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Abstra
tThis work handles the �eld of semi
ondu
tor quantum ele
troni
s and is based mainlyon tasks to solve S
hrödinger equation and to model ele
tron transport in GaAs/AlGaAsmultibarrier heterostru
tures. The work 
ontains two major parts.The �rst part of the work stands for �nding proper numeri
al method to solve 1D time-independent S
hrödinger equation. It was found that the best way is to use standardlinear algebra solvers for eigenvalue problem. There are 3 papers published on thistopi
.The se
ond part 
overs the methodology of 
al
ulating the emission 
hara
teristi
sfor laterally pumped quantum well heterostru
tures based emitters. The e�e
t of lat-eral ele
tri
 �eld is explored and relevant methods presented. Cal
ulations are donefor digitally graded paraboli
 quantum wells and results are presented in a separatemanus
ript. There are 2 papers waiting for a

eptan
e on this topi
.The results show that a real emitter 
an be built using only one layer. For 7 THzemitter the overall emitted power rises higher than bla
k body radiation.The work is written in English, it 
ontains 4 
hapters, 3 tables and 10 �gures on 25pages. The work has 5 s
ienti�
 papers in the appendix.Key words: S
hrödinger equation, shifted Fermi-Dira
 distribution fun
tion, digitisedparaboli
 quantum well, lateral transport, terahertz emitter
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ResümeeTöö käsitleb pooljuht-kvantelektroonika valdkonda ja baseerub peamiselt S
hrödingerivõrrandi lahendamisele ja elektroni transpordi modelleerimisele GaAs/AlGaAs multi-barjääridega heterostruktuurides. Töö koosneb kahest peamisest osast.Esimene töö osa puudutab sobivaima numbrilise meetodi leidmist ühemõõtmelise ajastsõltumatu S
hrödingeri võrrandi lahendamiseks. Parimaks viisiks osutus standardnelineaaralgebra lahendusmeetod omaväärtusprobleemi jaoks. Sellel teemal on publit-seeritud 3 teaduslikku artiklit.Teine osa käsitleb lateraalselt ergastatud kvantauk-heterostruktuuridel baseeruvate ki-irgurite emissioonikarakteristikute arvutamismetoodikat. Uuritakse lateraalse elek-trivälja mõju ja tutvustatakse seonduvaid meetodeid. Arvutused on tehtud digitaalselttasandatud paraboolsete kvantaukude jaoks ja tulemused on esitatud eraldi käsikirjas.Sellel teemal on avaldamise ootel 2 teaduslikku artiklit.Tulemused näitavad, et ühel kihil baseeruvat emitterit on reaalselt võimalik ehitada.
7 THz kiirguri jaoks ületab kiiratav võimsus musta keha kiirgusvõimsuse.Töö on kirjutatud inglise keeles, see koosneb 4 peatükist, 3 tabelist ja 10 joonisest 25leheküljel. Tööl on lisana 5 artiklit.Võtmesõnad: S
hrödingeri võrrand, nihutatud Fermi-Dira
i jaotusfunktsioon, digi-taliseeritud paraboolne kvantauk, lateraalne transport, terahertskiirgur

3



A
knowledgementsMy spe
ial thanks go to Prof. Paul Harrison who inspired me to work in this �eld and who gaveme the opportunity to work in Leeds University for 4 months. I thank Zoran Ikoni
 for valuableadvi
es and fruitful supervision during my work period in Leeds. I would like to thank all thequantum ele
troni
s group members from room 255 in Leeds University, who ensured great so
ialenvironment for doing this resear
h (Leon Lever, Alex Valavanis, Nenad Vukmirovi¢, et
).I would like to express gratitude to my supervisor Andres Udal who has put a lot of e�ort toguide me during my Master studies. He was also the supervisor of my Ba
helor thesis. I thankalso Professor Enn Velmre who helped me to understand the theoreti
al problems in this �eld.I thank my employer Cyberneti
a AS for giving me �exible work 
onditions, so that I 
ould domy studies. I would also like to thank Estonian Ar
himedes Foundation for funding my studies atLeeds University and Estonian S
ien
e Foundation for supporting this work by grants 5911 and6914.

4



Contents
1 Introdu
tion 62 Time-independent S
hrödinger equation numeri
al solution methods. Appli
a-tion to digitally graded GaAs/AlGaAs paraboli
 quantum wells 82.1 Introdu
tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82.2 Choosing suitable numeri
al method . . . . . . . . . . . . . . . . . . . . . . . . . . 82.2.1 Shooting method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82.2.2 Energy and wave fun
tion 
oupled solution Newton method . . . . . . . . . 92.2.3 Method based on matrix eigenvalue standard solvers . . . . . . . . . . . . . 102.2.4 Comparison of all three methods . . . . . . . . . . . . . . . . . . . . . . . . 112.3 Optimising digitally graded potentials . . . . . . . . . . . . . . . . . . . . . . . . . 122.3.1 Introdu
tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122.3.2 Building initial potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122.3.3 Optimising the potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122.4 Con
lusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 Lateral transport task of quantum well based broadband terahertz emitter 143.1 Introdu
tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143.2 Shifted Fermi-Dira
 distribution fun
tion . . . . . . . . . . . . . . . . . . . . . . . 143.3 Cal
ulation methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163.3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163.3.2 Cal
ulation of raw s
attering rates . . . . . . . . . . . . . . . . . . . . . . . 163.3.3 Cal
ulation of quasi-Fermi energies . . . . . . . . . . . . . . . . . . . . . . . 193.3.4 Cal
ulation of mean s
attering rates . . . . . . . . . . . . . . . . . . . . . . 193.3.5 Cal
ulation of subband populations using rate equations . . . . . . . . . . . 203.3.6 Cal
ulation of emission 
hara
teristi
s . . . . . . . . . . . . . . . . . . . . . 203.3.7 Overall 
al
ulation automation . . . . . . . . . . . . . . . . . . . . . . . . . 213.4 Con
lusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214 Con
lusion 22

