
UNIVERSITY OF TARTU
FACULTY OF MATHEMATICS AND COMPUTER SCIENCE

Institute of Computer Science

Siim Karus

Forward Compatible Design of Web Services

Presentation Layer

Master’s Thesis

(20 ap)

Supervisor: Professor Jüri Kiho

Author: …………………………………….. “…..“ May 2007

Supervisor: ………………………………… “…..“ May 2007

Tartu 2007

2

���������	�
��
���

1� Introduction ... 4�

1.1� Aim of the Study .. 4�

1.2� Structure of the Thesis .. 5�

2� Background ... 6�

2.1� Forward Compatible Design ... 6�

2.2� Extensibility .. 7�

2.3� Abstraction ... 7�

n-tier Applications ... 7�

2.4� Componentization ... 8�

2.5� Future Proof Design ... 8�

3� Types of Changes in Software .. 9�

4� Types of Components ... 10�

5� Present Solutions ... 11�

5.1� Controls level solutions .. 11�

Common Controls, ActiveX .. 11�

Widgets ... 11�

JavaBeans .. 11�

5.2� Container Level Solutions .. 12�

Templates and Skins ... 12�

5.3� Service Level Solutions .. 12�

JavaServer Pages ... 13�

FreeMarker .. 13�

Active Server Pages .. 13�

ASP.NET Master Pages and Web Server Controls ... 13�

5.4� Service-Based Software .. 14�

6� Requirements for Forward Compatible Presentation Layer Design 16�

6.1� Future Proof and Forward Compatible Communications 17�

6.2� Graceful Degrading of Presentation Layer ... 17�

Service Based Approach ... 18�

Internal Configuration Approach .. 21�

Subservice Approach .. 22�

Monodirectional solutions ... 22�

7� Guidelines for Forward Compatible Presentation Layers ... 24�

3

7.1� Guidelines ... 24�

7.2� Enforcing the Guidelines .. 25�

7.3� Notes about Guidelines for Software Product-Line Evolution 26�

8� Example of Forward Compatible Design .. 27�

8.1� XSLT based design ... 27�

Background ... 27�

Design ... 27�

Results ... 36�

9� Conclusions ... 37�

9.1� Future work .. 37�

10� References ... 38�

11� Resümee .. 41�

12� Appendix ... 42�

I.� Relations between new software requirements and software evolution 42�

II. � Checkbox tree supporting JavaScript code ... 43�

III. � Glossary .. 45�

4

�

���������
�

��� �����������������

While web services become more and more personalized and the information has to be

presented for various channels, the load on services presentation layer increases. In

addition, any new features or changes in present features may require changes in all

presentations and presentation layer components. These changes can take up majority of

development time.

It is very common to use XSL transformations [1] to create the actual output. This paper

discusses different solutions used for lowering the cost of making changes in presentation

layer and gives a framework on how present tools can be used in a cost-effective way.

Additionally, an example of real solution using XSLT is shown.

Web services are constantly evolving. Unlike other software projects, web services

development never stops because new features are being requested by the users or

demanded by law. When services grow older and more complex, responding to bug

reports and fixing bugs gets more expensive. Users might also decide to require redesign

of present features to allow use of newer, modern user interface features and design

concepts.

With the intention of avoiding high costs of presentation layer, service owners often limit

the number of output channels or different presentations of service data. In some cases,

this can be very successful and effective solution; however, it cannot be applied always.

For example, public services like MSN Spaces, Blogger or VabaVaraVeeb have found

customizability of user pages a very popular and important feature. Even though generally

only CSS and DHTML based customizations are used, XSLT used by some services

allows extremely extensive customization. Thanks to XSLT and xslt-req[2], new

presentations could even be created by the users with almost no review required by the

service provider. However, most of the users are not willing or able to support the designs

or outputs they have created and the providers cannot support them because of the costs.

Therefore, the presentation layer components, which take business input and generate

output, must be created in a flexible, forward compatible way.

At present, forward compatible design is becoming an important topic. However, there

exists no general solution or framework, telling how forward compatible applications and

5

components should be made. The aim of this thesis is to propose a solution for creating

forward compatible presentation layer components and to give an example of this solution

put into use.

��� ������������������������

The first chapters (2-3) of the thesis identify the main problems of forward compatibility

and the costs of making changes in services. The next chapters (4-5) analyze present

solutions and frameworks used to solve any of the problems presented in the first chapters.

Next, based on the present solutions, requirements for the general solution to solve

problems stated are formed (chapter 6). Solutions to solve remaining issues are proposed.

Based on these propositions, general method for creating forward compatible presentation

layer components is composed (chapter 7). Finally, based on the general method, a

solution for building XSLT based forward compatible presentation layer components is

shown and analysed (chapter 8).

The language of the thesis is English, because Estonian terminology is not present at the

time the thesis is written. Nevertheless, translations of the core terminology are proposed

in the appendix III.

6

� ��������
��

��� ��������	�� �������!����
�

Most web services today are backward compatible. They show fine on almost all older

browsers and clients. Any newer components are introduced carefully by supplying a

fallback to traditional components. Backward compatibility is something we have grown

to expect from any service and non-compatible services will suffer from low interest. Most

services are designed with backward compatibility in mind.

However, forward compatibility is often overlooked. It has become the difference between

successful services and fading services. Forward compatibility assures easy extending of

present services, viewability on new devices, connectability with other services and long

life of services. Forward compatibility of an application is its preparedness to changing

environment and adoption of technologies.

Sometimes forward compatibility seems to come free. Popular technologies and ideologies

like object oriented design and modular, extensible design already do supply some forward

compatibility. Often, these are sufficient, but in some cases, more effort needs to be put

into forward compatibility. According to Chris Armbruster[3], three design principles to

assure forward compatible design are extensibility, abstraction and componentization. In

his internet white paper on forward compatible design, he also provided five fundamental

questions to be asked when designing new service:

1) What happens to my application if the business rules change?

2) What happens if we enter a different market place?

3) How much additional work will be required to incorporate new technologies like

speech recognition, natural language query and hand writing recognition?

4) What about Internet devices that do not look like computers such as Web TV,

PDA’s and cellular telephones?

5) What if the technology for storing data changes?

Even though the paper comes from the end of 1990s and meanwhile new technologies

have appeared, these questions have remained relevant. All these questions help to

understand the relevance of forward compatibility.

��� "#��
���������

Extensibility of an application is its capability to be extended. Extensibility is important

factor of compatibility as it allows applications to support older technologies (backward

compatibility) and newer, not yet available technologies (forward compatibility).

It is easier to create backward compatible applications, as information about their

requirements is already known. Therefore, backward compatible applications can be

designed non-extensible. According to Armbruster, in order to support future technologies,

applications must be able to negotiate usage

technologies come to use.

��$ ����������
�

Abstraction is withdrawal or separation of components. An abstracted architecture is an

architecture where all sub-components are isolated from each other and from the whole.

Abstracted architecture is used to allo

of an application. It is especially important when making changes in applications as

required changes will have to be made in application layers affected with the required

change.

�%������ �������
��

An n-tier application is a term used to

describe modern client-server applications,

which do no longer have distinct server or

client components. From functional

viewpoint, applications have three layers:

presentation layer, business logic layer and

data services layer. n-tier applications

abstract or isolate components in all these

layers making these three layers independent from each other. The isolation results

more independent virtual layers.

modifying business logic layer and not modifying presentation or data services layers.

This kind of architecture allows us

interfaces, logic modules and database services.

viewpoint is illustrated on figure

7

Extensibility of an application is its capability to be extended. Extensibility is important

ctor of compatibility as it allows applications to support older technologies (backward

compatibility) and newer, not yet available technologies (forward compatibility).

It is easier to create backward compatible applications, as information about their

quirements is already known. Therefore, backward compatible applications can be

extensible. According to Armbruster, in order to support future technologies,

applications must be able to negotiate usage-level details and degrade gracefully as

Abstraction is withdrawal or separation of components. An abstracted architecture is an

components are isolated from each other and from the whole.

Abstracted architecture is used to allow independent development of different components

of an application. It is especially important when making changes in applications as

required changes will have to be made in application layers affected with the required

tier application is a term used to

server applications,

which do no longer have distinct server or

client components. From functional

viewpoint, applications have three layers:

presentation layer, business logic layer and

tier applications

abstract or isolate components in all these

layers making these three layers independent from each other. The isolation results

more independent virtual layers. This should allow making business logic changes by just

modifying business logic layer and not modifying presentation or data services layers.

