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1 Introduction

1.1 Problem Statement

Nowadays, as a result of rapid decreasing of the price chgéodevices, peoples prefer to
store their information digitally in databases. Those basas, which contain the personal,
medical and financial information of the data donors, arssile@ed as sensitive. Only
authorized organizations have the right to process thdtsendata.

However, the extensive implementation of online informatsystems not only make
the use of data more convenient, but also provide an easietongbuse the data. Hence,
a lot of research organizations try to devise their methodgiiocessing the sensitive data
without compromising the privacy of individuals. In thetléaso decades, a lot of proto-
cols meeting this requirement have been proposed. Consigu®w to persuade other
persons that these protocols really keep the individualgapy becomes a new problem.
In other words, they need to provide a method to prove therie@i protocols.

In this thesis, we address the proof method on a specificsiméreture proposed by Dan
Bogdanov. In his master thesis [4], he considers protectensitive data as a multiparty
computation task. He also proposes several secret shastmtgis for computing with
the data without leaking the privacy of any person under gmimption that only few
participants can be corrupted. Our goal is to devise a metlvbath can automatically
prove that in all secret shared protocols no party can figut@ther parties’ secrets.

1.2 General Solutions

To give an impression of how to prove the soundness of a metiewill discuss two pos-
sible solutions. Suppose the method is written in a form a®epeol. For the multiparty
computation tasks, the protocols depict which partiesiqpéte in the computation and
what should they do. We want to give a persuasive proof ofebarity of these protocols.

Solution One: Informal proof. Let us denote the parties that can be coediply the
adversary at the same instance of running the protocol aspted set. In this solution,
we prove the security of a protocol by collecting all the nages generated and received
by parties in the corrupted set, then manually check if thpzséies working together can
somehow figure out the secrets they should not known. Thef pesalt is presented in
human languages, which indicates whether those messagesmo@romise some secrets.
However, although the proof can be easily understood, ibisery convincing.

Solution Two: Formal proof. This solution is based on a theory that if foy ad-
versary that the output distribution of the protocol and dlbout distribution of an ideal
functionality are indistinguishable from each other, tlies protocol is secure. We prove
the security of the protocol by stating that there existsrautator which can translate any
message exchanging between the corrupted parties andedlefushctionality in such a
way that the corrupted parties can not tell if they are usimgprotocol or the ideal func-
tionality.

In this thesis, we build an implementation to prove the sgcof secret shared proto-
cols based on the second solution.



1.3 Outline of the Thesis

In this thesis, we describes the concepts used in desighengecret shared protocols and
the theories used in designing our implementation. Thearrdf this thesis is as follows:

e Chapter 2 introduces the notion related to multiparty coapen. It contains the
basic definitions and the overview of the accomplishmenthisarea. The basic
idea of how to prove the security of a protocol is also memtibim this chapter as a
preliminary to the following chapters.

e Chapter 3 includes the secret sharing schemes. Besideadtedoncepts of secret
sharing, we also introduce different secret sharing sceeand how to do computa-
tion on Shamir’s shares.

e Chapter 4 shows the infrastructure of Dan Bagdanov's implgations and the pro-
tocols proposed by him. The informal proofs of the securityhose protocols are
also presented here.

e Chapter 5 includes the basic theory of our method for pravig introduce the
theory of universal composition and shows how to prove tloeréty of a protocol
by constructing a simulator.

e Chapter 6 presents our implementation AutoProver, whichacsomatically gener-
ate the simulation result. In this chapter, we show the stfeecture of AutoProver,
and make a detailed introduction of each component of thgrano.

e Appendix A contains the introduction of how to use the Autfr program.



2 Secure Multiparty Computation

Suppose Alice and Bob are two millionaires, and they wanhtmkwho is richer. Clearly,
they could just decide to announce to each other how muchymméey have, and both
of them could determine who is the richer one. However, flavg@ane’s net worth to the
other party means losing one’s face if the other party is miiatter.

In that case, what they need is a method allowing them to figutevho is richer in
such a way that both of them get no clue about the other pargt'svorth. Sometimes,
they may even want to carry out this method over a distance.

In this section we will discuss such a method in detail. $ac#.1 contains the defini-
tions related to the multiparty computation. Section 2stdsses two-party computation
as a preliminary. The Real vs. Ideal world approach of evaigaecure multiparty com-
putation is presented in section 2.3. The detailed disonssi multiparty computation is
presented in section 2.4.

2.1 Definition

Assume there are partiesP,, ..., P, work together to compute a multivariable function
F(zi,...,xn) = (Y15, Yn)-

Definition 2.1. Secure Multiparty Computation is a protocol to evaluatection F' in
such a way that both the maximum privacy of the inputs is predeand the correctness
of the outputs is guaranteed.

In other words, except for the values of inpytand outputy;, each partyP; can get
no more information.

In that case, we can model the two millionaires’ example #evis. Let Alice’s net
worth bex; and Bob’s net worth bes. According to the example, the functidnhere is
a greater than function, which outputs the result of congpariwithout leaking any clue
about the values been compared. Several solutions haveobgewsed by Yao [22].

Following the lines of [5, 10, 6, 8], in order to define whathe security of multiparty
computation, we must define an adversary first. An adversamymalicious entity, whose
aim is to prevent the users from achieving their goals. Areegiry may corrupt a set of
parties. Once a party is corrupted, the adversary getstallradd by the party, such as all
the messages the party has sent or received so far.

The adversaries can be distinguished as passive or a®agsive adversarieglso
called eavesdropping adversaries) gather informatiohouit modifying the behaviors of
the parties. Usually, they attack after the execution ofodgmol has completed. However,
active adversarieslo not only read the messages, but also can modify the meassége
corrupted parties. The other distinction is between staitt dynamic adversarieStatic
adversarieqalso called nonadaptive adversaries) control an arpitrat fixed set of cor-
rupted partiesDynamic Adversariegalso called adaptive adversaries) can choose which
party to corrupt during the execution of the protocol, basethe information gathered so
far. Both passive and active adversaries can be static @naign



In order to let the parties collaborate on computing, the@hoflcommunication must
be taken into account. There are two basic models of commtioic The first one is
cryptographic modelin this model, the adversary is able to read all messagébstmeen
all parties, and modify messages exchanged between thgptedrparties. No message
transmitted between honest parties can be modified by thersaly. The second one
is information-theoretic modelln this model, parties communicate with each other over
pairwise secure channels, which means the adversary cagehatcess to any message
exchanged between honest parties. Hence, unlike the grgmioic model whose security
can only be guaranteed in cryptographic sense, the secotel imeonuch stronger. Even an
adversary with unbounded computing power can not read tissages exchanged between
honest parties in the information-theoretic model.

However, if an adversary corrupts all parties, no protoeml loe secure. Therefore, we
need to specify the limitation on the subsets that can beiptad by adversaries, which
is denoted athreshold adversary structuré&Suppose the protocol is secure while no more
thant parties are corrupted and the set of all parties is denotét as

Definition 2.2. The threshold adversary structure is a set of all subsets aP, where
a={R C P :|R| < t}, andR denotes the subset 6f

The adversary may corrupt any one set of parties in the thlgstdversary structure.
If the adversary can corrupt a set of partiesit can also corrupt all subsets 6f

2.2 Two-Party Computation

In two-party computation, there is no need to take extrarigceconsiderations such as
collusion of parties into account. Hence secure two-padiymutation is considered as
a simple scenario in secure multiparty computation. In $ieistion, we will briefly talk
about the primitives, the security of two-party computatmd Yao’s circuit evaluation as
the preliminary of the next subsection. For further disimrss on two-party computation
please refer to papers [10, 16, 22].

2.2.1 Security Goal

According to the two millionaires’ example as we mentionédwe, which is a typical
two-party computation scenario, secure two-party contjmtahould meet the following
requirements:

1. Correctness all parties should get the correct end results.

2. Privacy: each party learns nothing more than his input and what igiéahy the
result.

3. Fairness each party can get a result.

The first two requirements are compulsory, but in some systrmoh as the blind signature
scheme introduced in article [11], the requirement of &éshis not met.



In order to achieve the correctness of the results, botheoptrties should bsemi-
honest they follow the protocol but each of them tries to figure d private value of the
other party.

2.2.2 Important Primitives

Usually secure two-party computation uses oblivious femgommitment schemes and
some other computationally expensive primitives. In tHe¥ang, we make a brief intro-
duction of the first two primitives, both of them are basedl@assumption that trapdoor
one-way functions exist.

A trapdoor one-way function is a function that is easy to catapbut difficult to find
its inverse without knowing a special information, call&e t'trapdoor”. In other words,
in a trapdoor one-way functiofi(z), when the value of: is randomly chosen, the result
of f(x) can be computed in polynomial time. However, no probamiligblynomial-time
algorithm can compute the preimage fifr) with a non-negligible probability, unless it
knows the "trapdoor”.

Oblivious Transfer is a protocol by which a sender sends some information to a re-
ceiver, but remains oblivious about what is received. Aseadirpinary, we just talk about
the general process of "One Out of Two Oblivious Transferthia thesis.

Suppose there are a senderand a receiverR. S holds two secret inputsy and
s1, and R holds a secret selection hit. After a number of exchanges of information
betweenS and R, R gets the secret input, at the end of the protocol without knowing
any information about the other secret inpuyt ;.. On the other hand$ can not figure
out the value of the selection bit held by R. Hence, both the privacy of the sender and
receiver are guaranteed.

This process can be visualized &puts two secret values into two boxes, each box
contains one value, the$i locks the boxes and passes thenfitoR just has a key which
can open one of the boxes, he opens one box and gets the value.

In order to have a better understanding of what obliviousstier is, we take the proto-
col proposed by Even, Goldreich, and Lempel [13] as an exantigk a general -out-of-2
oblivious transfer protocol which can be instantiated vaitly public key algorithm as fol-
lows:

1. AssumeM is the message space. By using the public key algorithigenerates a
public keypk and a secret keyk. ThenS randomly chooses two messagegsand
r1, wherexy, x1 € M. After that,pk, xo andz; are sent taR.

2. R randomly generates a messdges M, and letc = Ency(k). ¢ = ¢+ a3 is
computed byR and sent t&5, whereq € M.

3. S computesky = Decgi(q — x¢) andky = Decgy(q — 1), and sendsg + ko and
s1 + k1 to R. Note that all messages computed and sent are in the megssge S
M.

4. As R knowsk;, he can subtradt, from s, + k;, sent byS to obtain the secret,.



Commitment Schemeds a method that allows a user to commit to a secret value while
preserving the user’s ability to reveal the committed vdduer.

The sendef sends an encrypted value to a receiierS may send the decryption key
to R after several message exchanges to reveal its secret. Hexfoee the revealingk
can not figure out what the secret is, aficcan not change the encrypted value that has
already been sent tB.

This scheme can be imagined as followsputs a value in a locked box, and gives the
box to R. The values in the box is a secret, & can not open the box. On the other hand,
becauser obtains the boxS can not change the value in the box any more. Wierants
to show that he really putin the box,S just needs to send the key of the boxitpthenR
can check the value by opening the box.

We take the bit commitment scheme proposed by Moni Naor [4&reexample. As-
sume that there is a cryptographically secure pseudo-ramdonber generatatr, which
generates 8n-bit number from an bits input. Following the protocol, the sendg&rcom-
mits to a bitb as follows:

1. Commitment: R selects &8n bit random number and sends to the receivers.
ThenS generates a bit numberxz and computeg = G(x). If b = 1, S sendsy to
R, otherwiseS sends” & y to R.

2. Reveal: To reveal the secrét,sendsr to R, then R computes&(x) and compares
the result with what he received frofto get the value ob.

2.2.3 Circuit Evaluation

Yehuda Lindell and Benny Pinkas [17] have given a detailegtidgtion and a sound proof
of Yao’s two-party computation protocol [22] in their workollowing their lines, in this
section, we will present Yao’s garbled circuit and show ¥ageneral protocol in details.

Assume there are two parties, Alice and Bob. Alice’s input is and Bob's input
is xp, Wwherez4 € {0,1}"4 andzp € {0,1}"2. They want to get the result of the
computation on these two inputs, without leaking their isptio the other party. Hence
Alice (or Bob) constructs a garbled circdit, which evaluates the functiofi: {0,1}"4 x
{0,1}"8 — {0,1}".

There are three kinds of gates@h input gate, internal gate and output gate. Each gate

has two input wires and an output wire. The values of inputgate the bits of 4 andzx .
The internal gates, which are determined by the functiog toenpute, take inputs from
other two gates. The output value of an output gate is itstjrgnd its output wires can not
be used as input wires of any other gates. In a word, a garbladta” is composed by a
number of garbled gates.

As C is a boolean circuit, what each internal ggt@eeds to compute is a function
fq:{0,1} x {0,1} — {0,1}. Assumey takes inputs from wires); andw,, and delivers
output to the wirews. In order to keep the privacy of data, two random valkf¢sandk,,,
are specified for each wire; as the keys. They are generated in such a way that even if
one party knows the valuléjji, whereb € {0, 1}, he can not figure out i = 0 orb = 1.

10



Assumeg gets two inputskf and k:g What ¢ wants to compute isg"g(“*ﬁ), while
hiding other three values*!' =% Js(*1=0) and pfs(=*1=%) = As a result of that,
we need to implement a special private key encryption schgié’, D), in which the
distribution ranges of the plaintext encrypted by diffdéregys are different and the ranges
of corresponding cyphertexts are elusive from each otimer,tlae ciphertext can only be
correctly decrypted by the correct key, otherwise the autplibe 1. Therefore, we use
the four possible inputs?, k1, k9, k3 as encryption keys and build a garbled computation
table as Table 1:

Input Wirew, | Input Wirews | Output Wirews | Garbled Computatior
0,0 (0,0)

K K kéfgimz Eyo(B, g(/ffg( )))

kY k3 k3 Eko(Ek;(kgg )
1,0 g(1,0

K 2 ke B (Byg (k3"))
1,1 g(1,1

K K Ryt B (B (kD))

Table 1: Garbled Computation Table

According to the table, the outpﬁgg(“’ﬁ ) of gateg is computed as follows: for each
possible garbled computation value in the fourth columnaifl@ 1, compute

Dk[i(Dk(f(Eki(Ek%'(kg‘{](i7j))))), wherei, j € {0,1}. If less than three decryptions return
2

L, then abort the output. Otherwise, the decrypted moralue is the value oﬁ:g”g(a’ﬁ).
As mentioned above, a garbled circuit is composed from a eurobgarbled gates.
Hence,C is constructed according to the following rules:

1. AsC'is constructed to evaluate the functign {0,1}"4 x {0,1}"8 — {0,1}", it
containsn 4 + np input gates and output gates.

