UNIVERSITY OF TARTU
FACULTY OF MATHEMATICS AND COMPUTER SCIENCE
Institute of Computer Science

Siim Karus

Forward Compatible Design of Web Services
Presentation Layer

Master’s Thesis

(20 ap)
Supervisor: Professor Juri Kiho
Author: ... YU May 2007
SUPEIVISOI: vt o May 2007

Tartu 2007

Table of Contents

R [o1 o o 11 ox 1 o] o NSO 4
1.1 AIM OFthe STUAY ..eeeiieieieeeeeee e 4
1.2 Structure Of the TRESIS.......coiiiiiiii e e e e s e 5

P = 7 (o (o | (0] 0] 5T H PP PO PP PP PPPPPPPPP 6
2.1 Forward Compatible DeSigN.........ccooiiiiiiieeeeemccee e 6
2.2 EXIENSIDIITY ...t 7
PR T Y o 1S 1 - T 1o] o PP 7

N-Tier APPIICATIONS ...ttt e e e e e e e e e e e e 7
YA OTo 1] 0 To] 01T 0] 1174= 1o o 1RO 8
2.5 FUture Proof DESIGNcooiiiiiiiiiiiie et e e e e e 8

3 Types of Changes iN SOftWArecccooiiiiccceeeeei e 9

4 Types Of COMPONENTS ...oooiiiiiiiiiiiii e e e e e e e e e 10

5 PreSeNnt SOIULIONSuuuuiiiiiiiiiiiiiiiies s e e e e e s e s s e e e e e aaaaaasnnneneereeees 11
5.1 Controls [evel SOIULIONSuuuueiiiii e 11

ComMON CONLIOIS, ACHIVEXuuiiiiiiiirtrees bbb eeeeeeaaeaaaeeeaaees e s s s s snnnnees 11
LT T[0T £ PP P TP PPPPPPPPPTPPPP 11
JAVABEANS ... e 11
5.2 Container Level SOIUtIONSoiiiiiii e 12
Templates and SKINSoooiviiiiiiies e e e e e ee e e 12
5.3 Service Level SOIULIONSoooiiiiiiiiicceeee e 12
JAVASEIVEI PAQES ...ttt ee e 13
e LTS\ =T = PR 13
ACLIVE SEIVEN PAQES ..o ot cemmmmm st e e e ettt s e e e e enaa e e s e e e e aaaaaas 13
ASP.NET Master Pages and Web Server ControlS...........cceeiiiieeeieiiiiieeeeeiiiiinnnns 13
5.4 Service-Based SOftWAre........ccccuuuriiiie it 14

6 Requirements for Forward Compatible Presentation LBgsign 16
6.1 Future Proof and Forward Compatible Communications....................ccc...... 17
6.2 Graceful Degrading of Presentation Layer..........ccccuvvviiiiiiiiiiiiieiiieeeeeeeeeeenn 17

Service Based APProacheueiiiiiiiee e 18
Internal Configuration APPrOaCHocemaeeiiiiiiiiii e 21
SYU] o151 Vi ot TN o] o] {0 T T o USSP 22
MoNOdirectional SOIULIONS e e e e e e e e eeeeeeees 22
7 Guidelines for Forward Compatible Presentation Layers..........cccccvvvvvvceiieenennn. 24

2

T L GUILCIINGS ..o et e e e e et e e e e e e e ee e e e anaaenas 24

7.2 Enforcing the GUIAEIINESvvueiiiieeeeee e eee e e 25
7.3 Notes about Guidelines for Software Product-Line B&oh............................ 26
8 Example of Forward Compatible DeSIgN........ccceveeeeiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeiiies 21.
8.1 XSLT DASEA AESIGN...eiiiiiiiiiiiiiiieeeee e et eeeeees e 27
2 7 Tod (o [£ 10 T PR 27
D210 [USSP PP PP PPPPPPPP 27
RESUILS ...ttt e e e e e e 36
1S T O] o Tod [0 £ (0] o - 37
0.1 FULUIE WOTK ..ttt ee e e e e s s annnes 37
IO o= (=] €= o o > 38
11 RESUMEE ...ttt e e e e e et e ettt e e e et e et e e et eeaa e e eaeeeneeennn e eaeennes 41
I N o] o= oo [PP PPPPPPPPPP 42
|. Relations between new software requirements and sofevafation 42
1. Checkbox tree supporting JavaScript COUL......uuumriiiiiiiiiiieieiieeeeeee 43
] PO 1 [117 Y 45

1 Introduction

1.1 Aim of the Study

While web services become more and more personalizedhanidformation has to be
presented for various channels, the load on serviceseptation layer increases. In
addition, any new features or changes in presentrésatmay require changes in all
presentations and presentation layer components. Thasgeshcan take up majority of

development time.

It is very common to use XSL transformations [1] to teehe actual output. This paper
discusses different solutions used for lowering the costaiiing changes in presentation
layer and gives a framework on how present tools eanded in a cost-effective way.

Additionally, an example of real solution using XSlsTshown.

Web services are constantly evolving. Unlike othervemfé projects, web services
development never stops because new features are tegjugsted by the users or
demanded by law. When services grow older and more emmpésponding to bug
reports and fixing bugs gets more expensive. Users ralgbtdecide to require redesign
of present features to allow use of newer, modern uderface features and design

concepts.

With the intention of avoiding high costs of preséptalayer, service owners often limit
the number of output channels or different preseoriatof service data. In some cases,
this can be very successful and effective solutiomvewer, it cannot be applied always.
For example, public services like MSN Spaces, BloggevabaVaraVeeb have found
customizability of user pages a very popular and impofeature. Even though generally
only CSS and DHTML based customizations are used, X&é&d by some services
allows extremely extensive customization. Thanks to XSadd xslt-req[2], new
presentations could even be created by the usersalmithst no review required by the
service provider. However, most of the users are nibihgvior able to support the designs
or outputs they have created and the providers caupgort them because of the costs.
Therefore, the presentation layer components, whakle business input and generate

output, must be created in a flexible, forward conmpatvay.

At present, forward compatible design is becoming an rtapb topic. However, there
exists no general solution or framework, telling h@mvard compatible applications and

4

components should be made. The aim of this thesis is t@g®ap solution for creating
forward compatible presentation layer components amgive an example of this solution

put into use.

1.2 Structure of the Thesis

The first chapters (2-3) of the thesis identify the myaioblems of forward compatibility

and the costs of making changes in services. The nextars (4-5) analyze present
solutions and frameworks used to solve any of the pmblaresented in the first chapters.
Next, based on the present solutions, requirements &rgémeral solution to solve

problems stated are formed (chapter 6). Solutions te selmaining issues are proposed.
Based on these propositions, general method for cgefatiwvard compatible presentation
layer components is composed (chapter 7). Finally, basedhe general method, a
solution for building XSLT based forward compatibleegentation layer components is

shown and analysed (chapter 8).

The language of the thesis is English, because Estéaiminology is not present at the
time the thesis is written. Nevertheless, translationtefcbre terminology are proposed

in the appendix IlI.

2 Background

2.1 Forward Compatible Design

Most web services today are backward compatible. Thew $ime on almost all older
browsers and clients. Any newer components are intradaeeeefully by supplying a
fallback to traditional components. Backward comphitbis something we have grown
to expect from any service and non-compatible servidésuwifer from low interest. Most

services are designed with backward compatibility indmin

However, forward compatibility is often overlooketlhs become the difference between
successful services and fading services. Forward comfigitdsisures easy extending of
present services, viewability on new devices, connéityatvith other services and long

life of services. Forward compatibility of an appliocat is its preparedness to changing

environment and adoption of technologies.

Sometimes forward compatibility seems to come free. Popadhnologies and ideologies
like object oriented design and modular, extensibsegtealready do supply some forward
compatibility. Often, these are sufficient, but in socases, more effort needs to be put
into forward compatibility. According to Chris Armbresf3], three design principles to
assure forward compatible design are extensibility, attshn and componentization. In
his internet white paper on forward compatible dedignalso provided five fundamental

guestions to be asked when designing new service:

1) What happens to my application if the business rulesggia

2) What happens if we enter a different market place?

3) How much additional work will be required to incorpte new technologies like
speech recognition, natural language query and Waitidg recognition?

4) What about Internet devices that do not look likenpaters such as Web TV,
PDA'’s and cellular telephones?

5) What if the technology for storing data changes?

Even though the paper comes from the end of 1990s aadwhéde new technologies
have appeared, these questions have remained releMarthese questions help to

understand the relevance of forward compatibility.