5



Chapter 1Introdu
tionThe development of sour
es of terahertz radiation has be
ome hot topi
 in the last de
ade be
auseof numerous prospe
tive appli
ations in spe
tros
opy, imaging and 
ommuni
ations [1℄. The majorappli
ation of terahertz radiation is related to spe
tros
opy, as all the 
hemi
al elements have aunique �frequen
y label� at terahertz region. Sensing of 
hemi
al elements, monitoring pollution,and dete
tion of noxious substan
es are some examples of su
h appli
ations. Spe
tros
opy istherefore a sphere that needs the most the advantages of terahertz emission.Today, most of the 
oherent terahertz sour
es need to work at very low temperatures, whi
hmakes them expensive to use. Fortunately not all the appli
ations need the 
oherent radiation,they 
an work with in
oherent emission too. To get in
oherent radiation, there is no need to useexpensive lasers - some kind of 
heaper solution 
an be developed that 
ould work even at roomtemperature. In
oherent radiation 
an be produ
ed with a simple quantum well that is pumpedby lateral 
urrent. The radiation is then generated in spontaneous radiative transitions betweensize-quantized states requiring only the ele
tron ex
itation to higher subbands. No populationinversion is needed.Quantum wells have also a broad range of appli
ations. There have been manufa
tured
AlGaAs/GaAs based LEDs, using single and double heterostru
tures [2℄. These heterostru
turesare used in high-e�e
tive red LEDs. A drawba
k of AlGaAs/GaAs based LEDs is the requirementof very thin GaAs quantum wells surrounded by AlGaAs barriers. An example usage of quantumwells in LEDs is showed in �g. 1.1.

Figure 1.1: An example appli
ation of quantum wells in Light Emitting Diodes. The multiplequantum wells a
t there as a
tive region and in
rease the e�
ien
y of light generation. Sour
e:�g. 4.14 (a) in [2℄Emission generated by re
tangular quantum well will have relatively wide spe
trum, being quiteine�
ient. To improve the bandwith and make it 
omparatively narrow, a paraboli
 well should beused. Paraboli
 quantum wells have equal energy spa
ings and in su
h wells the only strong opti
altransitions are between adja
ent states. Bandwith of su
h emitters is limited by the spontaneousemission width.In reality it is very di�
ult to produ
e paraboli
 quantum wells, as the doping 
on
entrationneeds to be 
hanged homogeneously. One solution of produ
ing paraboli
 wells 
ould be by digital6



grading. It means the shape of paraboli
 well is repla
ed by re
tangular layers of two materialsgiving the behaviour of real paraboli
 quantum well (i.e. equidistant energy levels). Preparingsu
h a digitised paraboli
 well is presented here in the se
ond part of 
hapter 2.To make su
h paraboli
 well emitting spontaneous radiation, external bias should be applied toit. External bias will produ
e lateral ele
tri
 �eld that gives additional kineti
 energy to ele
trons.Additional kineti
 energy in
reases the probability that ele
tron jumps to higher energy levelsvia s
attering pro
ess. This is therefore the ex
itation pro
ess via lateral ele
tri
 �eld and it isdes
ribed in the se
ond part of the thesis, in 
hapter 3.
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Chapter 2Time-independent S
hrödingerequation numeri
al solutionmethods. Appli
ation to digitallygraded GaAs/AlGaAs paraboli
quantum wells2.1 Introdu
tionThis 
hapter is based on paber [BEC℄ and des
ribes developing of methods to �nd digitally gradedGaAs/AlGaAs paraboli
 quantum well and 
orresponding energy eigenvalues and wave fun
tions.To �nd the band stru
ture, the basi
 time-independent 1D S
hrödinger equation (see eq. 2.101in [3℄) is used:
−

~
2

2m∗(z)

∂2

∂z2
ψ(z) + V (z)ψ(z) = Eψ(z) , (2.1)where m∗(z) is the e�e
tive mass that depends on the 
oordinate (whether it is GaAs or AlGaAsat that point), ψ(z) is the wave fun
tion, and E the energy eigenvalue. For thin potential barriersa more pre
ise form of this equation with di�erential mass is preferable (see eq. 2.96 in [3℄):

−
~

2

2

∂

∂z

1

m∗(z)

∂

∂z
ψ(z) + V (z)ψ(z) = Eψ(z) . (2.2)The solutions of S
hrödinger equation are the energy eigenvalues and 
orresponding wave fun
tionsthat let us to do the ele
tron transport 
al
ulations. Knowing of energy eigenvalues help us to �ndthe su�
ient design suitable for digitally graded paraboli
 well that 
ould give the best approa
hto ideal paraboli
 well. It is known that paraboli
 wells give equally spa
ed energy levels, thereforesimilar equal spa
ing is needed to be found by 
onstru
ting suitable digital grading. The solutionsare also needed to do the 
arrier transport 
al
ulations, whi
h are des
ribed in the next 
hapter.Two di�erent methods to solve S
hrödinger equation was experien
ed to �nd better a

ura
y.First method tried was shooting method and the other one matrix eigenvalue and eigenstatessolving method, both des
ribed in Paul Harrison's book Quantum Wires, Wells, and Dots[3℄.2.2 Choosing suitable numeri
al method2.2.1 Shooting methodShooting method is based on solving di�erential representation of S
hrödinger equation havinginitial values that are known (see eq. 1.107 [4℄):

ψ (z + δz) =

[

2m∗(z)

~2
(δz)

2
(V (z) − E) + 2

]

ψ (z) − ψ (z − δz) . (2.3)8



In this di�erential equation it is 
learly visible that three 
onse
utive points in the wave fun
tion
ψ depend on ea
h other. Energy E is the parameter that is sear
hable and it's value is beingsear
hed by boundary 
ondition ψ(z → ∞) → 0. As di�erential equation unites three points, twoof them needs to be given as the initial values. When these initial values are known, the �nal valuefor ψ(zn) 
an be 
al
ulated by repeating the fun
ion iteratively 9n− 2 times.Two initial values depend on the symmetry of the 
on
rete wave fun
tion. The potential shapeneeds to be symmetri
al to solve the S
hrödinger equation using shooting method. Solving of thedi�erential equation needs to be started from the 
entre of potential. If the potential is symmetri
al,the wave fun
tions 
an either be symmetri
al or antisymmetri
al (see �g. 2.1).