2. There aren wires inC', which are in charge of transferring the data between gates.
The rule of labeling wires is that the output wires of the sgaie are using the same
label. The wires of the same label hold the same pair of keykalh keys are chosen
independently on the others.

3. The outputs of input gates and internal gates can be thesibpan arbitrary number
of other gates. However, the outputs of output gates canenased as inputs.

4. A garbled computation table is built for each gate, andtliput tables which depict
how to decrypt the circuit outputs are created.

In a word, the entire garbled circuit of function f consists of garbled gates, a garbled
computation table for each gate and the output tables.

Now let us have a look at Yao's general two party computatiaqgzol, which imple-
ments the garbled circuit to compute the functjoand uses oblivious transfer to keep the
privacy of the input data. The protocol is as follows:

11



1. Alice constructs a garbled circuit, which evaluates the functiofi : {0,1}"4 x
{0,1}"5 — {0, 1}" as described above, and selitis Bob.

2. Set the output wires of Alice’s input gates be denotedas. . , w, , , Which corre-
spond to Alice’s input bits 4, . . ., T A, ,- Alice sends Bob the ke;}sf"‘1 s kzj”f‘ .

3. Let the output wires of Bob’s input gates g, ,1,...,w,,+n;. Alice and Bob
execute a 1-out-2 oblivious transfer protocol to oblivigusansfer the key&fj i to
Bob, whereb; is theith bit of Bob’s input.

4. After Bob receives the garbled circuit and then4 + np keys, he computes the
circuit and gets the resuft(z 4, z5). After that, Bob sendg(z 4, z5) to Alice, then
both of them output the result.

2.3 Approach of Evaluating Security

Great effort has been put into formulating definitions that adequately express the intu-
itive notion of the security of multiparty computation inffdrent adversary models. The
basic idea underlying all these efforts is to guaranteettitomputational distance be-
tween running a secure protocol and carrying out an idehtinenputational process where
security is guaranteed is negligible.

Beaver [1] introduced the following methodology for defigisecure multiparty com-
putation. First, an ideal model is formulated. In this modee evaluation of a multiparty
function is perfectly secure. Second, we execute a secotequl 7 for evaluating some
functions of parties’ inputs in the real-life setting, undlge requirement that it is "equiva-
lent" to evaluating the function in the ideal model. In othards, an ideal world specifies
the required behavior of a protocol and rules out unwantexs,owhile the real world is
where protocols and attacks are executed on. When the ptotas secure, its output is
indistinguishable from the output of the ideal world.

Based on the work of Cramer and Damgard [11], in the followiag of this section,
we will introduceThe Ideal vs. Real World Approachin detail.

As shown in Figure 1, we assume that there is an incorrupbidey calleddeal Func-
tionality £ in the ideal world structure. There is no communication leetwthe parties,
instead they hand their inputs 6, who computes the desired outputs and hands them
back. AsF is incorruptible, it always correctly executes the reqlicemmands in such a
way that except for what is supposed to be sent to the partyare information is leaked.
F contains the following interfaces: an input and an output fr each party, and the
input and output ports for communicating with the advers@m the right part of Figure
1 is the structure of the real world. In the real world, alltpe directly communicate with
each other.

In both ideal world and real world, the adversary controlec$ corrupted parties.
It only learns (passive adversary) and perhaps modifievéaativersary) the inputs and
outputs of corrupted parties. In the ideal world, the adugre&xchanges messages with
ideal functionality ' on behalf of corrupted parties through corrupted input amigbuat
ports. In the real world, except for the ports for communigaivith other parties, each

12
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Figure 1: Structure of Ideal and Real world

party has corrupted input and output ports to exchangerirdtion with the adversary. We
suppose the corrupted parties still follow the protocol,paoty may abort the protocol
before completing the computation.

Each round in the ideal world follows the following rules:

1. Input: Each party initializes its inputs. The corrupted partiegistheir inputs to the
adversary.F’ reads input of uncorrupted parfy from port I;. F' gets the inputs of
corrupted parties through patf.

2. Compute: F' does the computation on inputs and get the outputs.

3. Output: F sends output to each uncorrupted paftyon portO;, the outputs of
corrupted parties are sent on poxj.

Each round in real world follows the following rules:

1. Input: According to the protocol, all parties send messages todteep they should
send to.

2. Compute: Each party locally does computation on its inputs and get®thiputs.

3. Output: Each party sends the output to other parties according tprtitecol. The
corrupted parties send their inputs, outputs and receivestages to the adversary.

We say that a protocaot is perfectly securd for any adversary attacking in the real
world, there is an adversary in ideal world that can indueestime output distribution in
the ideal world as the output distribution of the real wottdother words, the protocal is
perfectly secure if using the protocol and using the ideatfionality are indistinguishable
to the real world adversary. How to simulate this proceskheildiscussed in section 5 in

detail.

13



2.4 General Multiparty Computation

Usually an-party computation, where is larger than two, is an extension of two-party
computation. However, under the conditionnoparties computing together, more security
considerations such as collusion of parties should be takenaccount. The problem
of secure multiparty computation takes different formsoading to the difference of the
power of adversaries, the underlying network, the amourtisifust the parties have in
each other and in the network.

In the past few decades, a lot of works on multi-party comjpuriain various security
models have been done. A breakthrough was achieved by BeBeltwasser, Wigderson
[2] and Chaum, Crepeau, Damgard [8] independently in laB049 They demonstrated
that there exists a protocol that evaluates a funcfiavith perfect security while less than
a third of the total number of parties are corrupted. Morecipally, the protocol can
tolerate a malicious subset of sizewith an adaptive and passive adversary, and tolerate a
malicious subset of siz& with an adaptive and active adversary. A year later, Rabth an
Ben-Or [20] proved that in the presence of authenticateéddwast channels, statistical
security of any function is guaranteed while less tdapartes are corrupted by active
adversaries.

In the following part, we will discuss the multiparty comption protocols in semi-
honest nonadaptive adversary case and semi-honest a&daptrersary case separately.
The definition of these protocols follows the Ideal vs. Reatldrapproach as we men-
tioned above. For Further reading on the composition of ipauity computation protocols
please refer to papers [6, 5].

2.4.1 Nonadaptive Case

In this section, we define the semi-honest nonadaptive sdmecase in the Ideal vs. Real
world approach presented in section 2.3. We first describpalver of ideal adversary and
the ideal process. After that, we present the real world r@dwe and real world model.

The goal of Ideal vs. Real world approach is to let the prdtacd ideal functionality
be indistinguishable in the entire environment. The emriment contains not only the
adversary, but also other objects such as the system thinrapts the protocol. Hence,
we also need to consider auxiliary input from the environinen

Ideal Adversary V is a computationally unbounded machine, which controlshre
havior of corrupted parties. As a nonadaptive adversappase thal” has already cor-
rupted less tham parties { < 7), and it can not corrupt more parties since the protocol
is executed. Onc® corrupts a party, it gets the party’s input, output and alssages
sent and received by that party. A corrupted party staysgbeimrupted until the end of
the protocol. As a semi-honest adversaryepresents the corrupted parties to follow the
protocol while wondering about what the secretliscan not modify any messages.

In The ideal processof semi-honest nonadaptive case, similar to what we meadion
in section 2.3, there is an incorruptible third paftyvhich implements the ideal function-
ality F' as defined in section 2.1. The trusted third party is in chafgeomputation and
communication with parties and the adversary. The idealge®is as follows:

14



1. Input: Each partyP; gets its private dat&;. Note that the private data can be se-
crets generated h¥, itself, or shares computed from secrets by using secreinghar
schemes introduced in section 3. The adversarsees all the inputs of corrupted
parties, but it can not get any information about uncorrdarties’ inputs.

2. Computation: Each party sends its input to the incorruptible third partyAfter
evaluating the functiori]’ sends the output to corresponding parties.

3. Output: Each honest party follows the protocol and outputshowever the cor-
rupt parties outpup; = L, meanwhile the adversary outputs some function of the
information gathered during the computation in the ideatpss.

Denote the auxiliary input from the environment as Let ADVry (z1,..., 2y, 2)
denotes the output of ideal adversaryon auxiliary inputz, while interacting with each
party P;, whose input isS;, and the ideal functionality’. Let IDEALpy (z1,...,%p, 2)
denote the output of ideal process, where

[DEALF,V(xl, ey Ty, Z) = (ADV}Qv(xl, ey Ty, Z),yl, v ,yn)

TheReal Adversary A is similar to the ideal adversafy. A is also a computationally
unbounded machine that controls the behavior of corrupteties. A is an adversary,
who halts when more thanparties are corrupted. As a nonadaptive adversaigan just
choose one subset of parties to corrupt. Once a party ispteduit stays as corrupted
until the end of the protocol. Besides learning all inforimatheld by corrupted partieg}
can also get auxiliary input from the environment.

Now we describd he Real ProcessThe protocol we need to evaluate is denoted.as
In the real world, there is no trusted third party. All pastend the adversary communicate
with each other directly. The computation proceeds in reuideach round, the corrupted
parties send their own messages after they get and learngbsages sent by uncorrupted
parties. Each round works as follows:

1. Input: All parties generate their messages for this round accgrdinhe protocol.
Then each party follows the protocol and sends the messagethdr parties. At
the end of this phase, uncorrupted parties receive all thesages that should be
addressed to them in this round. Then the corrupted padied all messages they
hold, including the messages they generated and receo/étg adversary.

2. Computation: All parties compute their output locally as required by thetpcol.

3. Output: The uncorrupted parties output the results they computddsmound. On
the other hand, the corrupted parties send their outputtadiiersary and output.
Then the adversary outputs some arbitrary function of alldata it knows.

The whole process of real world model, which integratesalhds, is as follows:

1. Input: Each partyP; gets its private dat&;. Note that the private data can be se-
crets generated h¥, itself, or shares computed from secrets by using secreinghar
schemes introduced in section 3. The adversaisees all the inputs of corrupted
parties and the auxiliary inputfrom the environment.
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2. Computation: Computation proceeds in rounds:

e [nitialize the round number as

e According to the protocol, if any uncorrupted party has musfied its compu-
tation, do one round of computation as described above amease the round
number byl

3. Output: The honest parties follow the protocol and output while the corrupt
parties outputy; = L. The adversary outputs some function of the information,
which is gathered during the computation in the real worlicpss.

Let ADV; a(z1,...,zn,2) denote the output of real adversafyon auxiliary input
z, while interacting with each party;, whose input isS;, running a protocolr. Let
REAL, (z1,...,zy, z) denote the output of real process, where

REAIMEA((BL cee 7'%'7172) = (ADVW,A(xla cee 7wn7z)7y17 cee ayn) .

We require that for any real world adversafiythere exists an ideal adversdrysuch
that the output of real world model is computationally inidiguishable from the output of
the ideal world model. More specifically, for any auxilianput z, the difference between
the distribution ofREAL, (z1,...,2n,2) andIDEALpy(z1,...,zy, z) are negligi-
ble.

Definition 2.3. Let us have an ideal functionality’ and a n-party protocofr. If for any
semi-honest nonadaptive real world adversakythere exists a semi-honest nonadaptive
ideal world adversary” suchthatREAL, a(x1, ..., Ty, 2)andIDEALpy (x1,. .., Ty,

z) are computationally indistinguishable, whérés running time is polynomial in the run-
ning time ofA, we say that the protocot is perfectly secure in semi-honest nonadaptive
case.

2.4.2 Adaptive Case

In this section, we define the semi-honest adaptive adwecsae using the same approach
as the one used in the nonadaptive case. As an extensionrainthdaptive case, it is more
complex. Thus more security concerns need to be considered:

1. The adversary may decide if he can get more informationdogupting one party
than corrupting other parties based on the informationnthed.

2. After several rounds of computation have taken placeathwersary may have ad-
vantages of figuring out the secrets, when it sees the intéata of newly corrupted
parties.

In a word, as new parties are corrupted while proceeding thélcomputation, the private
data of uncorrupted parties can not be regarded as safe.

As the adaptive case are quite similar with the nonadaptieg im this section, we will
concentrate on their difference. For the similar notatmlease refer to the former section.
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In the adaptive case, as an adaptive adversaegl Adversary V' can iteratively corrupt
up tot parties { < 7).

Similar to nonadaptive case, there is an uncorrectabld garty’I” which implements
the ideal functionalityf” in the Ideal Process The ideal process of Adaptive Case is as
follows:

1. First Corruption: Before proceeding with the computatior,gets auxiliary input
z from the environment. Based anit decides the first subset of parties to corrupt.
The corrupting process is done iteratively according totwifarmationV” gathered
so far. A corrupted party remains corrupted for the rest efdbmputation. After
repeating this process several times, the adversary gatsiginal set of corrupted
parties at the end of this stage.

2. Input: Each partyP; gets its private dat8;. Each private data can be secrets gener-
ated byP; itself, or shares computed from secrets by using secreinghschemes.
The adversary sees all the inputs of corrupted parties, but it can not geirdor-
mation about uncorrupted parties’ inputs right now.

3. Computation: Each party sends its input to the incorruptible third partyAfter
evaluating the functiori]’ sends the output to corresponding parties.

4. Second Corruption: After V' gets computation outputs from the trusted third party,
a new iteration of corruption begind/ decides the next party to corrupt based on
the messages gathered. While a new party is corruptesees new data, which
includes the party’s input, output and all exchanged messad\s required, the
number of corrupted parties can not exceed

5. Output: Each honest party follows the protocol and outpytshowever each cor-
rupt party outputg;; = L, meanwhile the adversary outputs some function of the
information gathered during the computation in the ideatpss.

