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AbstratThis work handles the �eld of semiondutor quantum eletronis and is based mainlyon tasks to solve Shrödinger equation and to model eletron transport in GaAs/AlGaAsmultibarrier heterostrutures. The work ontains two major parts.The �rst part of the work stands for �nding proper numerial method to solve 1D time-independent Shrödinger equation. It was found that the best way is to use standardlinear algebra solvers for eigenvalue problem. There are 3 papers published on thistopi.The seond part overs the methodology of alulating the emission harateristisfor laterally pumped quantum well heterostrutures based emitters. The e�et of lat-eral eletri �eld is explored and relevant methods presented. Calulations are donefor digitally graded paraboli quantum wells and results are presented in a separatemanusript. There are 2 papers waiting for aeptane on this topi.The results show that a real emitter an be built using only one layer. For 7 THzemitter the overall emitted power rises higher than blak body radiation.The work is written in English, it ontains 4 hapters, 3 tables and 10 �gures on 25pages. The work has 5 sienti� papers in the appendix.Key words: Shrödinger equation, shifted Fermi-Dira distribution funtion, digitisedparaboli quantum well, lateral transport, terahertz emitter
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ResümeeTöö käsitleb pooljuht-kvantelektroonika valdkonda ja baseerub peamiselt Shrödingerivõrrandi lahendamisele ja elektroni transpordi modelleerimisele GaAs/AlGaAs multi-barjääridega heterostruktuurides. Töö koosneb kahest peamisest osast.Esimene töö osa puudutab sobivaima numbrilise meetodi leidmist ühemõõtmelise ajastsõltumatu Shrödingeri võrrandi lahendamiseks. Parimaks viisiks osutus standardnelineaaralgebra lahendusmeetod omaväärtusprobleemi jaoks. Sellel teemal on publit-seeritud 3 teaduslikku artiklit.Teine osa käsitleb lateraalselt ergastatud kvantauk-heterostruktuuridel baseeruvate ki-irgurite emissioonikarakteristikute arvutamismetoodikat. Uuritakse lateraalse elek-trivälja mõju ja tutvustatakse seonduvaid meetodeid. Arvutused on tehtud digitaalselttasandatud paraboolsete kvantaukude jaoks ja tulemused on esitatud eraldi käsikirjas.Sellel teemal on avaldamise ootel 2 teaduslikku artiklit.Tulemused näitavad, et ühel kihil baseeruvat emitterit on reaalselt võimalik ehitada.
7 THz kiirguri jaoks ületab kiiratav võimsus musta keha kiirgusvõimsuse.Töö on kirjutatud inglise keeles, see koosneb 4 peatükist, 3 tabelist ja 10 joonisest 25leheküljel. Tööl on lisana 5 artiklit.Võtmesõnad: Shrödingeri võrrand, nihutatud Fermi-Dirai jaotusfunktsioon, digi-taliseeritud paraboolne kvantauk, lateraalne transport, terahertskiirgur
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Chapter 1IntrodutionThe development of soures of terahertz radiation has beome hot topi in the last deade beauseof numerous prospetive appliations in spetrosopy, imaging and ommuniations [1℄. The majorappliation of terahertz radiation is related to spetrosopy, as all the hemial elements have aunique �frequeny label� at terahertz region. Sensing of hemial elements, monitoring pollution,and detetion of noxious substanes are some examples of suh appliations. Spetrosopy istherefore a sphere that needs the most the advantages of terahertz emission.Today, most of the oherent terahertz soures need to work at very low temperatures, whihmakes them expensive to use. Fortunately not all the appliations need the oherent radiation,they an work with inoherent emission too. To get inoherent radiation, there is no need to useexpensive lasers - some kind of heaper solution an be developed that ould work even at roomtemperature. Inoherent radiation an be produed with a simple quantum well that is pumpedby lateral urrent. The radiation is then generated in spontaneous radiative transitions betweensize-quantized states requiring only the eletron exitation to higher subbands. No populationinversion is needed.Quantum wells have also a broad range of appliations. There have been manufatured
AlGaAs/GaAs based LEDs, using single and double heterostrutures [2℄. These heterostruturesare used in high-e�etive red LEDs. A drawbak of AlGaAs/GaAs based LEDs is the requirementof very thin GaAs quantum wells surrounded by AlGaAs barriers. An example usage of quantumwells in LEDs is showed in �g. 1.1.