Figure 2.1: Comparison of symmetri
 (left) and antisymmetri
 (right) wave fun
tions.The inital values need therefore to be 
hosen a

ording to the type of symmetry of wave fun
tion.For symmetri
al and antisymmetri
al wave fun
tion the initial values are (respe
tively):
{

ψ (0) = 1

ψ (∂z) = 1
, and (2.4)

{

ψ (0) = 0

ψ (∂z) = 1
. (2.5)As shooting method uses di�erential equation, the wave fun
tion is very pre
ise near the initialvalues at z = 0 and z = ∂z. The �nal part of wave fun
tion tends to de�e
t from the boundary
ondition ψ(z → ∞) → 0 as �nding the pre
ise E that mat
hes to the real eigenvalue is very
ompli
ated. The real values have always a de�nite pre
ision, whi
h makes it impossible to �ndthe pre
ise value for energy. The fa
t that the �nal part of wave fun
tion depend on the valuesin the beginning part of wave fun
tion makes also sense. Therefore it is very 
ompli
ated to�nd solutions that are pre
ise enough using shooting method, as 
onforman
e to outer boundary
onditions is not very easily a
hievable.Trials to solve the task using shooting method 
onsidered therefore to be too ina

urate. Thevalues of wave fun
tions were 
he
ked using orthogonality 
ondition (∫

i6=j
ψiψfdz = 0) and foundthat ∫

i6=j
ψiψfdz ≈ 0.1 while ∫ ψiψidz = 1. That means the orthogonality was quite poor and thismethod needed to be repla
ed.2.2.2 Energy and wave fun
tion 
oupled solution Newton methodOne way to improve the results of shooting method was applying an another method to them. In[ESTSCIPROC℄ a method 
alled energy and wave fun
tion 
oupled solution method (EWC) wasintrodu
ed whi
h is very pre
ise but needs initial energies and wave fun
tions as input. Thoseinput values 
an therefore be prepared with shooting method.EWC method solves S
hrödinger equations system with 
learly �xed boundary 
onditions -both ends of wave fun
tion 
an be �xed to some initial value. Both, energy eigenvalues andwave fun
tions are 
al
ulated simultaneously. The method bases on 3-point s
heme of spatialdis
retisation that 
orresponds to equation derived from S
hrödinger equation (2.1):

−
~

2

2m

(

ψi+1 − ψi

∆x
−
ψi − ψi−1

∆x

)

1

∆x
+ Viψi = Eψi , (2.6)9



where ψi denotes ψ(xi) and Vi ≡ V (xi). The exa
t boundary 
onditions for outer 
al
ulationarea of ψ is �xed to zero (i.e. ψ1 = ψN = 0). This boundary 
ondition 
orresponds to assumptionof in�nitive external barriers as they 
ause wave fun
tion to go to zero on the borders.This is the representation with 
onstant or slowly 
hanging mass. In 
ase of dynami
 mass itgoes inside the bra
kets, as it 
an be seen in the following form:
−

~
2

2

(

ψi+1 − ψi

mi+ 1
2
∆x

−
ψi − ψi−1

mi− 1
2
∆x

)

1

∆x
+ Viψi = Eψi , (2.7)where mi+ 1

2
(and mi− 1

2
) is the average mass between mi and mi+1 (mi and mi−1 respe
tively).EWC method 
al
ulates not the energies and wave fun
tions dire
tly but only their 
orre
tions.That makes it more optimal as it is not ne
essary to 
arry the absolute values through the 
al
u-lations. The 
y
le of 
al
ulations is iterative, and 
an be stopped when the results do not 
hangemu
h anymore.The equation 2.7 
an be 
onverted to a representation that allows it to be 
al
ulated usingfollowing equations:

Y = Ỹ + δY , (2.8)
[∂F/∂Y ] × δY = −F̃ , (2.9)where Ỹ denotes the approximate unknown ve
tor, δY is the 
orre
tion ve
tor, F̃ ≡ (F̃1, F̃2, ..., F̃N )Tis the RHS ve
tor of the system 
al
ulated by Ỹ and [∂F/∂Y ] is the N × N Ja
obi matrix withthe Newton method derivatives ([ESTSCIPROC℄). The Ja
obi matrix [∂F/∂Y ] has a triagonalstru
ture where �rst row and 
olumn are additionally �lled out too. The �rst element of maindiagonal is zero. For example, for the 
onstant mass formulation shown in eq. 2.6 the matrix hasthe following stru
ture:

[∂F/∂Y ] =































0 2ψ2 2ψ3 2ψ4 · · · 2ψN−3 2ψN−2 2ψN−1 2ψN

ψ2 a2 c 0 · · · 0 0 0 0
ψ3 c a3 c · · · 0 0 0 0
ψ4 0 c a4 · · · 0 0 0 0... ... ... ... . . . ... ... ... ...

ψN−3 0 0 0 · · · aN−3 c 0 0
ψN−2 0 0 0 · · · c aN−2 c 0
ψN−1 0 0 0 · · · 0 c aN−1 c
ψN 0 0 0 · · · 0 0 0 1































, (2.10)
where c ≡ ~/(2m∆x2) and ai ≡ E − Vi − 2c. To get deeper overview of this method, see[ESTSCIPROC℄.This method is very pre
ise, as by the end of iterations the in
rement ve
tor δY approa
hesto 
omputer zero. The disadvantages of this method are �rst, the need to obtain the initial guessfor wavefun
tion, and se
ond, the possibility to skip some eigenvalues. Thereby for rather di�
ultmultibarrier digitised quantum well the method was de
ided not to be used. Using more 
ommonmethods for trivial eigenvalue problems 
ould solve these disadvantages, whi
h is the topi
 of nextsubse
tion.2.2.3 Method based on matrix eigenvalue standard solversThis method is based on 
lassi
al linear algebra methods that are meant for �nding eigenvaluesand eigenve
tors of matri
es. This will be mu
h more pre
ise than shooting method, be
ausethe elements do not depend on ea
h other any more. To solve the S
hrödinger equation (2.1)using matri
es, the equation needs to be modi�ed to di�erential representation. The followingrepresentation is taken from [3, eq. 3.53, page 89℄:

1

m ∗ (z + δz/2)
ψ (z + δz) =

(

2 (δz)2

~2
[V (z) − E] +

1

m ∗ (z + δz/2)
+

1

m ∗ (z − δz/2)

)

ψ (z)−

−
1

m ∗ (z − δz/2)
ψ (z − δz) . (2.11)10



The equation 2.11 is di�eren
ial, whi
h means, it 
onne
ts three 
onse
utive wave fun
tionvalues. To solve it, standard eigenvalue and eigenve
tor 
omputing methods 
an be used and theequation needs to get matrix representation. The �rst step should be rewriting the equation tothe following form:
−

