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Abstract

This work handles the field of semiconductor quantum electronics and is based mainly
on tasks to solve Schrédinger equation and to model electron transport in GaAs/AlGaAs
multibarrier heterostructures. The work contains two major parts.

The first part of the work stands for finding proper numerical method to solve 1D time-
independent Schrodinger equation. It was found that the best way is to use standard
linear algebra solvers for eigenvalue problem. There are 3 papers published on this
topic.

The second part covers the methodology of calculating the emission characteristics
for laterally pumped quantum well heterostructures based emitters. The effect of lat-
eral electric field is explored and relevant methods presented. Calculations are done
for digitally graded parabolic quantum wells and results are presented in a separate
manuscript. There are 2 papers waiting for acceptance on this topic.

The results show that a real emitter can be built using only one layer. For 7 THz
emitter the overall emitted power rises higher than black body radiation.

The work is written in English, it contains 4 chapters, 3 tables and 10 figures on 25
pages. The work has 5 scientific papers in the appendix.

Key words: Schrodinger equation, shifted Fermi-Dirac distribution function, digitised
parabolic quantum well, lateral transport, terahertz emitter



Resiimee

T66 kisitleb pooljuht-kvantelektroonika valdkonda ja baseerub peamiselt Schrodingeri
vorrandi lahendamisele ja elektroni transpordi modelleerimisele GaAs/AlGaAs multi-
barjiaridega heterostruktuurides. T66 koosneb kahest peamisest osast.

Esimene t66 osa puudutab sobivaima numbrilise meetodi leidmist {ihemootmelise ajast
soltumatu Schrodingeri vorrandi lahendamiseks. Parimaks viisiks osutus standardne
lineaaralgebra lahendusmeetod omavéartusprobleemi jaoks. Sellel teemal on publit-
seeritud 3 teaduslikku artiklit.

Teine osa kisitleb lateraalselt ergastatud kvantauk-heterostruktuuridel baseeruvate ki-
irgurite emissioonikarakteristikute arvutamismetoodikat. Uuritakse lateraalse elek-
trivilja moju ja tutvustatakse seonduvaid meetodeid. Arvutused on tehtud digitaalselt
tasandatud paraboolsete kvantaukude jaoks ja tulemused on esitatud eraldi késikirjas.
Sellel teemal on avaldamise ootel 2 teaduslikku artiklit.

Tulemused néitavad, et iihel kihil baseeruvat emitterit on reaalselt voimalik ehitada.
7 THz kiirguri jaoks iiletab kiiratav véimsus musta keha kiirgusvoimsuse.

T66 on kirjutatud inglise keeles, see koosneb 4 peatiikist, 3 tabelist ja 10 joonisest 25
lehekiiljel. T66l1 on lisana 5 artiklit.

Votmesonad: Schrodingeri vorrand, nihutatud Fermi-Diraci jaotusfunktsioon, digi-
taliseeritud paraboolne kvantauk, lateraalne transport, terahertskiirgur
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Chapter 1

Introduction

The development of sources of terahertz radiation has become hot topic in the last decade because
of numerous prospective applications in spectroscopy, imaging and communications [1]. The major
application of terahertz radiation is related to spectroscopy, as all the chemical elements have a
unique "frequency label” at terahertz region. Sensing of chemical elements, monitoring pollution,
and detection of noxious substances are some examples of such applications. Spectroscopy is
therefore a sphere that needs the most the advantages of terahertz emission.

Today, most of the coherent terahertz sources need to work at very low temperatures, which
makes them expensive to use. Fortunately not all the applications need the coherent radiation,
they can work with incoherent emission too. To get incoherent radiation, there is no need to use
expensive lasers - some kind of cheaper solution can be developed that could work even at room
temperature. Incoherent radiation can be produced with a simple quantum well that is pumped
by lateral current. The radiation is then generated in spontaneous radiative transitions between
size-quantized states requiring only the electron excitation to higher subbands. No population
inversion is needed.

Quantum wells have also a broad range of applications. There have been manufactured
AlGaAs/GaAs based LEDs, using single and double heterostructures |2]. These heterostructures
are used in high-effective red LEDs. A drawback of AlGaAs/GaAs based LEDs is the requirement
of very thin GaAs quantum wells surrounded by AlGaAs barriers. An example usage of quantum
wells in LEDs is showed in fig. 1.1.
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Figure 1.1: An example application of quantum wells in Light Emitting Diodes. The multiple
quantum wells act there as active region and increase the efficiency of light generation. Source:
fig. 4.14 (a) in [2]

Emission generated by rectangular quantum well will have relatively wide spectrum, being quite
inefficient. To improve the bandwith and make it comparatively narrow, a parabolic well should be
used. Parabolic quantum wells have equal energy spacings and in such wells the only strong optical
transitions are between adjacent states. Bandwith of such emitters is limited by the spontaneous
emission width.