Figure 1.1: An example appliation of quantum wells in Light Emitting Diodes. The multiplequantum wells at there as ative region and inrease the e�ieny of light generation. Soure:�g. 4.14 (a) in [2℄Emission generated by retangular quantum well will have relatively wide spetrum, being quiteine�ient. To improve the bandwith and make it omparatively narrow, a paraboli well should beused. Paraboli quantum wells have equal energy spaings and in suh wells the only strong optialtransitions are between adjaent states. Bandwith of suh emitters is limited by the spontaneousemission width.In reality it is very di�ult to produe paraboli quantum wells, as the doping onentrationneeds to be hanged homogeneously. One solution of produing paraboli wells ould be by digital6



grading. It means the shape of paraboli well is replaed by retangular layers of two materialsgiving the behaviour of real paraboli quantum well (i.e. equidistant energy levels). Preparingsuh a digitised paraboli well is presented here in the seond part of hapter 2.To make suh paraboli well emitting spontaneous radiation, external bias should be applied toit. External bias will produe lateral eletri �eld that gives additional kineti energy to eletrons.Additional kineti energy inreases the probability that eletron jumps to higher energy levelsvia sattering proess. This is therefore the exitation proess via lateral eletri �eld and it isdesribed in the seond part of the thesis, in hapter 3.
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Chapter 2Time-independent Shrödingerequation numerial solutionmethods. Appliation to digitallygraded GaAs/AlGaAs paraboliquantum wells2.1 IntrodutionThis hapter is based on paber [BEC℄ and desribes developing of methods to �nd digitally gradedGaAs/AlGaAs paraboli quantum well and orresponding energy eigenvalues and wave funtions.To �nd the band struture, the basi time-independent 1D Shrödinger equation (see eq. 2.101in [3℄) is used:
−

~
2

2m∗(z)

∂2

∂z2
ψ(z) + V (z)ψ(z) = Eψ(z) , (2.1)where m∗(z) is the e�etive mass that depends on the oordinate (whether it is GaAs or AlGaAsat that point), ψ(z) is the wave funtion, and E the energy eigenvalue. For thin potential barriersa more preise form of this equation with di�erential mass is preferable (see eq. 2.96 in [3℄):
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ψ(z) + V (z)ψ(z) = Eψ(z) . (2.2)The solutions of Shrödinger equation are the energy eigenvalues and orresponding wave funtionsthat let us to do the eletron transport alulations. Knowing of energy eigenvalues help us to �ndthe su�ient design suitable for digitally graded paraboli well that ould give the best approahto ideal paraboli well. It is known that paraboli wells give equally spaed energy levels, thereforesimilar equal spaing is needed to be found by onstruting suitable digital grading. The solutionsare also needed to do the arrier transport alulations, whih are desribed in the next hapter.Two di�erent methods to solve Shrödinger equation was experiened to �nd better auray.First method tried was shooting method and the other one matrix eigenvalue and eigenstatessolving method, both desribed in Paul Harrison's book Quantum Wires, Wells, and Dots[3℄.2.2 Choosing suitable numerial method2.2.1 Shooting methodShooting method is based on solving di�erential representation of Shrödinger equation havinginitial values that are known (see eq. 1.107 [4℄):
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In this di�erential equation it is learly visible that three onseutive points in the wave funtion
ψ depend on eah other. Energy E is the parameter that is searhable and it's value is beingsearhed by boundary ondition ψ(z → ∞) → 0. As di�erential equation unites three points, twoof them needs to be given as the initial values. When these initial values are known, the �nal valuefor ψ(zn) an be alulated by repeating the funion iteratively 9n− 2 times.Two initial values depend on the symmetry of the onrete wave funtion. The potential shapeneeds to be symmetrial to solve the Shrödinger equation using shooting method. Solving of thedi�erential equation needs to be started from the entre of potential. If the potential is symmetrial,the wave funtions an either be symmetrial or antisymmetrial (see �g. 2.1).

Figure 2.1: Comparison of symmetri (left) and antisymmetri (right) wave funtions.The inital values need therefore to be hosen aording to the type of symmetry of wave funtion.For symmetrial and antisymmetrial wave funtion the initial values are (respetively):
{

ψ (0) = 1

ψ (∂z) = 1
, and (2.4)

{

ψ (0) = 0

ψ (∂z) = 1
. (2.5)As shooting method uses di�erential equation, the wave funtion is very preise near the initialvalues at z = 0 and z = ∂z. The �nal part of wave funtion tends to de�et from the boundaryondition ψ(z → ∞) → 0 as �nding the preise E that mathes to the real eigenvalue is veryompliated. The real values have always a de�nite preision, whih makes it impossible to �ndthe preise value for energy. The fat that the �nal part of wave funtion depend on the valuesin the beginning part of wave funtion makes also sense. Therefore it is very ompliated to�nd solutions that are preise enough using shooting method, as onformane to outer boundaryonditions is not very easily ahievable.Trials to solve the task using shooting method onsidered therefore to be too inaurate. Thevalues of wave funtions were heked using orthogonality ondition (∫

