves the items which specify the
participating actors and their outputs into a vectorOut, and the items which
indicate the actors who submit inputs and their inputs into avectorIn.

For example, for the statement

Subprotocol: A : a23, B : b23, C : c23 = DuAtallah(B : (uB), C : (vC)) ,

the algorithm will generate two vectors asOut = [A, a23, B, b23, C, c23] and
In = [B,uB,C, vC].

2. The algorithm opens the sub protocol, which is designatedin the import state-
ment, and gets its input and output declaration statements.Then the algorithm
extracts the input and output information from the sub protocol, and saves them
into two vectorsSout andSin, whereSout contains the actors who is partic-
ipating in the sub protocol and their outputs, andSin includes the actors who
submit inputs and their inputs.

For example, for the statement in the former step, the algorithm opens the
Du and Atallah protocol as Protocol 7, and generates two vector asSout =
[A, dA,B, dB,C, dC] andSin = [A,uA,B, vB].

3. The algorithm goes through the sub protocol, and changes all the items in vec-
torsSout andSin to the items in the same position of vectorsOut andIn. All
the items been changed are marked to prevent being changed again.

4. For each other item in the sub protocol, the algorithm willreplace them using
the following approach:

– First, the algorithm generates two vectorsSvariable andV ariable, where
Svariable saves the items need to be changed andV ariable saves the
final item name.
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– If the item is not inV , the algorithm will not change it, but this item needs
to be added intoV .

– On the other hand, if the item is already inV , check if it is inSvariable.
If it is in Svariable, do nothing.

– If it is not in Svariable,then the algorithm adds the name into the vector
Svariable and finds a new available name for it. After the name is gener-
ated, the algorithm adds the name into the vectorV ariable and the vector
V .

– After all items are checked, the algorithm will go through the sub protocol
and substitute the items inSvariable to the item in the same position in
V ariable.

After the instance of sub protocol is constructed, except for its input and output decla-
rations, other statements will be copied into the full protocol. Therefore, the full protocol
contains one input declaration, one main body without sub protocol import statements and
one output declaration. Except for the output declaration,each other statement ends up
with a semicolon.

6.3.3 Future Extension

The current version of our implementation is especially designed for analyzing the SHARE-
MIND protocols with no more than five actors. Hence, only five actor names are defined
in our protocol grammar. It can be easily extended to analyzeprotocols with more than
five parties by defining more actors in the parser code. Note that when new actor names
are defined, the scope of valid variable names should be changed too.

When new protocols are composed, their names can be added into the parser code.
Hence they can be imported as the sub protocols of more complex protocols. On the other
hand, while finding the new name for the item in sub protocols,we can increase the number
of iterations of the renaming algorithm to enlarge the number of proper item names.

6.4 The Protocol Analyzer

The most important component of our implementation is the protocol analyzer. It is in
charge of evaluating the security of the protocols. The normal approach of proving if a
protocol is secure or not is to define an attack scenario first,then analyze whether the
protocol can resist this attack. Hence, while analyzing thesecurity of the protocols, the
names of corrupted parties must be specified in advance.

After the analyzer gets the full protocol from the parser andthe name of corrupted
parties from the user input, the process of evaluating the security of the full protocol,
which is under the attack of designated corrupted parties, is executed as in Figure 8.
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Figure 8: Approach of Evaluating the Full Protocol

The analyzer works using the following approach:

1. According to the corrupted parties’ names, the analyzer looks through the input full
protocol, and extracts all the messages generated or received by those corrupted par-
ties, and saves messages generated by corrupted parties in one list and their received
messages into another list. The sequence of the extracted messages is the same as
their sequence in the full protocol.

2. The analysis algorithm takes the messages extracted in the first step as is input, and
does the analysis on those messages.