2.2 Extensibility

Extensibility of an application is its capability t@ lextended. Extensibility is importe
factor of compatibility as it allows applications to sugpaolder technologies (backwa
compatibility) and newer, not yet available techigoés (forward compatibility

It is easier to create backward compatible applicafics information about the
requirements is already known. Therefore, backward cabipatpplications can k
designed nomxtensible. According to Armbruster, in order to suppaure technologies
applications must be able to negotiate u-level details and degrade gracefullynew

technologies come to use.

2.3 Abstraction

Abstraction is withdrawal or separation of components.afdstracted architecture is
architecture where all sutmponents are isolated from each other and from théew
Abstracted architecture is used to w independent development of different compon
of an application. It is especially important when magkichanges in applications
required changes will have to be made in applicaliyers affected with the requir

change.

n-tier Applications

An n-tier application is a term used

Presentation

Layer

which do no longer have distinct server ===

. . Business Logic | ®Business rules layer
client components. From functior Layer S/t otche tetion | =

viewpoint, applications have three laye —

describe modern clierstierver application: «Client application layer

) _ _ Data L *Object relational layer
presentation layer, business logic layer B e e Dt ource
- - - - —/
data services layer.n-tier applications Figure 1. Classical finctional viewpoint relation to n-
tier viewpoint

abstract or isolate components in all th

layers making these three layers independent from etiedr. The isolation resu in
more independent virtual laye This should allow making business logic changes by
modifying business logic layer and not modifying pressonaor data services layel
This kind of architecture allows ing and later adding of multiple differt user
interfaces, logic modules and database ser Relation between tier and functiona

viewpoint is illustrated ofigure 1.

2.4 Componentization

Componentization is separation of an application se#parate executable components.
Componentization describes components in a way thavsliedependent upgrading or
replacing of different components. This makes evolubancomponent-by-component

basis possible.

Armbruster declared five requirements for componentsnotlern applications. These

requirements are:

* Language independence

» Shippable in binary form

* Upgradeable without breaking old clients

» Transparent location and relocation on network

* Dynamic linking

2.5 Future Proof Design

A solutions design is future proof if the solution dam used with future technologies

without having to make any changes to the solutiolf.itse

3 Types of Changes in Software

As software matures, changes need to be made. Mikaehlsar@hand Jan Bosch [4]

categorized the ways of software evolution as folhmuwi

* improvement of functionality;

» changed component to support product change;

* new framework implementation related to infrastructtirange;
» changed framework implementation;

* new component to support product change;

* replaced component to support product change;

» split of software product line;

» derivation of product line architecture;

» split of component;

* new relation between components;

» changed relation between components;

» decreased functionality in framework implementatiord an

» solving in external component.

Even though, the improvement of functionality, chahgemponent to support product
change, and new framework implementation related fimstructure change are most
frequent, they are not as expensive as changes itegtane. The study showed that the
impact of these three most frequent categories of ckacgae be estimated fairly

accurately.

The study also mapped new requirements to the evoluaegories. The studied

requirement categories were:

e new product family;

* new product;

* improvement of functionality;

» extend standard support;

* new version of infrastructure; and

* improved quality attribute.

The relations of requirements categories and evolu@gd@gories can be seen in table 1.

9

4 Types of Components

In order to be forward compatible, components neekhtaw about possible changes in
their communication protocols. In fact, they needriow, which methods are available to
them. The need of this kind of information is especialpparent when designing the
presentation layer. For example, the presentatiornr lageds to know how the user can
interact with the business logic components.

Solutions built using ASP.NET Web Forms are encourdgesblve this issue by using
Web Services described using WSDL (Web Services Deiserigtanguage) [5] to
communicate with the business logic layer. The serviserg#ion gives the presentation
layer the information needed to decide on the featand protocol that can be used for

communicating.

However, presentation layer components do communicdtemy with business layer.
They also communicate and relate to each other. Thishere the structure of

presentation layer becomes important.

From the behavioural viewpoint we can differentibtween three different types of

presentation layer components:

» Controls used to display or edit some specific piecafofination;

» Containers used to group together different widgetsoatainers to present related
sets of information;

» Services used to provide means for generating speagiie of renderings (e.g.
rendering documents to PDF for printing or rendeXidL format or EDI format

messages to be used in business-to-business scenarios).

These component types can be considered as diffeegpts| of presentation layer
components as they usually form a hierarchy where seraieeat the root and widgets are

leaves.

10

5 Present Solutions

5.1 Controls level solutions

Common Controls, ActiveX

A common way of separating presentation layer from basihegic is making use of
using Common Controls. Common Controls are presentatie ®mponents used to
perform common input and output [6]. Common Controls skexelopers form recreating
dialogs, fields or other common presentation layer commsn[7]. On the other hand,
they allow developer to do some fine-tuning on theme B their simple interfaces, they
are easy to extend and can even be combined t@ areat components. These properties
make Common Controls forward compatible, which has mritd to their longlivety and

wide range of application.

However, in order to be meaningful, Common Controlsdreother presentation layer

control, container or window to layout them andgass their notifications.

Widgets

A widget is a combination of a graphic symbol and somogipam code to perform a
specific function [8]. Even though generally widgats not required to be extensible and
make use of componentization, desktop environments IR& Kave begun to include
widgets for common tasks in a similar way as Windows uses Con@uoatrols. These
widgets have the same benefits as Common Controls, buiyadefinition limited to

graphical interfaces for displaying them.

JavaBeans

JavaBeans is the component architecture for the2®atform, Standard Edition[9]. Java
2 Platform, Enterprise Edition uses Enterprise JavaBeatead. Even though JavaBeans
is a more general solution, it is most commonly used whelditg applications or

services presentation or persistence layers. JavaBeanseat¢o encapsulate objects into
a single object called the bean. Beans have to obeyeations that allow beans to be

manipulated visually in a builder tool.

JavaBeans conventions make them extensible and allewugh of abstraction. Java

architecture allows use of componentization at classkgue and library level. However,

11

similarly to Common Controls, JavaBeans rely on classdscamponents that are not

beans.
5.2 Container Level Solutions

Templates and Skins

Many content management systems use templates to dedeebstrtcture of user

interface. Templates define the layout and positioningpntrol level objects.

Templates for graphical user interfaces are commonlgdakins as they change the

visual appearance of an application.

Even though skinning is popular, it does not enfdorevard compatibility. Most often
skins do not support extending and are meaningful mntertain versions of application.
On the other hand, there are also templating todigyded for extensibility. One of these
is Extensible Stylesheet Language Transformations (XSLT).

Templates can be abstracted because templates canaligtemake use of other,
independent templates to render details of user iotrfAlso, similar aspects can be
rendered by the same template. However, templating timhot enforce this property and

some templaters even exclude it.

Templates can be componentizised as they can be dedelspeparate components and
in separate components. Templating tools do not entbhregroperty and there are even
templating solutions that require templates to haver ahpeporting code (might be even

business logic code) written into them.

5.3 Service Level Solutions

Service level solutions are often integrated with mhess logic. They act as the glue
between business logic and presentation layers. Theesdayer is only needed if the
system has multiple external interfaces. In case of amlg external interface, one
container can be used as the root container foererglthe interface.

The glue between these two layers can be a specidhaedwork, but might also be
something as simple as just using different containers ascootainers for different

external interfaces.

12

JavaServer Pages

JavaServer Pages (JSP) [10] is an extension of JavietSechnology. It is mostly used
to bind Enterprise JavaBeans code with HTML codeydwer, the technology itself
supports binding any Java code with any XML-like pn¢gtgon code. JSP is not a pure
presentation layer solution since it also describesdfie that generates the contents of
the page. Therefore, JSP can be seen as templatirntgpsdhat requires at least some
business logic code to be written into templates to conmatwith business objects.

Therefore it is prone to breaking if business logiongjes.

FreeMarker

Limitations of JSP have brought us other solutions faing EJB with presentation
markup. One of these solutions is template-based FréeM§tl]. Being completely
templates-based, it has the benefits of using templatdeszribed before. In conjunction
with EJB, FreeMaker can be used to create true fore@mpatible presentation layers for
Java based web services. However, it is importanbte that templates do not enforce

forward compatibility.

Active Server Pages

Active Server Pages (ASP) [12] is a server-side scgpsinvironment used to combine
HTML code with code to interact with COM (Common Gitjdodel) components (of
which many are Common Controls). This makes ASP simila@Rowith JSP-s more open
approach being the main difference [13]. Theref&®P has the same problems as JSP

and is not forward compatible.

ASP.NET Master Pages and Web Server Controls

ASP.NET Master Pages [14] is a feature to provideathiity to define common structure
and interface elements of a site creating consistgoutathroughout the site. This is
achieved by using simple templates for grouping siteetes present on all site pages.