1

m∗

(

zi− 1
2

)ψi−1+







2 (δz)
2

~2
V (zi) +

1

m∗

(

zi+ 1
2

) +
1

m∗

(

zi− 1
2

)







ψi−
1

m∗

(

zi− 1
2

)ψi+1 =
2 (δz)

2

~2
E·ψi ,(2.12)where ψi = ψ (z), ψi∓1 = ψ (z ∓ δz), zi = z and zi∓ 1

2
= z ∓ δz/2. For eigenvalue problem it isbetter to present this equation without the 
oe�
ient in front of energy E. Therefore the wholeequation needs to be multiplied by ~

2

2(δz)2
and will get the following form:

−
k

m∗

(

zi− 1
2

)ψi−1 +







V (zi) +
k

m∗

(

zi+ 1
2

) +
k

m∗

(

zi− 1
2

)







ψi −
k

m∗

(

zi− 1
2

)ψi+1 = E · ψi , (2.13)where k denotes the 
oe�
ient ~
2

2(δz)2
.The 
oe�
ients before ψ-s 
an be pla
ed into a symmetri
 tridiagonal band matrix and the task
an be reformulated as a standard eigenvalue problem:

[A] · [ψ] = E[ψ] , (2.14)where [A] is the N×N matrix, [ψ] is a 
olumn ve
tor with N elements, and E is the wanted energyeigenvalue. By solving this eigenvalue problem with standard software (e.g. dstev and dstevx inLAPACK1), the energies El (eigenvalues) and 
orresponding wave fun
tions ψl (eigenve
tors) 
anbe found (where l is the number of energy level, l = 1...Nl).The orthogonality of the wave fun
tions is mu
h better using this method. The value ofnondiagonal elements of orthogonality matrix was ∫
i6=j

ψiψfdz ≈ 10−9 , whi
h shows 
learly howmu
h this method is better than shooting method.2.2.4 Comparison of all three methodsThe 
omparison of the main properties, and pros and 
ons of all these methods are listed in tables2.1 and 2.2.Table 2.1: Comparison table of all three methods. N is the number of net pointsProperty Shooting method Newton method Matrix eigenvaluemethod1. Boundary
onditons One side is �xedwith 2 pts Both sides �xed to 0 Neither sides �xed2. Wave fun
tionorthogonality ≈ 10−1 ≈ 10−12 ≈ 10−93. Time e�
ien
y Medium(time ∼ N) Very High(time ∼ N) High(time ∼ N3)4. Initial guess forwave fun
tion Not needed Needed Not needed5. Implementation
omplexity Medium High Low6. Tra
eability Good Poor Poor7. Otherassumptions Symmetri
alpotential needed Outer barriers arein�nitively high Not very 
learboundary 
onditions1LAPACK is an a
ronym of words Linear Algebra PACKage. See http://www.netlib.org/lapa
k for more infor-mation.
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Table 2.2: Advantages and disadvantages of the three methodsMethod Advantages DisadvantagesShooting method Easy to implement Not very pre
ise; Mayskip energy levels ifthey are too 
lose toea
h otherNewton method Boundaries �xed to 0;Relatively fast Initial guess for energiesand wave fun
tionsneeded; May skipenergy levels if they aretoo 
lose to ea
h otherMatrix eigenvaluemethod Standardimplementation Not very 
learboundary 
onditions2.3 Optimising digitally graded potentials2.3.1 Introdu
tionThe main task in this 
hapter is to �nd digitally graded potential layout that 
ould be a goodapproximation to paraboli
 quantum well. On the 
over an example paraboli
 well with digitalgrading is shown. Digital grading is needed to simplify the produ
tion pro
ess of paraboli
 quan-tum well devi
es. It is te
hnologi
ally very 
ompli
ated to manufa
ture quantum wells that haveparaboli
 shape. One possibility to over
ome this obsta
le is digitalisation of the paraboli
 well.This means the two materials used in paraboli
 well (GaAs and AlxGa1−xAs) are altered as manytimes as ne
essary to a
hieve similar behaviour as true paraboli
 well has. Finding the right digitalgrading 
an be time 
onsuming, be
ause all the thi
k layers must be 
arefully shifted left and rightto �nd the best approa
h to equal spa
ing between energy levels. The spa
ing is as a feedba
k indigitised paraboli
 well 
onstru
tion method.2.3.2 Building initial potentialBuilding the initial stru
ture was relatively easy. The �rst 
riteria while building the stru
ture,was the integral of the potential fun
tion (the area) that needs to be equal for both 
ases - fororiginal paraboli
 well and for digitised well. This de�ned the number of layers. The se
ond 
riteriawas needed to de�ne their initial pla
ement. The algorithm of assigning the layers to their initialpla
es started moving from the 
entre of potential and integrated over the original potential well.If the integral o

ured to ex
eed the area of one monolayer, a layer was put into this pla
e where ithappened. Then, the 
ounter was zeroed and integration 
ontinued until the end of the potential.Initial potential was behaving more or less like paraboli
 well but it was still not very pre
ise.2.3.3 Optimising the potentialTo optimise the initial potential, there were several algorithms tried. The �rst and easiest wasto move layers one step2 left and right, doing it one by one with ea
h of the layers. After ea
hmovement the uni�ed spa
ing parameter between energy levels was 
al
ulated again and 
omparedto 
urrent minimal spa
ing parameter. This pro
ess was 
ontinued with several other algorithmstoo until the spa
ing didn't improve any more.To 
hara
terise the deviation of spa
ings from wanted value, a statisti
al parameter - RootMean Square (RMS ) - was used. The parameter was 
al
ulated using the following equation:
RMS =

√

∑N−1
i=1 (∆Ei,i+1 − ∆Ewanted)2

N − 1
, (2.15)where ∆Ei,i+1 = Ei+1−Ei is the spa
ing between energy levels i and i+1, ∆Ewanted is the wantedenergy spa
ing (
onstant value), and N is the number of energy levels. After ea
h movement of2the width of a monolayer (0.2825 nm) 12