This kind of architecture allows using and later adding of multiple differen

interfaces, logic modules and database services. Relation between n-tier and functional

figure 1.

��������	

���	������	
��
�������	�����

�	
��

�����������������	
��

��
��������������	������	
��

���������������

�	
��

�����������	����	���	
��

��	�	�������
�	�	��	
��

Figure 1. Classical functional viewpoint relation to n
tier viewpoint

Extensibility of an application is its capability to be extended. Extensibility is important

ctor of compatibility as it allows applications to support older technologies (backward

compatibility) and newer, not yet available technologies (forward compatibility).

It is easier to create backward compatible applications, as information about their

quirements is already known. Therefore, backward compatible applications can be

extensible. According to Armbruster, in order to support future technologies,

level details and degrade gracefully as new

Abstraction is withdrawal or separation of components. An abstracted architecture is an

components are isolated from each other and from the whole.

w independent development of different components

of an application. It is especially important when making changes in applications as

required changes will have to be made in application layers affected with the required

layers making these three layers independent from each other. The isolation results in

This should allow making business logic changes by just

modifying business logic layer and not modifying presentation or data services layers.

and later adding of multiple different user

tier and functional

�������	

���	������	
��

����������������	
��

�
��������������	������	
��

����������	����	���	
��

unctional viewpoint relation to n-

8

��& 	�� �
�
��'����
�

Componentization is separation of an application into separate executable components.

Componentization describes components in a way that allows independent upgrading or

replacing of different components. This makes evolution on component-by-component

basis possible.

Armbruster declared five requirements for components of modern applications. These

requirements are:

• Language independence

• Shippable in binary form

• Upgradeable without breaking old clients

• Transparent location and relocation on network

• Dynamic linking

��(�������)�����!����
�

A solutions design is future proof if the solution can be used with future technologies

without having to make any changes to the solution itself.

9

� �� ������	��
�����
����������

As software matures, changes need to be made. Mikael Svahnberg and Jan Bosch [4]

categorized the ways of software evolution as following:

• improvement of functionality;

• changed component to support product change;

• new framework implementation related to infrastructure change;

• changed framework implementation;

• new component to support product change;

• replaced component to support product change;

• split of software product line;

• derivation of product line architecture;

• split of component;

• new relation between components;

• changed relation between components;

• decreased functionality in framework implementation; and

• solving in external component.

Even though, the improvement of functionality, changed component to support product

change, and new framework implementation related to infrastructure change are most

frequent, they are not as expensive as changes in architecture. The study showed that the

impact of these three most frequent categories of changes can be estimated fairly

accurately.

The study also mapped new requirements to the evolution categories. The studied

requirement categories were:

• new product family;

• new product;

• improvement of functionality;

• extend standard support;

• new version of infrastructure; and

• improved quality attribute.

The relations of requirements categories and evolution categories can be seen in table 1.

10

� �� ������	�� �
�
���

In order to be forward compatible, components need to know about possible changes in

their communication protocols. In fact, they need to know, which methods are available to

them. The need of this kind of information is especially apparent when designing the

presentation layer. For example, the presentation layer needs to know how the user can

interact with the business logic components.

Solutions built using ASP.NET Web Forms are encouraged to solve this issue by using

Web Services described using WSDL (Web Services Description Language) [5] to

communicate with the business logic layer. The service description gives the presentation

layer the information needed to decide on the features and protocol that can be used for

communicating.

However, presentation layer components do communicate not only with business layer.

They also communicate and relate to each other. This is where the structure of

presentation layer becomes important.

From the behavioural viewpoint we can differentiate between three different types of

presentation layer components:

• Controls used to display or edit some specific piece of information;

• Containers used to group together different widgets or containers to present related

sets of information;

• Services used to provide means for generating specific type of renderings (e.g.

rendering documents to PDF for printing or rendering XML format or EDI format

messages to be used in business-to-business scenarios).

These component types can be considered as different levels of presentation layer

components as they usually form a hierarchy where services are at the root and widgets are

leaves.

11

�)����
���������
��

(�� 	�
��������*����������
��

	����
�	�
�����+�����*�,�

A common way of separating presentation layer from business logic is making use of

using Common Controls. Common Controls are presentation level components used to

perform common input and output [6]. Common Controls save developers form recreating

dialogs, fields or other common presentation layer components [7]. On the other hand,

they allow developer to do some fine-tuning on them. Due to their simple interfaces, they

are easy to extend and can even be combined to create new components. These properties

make Common Controls forward compatible, which has contributed to their longlivety and

wide range of application.

However, in order to be meaningful, Common Controls need another presentation layer

control, container or window to layout them and process their notifications.

-�������

A widget is a combination of a graphic symbol and some program code to perform a

specific function [8]. Even though generally widgets are not required to be extensible and

make use of componentization, desktop environments like KDE have begun to include

widgets for common tasks in a similar way as Windows uses Common Controls. These

widgets have the same benefits as Common Controls, but are by definition limited to

graphical interfaces for displaying them.

.�*����
��

JavaBeans is the component architecture for the Java 2 Platform, Standard Edition[9]. Java

2 Platform, Enterprise Edition uses Enterprise JavaBeans instead. Even though JavaBeans

is a more general solution, it is most commonly used when building applications or

services presentation or persistence layers. JavaBeans are used to encapsulate objects into

a single object called the bean. Beans have to obey conventions that allow beans to be

manipulated visually in a builder tool.

JavaBeans conventions make them extensible and allow the use of abstraction. Java

architecture allows use of componentization at class, package and library level. However,

12

similarly to Common Controls, JavaBeans rely on classes and components that are not

beans.

(�� 	�
���
���/�*����������
���

��� �������
�����
��

Many content management systems use templates to describe the structure of user

interface. Templates define the layout and positioning of control level objects.

Templates for graphical user interfaces are commonly called skins as they change the

visual appearance of an application.

Even though skinning is popular, it does not enforce forward compatibility. Most often

skins do not support extending and are meaningful only to certain versions of application.

On the other hand, there are also templating tools designed for extensibility. One of these

is Extensible Stylesheet Language Transformations (XSLT).

Templates can be abstracted because templates can internally make use of other,

independent templates to render details of user interface. Also, similar aspects can be

rendered by the same template. However, templating tools do not enforce this property and

some templaters even exclude it.

Templates can be componentizised as they can be developed as separate components and

in separate components. Templating tools do not enforce this property and there are even

templating solutions that require templates to have other supporting code (might be even

business logic code) written into them.

(�$ ���*����/�*����������
��

Service level solutions are often integrated with business logic. They act as the glue

between business logic and presentation layers. The service layer is only needed if the

system has multiple external interfaces. In case of only one external interface, one

container can be used as the root container for rendering the interface.

The glue between these two layers can be a specialized framework, but might also be

something as simple as just using different containers as root containers for different

external interfaces.

13

.�*����*���)�����

JavaServer Pages (JSP) [10] is an extension of Java Servlet technology. It is mostly used

to bind Enterprise JavaBeans code with HTML code, however, the technology itself

supports binding any Java code with any XML-like presentation code. JSP is not a pure

presentation layer solution since it also describes the logic that generates the contents of

the page. Therefore, JSP can be seen as templating solution that requires at least some

business logic code to be written into templates to communicate with business objects.

Therefore it is prone to breaking if business logic changes.

����0������

Limitations of JSP have brought us other solutions for gluing EJB with presentation

markup. One of these solutions is template-based FreeMarker [11]. Being completely

templates-based, it has the benefits of using templates as described before. In conjunction

with EJB, FreeMaker can be used to create true forward compatible presentation layers for

Java based web services. However, it is important to note that templates do not enforce

forward compatibility.

����*�����*���)�����

Active Server Pages (ASP) [12] is a server-side scripting environment used to combine

HTML code with code to interact with COM (Common Object Model) components (of

which many are Common Controls). This makes ASP similar to JSP with JSP-s more open

approach being the main difference [13]. Therefore, ASP has the same problems as JSP

and is not forward compatible.

��)�1"��0������)������
��-������*���	�
������

ASP.NET Master Pages [14] is a feature to provide the ability to define common structure

and interface elements of a site creating consistent layout throughout the site. This is

achieved by using simple templates for grouping site elements present on all site pages.