As defined in nonadaptive case, ®DVr v (z1, ..., x,, z) denote the output of ideal
adversaryy’ on auxiliary inputz, while interacting with each part¥;, whose input isS;,
and then-party computation functio’. Let/DEALpy (z1,...,zy, z) denote the output
of ideal process, where

IDEALpy(21,...,2n,2) = (ADVEv(21,...,2n,2), Y1, Yn) -

TheReal Adversary A is an adaptive adversary, which collects auxiliary inpériom
the environment ahead. Thehiteratively chooses the original subset of parties to cor-
rupt, the number of corrupted parties grows while executirgprotocol. Once a party is
corrupted, it stays as corrupted until the end of the prdtoco

. In thereal world process the protocol we need to evaluate is denotedras’he
computation proceeds in rounds as follows:
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1. Input: All parties generate their messages for this round accgrirthe protocol.
Then each party follows the protocol and sends the messagghdo parties. It is
required that uncorrupted parties should receive all thesamges addressed to them
in this round. Then the corrupted parties send all messaggbld, which include
the messages they generated and received, to the advdrsary

2. Computation All parties compute their output locally as required by thetpcol.

3. Second Corruption: All corrupted parties send their outputs of this round to ad-
versary A, then a new iteration of corruption begins! decides who is the next
corrupted party based on the messages gathered sodfaan get the following
new information from the new corrupted party: the partyjguty output and all ex-
changed messages. As required, the number of corrupteiégpadan not exceed
t.

4. Output The uncorrupted parties output the results they computetthisnround.
Meanwhile, the corrupted parties send their outputs to dversary and output .
Finally, the adversary outputs some arbitrary functionlodata it knows.

The whole process of real world model, which integratesalhds, is as follows:

1. First Corruption: Before proceeding with the computatioh gets auxiliary input
from the environment. Based arit may decide the first subset of parties to corrupt.
The corrupting process is done iteratively according toitifiermation A gathered
so far. A corrupted party remains corrupted for the rest efdbmputation. After
repeating this process several times, the adversary gatsiginal set of corrupted
parties at the end of this phase.

2. Input: Each partyP; gets its private dat&;. The adversanA sees all the inputs
of corrupted parties, but he can not get any information abagorrupted parties’
inputs right now.

3. Thecomputation andadaptive corruption proceeds in rounds:

e [nitialize the round number as

e While any uncorrupted party has not finished its final comipartain the pro-
tocol, execute one round of computation mentioned abowe,irserease the
round number byt.

4. Output: The honest parties follow the protocol and outpythowever the corrupt
parties output/; = L, then the adversary outputs some function of the informatio
gathered during the computation in the ideal process.

Let ADV, a(z1,...,z,, z) denotes the output of the real adversaryon auxiliary
input z, while interacting with each party;, whose input isS;, 7 is the protocol to be
evaluated. LeREAL, a(x1,...,zy, 2) denote the output of real process, where

REALW,A(xlv oo 73:TL>Z) = (ADVW,A(xlv o ,ZEn,Z),yl, o 7yn) .
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We require that for any real world adversafiythere exists an ideal adversdrysuch
that the output of real world model is computationally inidiguishable from the output of
the ideal world model.

Definition 2.4. Let us have an ideal functionalitfy and a n-party protocofr. If for any
semi-honest adaptive real world adversafy there exists a semi-honest adaptive ideal
world adversaryV’ such thatREAL, a(x1,...,2,,2) aldDEALpy(x1,...,x,, 2) are
computationally indistinguishable, whel€s running time is polynomial in the running
time of A, we say that the protocat is perfectly secure in semi-honest adaptive case.
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3 Secret Sharing

Secret sharing, proposed by A. Shamir [21] and G.R.BlakByif 1979, refers to any
method for distributing a secret among a group of partidiparin the end, each of the
parties gets a share of the secret. Individual share issssdlee secret can only be recon-
structed while enough number of shares are combined tagétlea useful technique to
protect sensitive data. By distributing the secret inteesalvshares and spreading shares
among several parties, the adversary needs to compromisasaia threshold number of
parties to gain the information of the secret, otherwisdingtcan be figured out. We can
say that while spreading the shares, the risk of compromitia secret is spreading with
them.

Being a good technique to preserve the privacy of the dataetsgharing is an impor-
tant component of multiparty computation. In this sectie, will explore the possibility
of getting correct output by performing operations on sharighout reconstructing the se-
cret value all the time. In Section 3.1, some definitions ofestesharing are introduced as
preliminaries. Sections 3.2 and 3.3 present Shamir's Setaard Verifiable Secret Sharing
in detail. How to compute with Shamir’s shares is discussesgction 3.4.

3.1 Definition

Formally, in a secret sharing scheme, there is a dealer agtcbé garties. The dealer holds
a secrets, and distributes shares sfprivately to parties. Only certain specific subsets of
parties polling their shares together can figure out whas#uweet is, while others have no
information about it.

Following the lines of Shamir's paper [21], we defiften)-threshold scheme as fol-
lows:

Definition 3.1. Assume a schem# is able to divide a secref into n piecesSy,..., S,
in a way that:

1. From any subset of shares, while the size of the subsetessit, ¢ < n, secretS
can be reconstructed uniquely and efficiently.

2. From the subsets containing less thtaghares, no information &f can be released.
Such a scheme is called(& n)-threshold scheme.

Shamir [21] illustrated a classical example of this schessume all cheques in a
company need to be digitally signed. Each executive holdagnetic card, and each card
is entitled with different access right according to thedeok position. The company’s
signature generating device can be triggered while at leastof the following events
happens: (1)The president presents his or her card; (2)ideepvesident and a board
member present their cards together; (3)Three board memshew their cards together.

This problem can be easily solved by using tBen)-threshold scheme, whereis the
number of shares. To meet the requirement, we set that tdet#re president to contain
three shares, the vice president’s card holds two sharesaadd of board members each
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has one share. The signature generating device is pertaatlyre, as it does not contain
any internal sensitive data. No executive remembers thetskey. In that case, except
for the president, only one person colluding with a malisi@adversary can not sign the
cheque.

In most cases, secret sharing schemes are threshold schémetiferent threshold
values. As we mentioned in section 2.4, the secure muljigamnputation protocols can
be perfectly secure while a passive adversary corruptsthesss parties or an active
adversary corrupts less thgnparties. In order to meet this requirement, the threshdids o
secret sharing schemes must be at I§ast 5 in corresponding adversary models.

In multiparty computation, we are more interested in thatreh between computing
on shares and computing on secrets. Because of the prepeftien)-threshold schemes
that any single share is useless and the secret can not iegedtfrom less than shares,
it is much more secure to transfer and compute on the shaaagdtihthe same operation
on secrets. Hence, we prefer homomorphic secret sharimgregiwhich is defined as:

Definition 3.2. Let us have two secrefsandT’, each of them being divided intoshares
denoted asSy,...,S, andT1y,...,T,. For any binary operationsp and ®, a scheme
is (&, ®)-homomorphic secret sharing scheme, if the reconstruesdge of sharess; ®
T1,...,8, ® T, is the same as the value §f® T'.

We can also define homomorphic secret sharing scheme withséact as:

Definition 3.3. Let us have a secre$f and a constantC, where S is divided inton
shares denoted a$, ..., 5,. For any binary operationsp and ®, a scheme isq, ®)-
homomorphic secret sharing scheme, if the reconstructke vd sharess;  C, . .., S, ®
C is the same as the value 8f® C.

3.2 Shamir's Scheme

Shamir's scheme is &, n)-threshold scheme, which was proposed in paper [21]. It is
based on Lagrange interpolation polynomial over finite §elé Lagrange interpolation
polynomial is an interpolation polynomial for a given setdafta points in the Lagrange
form, which is defined as follows:

Definition 3.4. Let us have a finite field. For any set of numbers,,...,x, € F, the
Lagrange basis polynomials are in the form:

L) =]] —

. L5 — Tk
k#j Y

Definition 3.5. Let us have a set of t data points,y1), ..., (¢, y:), where allz; are
different. TheLagrange interpolation polynomial is a linear combination of Lagrange
basis polynomials:

g(z) = yl;(x)
j=1
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Theorem 3.1. Letzy,y1,...,x¢,y: € F, whereF is a finite field, such that the values
x1, ...,z are all different. There exists exactly one polynomialf degree at most— 1,
such thaty(x;) = y; forall ¢ € {1,...,t}.

Let F be a finite field, the: parties participate in Shamir($, n)- scheme are denoted
asPh,...,P,, wheren < |F|. The fieldF, threshold, names of parties, and the content
of the protocol are known to all parties.

The dealer plays an important role in this scheme. It congpsit@res of input secrets
and distributes them to the parties. While the secrets reeled teconstructed, parties send
their shares to the dealer, then the dealer can retrieveettrtets We assume that there is
a separate private communication channel between each aattthe dealer, hence the
adversary can not eavesdrop the channel.

The protocol has two phases:

1. Distribution: The dealer has a seci&te F, let fy = S. The dealer randomly gen-
erates valuegy, ..., fi—1 € F as the coefficients. Then he defines the polynomial
asq(x) = fo+ fir + fox? + ...+ fi_12'~L. The dealer secretely sends to edth
his shareS; = ¢(7).

2. Reconstruction: The parties?; , . . ., P, together know thag(iy) = S, ..., q(i) =
S;, and the degree af(x) is less thart. From a collection of no less tharshares,
the dealer can find the coefficientsgfc) by interpolation, wherg(0) = S.

Theorem 3.2. The reconstruction phase of Shamir's secret sharing scleameorrectly
reconstruct the secret.

Proof. By analyzing the distribution phase, we can get that i, wherei € {1,...,n},
hence allz; are different. According to Theorem 3.1, the polynomjét) of degree at
mostt — 1 is uniquely determined. By Lagrange interpolation, it saglthat reconstruction
works correctly. If no less tharpoints are given, the polynomial of degreel that passes
through these points is of course that unique polynogfia). O

Theorem 3.3. In Shamir’'s secret sharing scheme, the secret can only beved whilet
or more shares combining together.

Proof. Suppose the dealer collects only- 1 shares, denoted &§,,...,.5;, ,. Then for
each possible secrét € F, there are points(0, 5’), (i1, Si, ), - - -, (it—1, Si,_, ) uniquely
determining a polynomia};(z) of degree at most— 1 that passes through all of them.

As the coefficientsfy,..., f;_1 € F are randomly chosen, from the— 1 shares
collected from parties, each possible value of the secrehiiormly distributed. So the
real secrefS can not be retrieved from— 1 shares. Similarly, collecting even less shares
can not reconstruct the secret either. O

An important property of Shamir's scheme is that it is pdgsibo computeS with-
out reconstructing the full polynomialxz). Assume that what the partié3,, ..., P;, are
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interested in is the secret valgé)), not the polynomial. According to Lagrange interpo-

lation formula

S‘ZS’? H.z‘k—z'j ’
=1 k#j
where the secret is computed as a linear combination ovestthies with public coeffi-

cients.

3.3 \Verifiable Secret Sharing

When patrticipants in Shamir's scheme are malicious, theréno threats must be consid-
ered:

1. Malicious dealer may send inconsistent shares to parties
2. A malicious party can input a wrong share to the recoveoyouol.

If any of them happens, the reconstructed result is not equile secret, and the honest
parties may not figure out who are malicious. As a remedy, tdiable secret sharing
schemes, in which the parties commit to the shares they letewsere first proposed by
Chor, Goldwasser, Micali and Awerbuch [9] in 1985.

A secret sharing scheme is verifiable if auxiliary inforroatis provided to let parties
verify the consistency of their shares. It ensures thatafdbaler is honest, the cheaters
can not get any information of the secfstand all honest parties are able to reconstfuct
no matter what actions the cheaters have taken. If the deat®alicious, either the honest
parties can discriminate it from honest one and abort thiopoh or S is uniquely fixed
by the shares held by honest parties and reconstructedctiprregardless of cheaters’
behaviors.

As we mentioned in section 2, multiparty computation is atglished by implement-
ing secret sharing schemes on inputs, and manipulatingdres to evaluate the compu-
tation function. Verifiable secret sharing is an importamiponent of secure multiparty
computation, especially when adversaries are active &edtd control of corrupted par-
ties. As the shares need to be verifiable, the correctnesswolts is guaranteed.

3.3.1 General Scheme

There are four important primitives in verifiable secretrsigaschemef(t, n)-threshold se-
cret sharing schemes, commitment schemes, zero-knowietdgactive proofs and point-
to-point channels. The first two primitives have been inticet in former sections, the
introduction of zero-knowledge interactive proof and pdorpoint channels is as follows.
Zero-knowledge Interactive Proofis an interactive method for one party to prove to
another party that a statement is true without revealingtimtent of the secret presented
by this statement. In a zero-knowledge proof, if a stateneefdlse, the probability of a
cheating prover convincing the honest verifier that it igtisivery small. If the statement
is true, the honest verifier will be convinced of the statetsereracity by honest prover,
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and cheating verifier learns nothing more than this fact.fidher reading please refer to
[19].

Point-to-point Channel is also called a broadcast channel. We assume that not only
private channels exist between the dealer and the partiethdye are also private channels
between each pair of the parties. Hence, each party can sesghges to all other parties,
and each message is sent in such a way that, during the tssigmieven malicious ad-
versary can not change its content. The originator of messagn be easily established
by recipients.

As we have handled all the primitives, we can now build theegalnverifiable secret
sharing protocol as follows:

1. Distribution: The dealer holds a secrgte F, then he computes shar8s, . .., S,
by using a(t, n)-threshold secret sharing scheme. For egicta commitment’; is
computed. After that, the dealer broadcasts the commitrterdll parties, then he
uses the zero-knowledge interactive proof scheme to coenatl partiesPy, ..., P,
that the commitments contain shares that are consistehttidt secret. When the
proof is accepted, the dealer serfisandC; to eachp;.