Figure 2.2: The algorithms used to �nd adequate quasi-paraboli
 quantum well using digitalgrading of two substrates. The shifts are done symmetri
ally for both sides.a layer the RMS is re
al
ulated and used in later movements as 
omparison. If a new movementimproved the RMS, the movement �xated and another layer took into the fo
us.The list of all algorithms used is des
ribed below and shown in �g. 2.2.A. Moving one sti
k at a time to the left and right. This was the �rst method tried toimprove the RMS of energy level spa
ings. The algorithm started from the 
entre of potential andmoved symmetri
ally to the dire
tion of the edge. When it rea
hed the end, it started 
omingba
k reversely to the 
entre. The algorithm 
ontinued this 
y
le until the movings of layers do notimprove the energy spa
ings any more.If the new position of a layer is o

upied by another layer, then this layer will also be movedon. If there are many layers, then all of them will be moved.B. Moving a group of sti
ks to the left and right. This method was the �rst improvementto the previous one as it did not give the best approa
h. The method starts again from the middleof the well and goes to the side. First moving in
orporates all the layers that are moved to theright and to the left. The se
ond moving leaves out the �rst layer and takes all the others (n− 1if n is the number of layers) with.C. Moving two 
onse
utive sti
ks towards and away from ea
h other. This was thelatest improvement tried to do the a
hieved results even better. The pro
ess starts again from themiddle of the well and goes to the side. All the 
onse
utive layers were moved towards ea
h otherand then away from ea
h other.In �nal 
al
ulations all the methods were 
ombined, alternating them after ea
h step. A
tingthat way gave the best result - the pre
ision of energy spa
ings 
ame around 5 per
ent what wasthe �rst goal.2.4 Con
lusionThere are two main results a
hieved in this 
hapter. The aim of the �rst task was to �nd a propermethod for band stru
ture 
al
ulation. This task was done su

essfully - a standard linear algebramethod to �nd matrix eigenvalues and eigenve
tors was 
hosen to be the best one. The initial datawas 
hosen su
h, that the eigenvalues were the energy values and eigenve
tors the 
orrespondingwave fun
tion.The se
ond task in this 
hapter was to �nd a good approximation to paraboli
 quantum wellusing digital grading i.e. alteration of two di�erent substan
es GaAs and AlGaAs. After the layoutof layers was �xed - the energy levels had more or less equal spa
ing, the �nal results was to be
al
ulated. After the �nal energy eigenvalues and wave fun
tions were ready, the pro
ess 
ontinuedwith 
arrier transport 
al
ulations, whi
h is handled in the next 
hapter 3.Three s
ienti�
 papers have been published on this topi
, they are presented in the appendixes.13



Chapter 3Lateral transport task of quantumwell based broadband terahertzemitter3.1 Introdu
tionThis 
hapter is based on manus
ript submitted to Journal of Applied Physi
s [JAP℄ and des
ribesdeveloping of methods to 
al
ulate emission rates for lateral transport of 
harge 
arriers.The quantum wells we are using are two dimensional, whi
h means that the ele
trons have twodire
tions where it 
an move and one dire
tion where it is �xed. This is therefore 
alled in-planeele
tron transport. In �g. 3.1 it is showed how the ele
trons 
an move along the valley (y-axis)and up along the subband (x-axis). Along the y-axis the ele
trons are �xed and 
an not move.Lateral transport brings up the e�e
t of s
attering, whi
h means the ele
trons are 
olliding withlatti
e atoms. Ele
tri
 �eld 
aused by su
h 
ollisions heats the ele
trons up giving them higherkineti
 energy. That will 
ause the ele
trons to 
limb up along the subband until they will 
ollidewith latti
e and go to higher subband by s
attering pro
ess (see �g. 3.2). Higher subbands willtherefore get higher population of ele
trons. Ele
trons in ex
ited subbands will then relax intolower ones and produ
e spontaneous emission of photons. The main idea is therefore in in
reasingthe output power by additional spontaneous emission.Using this idea, a devi
e emitting terahertz radiation 
an be built. An example of su
h devi
e
an be seen in �g. 3.3.The lateral ele
tri
 �eld 
auses therefore the Fermi-Dira
 distribution fun
tion needed in trans-port 
al
ulations to shift along the energy axis to some extent (see �g. 3.4 and se
tion 3.2). Theoriginal distribution fun
tion for equilibrium is given by (see eq. 2.49 in [3℄):
fFD (E) =

1

exp [(E − EF ) /kT ] + 1
, (3.1)where EF is the Fermi energy.3.2 Shifted Fermi-Dira
 distribution fun
tionThe internal ele
tri
 �eld of lateral transport 
auses ele
trons to get a remarkable drift velo
ity(vd > 0) heating themselves up. This will 
ause the Fermi-Dira
 distribution fun
tion to shiftalong the E axis by energy that 
orresponds to vd (see eq. 3.1). The distribution fun
tion will getthe following form then:

f sFD (k) =



1 + exp
En0 +

~
2((kx−k0(F,Tlatt))

2+k2
y)

2m∗
− EFn

kBTel (F ,Tlatt)





−1

, (3.2)where k = (kx, ky) is the in-plane wave ve
tor that is proportional to energy E in the originalequation, En0 is the subband minimum energy, EFn
is the quasi-Fermi level of n-th subband, k014



Figure 3.1: In-plane dispersion 
urves and the subband stru
ture. Sour
e: �g. 2.5 in [3℄.

Figure 3.2: Model of subband ex
itation and relaxation pro
esses. Nonradiative intersubbands
attering pro
esses (polar LO phonons and a
ousti
 deformation potential phonons) 
ause ele
trontransitions between subbands. Lateral ele
tri
 �eld a

elerates ele
trons within every subband.Opti
al radiation output is 
aused by spontaneous drop of ele
trons from higher subbands to lowerones.
SOURCE DRAIN

doping

e−e−e−

Al0.42Ga0.58As

ECEV E

z

Al0.42Ga0.58As

GaAsFigure 3.3: An example devi
e based on a laterally pumped quantum well15



F > 0F = 0

0 kx

f sFD(kx, F )

kx0Figure 3.4: The shifted Fermi-Dira
 distribution fun
tion with e�e
tive ele
tron temperature. Theshift is 
aused by lateral ele
tri
 �eld, and the �atness is 
aused by the in
rease of temperature.is the drift wave ve
tor (along the x-axis), and Tel the heated ele
tron temperature. k0 and Teldepend both on the ele
tri
 �eld F and latti
e temperature Tlatt.Two unknown parameters are introdu
ed with shifted distribution fun
tion, drift wave ve
torand ele
tron temperature (k0 and Tel), both fun
tions of applied ele
tri
 �eld F and latti
e tem-perature Tlatt. These fun
tions de
ided to be taken from literature, as there are several resear
hesdone on this matter already.Dependen
e between drift velo
ity and ele
tri
 �eld is taken from [5℄. The relevant �gure is 3.5(left one) whi
h is a 
opy of original �gure from the paper. The points on this graph were 
arefullywritten out and interpolated using Lagrange's interpolation method. The interpolated data werethen written out again and is presented here as the right 
urve in the same �gure. It 
an be seen,that the result 
omforms more or less to the original data. Experiments showed that this smalldi�eren
e does not a�e
t the overall result signi�
antly. In 
al
ulations, where the wave ve
tor kis used instead of speed v, the 
onversion 
an be done using equation:
k (F ) =

m∗ · v (F )