3. After analyzing, the analysis algorithm outputs its analysis result as the result of the
analyzer.

We can observe that the essential part of the analyzer is the analysis algorithm. In
the analysis algorithm, the messages received by corruptedparties are classified into five
categories:

1. A random number.

2. The sum of several random numbers.

3. The sum of a secret and a random number.

4. The sum of a secret and several random numbers.

5. The sum of items, which are values of expressions needed tobe computed from other
items.

In addition, the analysis algorithm adds one of the following two pads to each message:

1. Known: it means that all items used to compute this message are originally generated
by the corrupted parties.
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2. Not: it means that there is at least one item used to compute this message unknown
to the corrupted parties.

The goal of the analysis algorithm is to determine if the corrupted parties can figure
out more sensitive information from the messages they hold than they should. It requires
that each message should be uniformly distributed to the corrupted parties. In that case,
the analysis algorithm analyzes the incoming messages of corrupted parties sequentially,
and records the items that make these messages random. We seta randomness determinant
be the item, which makes the value of a message uniformly distributed. Each message is
processed as follows:

1. First, the analysis algorithm checks if the message can bepadded asKnown. If it
can, then the analysis algorithm addsKnownas its pad. It is trivial that the corrupted
parties get no more information from the messages padded asKnown.

2. If the message is not known by the corrupted parties, then the analysis algorithm adds
Not as its pad. After that, the analysis algorithm checks which type the message is,
and does different operations according to the different types of messages:

• If the message is a random number, the analysis algorithm goes through the
former messages in the list of received messages and checks if there is any
message, which is computed from secrets and other items, hasonly one ran-
domness determinant and it is the same as this random number.

For example, the message isr12 and we found a former message which can be
expressed asr12+ sA, then the corrupted parties can get secretsA. These two
messages compromise the security of the protocol.

• If the message is the sum of several random numbers, the analysis algorithm
checks if all these random numbers are used in the computations of the former
messages. If the answer is yes, then the algorithm counts thenumber of the
time each random number appears in the former messages. If the counting
results are the same as the times of the corresponding randomnumbers appears
in this message, then the protocol is insecure.

For example, the new message isr12+r13+r14+r23, the protocol is insecure
if we find the former messages assA + r12, sB + r13 andsC + r14 + r23,
because the corrupted parties can compute the value ofsA + sB + sC.

• If the message is the sum of a secret and a random number, the process of
checking the security of the protocol is the same as for the first type of mes-
sages. If the corrupted parties still can not figure out more information after
they received this message, the algorithm records the random number as the
randomness determinant of this message.

• If the message is the sum of a secret and several random numbers, the process
is the same as for the second message type. Its randomness determinants are
the random numbers that have not been used as randomness determinants of
other messages.
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• If the message is the sum of items needed to be computed by other items, the
algorithm extends it to the form that each item used to compute the message is
a random number or a secret. Then the analysis algorithm determines which
type this message is and follows the process of that message type.

While evaluating messages received by corrupted parties, if any message is detected
to compromise the former messages, the analysis algorithm stops the evaluating process
and makes the report. The report shows the index of the message that will compromise the
privacy of secrets.

If after receiving all the messages, the corrupted parties still cannot get more informa-
tion than they should, then a security report is made by the analysis algorithm. The security
report includes all the received messages, their randomness determinants and their status
paddings.

6.5 The Simulation Generator

As mentioned above, the real world protocol securely realizes the ideal functionalityF if
for any real world adversary, there exists a simulator communicates withF in the ideal
world that the output distribution of the adversary communicates with the real world pro-
tocol and the output distribution of the adversary communicates with the simulator are
indistinguishable from each other. Hence, the simulator isvery important in the security
proofs of protocols. The goal of our implementation is to analyze the input protocol and
prove its security by presenting the simulation result of corrupted parties.

The simulation generator in our implementation plays the role of a simulator. It takes
the analysis report of the protocol analyzer and the full protocol as its input. If the report
shows that the protocol is insecure, the simulation generator halts.