In reality it is very difficult to produce parabolic quantum wells, as the doping concentration
needs to be changed homogeneously. One solution of producing parabolic wells could be by digital



grading. It means the shape of parabolic well is replaced by rectangular layers of two materials
giving the behaviour of real parabolic quantum well (i.e. equidistant energy levels). Preparing
such a digitised parabolic well is presented here in the second part of chapter 2.

To make such parabolic well emitting spontaneous radiation, external bias should be applied to
it. External bias will produce lateral electric field that gives additional kinetic energy to electrons.
Additional kinetic energy increases the probability that electron jumps to higher energy levels
via scattering process. This is therefore the excitation process via lateral electric field and it is
described in the second part of the thesis, in chapter 3.



Chapter 2

Time-independent Schrodinger
equation numerical solution
methods. Application to digitally
graded GaAs/AlGaAs parabolic

quantum wells

2.1 Introduction

This chapter is based on paber [BEC] and describes developing of methods to find digitally graded
GaAs/AlGaAs parabolic quantum well and corresponding energy eigenvalues and wave functions.
To find the band structure, the basic time-independent 1D Schridinger equation (see eq. 2.101

in [3]) is used:
2 92
2m*(z) 022
where m*(z) is the effective mass that depends on the coordinate (whether it is GaAs or AlGaAs
at that point), ¥ (z) is the wave function, and E the energy eigenvalue. For thin potential barriers

a more precise form of this equation with differential mass is preferable (see eq. 2.96 in [3]):

P(2) + V(2)Y(2) = EY(2), (2.1)

—757”*—(2)&1/1(2) + V(2)¢(z) = E(z) . (2.2)
The solutions of Schrodinger equation are the energy eigenvalues and corresponding wave functions
that let us to do the electron transport calculations. Knowing of energy eigenvalues help us to find
the sufficient design suitable for digitally graded parabolic well that could give the best approach
to ideal parabolic well. It is known that parabolic wells give equally spaced energy levels, therefore
similar equal spacing is needed to be found by constructing suitable digital grading. The solutions
are also needed to do the carrier transport calculations, which are described in the next chapter.
Two different methods to solve Schrédinger equation was experienced to find better accuracy.
First method tried was shooting method and the other one matrix eigenvalue and eigenstates
solving method, both described in Paul Harrison’s book Quantum Wires, Wells, and Dots|[3].

2.2 Choosing suitable numerical method

2.2.1 Shooting method

Shooting method is based on solving differential representation of Schrodinger equation having

initial values that are known (see eq. 1.107 [4]):

2m*(z)
B2

Y (z+402) = (62> (V (2) = E) + 2| ¢ (2) — ¥ (z — 62) . (2.3)



In this differential equation it is clearly visible that three consecutive points in the wave function
1 depend on each other. Energy FE is the parameter that is searchable and it’s value is being
searched by boundary condition ¥ (z — c0) — 0. As differential equation unites three points, two
of them needs to be given as the initial values. When these initial values are known, the final value
for ¥(z,) can be calculated by repeating the funcion iteratively 9n — 2 times.

Two initial values depend on the symmetry of the concrete wave function. The potential shape
needs to be symmetrical to solve the Schrodinger equation using shooting method. Solving of the
differential equation needs to be started from the centre of potential. If the potential is symmetrical,
the wave functions can either be symmetrical or antisymmetrical (see fig. 2.1).

vz
wiz) = —w(-z)

L 2

Figure 2.1: Comparison of symmetric (left) and antisymmetric (right) wave functions.

The inital values need therefore to be chosen according to the type of symmetry of wave function.
For symmetrical and antisymmetrical wave function the initial values are (respectively):

{¢ =1 (2.4)

$(02) =1
$(0) =0
fro=o .

As shooting method uses differential equation, the wave function is very precise near the initial
values at z = 0 and z = 0z. The final part of wave function tends to deflect from the boundary
condition ¥(z — o0) — 0 as finding the precise F that matches to the real eigenvalue is very
complicated. The real values have always a definite precision, which makes it impossible to find
the precise value for energy. The fact that the final part of wave function depend on the values
in the beginning part of wave function makes also sense. Therefore it is very complicated to
find solutions that are precise enough using shooting method, as conformance to outer boundary
conditions is not very easily achievable.

Trials to solve the task using shooting method considered therefore to be too inaccurate. The
values of wave functions were checked using orthogonality condition (fi;ﬁj i rdz = 0) and found

that [; ;Yithpdz ~ 0.1 while [ ithidz = 1. That means the orthogonality was quite poor and this
method needed to be replaced.

2.2.2 Energy and wave function coupled solution Newton method

One way to improve the results of shooting method was applying an another method to them. In
[ESTSCIPROC] a method called energy and wave function coupled solution method (EWC) was
introduced which is very precise but needs initial energies and wave functions as input. Those
input values can therefore be prepared with shooting method.