ASP.NET Web Server Controls [15] are objects on A&H.Meb pages that run when the
page is requested and render markup to a browser.rigieab markup defines common
components of a page, but the rendered output demendise client's capabilities and
renderer settings. This creates additional layer sfrattion, which in combination with
user controls (embedded ASP.NET pages), makes the sokxtendable. When used

together with ASP.NET Master Pages, a general tempglatistem is formed.

13

Similarly to FreeMarker, ASP.NET allows complete sefpamnaof presentation and
business logic layers. The separation is achieved usidg behind and code beside
models. Code beside files contain partial classes camgaihe implementations of web
pages events [16]. It is actually the preferred de®grbuilding enterprise applications
using .NET Framework. Therefore, ASP.NET can be usettdate forward compatible
presentation layers. However, it is important to ribtd templates do not ensure forward

compatibility.

5.4 Service-Based Software

Since its formation in 1995, DICE (The Distributed @enof Excellence in Software
Engineering) has been working towards the developroérsa new approach to the
production of highly flexible, but robust, softwarlkn 2000, the group proposed an
approach called Service-Based Software [17]. DiChsiered following key issues of

future software:

» Software will need to be developed to meet necessalgafficient requirements.
Users should acquire and pay only for the subset ofcapipins features they use.

» Software will be personalized.

» Software will be self-adapting. Software will leaimom user actions and try to
change in order to better meet user requirements aher@nces.

» Software will be fine-grained. Software will be $phto independent co-operating
components.

» Software will operate in a transparent manner. Soéwaill be seen as one

abstract object.
The resulting service-based model of software hasvillg properties:

» Services are configured to meet a specific set of reaugints at a point in time,
executed and discarded.

» Services are composed out of smaller ones, procuregaddor on demand, as
and when needed.

» A service is not a mechanized process. Humans are nesdedntage supplier-

consumer relationships.

Today, this model is becoming widely accepted as on-déms@nvices are becoming more
popular [18]. Service based software also follows #dguirements of forward compatible

14

design: it is separated into components (subservices),aetestr into services and
subservices, and extensible with configurable featares self-adaption. According to
Mullender and Burner, Web Services are used as cturatelevel building blocks of
enterprise software using service based architecture[19]

Even though service-based software does not tell ustbadesign forward compatible
presentation layer, it does tell us what we should &xfpem application core (business
logic) and how presentation layer should interachuhe rest of the application. It tells us
that a presentation layer should also be composed oteery different components

grouped together and made accessible through messagieiasiaces.

15

6 Requirements for Forward Compatible Presentation Layer

Design

Service-based software suggests that a presentationstayald be composed of services
— different components grouped together and madessibée through message based
interfaces. We noted that Common Controls act andgeéfsd can act as forward
compatible subservices in presentation layer. Howeliergtis no guidance describing,
how to design containers in order to achieve forwamehpatibility in presentation layer.
By supplying this guidance, we solve the problem ofaiing forward compatible

presentation layer.

FreeMarker and ASP.NET Master Pages with Web Serwvatr@s allow users to create
presentation layers, which are not forward compatiBie.the other hand, they both are
template-based solutions, which make forward compatidegd possible. ISP and ASP
as solutions not componentizable into independent oosmgs have proven to be not
suitable for forward compatible design. Therefore,caa consider only template-based

containers and services when designing the framework

The framework should assure that components createextgnsible, can be abstracted
and are componentizised as these are the core requiseohéorward-compatible design.

Extensibility of template-based containers is not easgpply, since it needs templates to
be flexible. Not all templates allow structural chesgo their contents. Luckily, the
solutions discussed above do allow structural changé®itodontents, which make them
extensible. Containers, that allow using templates as aoemps in templates, do

inherently allow extensibility.

Abstraction is the requirement the solutions discussedeatlo not enforce. Abstraction
of container level objects is more complex than ofwindget level objects. Abstraction
requires the ability to consider an object as oneesysiThis means that container level
objects in presentation layer need to communicate uiginess logic layer objects using
protocols that allow abstraction and are extensilbat Tmplies using forward compatible
protocols like HTTP. Even more, different businessddgyer components might require
different interfaces with presentation layer compogsienhe old and the new components
should work seamlessly together. Solving the communicagre is the key to creating

the framework we are looking for.

16

6.1 Future Proof and Forward Compatible Communications

One solution to communication problems is to have compgsne&egotiate their
communication needs (protocol format and interfaces)orbefdoing any actual
communication. This can cause significant additionad lea communication if the
components do not bind to each other. Web Services catymse WSDL to define their

communication needs prior to actual communications.

Another solution is to use future-proof and forwardnpatible communication protocol
for communicating. This way the same communication iaterfcan be used with all

versions of components.

It is important to keep in mind that the communicatioterface can be attacked by
sending random queries to it. This means that no compocemt make binding
assumptions on data being communicated and should fedfghy if some needed data is

missing or corrupt.

Mario Jeckle and Erik Wilde have suggested[20] thatbV$ervices can be modelled as
stack of extendible future-proof layers. In theipgathey also pointed out that Web
Services also allow queries to subservices, which proveb Bervices to be well
abstractable and componenizable. This shows that Welic&erare close to being
forward compatible solutions since Web Services no lofg& provide interface for

communication as they offer message patterns instead.

6.2 Graceful Degrading of Presentation Layer

Another issue in reaching forward compatibility is @fa¢ degrading when newer

technologies come to use. There are several differayg how components degrade.

The easiest way to handle new or unexpected inpatignore it. This is commonly used
when designing XML based communications — the processdirgusti ignore unknown

attributes and elements.

Another option is to respond with error. This solutidecommonly used by HTTP servers,
which respond with “501 Not Implemented” or “505 HTWersion Not Supported” to
unexpected requests. As responding with error abrsfufys program flow, it might often

not be graceful enough. This should be the last solutsed.

17

Ideally, a forward compatible component should tryfibal out how to handle the new
information. The component could ask other componengewices for hints on how and

whether to handle new information. This allows seamlegsadation of components.

It is important to note that the components or senaséed for help should avoid giving
specific implementations of rendering rules or even tiedering. Trying to give
rendering output or detail rules requires that taihg service knows all the services it
communicates or will communicate with. This knowledgengpoartant as the actions
needed to be taken could be different for differesvices and versions of service. For
example, giving HTML rendering to service rendering XAML or XUL using client
would break the presentation. As forward compatiblamanents should be able to accept
even output formats unknown at design time, giving idatatructions or renderings

breaks forward compatibility.

There are several different approaches when askiwgdbandle new or unknown input.

Service Based Approach

The first solution is to use a dedicated service thes to find out what to do with new
input. This solution follows Service Based Architeettine best. In fact, the service itself

could handle new input by asking itself for direction

The implementation of such service could be eitherigordtion driven or just routing
based.

Configuration Driven Implementation

Configuration driven implementation means that all respe are read from service
configuration database (figure 2). This means that &y update that affects
communications between forward compatible servicesywacoafiguration record has to
be added to the database in order to allow truymdess upgrades. However, keeping

configuration up to date can be difficult to implerhen

18

Using service with configuration database

Communication problems

Presentation layer
resolver

Read hints for Query for
queried message additional
elements from the

database

A

information

v

Hints
table

Hints about
queried message

Render the
> message
elements

e

Figure 2. Service based solution using configuratiodatabase.

elements

Routing Based Implementation

Routing based implementation routes queries to sernisgmnsible for storing the rules

for the type of messages received by the queryingcse(figure 3).

Often the responsible service could be the same thatheeatiginal message. In this case,
all the services need to support queries for procestiagtions, which makes their design
and implementation more complex. Therefore, servicessgtick messages should avoid
the need for making queries how the messages should loedhafror example the
messages could be designed to contain semantic infonhiad could be used during
rendering process.

19

Using routing based service

Communication

Message source roblems Presentation
component P layer
resolver
Read hints for Query for
queried message ':Dilr"tel ?#ery B * additional
elements from the original message information

source service

database
v v
If routing failed,
Hints notify presentation
table layer of failure
A 4
Hints about
queried message Render the
elements > INessddc
elements

—

Figure 3. Service based solution using routing.

Mixed Implementation

In order to reduce complexity of services respondinthow to handle messages” queries,
a mixture of routing based and configuration drivervises can be used (figure 4).
Routing based services can be used to filter queriegding to message types. Filtered
gueries could then be sent to services specializetleondrresponding types of messages
(message semantics providers). This method is most effettivaltiple components use

messages with similar information.

Mixed implementation and routing based implementatitowalising third party message
translators to be used. Configuration based solutiols doé provide the option to use

third party services for translating messages.