i6=j
ψiψfdz = 0) and foundthat ∫

i6=j
ψiψfdz ≈ 0.1 while ∫ ψiψidz = 1. That means the orthogonality was quite poor and thismethod needed to be replaed.2.2.2 Energy and wave funtion oupled solution Newton methodOne way to improve the results of shooting method was applying an another method to them. In[ESTSCIPROC℄ a method alled energy and wave funtion oupled solution method (EWC) wasintrodued whih is very preise but needs initial energies and wave funtions as input. Thoseinput values an therefore be prepared with shooting method.EWC method solves Shrödinger equations system with learly �xed boundary onditions -both ends of wave funtion an be �xed to some initial value. Both, energy eigenvalues andwave funtions are alulated simultaneously. The method bases on 3-point sheme of spatialdisretisation that orresponds to equation derived from Shrödinger equation (2.1):
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where ψi denotes ψ(xi) and Vi ≡ V (xi). The exat boundary onditions for outer alulationarea of ψ is �xed to zero (i.e. ψ1 = ψN = 0). This boundary ondition orresponds to assumptionof in�nitive external barriers as they ause wave funtion to go to zero on the borders.This is the representation with onstant or slowly hanging mass. In ase of dynami mass itgoes inside the brakets, as it an be seen in the following form:
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) is the average mass between mi and mi+1 (mi and mi−1 respetively).EWC method alulates not the energies and wave funtions diretly but only their orretions.That makes it more optimal as it is not neessary to arry the absolute values through the alu-lations. The yle of alulations is iterative, and an be stopped when the results do not hangemuh anymore.The equation 2.7 an be onverted to a representation that allows it to be alulated usingfollowing equations:

Y = Ỹ + δY , (2.8)
[∂F/∂Y ] × δY = −F̃ , (2.9)where Ỹ denotes the approximate unknown vetor, δY is the orretion vetor, F̃ ≡ (F̃1, F̃2, ..., F̃N )Tis the RHS vetor of the system alulated by Ỹ and [∂F/∂Y ] is the N × N Jaobi matrix withthe Newton method derivatives ([ESTSCIPROC℄). The Jaobi matrix [∂F/∂Y ] has a triagonalstruture where �rst row and olumn are additionally �lled out too. The �rst element of maindiagonal is zero. For example, for the onstant mass formulation shown in eq. 2.6 the matrix hasthe following struture:
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, (2.10)
where c ≡ ~/(2m∆x2) and ai ≡ E − Vi − 2c. To get deeper overview of this method, see[ESTSCIPROC℄.This method is very preise, as by the end of iterations the inrement vetor δY approahesto omputer zero. The disadvantages of this method are �rst, the need to obtain the initial guessfor wavefuntion, and seond, the possibility to skip some eigenvalues. Thereby for rather di�ultmultibarrier digitised quantum well the method was deided not to be used. Using more ommonmethods for trivial eigenvalue problems ould solve these disadvantages, whih is the topi of nextsubsetion.2.2.3 Method based on matrix eigenvalue standard solversThis method is based on lassial linear algebra methods that are meant for �nding eigenvaluesand eigenvetors of matries. This will be muh more preise than shooting method, beausethe elements do not depend on eah other any more. To solve the Shrödinger equation (2.1)using matries, the equation needs to be modi�ed to di�erential representation. The followingrepresentation is taken from [3, eq. 3.53, page 89℄:
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The equation 2.11 is di�erenial, whih means, it onnets three onseutive wave funtionvalues. To solve it, standard eigenvalue and eigenvetor omputing methods an be used and theequation needs to get matrix representation. The �rst step should be rewriting the equation tothe following form:
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.The oe�ients before ψ-s an be plaed into a symmetri tridiagonal band matrix and the taskan be reformulated as a standard eigenvalue problem:

[A] · [ψ] = E[ψ] , (2.14)where [A] is the N×N matrix, [ψ] is a olumn vetor with N elements, and E is the wanted energyeigenvalue. By solving this eigenvalue problem with standard software (e.g. dstev and dstevx inLAPACK1), the energies El (eigenvalues) and orresponding wave funtions ψl (eigenvetors) anbe found (where l is the number of energy level, l = 1...Nl).The orthogonality of the wave funtions is muh better using this method. The value ofnondiagonal elements of orthogonality matrix was ∫
i6=j