EWC method solves Schrodinger equations system with clearly fixed boundary conditions -
both ends of wave function can be fixed to some initial value. Both, energy eigenvalues and
wave functions are calculated simultaneously. The method bases on 3-point scheme of spatial
discretisation that corresponds to equation derived from Schrédinger equation (2.1):

R (i =% =i 1 o
“om < A Az > A + Vi = Ey, (2.6)




where 1; denotes ¥(z;) and V; = V(z;). The exact boundary conditions for outer calculation
area of 1 is fixed to zero (i.e. 1)1 = ¢y = 0). This boundary condition corresponds to assumption
of infinitive external barriers as they cause wave function to go to zero on the borders.

This is the representation with constant or slowly changing mass. In case of dynamic mass it
goes inside the brackets, as it can be seen in the following form:

Az

K2

o <¢z‘+1 I R

2 mi+%A:1: m-_%Aaj

) LV = B, (2.7)

where m, 1 (and m;_1) is the average mass between m; and m; 1 (m; and m;_; respectively).
EWC method calculates not the energies and wave functions directly but only their corrections.
That makes it more optimal as it is not necessary to carry the absolute values through the calcu-
lations. The cycle of calculations is iterative, and can be stopped when the results do not change
much anymore.
The equation 2.7 can be converted to a representation that allows it to be calculated using
following equations:
Y =Y +4Y, (2.8)
[OF/0Y] x §Y = —F, (2.9)
where Y denotes the approximate unknown vector, §Y is the correction vector, F= (151 , 152, e F7N)T
is the RHS vector of the system calculated by Y and [0F/dY] is the N x N Jacobi matrix with
the Newton method derivatives ([ESTSCIPROC]). The Jacobi matrix [0F/0Y] has a triagonal
structure where first row and column are additionally filled out too. The first element of main
diagonal is zero. For example, for the constant mass formulation shown in eq. 2.6 the matrix has
the following structure:

0 2000 2pg 2Py - 2Pn_3 2N_2 2UN_1 2¢N ]
’lﬁz a9 C 0 s 0 0 0 0
3 c as c - 0 0 0 0
Py 0 c as - 0 0 0 0
oF/ovl=| ; ; ' ST R T)
’@/JN_g 0 0 0 anN—3 C 0
YN_2 O 0 0 c an—_o c 0
Y1 0 0 0 0 c an_1 c
YN 0 0 0 0 0 0 1 ]

where ¢ = h/(2mAz?) and a; = E — V; — 2c. To get deeper overview of this method, see
[ESTSCIPROC].

This method is very precise, as by the end of iterations the increment vector JY approaches
to computer zero. The disadvantages of this method are first, the need to obtain the initial guess
for wavefunction, and second, the possibility to skip some eigenvalues. Thereby for rather difficult
multibarrier digitised quantum well the method was decided not to be used. Using more common
methods for trivial eigenvalue problems could solve these disadvantages, which is the topic of next
subsection.

2.2.3 Method based on matrix eigenvalue standard solvers

This method is based on classical linear algebra methods that are meant for finding eigenvalues
and eigenvectors of matrices. This will be much more precise than shooting method, because
the elements do not depend on each other any more. To solve the Schrédinger equation (2.1)
using matrices, the equation needs to be modified to differential representation. The following
representation is taken from [3, eq. 3.53, page 89]:

1 [ 2(52)? 1 1
m*(z+52/2)w(2+62)_< h? [V(Z)_E]+m*(z+5z/2)+m*(z—5z/2)>¢(2)_




The equation 2.11 is differencial, which means, it connects three consecutive wave function
values. To solve it, standard eigenvalue and eigenvector computing methods can be used and the
equation needs to get matrix representation. The first step should be rewriting the equation to
the following form:

_ﬁwiﬁ %f)zv(zl-wrm* i ~ :_1 o :_1 1/;”1_%22)23%
(l 2) (l+2) (7, 2) (Z 2) o)

where ¥; = ¢ (2), ¥igz1 = Y (2 F02), z; = z and ziz1 = 2 F 62/2. For cigenvalue problem it is
better to present this equation without the coeficient in front of energy E. Therefore the whole

equation needs to be multiplied by 2(?—;2 and will get the following form:
k k k k

Yic1+ V(%) +

)

ey R ey ) S e A

m* |z, _1
(23)

where k£ denotes the coeficient %.
The coeficients before 1-s can be placed into a symmetric tridiagonal band matrix and the task
can be reformulated as a standard eigenvalue problem:

(2.14)

where [A] is the N x N matrix, [¢] is a column vector with N elements, and F is the wanted energy
eigenvalue. By solving this eigenvalue problem with standard software (e.g. dstev and dstevz in
LAPACK!), the energies E; (eigenvalues) and corresponding wave functions 1); (eigenvectors) can
be found (where [ is the number of energy level, | = 1...]N}).

The orthogonality of the wave functions is much better using this method. The value of
nondiagonal elements of orthogonality matrix was fi# Pithpdz ~ 1079 | which shows clearly how
much this method is better than shooting method.