~
. (3.3)The ele
tron temperature and ele
tri
 �eld dependen
e is also taken from the same paper. Fig.4 in [5℄ shows the dependen
y between ele
tri
 �eld and average energy for GaAs at 300 K. The
omparison is presented in �g. 3.6 where both, the original and interpolated 
urves are presented.The average energy E is 
onverted to temperature T using following equation:

T (F ) =
2E (F )

3kB
. (3.4)3.3 Cal
ulation methodology3.3.1 OverviewThe pro
ess of 
al
ulations is des
ribed in the �gure 3.7. The 
al
ulation has two 
y
les - innerone is iterative to �nd the proper subband populations, and outer one that is over the ele
tri
 �eldvalues. The band stru
ture needs to be 
al
ulated manually in advan
e.3.3.2 Cal
ulation of raw s
attering ratesIf an ele
tron is moving within a 
rystal latti
e, it will sooner or later 
ollide with the latti
eatoms. Ele
trons 
an 
hange their states that way - 
ollisions may either in
rease or de
rease theirenergy. A

ording to the Fermi's Golden Rule the s
attering pro
ess is des
ribed as following: ifan ele
tron in a state |i〉 with energy Ei experien
es a time-dependent perturbation H̃ whi
h 
ouldtransfer it to a state |f〉 with energy Ef , the lifetime of the 
arrier in state |i〉 is (a

ording to eq8.1 in [3℄):

1

τi
=

2π

~

∑

f

∣

∣

∣
〈f | H̃ |i〉

∣

∣

∣

2

δ (Ef − Ei) . (3.5)There are several types of s
atterings, but only longitudinal opti
 and a
ousti
 deformationpotential are used, as the others do not a�e
t very mu
h the results. All the s
attering types16



Figure 3.5: Comparison of the original (left) and interpolated (right) dependen
y between driftvelo
ity and ele
tri
 �eld at 300 K in GaAs (sour
e: �g. 3 in [5℄).

Figure 3.6: Comparison of the original and the interpolated dependen
y between average energyand ele
tri
 �eld at 300 K in GaAs (sour
e: �g. 4 in [5℄).
17



Calculation of raw scattering rates

Calculation of quasi−Fermi energies

Averaging scattering rates

Subband population calculation

LOa, LOe, ACa, ACe

srelo.c
sradp.c
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√

k2
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∣
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∣

∣

∣

∣

∣

Figure 3.7: Overview of the 
al
ulation pro
ess. The sour
e of 
odes given mean: original - 
odetaken from [3℄, modi�ed - 
ode taken from [3℄ and modi�ed by the author, and new - 
ode writtenby the author. Variable N means the total number of energy levels (subbands). The majority ofthe 
al
ulations are automated using a program 
alled multi
al
ulate.have their own equations for the perturbation H̃, whi
h gives the �nal form to the s
attering rateequations des
ribed below.The 
al
ulation of longitudinal opti
 phonon s
atterings are done using Paul Harrison's book(se
tion 8.4 in [3℄). A

ording to this se
tion, the s
attering rate equation 3.5 
an be improvedand will �nally get the following form (see eq. 8.147 in [3℄):
1

τi
=
m∗e2ωP ′

(2π)
2

~2

∫ ∞

−∞

π |Gif (Kz)|
2

√

K2
z + 2K2

z

(

2k2
i − 2m∗∆

~2

)

+
(

2m∗∆
~2

)2
dKz , (3.6)where ∆ is the sum of subband minimal energy and the kineti
 energy within the band Ef −Ei∓~ω(the upper sign in front of ~ω represents the emission of a phonon and lower the absorption),

P =
(

1
ǫ∞

− 1
ǫs

)

(

N0 + 1
2 ∓ 1

2

) (where ǫ∞ and ǫs are the high- and low-frequen
y permittivities ofthe material, and N0 + 1
2 ∓ 1

2 represents the number of phonons per unit area within the 
rystal,having minus in 
ase of absorption and plus in 
ase of emission, where N0 is the Bose-Einsteinfa
tor),Kz and ω are the wave ve
tor (along the growth axis) and angular frequen
y of the phonons,
ki is the momentum of phonon in the initial state, and Gif =

∫

ψ∗
f (z) e−iKzzψ∗

f (z) dz is the formfa
tor of s
attering events.S
attering rate a
ousti
 deformation potential 
al
ulations (AC) were done using se
tion 9.9 inPaul Harrison's book [6℄. The equation for AC s
attering is in the form (see eq. 9.186 in [6℄):
1

τi
(ki) =

D2
Am

∗

ρvs (2π)
2

~2

(

N0 +
1

2
∓

1

2

)
∫ ∞

0

∫ 2π

0

(Gif (Kz))
2
×

×

(

Θ (α1)α1

√

α2
1 +K2

z + Θ (α2)α2

√

α2
2 +K2

z

α1 − α2

)

dφdKz , (3.7)where DA is ele
tron a
ousti
 deformation potential (in 
ase of Γ-valley of GaAs DA = 7.0 eV.Sour
e: Table 2.1 in [7℄), Gif is the form fa
tor of s
attering events (see previous paragraph),18



α1,2 = −ki cosφ ±
√

k2
i cos2 φ− 2m∗∆E

~2 (a

ording to eq. 9.182 in [6℄), ki is the phonon wavenumber of inital subband, Kz is the wave ve
tor of the phonons, Θ is the Heaviside fun
tion, ρand vs are the density and speed of sound (respe
tively) in GaAs, and N0 + 1
2 ∓ 1