ψiψfdz ≈ 10−9 , whih shows learly howmuh this method is better than shooting method.2.2.4 Comparison of all three methodsThe omparison of the main properties, and pros and ons of all these methods are listed in tables2.1 and 2.2.Table 2.1: Comparison table of all three methods. N is the number of net pointsProperty Shooting method Newton method Matrix eigenvaluemethod1. Boundaryonditons One side is �xedwith 2 pts Both sides �xed to 0 Neither sides �xed2. Wave funtionorthogonality ≈ 10−1 ≈ 10−12 ≈ 10−93. Time e�ieny Medium(time ∼ N) Very High(time ∼ N) High(time ∼ N3)4. Initial guess forwave funtion Not needed Needed Not needed5. Implementationomplexity Medium High Low6. Traeability Good Poor Poor7. Otherassumptions Symmetrialpotential needed Outer barriers arein�nitively high Not very learboundary onditions1LAPACK is an aronym of words Linear Algebra PACKage. See http://www.netlib.org/lapak for more infor-mation.
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Table 2.2: Advantages and disadvantages of the three methodsMethod Advantages DisadvantagesShooting method Easy to implement Not very preise; Mayskip energy levels ifthey are too lose toeah otherNewton method Boundaries �xed to 0;Relatively fast Initial guess for energiesand wave funtionsneeded; May skipenergy levels if they aretoo lose to eah otherMatrix eigenvaluemethod Standardimplementation Not very learboundary onditions2.3 Optimising digitally graded potentials2.3.1 IntrodutionThe main task in this hapter is to �nd digitally graded potential layout that ould be a goodapproximation to paraboli quantum well. On the over an example paraboli well with digitalgrading is shown. Digital grading is needed to simplify the prodution proess of paraboli quan-tum well devies. It is tehnologially very ompliated to manufature quantum wells that haveparaboli shape. One possibility to overome this obstale is digitalisation of the paraboli well.This means the two materials used in paraboli well (GaAs and AlxGa1−xAs) are altered as manytimes as neessary to ahieve similar behaviour as true paraboli well has. Finding the right digitalgrading an be time onsuming, beause all the thik layers must be arefully shifted left and rightto �nd the best approah to equal spaing between energy levels. The spaing is as a feedbak indigitised paraboli well onstrution method.2.3.2 Building initial potentialBuilding the initial struture was relatively easy. The �rst riteria while building the struture,was the integral of the potential funtion (the area) that needs to be equal for both ases - fororiginal paraboli well and for digitised well. This de�ned the number of layers. The seond riteriawas needed to de�ne their initial plaement. The algorithm of assigning the layers to their initialplaes started moving from the entre of potential and integrated over the original potential well.If the integral oured to exeed the area of one monolayer, a layer was put into this plae where ithappened. Then, the ounter was zeroed and integration ontinued until the end of the potential.Initial potential was behaving more or less like paraboli well but it was still not very preise.2.3.3 Optimising the potentialTo optimise the initial potential, there were several algorithms tried. The �rst and easiest wasto move layers one step2 left and right, doing it one by one with eah of the layers. After eahmovement the uni�ed spaing parameter between energy levels was alulated again and omparedto urrent minimal spaing parameter. This proess was ontinued with several other algorithmstoo until the spaing didn't improve any more.To haraterise the deviation of spaings from wanted value, a statistial parameter - RootMean Square (RMS ) - was used. The parameter was alulated using the following equation:
RMS =

√

∑N−1
i=1 (∆Ei,i+1 − ∆Ewanted)2

N − 1
, (2.15)where ∆Ei,i+1 = Ei+1−Ei is the spaing between energy levels i and i+1, ∆Ewanted is the wantedenergy spaing (onstant value), and N is the number of energy levels. After eah movement of2the width of a monolayer (0.2825 nm) 12



Figure 2.2: The algorithms used to �nd adequate quasi-paraboli quantum well using digitalgrading of two substrates. The shifts are done symmetrially for both sides.a layer the RMS is realulated and used in later movements as omparison. If a new movementimproved the RMS, the movement �xated and another layer took into the fous.The list of all algorithms used is desribed below and shown in �g. 2.2.A. Moving one stik at a time to the left and right. This was the �rst method tried toimprove the RMS of energy level spaings. The algorithm started from the entre of potential andmoved symmetrially to the diretion of the edge. When it reahed the end, it started omingbak reversely to the entre. The algorithm ontinued this yle until the movings of layers do notimprove the energy spaings any more.If the new position of a layer is oupied by another layer, then this layer will also be movedon. If there are many layers, then all of them will be moved.B. Moving a group of stiks to the left and right. This method was the �rst improvementto the previous one as it did not give the best approah. The method starts again from the middleof the well and goes to the side. First moving inorporates all the layers that are moved to theright and to the left. The seond moving leaves out the �rst layer and takes all the others (n− 1if n is the number of layers) with.C. Moving two onseutive stiks towards and away from eah other. This was thelatest improvement tried to do the ahieved results even better. The proess starts again from themiddle of the well and goes to the side. All the onseutive layers were moved towards eah otherand then away from eah other.In �nal alulations all the methods were ombined, alternating them after eah step. Atingthat way gave the best result - the preision of energy spaings ame around 5 perent what wasthe �rst goal.2.4 ConlusionThere are two main results ahieved in this hapter. The aim of the �rst task was to �nd a propermethod for band struture alulation. This task was done suessfully - a standard linear algebramethod to �nd matrix eigenvalues and eigenvetors was hosen to be the best one. The initial datawas hosen suh, that the eigenvalues were the energy values and eigenvetors the orrespondingwave funtion.The seond task in this hapter was to �nd a good approximation to paraboli quantum wellusing digital grading i.e. alteration of two di�erent substanes GaAs and AlGaAs. After the layoutof layers was �xed - the energy levels had more or less equal spaing, the �nal results was to bealulated. After the �nal energy eigenvalues and wave funtions were ready, the proess ontinuedwith arrier transport alulations, whih is handled in the next hapter 3.Three sienti� papers have been published on this topi, they are presented in the appendixes.13