2.2.4 Comparison of all three methods

The comparison of the main properties, and pros and cons of all these methods are listed in tables
2.1 and 2.2.

Table 2.1: Comparison table of all three methods. N is the number of net points

Property Shooting method Newton method Matrix eigenvalue
method

1. Boundary One side is fixed Both sides fixed to 0 Neither sides fixed

conditons with 2 pts

2. Wave function ~ 1071 ~ 10712 ~107°

orthogonality

3. Time efficiency Medium Very High High

(time ~ N) (time ~ N) (time ~ N3)

4. Initial guess for Not needed Needed Not needed

wave function

5. Implementation Medium High Low

complexity

6. Traceability Good Poor Poor

7. Other Symmetrical Outer barriers are Not very clear

assumptions potential needed infinitively high boundary conditions

ILAPACK is an acronym of words Linear Algebra PACKage. See http://www.netlib.org/lapack for more infor-

mation.
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Table 2.2: Advantages and disadvantages of the three methods
| Method | Advantages | Disadvantages |

Shooting method Easy to implement Not very precise; May
skip energy levels if
they are too close to

each other
Newton method Boundaries fixed to 0; Initial guess for energies
Relatively fast and wave functions

needed; May skip
energy levels if they are
too close to each other
Matrix eigenvalue Standard Not very clear
method implementation boundary conditions

2.3 Optimising digitally graded potentials

2.3.1 Introduction

The main task in this chapter is to find digitally graded potential layout that could be a good
approximation to parabolic quantum well. On the cover an example parabolic well with digital
grading is shown. Digital grading is needed to simplify the production process of parabolic quan-
tum well devices. It is technologically very complicated to manufacture quantum wells that have
parabolic shape. One possibility to overcome this obstacle is digitalisation of the parabolic well.
This means the two materials used in parabolic well (GaAs and Al,Ga;_xAs) are altered as many
times as necessary to achieve similar behaviour as true parabolic well has. Finding the right digital
grading can be time consuming, because all the thick layers must be carefully shifted left and right
to find the best approach to equal spacing between energy levels. The spacing is as a feedback in
digitised parabolic well construction method.

2.3.2 Building initial potential

Building the initial structure was relatively easy. The first criteria while building the structure,
was the integral of the potential function (the area) that needs to be equal for both cases - for
original parabolic well and for digitised well. This defined the number of layers. The second criteria
was needed to define their initial placement. The algorithm of assigning the layers to their initial
places started moving from the centre of potential and integrated over the original potential well.
If the integral occured to exceed the area of one monolayer, a layer was put into this place where it
happened. Then, the counter was zeroed and integration continued until the end of the potential.
Initial potential was behaving more or less like parabolic well but it was still not very precise.

2.3.3 Optimising the potential

To optimise the initial potential, there were several algorithms tried. The first and easiest was
to move layers one step? left and right, doing it one by one with each of the layers. After each
movement the unified spacing parameter between energy levels was calculated again and compared
to current minimal spacing parameter. This process was continued with several other algorithms
too until the spacing didn’t improve any more.

To characterise the deviation of spacings from wanted value, a statistical parameter - Root
Mean Square (RMS) - was used. The parameter was calculated using the following equation:

N-1 2
i AEz 7 - AEﬂwan e
RMS = \/Zz—l ( N“_ : ted) : (2.15)

where AFE; ;11 = Ej11 — E; is the spacing between energy levels i and ¢ + 1, AEyanteq is the wanted
energy spacing (constant value), and N is the number of energy levels. After each movement of

2the width of a monolayer (0.2825 nm)
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Figure 2.2: The algorithms used to find adequate quasi-parabolic quantum well using digital
grading of two substrates. The shifts are done symmetrically for both sides.

a layer the RMS is recalculated and used in later movements as comparison. If a new movement
improved the RMS, the movement fixated and another layer took into the focus.
The list of all algorithms used is described below and shown in fig. 2.2.

A. Moving one stick at a time to the left and right. This was the first method tried to
improve the RMS of energy level spacings. The algorithm started from the centre of potential and
moved symmetrically to the direction of the edge. When it reached the end, it started coming
back reversely to the centre. The algorithm continued this cycle until the movings of layers do not
improve the energy spacings any more.

If the new position of a layer is occupied by another layer, then this layer will also be moved
on. If there are many layers, then all of them will be moved.

B. Moving a group of sticks to the left and right. This method was the first improvement
to the previous one as it did not give the best approach. The method starts again from the middle
of the well and goes to the side. First moving incorporates all the layers that are moved to the
right and to the left. The second moving leaves out the first layer and takes all the others (n — 1
if n is the number of layers) with.

C. Moving two consecutive sticks towards and away from each other. This was the
latest improvement tried to do the achieved results even better. The process starts again from the
middle of the well and goes to the side. All the consecutive layers were moved towards each other
and then away from each other.