2 represents thenumber of phonons per unit area within the 
rystal, having minus in 
ase of absorption and plusin 
ase of emission (where N0 is the Bose-Einstein fa
tor).There is a standard implementation to solve these tasks, presented in the books. A program
alled srelo.
 is meant for LO s
attering 
al
ulations and sradp.
 for AC s
attering. Thereforein the overall 
al
ulation pro
ess, this part was solved using these standard programs.3.3.3 Cal
ulation of quasi-Fermi energiesIn 
al
ulation of mean s
attering rate (subse
tion 3.3.4), the shifted Fermi-Dira
 distribution fun
-tion is 
onstru
ted. A

ording to the equation 3.1, the Fermi-Dira
 distribution fun
tion dependson Fermi energy EF . In lateral transport the Fermi energy is sepparate for all the subbands:
fFD

i (E) =
1

exp [(E − EFi
) /kT ] + 1

, (3.8)where the index i expresses the number of subband. Fermi energy is therefore a 'quasi' energydes
ribing the 
arrier population within a subband.Quasi-Fermi energies need to be 
al
ulated for the shifted distribution fun
tion in next subse
-tion. As the Fermi energy is tightly related to 
arrier population within one subband, the problem
an be solved using the equation 2.48 in [3℄. The equation will give the ele
tron o

upation of astate i:
ni =

m∗

π~2

∫

subband

fFD
i (E) dE . (3.9)By putting equations 3.8 and 3.9 together, the Fermi energies 
an be found using reverse sear
hmethod if the subband populations are known. The subband populations will be 
al
ulated laterin subse
tion 3.3.5. This is not problem that they are 
al
ulated in reverse order, be
ause of theiterative 
al
ulation. In the �rst round, arbitrary populations are used.In Paul Harrison's book [3℄, the method was implemented for equilibrium (a program 
alledsbp.
). The s
ript was modi�ed to provide shifted Fermi-Dira
 distribution fun
tion for the non-equilibrium.3.3.4 Cal
ulation of mean s
attering ratesCal
ulation of subband populations in next subse
tion (3.3.5) depends on mean s
attering rates.Therefore it is ne
essary to �nd the mean rates using equation 8.1491 from Paul Harrison's book[3℄:

〈

1

τif

〉

=

∫

1
τif
fFD

i (E)
(

1 − fFD
f (E ∓ Ephonon)

)

dE
∫

fFD
i (E) dE

, (3.10)where the indexes i and f stand for 'initial' and '�nal' states, and Ephonon is the phonon energyhaving minus in 
ase of emission and plus in 
ase of absorption.As lateral transport shifts the distribution fun
tion away from the zero, it's shifted form shouldbe used in this equation too. The integral over energy have also to be 
hanged to integral overwave ve
tor k then. In 
omputational implementation, the equation will look like this:
〈

1

τif

〉

=

∫

kx

∫

ky

1
τif
fsFD

i (kx,ky)
(

1 − fFD
f (E −∓Ephonon)

)

dkxdky
∫

kx

∫

ky
fsFD

i (kx,ky) dkxdky

, (3.11)where E = Ei + ~
2

2m∗

(

k2
x + k2

y

) (where Ei is the subband minimum energy and ~
2

2m∗

(

k2
x + k2

y

) thekineti
 energy), and fsFD
i (k) is the shifted Fermi-Dira
 distribution fun
tion (see se
tion 3.2).This fun
tion was implemented using a standard program srmpr.
 from Paul Harrison's book[3℄ whi
h was improved with the shifted distribution fun
tion.1The 
orre
ted form is presented here a

ording to the errata of the book19



3.3.5 Cal
ulation of subband populations using rate equationsTo 
al
ulate the subband populations, rate equations need to be 
onstru
ted using average s
at-tering rates. It is known that the number of ele
trons leaving from a state is equal to the numberof ele
trons 
oming to the state. Therefore the following rate equation 
an be used:
dnf

dt
=

N
∑

i=1

1

τif
ni − nf

N
∑

i=1

1

τfi

= 0 , (3.12)where τ−1
if is the total averaged s
attering rate from i-th to f -th subband, ni is the ele
tronpopulation of i-th subband, and N the number of subbands. This equation 
ontains N unknownvariables ni-s, whi
h means at least N − 1 equations need to be found in addition to solve it. Asthe equation is meant for one subband only (f -th), it 
an be applied for all the N subbands:























∑N

i=1
1

τi1
ni − n1

∑N

i=1
1

τ1i
= 0

∑N
i=1

1
τi2
ni − n2

∑N
i=1

1
τ2i

= 0... ... ...
∑N

i=1
1

τiN
ni − nN

∑N

i=1
1

τNi
= 0

. (3.13)Unfortunately, in this 
ase, zero populations will also give a true result (ni = 0, i = 1...N).Therefore an additional equation whi
h 
onne
ts the subband populations to overall ele
tron 
on-
entration in the semi
ondu
tor should be introdu
ed:
n1 + n2 + n3 + · · · + nN = ND , (3.14)where ND is the overall density of ele
trons.These equations 
an easily be solved using the following matrix equation

Ax = y , (3.15)where
A =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∑
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1
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τ21

· · · 1
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1
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· · · 1
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τN2... ... . . . ... ...

1
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1
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∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

, x =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

n1

n2...
nN−1

nN

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣
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∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣
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0...
0
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∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.To solve this task, a new program ND2ni.
 was written.3.3.6 Cal
ulation of emission 
hara
teristi
sThe emission 
hara
teristi
s we are interested in, is the emitted power, both the total value andthe spe
trum. All the 
y
le of 
al
ulations done before, was to �nd the subband populations nifor the equation of emitted power:
Ptotal =

N
∑

i>f

ni

τ rad
if

~
2

2m∗
(Ei − Ef ) , (3.16)where ni is the population of i-th subband, τ rad

if is the spontaneous radiative lifetimes and ~ωif =
Ei − Ef the energy between i-th and f -th subbands. The radiative lifetime is given by:

1

τ rad
if

=
e2n (Ei − Ef )3 d2

if

3πǫ0c3~4
, (3.17)where n is the refra
tive index, dif are the opti
al dipole matrix elements, dif =

∫

ψi (z)ψf (z) zdz.Spontaneous radiative lifetimes 1
τ rad

f

-s do not depend on subband populations ni, whi
h meansthey 
an be 
al
ulated prior to other 
al
ulations. This is important in pra
ti
al implementation,20



be
ause this 
al
ulation 
an be omitted in the main 
y
le to save time. The se
ond output needed,the power spe
trum, is 
al
ulated as a well-known Lorentzian pe
trum:
P (E) =