ASP.NET Web Server Controls [15] are objects on ASP.NET web pages that run when the

page is requested and render markup to a browser. The original markup defines common

components of a page, but the rendered output depends on the client’s capabilities and

renderer settings. This creates additional layer of abstraction, which in combination with

user controls (embedded ASP.NET pages), makes the solution extendable. When used

together with ASP.NET Master Pages, a general templating system is formed.

14

Similarly to FreeMarker, ASP.NET allows complete separation of presentation and

business logic layers. The separation is achieved using code behind and code beside

models. Code beside files contain partial classes containing the implementations of web

pages events [16]. It is actually the preferred design for building enterprise applications

using .NET Framework. Therefore, ASP.NET can be used to create forward compatible

presentation layers. However, it is important to note that templates do not ensure forward

compatibility.

(�& ���*���%���������������

Since its formation in 1995, DiCE (The Distributed Centre of Excellence in Software

Engineering) has been working towards the development of a new approach to the

production of highly flexible, but robust, software. In 2000, the group proposed an

approach called Service-Based Software [17]. DiCE considered following key issues of

future software:

• Software will need to be developed to meet necessary and sufficient requirements.

Users should acquire and pay only for the subset of applications features they use.

• Software will be personalized.

• Software will be self-adapting. Software will learn from user actions and try to

change in order to better meet user requirements and preferences.

• Software will be fine-grained. Software will be split into independent co-operating

components.

• Software will operate in a transparent manner. Software will be seen as one

abstract object.

The resulting service-based model of software has following properties:

• Services are configured to meet a specific set of requirements at a point in time,

executed and discarded.

• Services are composed out of smaller ones, procured and paid for on demand, as

and when needed.

• A service is not a mechanized process. Humans are needed to manage supplier-

consumer relationships.

Today, this model is becoming widely accepted as on-demand services are becoming more

popular [18]. Service based software also follows the requirements of forward compatible

15

design: it is separated into components (subservices), abstracted into services and

subservices, and extensible with configurable features and self-adaption. According to

Mullender and Burner, Web Services are used as conceptual level building blocks of

enterprise software using service based architecture[19].

Even though service-based software does not tell us how to design forward compatible

presentation layer, it does tell us what we should expect from application core (business

logic) and how presentation layer should interact with the rest of the application. It tells us

that a presentation layer should also be composed of services – different components

grouped together and made accessible through message-based interfaces.

16

� 2�3������
��� ���� �������� 	�� �������)����
�����
� /�����

!����
�

Service-based software suggests that a presentation layer should be composed of services

– different components grouped together and made accessible through message based

interfaces. We noted that Common Controls act and Widgets can act as forward

compatible subservices in presentation layer. However, there is no guidance describing,

how to design containers in order to achieve forward compatibility in presentation layer.

By supplying this guidance, we solve the problem of creating forward compatible

presentation layer.

FreeMarker and ASP.NET Master Pages with Web Server Controls allow users to create

presentation layers, which are not forward compatible. On the other hand, they both are

template-based solutions, which make forward compatible design possible. JSP and ASP

as solutions not componentizable into independent components have proven to be not

suitable for forward compatible design. Therefore, we can consider only template-based

containers and services when designing the framework.

The framework should assure that components created are extensible, can be abstracted

and are componentizised as these are the core requirements of forward-compatible design.

Extensibility of template-based containers is not easy to apply, since it needs templates to

be flexible. Not all templates allow structural changes to their contents. Luckily, the

solutions discussed above do allow structural changes to their contents, which make them

extensible. Containers, that allow using templates as components in templates, do

inherently allow extensibility.

Abstraction is the requirement the solutions discussed above do not enforce. Abstraction

of container level objects is more complex than of the widget level objects. Abstraction

requires the ability to consider an object as one system. This means that container level

objects in presentation layer need to communicate with business logic layer objects using

protocols that allow abstraction and are extensible. That implies using forward compatible

protocols like HTTP. Even more, different business logic layer components might require

different interfaces with presentation layer components. The old and the new components

should work seamlessly together. Solving the communication issue is the key to creating

the framework we are looking for.

17

4�� �������)������
����������	�� �������	����
������
��

One solution to communication problems is to have components negotiate their

communication needs (protocol format and interfaces) before doing any actual

communication. This can cause significant additional load on communication if the

components do not bind to each other. Web Services commonly use WSDL to define their

communication needs prior to actual communications.

Another solution is to use future-proof and forward compatible communication protocol

for communicating. This way the same communication interface can be used with all

versions of components.

It is important to keep in mind that the communication interface can be attacked by

sending random queries to it. This means that no component can make binding

assumptions on data being communicated and should fail gracefully if some needed data is

missing or corrupt.

Mario Jeckle and Erik Wilde have suggested[20] that Web Services can be modelled as

stack of extendible future-proof layers. In their paper they also pointed out that Web

Services also allow queries to subservices, which proves Web Services to be well

abstractable and componenizable. This shows that Web Services are close to being

forward compatible solutions since Web Services no longer just provide interface for

communication as they offer message patterns instead.

4�� 5��������!������
�����)����
�����
�/�����

Another issue in reaching forward compatibility is graceful degrading when newer

technologies come to use. There are several different ways how components degrade.

The easiest way to handle new or unexpected input is to ignore it. This is commonly used

when designing XML based communications – the processors will just ignore unknown

attributes and elements.

Another option is to respond with error. This solution is commonly used by HTTP servers,

which respond with “501 Not Implemented” or “505 HTTP Version Not Supported” to

unexpected requests. As responding with error abruptly stops program flow, it might often

not be graceful enough. This should be the last solution used.

18

Ideally, a forward compatible component should try to find out how to handle the new

information. The component could ask other components or services for hints on how and

whether to handle new information. This allows seamless degradation of components.

It is important to note that the components or services asked for help should avoid giving

specific implementations of rendering rules or even the rendering. Trying to give

rendering output or detail rules requires that the helping service knows all the services it

communicates or will communicate with. This knowledge is important as the actions

needed to be taken could be different for different services and versions of service. For

example, giving HTML rendering to service rendering for XAML or XUL using client

would break the presentation. As forward compatible components should be able to accept

even output formats unknown at design time, giving detail instructions or renderings

breaks forward compatibility.

There are several different approaches when asking how to handle new or unknown input.

���*����������� ������

The first solution is to use a dedicated service that tries to find out what to do with new

input. This solution follows Service Based Architecture the best. In fact, the service itself

could handle new input by asking itself for directions.

The implementation of such service could be either configuration driven or just routing

based.

��������	
�������
�����������
	
����

Configuration driven implementation means that all responses are read from service

configuration database (figure 2). This means that for any update that affects

communications between forward compatible services, a new configuration record has to

be added to the database in order to allow truly seamless upgrades. However, keeping

configuration up to date can be difficult to implement.

19

Figure 2. Service based solution using configuration database.

���
�����	������������
	
����

Routing based implementation routes queries to services responsible for storing the rules

for the type of messages received by the querying service (figure 3).

Often the responsible service could be the same that sent the original message. In this case,

all the services need to support queries for processing directions, which makes their design

and implementation more complex. Therefore, services sending the messages should avoid

the need for making queries how the messages should be handled. For example the

messages could be designed to contain semantic information that could be used during

rendering process.

20

Figure 3. Service based solution using routing.

��������������
	
����

In order to reduce complexity of services responding to “how to handle messages” queries,

a mixture of routing based and configuration driven services can be used (figure 4).

Routing based services can be used to filter queries according to message types. Filtered

queries could then be sent to services specialized on the corresponding types of messages

(message semantics providers). This method is most effective if multiple components use

messages with similar information.

Mixed implementation and routing based implementation allow using third party message

translators to be used. Configuration based solution does not provide the option to use

third party services for translating messages.

21

Figure 4. Service based solution using mixed approach.

���
���	�
���������
�� ������

The second solution to handling the input is using the needed configuration internally in

the receiving service. This is actually used often in services today.

It could be a good solution if there were only a few services interacting with each other.

However, it may raise a problem if there are many services whose input gets affected by

updates in the service they communicate with. Internal configuration approach requires

updates to the configurations of all the services affected by the changes in communication

protocols. Consequently, some services can be overlooked causing these to fail at some

point.