20

Using mixed solution

Message Communication :
: Presentation
semantics problems
: layer
provider resolver
Read hints for Query for
queried message ':Dilr"tel ?T:Jery B * additional
elements from the onginal message information
dofabaso source service
A 4 v
If routing failed,
Hints notify presentation
table layer of failure
A 4
Hints about
queried message Render the
elements > messare
elements

—

Figure 4. Service based solution using mixed approh.

Internal Configuration Approach

The second solution to handling the input is usingniéeded configuration internally in

the receiving service. This is actually used oftesarvices today.

It could be a good solution if there were only a fswvices interacting with each other.
However, it may raise a problem if there are many sesvivhose input gets affected by
updates in the service they communicate with. Intecoafiguration approach requires
updates to the configurations of all the services tteby the changes in communication
protocols. Consequently, some services can be overlockesing these to fail at some

point.

If the configurations were stored in one service, dkevice could be used to inform
developers about which services are affected by tlaages. In this case, the affected
services are harder to overlook. In addition, the sesnéguration entry could be used for
similar services lowering the need to write duplicatefigurations and making it easier to

fix configuration errors.

21

Subservice Approach

The third option would be using an internal subsericaending component to solve

communication issues.

Using the subservice is very similar to using dedicaedice (figure 5). The main
difference is that using subservice requires subservicealfocomponents while one

dedicated service could be used to serve all affeeipdces.

The subservice could also act as an upgrade to usiaghahtsolution. Compared to
internal configuration the service could take adagatof additional semantic information
gueried from the sender as proposed above. Subsepgoeaah allows using third party

message translators.

Using subservices

Message source’s Presentation
semantics subservice layer
Read hints for Query for
queried message | additional
elements from the information

database

h 4

Hints
table

Hints about
queried message

Render the
B message
elements

—

elements

Figure 5. Subservices based solution.

Monodirectional solutions

In some cases the presentation level cannot automgatsmtid out queries on how to
handle input from business logic layer. This might beissue when using XSLT as
presentation layer solution. It might be possible to gmine feedback using XML
processor instructions in XSLT if the XSLT processor usguports these. Unfortunately

many XSLT processors do not support processor instructiomsXSLT files.

22

If the presentation layer cannot ask for advice on teohandle input, it will no longer be
fully forward compatible since some information has taireits format. For example, a
component that used to get input in EDIFACT format[@dfhnot work with XML format

unless it has means to ask how to interpret it. Howevercan provide some forward
compatibility as long as the structural format remaine #ame. We can allow

replacements, deletions and additions of data blocik&aming transmissions.

Deletions can be enabled by permitting some partseofitassage to be missing. In fact,
because different components render different blockme$sages, we can just ignore

components not getting input.

Insertion can be handled if inserted items carry sorddéianal information. For example,
they could include some semantics that can give hinpgsesentation layer about which
method of rendering might be appropriate. If XML is diser communication between
presentation and business logic layer, then that emfcamation could be stored in
attributes of added data elements. It is also worthwbileotice that well designed XML
document element and attribute names already carry sonmane information in order

to be understandable to humans. If additional ategwir elements are used for giving
additional semantic information, the hinting attriteuts elements should use namespace
different from other namespaces used in document. Watthey will not interfere with

message information.

Replacement can be considered as deletion and inseftioew item. Therefore it needs

no further consideration.

23

7 Guidelines for Forward Compatible Presentation Layers

7.1 Guidelines

Having evaluated present solutions, we provide guidslion how web services

presentation layers should be designed for forward ctbigg. It is important to follow

forward compatibility through all presentation layefgplications do not just become

easier to upgrade, forward compatibility also increasesponent reuse.

When designing a new presentation layer, followinglgjines should be considered:

1.

Use Common Controls or Widgets when possible. This avaigBcdte code and
gives forward compatible controls layer.

Combine container layer objects and components laygrctsbto create new
container layer objects that inherit forward comphtybfrom its components. Try
to reuse the new container layer objects.

Use general services rather than internal componergsptose similar aspects of
objects or types of objects. This way you can combimestinengths of aspect
oriented programming (AOP)[22] with the strengths ofjeob oriented
programming (OOP).

Compose complex services out of individually addressabl® subscribable
subservices. This lowers the communications overhead dlodv$othe newest
Web Services standards.

Avoid the need for request for additional informatmnthe presentation layer. Try
to maximize the use of semantic information already ptasecommunications
protocols. This way your presentation layer becomeelliggnt, degrades
gracefully and gains generality, which can be usednadesigning new features to
present solution.

Provide means to request additional semantic informathoout objects used in
messages from business layer objects. Supply default sidiioncases where

presentation layer needs more information than cangj#isd.

24

7.2 Enforcing the Guidelines

In order to maximize the benefits of forward compaitijgilmeans to automatically enforce

following of these guidelines, should be put into Wéext we are going to consider, what

can be done to enforce the guidelines.

1.

First guideline can be enforced by removing the @gbtlb create custom basic
controls. This may, however, result in lower performaofcéhe solution as some
simple tasks might have to be addressed by complex compohesbome cases,
widgets or common controls might not be available @uthé uniqueness of the
solution. In that case, a new set of common buildioghs needs to be created.
The second guideline can only be enforced in comjomavith the first guideline.
In fact, by denying the ability to create new comgrus, we also force them to
create new objects by combining present objects. Iffisudt to enforce the reuse,
however, it is possible to detect similar portions ofec@hd present warnings
about these at compile time.

The third guideline is difficult, if not impossibleép enforce automatically.
Detection of similar code portions can be used hereddls Mowever, it is very
difficult to automatically detect whether two codeqes express the same aspects.
There is no distinct metric that could be used to @eaidether a service should be
divided into subservices. It is still possible to use numidfedifferent message
types or contexts as an approximal metric. This metric bmmused to display
compile time warnings at chosen value ranges.

By removing the ability to ask for more information, wan enforce the fifth
guideline. However, that way we also lose the abitiyreach full forward
compatibility as discussed above. Alternatively we dafine minimal sets of
semantic information that has to be supplied with mesdageeats. This way we
still allow requesting additional information, howevére minimal set might not
be satisfactory in all cases. The presence of the mirgdemaantic information can
be verified automatically.

It is possible to require all new components to implenmaatface for querying for
additional information about objects. The implementaid the interface can be

verified automatically.

As seen above, it is impossible to automatically enfolicitae guidelines presented. This

leaves most conformances checking to human. It is commasdopatterns and best

25

practices documents to establish common knowledge abaidliges that are difficult to
enforce. Still, automatic verification can be usedhwsome guidelines. Probable

deviations from most guidelines can be highlighted atlt aompile time warnings.

7.3 Notes about Guidelines for Software Product-Line Evolution

M. Svahnberg and J. Bosch give guidelines for softvpaioeluct-line evolution[4]. The

given guidelines are outlined as follows.

1. Avoid adjusting component interfaces. Sooner or latiee interfaces of
components will need to be changed.

Focus on making component interfaces general.

Separate domain and application behaviour.

Keep the software product line intact.

Detect and exploit common functionality in componemtlementations.

Be open to rewriting components and implementations.

N o s W

Avoid hidden assumptions and design decisions in the soad=e

These guidelines were to minimize the cost of softwadctuéen. It is interesting to see
that forward compatible design is following many of stheguidelines. As forward
compatible components use future proof interfaces, ritesfaces will be general. Also,
ability to accept new input messages avoids adjustiagethinterfaces and encourages
rewriting of components and services without breakimegdroduct line. It also makes the
components open to any input, forcing the componentavtad hidden assumptions,
because these would break forward compatibility. Toeee it can be assumed that
forward compatibility lowers the cost of software evwn.

26

8 Example of Forward Compatible Design
8.1 XSLT based design

Background

In VabaVaraVeeb users can create their own presemtafiportal. Even though all the
styles created by users are currently overseen bgl @aiinistrators before allowed to be
put to use, work towards automating and supporting adtrators to verify styles
conformance to portals policies, is in progress. For el@mgquirements to user designed
styles can now be specified using xslt-req, which allaut®matic verification of many
aspects usually verified by manual review. It is inténgsto note that the styles are not
limited to displaying HTML or RSS, but support anyrf@t user wants to use. This makes
the solution ready for new technologies like using XAkd display the information in
windows application like interface. This kind of paepdness to new technologies is a

good basis for forward compatible presentation layer.

The problem with user created custom styles is that usedy take time to update their
styles to reflect changes in the portal services. Thisemadtyles short-living and
discourages users to create new styles. The solutidhetgproblem can be seen in

enforcing forward compatible design of styles as mucloasibple.