If the analysis report indicates that the protocol is secure, the simulation generator reads
statements sequentially from the full protocol and generates the simulation result using the
following approach:

1. For each statement, if no corrupted parties participate in the action depicted in the
statement, the simulator generator does nothing.

2. If the corrupted parties participate in the action, then the simulation generator oper-
ates differently according to the type of the statement:

• For the statement meaning that the corrupted parties send messages to honest
parties, the simulation generator changes the name of the message receiver as
the name of the simulator.

• For the statement showing that the honest parties send messages to the cor-
rupted parties, the simulation generator replaces the nameof the message sender
to the name of the simulator, then makes further operations according to the tag
of that message in the analysis report:

– If the message is tagged asKnown, the rest of the statement remains the
same.
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– If the message is tagged asNot, the simulator generator prints a statement
to generate a random number, and changes the content of original state-
ment to the name of the new random number.

• For other types of statements, the simulation generator copies them intactly
into the simulation result report.

In a word, the output of the simulation generator is a protocol which shows the process
of how the corrupted parties communicate with the simulator. By comparing the simulation
result with the full protocol, we can observe that for the corrupted parties, the distribution
of the messages received from the simulator and the distribution of the messages received
from other parties are indistinguishable. It also proves that our analysis result is correct.
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7 Conclusion

In this thesis, we present a framework for analyzing the security of secret shared protocols.
Our main goal is to build a software, which can automaticallyprove the security of the se-
cret shared protocols. We achieved this goal, and the practical implementation is presented
in this work.

Our solution is based on the theory that a real world protocolsecurely emulates an
ideal functionality if for any real world adversary there exists a simulator in the ideal world
such that the adversary can not distinguish if it is communicating with the protocol or the
simulator.

Our solution is especially designed for the secret shared protocols with no more than
five computing parties. The additiven-out-of-n secret sharing scheme is used for dis-
tributing the secrets between parties. In this thesis, we present three party computation
protocols for several operations on shares, which are computed by additive secret sharing
scheme. These operations are addition, multiplication by aconstant, multiplication, share
conversion and bit extraction. We use both informal and formal methods to prove that in
the semi-honest adversary model, where the adversary can only corrupt one party, no party
can figure out more secrets than he should in these protocols.

The result of our solution is the implementation software called AutoProver, which is
written in Java programming language. A tool called JavaCC is used for generating the
protocol parser. AutoProver is a cross-plarform application which can be executed on Java
virtual machine version 1.2 or greater. As no network connection is needed, the AutoProver
works on single computer. We also present the manual and the source code of the current
version of AutoProver.

Our implementation consists of three components, the protocol parser, the protocol
analyzer and the simulation generator. A set of protocol grammar is defined for the parser.
Except for checking the grammar of input protocols, the parser can construct complex full
protocols by automatically importing the instances of other protocols as what are specified
in the input protocols. The protocol analyzer takes the fullprotocol and the names of
corrupted parties as its inputs. By evaluating the messagesgenerated and received by the
corrupted parties, the analyzer reports whether any secretcan be compromised by these
corrupted parties. If no party can get more information thanhe should, the simulation
generator constructs the simulation results. For protocoldebugging, the execution result of
each component is saved in a.txt file.

We have composed a number of protocols, which are saved in oursoftware. We have
tested our implementation on these protocols, and it works very well. The instruction of
how to compile and execute the AutoProver is presented in theappendix. In future, the
AutoProver can be easily extended to meet the requirements of more complex protocols.
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Hajusarvutusprotokollide automaatsed turvatõestused

Kokkuvõte

Käesolev magistritöö esitab raamistiku hajusarvutusprotokokollide turvalisuse automaat-
seks tõestamiseks. Raamistik on realiseeritud tarkvarapaketina, mis vastavaid tõestusi pro-
tokollide formaalsetest kirjeldustest genereerida suudab.