If the configurations were stored in one service, the service could be used to inform

developers about which services are affected by the changes. In this case, the affected

services are harder to overlook. In addition, the same configuration entry could be used for

similar services lowering the need to write duplicate configurations and making it easier to

fix configuration errors.

22

������*����� ������

The third option would be using an internal subservice in sending component to solve

communication issues.

Using the subservice is very similar to using dedicated service (figure 5). The main

difference is that using subservice requires subservice for all components while one

dedicated service could be used to serve all affected services.

The subservice could also act as an upgrade to using internal solution. Compared to

internal configuration the service could take advantage of additional semantic information

queried from the sender as proposed above. Subservice approach allows using third party

message translators.

Figure 5. Subservices based solution.

0�
���������
����������
��

In some cases the presentation level cannot automatically send out queries on how to

handle input from business logic layer. This might be an issue when using XSLT as

presentation layer solution. It might be possible to get some feedback using XML

processor instructions in XSLT if the XSLT processor used supports these. Unfortunately

many XSLT processors do not support processor instructions from XSLT files.

23

If the presentation layer cannot ask for advice on how to handle input, it will no longer be

fully forward compatible since some information has to retain its format. For example, a

component that used to get input in EDIFACT format[21] cannot work with XML format

unless it has means to ask how to interpret it. However, we can provide some forward

compatibility as long as the structural format remains the same. We can allow

replacements, deletions and additions of data blocks in incoming transmissions.

Deletions can be enabled by permitting some parts of the message to be missing. In fact,

because different components render different blocks of messages, we can just ignore

components not getting input.

Insertion can be handled if inserted items carry some additional information. For example,

they could include some semantics that can give hints to presentation layer about which

method of rendering might be appropriate. If XML is used for communication between

presentation and business logic layer, then that extra information could be stored in

attributes of added data elements. It is also worthwhile to notice that well designed XML

document element and attribute names already carry some semantic information in order

to be understandable to humans. If additional attributes or elements are used for giving

additional semantic information, the hinting attributes or elements should use namespace

different from other namespaces used in document. That way they will not interfere with

message information.

Replacement can be considered as deletion and insertion of new item. Therefore it needs

no further consideration.

24

� 5������
���������������	�� �������)����
�����
�/������

6�� 5������
���

Having evaluated present solutions, we provide guidelines on how web services

presentation layers should be designed for forward compatibility. It is important to follow

forward compatibility through all presentation layers. Applications do not just become

easier to upgrade, forward compatibility also increases component reuse.

When designing a new presentation layer, following guidelines should be considered:

1. Use Common Controls or Widgets when possible. This avoids duplicate code and

gives forward compatible controls layer.

2. Combine container layer objects and components layer objects to create new

container layer objects that inherit forward compatibility from its components. Try

to reuse the new container layer objects.

3. Use general services rather than internal components to expose similar aspects of

objects or types of objects. This way you can combine the strengths of aspect

oriented programming (AOP)[22] with the strengths of object oriented

programming (OOP).

4. Compose complex services out of individually addressable and subscribable

subservices. This lowers the communications overhead and follows the newest

Web Services standards.

5. Avoid the need for request for additional information by the presentation layer. Try

to maximize the use of semantic information already present in communications

protocols. This way your presentation layer becomes intelligent, degrades

gracefully and gains generality, which can be used when designing new features to

present solution.

6. Provide means to request additional semantic information about objects used in

messages from business layer objects. Supply default actions for cases where

presentation layer needs more information than can be supplied.

25

6�� "
�����
������5������
���

In order to maximize the benefits of forward compatibility, means to automatically enforce

following of these guidelines, should be put into use. Next we are going to consider, what

can be done to enforce the guidelines.

1. First guideline can be enforced by removing the ability to create custom basic

controls. This may, however, result in lower performance of the solution as some

simple tasks might have to be addressed by complex components. In some cases,

widgets or common controls might not be available due to the uniqueness of the

solution. In that case, a new set of common building blocks needs to be created.

2. The second guideline can only be enforced in conjunction with the first guideline.

In fact, by denying the ability to create new components, we also force them to

create new objects by combining present objects. It is difficult to enforce the reuse,

however, it is possible to detect similar portions of code and present warnings

about these at compile time.

3. The third guideline is difficult, if not impossible, to enforce automatically.

Detection of similar code portions can be used here as well. However, it is very

difficult to automatically detect whether two code pieces express the same aspects.

4. There is no distinct metric that could be used to decide whether a service should be

divided into subservices. It is still possible to use number of different message

types or contexts as an approximal metric. This metric can be used to display

compile time warnings at chosen value ranges.

5. By removing the ability to ask for more information, we can enforce the fifth

guideline. However, that way we also lose the ability to reach full forward

compatibility as discussed above. Alternatively we can define minimal sets of

semantic information that has to be supplied with message elements. This way we

still allow requesting additional information, however, the minimal set might not

be satisfactory in all cases. The presence of the minimal semantic information can

be verified automatically.

6. It is possible to require all new components to implement interface for querying for

additional information about objects. The implementation of the interface can be

verified automatically.

As seen above, it is impossible to automatically enforce all the guidelines presented. This

leaves most conformances checking to human. It is common to use patterns and best

26

practices documents to establish common knowledge about guidelines that are difficult to

enforce. Still, automatic verification can be used with some guidelines. Probable

deviations from most guidelines can be highlighted out with compile time warnings.

6�$ 1�����������5������
����������������)������%/�
��"*������
�

M. Svahnberg and J. Bosch give guidelines for software product-line evolution[4]. The

given guidelines are outlined as follows.

�� Avoid adjusting component interfaces. Sooner or later the interfaces of

components will need to be changed.

�� Focus on making component interfaces general.

�� Separate domain and application behaviour.

�� Keep the software product line intact.

�� Detect and exploit common functionality in component implementations.

�� Be open to rewriting components and implementations.

�� Avoid hidden assumptions and design decisions in the source code.

These guidelines were to minimize the cost of software evolution. It is interesting to see

that forward compatible design is following many of these guidelines. As forward

compatible components use future proof interfaces, the interfaces will be general. Also,

ability to accept new input messages avoids adjusting these interfaces and encourages

rewriting of components and services without breaking the product line. It also makes the

components open to any input, forcing the components to avoid hidden assumptions,

because these would break forward compatibility. Therefore, it can be assumed that

forward compatibility lowers the cost of software evolution.

27

	 "#�� ��������������	�� �������!����
�

7�� ,�/�������������
�

��������
��

In VabaVaraVeeb users can create their own presentation of portal. Even though all the

styles created by users are currently overseen by portal administrators before allowed to be

put to use, work towards automating and supporting administrators to verify styles

conformance to portals policies, is in progress. For example, requirements to user designed

styles can now be specified using xslt-req, which allows automatic verification of many

aspects usually verified by manual review. It is interesting to note that the styles are not

limited to displaying HTML or RSS, but support any format user wants to use. This makes

the solution ready for new technologies like using XAML to display the information in

windows application like interface. This kind of preparedness to new technologies is a

good basis for forward compatible presentation layer.

The problem with user created custom styles is that users rarely take time to update their

styles to reflect changes in the portal services. This makes styles short-living and

discourages users to create new styles. The solution to the problem can be seen in

enforcing forward compatible design of styles as much as possible.

The styles consist of XSL transformations and supporting files (images, css, JavaScript,

etc.). In fact, the whole presentation layer is made of XSL transformations that can be

applied either at the server or in client application. The portal currently uses XML to

represent information in its business layer.

!����
�

The guidelines were put into use when designing a new presentation layer for

VabaVaraVeeb. The guidelines were addressed with the following techniques.

���
������	���	���
�����	��
��

In order to allow easy modification of styles, all styles created by users are required to

import the portals default style. This allows them to override presentation details only in

locations they are interested in. The default style will be used to handle the aspects and

information the user does not want to present in a different way. It also follows guidelines

28

1 and 2 giving users access to controls and templates in the default style. An example of

forward compatible custom template is shown in listing 1.