The styles consist of XSL transformations and supporileg {images, css, JavaScript,
etc.). In fact, the whole presentation layer is matl&XSL transformations that can be
applied either at the server or in client applicatidhe portal currently uses XML to

represent information in its business layer.

Design

The guidelines were put into use when designing a measentation layer for

VabaVaraVeeb. The guidelines were addressed witfollesving techniques.

Provided Fallback to Defaults

In order to allow easy modification of styles, all e/lcreated by users are required to
import the portals default style. This allows them werode presentation details only in
locations they are interested in. The default styilelve used to handle the aspects and

information the user does not want to present in araifft way. It also follows guidelines

27

1 and 2 giving users access to controls and templatibe idefault style. An example of

forward compatible custom template is shown in listing 1.

<l-- Tree of checkboxes -->
<xsl:template name ="t_valikute_puu ">
<l-- The root node of the tree -->
<xsl:param name ="juur " select ="."/>
<l-- The maximum depth of the tree -->
<xsl:;param name =" max_sygavus " select ="3"/>
<l-- Prefix to differenciate different trees -->
<xsl:param name =" nime_prefiks "/>
<l-- Create HTML block to contain the tree -->
<div class ="tree ">
<xsl:call-template name ="t_valikute_alampuu ">
<xsl:with-param name =" juur " select ="S$juur "/>
<xsl:with-param name =" max_sygavus " select ="$max_sygavus "/>
<xsl:with-param name =" nime_prefiks " select ="$nime_prefiks "/>
</ xsl:call-template >
</ div >
</ xsl:template >
<l-- Subtree of options -->
<xsl:template name ="t_valikute_alampuu ">
<l-- Current nodes id ->
<xsl:param name="id " select ="0"/>
<l-- Current node (root of subtree) ->
<xsl:param name="juur " select ="."/>
<l-- Depth of branch -->
<xsl:param name ="sygavus " select ="0"/>
<l-- Maximum depth of tree -->
<xsl:param name =" max_sygavus " select ="3"/>
<l-- Prefix to differenciate different trees -->
<xsl:param name =" nime_prefiks "/>
<l-- Left margin of subtree block (1 unless itis ther oot of tree) ->
<xsl:variable name =" margin ">
<xsl:choose >
<xsl:when test ="$sygavus > 0 "> 1</ xsl:when >
<xsl:otherwise >0</ xsl:otherwise >
</ xsl:choose >
</ xsl:variable >

<l-- Subtree container -->
<div class ="subtree " style ="margin-left:{$margin}em;
<l-- For each child, display it ->
<xsl:for-each select =" $juur/../*[ylem_id = $id and name(.) = name($juur)]
<xsl:variable name ="this_id " select ="./@id "/>
<l-- Whether user should be able to expand the node

"

>

<xsl:variable name =" this_expand
count(../*[ylem_id = $this_id and name(.) = name($

" select

=" $sygavus < $max_sygavus and
juun)]) > 0 ">

<l-- If the node is expandable, add event handlers and show appropriate
icon -->
<xsl:choose >
<xsl:when test =" $this_expand = 'true' ">

<img src =" graafika/silk013/icons/bullet_toggle_minus.png
alt ="peida alampuu " onclick =" javascript:changeSubTreeVisibility(this);

onkeypress =" javascript:changeSubTreeVisibility(this); " style =" cursor: pointer;
/>
</ xsl:when >
<xsl:otherwise >

</ xsl:otherwise >
</ xsl:choose >
<l-- Create checkbox and add event handlers -->
<input type ="checkbox " name =" {$nime_prefiks} id_{./@id} "

id =" {$nime_prefiks}_id_{$id}_{./@id} " value ="{/@id}

onclick =" javascript:setinputCheck(this.name, this.checked);

onkeypress =" javascript:setinputCheck(this.name, this.checked);
<l-- Check chosen options ->

28

<xsl:if test ="./@valitud =1 ">
<xsl:attribute name =" checked "> checked </ xsl:attribute >
</ xskif >
</input >
<l-- Label the checkbox -->
<label for ="{$nime_prefiks} id_{$id} {./@id} " titte ="{/@kirjeldus} ">
<xsl:value-of select ="./@nimi "/>
</ label >

<l-- Qutput current nodes subtree -->
<xslif test ="$this_expand = 'true' ">
<xsl:call-template name ="t_valikute_alampuu ">
<xsl:with-param name="id " select ="./@id "/>
<xsl:with-param name =" sygavus " select ="$sygavus+1 "/>
<xsl:with-param name =" juur " select ="."/>
<xsl:with-param name =" max_sygavus " select ="$max_sygavus "/>
<xsl:with-param name =" nime_prefiks " select ="$nime_prefiks "/>
</ xsl:call-template >
</ xskif >
</ xsl:for-each >
</ div >
</ xsl:template >

Listing 1. Template that generates a tree of recoslwith checkboxes in HTML format.

Tree of records with checkboxes represents graph bysag one node (root) and
drawing its children up to preset depth (given withx_sygavys As one and the same
item can be represented more than once, JavaScriged to synchronize the copies
(invoked atonclick or onkeypresse@vents). Checkbox names and ids are prefixed with
nime_prefixin order to differentiate different trees on paghe Tlemplate is invoked as

shown on the following example in listing 2.

<l-- {lemkategooriad -->
<fieldset title ="Kategooriates" id ="tree">
< xsl:call-template name ="t_valikute_puu">
< xsl:with-param name ="juur" select ="./kategooriad/kategooria[l]"/>
< xsl:with-param name ="nime_prefiks">ylemkategooria</ xsl:with-param >
</ xsl:call-template >
</ fieldset >

Listing 2. Example of using custom component to diday tree of categories.

The system represents the graphs by listing all its nodkedhveir identifier (attributed),
name (attributeimi), description (attributéescriptior, flag showing whether the node is
selected (attributealitud) and a list of the nodes parents identifiers (elem@eta_id. A
sample fragment of XML that can be rendered as ause®y previously listed code is
shown in listing 3. The result of applying the templede be seen in listing 4. Supporting

JavaScript code used for synchronization is in tipeagix.

<kategooriad >

<kategooria id ="1" nimi ="A" kirjeldus =" A" valitud ="0">
<ylem_id >0</ylem_id >

</ kategooria >

<kategooria id ="2" nimi ="B" kirjeldus ="B" valitud ="1">
<ylem_id >0</ylem_id >

</ kategooria >

<kategooria id ="3" nimi ="Al" kirjeldus ="A 1" valitud ="0">
<ylem_id >1</ylem_id >

29

</ kategooria >

<kategooria id ="4" nimi ="B1" kirjeldus ="B1" valitud ="0">
<ylem_id >2</ylem_id >

</ kategooria >

<kategooria id ="5" nimi ="C/A2a" kirjeldus ="C/A2a" valitud ="1">
<ylem_id >0</ylem_id >
<ylem_id >6</ylem_id >

</ kategooria >

<kategooria id ="6" nimi ="A2" kirjeldus =" A2" valitud ="0">
<ylem_id >1</ylem_id >

</ kategooria >

<kategooria id ="7" nimi ="Ala/B2" kirjeldus ="Ala/B2 " valitud ="0">
<ylem_id >3</ylem_id >
<ylem_id >2</ylem_id >

</ kategooria >

<kategooria id ="8" nimi ="A2b" kirjeldus =" valitud ="0">
<ylem_id >6</ylem_id >

</ kategooria >

</ kategooriad >

Listing 3. Sample fragment of XML to be rendered as tree.