Protokollitõestuste genereerimisel kasutame reaalsevs ideaalse maailma ideoloogiat
ning turvadefinitsiooni, mille kohaselt protokoll on turvaline, kui reaalset protokolli saab
niimoodi simuleerida, et ründaja ei suuda eristada, kas ta töötab reaalses või ideaalses
maailmas. Töös loodud turvatõestuste leidja põhiline komponent ongi vastavate simulaa-
torite genereeraator.

Esitatud tarkvara suudab automaatselt tõestada protokolle, mis kasutavad aditiivset
ühissalastusskeemi ning pakuvad turvalisust ründajate vastu, kes suudavad passiivselt ko-
rrumpeeridan arvutavat osapoolt2n + 1-st. Praktikas valitakse enamastin = 1, aga töö
tulemusena valminud automaattõestaja saab hakkama ka suurema hulga osalistega pro-
tokollidega. Töös on toodud levinumate protokollide (liitmine, konstandiga korrutamine,
korrutamine, bitieraldus ja osade teisendamine) mitteformaalsed tõestused ning näidatud,
kuidas muuta neid formaalselt genereeritavateks ja verifitseeritavateks.

Automaattõestaja on realiseeritud programmeerimiskeeles Java (virtuaalmasina ver-
sioon 1.2 või kõrgem), kasutades JavaCC parseriraamistikku. Programmipaketi sisendiks
on protokolli formaalne kirjeldus töö käigus loodud kõrgkeeles, mis sisaldab vajalikke
primitiive (juhuväärtuste loomine, sõnumite saatmine, aritmeetilised tehted, alamprogram-
mide väljakutsed). Väljundiks annab pakett analüüsitud protokolli ja juhul, kui selle turval-
isus õnnestus tõestada, ka vastava simulaatori. Programmipakett koos dokumentatsiooni ja
rea testprotokollidega on esitatud käesoleva magistritöölisades.
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A Manual of Our Program

Our program named AutoProver is an automated analyzer of secret shared protocols, and it
is a generator of the protocols that can be easily followed bythe simulators. AutoProver is
written in Java programming language, and it can be executedon any Java virtual machine
version 1.2 or greater. In this appendix, we will introduce the features of AutoProver, how
to compile and run the program and the API of each class of the source code.

A.1 Specific Features

The specific features of AutoProver are as follows:

1. Simple Inputs: It is hard to write long and complex protocols. The protocol writer
may spend a lot of time to check the validity of the protocol’scontent. As a cure
for this, AutoProver provides an automatic protocol extension function. Hence, the
protocol writer just need to specify the instances of the subprotocols he or she needs
to import, then AutoProver will do the rest to form the complex full protocols.

2. Automatic Analysis: While running the program, the user just needs to specify the
name of the protocol which is going to be analyzed, and the names of the corrupted
parties. Then AutoProver will automatically analyze the protocol and output the
simulation results based on the analysis results.

3. Understandable Outputs: After running the program, we can get the syntax tree
of the parser, the full protocol, the analyzing result and the simulation results. Each
of them are saved in a.txt file. The user can check if there is any error during the
process of executing the program.

A.2 Compilation and Execution

Before compiling the program, the user should copy the program from the CD to his or
her hard disk. Let us denote the directory that the program issaved in as %AutoProver
Home%. The program directory should contain the following files:

• %AutoProver Home%:

– NewParser: %code of the parser written in JavaCC

∗ NewParser.jjt

∗ SimpleNode.java

– Analyzer.java %code of automatic protocol analyzer

– Simulator.java %code of the automatic simulation result

% generator

– Protocols: %predefined secret shared protocols

∗ shareconversion
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∗ DuAtallah

∗ Multiplication

∗ TwoOutFive

∗ TwoOutFiveMultiplication

∗ BitExtraction

If all files are saved, the user can compile the program by using the following com-
mands:

1. To compile the parser:

(a) Go into the directoryNewParser, then print the following command:

jjtree NewParser.jjt

to compile the JJtree file. Then the JavaCC would generate thefollowing files
automaticly:

• NewParser.jj

• JJTNewParserState.java

• NewParserTreeConstants.java

• Node.java

(b) Then the user should print the following command to compile the JavaCC file:

javacc NewParser.jj .