<!-- Tree of checkboxes -->
<xsl:template name =" t_valikute_puu ">
 <!-- The root node of the tree -->
 <xsl:param name =" juur " select =" . "/>
 <!-- The maximum depth of the tree -->
 <xsl:param name =" max_sygavus " select =" 3"/>
 <!-- Prefix to differenciate different trees -->
 <xsl:param name =" nime_prefiks "/>
 <!-- Create HTML block to contain the tree -->
 <div class =" tree ">
 <xsl:call-template name =" t_valikute_alampuu " >
 <xsl:with-param name =" juur " select =" $juur "/>
 <xsl:with-param name =" max_sygavus " select =" $max_sygavus "/>
 <xsl:with-param name =" nime_prefiks " select =" $nime_prefiks "/>
 </ xsl:call-template >
 </ div >
</ xsl:template >
<!-- Subtree of options -->
<xsl:template name =" t_valikute_alampuu ">
 <!-- Current nodes id -->
 <xsl:param name =" id " select =" 0"/>
 <!-- Current node (root of subtree) -->
 <xsl:param name =" juur " select =" . "/>
 <!-- Depth of branch -->
 <xsl:param name =" sygavus " select =" 0"/>
 <!-- Maximum depth of tree -->
 <xsl:param name =" max_sygavus " select =" 3"/>
 <!-- Prefix to differenciate different trees -->
 <xsl:param name =" nime_prefiks "/>
 <!-- Left margin of subtree block (1 unless it is the r oot of tree) -->
 <xsl:variable name =" margin ">
 <xsl:choose >
 <xsl:when test =" $sygavus > 0 "> 1</ xsl:when >
 <xsl:otherwise >0</ xsl:otherwise >
 </ xsl:choose >
 </ xsl:variable >
 <!-- Subtree container -->
 <div class =" subtree " style =" margin-left:{$margin}em; ">
 <!-- For each child, display it -->
 <xsl:for-each select =" $juur/../*[ylem_id = $id and name(.) = name($juur)] ">
 <xsl:variable name =" this_id " select =" ./@id "/>
 <!-- Whether user should be able to expand the node -->
 <xsl:variable name =" this_expand " select =" $sygavus < $max_sygavus and
count(../*[ylem_id = $this_id and name(.) = name($ juur)]) > 0 "/>
 <!-- If the node is expandable, add event handlers and show appropriate
icon -->
 <xsl:choose >
 <xsl:when test =" $this_expand = 'true' ">
 <img src =" graafika/silk013/icons/bullet_toggle_minus.png "
alt =" peida alampuu " onclick =" javascript:changeSubTreeVisibility(this); "
onkeypress =" javascript:changeSubTreeVisibility(this); " style =" cursor: pointer; "
/>
 </ xsl:when >
 <xsl:otherwise >

 </ xsl:otherwise >
 </ xsl:choose >
 <!-- Create checkbox and add event handlers -->
 <input type =" checkbox " name =" {$nime_prefiks}_id_{./@id} "
id =" {$nime_prefiks}_id_{$id}_{./@id} " value =" {./@id} "
onclick =" javascript:setInputCheck(this.name, this.checked); "
onkeypress =" javascript:setInputCheck(this.name, this.checked); ">
 <!-- Check chosen options -->

29

 <xsl:if test =" ./@valitud = 1 ">
 <xsl:attribute name =" checked "> checked </ xsl:attribute >
 </ xsl:if >
 </ input >
 <!-- Label the checkbox -->
 <label for =" {$nime_prefiks}_id_{$id}_{./@id} " title =" {./@kirjeldus} ">
 <xsl:value-of select =" ./@nimi "/>
 </ label >

 <!-- Output current nodes subtree -->
 <xsl:if test =" $this_expand = 'true' ">
 <xsl:call-template name =" t_valikute_alampuu ">
 <xsl:with-param name =" id " select =" ./@id "/>
 <xsl:with-param name =" sygavus " select =" $sygavus + 1 "/>
 <xsl:with-param name =" juur " select =" . "/>
 <xsl:with-param name =" max_sygavus " select =" $max_sygavus "/>
 <xsl:with-param name =" nime_prefiks " select =" $nime_prefiks "/>
 </ xsl:call-template >
 </ xsl:if >
 </ xsl:for-each >
 </ div >
</ xsl:template >

Listing 1. Template that generates a tree of records with checkboxes in HTML format.

Tree of records with checkboxes represents graph by choosing one node (root) and

drawing its children up to preset depth (given with max_sygavus). As one and the same

item can be represented more than once, JavaScript is used to synchronize the copies

(invoked at onclick or onkeypressed events). Checkbox names and ids are prefixed with

nime_prefix in order to differentiate different trees on page. The template is invoked as

shown on the following example in listing 2.

<!-- ülemkategooriad -->
<fieldset title ="Kategooriates" id ="tree">
 < xsl:call-template name ="t_valikute_puu">
 < xsl:with-param name ="juur" select ="./kategooriad/kategooria[1]"/>
 < xsl:with-param name ="nime_prefiks">ylemkategooria</ xsl:with-param >
 </ xsl:call-template >
</ fieldset >

Listing 2. Example of using custom component to display tree of categories.

The system represents the graphs by listing all its nodes with their identifier (attribute id),

name (attribute nimi), description (attribute description), flag showing whether the node is

selected (attribute valitud) and a list of the nodes parents identifiers (elements ylem_id). A

sample fragment of XML that can be rendered as a tree using previously listed code is

shown in listing 3. The result of applying the template can be seen in listing 4. Supporting

JavaScript code used for synchronization is in the appendix.

<kategooriad >
 <kategooria id =" 1" nimi =" A" kirjeldus =" A" valitud =" 0">
 <ylem_id >0</ ylem_id >
 </ kategooria >
 <kategooria id =" 2" nimi =" B" kirjeldus =" B" valitud =" 1">
 <ylem_id >0</ ylem_id >
 </ kategooria >
 <kategooria id =" 3" nimi =" A1" kirjeldus =" A_1" valitud =" 0">
 <ylem_id >1</ ylem_id >

30

 </ kategooria >
 <kategooria id =" 4" nimi =" B1" kirjeldus =" B1" valitud =" 0">
 <ylem_id >2</ ylem_id >
 </ kategooria >
 <kategooria id =" 5" nimi =" C/A2a " kirjeldus =" C/A2a " valitud =" 1">
 <ylem_id >0</ ylem_id >
 <ylem_id >6</ ylem_id >
 </ kategooria >
 <kategooria id =" 6" nimi =" A2" kirjeldus =" A2" valitud =" 0">
 <ylem_id >1</ ylem_id >
 </ kategooria >
 <kategooria id =" 7" nimi =" A1a/B2 " kirjeldus =" A1a/B2 " valitud =" 0">
 <ylem_id >3</ ylem_id >
 <ylem_id >2</ ylem_id >
 </ kategooria >
 <kategooria id =" 8" nimi =" A2b" kirjeldus ="" valitud =" 0">
 <ylem_id >6</ ylem_id >
 </ kategooria >
</ kategooriad >

Listing 3. Sample fragment of XML to be rendered as a tree.

<fieldset title ="Kategooriates" id ="tree">
 < div class ="tree">
 < div class ="subtree" style ="margin-left:0em;">
 < img src ="graafika/silk013/icons/bullet_toggle_minus.png" alt ="peida
alampuu" onclick ="javascript:changeSubTreeVisibility(this);"
onkeypress ="javascript:changeSubTreeVisibility(this);" style ="cursor: pointer;"
/>
 < input type ="checkbox" name ="ylemkategooria_id_1"
id ="ylemkategooria_id_0_1" value ="1"
onclick ="javascript:setInputCheck(this.name, this.checked) ;"
onkeypress ="javascript:setInputCheck(this.name, this.checked) ;" />
 < label for ="ylemkategooria_id_0_1" title ="A">A</ label >
 < br />
 < div class ="subtree" style ="margin-left:1em;">
 < img xmlns ="" src ="graafika/silk013/icons/bullet_toggle_minus.png"
alt ="peida alampuu" onclick ="javascript:changeSubTreeVisibility(this);"
onkeypress ="javascript:changeSubTreeVisibility(this);" style ="cursor: pointer;"
/>
 < input type ="checkbox" name ="ylemkategooria_id_3"
id ="ylemkategooria_id_1_3" value ="3"
onclick ="javascript:setInputCheck(this.name, this.checked) ;"
onkeypress ="javascript:setInputCheck(this.name, this.checked) ;" />
 < label for ="ylemkategooria_id_1_3" title ="A_1">A1</ label >
 < br />
 < div class ="subtree" style ="margin-left:1em;">
 < img src ="graafika/silk013/icons/bullet_white.png" alt ="leht" />
 < input type ="checkbox" name ="ylemkategooria_id_7"
id ="ylemkategooria_id_3_7" value ="7"
onclick ="javascript:setInputCheck(this.name, this.checked) ;"
onkeypress ="javascript:setInputCheck(this.name, this.checked) ;" />
 < label for ="ylemkategooria_id_3_7" title ="A1a/B2">A1a/B2</ label >
 < br />
 </ div >
 < img src ="graafika/silk013/icons/bullet_toggle_minus.png" alt ="peida
alampuu" onclick ="javascript:changeSubTreeVisibility(this);"
onkeypress ="javascript:changeSubTreeVisibility(this);" style ="cursor: pointer;"
/>
 < input type ="checkbox" name ="ylemkategooria_id_6"
id ="ylemkategooria_id_1_6" value ="6"
onclick ="javascript:setInputCheck(this.name, this.checked) ;"
onkeypress ="javascript:setInputCheck(this.name, this.checked) ;" />
 < label for ="ylemkategooria_id_1_6" title ="A2">A2</ label >
 < br />
 < div class ="subtree" style ="margin-left:1em;">
 < img src ="graafika/silk013/icons/bullet_white.png" alt ="leht" />
 < input type ="checkbox" name ="ylemkategooria_id_5"
id ="ylemkategooria_id_6_5" value ="5"