Chapter 3Lateral transport task of quantumwell based broadband terahertzemitter3.1 IntrodutionThis hapter is based on manusript submitted to Journal of Applied Physis [JAP℄ and desribesdeveloping of methods to alulate emission rates for lateral transport of harge arriers.The quantum wells we are using are two dimensional, whih means that the eletrons have twodiretions where it an move and one diretion where it is �xed. This is therefore alled in-planeeletron transport. In �g. 3.1 it is showed how the eletrons an move along the valley (y-axis)and up along the subband (x-axis). Along the y-axis the eletrons are �xed and an not move.Lateral transport brings up the e�et of sattering, whih means the eletrons are olliding withlattie atoms. Eletri �eld aused by suh ollisions heats the eletrons up giving them higherkineti energy. That will ause the eletrons to limb up along the subband until they will ollidewith lattie and go to higher subband by sattering proess (see �g. 3.2). Higher subbands willtherefore get higher population of eletrons. Eletrons in exited subbands will then relax intolower ones and produe spontaneous emission of photons. The main idea is therefore in inreasingthe output power by additional spontaneous emission.Using this idea, a devie emitting terahertz radiation an be built. An example of suh deviean be seen in �g. 3.3.The lateral eletri �eld auses therefore the Fermi-Dira distribution funtion needed in trans-port alulations to shift along the energy axis to some extent (see �g. 3.4 and setion 3.2). Theoriginal distribution funtion for equilibrium is given by (see eq. 2.49 in [3℄):
fFD (E) =

1

exp [(E − EF ) /kT ] + 1
, (3.1)where EF is the Fermi energy.3.2 Shifted Fermi-Dira distribution funtionThe internal eletri �eld of lateral transport auses eletrons to get a remarkable drift veloity(vd > 0) heating themselves up. This will ause the Fermi-Dira distribution funtion to shiftalong the E axis by energy that orresponds to vd (see eq. 3.1). The distribution funtion will getthe following form then:

f sFD (k) =



1 + exp
En0 +

~
2((kx−k0(F,Tlatt))

2+k2
y)

2m∗
− EFn

kBTel (F ,Tlatt)





−1

, (3.2)where k = (kx, ky) is the in-plane wave vetor that is proportional to energy E in the originalequation, En0 is the subband minimum energy, EFn
is the quasi-Fermi level of n-th subband, k014



Figure 3.1: In-plane dispersion urves and the subband struture. Soure: �g. 2.5 in [3℄.

Figure 3.2: Model of subband exitation and relaxation proesses. Nonradiative intersubbandsattering proesses (polar LO phonons and aousti deformation potential phonons) ause eletrontransitions between subbands. Lateral eletri �eld aelerates eletrons within every subband.Optial radiation output is aused by spontaneous drop of eletrons from higher subbands to lowerones.
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F > 0F = 0

0 kx

f sFD(kx, F )

kx0Figure 3.4: The shifted Fermi-Dira distribution funtion with e�etive eletron temperature. Theshift is aused by lateral eletri �eld, and the �atness is aused by the inrease of temperature.is the drift wave vetor (along the x-axis), and Tel the heated eletron temperature. k0 and Teldepend both on the eletri �eld F and lattie temperature Tlatt.Two unknown parameters are introdued with shifted distribution funtion, drift wave vetorand eletron temperature (k0 and Tel), both funtions of applied eletri �eld F and lattie tem-perature Tlatt. These funtions deided to be taken from literature, as there are several researhesdone on this matter already.Dependene between drift veloity and eletri �eld is taken from [5℄. The relevant �gure is 3.5(left one) whih is a opy of original �gure from the paper. The points on this graph were arefullywritten out and interpolated using Lagrange's interpolation method. The interpolated data werethen written out again and is presented here as the right urve in the same �gure. It an be seen,that the result omforms more or less to the original data. Experiments showed that this smalldi�erene does not a�et the overall result signi�antly. In alulations, where the wave vetor kis used instead of speed v, the onversion an be done using equation:
k (F ) =

m∗ · v (F )

~
. (3.3)The eletron temperature and eletri �eld dependene is also taken from the same paper. Fig.4 in [5℄ shows the dependeny between eletri �eld and average energy for GaAs at 300 K. Theomparison is presented in �g. 3.6 where both, the original and interpolated urves are presented.The average energy E is onverted to temperature T using following equation:

T (F ) =
2E (F )

3kB
. (3.4)3.3 Calulation methodology3.3.1 OverviewThe proess of alulations is desribed in the �gure 3.7. The alulation has two yles - innerone is iterative to �nd the proper subband populations, and outer one that is over the eletri �eldvalues. The band struture needs to be alulated manually in advane.3.3.2 Calulation of raw sattering ratesIf an eletron is moving within a rystal lattie, it will sooner or later ollide with the lattieatoms. Eletrons an hange their states that way - ollisions may either inrease or derease theirenergy. Aording to the Fermi's Golden Rule the sattering proess is desribed as following: ifan eletron in a state |i〉 with energy Ei experienes a time-dependent perturbation H̃ whih ouldtransfer it to a state |f〉 with energy Ef , the lifetime of the arrier in state |i〉 is (aording to eq8.1 in [3℄):