In final calculations all the methods were combined, alternating them after each step. Acting
that way gave the best result - the precision of energy spacings came around 5 percent what was
the first goal.

2.4 Conclusion

There are two main results achieved in this chapter. The aim of the first task was to find a proper
method for band structure calculation. This task was done successfully - a standard linear algebra
method to find matrix eigenvalues and eigenvectors was chosen to be the best one. The initial data
was chosen such, that the eigenvalues were the energy values and eigenvectors the corresponding
wave function.

The second task in this chapter was to find a good approximation to parabolic quantum well
using digital grading i.e. alteration of two different substances GaAs and AlGaAs. After the layout
of layers was fixed - the energy levels had more or less equal spacing, the final results was to be
calculated. After the final energy eigenvalues and wave functions were ready, the process continued
with carrier transport calculations, which is handled in the next chapter 3.

Three scientific papers have been published on this topic, they are presented in the appendixes.

13



Chapter 3

Lateral transport task of quantum
well based broadband terahertz
emitter

3.1 Introduction

This chapter is based on manuscript submitted to Journal of Applied Physics [JAP] and describes
developing of methods to calculate emission rates for lateral transport of charge carriers.

The quantum wells we are using are two dimensional, which means that the electrons have two
directions where it can move and one direction where it is fixed. This is therefore called in-plane
electron transport. In fig. 3.1 it is showed how the electrons can move along the valley (y-axis)
and up along the subband (z-axis). Along the y-axis the electrons are fixed and can not move.

Lateral transport brings up the effect of scattering, which means the electrons are colliding with
lattice atoms. Electric field caused by such collisions heats the electrons up giving them higher
kinetic energy. That will cause the electrons to climb up along the subband until they will collide
with lattice and go to higher subband by scattering process (see fig. 3.2). Higher subbands will
therefore get higher population of electrons. Electrons in excited subbands will then relax into
lower ones and produce spontaneous emission of photons. The main idea is therefore in increasing
the output power by additional spontaneous emission.

Using this idea, a device emitting terahertz radiation can be built. An example of such device
can be seen in fig. 3.3.

The lateral electric field causes therefore the Fermi-Dirac distribution function needed in trans-
port calculations to shift along the energy axis to some extent (see fig. 3.4 and section 3.2). The
original distribution function for equilibrium is given by (see eq. 2.49 in [3]):

1
exp[(E — Er) /ET]+1°

frP(B) = (3.1)

where Er is the Fermi energy.

3.2 Shifted Fermi-Dirac distribution function

The internal electric field of lateral transport causes electrons to get a remarkable drift velocity
(vg > 0) heating themselves up. This will cause the Fermi-Dirac distribution function to shift
along the E axis by energy that corresponds to vy (see eq. 3.1). The distribution function will get
the following form then:

-1

52((/€z—/€0(F7T1att))2+k§) E
— LUF,

2m” u , 3.2
kBTcl (Fvﬂatt) ( )

EnO +

P (k) = 1 +exp

where k = (kg, k,) is the in-plane wave vector that is proportional to energy E in the original
equation, E,g is the subband minimum energy, Er, is the quasi-Fermi level of n-th subband, ko

14
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Figure 3.1: In-plane dispersion curves and the subband structure. Source: fig. 2.5 in [3].
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Figure 3.2: Model of subband excitation and relaxation processes. Nonradiative intersubband
scattering processes (polar LO phonons and acoustic deformation potential phonons) cause electron
transitions between subbands. Lateral electric field accelerates electrons within every subband.
Optical radiation output is caused by spontaneous drop of electrons from higher subbands to lower
ones.
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Figure 3.3: An example device based on a laterally pumped quantum well
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Figure 3.4: The shifted Fermi-Dirac distribution function with effective electron temperature. The
shift is caused by lateral electric field, and the flatness is caused by the increase of temperature.

is the drift wave vector (along the z-axis), and T, the heated electron temperature. kg and T
depend both on the electric field F' and lattice temperature ..

Two unknown parameters are introduced with shifted distribution function, drift wave vector
and electron temperature (ko and T,)), both functions of applied electric field F' and lattice tem-
perature Ti,t¢. These functions decided to be taken from literature, as there are several researches
done on this matter already.

Dependence between drift velocity and electric field is taken from [5]. The relevant figure is 3.5
(left one) which is a copy of original figure from the paper. The points on this graph were carefully
written out and interpolated using Lagrange’s interpolation method. The interpolated data were
then written out again and is presented here as the right curve in the same figure. It can be seen,
that the result comforms more or less to the original data. Experiments showed that this small
difference does not affect the overall result significantly. In calculations, where the wave vector k
is used instead of speed v, the conversion can be done using equation:

(3.3)

The electron temperature and electric field dependence is also taken from the same paper. Fig.
4 in [5] shows the dependency between electric field and average energy for GaAs at 300 K. The
comparison is presented in fig. 3.6 where both, the original and interpolated curves are presented.
The average energy E is converted to temperature T using following equation:
_2B(F)

T(F)= 5= (3.4)

3.3 Calculation methodology

3.3.1 Overview

The process of calculations is described in the figure 3.7. The calculation has two cycles - inner
one is iterative to find the proper subband populations, and outer one that is over the electric field
values. The band structure needs to be calculated manually in advance.