<fieldset titte ="Kategooriates" id ="tree">
<div class ="tree">
< div class ="subtree" style ="margin-left:0em;">
< img src ="graafika/silk013/icons/bullet_toggle_minus.png" alt ="peida
alampuu" onclick ="javascript:changeSubTreeVisibility(this);"
onkeypress ="javascript:changeSubTreeVisibility(this);" style ="cursor: pointer;"
/>
< input type ="checkbox" name ="ylemkategooria_id 1"
id ="ylemkategooria_id_0_1" value ="1"
onclick ="javascript:setinputCheck(this.name, this.checked) "
onkeypress ="javascript:setinputCheck(this.name, this.checked) R
< label for ="ylemkategooria_id_0_1" titte ="A">A</ label >
< br />
< div class ="subtree" style ="margin-left:1em;">
< img xmins =" src ="graafika/silk013/icons/bullet_toggle_minus.png"
alt ="peida alampuu" onclick ="javascript:changeSubTreeVisibility(this);"
onkeypress ="javascript:changeSubTreeVisibility(this);" style ="cursor: pointer;"
/>
< input type ="checkbox" name ="ylemkategooria id_3"
id ="ylemkategooria_id_1_3" value ="3"
onclick ="javascript:setlnputCheck(this.name, this.checked) "
onkeypress ="javascript:setinputCheck(this.name, this.checked) o>
< label for ="ylemkategooria id 1 3" tittle ="A_1">Al</ label >
< br />
< div class ="subtree" style ="margin-left:1lem;">
< img src ="graafika/silk013/icons/bullet_white.png" alt ="leht" 1>
< input type ="checkbox" name ="ylemkategooria_id_7"
id ="ylemkategooria_id_3_7" value ="7"
onclick ="javascript:setlnputCheck(this.name, this.checked) "
onkeypress ="javascript:setinputCheck(this.name, this.checked) o>
< label for ="ylemkategooria_id 3 7" title ="Ala/B2">Ala/B2</ label >
< br />
</ div >
< img src ="graafika/silk013/icons/bullet_toggle_minus.png" alt ="peida
alampuu" onclick ="javascript:changeSubTreeVisibility(this);"
onkeypress ="javascript:changeSubTreeVisibility(this);" style ="cursor: pointer;"
/>
< input type ="checkbox" name ="ylemkategooria id_6"
id ="ylemkategooria_id_1_6" value ="6"
onclick ="javascript:setlnputCheck(this.name, this.checked) "
onkeypress ="javascript:setinputCheck(this.name, this.checked) o>
< label for ="ylemkategooria id 1 6" title ="A2">A2</ label >
< br />
< div class ="subtree" style ="margin-left:1lem;">
< img src ="graafika/silk013/icons/bullet_white.png" alt ="leht" >
< input type ="checkbox" name ="ylemkategooria_id_5"
id ="ylemkategooria_id_6_5" value ="5"

30

onclick ="javascript:setlnputCheck(this.name, this.checked) "
onkeypress ="javascript:setinputCheck(this.name, this.checked) ;
checked ="checked" />

< label for ="ylemkategooria_id_6_5" titte ="C/A2a">C/A2a</ label >
< br />
< img src ="graafika/silk013/icons/bullet_white.png" alt ="leht" 1>
< input type ="checkbox" name ="ylemkategooria_id_8"
id ="ylemkategooria_id_6_8" value ="8"
onclick ="javascript:setlnputCheck(this.name, this.checked) "
onkeypress ="javascript:setinputCheck(this.name, this.checked) o>
< label for ="ylemkategooria_id 6 8" title ="">A2b</ label >
< br />
</ div >
</ div >
< img src ="graafika/silk013/icons/bullet_toggle_minus.png" alt ="peida
alampuu" onclick ="javascript:changeSubTreeVisibility(this);"
onkeypress ="javascript:changeSubTreeVisibility(this);" style ="cursor: pointer;"

/>
< input type ="checkbox" name ="ylemkategooria_id_2"
id ="ylemkategooria_id_0_2" value ="2"
onclick ="javascript:setinputCheck(this.name, this.checked) ;
onkeypress ="javascript:setinputCheck(this.name, this.checked) "
checked ="checked" />
< label for ="ylemkategooria_ id_0_2" title ="B">B</ label >
< br />
< div class ="subtree" style ="margin-left:lem;">
< img src ="graafika/silk013/icons/bullet_white.png" alt ="leht" />
< input type ="checkbox" name ="ylemkategooria id_4"
id ="ylemkategooria_id_2_4" value ="4"
onclick ="javascript:setlnputCheck(this.name, this.checked) "
onkeypress ="javascript:setinputCheck(this.name, this.checked) o>
< label for ="ylemkategooria_id 2 4" title ="B1">Bl</ label >
< br />
< img src ="graafika/silk013/icons/bullet_white.png" alt ="leht" />
< input type ="checkbox" name ="ylemkategooria_id_7"
id ="ylemkategooria_id_2_7" value ="7"
onclick ="javascript:setinputCheck(this.name, this.checked) ;
onkeypress ="javascript:setinputCheck(this.name, this.checked) R
< label for ="ylemkategooria_id_2_7" titte ="Ala/B2">Ala/B2</ label >
< br />
</ div >
< img src ="graafika/silk013/icons/bullet_white.png" alt ="leht" 1>
< input type ="checkbox" name ="ylemkategooria_id 5"
id ="ylemkategooria_id_0_5" value ="5"
onclick ="javascript:setlnputCheck(this.name, this.checked) "
onkeypress ="javascript:setinputCheck(this.name, this.checked) ;
checked ="checked" />
< label for ="ylemkategooria_id_0_5" titte ="C/A2a">C/A2a</ label >
< br />
</ div >
</ div >
</ fieldset >

Listing 4. Rendering of sample XML fragment.

Use xslt-req To Add Additional Semantics

xslt-req is used to give extensibility hints. xslt-resed together with XML Schema tells

style designer, which XML elements or attributes arevadld to change and whether the

styles should bother presenting the information giventh®ge elements. Even though

having some of the message structure fixed brakes foreamgpatibility, it adds some

more semantics to the messages. That additional semantidse azsed to render new

services or components not known at design time. Thiswelguideline 5.

31

Use Semantics Already Provided By the Business Layer

Default style is designed in a way it makes use of semarftirmation already present in
the incoming XML document. For example it uses the flaat the inner representation
XML is using mainly Estonian element names to detect p@ssgis of components. In
Estonian multiples generally have a letter ‘d’ at émel of the word (similarly English
words representing multiples have ‘s’ as the last letidr)s knowledge can be used to
assume elements with names ending with ‘d’ are probadtly of items. This follows

guideline 5.

This kind of semantic information does not always givéhescorrect interpretation. Even
by improving the list detection by assuming certainaites to be present on lists, might
cause misinterpretation. In fact, semantic detectionsramedy always correct — even
humans may misinterpret the information. Fortunately, thisinterpretations are

detectable by manual verification and messages candesigaed to be clearer to avoid

misinterpretation.

<l-- List container -->
<l-- Matches all elements ending with 'd’ ->
<xsl:template name ="t_komponent_loend
match =" *[substring(name(.), string-length(name(.))) = 'd"] ">
<xsl:param name ="konteiner " select ="."/>
<l-- Container block -->
<div class ="kast ">
<l-- Header -->
<div class ="top ">
<xslif test ="$konteiner/@nimi and string-length($konteiner/@nimi) >
o">
<l-- Show help icon on the top right corner -->

<xsl:call-template name =" abi ">
<xsl:with-param name ="teema" select =" $konteiner/@nimi ">
</ xsl:call-template >
</ span >
</ xskif >
<l-- Display header texts -->

<l-- List name -->
<xsl:value-of select =" $konteiner/@nimi ">
<l-- Range of items shown and total items ->
<xslif test ="$konteiner/@kokku ">
<xslitext > (</xsltext >
<xslif test ="$konteiner/@esimene ">
<xsl:value-of select =" S$konteiner/@esimene "/>
<xsltext >- </xsltext >
<xsl:value-of select =" $konteiner/@viimane ">
<xsltext >/ </xsltext >
</ xskif >
<xsl:value-of select =" $konteiner/@kokku "/>
<xsltext >)</xsltext >
</ xslif >
</ span >
</ div >
<l-- Display container items -->

32

<div class ="sisu ">

<xsl:apply-templates select =" $konteiner/* ">
</ div >
<l-- Display navigation for next and previous page if p resent -->
<div class ="top " align ="center ">
<form action ="index.php?0tsing= " method ="post " class =" postbackform ">

<input type ="hidden " name ="otsing_pide " value ="{$konteiner/@pide} ">
<xsl:if test ="./@Ik > 1 ">
<a href ="index.php?Otsing=lk={$konteiner/@Ik -

1}&otsing_pide={$konteiner/@pide} " titte ="eelminelk ">
<img src =" graafika/silk013/icons/book_previous.png
alt ="eelminelk " class ="ikoon "/>
</ a>
</ xslif >
<xslitext >| </xsltext >
<xsl:if test ="./@kokku > ./@viimane ">
<a href ="index.php?Otsing=lk={$konteiner/@Ik +
1}&otsing_pide={$konteiner/@pide} " tite ="jargminelk ">
<img src =" graafika/silk013/icons/book_next.png " alt ="jargmine Ik
class ="ikoon "/>
</ a>
</ xslif >
</ form >
</ div >
</ div >

</ xsl:template >

Listing 5. Template to generate listing of items usg element names ending with 'd' to detect lists.

Templates Are Separated Into Different Mostly Independent Files

Templates are separated based on their usage. This mattesrtplates handling similar

aspects are grouped together, just as templates usaggenpng different subservices or
modules are separated. For example, custom controls upegsemt similar aspects are in
one file; module specific rendering is done using sfieei stylesheet files. For example,
listing container template is in components stylesheelevapplication module specific

rendering of list items is done in application moduléestyeet. This follows guideline 3.