1

τi
=

2π

~

∑

f

∣

∣

∣
〈f | H̃ |i〉

∣

∣

∣

2

δ (Ef − Ei) . (3.5)There are several types of satterings, but only longitudinal opti and aousti deformationpotential are used, as the others do not a�et very muh the results. All the sattering types16



Figure 3.5: Comparison of the original (left) and interpolated (right) dependeny between driftveloity and eletri �eld at 300 K in GaAs (soure: �g. 3 in [5℄).

Figure 3.6: Comparison of the original and the interpolated dependeny between average energyand eletri �eld at 300 K in GaAs (soure: �g. 4 in [5℄).
17



Calculation of raw scattering rates

Calculation of quasi−Fermi energies

Averaging scattering rates

Subband population calculation

LOa, LOe, ACa, ACe

srelo.c
sradp.c

srmpr.c

ND2ni.c

Is the change in emitted
power less than 1%?

(original code)
(original code)

(modified code)

(new code)

finite_difference_method.c
(new code)

(new code)multicalculate

No

Yes

electric field value?
Was it the lastNo

Yes

End

Initialisation

Calculation of energies
and wave functions

sbp.c (modified code)

Assigning initial guess for subband

Shifted Fermi−Dirac distribution
function and parameters

srrad.c (modified code)

radpow.c (new code)Calculation of power (incl spectrum)

Calculation of radiative lifetimes

1

τ
= f (|k|) , k =

√

k2
x + k2

y

El, ψl(z), where l = 1...N

populations nl, where l = 1...NAssigning new eletri �eld FFinding empirial Te and vd

over kx, ky using
Te, vd, EFl

, where l = 1...N

using rate equations
∣

∣

∣

∣

∣

∣

∣

∣

∣

∑

i
1

τ1i

−1

τ21
· · · −1

τN1

−1

τ12

∑

i
1

τ2i

· · · −1

τN2... ... . . . ...
−1

τ1N

−1

τ2N

. . .
∑

i
1

τNi

∣

∣

∣

∣

∣

∣

∣

∣

∣

Figure 3.7: Overview of the alulation proess. The soure of odes given mean: original - odetaken from [3℄, modi�ed - ode taken from [3℄ and modi�ed by the author, and new - ode writtenby the author. Variable N means the total number of energy levels (subbands). The majority ofthe alulations are automated using a program alled multialulate.have their own equations for the perturbation H̃, whih gives the �nal form to the sattering rateequations desribed below.The alulation of longitudinal opti phonon satterings are done using Paul Harrison's book(setion 8.4 in [3℄). Aording to this setion, the sattering rate equation 3.5 an be improvedand will �nally get the following form (see eq. 8.147 in [3℄):
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dKz , (3.6)where ∆ is the sum of subband minimal energy and the kineti energy within the band Ef −Ei∓~ω(the upper sign in front of ~ω represents the emission of a phonon and lower the absorption),
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) (where ǫ∞ and ǫs are the high- and low-frequeny permittivities ofthe material, and N0 + 1
2 ∓ 1

2 represents the number of phonons per unit area within the rystal,having minus in ase of absorption and plus in ase of emission, where N0 is the Bose-Einsteinfator),Kz and ω are the wave vetor (along the growth axis) and angular frequeny of the phonons,
ki is the momentum of phonon in the initial state, and Gif =

∫

ψ∗
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f (z) dz is the formfator of sattering events.Sattering rate aousti deformation potential alulations (AC) were done using setion 9.9 inPaul Harrison's book [6℄. The equation for AC sattering is in the form (see eq. 9.186 in [6℄):
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dφdKz , (3.7)where DA is eletron aousti deformation potential (in ase of Γ-valley of GaAs DA = 7.0 eV.Soure: Table 2.1 in [7℄), Gif is the form fator of sattering events (see previous paragraph),18



α1,2 = −ki cosφ ±
√

k2
i cos2 φ− 2m∗∆E

~2 (aording to eq. 9.182 in [6℄), ki is the phonon wavenumber of inital subband, Kz is the wave vetor of the phonons, Θ is the Heaviside funtion, ρand vs are the density and speed of sound (respetively) in GaAs, and N0 + 1
2 ∓ 1