2. Reconstruction: Not like a simple secret sharing scheme, reconstructiontismly
done by the dealer. In this phase, each p#&tproadcast his sharg and the open-
ing information forC;. Only the share, whose commitment is opened successfully,
can be accepted by the honest parties to reconstruct thet Secr

In the general verifiable secret sharing protocol, the hopadies can detect the ma-
licious dealer and abort the protocol. On the other handy wihonest dealer, all honest
parties are able to reconstruct the secret despite thenaaifacheaters, while the malicious
parties can not get any information.

Indeed, in the distribution phase, the dealer broadcastsmtonents to all parties.
Hence, each party acts as a verifier in a zero-knowledge pob@ime independently. Then
they broadcast their proof results. In order to meet thergga@equirement as malicious
parties can not figure out what the secret is, we suppose leatumber of corrupted
parties is less thah wheret is the threshold of the secret sharing scheme.

If the dealer is honest, all honest parties verify the cdestsy of shares. Even if all
corrupted parties cheat, there are less thaarties complaining about the inconsistency of
the shares. Hence the dealer is proved to be honest, and estlpamty aborts the protocol.
If the dealer is malicious, the honest parties can prove apdrt the inconsistency of
shares except with negligible probability of error. While (m > t) parties report the
inconsistency, the honest parties accuse the dealer andiabrotocol.

In other words, if the dealer is honest, the distribution gghaucceeds. If the cor-
rupted parties are probabilistic polynomial time boundbdy can not get the content of
commitments. Hence the commitment sche(ng; )-threshold secret sharing scheme and
zero-knowledge proof guarantee the privacy of the secret.

In the reconstruction phase, assume that the shares aressfwdly distributed. If a
party cheats, it can be easily detected while its commitniemot consistent with the
share. Then the honest party may broadcast its complagtn#iicious party is pointed
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out whenm parties complain. Then the false shares are ignored wlalenstructing the
secret.

To sum up, the only malicious action the corrupted partiesuralertake is to abort the
protocol in the reconstruction phase. As there are onlythemst corrupted parties, where
t < g ort < 7 inthe presence of passive or active adversary, there asysihonest
parties to reconstruct the secret

3.3.2 Feldman’s Scheme

We briefly introduce Feldman’s Scheme [14] as an exampleigndhction. Feldman’'s
scheme is based on Shamir’'s secret sharing scheme and ammioophic encryption
scheme. LetZ, be a finite field andZ a cyclic group of prime ordep. The discrete
logarithm is hard inG, andg is a generator of;.

Based on these assumption, the Feldman’s scheme is asgollow

1. Distribution: The dealer uses Shamir's scheme to share a s€cfeatr the detailed
process please refer to section 3.2. Then the dealer commpate broadcasts the
following commitment

fi fi—1

w=9"m=9" . u1=g
and sends the shaf to party P,.

2. Verification: When partyP; gets its sharé;, it verifies the consistency of its share
by checking if the following equation holds

t—1
g =11y
j=0
If it holds, the share is accepted, else the party broadeasimplaint.

In Feldman’s scheme, no one can survive cheating, as the goranisyg, ..., y:—1
uniquely determine the polynomialz). Hence, everyone can check if the share is con-
sistent. However, this scheme is only secure for computaliip bounded adversaries, and
the public valugy, = ¢° leaks some information aboit

3.4 Computation with Shamir's Shares

Assume that the Shamir’s secret sharing scheme is used foutershares of two secrets
SandT as Sy,...,S5, andTy,...,T,, and each party’; gets shares; andT;. We
can observe that Shamir's scheme is homomorphic on addatohmultiplication by a
constant. The computation algorithms are as follows:

1. Addition of Shares: Each partyP; computesRk; = S; + T; locally. Supposer is
the reconstructed value of seciet, ..., R,,thenR =S+ T.
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2. Multiplication by a Constant: Suppose there is a public constantEach party
P, computesR; = S; * ¢ locally. SupposeR is the reconstructed value of secret
Ry,...,R,, thenR = S xc.

3. Multiplication of Shares: As introduced in section 3.2, Shamir's scheme imple-
ments polynomials to compute the shares. Hence multimicaif shares is not a
linear transformation any more. How to do the multiplication Shamir's shares
will be introduced in detall in the following part.

Suppose there are two polynomials, one with degrabe other with degree. After
multiplying two polynomials, the degree of the resultindypomiald+e. If d+e > n, it
is not possible to reconstruct the secret. In order to stiiggaroblem, re-sharing of shares
is used to make multiplication possible.

Here we introduce th&ennaro-Rabin-Rabin multiplication protocfil5] to give a
brief overview of how to multiply Shamir’s shares. The puibis as follows:

e Computation: Each partyP; computesk, = S; x T;.

e Re-sharing: Each partyP; secretly shareg’ by using Shamir's scheme and gets
shares; ,..., R} . Then it sends sharg; to each party’;

TRRE

e Recombination: There exist public reconstruction parameters . ., r,, where

r; = H ]—Z

1<j<n,jti )

Each partyP; then computes share

n
_ , /
R, = E T *Rji .
Jj=1

Supposer is the reconstructed value of the secrBis. .., R,, thenR = S« T.

Theorem 3.4. Addition of Shares algorithm and Multiplication by a Condtalgorithm
are correct.

Proof. While sharing the secrets, the Shamir’s secret sharingrselm®mputes shares by
evaluating the polynomial with different inputs. This evaluating procegsis a linear
transformation, which has the additivity and homogeneigpprties.

Hence in the Addition of Shares algorithii(R) = f(S + 1) = f(S) + f(T). In
Multiplication with a Constant algorithmf(R) = f(S * ¢) = ¢ * f(S). So Addition of
Shares algorithm and Multiplication with a Constant altfori are correct. O

Theorem 3.5. Gennaro-Rabin-Rabin multiplication protocol is correahd it guarantees
the privacy of the secret.
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Proof. In the re-sharing phase, each paftyandomly generates a polynomjglof degree
at mostt — 1, wheref;(0) = S; x T;. Then it sends the shay®(j) to party P;. Hence,
after the re-sharing phase, each pdrtygets shareg; (i), ..., fn (7).

ThenP; computes
Ri=>  JI —=#0).

—
=l i<i<nizi ')

According to theorem 3.1, 1, R2,2, ..., R,,n) uniquely determines the polynomial
Fl@)=> rixfi(z).
=1
If x =0, we have

f(O):Zn:Tz'*fi(O):ZH:H*SMTiZS*TZR-
=1

i=1

We can observe that the polynomial shares the sétkel’ = R, therefore this protocol
works correctly.

On the re-sharing phase, as each pattymplements the Shamir's scheme indepen-
dently and separately, all the sha®$,,..., R| ,..., R, ,...,R;, are uniformly dis-
tributed and independent with each other. As a result of thahe recombination phase,
the R; computed based on the valuﬁg,, ..., Ry, is also uniformly distributed. Hence, no
party can get more information than he has originally kno&ince at least of the values
r1,...,Ty are non-zero, according to the theorem 3.1, a unjgue)-threshold polynomial

is determined, which keeps the correctness and privacyedfehret data. O
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4 Sharemind Secure Computation Protocol

Based on what has been introduced in the former sections, ilvenake a detailed de-

scription of SHAREMIND multiparty computation protocolshich are proposed by Dan
Bogdanov in his master thesis [4]. Although Dan Bogdanoegi& detailed introduction

of all the protocols, he just presents a informal securityopfor each protocol. In the

informal proof, the messages generated and received bythgpted parties are analyzed
manually, and the proof results are written in human langu&yen though this informal

proof can be easily understood, it has the following two dlisaitages:

1. Itis not suitable for complex protocols, because theralavbe too many messages
to be analyzed manually.

2. Itis not convincing, as its validity is hard to be checked.

Hence, what we need to do is to figure out a method to autonigteaalyze these
protocols in such a way that the correctness of the resutisbeaeasily checked. The
method and result of analyzing SHAREMIND protocols are shawsection 5 and section
6. Note that throughout this paper, all parties are semesprwhich follow the protocol
while wondering what the secret is.

Before presenting the SHAREMIND secure computation pracinformation re-
lated to additive secret sharing scheme is shown in sectibn Zhe infrastructure of
SHAREMIND is introduced in section 4.2. The detailed dgstasns of SHAREMIND
secure computation protocols are shown in the followingspaks what we are interested
in is the security proof of those protocols, for the corressproof of SHAREMIND pro-
tocols, please refer to Bogdanov’s thesis [4]. As this sedi$ presented as a preliminary
of the next two sections, only informal proofs are includedeh For formal proofs, please
refer to section 5.

4.1 Additive Secret Sharing

In SHAREMIND protocols, an-out-of-n additive secret sharing scheme is used to share
the secrets. The additive secret sharing scheme is veryesamg efficient. There is no
complex algorithm to compute shares, and no single shake gy information about the
secret. However, it is not very convenient, since the seznenly be reconstructed while
all parties are presenting and combining their shareslieget

The formal definition of this scheme is as follows:

1. Distribution: Assume there are parties, P, ..., P,, sharing the secret. The
dealer first generates— 1 uniformly distributed random values, ..., S,,_1, then
computes the last share 8s = S — S — ... — S,,_1. Each partyP; gets the share
S;.

2. Reconstruction: All parties send their shares to the dealer, the dealer stuarns
the secret by adding all shares together.
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Theorem 4.1. The n-out-of« secret sharing scheme is (&, +)-homomorphic secret
sharing scheme.

Proof. Suppose there are two secrétsandl’. By using then-out-of-n secret sharing
scheme, we get the sharss,..., S, andTy,...,T,, whereS; + ... + 5, = S and
Ty + ...+ T, =T. After each partyP; gets its shares, it computés = S; + 1; locally.
HenceR=R1+ ...+ R, =S1+T1+...+ S+ T, =5S+T. O

Theorem 4.2. According to definition 3.3, while multiplying the secretéogonstant, the
n-out-of secret sharing scheme i &, x )-homomorphic secret sharing scheme.

Proof. Assume thex-out-of-n secret sharing scheme distributes se€rieto sharess,, . . .
,Sn, WhereS; + ... + 5, = S. There is a public constant After each partyP; gets its
share, it computeB; = S; xclocally. HenceR = R1+...+ R, = Sixc+...+S, X¢c =
S x c. O

However, while multiplying the shares of two secrets, theut-of-n secret sharing
scheme is notx, x)-homomorphic any more. Hence, for this more complex scenese
will discuss it in detail in the following parts of this chapt

4.2 Introduction of SHAREMIND

In 2007, Dan Bogdanov has proposed a framework for secur@uanions in his master
thesis [4]. As shown in Figure 2, in SHAREMIND, there are saleontrollers and
miners. The number of controllers is not restricted, eadhern provides data to and gets
analyze results from miners. In the latest version of SHARED] there are only one
controller and three miners. The miners work together téoper computations and run
data mining algorithms on the data. It is assumed that eachrrid semi-honest, and they
perform the computation synchronously. The number of msiteextensible based on the
number of corrupted miners. Suppose the adversary canpterminers, there should be
at least2n + 1 miners to keep the privacy of data.

. Database
Miner

/’/’ 1
Controller ——
. [———————| Miner
: > 2 Stack
controtte] =

Controllerl— = |
\ Miner Stack
3 Database

Figure 2: The infrastructure of SHAREMIND
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We can observe that there are private communication chautiedlveen each pair of
miners, and the communication channels exist between eaminotler and all miners.
As the controllers work as data providers, we suppose tlegtdhe concerned with their
privacy. Hence, there is no need to provide communicati@mehls between controllers.

Each miner has a local database for saving shares and a staszving intermediate
messages. Once a controller inputs a data, it would competstares of it by using
the additive secret sharing scheme and distribute the sthaminers respectively. Then
the miners would check the validity of shares and save thetham local database. It
is required that all shares saved in databases and staalsl $leoin =532, and the Share
Conversion protocol, which will be introduced in sectiod,dis proposed to convert the
shares inZ, iNto Zys2.

As each miner is only capable of running a number of basicaijpers, the SHARE-
MIND secure computation protocols are proposed to direoensito get correct results by
following complex algorithms built from these basic operas.

4.3 Multiplication Protocol of Three Parties

Assume Alice, Bob and Charlie are three participants of aiparty computation proto-
col. We denote Alice ag!, Bob asB and Charlie ag”. There are two secreis andv.
By using the3-out-of-3 additive secret sharing schemeandv are shared ag 4, upg, uc
andvg, vp,veo, which are held by Alice, Bob and Charlie, respectively. Tessages ex-
changed between parties are denotedase,,,, wherename is the name of the message,
x is the index of the party who sends the messageyasadhe index of the party who gets
it, z,y € {1,2,3} andx # y.

As a semi-honest adversary, the adversary can only cortupbst one party. Once
a party is corrupted, the adversary can get its shares, tsudipd all internal data such as
the random numbers generated by that party, and the messawgfet® or received by it.
The adversary always tries to get some information abouseleeet through what it gets.
Figure 3 shows the model of three party computation.

/C;i; Alice

Bob

N
Charlie

Figure 3: Communications Between Three Parties in the Reald/V
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As shown in section 4.1, addition of shares and multiplyihgres by a constant can
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be easily executed. Hence, we omit them here. In the follgwiarts, we will discuss the
multiplication of two secrets in detail.
What we want to compute is

ux v =(ua +up + uc) * (VA +vp + ve)
=UA *VA +UA*VB FUA XV +UB *VA+UB *VUB +UB * Vo + UC *VA+
Uc * VB + ucg * v¢

However, each party just knows its own shares. The problemese to solve is how to
computeu,;v; in such a way that none of them can figure out another partgiesavhere
i,j € {A,B,C}andi # j?

The protocol proposed by Du and Atallah [12] is the right ags¥o the question.
It assumes that two partis; and P, want to secretly multiply two values; and z-.
There is a third party’;, who works as a random number distributor. Let us denote the
multiplication result as5, and its shares are denoted$s.5, and.S3. Hence, they follow
the following protocol 1:

Protocol 1 Du and Atallah Protocol
Input: Py x1, Po: 29 € Z932
Output: Pi: S1, Py Sy andPs: S3

Round One
Ps3 generates two uniformly distributed random numhbgrandas € Z;32
P; sendsz; to P; andas to P

Round Two
P, computese; + a; and sends the result 1
P, computeses + a2 and sends the result 18

Round Three
P, computesS; = —(z1 + a1) * (x2 + ag) + x1 * (x2 + az)
P, computesSy = x5 * (1 + ay)
P3 computesSs = aq * as

Theorem 4.3. In Du and Atallah protocol, the privacy of secret data is garstieed.