N
∑

i>f

ni

τ rad
if

(Ei − Ef )
Γ

π

1

(E − (Ei − Ef ))
2

+ Γ2
, (3.18)where Γ is the line width (half width at half maximum) of the intersubband transitions, Ei and

Ef the energies of initial and �nal subbands, and τ rad
if the spontaneous radiative lifetimes.3.3.7 Overall 
al
ulation automationA

ording to �g. 3.7, the main 
y
le of transport 
al
ulations are being 
ontrolled by a programmulti
al
ulate. This means, the band stru
ture needs to be 
al
ulated in advan
e, then thetransport 
al
ulations 
an be started. The program asks all the input data from the user (i.e. theele
tri
 �eld values Fi, temperature T , and total ele
tron density ND) and 
alls the subroutinesautomati
ally with the right arguments in the right order. The program 
he
ks the 
hange in poweremission after ea
h inner iterative 
al
ulation 
y
le and exits as soon as one per
ent of pre
isionis a
hieved. All the inner iterative 
y
les are a part of outer 
y
le whi
h runs over the array ofele
tri
 �elds.3.4 Con
lusionThe main problem through the development pro
ess has been the validation of the results. It is noteasy to 
he
k the results as there are no easy ways to do it. As there are standard implementations(that 
an be trusted) for unbiased 
ase in Paul Harrison's book [3℄, the results for F = 0 V/cm
an be 
ompared. Cal
ulations done for 7 THz 
ase show that the di�eren
e is under 1 %. The
omparison is given in the table 3.1.Table 3.1: Comparison between results got by standard implementation (taken from [3℄) andauthor's implementation. Ele
tri
 �eld is not applied (F = 0 V/cm), having only bla
k bodyradiation. 77 K 300 KImplementation taken from QWWAD ([3℄).Averaging is done using equation 3.10 16.97 W/m2 16.98 W/m2Implementation made by the author.Averaging is done using equation 3.11 17.02 W/m2 17.07 W/m2Deviation 0.3 % 0.5 %In the �rst stage of 
al
ulations done in Leeds in augumn 2007, the error in results was around

30 %. By now, the methods have been improved and 
orre
ted, so the pre
ision has also gonebetter.It 
an be therefore stated that the 
al
ulation method of ele
tron transport in laterally pumpedsemi
ondu
tor has been developed and implemented. Two s
ienti�
 papers are submitted andwaiting for a

eptan
e, [JAP℄ to Journal of Applied Physi
s, and [ITQW07℄ to ITQW 
onferen
e(2007 in Ambleside, Cumbria, U.K.).
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Chapter 4Con
lusionThe main purpose taken at the beginning of the work has been su

essfully 
ompleted - themethods of ele
tron transport 
al
ulation for laterally pumped emitting devi
e were developed andthe a

eptable results were obtained. Also the subpurpose of �nding a propriate method to solveS
hrödinger equation was done well.It has been showed that even with one layer terahertz radiation 
an be emitted whi
h power ishigher than bla
k body radiation. In [JAP℄ the dependen
e between the ele
tri
 �eld and emittedpower is showed.In the �rst 
hapter the di�erent methods to solve S
hrödinger equation were examined. In these
ond 
hapter the division of ele
trons between the subbands was examined together with estima-tion of generated opti
al radiation power and spe
trum. This methodology bases mainly on LeedsUniversity methods to examine the Quantum Cas
ade Lasers (QCL). For this spe
i�
 task wherequasi-paraboli
 quantum wells with relatively many subbands are used, and the transport domi-nates (ex
iting with 
urrent), several additional 
al
ulation modules needed to be implemented.These were also shown in �g. 3.7.The 
on
rete results of this work are listed in the following:1. The numeri
al solution methods for S
hrödinger equation were examined and 
ompared. Thebest method o

ured to be a standard linear algebra eigenvalue solving method. A program
alled �nite_di�eren
e_method.
 was implemented to 
al
ulate the energy eigenvaluesand 
orresponding wave fun
tions. The sour
e 
ode of this program 
an be found in the webpage of this work.2. A method was implemented to optimise the digitised quasi-paraboli
 quantum wells seekingthe equal spa
ings between energy eigenvalues. For 7 THz emission frequen
y, the root-mean-square deviation of energy spa
ings below 4 % was a
hieved, whi
h is enough for the pra
ti
alapproximation of paraboli
 quantum well.3. Several 
al
ulation modules were realised. Some of the modules were taken from [3℄ (QWWAD)and re-implemented, but some of them are new. The list of re-implemented 
al
ulation mod-ules in
ludes:- sbp.
 Cal
ulation of quasi-Fermi energies for ea
h subband. The base of the 
ode wastaken from [3℄ but it was improved for F > 0 
ase.- srmpr.
 Cal
ulation of mean s
attering rates. The base of the 
ode was also taken from[3℄, while the Fermi-Dira
 distribution fun
tion repla
ed to the shifted FD fun
tion, also tosupport F > 0 
ase.- srrad.
 Cal
ulation of spontaneous radiative lifetimes. The method in the original versionwas improved.The list of newly built modules is:- ND2ni.
 Cal
ulation of subband populations using rate equations.- radpow.
 Cal
ulation of generated radiation power and spe
trum.22



4. The 
al
ulations were made for 7 THz stru
tures under latti
e temperatures 300 K and 77 K.The time 
ost for su
h 
al
ulations is quite high. In the early phase of 
al
ulations the timespent to �nd one point (output 
hara
teristi
s for one ele
tri
 �eld F value) rea
hed to 24hours. By now, the algorithms have been optimised and the time has been de
reased to 45minutes. Therefore to make a serie of 
al
ulations (for example with 11 ele
tri
 �eld values- 0, 1 kV/cm,...,10 kV/cm), it may take around 9 hours.5. The 7 THz stru
ture 
an produ
e radiation over the bla
k body spe
trum even in room tem-perature (300 K). In [ITQW07℄ it has been showed that it works even near 400 K temperature.It is known that Quantum Cas
ade Lasers need to work with very low latti
e temperature(under 150 K), therefore this fa
t is very important.Five s
ienti�
 papers and manus
ripts related to this work has been written. Leeds University hasshown up an interest to build su
h broadband terahertz emitter.The sour
e 
odes written for this work have been 
olle
ted and they 
an be found in the webpage of this work - http://home.
yber.ee/reeno/pqw.
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