2 represents thenumber of phonons per unit area within the rystal, having minus in ase of absorption and plusin ase of emission (where N0 is the Bose-Einstein fator).There is a standard implementation to solve these tasks, presented in the books. A programalled srelo. is meant for LO sattering alulations and sradp. for AC sattering. Thereforein the overall alulation proess, this part was solved using these standard programs.3.3.3 Calulation of quasi-Fermi energiesIn alulation of mean sattering rate (subsetion 3.3.4), the shifted Fermi-Dira distribution fun-tion is onstruted. Aording to the equation 3.1, the Fermi-Dira distribution funtion dependson Fermi energy EF . In lateral transport the Fermi energy is sepparate for all the subbands:
fFD

i (E) =
1

exp [(E − EFi
) /kT ] + 1

, (3.8)where the index i expresses the number of subband. Fermi energy is therefore a 'quasi' energydesribing the arrier population within a subband.Quasi-Fermi energies need to be alulated for the shifted distribution funtion in next subse-tion. As the Fermi energy is tightly related to arrier population within one subband, the probleman be solved using the equation 2.48 in [3℄. The equation will give the eletron oupation of astate i:
ni =

m∗

π~2

∫

subband

fFD
i (E) dE . (3.9)By putting equations 3.8 and 3.9 together, the Fermi energies an be found using reverse searhmethod if the subband populations are known. The subband populations will be alulated laterin subsetion 3.3.5. This is not problem that they are alulated in reverse order, beause of theiterative alulation. In the �rst round, arbitrary populations are used.In Paul Harrison's book [3℄, the method was implemented for equilibrium (a program alledsbp.). The sript was modi�ed to provide shifted Fermi-Dira distribution funtion for the non-equilibrium.3.3.4 Calulation of mean sattering ratesCalulation of subband populations in next subsetion (3.3.5) depends on mean sattering rates.Therefore it is neessary to �nd the mean rates using equation 8.1491 from Paul Harrison's book[3℄:
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, (3.10)where the indexes i and f stand for 'initial' and '�nal' states, and Ephonon is the phonon energyhaving minus in ase of emission and plus in ase of absorption.As lateral transport shifts the distribution funtion away from the zero, it's shifted form shouldbe used in this equation too. The integral over energy have also to be hanged to integral overwave vetor k then. In omputational implementation, the equation will look like this:
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) thekineti energy), and fsFD
i (k) is the shifted Fermi-Dira distribution funtion (see setion 3.2).This funtion was implemented using a standard program srmpr. from Paul Harrison's book[3℄ whih was improved with the shifted distribution funtion.1The orreted form is presented here aording to the errata of the book19



3.3.5 Calulation of subband populations using rate equationsTo alulate the subband populations, rate equations need to be onstruted using average sat-tering rates. It is known that the number of eletrons leaving from a state is equal to the numberof eletrons oming to the state. Therefore the following rate equation an be used:
dnf

dt
=

N
∑

i=1

1

τif
ni − nf

N
∑

i=1

1

τfi

= 0 , (3.12)where τ−1
if is the total averaged sattering rate from i-th to f -th subband, ni is the eletronpopulation of i-th subband, and N the number of subbands. This equation ontains N unknownvariables ni-s, whih means at least N − 1 equations need to be found in addition to solve it. Asthe equation is meant for one subband only (f -th), it an be applied for all the N subbands:
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. (3.13)Unfortunately, in this ase, zero populations will also give a true result (ni = 0, i = 1...N).Therefore an additional equation whih onnets the subband populations to overall eletron on-entration in the semiondutor should be introdued:
n1 + n2 + n3 + · · · + nN = ND , (3.14)where ND is the overall density of eletrons.These equations an easily be solved using the following matrix equation
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.To solve this task, a new program ND2ni. was written.3.3.6 Calulation of emission harateristisThe emission harateristis we are interested in, is the emitted power, both the total value andthe spetrum. All the yle of alulations done before, was to �nd the subband populations nifor the equation of emitted power:
Ptotal =

N
∑

i>f

ni

τ rad
if

~
2

2m∗
(Ei − Ef ) , (3.16)where ni is the population of i-th subband, τ rad

if is the spontaneous radiative lifetimes and ~ωif =
Ei − Ef the energy between i-th and f -th subbands. The radiative lifetime is given by:
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, (3.17)where n is the refrative index, dif are the optial dipole matrix elements, dif =

∫

ψi (z)ψf (z) zdz.Spontaneous radiative lifetimes 1
τ rad

f

-s do not depend on subband populations ni, whih meansthey an be alulated prior to other alulations. This is important in pratial implementation,20



beause this alulation an be omitted in the main yle to save time. The seond output needed,the power spetrum, is alulated as a well-known Lorentzian petrum:
P (E) =

N
∑

i>f

ni

τ rad
if

(Ei − Ef )
Γ

π

1

(E − (Ei − Ef ))
2

+ Γ2
, (3.18)where Γ is the line width (half width at half maximum) of the intersubband transitions, Ei and