If the compilation succeeds, JavaCC would automatically generate the follow-
ing files:

• NewParser.java

• NewParserConstants.java

• NewParserTokenManager.java

• ParserException.java

• SimpleCharStream.java

• Token.java

• TokenMgrError.java

(c) Finally, the user needs to return to the %AutoProver Home% directory and
compile the parser by using the command:

javac NewParser\NewParser.java

2. To compile the analyzer, the following command is needed:

javac Analyzer.java

3. The user can use the following command to compile the simulation generator code:

javac Simulator.java
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After successfully compiling the program, the user can use the following commands to
run the program:

1. To run the parser only, please use the command:

java NewParser.NewParserprotocol_name

The parser outputs are saved in files:

• ParseOuput.txt: it contains the syntax tree of the protocol.

• FullProtocol.txt: it contains the full protocol which includes the content ofthe
sub-protocols specified in the input protocol.

2. To run the analyzer, which imports the parser code, pleaseinput the command:

java Analyzerprotocol_name [actor_name]+

The analyzing outputs are saved in file:

• AnalysisOutput.txt: it contains the analysis result.

3. To run the simulator, which imports the analyzer code, please print in the command:

java Simulatorprotocol_name [actor_name]+

The simulation result is saved in file:

• Simulator.txt: it depicts the simulation.

A.3 AutoProver API Routines

We will introduce a comprehensive list of all classes, methods and variables, which are
available for further code extensions, as follows:

1. TheSimpleNodeclass provides functions for the nodes of the resultant parser tree
of the input protocol. It also contains the functionality ofgenerating the full protocol
of the input protocol. Its API is shown in Table 4.

Name Description
void process (PrintWriter ostr) Print the tokens into a file
public void preprocess() Save all tokens into a vector
public void getVeriable(Vector v) Get the names of items in the input protocol
public void importProtocol Change the parameter names of the sub-ptotocol
(Vector v, PrintWriter ostr) according to what is specified in the input

protocol and print the result to a file
void dumptofile Print the parser tree to a file
(PrintWriter ostr, String prefix)

Table 4: API of Class SimpleNode
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2. TheAnalyzer class provides functions to analyze the parsed protocol andprint out
the analysis results, whose API is shown Table 5.

Name Description
public void preparseFile Implement the parser to generate the full protoc
(String file_name) throws Exception -ol of the input protocol
public void parseFile Parse the full protocol
(String file_name) throws Exception
public Vector getTokens() Save the tokens of the full protocol into a vector
public Vector getAllRandom() Generate a vector which contains the names of

all random numbers
public void getRandomItems Generate a vector which contains the names of
(Vector actor) random numbers generated by corrupted actors
public Vector getAssignments() Generalize all the assignments and save them in

a vector of vectors
public void getActorView Get all the messages sent to corrupted actors,
(Vector actor) which excludes the messages they send to each

other
public Vector getActorAssignment Get the assignments computed by the corrupted
(Vector actor) actors
public Vector extend(Vector temp) Extend the assignment till no items can be

represented as other assignments
public Vector analysis() throws ExceAnalyze whether the joint view of corrupted ac
-ption -tors is secure or not

Table 5: API of Class Analyzer

3. TheSimulator class generates the simulation results if the protocol is determined as
secure by the Analyzer, and its API is as in Table 6:

Name Description
public void simulate(Vector input) To generate the simulation results based on the
throws Exception vector which contains the analysis outputs
public String getVarName(Vector v1Find a proper name for the random numbers
, Vector v2, Vector actor, Vector vi) generated by the simulator

Table 6: API of Class Simulator
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