Services to Provide Additional Semantical Information Are Available

A new service was written to allow styles ask for more sgimanformation. The styles
could invoke the service using AJAX during rendertmge or by using AJAX or any
other method to post a HTTP request. This follows gurdes.

Services Are Individually Addressable and Subscribable

With the aim of making services individually addressalnid subscribable, a new service
infrastructure was created. The new infrastructure seesce manager module to route
requests to the services requested. It also manages senuests between business layer
services. This reduces the network load as requests loetwseess layer services are
handled internally opposed to making all requests tmifp through the network

interface. This infrastructure allows addressing of aBwices or subservices in the

33

solution following guideline 4. The service managemponent also provides the service
level support for presentation layer by choosing gresentation templates according to

user preferences and client capabilities.

Furthermore, services to handle similar aspects in differ@dules were made available.

This follows guideline 3.

Graceful Degrading Of Components

A mixed solution for graceful degrading of components chosen. First, specific rules
are looked for, then semantic information about inputsed to find templates. This kind
of behavior is achieved by adding priorities to tertgda If there is still not enough
information to render the data, AJAX or ordinary HY fequest can be used to ask the
business logic layer for more information. If not enougflormation is available, default
action given by the request for more information isdugethe response does not give
default action, the element is ignored. The rendgunogess is described on figure 6. This
follows guidelines 5 and 6.

34

Figure 6. Graceful degrading of presentation layer compones in VabaVaraVeeb

35

Results

The new design made it possible to use similar presemtatiall modules in the solution
without the need to write specialized presentatayel code for each of these. Because the
data was internally stored in XML format, the composett not need much of rewriting
as much of the old XML structure could be used. It wgseeted benefit as the original

XML structure was used as the basis during designingonesentation layer.

Adding new components has also become simpler. If new @woemps are internally
represented following the same pattern as old oneg dine@ot need any additional work
to update the presentation layer since the presemtatyer knows how to handle the new
components using hints in the components represent&bomore complex components,
an additional hinting subservice can be created ilnportant to note that the subservice
can only be in hinting role, not presenting roletfesformat of resulting output might be

unknown.

When users design their new styles, XML Schema and egltefined base of messages
is used to verify their correctness. It does not granfept verification, but still automates
some of the verification used to be done manually.eample, verifying whether certain
values or elements are present or missing in the outputbeaautomated. It is also
possible to use automatic verification to confirm tiet new styles are extendable where

needed and specified by the XML Schema.

36

9 Conclusions

As seen from the example, forward compatible presentddsiper requires significant
support from the other functionality layers. In fdorward compatible presentation layer
requires the communication with business layer to bedahwompatible as well. This, in

turn, benefits from service based architecture of legsitayer.

Even though creating forward compatible presentalayer requires more code to be
written in business logic layer to allow hinting omrslating services, adding new
components requires less presentation layer code teritten. This can be extremely
useful if the number of services using similar interfaceshigh. Well designed
presentation layer will be able to support large nunmdfeadditional software features
before requiring any changes at all. The latterlmagonsidered a benefit of service based

software.

The example followed all six proposed guidelines.

9.1 Future work

In this thesis only forward compatible presentation dagediscussed. Presentation layer,
however, is one of many layers in modern software. Mbttese would probably benefit
from forward compatibility. All these layers have thsgecific problems that need to be
addressed separately. Researching ways to make othearsofayers forward compatible

and how to effectively use these together, will pogential course of future work.

On the other hand, the aim of allowing users desigir thwn interfaces to be used with
software, can be pursued. This means improving automattiication of user designed

interfaces and creating easy to use intuitive mearsditing the styles. For example,
automatic verification can be improved by adding @etmand attribute name patterns
support to XML Schema and xslt-req.

37

10 References

[1] World Wide Web Consortium , “XSL Transformations (XSLT),” [Online] 16
November 1999. [Cited: 24 June 2006.] http://wwwav@/TR/Xslt.

[2] S. Karus, "Kasutajate poolt loodud XSL teisendustele esitavai@uete
spetsifitseerimine," Faculty Of Mathematics And Comput@erge, University of Tartu.
Tartu, 2005. Bachelors Thesis.

[3] C. Armbruster, "DESIGN FOR EVOLUTION - An Internet White paper &orward
Compatible Design,http://chrisarmbruster.com{Online] 1999. [Cited: June 22, 2006.]
Web Week '98 presentation (Long Branch, NJ).
http://chrisarmbruster.com/documents/D4E/witepapr.htm.

[4] M. Svahnberg and J. Bosch,"Evolution in software product lines: two cases,
Journal of Software Maintenance: Research and Pracht®. 11, no. 6, pp. 391-422,
s.l.: John Wiley & Sons, Ltd., December 21, 1999. D@0.1002/(SICI)1096-
908X(199911/12)11:6<391::AID-SMR199>3.0.CO;2-8.

[5] E. Christensen, F. Curbera, G. Meredith and S. Weeraarana, "Web Services
Description Language (WSDL) 1.1World Wide Web ConsortiunjOnline] Ariba;
International Business Machines Corporation; Microddtirch 15, 2001. [Cited: January
30, 2007.] http://mwww.w3.org/TR/wsdl.

[6] Microsoft Corporation, "Windows Controls,'Microsoft Developers Network Library.
[Online] [Cited: September 24, 2006.]
http://msdn.microsoft.com/library/default.asp?url=/lilyyan-

us/shellcc/platform/commectls/common/common.asp.

[7] B. McKinney, "Famous Explorers and Common Controldgrdcore Visual Basic.
Redmond : Microsoft Press, 1997. Available at: http:ffwps.org/hardcore/index.html.

[8] D. Howe, "Free On-line Dictionary of Computing," [Online] 93. [Cited: September
24, 2006.] http://foldoc.org/.

[9] Sun Microsystems, Inc."JavaBeans,"Sun Developer Networ{Online] [Cited:
September 24, 2006.] http://java.sun.com/products/gamadindex.jsp.

[10] Sun Microsystems, Inc,"JavaServer Pages Technolog$8tin Developer Network .

[Online] Sun Microsystems, Inc. [Cited: 10 6, 2006tpH/java.sun.com/products/jsp/.
38

[11] V. DiBartolo, "FreeMarker: An open alternative to JSPavaWorld.com[Online]
January 2001. [Cited: October 6, 2006.] http://wjawaworld.com/javaworld/jw-01-
2001/jw-0119-freemarker.html?.

[12] Microsoft Corporation, "Active Server PagesMSDN Library .[Online] Microsoft
Corporation. [Cited: October 6, 2006.]
http://msdn.microsoft.com/library/default.asp?url=/liiyyan-

us/dnanchor/html/activeservpages.asp.

[13] Sun Microsystems, Inc. ,"JavaServer Pages[tm] Technology - Comparison with
ASP," Sun Developer Network[Online] Sun Microsystems, Inc. . [Cited: October 6,
2006.] http://java.sun.com/products/jsp/jsp-asp.html.

[14] Microsoft Corporation, "ASP.NET Master Pages MSDN Library. [Online]
Microsoft Corporation. [Cited: October 6, 2006.]
http://windowssdk.msdn.microsoft.com/en-gb/library/18s&7/d$px.

[15] Microsoft Corporation, "ASP.NET Web Server ControldyISDN Library.[Online]
Microsoft Corporation. [Cited: October 6, 2006.]
http://windowssdk.msdn.microsoft.com/en-gb/library/7698yd$px.

[16] Microsoft Corporation, "INFO: ASP.NET Code-Behind Model Overview,"
Microsoft Support Knowledge Bag@nline] February 23, 2007. [Cited: March 28, 2Q07.
http://support.microsoft.com/kb/303247. Q303247.

[17] K. Bennett, P. Layzell, D. Budgen, P. Brereton, LMacaulay and M. Munro,
"Service-Based Software: The Future for Flexible t8afe," Software Engineering
Conference, 2000. APSEC 2000. Proceedings. SeventhPAgii#c.Singapore : IEEE,
2000, pp. 214-221. Available at: http://www.bds.@/BerviceOrientedl.pdf. ISBN: O-
7695-0915-0; DOI: 10.1109/APSEC.2000.896702.

[18] H. Brunner, “Service-Based ArchitectureBest's Reviewol. 104, no. 8, pp. 96-96,
December 2003. 1527-5914.

[19] M. Mullender and M. Burner, "Application Conceptual View,"Microsoft
Developers Network Library.[Online] July 2002. [Cited: October 24, 2006.]

http://msdn2.microsoft.com/en-us/library/ms977997.aspx.