31

onclick ="javascript:setInputCheck(this.name, this.checked) ;"
onkeypress ="javascript:setInputCheck(this.name, this.checked) ;"
checked ="checked" />
 < label for ="ylemkategooria_id_6_5" title ="C/A2a">C/A2a</ label >
 < br />
 < img src ="graafika/silk013/icons/bullet_white.png" alt ="leht" />
 < input type ="checkbox" name ="ylemkategooria_id_8"
id ="ylemkategooria_id_6_8" value ="8"
onclick ="javascript:setInputCheck(this.name, this.checked) ;"
onkeypress ="javascript:setInputCheck(this.name, this.checked) ;" />
 < label for ="ylemkategooria_id_6_8" title ="">A2b</ label >
 < br />
 </ div >
 </ div >
 < img src ="graafika/silk013/icons/bullet_toggle_minus.png" alt ="peida
alampuu" onclick ="javascript:changeSubTreeVisibility(this);"
onkeypress ="javascript:changeSubTreeVisibility(this);" style ="cursor: pointer;"
/>
 < input type ="checkbox" name ="ylemkategooria_id_2"
id ="ylemkategooria_id_0_2" value ="2"
onclick ="javascript:setInputCheck(this.name, this.checked) ;"
onkeypress ="javascript:setInputCheck(this.name, this.checked) ;"
checked ="checked" />
 < label for ="ylemkategooria_id_0_2" title ="B">B</ label >
 < br />
 < div class ="subtree" style ="margin-left:1em;">
 < img src ="graafika/silk013/icons/bullet_white.png" alt ="leht" />
 < input type ="checkbox" name ="ylemkategooria_id_4"
id ="ylemkategooria_id_2_4" value ="4"
onclick ="javascript:setInputCheck(this.name, this.checked) ;"
onkeypress ="javascript:setInputCheck(this.name, this.checked) ;" />
 < label for ="ylemkategooria_id_2_4" title ="B1">B1</ label >
 < br />
 < img src ="graafika/silk013/icons/bullet_white.png" alt ="leht" />
 < input type ="checkbox" name ="ylemkategooria_id_7"
id ="ylemkategooria_id_2_7" value ="7"
onclick ="javascript:setInputCheck(this.name, this.checked) ;"
onkeypress ="javascript:setInputCheck(this.name, this.checked) ;" />
 < label for ="ylemkategooria_id_2_7" title ="A1a/B2">A1a/B2</ label >
 < br />
 </ div >
 < img src ="graafika/silk013/icons/bullet_white.png" alt ="leht" />
 < input type ="checkbox" name ="ylemkategooria_id_5"
id ="ylemkategooria_id_0_5" value ="5"
onclick ="javascript:setInputCheck(this.name, this.checked) ;"
onkeypress ="javascript:setInputCheck(this.name, this.checked) ;"
checked ="checked" />
 < label for ="ylemkategooria_id_0_5" title ="C/A2a">C/A2a</ label >
 < br />
 </ div >
 </ div >
</ fieldset >

Listing 4. Rendering of sample XML fragment.

�������
��� �!��"���"���
���	��#��	�
����

xslt-req is used to give extensibility hints. xslt-req used together with XML Schema tells

style designer, which XML elements or attributes are allowed to change and whether the

styles should bother presenting the information given by these elements. Even though

having some of the message structure fixed brakes forward compatibility, it adds some

more semantics to the messages. That additional semantics can be used to render new

services or components not known at design time. This follows guideline 5.

32

����#��	�
����"���	�$����
������$�
%�����������&	$���

Default style is designed in a way it makes use of semantic information already present in

the incoming XML document. For example it uses the fact that the inner representation

XML is using mainly Estonian element names to detect possible lists of components. In

Estonian multiples generally have a letter ‘d’ at the end of the word (similarly English

words representing multiples have ‘s’ as the last letter). This knowledge can be used to

assume elements with names ending with ‘d’ are probably lists of items. This follows

guideline 5.

This kind of semantic information does not always give us the correct interpretation. Even

by improving the list detection by assuming certain attributes to be present on lists, might

cause misinterpretation. In fact, semantic detections are rarely always correct – even

humans may misinterpret the information. Fortunately, the misinterpretations are

detectable by manual verification and messages can be redesigned to be clearer to avoid

misinterpretation.

<!-- List container -->
<!-- Matches all elements ending with 'd' -->
<xsl:template name =" t_komponent_loend "
 match =" *[substring(name(.), string-length(name(.))) = 'd'] ">
 <xsl:param name =" konteiner " select =" . "/>
 <!-- Container block -->
 <div class =" kast ">
 <!-- Header -->
 <div class =" top ">
 <xsl:if test =" $konteiner/@nimi and string-length($konteiner/@nimi) >
0">
 <!-- Show help icon on the top right corner -->

 <xsl:call-template name =" abi ">
 <xsl:with-param name =" teema " select =" $konteiner/@nimi " />
 </ xsl:call-template >
 </ span >
 </ xsl:if >
 <!-- Display header texts -->

 <!-- List name -->
 <xsl:value-of select =" $konteiner/@nimi "/>
 <!-- Range of items shown and total items -->
 <xsl:if test =" $konteiner/@kokku ">
 <xsl:text > (</ xsl:text >
 <xsl:if test =" $konteiner/@esimene ">
 <xsl:value-of select =" $konteiner/@esimene "/>
 <xsl:text > - </ xsl:text >
 <xsl:value-of select =" $konteiner/@viimane "/>
 <xsl:text > / </ xsl:text >
 </ xsl:if >
 <xsl:value-of select =" $konteiner/@kokku "/>
 <xsl:text >) </ xsl:text >
 </ xsl:if >
 </ span >
 </ div >
 <!-- Display container items -->

33

 <div class =" sisu ">
 <xsl:apply-templates select =" $konteiner/* "/>
 </ div >
 <!-- Display navigation for next and previous page if p resent -->
 <div class =" top " align =" center ">
 <form action =" index.php?Otsing= " method =" post " class =" postbackform ">
 <input type =" hidden " name =" otsing_pide " value =" {$konteiner/@pide} "/>
 <xsl:if test =" ./@lk > 1 ">
 <a href =" index.php?Otsing=lk={$konteiner/@lk -
1}&otsing_pide={$konteiner/@pide} " title =" eelmine lk ">
 <img src =" graafika/silk013/icons/book_previous.png "
 alt =" eelmine lk " class =" ikoon "/>
 </ a>
 </ xsl:if >
 <xsl:text > | </ xsl:text >
 <xsl:if test =" ./@kokku > ./@viimane ">
 <a href =" index.php?Otsing=lk={$konteiner/@lk +
1}&otsing_pide={$konteiner/@pide} " title =" järgmine lk ">
 <img src =" graafika/silk013/icons/book_next.png " alt =" järgmine lk "
class =" ikoon "/>
 </ a>
 </ xsl:if >
 </ form >
 </ div >
 </ div >
</ xsl:template >
Listing 5. Template to generate listing of items using element names ending with 'd' to detect lists.