Proof. In the first round,P; receives a uniformly distributed number, and P, receives a
uniformly distributed numbet,. Hence, both of?, and P, can not figure out other party’s
secret.

In the second roundP; getsx, + ao. As P, does not know the value of uniformly
distributed numbery, x2 + a- is uniformly distributed to him. For the same reason,
x1 + aq 1s uniformly distributed taP,. P; has no incoming messages. Consequently, all
three parties can not figure out other parties’ secrets. O
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As mentioned above, Du and Atallah protocol is what we neeskturely compute
u;v;, wherei, j € {A, B, C'} andi # j. While composing three party share multiplication
protocol, we import Du and Atallah protocol as a sub-protacdhe form Subprotocol :

A : ShareNamel, B : ShareName2, C : ShareName3 = DuAtallah(Namel :
(Inputl), Name2 : (Input2)), which means that the party with nandéamel and
the party with nameVame2 import a instance of Du and Atallah protocol to compute
Inputl * Input2. After running the instance of sub-protocol, Alice getsuteshare
ShareNamel, Bob getsShareName2 and Charlie get$hareName3. Following the
lines of Dan Bogdanov’s master thesis [4], the protocol oé¢hparty multiplication we
mentioned above is as follows:

Protocol 2 Three Party Share Multiplication Protocol
Input: Alice: u4, Va; Bob: up, Vg; Charlie:uc, Vo € Z932
Output: Alice: d4, Bob: dg, Charlie:d¢c € Zy32

Round One
Alice computess4 = u 4 * v4 locally
Bob computes s = up * vg locally
Charlie computess = uc¢ * ve locally

Round Two
Assume that all random numbers are uniformly distributedlinadependent
Subprotocol:A : ay2, B : b2, C : c12 = DUAtallah(A : (ua), B : (vg))

Subprotocol:A : ai3, B : b3, C : ¢13 = DuAtallah(A : (u4),C : (ve))
Subprotocol:A : ag;, B : by, C : co1 = DuAtallah(B : (ugp), A : (va))
Subprotocol:A : ags, B : bas, C : co3 = DuAtallah(B : (up),C : (v¢))
Subprotocol:A : as;, B : b3y, C : ¢33 = DuAtallah(C : (uc), A : (va))
Subprotocol:A : ase, B : bga, C : c32 = DuAtallah(C' : (uc), B : (vg))

Round Three
Alice computesiy = sa + a12 + a13 + a21 + as3 + as1 + ass.
Bob computeslp = sp + b1o + b3 + boy + bag + b3y + bso.
Charlie computedc = s¢ + c12 + ¢13 + ¢21 + €23 + €31 + €32.

Theorem 4.4. In the three party share multiplication protocol, the proyaof secret data
is guaranteed.

Proof. We start by proving that except fary, v4, Alice does not know the secrets of other
parties. As this protocol is symmetrical, if we prove thaterch round the messages re-
ceived by Alice are all independent and uniformly distrdaltso are the messages received
by Bob and Charlie.

In round one, Alice has not received any messages. In rouaditis assumed that
every random number is uniformly distributed, thereforeeach call of Du and Atal-
lah protocol, new random numbers are generated. Accordingheorem 4.5, shares
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a1z, a13, 421, a3, az1 andaso are uniformly distributed and independent of each other. As
a consequence of that, the incoming messages of Alice atmiftirmly distributed and
independent. Hence, the privacy of secret data is guahntee O

4.4 SHAREMIND Share Conversion and Bit Extraction Protocok

Besides the binary operations on secrets we mentioned att/eperations on bits are
also very important. In this section, we will introduce Sh&onversion protocol and Bit
Extraction protocol. The former one is used to convert atrs of value in rang€, into
rangeZ,s2, and the later one is in charge of extract the shares of ta@bé share in range
Zo32.

As a data donor, each controller in SHAREMIND infrastruetwan input boolean
numbers inZ, as the secrets. By using the additive secret sharing schibenghares each
miner gets are ir£; too. As we mentioned above, the valid data must b&4sn. Hence,
we must implement a protocol to convert the secret€4rto be uniform inZy:2 while
keeping the privacy of these secrets.

Assume there is a boolean numhgrandu 4, up, uc € Z, are computed from it by
using the additive secret sharing scheme. We can use toeviiot] equation to convert the
shares intaZ,s2:

flua,up,uc) =ug +up + uc — 2ugup — 2upuc — 2upuc + dusupuc .

Hence, we can use Du and Atallah protocol to compute shareswof, upuc anduquc.
On the other hand, we can let Charlie additively shatgesnto three shares, then run the
Three Party Share Multiplication Protocol to get the shafegs upuc. To sum up, the
Share Conversion Protocol is as follows:

33



Protocol 3 Share Conversion Protocol
Input: Alice: uy4, Bob: ug, Charlie:uc € 2
Output: Alice: d4, Bob: dg, Charlie:dc € Z932

Round One
Charlie generate two uniformly distributed numbefs css € Z932
Charlie computes the third sharewf ascss = ug — c31 — 32
Charlie sendsgs; Alice andcs; to Bob

Round Two
Assume that all random numbers are uniformly distributediindependent it£ys2
Subprotocol:A : x4, B : xp,C : ¢ = DuAtallah(A : (ua), B : (up))
Subprotocol:A : y4, B : yp,C : yo = DuAtallanC : (uc), A : (uga))
Subprotocol:A : z4, B : zp,C : zc = DuAtallah(B : (ug),C : (u¢))
Subprotocol: A : wy,B : wp,C : wc = Multiplication(A : (z4,cs31),B :
(B, c32),C : (ze,e33))

Round Four
Alice computesitsshaméy = up—ra—xA4—ya—ya—za—za+watwatwa+wy
Bob computesits shath; = up—xp—2B—yp—Yyp—2—2+wptwpt+we+wpg
Charlie computes its shatk: = uc — xc — ¢ — Yo — Yo — zc — z¢ + we +
we + we + we

Theorem 4.5. In the Share Conversion protocol, no party can figure out tilaey of other
parties’ secret.

Proof. This protocol is not symmetric to all parties, as Charlie teagnplement additive
secret sharing scheme to share its sharento three sub-shares. However, as Charlie
does not receive as many messages as the other two paiisdsivitll that Charlie’s view
is secure if we prove that Alice and Bob’s views are secure.

For Alice, in round one, what Alice get is a uniformly distitled number, hence no
secret is compromised. In round two, three Du and Atallalbhooms and one Three Party
Share Multiplication Protocol are called. According todhem 4.3 and 4.4, the privacy of
secrets are kept, hence no other secrets are leaked to Wlid® last round, Alice gets no
new messages. To sum up, Alice can not figure out the secrétef parties.

For the same reason, Bob also can not get secrets he sholdavat Consequently,
we can say that the privacy of secrets is guaranteed in the Ewaversion protocol. [

Although Share Conversion protocol is very useful to con#grshares intcZ,32 ones,
it can not handle all the bitwise operations. Hence, we needit Extraction protocol as
the basics of complex bitwise operations. As shown in Patdgthe Bit Extraction proto-

col can extract shares of each bit of a shane Zys:, whereuff), e ,ufj’l), ug), cees g’l)
andu(co), . ,ug’l) denote the shares of thet to32nd bit of the share.
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Protocol 4 Bit Extraction Protocol
Input: Alice: u4, Bob: upg, Charlie:ug € Z932

Output: Alice: u(f), e ,u(j’l); Bob: u;?), e ,ug’l); Charlie:u(co), e ,ug’l) € Zoz2
Round One

Alice generates uniformly distributed numbeﬁg), . ,rffl) € 2.

Alice converts all these numbers infs- by using the Share Conversion protocol,
and the result shares are denotedii%?s. . ,tf’l).

Bob generates uniformly distributed numbe}i@, e ,rg’l) € Zo.

Bob converts all these numbers inf3s2 by using the Share Conversion protocol,
and the result shares are denoted(gis. . ,tg’l).

Charlie generates uniformly distributed numbe(@, . ,rg’l) € Zs.

Charlie converts all these numbers itgs> by using the Share Conversion protocol,
and the result shares are denotedi(c%ks. . ,tg’l)

Round Two .
Alice computesy = [3,27¢%).
Alice computesy;; = ugq — ra.
Bob computes = []2L, 2/t
Bob computes,; = up — g, and sends»; to Alice.
Charlie computes¢ = [, 219,
Charlie computess; = uc — r¢, and sendss; to Alice.

Round Three

Alice computesz 4 = vy11 + vo1 + v31 and finds its bitSz(AO), . ,a(j’l), and output
ul) = a® ++% fori e {0,...,31}.

Bob outputmg) = tg) fori e {0,...,31}.

Charlie outputmg) = tg) foric {0,...,31}.

Theorem 4.6. The Bit Extraction protocol is perfectly secure.

Proof. In round one, each party generagsuniformly distributed numbers s, and
converts them by using the Share Conversion protocol. Aliegrto Theorem 4.5, no
party can figure out other parties’ secret while convertihgres, hence no secrets are
exposed in this phase, and all sharesZin. are uniformly distributed and independent
from each other.

In round two, as the values of sharesg, rg andr¢ are computed on uniformly dis-
tributed and independent random numbers, they are unijadistributed and independent
from each other. As a result of that, the values@f v5; andwvs;, which are computed by
subtracting a uniformly distributed numbers from a seast,also uniformly distributed.
Hence, although Alice gets;;, v2; andwvs;, what she can get is only the difference be-
tween the randomly generated numbeand the secret. In a word, Alice gets no more
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secret. As Bob and Charlie get no information in this rouhdijrtview is secure.

In round three, there are no messages exchanged betweies.paotsum up, in this Bit
Extraction protocol, no party is capable of getting othatipa’ secret, hence it is perfectly
secure. ]
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5 Simulation

As discussed in section 2.3, a protoeois perfectly secure if for any adversary attacking
= in the real world, the output distribution of the real wortdimdistinguishable from the
output distribution of the ideal world. In other words, iftprotocolr is perfectly secure,
then the environment is not able to tell the real world model the ideal world model
apart. To achieve this requirement, we can use a simulatibanslate the messages sent
and received by the real world adversary to the ideal worldehavhile keeping the real
world adversary thinking that he works in the real world.

In the following part, we will make an elaborate discuss anahproach of simulation.
The notion of universal composition is presented in sedidras a preliminary. In section
5.2, we will show how to simulate the real world. After thate will present the formal
proof of the protocols shown in the former chapter by impgyrtihe notion of simulation.

5.1 Universal Composition

In 2001, Ran Canetti [7] proposed a framework to represedtagralyze the security of
cryptographic protocols. This framework is called unieérsomposable security frame-
work. Within this framework, a method called universal carsition, which composes
protocols in such a way that the security is preserved whiteposing, is defined. The
definitions of security in this framework have the properfyuniversal composablility.
Another definition of universal composability was presdrtgy Ronald Cramer and Ivan
Damgard [11], which covers both information theoretic angbtographic models in syn-
chronous communication model. The following discussiobaised on their works.

First, let us have a look at the general universal compossdiarity framework in
Figure 4, which is similar to the structure in the ldeal anéIReorld approach introduced
in section 2.3.

Z Adversary A Z .ﬂdvarsnr:f A '_

Simulator S

Tdeal Functionality]

Pzl « « « [Pany F

7
/)
N

The Real World The Ideal World

Figure 4: General Universal Composable Security Framework

Assume there is an environmeft which contains everything that is external to the

37



protocol execution, such as the adversaries and users vgpdysaputs to the protocol.
Since adversaries are included,is capable of doing anything the adversaries can do.
In other words,Z can actively (or passively) and adaptively (or non-adabyiv corrupt
parties, which are constrained by the adversary struciure

In the real world, besides the environmehtthere are, parties denoted a3y, .. . , P,.
which are modeled as interactive Turing Machines. All ggrttommunicate with each
other in a synchronous communication model. While exegutie protocolr, the adver-
sary in the environment corrupts a set of parties according to the adversary steigtu
Meanwhile, all honest parties follow the protoeal Hence, the environmeri interacts
twice with the honest parties in each round, it first chooaeslom inputs and sends them
to each party, then it collects the outputs from the parties.

In the ideal world, there is an ideal functionalify and a simulatotS. As introduced
in section 2.3,F is incorruptible and it provides perfect security. Sincetipa do not
communicate with each other directly, and all data are ctdtband sent out by the ideal
functionality F', we suppose that there are no parties in the ideal worldeaddstwe set a
simulator.S, which is in charge of translating the traffics between thérenmentZ and
the ideal functionalityf'.

After the computation process is finishéflputputs a single bit to indicate wheth&r
thinks itself has interacted with the protocelor the ideal functionalityf’. This bit is a
random variable, whose distribution depends on the proto@nd the environment in
the real world, and the ideal functidn, simulatorS and environmeng in the ideal world.

We can say that a protocal securely realizes an ideal functionalify, if there is a
polynomial time simulatolS such that for any environmet, Z can not distinguish the
output of protocolr from the output of ideal functionality.

Hence, requiring that the outputs of corrupted partiesahwerld and ideal world are
distributed indistinguishably from each other grantedsa dacrecy. It forces the informa-
tion gathered by the real world adversary to be computabileeindeal process, hence the
protocol does not release more information to corruptetigzathan it should. On the other
hand, correctness of results is guaranteed by requirirtghtbautputs of honest parties in
real world are distributed similarly to the outputs of hdngarty in ideal world. Since if
the real world adversary has more influence on the outputsttimideal world adversary,
the environmen¥ can easily tell the real world and the ideal world apart.

Before presenting the universal composition theorem, dehave a look at a special
model, which is a hybrid between ideal world model and realldvinodel. It is called
G-hybrid model, which includes subroutine calls to the ideaktionality G. This model
can invoke several instances@fand these instances may run concurrently.7lle¢ a real
world protocol that uses subroutine calls to the ideal fiometlity G. Hence as described
in the ideal world, each honest pamy communicates with ideal functionaliy through
portsI; andO;, and the adversary represents the corrupted parties to ooioate withG
through portd 4 andO 4.