39

[20] M. Jeckle and E. Wilde, "Identical Principles, Higher Layers: Modeling Web
Services as Protocol StackXML Europe 2004Amsterdam : s.n., 2004. Available at
http://dret.net/netdret/publications#wil04g.

[21] United Nations Economic Commission for Europe’United Nations Directories for
Electronic Data Interchange for Administration, Commeand Transport ,'United
Nations Economic Commission for EuropfOnline] United Nations Economic
Commission for Europe. [Cited: March 31, 2007.]
http://www.unece.org/trade/untdid/welcome.htm.

[22] G. Kiczales, et al. “Aspect-Oriented Programming,Proceedings European
Conference on Object-Oriented Programmil@l. 1241.s.l. : Springer-Verlag, 1997, pp.
220-242.

40

11 Resiimee

Edasithilduv veebiteenuste esituskiht
Magistritoo
Siim Karus

T60s uuritakse, kuidas luua edasithilduvaid esituskipgbieenustele. T66 eesmark on
luua juhised, mida jargides on vdimalik luua edasithidd esituskihte. To0s kasutatakse
neid juhiseid, et luua uus esituskiht ning vaadeldakee asituskihi kasutamiselevotuga

seotud probleeme ning kasutegureid.

Esimestes peatukkides kirjeldatakse edasithilduvuse ndoondedvaadeldakse erinevaid

muutusi tarkvaras. Seejarel vaadeldakse esituskihi kompdaeilpe.

Jargnevalt uuritakse levinud komponentide edasithilduv Vaatluse all on nii
juhtelemendi taseme lahendused kui ka konteineri tasatmendused. Tuuakse vélja

seosed teenusbaseeruva tarkvaraarhitektuuri ja eddsidiarhitektuuri vahel.

Kasutades olemasolevate vahendite anallisist saadud kogkineisiatakse néuded
edasithilduva esituskihi loomiseks ning pakutakse lahengdrableemidele, millega
vaadeldud vahendid ei tegele. Lahendusi pakutaksel&kapeamisele probleemile:
tulevikukindlate ja edasithilduvate suhtlusprotokdlidalik ning viisakas reageerimine

ootamatustele esituskihis.

Leitud lahenduste ja vajaduste pdhjal tuuakse valfas@a edasithilduva esituskihi
loomiseks. Uuritakse nende juhiste rakendamise automaatgelkovdi rakendamise

voimalikkust ning tuuakse paralleele tooteliini arenguistega.

Valjapakutud juhiseid kasutatakse veebiteenusele uu¢uskesi loomisel ning

vaadeldakse esituskihi uuendamise tulemusi.

Uurimuse tulemuseks on juhised edasiuhilduvate kasut&siédloomiseks. Juhiste
hindamise eesmargil on neid jargides loodud uus esitusleifitasolevale veebiteenusele.

41

12 Appendix

I. Relations between new software requirements and software

evolution

REQUIREMENTS

new product family
improvement of functionality
extend standard support
new version of infrastructure
improved quality attribute

new product

split of software product line

derivation of product line architecture

new component

changed component

replaced component

split of component

new relation between components

changed relation between components

CATEGORY OF EVOLUTION

new framework implementation

changed framework implementation

decreased functionality in framework implementation

increased framework functionality

solving in external component

Legend | Always major impact | Sometimes major impact | Minor impact

Table 1. Relations between new software requiremesfind software evolution

42

II. Checkbox tree supporting JavaScript code

/I Checks all inputs with given name
function setlnputCheck(name, check)

{

inputs = document.getElementsByName(name);
for (i =0;i<inputs.length; i++)

inputs.item(i).checked = check;

/I Finds the next element el-s sibling element with name name
function findNextElementByTagName(el, name)
{

if (el==null)

{
}

var a = el.nextSibling;
while (al!= null)

return null ;

if (a.nodeType ==1 && a.tagName.toLowerCase() == name)
return a;
a = a.nextSibling;
return null ;

/I Finds the previous element el-s sibling element with name name
function findPrevElementByTagName(el, name)

{

if (el== null)

{
}

var a = el.previousSibling;
while (al!= null)

return null ;

if (a.nodeType ==1 && a.tagName.toLowerCase() == name)
return a;
}
a = a.previousSibling;

return null ;

/I Cheanges subtree visibility
function changeSubTreeVisibility(image)

{
var subtree = findNextElementByTagName(image, "div');
if (subtree == null)
{
return ;
if (subtree.className == "subtree”)
subtree.className = "subtreehidden” ;
if (image.nodeName.toLowerCase() == "img")
image.src = "graafika/silk013/icons/bullet_toggle_plus.png"
image.alt = "Naita alampuud" ;
}
else if (subtree.className == "subtreehidden”)
{
subtree.className = "subtree" ;

43

if (image.nodeName.toLowerCase() == "img")

image.src = "graafika/silk013/icons/bullet_toggle minus.png" ;
image.alt = "Peida alampuu"
}
else if (image.nodeName.toLowerCase() == "img")
{
image.src = "graafika/silk013/icons/bullet_white.png" ;
}

/I hides subtrees that have no nodes checked
function hideSubtrees()

{
var divs = document.getElementsByTagName("div*);
for (i = 0;i<divs.length; i++)
{
if (divs.item(i).className == "tree")
hideSubtree(divs.item(i).firstChild);
}
}
/I hides of el subtrees that have no subtrees check ed
function hideSubtree(el)
{
var a = el firstChild;
var img= null ;
var bHide = true ;
while (@a'!= null)
if (a.nodeType == 1)
if (a.tagName.toLowerCase() == "img")
{
img = a;
else if (a.tagName.toLowerCase() == "input" && a.type == "checkbox" &&
a.checked)
bHide = false ;
}
else if (a.tagName.toLowerCase() == "div" && a.className == "subtree”)
if (hideSubtree(a))
bHide = false ;
}
else if (img'!= null)
changeSubTreeVisibility(img);
}
img = null ;
}

a = a.nextSibling;
return bHide;

/I called when page is loaded
function onLoad()

hideSubtrees();

Listing 6. JavaScript code supporting chekbox tresample.

44

III. Glossary

Service Teenus

An abstract resource that represents a Apstraktne ressurss V(’f’)imega ta

capability of performing tasks that formia papkujate ja ndudjate jaoks funktsionadise

coherent functionality from the point of terviku moodustavaid tlesandeid.

view of providers’ entities and requestefs’
entities.

Web service Veebiteenus

Software service made available overthe (Jlemaailmse vérgu vahendusel kasutatav

World Wide Web. tarkvaraline teenus.

Forward compatibility Edasithilduvus

An applications preparedness [to Rakenduse valmidus keskkonna muutus-
changing environment and adoption|of teks ja uute tehnoloogiate kasutusele-

technologies. votuks.

Extensibility Laiendatavus

An applications capability to be extendefl. r5kenduse laiendamise véimalikkus.

Abstraction Abstraktsioon, uldistus

Withdrawal or separation of components. (gjste eraldamine v&i mitte arvestamine

n-tier application n-kihiline rakendus

An application that can be functionally Rakendus mida saab jaotadan

separated into abstract layers. abstraktseks funktsionaalseks kihiks.

Componentization Komponentideks jaotamine

Separation of an application into Rakenduse eraldiseisvateks taidetavateks

separate executable components. komponentideks jaotamine.

45

Future proof design

Solutions design where the solution can
used with future technologies without
having to make any changes to the

solution itself.

Tulevikukindel arhitektuur

be Arhitektuur, mida saab muutmata kuj

kasutada uute tehnoloogiatega.

Web Services

The programmatic interfaces used
application to application commun
cations over the World Wide Web.

Web Services

for Programsed liidesed, mida kasutata

i- rakendustevahelisel suhtlemisel Ulem

iImses vorgus.

Control

The complete apparatus used to con

a mechanism or machine in operatio

Juhtelement

trol Seade mehhanismi vdi masina t

n. juhtimiseks.

Container

Any object that can be used to hg

things.

Konteiner

old Mistahes objekt, mida saab kasutada as

hoidmiseks.

Widget

A combination of a graphic symb
and some program code to perforn

specific function.

Vidin

bl Graafilise suimboli ja programmikoo

1 a kombinatsioon kindla funktsioon

teostamiseks.

Template

A gauge, pattern, or mold, commonly
thin plate or board, used as a guide

the form of the work to be executed.

Mall

a Naidik, muster vOi valuvorm, mis esite

to taitmisele voetava too struktuuri.

Graceful degradation

Easy, elegant lowering of the rank.

Sujuv mandumine (pehme degradeerumine

Lihtne ja elegantne tahtsuse vahendamir

46

ul

kse

aa-

00

ade

i

:10)