3.3.2 Calculation of raw scattering rates

If an electron is moving within a crystal lattice, it will sooner or later collide with the lattice
atoms. Electrons can change their states that way - collisions may either increase or decrease their
energy. According to the Fermi’s Golden Rule the scattering process is described as following: if
an electron in a state |i) with energy F; experiences a time-dependent perturbation H which could
transfer it to a state |f) with energy E, the lifetime of the carrier in state |¢) is (according to eq
8.1in [3]):

L2 | oy - B 35
‘ f

There are several types of scatterings, but only longitudinal optic and acoustic deformation
potential are used, as the others do not affect very much the results. All the scattering types
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Figure 3.5: Comparison of the original (left) and interpolated (right) dependency between drift
velocity and electric field at 300 K in GaAs (source: fig. 3 in [5]).
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Figure 3.6: Comparison of the original and the interpolated dependency between average energy
and electric field at 300 K in GaAs (source: fig. 4 in [5]).
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Calculation of energies
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No Was it the last No
electric field value?

Is the change in emitted
power less than 1%?

Yes | Yes

End

multicalculate  (new code)

Figure 3.7: Overview of the calculation process. The source of codes given mean: original - code
taken from [3], modified - code taken from [3] and modified by the author, and new - code written
by the author. Variable N means the total number of energy levels (subbands). The majority of
the calculations are automated using a program called multicalculate.

have their own equations for the perturbation H, which gives the final form to the scattering rate
equations described below.

The calculation of longitudinal optic phonon scatterings are done using Paul Harrison’s book
(section 8.4 in [3]). According to this section, the scattering rate equation 3.5 can be improved
and will finally get the following form (see eq. 8.147 in [3]):

1 2w P Gi ?
f:me” / m |G ()| _dK., (3.6)
Ti \/K2+2K2 2h? — 2AY | (2mA)

where A is the sum of subband minimal energy and the kinetic energy within the band E; — E; F hw

(the upper sign in front of hw represents the emission of a phonon and lower the absorption),
P = (L _
€oo

the material, and Ny + % F % represents the number of phonons per unit area within the crystal,
having minus in case of absorption and plus in case of emission, where Ny is the Bose-Einstein
factor), K, and w are the wave vector (along the growth axis) and angular frequency of the phonons,
k; is the momentum of phonon in the initial state, and Git = [ ¢} (2) e”"=*¢% (2) dz is the form
factor of scattering events.

Scattering rate acoustic deformation potential calculations (AC) were done using section 9.9 in
Paul Harrison’s book [6]. The equation for AC scattering is in the form (see eq. 9.186 in [6]):

-2 (o) [ [

" (@(041)041\/01%4—[(224—@(@2) \/a2+K2>d¢dK

ei) (NO + % F %) (where €5, and €, are the high- and low-frequency permittivities of

(3.7)

Q] — Q2

where Dy is electron acoustic deformation potential (in case of T'-valley of GaAs Dy = 7.0eV.
Source: Table 2.1 in [7]), Gjs is the form factor of scattering events (see previous paragraph),
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a12 = —kjcos¢ £ \/k:f cos? ¢ — Qm;# (according to eq. 9.182 in [6]), k; is the phonon wave
number of inital subband, K, is the wave vector of the phonons, © is the Heaviside function, p
and vy are the density and speed of sound (respectively) in GaAs, and Ny + % F % represents the
number of phonons per unit area within the crystal, having minus in case of absorption and plus
in case of emission (where Ny is the Bose-Einstein factor).

There is a standard implementation to solve these tasks, presented in the books. A program
called srelo.c is meant for LO scattering calculations and sradp.c for AC scattering. Therefore
in the overall calculation process, this part was solved using these standard programs.

3.3.3 Calculation of quasi-Fermi energies

In calculation of mean scattering rate (subsection 3.3.4), the shifted Fermi-Dirac distribution func-
tion is constructed. According to the equation 3.1, the Fermi-Dirac distribution function depends
on Fermi energy Er. In lateral transport the Fermi energy is sepparate for all the subbands:

1
exp[(E — Er,) /kT]+ 1"

[P (E) = (3.8)
where the index ¢ expresses the number of subband. Fermi energy is therefore a ’quasi’ energy
describing the carrier population within a subband.

Quasi-Fermi energies need to be calculated for the shifted distribution function in next subsec-
tion. As the Fermi energy is tightly related to carrier population within one subband, the problem
can be solved using the equation 2.48 in [3]. The equation will give the electron occupation of a
state i: .

ni = —— FFD(B)dE. (3.9)
mh subband

By putting equations 3.8 and 3.9 together, the Fermi energies can be found using reverse search
method if the subband populations are known. The subband populations will be calculated later
in subsection 3.3.5. This is not problem that they are calculated in reverse order, because of the
iterative calculation. In the first round, arbitrary populations are used.