Now let p be a protocol that securely realizes an ideal functiond@lityl herefore, we
can compose a protocal’/9, which means that the protocelcalls protocolp instead of
the ideal functionalityg. In that case, the protocalis modified to send all inputs provided
for G to protocolp, and to treat outputs received from protopas outputs received from
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G. Hence, we can give the following definition:

Definition 5.1. The composed protocal”/9 universal composably emulates protoeg!
if 7 is aG-hybrid protocol and protocop securely realizes the ideal functionaldy

Assume that protocat securely realizes an ideal functionali#y, hence the following
definition can be generalized:

Definition 5.2. The composed protoca¥’/9 securely realizes an ideal functionalify, if
m is aG-hybrid protocol, which securely realizé§ and protocolp securely emulates ideal
functionalityG

5.2 Simulating the real world

As mentioned above, a protocoelis considered as perfectly secure if the environnmént
can not distinguish the outputs of using the protoedtom the outputs of using an ideal
functionality F'. Therefore, we require that the messages the environfmgets in the real
world have the same distribution as messages it gets in #a wiorld. In other words,
Z can act in the same way no matter if it is in the real world orhie tdeal world, and
the distribution of the outputs he gets form the two worldsiadistinguishable from each
other. One way to achieve this requirement is to simulateghkbworld on the ideal world.

As described in the former section, in the ideal world, thef@simulatorS that trans-
lates messages between the environmigrnd the ideal functionality. The function
of the simulatorS is to communicate with environmett in such a way thaZ can not
find out that it is in the ideal world. Therefore, while comnuating with Z, S needs to
provide messages in the form that is exactly the same as #ishould see. Hencey
must know the protocol in advance, then it can go through tbtopol and send the valid
messages ta in the right order and right time.

However, before we can do the simulation, we need to know hivanmentZ acts.
We can observe that there are two kinds of activitieg ofFirst, Z provides inputs to honest
parties, and gets output from them. This action is easy tdlkamhat we need to do is
to send inputs and outputs to the relevant input and outpii pb the ideal functionality
F. Second, a¥ includes the adversary, it can corrupt parties and see @l itternal
data, which contain the inputs, outputs and messages tinelyss®l receive. Hence, the
simulatorS is in charge of communicating witd on behalf of the corrupted parties.
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Figure 5: Simulating the Real World

As shown in Figure 5, what the simulator does is represertiagcorrupted parties
to use the corrupt input and output ports of the ideal fumetidy F' to provide inputs to
and get outputs fronk’. In other words, in each round, relays the inputs of corrupted
parties chosen by to F, and after the computatiory sends the outputs of corrupted
parties generated b to Z. While Z requests to corrupt part,, it notifies bothS and
F. ThenF sends all inputs and outputs Bf to .S through port0D;. After that,S represents
the corrupted party’; to exchange messages withon corrupted input and output ports.

5.3 Formal Proof of SHAREMIND Protocols

As mentioned above, if we can simulate the real world on tlealidvorld so that the real
world adversary can not distinguish which world it is in, tkal world protocolr is proved
to be secure. Hence, while simulating a real world protoeel,need to do the following
things:

1. First, construct the real world and define the power of #ad world adversary.
2. Then, define the ideal functionalify in the ideal world.

3. Atlast, build a simulator which communicates with bétland A in such a way that
each message required Hyis computable irf.

Based on this approach, we will do simulation on the SHAREBM pfotocols and prove
their security properties by showing that they are penfesithulatable.

As shown in Protocol 1, there are three paritgs P, and P; participate in Du and
Atallah protocol, two partie®; and P, want to compute the multiplication valueof their
inputsz; andz,. Let us denote this three party functionfage;, xo, null) = (51, S2, S3),
whereS = 51 + .5, + S3. Itis supposed that all parties are semi-honest, and thersaly
can only corrupt one party. Since this protocol is not symimdéd every party, in the
following part, we will discuss the simulation on each pagyparately.
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As the simulator must know the Du and Atallah protocol in adeaand follow the
protocol while communicating with the real world adversarywe rewrite Protocol 1 to
the following form, which is easier to follow while procesgicomputations:

Protocol 5 Formal Du and Atallah Protocol
Input: Pp: x1, Po! xo
Output: P;: S1, P Sy andPs: Ss

Round One
P3: Random§q, ao);
P; — Pi:aq;
P3; — P ao;

Round Two
P ris =21 + aq;
P, — Py ri9;
Py ro1 =x9 + as;
Py — Pyiiros;

Round Three
Pi: 81 = —(z1+ a1) * (x2 + a2) + z1 * (x2 + a2);
Py Sy = 19 % (xl + al);
P3: S3 = a1 * as;

In this formal protocol, we can see that there are three tgpastions: First, generating
random items, which is denoted as "Randonj(, the items inside the parentheses are the
random items to be generated. Second, sending item fromametp another, which is
denoted as "Sender Receiver”, and the item after the ":" is the item to be sentirdl'h
computing the values, which is denoted as mathematicaksgjams.

Assume thatP; is corrupted by the real world adversady therefore,A knows all the
internal data ofP;. While executing the protocolP; gets the following messages from
other parties:a; andry;. It is trivial that based on whaP; knows, it can not compute
the secret values. Hence, inP;’s view, each message is random and independent from
each other. As a result of that, while communicating withthe simulator just needs to
generate a random item and send iitat each timed needs to get a message. Therefore,
we can do the simulation as follows:
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Protocol 6 Simulating Du and Atallah Protocol whilB, is corrupted
Input: Pi: xq, P a9
Output: Py: Sy

Round One
Simulator: Randomg,);
Simulator — Py aq;

Round Two
Pyirg =11 + ay;
P, — Simulator: ri9;
Simulator: Randomfsy);
Simulator — Py raq;

Round Three
P S = —(xl + al) * 191 + X1 * T2,

Theorem 5.1. The Du and Atallah protocol is perfectly secure.

Proof. By observing Protocol 6 and Protocol 5, we can conclude tiairtcoming mes-
sages ofP; from Protocol 6 and incoming messagesiyffrom Protocol 5 are indistin-
guishable. As the ideal functionality is incorruptible, any computation can be executed
securely. Since the same function is evaluated in both redbvand ideal world, the out-
put of honest parties should be the same. We can say that ®whikecorrupted, Du and
Atallah protocol is perfectly secure.

The simulation is similar whilé>, is corrupted, hence we can infer that Du and Atallah
protocol is perfectly secure whil®, is corrupted. AsP; just works as a random item
distributor, it gets no incoming messages, thus it is trithat the protocol is perfectly
secure ifA corruptsP3. To sum up, we can conclude that Du and Atallah Protocol is
perfectly secure under the condition that the semi-horbaraaryA can only corrupt one
party. ]

Theorem 5.2. The Three Party Share Multiplication protocol is perfecthcure.

Proof. By obseeving the Three Party Share Multiplication protadwwn in Protocol 2,
we can get that the messages are exchanged only in round twoisély speaking, the
messages are exchanged in the six instances of Du and Apaiedcols, which are im-
ported by Three Party Share Multiplication protocol as puttocols. As shown in the
proof of Theorem 5.1, each party of the Du and Atallah pratécgimulatable. It is re-
quired that all random numbers in all instances of Du andlatigbrotocols are uniformly
distributed and independent from each other, so the outparies of each instance are
uniformly distributed and independent from each other.

Hence, while simulating the Three Party Share Multipli@agprotocol, we just need to
construct a simulator which takes the simulator of eactaims of Du and Atallah protocol
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as its component. Assume that the Du and Atallah protocaeirebcrealizes an ideal func-
tionality F'. Let us denote the ideal functionality of three party miyiimg additive shares
asT, which contains six instances éf. According to the theory of universal composi-
tion, we can get that the Three Party Share Multiplicatiostgmol universal composably
emulatesl’. Hence, the Three Party Share Multiplication protocol iSquly secure. [

Theorem 5.3. The Share Conversion protocol is perfectly secure.

Proof. As shown in Protocol 3, in the first round, what Alice and Bob are uniformly
distributed random numbers. In the second round, threarinstof Du and Atallah proto-
cols and one instance of Three Party Share Multiplicatiatgmol are imported.

Hence, while simulating the Share Conversion protocol, ug peed to follow the
protocol and import the simulation on the sub protocols @rtght time. Hence, each party
is simulatable and none of them can figure out more secretshéather hand, the output
distribution of honest parties form the ideal world and reatld are indistinguishable. To
sum up, the Share Conversion Protocol is perfectly secure. O

Theorem 5.4. The Bit Extraction protocol is perfectly secure.

Proof. According to the Protocol 4, as the Share Conversion prbisqeerfectly secure,
while simulating the round one of Bit Extraction protocoleyust need to import the
simulator of each instance of Share Conversion protocols.

In the round two, Alice gets two messages andwvsz;, and other two parties have
no incoming messages. Hence, the simulation on Bob andi€lmdone in round one,
and their views are perfectly secure. To Alice, the incommmgssages,; andvs; are
uniformly distributed random numbers, since they are caegbby subtracting a uniformly
distributed random number from a secret. Therefore, winikeiksiting Alice in round two,
the simulator just needs to follow the protocol to generatksend the random numbers at
the right time. So Alice is not able to figure out more secrets.

According to the theorem of universal composition, sin@e3$hare Conversion proto-
col is perfectly secure, the Bit Extraction protocol is petfy secure. O
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6 Overview of Our Implementation

Based on the theory of universal composition, which wasrginethe former chapter, we
have built an implementation called AutoProver to analyme $HAREMIND protocols.
The name of the implementation shows its functionality asahtomatic prover of the
security of secret shared protocols.

Our implementation is a software program, which can be ewrelcan personal com-
puters. The software can be divided into three componemighd following parts, the
infrastructure of the software is introduced in section, @dd the introduction of each
component is shown in section 6.3 to 6.6.

As a new grammar is defined in our implementation, all the SEHMRND protocols
described above must be rewritten in our grammar manuatily e valid protocols can
be analyzed by our program. Besides the SHAREMIND protodbks AutoProver also
can analyze other valid protocols. The grammar of the podois introduced in section
6.3.

6.1 AutoProver Infrastructure

The infrastructure of our implementation is shown in Figuee There are three compo-
nents, the protocol parser, the security analyzer and thelaiion generator. The protocol
parser parses the input protocols and checks if there is mmgrgar error. The security
analyzer is in charge of analyzing the valid protocols toist#ee corrupted parties, which
are designated by the user input, can figure out more sebegighey should know. The
simulation generator can generate the simulation resatedon the analysis results.

User Input
[ Protocol ] Actor ID ]
T

7=

Parser Analvzer

Jd0jeIauas
uoT3RTNMIG

Tree Regult

Figure 6: Infrastructure of AutoProver

The approach of processing the input protocol based on #igrdeed corrupted actors
is as follows:
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1. First, the parser will parse the input protocol and chéekgrammar of the protocol.
If the input protocol imports other protocols as its subtpeols, check the grammar
of the sub-protocols, too. If any grammar error is detectied,program halts and
reports the parsing error on screen.

2. If there is no grammar error of the protocol and its suldquals, the parser would
insert the content of the instances of sub-protocols intoirtput protocol. Then it
will output the full protocol and the syntax tree of the fufbpocol.

3. The analyzer takes the full protocol and the corruptedraclDs as its input. Then
it analyzes if the corrupted actors can figure out more sethan they should. After
finishing analyzing, the analyzer outputs the analysisntepo

4. If the full protocol is analyzed to be secure, then the &timn generator takes the
analysis report as its input and does simulation based on it.

6.2 Implementation Notes

Our implementation is programmed in Java language. Hencanmlementation is plat-
form independent. Since our goal is to build a tool, which aatomatically evaluate the
security of secret shared protocols, there is no need toampwer networks. Therefore,
our implementation works on single computer.

The Java Compiler Compiler (JavaCC), which is a parser gémelis used as an im-
portant tool to generate our parser code. JavaCC can reaptahemar specification and
convert it to a Java parser program. The parser program cagmize the content that
matches the grammar. JavaCC also provides sub-tools ddlatihe parser generation,
such as JJTree, which is in charge of tree building, and JJ®bich can produce docu-
mentation for the BNF grammar. In our implementation, we d&seaCC version 4.0. It
works with any Java virtual machine, version 1.2 or greater.

The inputs and outputs of our implementation are controti¢tie following approach.
We use theFilelnputStreanmclass injava.io package to obtain the inputs, and tRent-
Writer class to print the outputs. Both the inputs and outputs aredtocally.

Our implementation can automatically generate the sinmnagesults for the protocols
provided by us in advance. However, there is a restrictiothencurrent version of our
implementation. Because of the disadvantage of the graranththe variable renaming
algorithm in the parser code, our implementation can ondl déth the protocols with up
to five actors, and it can only generate the full protocol Weigs than 2025 variables. But
it can be extended easily by adding new actor tokens intodrsep code and enlarging the
length of variable names.

6.3 The Parser

If we want to build a tool that can analyze any secret sharetbpol in SHAREMIND, it
is important to use some uniform grammar. Hence, as the braponent of our imple-
mentation, the parser is in charge of the following two tking
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1. Excluding and reporting the protocols which are not wntin the valid form.

2. Importing the content of instances of sub-protocols am$tucting the full protocol
of the valid input protocols.

As we mentioned above, the parser code is generated by JaBa@e we present the
approach of generating the parser code, let us have a lodK @elin details. JJTree is a
very important sub-tool included in JavaCC. It generatekedo construct parse tree nodes
and works as a preprocessor for JavaCC. JJTree takes ioputhe.jjt file and outputs a
.Jj file, where thejj file is used as the input of JavaCC. Hence, to generate therpande,
we first define the actions of nodes in tljje file, then use the JJTree to generate the input
of JavaCC, and at last we use JavaCC to generate the parser.

In the following subsections, we will discuss the two funatof the parser separately.