!����	
���"���#��	�	
�����
����������
����
�$�����������
�������

Templates are separated based on their usage. This means that templates handling similar

aspects are grouped together, just as templates used for presenting different subservices or

modules are separated. For example, custom controls used to present similar aspects are in

one file; module specific rendering is done using specialized stylesheet files. For example,

listing container template is in components stylesheet while application module specific

rendering of list items is done in application module stylesheet. This follows guideline 3.

#��
�����
�����
����"���
���	��#��	�
��	��������	
����"���"
	��	����

A new service was written to allow styles ask for more semantic information. The styles

could invoke the service using AJAX during rendering time or by using AJAX or any

other method to post a HTTP request. This follows guideline 6.

#��
�����"�������
���	��$�"������	����	���#�������	����

With the aim of making services individually addressable and subscribable, a new service

infrastructure was created. The new infrastructure uses service manager module to route

requests to the services requested. It also manages service requests between business layer

services. This reduces the network load as requests between business layer services are

handled internally opposed to making all requests uniformly through the network

interface. This infrastructure allows addressing of any services or subservices in the

34

solution following guideline 4. The service manager component also provides the service

level support for presentation layer by choosing the presentation templates according to

user preferences and client capabilities.

Furthermore, services to handle similar aspects in different modules were made available.

This follows guideline 3.

'�	����������	�����(����������
��

A mixed solution for graceful degrading of components was chosen. First, specific rules

are looked for, then semantic information about input is used to find templates. This kind

of behavior is achieved by adding priorities to templates. If there is still not enough

information to render the data, AJAX or ordinary HTTP request can be used to ask the

business logic layer for more information. If not enough information is available, default

action given by the request for more information is used. If the response does not give

default action, the element is ignored. The rendering process is described on figure 6. This

follows guidelines 5 and 6.

Figure 6. Graceful degrading of presentation layer components in VabaVaraVeeb.

35

. Graceful degrading of presentation layer components in VabaVaraVeeb.

36

2�������

The new design made it possible to use similar presentation for all modules in the solution

without the need to write specialized presentation layer code for each of these. Because the

data was internally stored in XML format, the components did not need much of rewriting

as much of the old XML structure could be used. It was expected benefit as the original

XML structure was used as the basis during designing new presentation layer.

Adding new components has also become simpler. If new components are internally

represented following the same pattern as old ones, they do not need any additional work

to update the presentation layer since the presentation layer knows how to handle the new

components using hints in the components representation. For more complex components,

an additional hinting subservice can be created. It is important to note that the subservice

can only be in hinting role, not presenting role, as the format of resulting output might be

unknown.

When users design their new styles, XML Schema and xslt-req defined base of messages

is used to verify their correctness. It does not grant perfect verification, but still automates

some of the verification used to be done manually. For example, verifying whether certain

values or elements are present or missing in the output can be automated. It is also

possible to use automatic verification to confirm that the new styles are extendable where

needed and specified by the XML Schema.

37

 	�
������
��

As seen from the example, forward compatible presentation layer requires significant

support from the other functionality layers. In fact, forward compatible presentation layer

requires the communication with business layer to be forward compatible as well. This, in

turn, benefits from service based architecture of business layer.

Even though creating forward compatible presentation layer requires more code to be

written in business logic layer to allow hinting or translating services, adding new

components requires less presentation layer code to be written. This can be extremely

useful if the number of services using similar interfaces is high. Well designed

presentation layer will be able to support large number of additional software features

before requiring any changes at all. The latter can be considered a benefit of service based

software.

The example followed all six proposed guidelines.

8�� ������������

In this thesis only forward compatible presentation layer is discussed. Presentation layer,

however, is one of many layers in modern software. Most of these would probably benefit

from forward compatibility. All these layers have their specific problems that need to be

addressed separately. Researching ways to make other software layers forward compatible

and how to effectively use these together, will be a potential course of future work.

On the other hand, the aim of allowing users design their own interfaces to be used with

software, can be pursued. This means improving automatic verification of user designed

interfaces and creating easy to use intuitive means of editing the styles. For example,

automatic verification can be improved by adding element and attribute name patterns

support to XML Schema and xslt-req.

38

�� 2�����
����

[1] World Wide Web Consortium , “XSL Transformations (XSLT),” [Online] 16

November 1999. [Cited: 24 June 2006.] http://www.w3.org/TR/xslt.

[2] S. Karus, "Kasutajate poolt loodud XSL teisendustele esitavate nõuete

spetsifitseerimine," Faculty Of Mathematics And Computer Science, University of Tartu.

Tartu, 2005. Bachelors Thesis.

[3] C. Armbruster, "DESIGN FOR EVOLUTION - An Internet White paper on Forward

Compatible Design," http://chrisarmbruster.com/. [Online] 1999. [Cited: June 22, 2006.]

Web Week '98 presentation (Long Branch, NJ).

http://chrisarmbruster.com/documents/D4E/witepapr.htm.

[4] M. Svahnberg and J. Bosch, "Evolution in software product lines: two cases,"

Journal of Software Maintenance: Research and Practice, Vol. 11, no. 6, pp. 391-422,

s.l. : John Wiley & Sons, Ltd., December 21, 1999. DOI: 10.1002/(SICI)1096-

908X(199911/12)11:6<391::AID-SMR199>3.0.CO;2-8.

[5] E. Christensen, F. Curbera, G. Meredith and S. Weerawarana, "Web Services

Description Language (WSDL) 1.1," World Wide Web Consortium. [Online] Ariba;

International Business Machines Corporation; Microsoft, March 15, 2001. [Cited: January

30, 2007.] http://www.w3.org/TR/wsdl.

[6] Microsoft Corporation, "Windows Controls," Microsoft Developers Network Library.

[Online] [Cited: September 24, 2006.]

http://msdn.microsoft.com/library/default.asp?url=/library/en-

us/shellcc/platform/commctls/common/common.asp.

[7] B. McKinney, "Famous Explorers and Common Controls," Hardcore Visual Basic.

Redmond : Microsoft Press, 1997. Available at: http://vb.mvps.org/hardcore/index.html.

[8] D. Howe, "Free On-line Dictionary of Computing," [Online] 1993. [Cited: September

24, 2006.] http://foldoc.org/.

[9] Sun Microsystems, Inc. "JavaBeans," Sun Developer Network. [Online] [Cited:

September 24, 2006.] http://java.sun.com/products/javabeans/index.jsp.

[10] Sun Microsystems, Inc, "JavaServer Pages Technology," Sun Developer Network .

[Online] Sun Microsystems, Inc. [Cited: 10 6, 2006.] http://java.sun.com/products/jsp/.

39

[11] V. DiBartolo, "FreeMarker: An open alternative to JSP," JavaWorld.com. [Online]

January 2001. [Cited: October 6, 2006.] http://www.javaworld.com/javaworld/jw-01-

2001/jw-0119-freemarker.html?.

[12] Microsoft Corporation, "Active Server Pages," MSDN Library . [Online] Microsoft

Corporation. [Cited: October 6, 2006.]

http://msdn.microsoft.com/library/default.asp?url=/library/en-

us/dnanchor/html/activeservpages.asp.

[13] Sun Microsystems, Inc. , "JavaServer Pages[tm] Technology - Comparison with

ASP," Sun Developer Network . [Online] Sun Microsystems, Inc. . [Cited: October 6,

2006.] http://java.sun.com/products/jsp/jsp-asp.html.

[14] Microsoft Corporation, "ASP.NET Master Pages ," MSDN Library. [Online]

Microsoft Corporation. [Cited: October 6, 2006.]

http://windowssdk.msdn.microsoft.com/en-gb/library/18sc7456.aspx.

[15] Microsoft Corporation, "ASP.NET Web Server Controls," MSDN Library. [Online]

Microsoft Corporation. [Cited: October 6, 2006.]

http://windowssdk.msdn.microsoft.com/en-gb/library/7698y1f0.aspx.

[16] Microsoft Corporation, "INFO: ASP.NET Code-Behind Model Overview,"

Microsoft Support Knowledge Base. [Online] February 23, 2007. [Cited: March 28, 2007.]

http://support.microsoft.com/kb/303247. Q303247.

[17] K. Bennett, P. Layzell, D. Budgen, P. Brereton, L. Macaulay and M. Munro,

"Service-Based Software: The Future for Flexible Software," Software Engineering

Conference, 2000. APSEC 2000. Proceedings. Seventh Asia-Pacific.Singapore : IEEE,

2000, pp. 214-221. Available at: http://www.bds.ie/Pdf/ServiceOriented1.pdf. ISBN: 0-

7695-0915-0; DOI: 10.1109/APSEC.2000.896702.