In Paul Harrison’s book [3], the method was implemented for equilibrium (a program called
sbp.c). The script was modified to provide shifted Fermi-Dirac distribution function for the non-
equilibrium.

3.3.4 Calculation of mean scattering rates

Calculation of subband populations in next subsection (3.3.5) depends on mean scattering rates.
Therefore it is necessary to find the mean rates using equation 8.149' from Paul Harrison’s book

[3]:

<i>:f%ﬁwm@eﬁﬂw¢&mm%w 510

[ fiP(E)dE ’

where the indexes ¢ and f stand for ’initial’ and ’final’ states, and Ephonon is the phonon energy
having minus in case of emission and plus in case of absorption.

As lateral transport shifts the distribution function away from the zero, it’s shifted form should
be used in this equation too. The integral over energy have also to be changed to integral over
wave vector k then. In computational implementation, the equation will look like this:

Tif

< 1 > _ sz fky %fstD (kacaky) (1 - f}TD (E - $Ephonon)) dkmdky (3 11)

;f sz fky fFEP (kg ky) dkgdky 7

where F = E; + 2’:”:* (k2 + k2) (where Ej is the subband minimum energy and 27; (k2 + k2) the
kinetic energy), and ff¥P (k) is the shifted Fermi-Dirac distribution function (see section 3.2).

This function was implemented using a standard program srmpr.c from Paul Harrison’s book
[3] which was improved with the shifted distribution function.

IThe corrected form is presented here according to the errata of the book
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3.3.5 Calculation of subband populations using rate equations

To calculate the subband populations, rate equations need to be constructed using average scat-
tering rates. It is known that the number of electrons leaving from a state is equal to the number
of electrons coming to the state. Therefore the following rate equation can be used:

dny 1 1
_ oy — —~ —o, 3.12
dt ;Tifn 2 (3:12)

e
i—1 fi

where 7';1 is the total averaged scattering rate from i-th to f-th subband, n; is the electron

population of i-th subband, and N the number of subbands. This equation contains N unknown
variables n;-s, which means at least NV — 1 equations need to be found in addition to solve it. As
the equation is meant for one subband only (f-th), it can be applied for all the N subbands:

N 1 N 1
Ez‘]\?l Tt T Ezj\?l W =0
1, — 1 —
Ei:l Enz . o Ei:1 T2i - 0 (313)
N 1 . N 1 .
Zi:l e A ) Zi:l ™~ 0

Unfortunately, in this case, zero populations will also give a true result (n; = 0, i = 1...N).
Therefore an additional equation which connects the subband populations to overall electron con-
centration in the semiconductor should be introduced:

ni+ng+ns+---+ny=Np, (314)

where Np is the overall density of electrons.
These equations can easily be solved using the following matrix equation

Az =1y, (3.15)
where
Z_ 1 1 1 1
T T14 T21 T(N—1)1 TN1 ni1 O
1 Z 1 1 1 0
Ti2 T T2, T(N-1)2 TN2 n2
A= : : - : : , T = : ,and y = :
1 1 Y 1 1 nN_1 0
TI(N—1) T2(N—1) T T(N—1)i TN(N—-1) N
1 1 1 1 nN D

To solve this task, a new program ND2ni.c was written.

3.3.6 Calculation of emission characteristics

The emission characteristics we are interested in, is the emitted power, both the total value and
the spectrum. All the cycle of calculations done before, was to find the subband populations n;
for the equation of emitted power:

N

n; h2
Priotal = Z T?J’%d Y (E; — Ey) (3.16)
i>f

where n; is the population of i-th subband, T{?d is the spontaneous radiative lifetimes and Aw;; =

E; — E¢ the energy between i-th and f-th subbands. The radiative lifetime is given by:

1 (B - Ep)’d?
_ e 1) dy (3.17)

rad 3 H4 ’
Tif 3megch

where 7 is the refractive index, d;¢ are the optical dipole matrix elements, d;; = f i (2) Yy (2) zdz.
Spontaneous radiative lifetimes ﬁ—s do not depend on subband populations n;, which means

they can be calculated prior to other calculations. This is important in practical implementation,
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because this calculation can be omitted in the main cycle to save time. The second output needed,
the power spectrum, is calculated as a well-known Lorentzian pectrum:

N

n; r 1
P(E)=) —(Ei—Ef) = , (3.18)
; i T (E = (B — Ey))* + I

where I' is the line width (half width at half maximum) of the intersubband transitions, F; and
Ey the energies of initial and final subbands, and Tf]?d the spontaneous radiative lifetimes.