6.3.1 Introduction of the Grammar

Before we can define the grammar, we must constrain the \aiid 6f the words used in
the protocol. Hence, we set that the following signs can leelus

Name Sign | Name Sign | Name Sign
LPAREN | ( RPAREN | ) SEMICOLON | ;

COLON | : COMMA |, SENDTO ->
EQUALS | = PLUS + MINUS -

TIMES * MOD % NUMBER ('o"-"9"P+

Table 2: Available Signs

As for the additive secret sharing scheme, the content cdftithee multiplication proto-
col changes corresponding to the number of parties thateaoioupted by the adversary.
In our implementation, we just provide three party sharetiplidation protocol and five
party share multiplication protocol in advance. In the para&e assume that there are five
actors, whose names are Alice, Bob, Charlie, David and Ehektleese names are denoted
asA, B, C, D andFE separately.

We also need to formalize the names of different variabléschvis shown as in Table
3.

Variable Format

VARIABLE | (["a"-"z"])+["1"-"5"]["1"-"5"]
SHARE (["a"-"z")+["A"-"E"]

BITS ["a"-"z"["A"-"E"](["0"-"9"])+

Table 3: Valid Variable Names

TheVARIABLEis the defined as the name of random numbers or the name oéthe it

46



computed by an assignment. TEEIARESs classified as the name of additive shares. The
BITSis used to represent the name of the bits extracted fratnkédt long data.

By observing the protocols in chapter 4, we can generalizefdhlowing common
actions:

1. The actors can generate uniformly distributed randombeum
2. The actors may send messages to other actors.
3. The actors need to compute some results based on the atformthey already know.
4. The protocol may import other protocols as its sub prdsco
Correspondingly, we define the grammar for these actionsliasvk:

1. For presenting that an actor generates random numberssaewhe sentence as
Actor_Name Randoni VARIABLE 4, ... ,VARIABLE,,)

The Actor_Namds the name of the actor who generates the random numbers, the
actor name can bd, B, C, D or E. The signRandomindicates that the variables,
whose names are shown in the parenthesis, are initializeshismmly distributed
random numbers.

For example, the statement
A: Randonfr12,r13,r14)

means that Alice generates three uniformly distributecdoam numbers, whose
names are12, 13 andr14.

2. To show that an actor sends a message to the other actorit@@\sentence as
Sender_Name-» Receiver NameMessage Name. .., Message Name .

The Sender_NamandReceiver_Namare actor names, which can be chosen from
A, ..., E. The sign— indicates that the messagdessage_Name. .., Message_Name
are sent from the act@ender_Nam the actoReceiver_NamelrheMessage Name
can be in form oVARIABLE, SHARE or BITS

For example, the statement
A — B:rl12,sA,rA0

means that Alice sends three messages to Bob, and thesegaseasa a variable, a
share and 82 bit long message that represents the first bit of the share

3. For computing the assignment, we can use the sentence as
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Actor_Name Result_Name = Expression

The Actor_Names the name of the actor who computes txression The Re-
sult_Namas the name of the computing result, which should be in thea fof VARI-
ABLE TheExpressiorcan be any expression, as long as all the arithmetic sigmk use
in the expression are included in Table 2, and all the elesheatnes are in the form

of what shown in Table 3.

For example, the statement
A:dl2=—-2%al2(sA+ bl12)

means that Alice computes the expressie? « a12(sA + b12) and the result is
denoted ag12.

. To import other protocols as sub protocols, we can useoif@ving sentence

Subprotocol Actor_Name : Output_Name, ... ,Output_Namg,
... ,Actor_Nameg : Output_Nameg, ... ,Output_Namg
= Subprotocol_Name ( Actor_Namg(Input_Name, ... ,Input_Nameg),
..., Actor_Name : (Input_Name, ... ,Input_Namg))

The signSubprotocolindicates that a call of an instance of the sub protocol, whos
name isSubprotocol_Namés made. In current version of the program, e pro-
tocol_Nameshould beMultiplication, DuAtallah, TwoOutFiver shareconversion

The sentencéctor_Name : Output_Name. .. ,Output_Namg means that by im-
porting the instance of the sub protocol, the name ofitbatputs of an actor, whose
name isActor_Namewill be Output_Name, ... ,Output_Namg. Itis required that
the outputs of all actors participating in the sub protodmligd be specified.

On the other hand, the sentengetor_Name : (Input_Name... ,Input_Namg)
means that the actéwctor_Namewill input n messages, whose nameslaput_Name,
...,Input_Namg while calling the instance of the sub protocol.

The setting of inputs and outputs of each actor should bedrséime form as what
is declared in the original content of the sub protocol.

For example, the statement

Subprotocal A:al2,B:b12,C:c12,D:d12,E:e12 TwoOutFive(A:(uA),B:(vB))
means that an instance divoOutFiveprotocol is called as a sub protocol, and it is
specified that while Alice inputs shared and Bob inputs shareB, the name of

the results of this instance @fvoOutFiveprotocol should be12, 12, ¢12, d12 and
el2.
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After we have shown the rules of how each sentence can be caupae will present
the requirements of how to construct the whole protocol hgaotocol can be divided into
three parts:

1. Declaration of inputs: the grammar of declaring the form of inputs is

Input Actor_Name : (Input_Name, ... ,Input_Name),
..., Actor_Name : (Input_Name, ... ,Input_Nameg)) .

The wordInputindicates that the following part of this sentence specifibith
actors will submit inputs in this protocol and what are thenea of those input
items.

2. Main body: the content of the protocol is written in this part. Whati@ts each
actor takes and which instances of protocols are imported@cified here.

3. Declaration of outputs: the outputs are declared by using the sentence

Output Actor_Name : Output_Name, ... ,Output Namg,

..., Actor_Nameg : Output_Name, ... ,Output_Namg .
The wordOutputstates that the rest of this sentence defines the names aftfhe®
of this protocol for all actors, who participate in this pyool.

Let us take the Du and Atallah protocol as an example. Foligwiur grammar rules,
the Du and Atallah protocol can be written as:

Protocol 7 Du and Atallah Protocol
Input : A: (uA),B : (vB); /IDeclaration of input

C : Random(r31,r32);
C — A:r3l;

C — B:r32;

A: f12 =uA + r31;
B: f21 =vB 4+ r32;
A— B: f12;

B — A: f21,

A:dA=—f12x f21 + uA * f21;
B:dB =vBx* f12;
C:dC =r31 x132;

Output : A :dA,B :dB,C : dC //Declaration of output

The last rule of writing a protocol is that except for the lashtence, we must use
a semicolon to indicate that one statement ends. In othedsydine sentence without a
semicolon would be taken as the last sentence.
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6.3.2 Generating the Full Protocol

One of the special features of our implementation is thaait automatically import the
instances of other protocols that already exist in our @ogr Hence, while writing the
input protocol, we do not need to specify every message eggthbetween the parties
any more. Instead, we can designate what instance of whatbqm we need to import,
then the parser will generate the full protocol automaliycaihd correctly.

As we mentioned in the former section, the statement of itimmpan instance of a sub

protocol is as follows:

Subprotocol Actor_Name : Output_Name, ... ,Output_Namg,
...,Actor_Nameg : Output_Name, ... ,Output_Namg
= Subprotocol_Name ( Actor_Namge(Input_Name, . ..

..., Actor_Nameg : (Input_Name, ..

This statement specifies the following information:

Input_Nams),
.,Input_Namg)) .

1. Which protocol will be imported as the sub protocol.

2. Who participates in this instance and who submits thetinpu

3. What are the names of inputs and outputs of the sub proiestaince.

As shown in Figure 7, the full protocol is constructed using following approach.

Input Declaration —L — J_ Input Declaration
Saved : Protocoll |copy Sub—protocol
Import Statement ol ad just
Frotocol [nstance| Instance
................. —L — J_
Saved : Protocoll |copy Sub—protocol
Import Statement £all ad just
Frotocol [nstance| Instance
Output Declaration j copy I Output Declaration

Figure 7: Approach of Constructing the Full Protocol

The input protocol is processed from statement to statenkeaept for the statement
of importing a sub protocol, all other statements are copiettly into the full protocol. If
an instance of sub protocol needs to be imported, the cootémt designated sub protocol
saved in our system is modified to meet the requirement of wbepsotocol importing
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statement. After that, the content of the instance of theopob will be copied into the full
protocol.
The content of the full protocol must meet the following regments:

1. There is no grammar error in the full protocol and difféneressages have different
names.

2. It is the exactly correct extension of the input proto@id each instance of sub
protocols is correctly formed.

To meet these requirements, we implemented an algorithimnstieict the instances of the
imported protocols as follows:

e First, while parsing the input protocol, the parser doesombt check the protocol’s
grammar, but also saves the name of each item of the inpuiqmidhto a vectod/.

e Second, after the grammar is checked, the construction lofpsotocol instances
begins:

1. For each import statement, the algorithm first saves émesitwhich specify the
participating actors and their outputs into a veatort, and the items which
indicate the actors who submit inputs and their inputs intecor I n.

For example, for the statement
Subprotocol: A :a23, B : b23,C : ¢23 = DuAtallah(B : (uB),C : (vC)) ,

the algorithm will generate two vectors @it = [A, a23, B, b23, C, ¢23] and
In = [B,uB,C,vC].

2. The algorithm opens the sub protocol, which is designaidide import state-
ment, and gets its input and output declaration statem&htm the algorithm
extracts the input and output information from the sub prokcand saves them
into two vectorsSout and Sin, whereSout contains the actors who is partic-
ipating in the sub protocol and their outputs, &k includes the actors who
submit inputs and their inputs.

For example, for the statement in the former step, the dlguriopens the
Du and Atallah protocol as Protocol 7, and generates twovestSout =
[A,dA, B,dB,C,dC] andSin = [A,uA, B,vB].

3. The algorithm goes through the sub protocol, and charnbgseatems in vec-
tors Sout andSin to the items in the same position of vectérst andin. All
the items been changed are marked to prevent being changed ag

4. For each other item in the sub protocol, the algorithm rgyllace them using
the following approach:

— First, the algorithm generates two vectStsuriable andV ariable, where
Svariable saves the items need to be changed Hmuaiable saves the
final item name.
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— If the item is not inV/, the algorithm will not change it, but this item needs
to be added intd’.

— On the other hand, if the item is alreadylin check if it is in Svariable.
Ifitisin Svariable, do nothing.

— Ifitis not in Swvariable,then the algorithm adds the name into the vector
Swvariable and finds a new available name for it. After the name is gener-
ated, the algorithm adds the name into the vetteriable and the vector
V.

— After all items are checked, the algorithm will go througk gub protocol
and substitute the items Slwariable to the item in the same position in
Variable.

After the instance of sub protocol is constructed, excepit$anput and output decla-
rations, other statements will be copied into the full peolo Therefore, the full protocol
contains one input declaration, one main body without sobogpl import statements and
one output declaration. Except for the output declarateath other statement ends up
with a semicolon.

6.3.3 Future Extension

The current version of our implementation is especiallygtesd for analyzing the SHARE-
MIND protocols with no more than five actors. Hence, only fietgoa names are defined
in our protocol grammar. It can be easily extended to anatypéocols with more than
five parties by defining more actors in the parser code. Natewhen new actor names
are defined, the scope of valid variable names should be eldang.

When new protocols are composed, their names can be addethéparser code.
Hence they can be imported as the sub protocols of more campdocols. On the other
hand, while finding the new name for the item in sub protocgscan increase the number
of iterations of the renaming algorithm to enlarge the nunadf@roper item names.

6.4 The Protocol Analyzer

The most important component of our implementation is th@gmol analyzer. It is in
charge of evaluating the security of the protocols. The mbmpproach of proving if a
protocol is secure or not is to define an attack scenario fiiety analyze whether the
protocol can resist this attack. Hence, while analyzingstbeurity of the protocols, the
names of corrupted parties must be specified in advance.

After the analyzer gets the full protocol from the parser &m& name of corrupted
parties from the user input, the process of evaluating tleergg of the full protocol,
which is under the attack of designated corrupted partesxécuted as in Figure 8.
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Full Protocol The Analyzer

Input Declaration Messages Generated

by Corrupted

Main Body Parti
,/’/ ik Analysis

>’\ 7~ Algorithm
Cutput Declaration -

Meszsages Received

by Corrupted

Corrupted Parties

Parties = Analysis

Actor_Namey, ... ,Rctor_ﬁamet| Result

Figure 8: Approach of Evaluating the Full Protocol

The analyzer works using the following approach:

1. According to the corrupted parties’ names, the analyzakd through the input full
protocol, and extracts all the messages generated or egldejvthose corrupted par-
ties, and saves messages generated by corrupted partiesliat@nd their received
messages into another list. The sequence of the extractesages is the same as
their sequence in the full protocol.

2. The analysis algorithm takes the messages extractee firshstep as is input, and
does the analysis on those messages.

3. After analyzing, the analysis algorithm outputs its gsial result as the result of the
analyzer.

We can observe that the essential part of the analyzer isnhlysis algorithm. In
the analysis algorithm, the messages received by corrygatdbs are classified into five
categories:

1. Arandom number.
. The sum of several random numbers.

2

3. The sum of a secret and a random number.

4. The sum of a secret and several random numbers.
5

. The sum of items, which are values of expressions needmsidomputed from other
items.

In addition, the analysis algorithm adds one of the follayiwo pads to each message:
1. Known it means that all items used to compute this message aiaahogenerated
by the corrupted parties.
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2. Not it means that there is at least one item used to compute #gsage unknown
to the corrupted parties.

The goal of the analysis algorithm is to determine if the gpted parties can figure
out more sensitive information from the messages they tnald they should. It requires
that each message should be uniformly distributed to theuptad parties. In that case,
the analysis algorithm analyzes the incoming messagesrafpgted parties sequentially,
and records the items that make these messages random. &\fasdbomness determinant
be the item, which makes the value of a message uniformlyilnis¢éd. Each message is
processed as follows:

1. First, the analysis algorithm checks if the message cgmatdded aknown If it
can, then the analysis algorithm ad¢isownas its pad. It is trivial that the corrupted
parties get no more information from the messages paddgd@sn

2. Ifthe message is not known by the corrupted parties, tiearnalysis algorithm adds
Notas its pad. After that, the analysis algorithm checks whyple the message is,
and does different operations according to the differgoe$yof messages:

¢ If the message is a random number, the analysis algorithra gweugh the
former messages in the list of received messages and clfetiere is any
message, which is computed from secrets and other itemsria®ne ran-
domness determinant and it is the same as this random number.
For example, the messagerie2 and we found a former message which can be
expressed asl2 + s A, then the corrupted parties can get seerkt These two
messages compromise the security of the protocol.

e If the message is the sum of several random numbers, thesialgorithm
checks if all these random numbers are used in the compuogaticthe former
messages. If the answer is yes, then the algorithm countsuimber of the
time each random number appears in the former messagese tiotinting
results are the same as the times of the corresponding ramgiminers appears
in this message, then the protocol is insecure.