Ef the energies of initial and �nal subbands, and τ rad
if the spontaneous radiative lifetimes.3.3.7 Overall alulation automationAording to �g. 3.7, the main yle of transport alulations are being ontrolled by a programmultialulate. This means, the band struture needs to be alulated in advane, then thetransport alulations an be started. The program asks all the input data from the user (i.e. theeletri �eld values Fi, temperature T , and total eletron density ND) and alls the subroutinesautomatially with the right arguments in the right order. The program heks the hange in poweremission after eah inner iterative alulation yle and exits as soon as one perent of preisionis ahieved. All the inner iterative yles are a part of outer yle whih runs over the array ofeletri �elds.3.4 ConlusionThe main problem through the development proess has been the validation of the results. It is noteasy to hek the results as there are no easy ways to do it. As there are standard implementations(that an be trusted) for unbiased ase in Paul Harrison's book [3℄, the results for F = 0 V/cman be ompared. Calulations done for 7 THz ase show that the di�erene is under 1 %. Theomparison is given in the table 3.1.Table 3.1: Comparison between results got by standard implementation (taken from [3℄) andauthor's implementation. Eletri �eld is not applied (F = 0 V/cm), having only blak bodyradiation. 77 K 300 KImplementation taken from QWWAD ([3℄).Averaging is done using equation 3.10 16.97 W/m2 16.98 W/m2Implementation made by the author.Averaging is done using equation 3.11 17.02 W/m2 17.07 W/m2Deviation 0.3 % 0.5 %In the �rst stage of alulations done in Leeds in augumn 2007, the error in results was around

30 %. By now, the methods have been improved and orreted, so the preision has also gonebetter.It an be therefore stated that the alulation method of eletron transport in laterally pumpedsemiondutor has been developed and implemented. Two sienti� papers are submitted andwaiting for aeptane, [JAP℄ to Journal of Applied Physis, and [ITQW07℄ to ITQW onferene(2007 in Ambleside, Cumbria, U.K.).
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Chapter 4ConlusionThe main purpose taken at the beginning of the work has been suessfully ompleted - themethods of eletron transport alulation for laterally pumped emitting devie were developed andthe aeptable results were obtained. Also the subpurpose of �nding a propriate method to solveShrödinger equation was done well.It has been showed that even with one layer terahertz radiation an be emitted whih power ishigher than blak body radiation. In [JAP℄ the dependene between the eletri �eld and emittedpower is showed.In the �rst hapter the di�erent methods to solve Shrödinger equation were examined. In theseond hapter the division of eletrons between the subbands was examined together with estima-tion of generated optial radiation power and spetrum. This methodology bases mainly on LeedsUniversity methods to examine the Quantum Casade Lasers (QCL). For this spei� task wherequasi-paraboli quantum wells with relatively many subbands are used, and the transport domi-nates (exiting with urrent), several additional alulation modules needed to be implemented.These were also shown in �g. 3.7.The onrete results of this work are listed in the following:1. The numerial solution methods for Shrödinger equation were examined and ompared. Thebest method oured to be a standard linear algebra eigenvalue solving method. A programalled �nite_di�erene_method. was implemented to alulate the energy eigenvaluesand orresponding wave funtions. The soure ode of this program an be found in the webpage of this work.2. A method was implemented to optimise the digitised quasi-paraboli quantum wells seekingthe equal spaings between energy eigenvalues. For 7 THz emission frequeny, the root-mean-square deviation of energy spaings below 4 % was ahieved, whih is enough for the pratialapproximation of paraboli quantum well.3. Several alulation modules were realised. Some of the modules were taken from [3℄ (QWWAD)and re-implemented, but some of them are new. The list of re-implemented alulation mod-ules inludes:- sbp. Calulation of quasi-Fermi energies for eah subband. The base of the ode wastaken from [3℄ but it was improved for F > 0 ase.- srmpr. Calulation of mean sattering rates. The base of the ode was also taken from[3℄, while the Fermi-Dira distribution funtion replaed to the shifted FD funtion, also tosupport F > 0 ase.- srrad. Calulation of spontaneous radiative lifetimes. The method in the original versionwas improved.The list of newly built modules is:- ND2ni. Calulation of subband populations using rate equations.- radpow. Calulation of generated radiation power and spetrum.22



4. The alulations were made for 7 THz strutures under lattie temperatures 300 K and 77 K.The time ost for suh alulations is quite high. In the early phase of alulations the timespent to �nd one point (output harateristis for one eletri �eld F value) reahed to 24hours. By now, the algorithms have been optimised and the time has been dereased to 45minutes. Therefore to make a serie of alulations (for example with 11 eletri �eld values- 0, 1 kV/cm,...,10 kV/cm), it may take around 9 hours.5. The 7 THz struture an produe radiation over the blak body spetrum even in room tem-perature (300 K). In [ITQW07℄ it has been showed that it works even near 400 K temperature.It is known that Quantum Casade Lasers need to work with very low lattie temperature(under 150 K), therefore this fat is very important.Five sienti� papers and manusripts related to this work has been written. Leeds University hasshown up an interest to build suh broadband terahertz emitter.The soure odes written for this work have been olleted and they an be found in the webpage of this work - http://home.yber.ee/reeno/pqw.
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