3.3.7 Overall calculation automation

According to fig. 3.7, the main cycle of transport calculations are being controlled by a program
multicalculate. This means, the band structure needs to be calculated in advance, then the
transport calculations can be started. The program asks all the input data from the user (i.e. the
electric field values F;, temperature T, and total electron density Np) and calls the subroutines
automatically with the right arguments in the right order. The program checks the change in power
emission after each inner iterative calculation cycle and exits as soon as one percent of precision
is achieved. All the inner iterative cycles are a part of outer cycle which runs over the array of
electric fields.

3.4 Conclusion

The main problem through the development process has been the validation of the results. It is not
easy to check the results as there are no easy ways to do it. As there are standard implementations
(that can be trusted) for unbiased case in Paul Harrison’s book [3], the results for F' = 0V/cm
can be compared. Calculations done for 7 THz case show that the difference is under 1%. The
comparison is given in the table 3.1.

Table 3.1: Comparison between results got by standard implementation (taken from [3]) and
author’s implementation. Electric field is not applied (F = 0V/cm), having only black body
radiation.

| 77T K | 300 K
Implementation taken from QWWAD (|3]). 16.97 W /m? 16.98 W /m?
Averaging is done using equation 3.10
Implementation made by the author. 17.02W/m? 17.07 W /m?
Averaging is done using equation 3.11
| Deviation | 0.3% | 0.5%

In the first stage of calculations done in Leeds in augumn 2007, the error in results was around
30%. By now, the methods have been improved and corrected, so the precision has also gone
better.

It can be therefore stated that the calculation method of electron transport in laterally pumped
semiconductor has been developed and implemented. Two scientific papers are submitted and
waiting for acceptance, [JAP] to Journal of Applied Physics, and [ITQWO07] to ITQW conference
(2007 in Ambleside, Cumbria, U.K.).
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Chapter 4

Conclusion

The main purpose taken at the beginning of the work has been successfully completed - the
methods of electron transport calculation for laterally pumped emitting device were developed and
the acceptable results were obtained. Also the subpurpose of finding a propriate method to solve
Schrodinger equation was done well.

It has been showed that even with one layer terahertz radiation can be emitted which power is
higher than black body radiation. In [JAP] the dependence between the electric field and emitted
power is showed.

In the first chapter the different methods to solve Schrédinger equation were examined. In the
second chapter the division of electrons between the subbands was examined together with estima-
tion of generated optical radiation power and spectrum. This methodology bases mainly on Leeds
University methods to examine the Quantum Cascade Lasers (QCL). For this specific task where
quasi-parabolic quantum wells with relatively many subbands are used, and the transport domi-
nates (exciting with current), several additional calculation modules needed to be implemented.
These were also shown in fig. 3.7.

The concrete results of this work are listed in the following;:

1. The numerical solution methods for Schrodinger equation were examined and compared. The
best method occured to be a standard linear algebra eigenvalue solving method. A program
called finite difference method.c was implemented to calculate the energy eigenvalues
and corresponding wave functions. The source code of this program can be found in the web
page of this work.

2. A method was implemented to optimise the digitised quasi-parabolic quantum wells seeking
the equal spacings between energy eigenvalues. For 7 THz emission frequency, the root-mean-
square deviation of energy spacings below 4 % was achieved, which is enough for the practical
approximation of parabolic quantum well.

3. Several calculation modules were realised. Some of the modules were taken from [3] (QWWAD)
and re-implemented, but some of them are new. The list of re-implemented calculation mod-
ules includes:

- sbp.c Calculation of quasi-Fermi energies for each subband. The base of the code was
taken from [3] but it was improved for F' > 0 case.

- srmpr.c Calculation of mean scattering rates. The base of the code was also taken from
[3], while the Fermi-Dirac distribution function replaced to the shifted FD function, also to
support F' > 0 case.

- srrad.c Calculation of spontaneous radiative lifetimes. The method in the original version
was improved.

The list of newly built modules is:

- ND2ni.c Calculation of subband populations using rate equations.
- radpow.c Calculation of generated radiation power and spectrum.
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4. The calculations were made for 7 THz structures under lattice temperatures 300 K and 77 K.
The time cost for such calculations is quite high. In the early phase of calculations the time
spent to find one point (output characteristics for one electric field F' value) reached to 24
hours. By now, the algorithms have been optimised and the time has been decreased to 45
minutes. Therefore to make a serie of calculations (for example with 11 electric field values
-0, 1kV/cm,...,10kV/cm), it may take around 9 hours.

3 3

5. The 7THz structure can produce radiation over the black body spectrum even in room tem-
perature (300 K). In [ITQWO7] it has been showed that it works even near 400 K temperature.
It is known that Quantum Cascade Lasers need to work with very low lattice temperature
(under 150 K), therefore this fact is very important.

Five scientific papers and manuscripts related to this work has been written. Leeds University has
shown up an interest to build such broadband terahertz emitter.

The source codes written for this work have been collected and they can be found in the web
page of this work - http://home.cyber.ee/reeno/pqu.
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