For example, the new message i&+r13+r14+r23, the protocol is insecure
if we find the former messages ad + r12, sB + r13 andsC + r14 + r23,
because the corrupted parties can compute the valud af sB + sC.

¢ If the message is the sum of a secret and a random number, adbesprof
checking the security of the protocol is the same as for tisé tffpe of mes-
sages. If the corrupted parties still can not figure out mofermation after
they received this message, the algorithm records the namidonber as the
randomness determinant of this message.

e If the message is the sum of a secret and several random ngjrieprocess
is the same as for the second message type. Its randomnessidants are
the random numbers that have not been used as randomnessidaigs of
other messages.
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¢ If the message is the sum of items needed to be computed hyitghes, the
algorithm extends it to the form that each item used to comthé message is
a random number or a secret. Then the analysis algorithmnaietes which
type this message is and follows the process of that mesgpge t

While evaluating messages received by corrupted parfiesyyi message is detected
to compromise the former messages, the analysis algoritbps $he evaluating process
and makes the report. The report shows the index of the me#sapwill compromise the
privacy of secrets.

If after receiving all the messages, the corrupted partib€annot get more informa-
tion than they should, then a security report is made by thé/sis algorithm. The security
report includes all the received messages, their rand@raeterminants and their status
paddings.

6.5 The Simulation Generator

As mentioned above, the real world protocol securely realthe ideal functionality” if
for any real world adversary, there exists a simulator comipates withF' in the ideal
world that the output distribution of the adversary comnoates with the real world pro-
tocol and the output distribution of the adversary commaitieis with the simulator are
indistinguishable from each other. Hence, the simulateery important in the security
proofs of protocols. The goal of our implementation is tolgra the input protocol and
prove its security by presenting the simulation result ofgoted parties.

The simulation generator in our implementation plays the o a simulator. It takes
the analysis report of the protocol analyzer and the fultqmol as its input. If the report
shows that the protocol is insecure, the simulation geaehatlts.

If the analysis report indicates that the protocol is sedheesimulation generator reads
statements sequentially from the full protocol and gemsriie simulation result using the
following approach:

1. For each statement, if no corrupted parties participathe action depicted in the
statement, the simulator generator does nothing.

2. If the corrupted parties participate in the action, tHendimulation generator oper-
ates differently according to the type of the statement:

e For the statement meaning that the corrupted parties sessages to honest
parties, the simulation generator changes the name of teeage receiver as
the name of the simulator.

e For the statement showing that the honest parties send gesstathe cor-
rupted parties, the simulation generator replaces the néthe message sender
to the name of the simulator, then makes further operatioosréding to the tag
of that message in the analysis report:

— If the message is tagged Esown the rest of the statement remains the
same.
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— If the message is tagged Bt the simulator generator prints a statement
to generate a random number, and changes the content afadriiate-
ment to the name of the new random number.

e For other types of statements, the simulation generatolesdpem intactly
into the simulation result report.

In a word, the output of the simulation generator is a prdtedoch shows the process
of how the corrupted parties communicate with the simuld&@grcomparing the simulation
result with the full protocol, we can observe that for therapted parties, the distribution
of the messages received from the simulator and the ditibof the messages received
from other parties are indistinguishable. It also proves tur analysis result is correct.
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7 Conclusion

In this thesis, we present a framework for analyzing the réigonf secret shared protocols.
Our main goal is to build a software, which can automaticpiiyve the security of the se-
cret shared protocols. We achieved this goal, and the pehatnplementation is presented
in this work.

Our solution is based on the theory that a real world protgecurely emulates an
ideal functionality if for any real world adversary therdsg a simulator in the ideal world
such that the adversary can not distinguish if it is commatimg with the protocol or the
simulator.

Our solution is especially designed for the secret sharetbgols with no more than
five computing parties. The additive-out-of-n secret sharing scheme is used for dis-
tributing the secrets between parties. In this thesis, vesqnt three party computation
protocols for several operations on shares, which are ctadgay additive secret sharing
scheme. These operations are addition, multiplication bgrestant, multiplication, share
conversion and bit extraction. We use both informal and fdrmethods to prove that in
the semi-honest adversary model, where the adversary ¢aoarupt one party, no party
can figure out more secrets than he should in these protocols.

The result of our solution is the implementation softwarkedaAutoProver, which is
written in Java programming language. A tool called Java€Gsed for generating the
protocol parser. AutoProver is a cross-plarform applarativhich can be executed on Java
virtual machine version 1.2 or greater. As no network cotiorés needed, the AutoProver
works on single computer. We also present the manual andthreescode of the current
version of AutoProver.

Our implementation consists of three components, the pobtparser, the protocol
analyzer and the simulation generator. A set of protocahgnar is defined for the parser.
Except for checking the grammar of input protocols, the gracan construct complex full
protocols by automatically importing the instances of offretocols as what are specified
in the input protocols. The protocol analyzer takes the putitocol and the names of
corrupted parties as its inputs. By evaluating the messggesrated and received by the
corrupted parties, the analyzer reports whether any searebe compromised by these
corrupted parties. If no party can get more information thanshould, the simulation
generator constructs the simulation results. For protdebligging, the execution result of
each component is saved intzt file.

We have composed a number of protocols, which are saved isoftware. We have
tested our implementation on these protocols, and it woekg well. The instruction of
how to compile and execute the AutoProver is presented imppendix. In future, the
AutoProver can be easily extended to meet the requiremémsi@ complex protocols.
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Hajusarvutusprotokollide automaatsed turvatdestused

Kokkuvote

Kaesolev magistritdd esitab raamistiku hajusarvutusgpuakollide turvalisuse automaat-
seks tdestamiseks. Raamistik on realiseeritud tarkvkedipa, mis vastavaid tBestusi pro-
tokollide formaalsetest kirjeldustest genereerida shuda

Protokollitbestuste genereerimisel kasutame reazdsdeaalse maailma ideoloogiat
ning turvadefinitsiooni, mille kohaselt protokoll on tulvee, kui reaalset protokolli saab
niimoodi simuleerida, et riindaja ei suuda eristada, ka®dtab reaalses voi ideaalses
maailmas. Toos loodud turvatbestuste leidja pohiline komept ongi vastavate simulaa-
torite genereeraator.

Esitatud tarkvara suudab automaatselt tdestada protokwiis kasutavad aditiivset
Uihissalastusskeemi ning pakuvad turvalisust riindajatevkes suudavad passiivselt ko-
rrumpeeridan arvutavat osapoolln + 1-st. Praktikas valitakse enamasti= 1, aga t60
tulemusena valminud automaattfestaja saab hakkama kensaiurulga osalistega pro-
tokollidega. To6s on toodud levinumate protokollide ftiihe, konstandiga korrutamine,
korrutamine, bitieraldus ja osade teisendamine) mitteé@ised tdestused ning naidatud,
kuidas muuta neid formaalselt genereeritavateks ja \sa@iitavateks.

Automaattdestaja on realiseeritud programmeerimiskegéwa (virtuaalmasina ver-
sioon 1.2 vdi kdrgem), kasutades JavaCC parseriraamistiRkogrammipaketi sisendiks
on protokolli formaalne kirjeldus t66 kaigus loodud k&rgles, mis sisaldab vajalikke
primitiive (juhuvaartuste loomine, sénumite saatminénaeetilised tehted, alamprogram-
mide valjakutsed). Valjundiks annab pakett analliisitudgholli ja juhul, kui selle turval-
isus dnnestus tbestada, ka vastava simulaatori. Proggzakett koos dokumentatsiooni ja
rea testprotokollidega on esitatud k&esoleva magistlisades.
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A Manual of Our Program

Our program named AutoProver is an automated analyzer mftsgtared protocols, and it
is a generator of the protocols that can be easily followethbysimulators. AutoProver is
written in Java programming language, and it can be exeairtethy Java virtual machine
version 1.2 or greater. In this appendix, we will introdulse features of AutoProver, how
to compile and run the program and the API of each class ofdhece code.

A.1 Specific Features

The specific features of AutoProver are as follows:

1. Simple Inputs: It is hard to write long and complex protocols. The protocaoiev
may spend a lot of time to check the validity of the protocakmtent. As a cure
for this, AutoProver provides an automatic protocol exiemgunction. Hence, the
protocol writer just need to specify the instances of themolocols he or she needs
to import, then AutoProver will do the rest to form the comlell protocols.

2. Automatic Analysis: While running the program, the user just needs to specify the
name of the protocol which is going to be analyzed, and theesashthe corrupted
parties. Then AutoProver will automatically analyze thetpcol and output the
simulation results based on the analysis results.

3. Understandable Outputs: After running the program, we can get the syntax tree
of the parser, the full protocol, the analyzing result areldimulation results. Each
of them are saved in axt file. The user can check if there is any error during the
process of executing the program.

A.2 Compilation and Execution

Before compiling the program, the user should copy the pmgirom the CD to his or
her hard disk. Let us denote the directory that the prograsaved in as %AutoProver
Home%. The program directory should contain the followiegsfi

e %AutoProver Home%:

— NewParser: %code of the parser written in JavaCC

x NewParser.jjt
x SimpleNode.java

— Analyzer.java %code of automatic protocol analyzer

— Simulator.java %code of the automatic simulation result
% generator

— Protocals: %predefined secret shared protocols
* shareconversion
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DuAtallah

Multiplication
TwoOutFive

x TwoOutFiveMultiplication
+ BitExtraction

*

*

*

If all files are saved, the user can compile the program byguia following com-
mands:

1. To compile the parser:

(a) Go into the directorjNewParseyrthen print the following command:
jitree NewParser.jjt

to compile the JJtree file. Then the JavaCC would generat®liibeiing files
automaticly:

e NewParser.jj

e JJTNewParserState.java

o NewParserTreeConstants.java

e Node.java

(b) Then the user should print the following command to cdenthie JavaCcC file:
javacc NewParsetr.jj

If the compilation succeeds, JavaCC would automaticalhegate the follow-
ing files:
e NewParser.java
e NewParserConstants.java
o NewParserTokenManager.java
e ParserException.java
SimpleCharStream.java
Token.java
TokenMgrError.java

(c) Finally, the user needs to return to the %AutoProver Hdnuérectory and
compile the parser by using the command:

javac NewPars&NewParser.java

2. To compile the analyzer, the following command is needed:
javac Analyzer.java
3. The user can use the following command to compile the sitiom generator code:

javac Simulator.java
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After successfully compiling the program, the user can heddllowing commands to
run the program:

1. To run the parser only, please use the command:
java NewParser.NewPargamotocol_name

The parser outputs are saved in files:

e ParseOuput.txtit contains the syntax tree of the protocol.

e FullProtocol.txt it contains the full protocol which includes the contenttod
sub-protocols specified in the input protocol.

2. To run the analyzer, which imports the parser code, pliegsg the command:
java Analyzemrotocol_name [actor_name]+
The analyzing outputs are saved in file:
e AnalysisOutput.txtit contains the analysis result.
3. To run the simulator, which imports the analyzer codegasseprint in the command:
java Simulatomprotocol _name [actor_name]+
The simulation result is saved in file:

e Simulator.txt it depicts the simulation.

A.3 AutoProver APl Routines

We will introduce a comprehensive list of all classes, mdthand variables, which are
available for further code extensions, as follows:

1. TheSimpleNodeclass provides functions for the nodes of the resultantegpdrse
of the input protocol. It also contains the functionalitygeinerating the full protocol
of the input protocol. Its APl is shown in Table 4.

Name Description

void process (PrintWriter ostr) | Print the tokens into a file

public void preprocess() Save all tokens into a vector

public void getVeriable(Vector v) Get the names of items in the input protocol

public void importProtocol Change the parameter names of the sub-ptotocol

(Vector v, PrintWriter ostr) according to what is specified in the input
protocol and print the result to a file

void dumptofile Print the parser tree to a file

(PrintWriter ostr, String prefix)

Table 4: API of Class SimpleNode
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2. TheAnalyzer class provides functions to analyze the parsed protocopantiout
the analysis results, whose APl is shown Table 5.

Name

Description

public void preparseFile
(String file_name) throws Exceptio

Implement the parser to generate the full protoc

n -ol of the input protocol

public void parseFile
(String file_name) throws Exceptio

H

Parse the full protocol

public Vector getTokens()

Save the tokens of the full protocol into a vect

or

public Vector getAllIRandom()

Generate a vector which contains the names
all random numbers

of

public void getRandomltems
(Vector actor)

Generate a vector which contains the names
random numbers generated by corrupted act

of
Ors

public Vector getAssignments()

Generalize all the assignments and save ther
a vector of vectors

nin

public void getActorView
(Vector actor)

Get all the messages sent to corrupted actorg
which excludes the messages they send to e
other

ach

public Vector getActorAssignment
(Vector actor)

Get the assignments computed by the corrup
actors

ted

public Vector extend(Vector temp)

Extend the assignment till no items can be
represented as other assignments

public Vector analysis() throws Exc

eAnalyze whether the joint view of corrupted a

[9J

-ption

-tors is secure or not

Table 5: API of Class Analyzer

3. TheSimulator class generates the simulation results if the protocolterdened as
secure by the Analyzer, and its APl is as in Table 6:

Name

Description

public void simulate(Vector input)
throws Exception

To generate the simulation results based on
vector which contains the analysis outputs

public String getVarName(Vector v,

, Vector v2, Vector actor, Vector vi)

1 Find a proper name for the random numbers
generated by the simulator

D

Table 6: API of Class Simulator
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