[18] H. Brunner, “Service-Based Architecture,” Best's Review, Vol. 104, no. 8, pp. 96-96,

December 2003. 1527-5914.

[19] M. Mullender and M. Burner, "Application Conceptual View," Microsoft

Developers Network Library. [Online] July 2002. [Cited: October 24, 2006.]

http://msdn2.microsoft.com/en-us/library/ms977997.aspx.

40

[20] M. Jeckle and E. Wilde, "Identical Principles, Higher Layers: Modeling Web

Services as Protocol Stack," XML Europe 2004.Amsterdam : s.n., 2004. Available at

http://dret.net/netdret/publications#wil04g.

[21] United Nations Economic Commission for Europe, "United Nations Directories for

Electronic Data Interchange for Administration, Commerce and Transport ," United

Nations Economic Commission for Europe. [Online] United Nations Economic

Commission for Europe. [Cited: March 31, 2007.]

http://www.unece.org/trade/untdid/welcome.htm.

[22] G. Kiczales, et al. “Aspect-Oriented Programming,” Proceedings European

Conference on Object-Oriented Programming. Vol. 1241.s.l. : Springer-Verlag, 1997, pp.

220-242.

41

�� 2��9����

Edasiühilduv veebiteenuste esituskiht

Magistritöö

Siim Karus

Töös uuritakse, kuidas luua edasiühilduvaid esituskihte veebiteenustele. Töö eesmärk on

luua juhised, mida järgides on võimalik luua edasiühilduvaid esituskihte. Töös kasutatakse

neid juhiseid, et luua uus esituskiht ning vaadeldakse uue esituskihi kasutamiselevõtuga

seotud probleeme ning kasutegureid.

Esimestes peatükkides kirjeldatakse edasiühilduvuse nõudeid ning vaadeldakse erinevaid

muutusi tarkvaras. Seejärel vaadeldakse esituskihi komponentide tüüpe.

Järgnevalt uuritakse levinud komponentide edasiühilduvust. Vaatluse all on nii

juhtelemendi taseme lahendused kui ka konteineri taseme lahendused. Tuuakse välja

seosed teenusbaseeruva tarkvaraarhitektuuri ja edasiühilduva arhitektuuri vahel.

Kasutades olemasolevate vahendite analüüsist saadud kogemusi kirjeldatakse nõuded

edasiühilduva esituskihi loomiseks ning pakutakse lahendusi probleemidele, millega

vaadeldud vahendid ei tegele. Lahendusi pakutakse kahele peamisele probleemile:

tulevikukindlate ja edasiühilduvate suhtlusprotokollide valik ning viisakas reageerimine

ootamatustele esituskihis.

Leitud lahenduste ja vajaduste põhjal tuuakse välja juhised edasiühilduva esituskihi

loomiseks. Uuritakse nende juhiste rakendamise automaatse kontrolli või rakendamise

võimalikkust ning tuuakse paralleele tooteliini arengu juhistega.

Väljapakutud juhiseid kasutatakse veebiteenusele uue esituskihi loomisel ning

vaadeldakse esituskihi uuendamise tulemusi.

Uurimuse tulemuseks on juhised edasiühilduvate kasutajaliideste loomiseks. Juhiste

hindamise eesmärgil on neid järgides loodud uus esituskiht olemasolevale veebiteenusele.

42

�� � �
��#�

� 2������
�� ������
�
��� ��������� ��3������
��� �
�� ���������

�*������
�

� �����������	

�
�

�
��
�
�
��

�
�
�
��
�

�
�

�
��
�
�
��

��
�
��
�
�
�
�
�
�

�
�

��
�
��
��
�
�
��
��

�
�
��
�
�

�
��
�
�
�
��

�
�
�
�
�
��

�
�

�
�
��
��
�

�
�

��
��
�
��
��
��
�
��

��
�
��
�
�
�

�
�
�
��
��

�
��
��
�
�
��

!
�
�
"
#
�
$

#
%

�
&
#
'�

�
�#
�

�����
��
����
���
�������
����
 � � � � � �

����������
��
�������
����
���(��������
 � � � � � �

��

���������
 � � � � � �

�(��)��
���������
 � � � � � �

��������
���������
 � � � � � �

�����
��
���������
 � � � � � �

��

��������
���
���
����������
 � � � � � �

�(��)��
��������
���
���
����������
 � � � � � �

��

�����
��*
��������������
 � � � � � �

�(��)��
�����
��*
��������������
 � � � � � �

���������
�������������
��
�����
��*
��������������
 � � � � � �

���������
�����
��*
�������������
 � � � � � �

������)
��
��������
���������
 � � � � � �

'�)���� ���	
���	������
	��� �����������	������
	��� ��������
	���

Table 1. Relations between new software requirements and software evolution

43

� 	������#�������� ����
��.�*����� �������

// Checks all inputs with given name
function setInputCheck(name, check)
{
 inputs = document.getElementsByName(name);
 for (i = 0; i < inputs.length; i++)
 {
 inputs.item(i).checked = check;
 }
}
// Finds the next element el-s sibling element with name name
function findNextElementByTagName(el, name)
{
 if (el == null)
 {
 return null ;
 }
 var a = el.nextSibling;
 while (a != null)
 {
 if (a.nodeType == 1 && a.tagName.toLowerCase() == name)
 {
 return a;
 }
 a = a.nextSibling;
 }
 return null ;
}
// Finds the previous element el-s sibling element with name name
function findPrevElementByTagName(el, name)
{
 if (el == null)
 {
 return null ;
 }
 var a = el.previousSibling;
 while (a != null)
 {
 if (a.nodeType == 1 && a.tagName.toLowerCase() == name)
 {
 return a;
 }
 a = a.previousSibling;
 }
 return null ;
}
// Cheanges subtree visibility
function changeSubTreeVisibility(image)
{
 var subtree = findNextElementByTagName(image, "div");
 if (subtree == null)
 {
 return ;
 }
 if (subtree.className == "subtree")
 {
 subtree.className = "subtreehidden" ;
 if (image.nodeName.toLowerCase() == "img")
 {
 image.src = "graafika/silk013/icons/bullet_toggle_plus.png" ;
 image.alt = "Näita alampuud" ;
 }
 }
 else if (subtree.className == "subtreehidden")
 {
 subtree.className = "subtree" ;

44

 if (image.nodeName.toLowerCase() == "img")
 {
 image.src = "graafika/silk013/icons/bullet_toggle_minus.png" ;
 image.alt = "Peida alampuu" ;
 }
 }
 else if (image.nodeName.toLowerCase() == "img")
 {
 image.src = "graafika/silk013/icons/bullet_white.png" ;
 }
}
// hides subtrees that have no nodes checked
function hideSubtrees()
{
 var divs = document.getElementsByTagName("div");
 for (i = 0; i < divs.length; i++)
 {
 if (divs.item(i).className == "tree")
 {
 hideSubtree(divs.item(i).firstChild);
 }
 }
}
// hides of el subtrees that have no subtrees check ed
function hideSubtree(el)
{
 var a = el.firstChild;
 var img = null ;
 var bHide = true ;
 while (a != null)
 {
 if (a.nodeType == 1)
 {
 if (a.tagName.toLowerCase() == "img")
 {
 img = a;
 }
 else if (a.tagName.toLowerCase() == "input" && a.type == "checkbox" &&
a.checked)
 {
 bHide = false ;
 }
 else if (a.tagName.toLowerCase() == "div" && a.className == "subtree")
 {
 if (!hideSubtree(a))
 {
 bHide = false ;
 }
 else if (img != null)
 {
 changeSubTreeVisibility(img);
 }
 img = null ;
 }
 }
 a = a.nextSibling;
 }
 return bHide;
}
// called when page is loaded
function onLoad()
{
 hideSubtrees();
}

Listing 6. JavaScript code supporting chekbox tree sample.

 �

45

� 5��������

Service

An abstract resource that represents a

capability of performing tasks that form a

coherent functionality from the point of

view of providers’ entities and requesters’

entities.

Teenus

Abstraktne ressurss võimega täita

pakkujate ja nõudjate jaoks funktsionaalse

terviku moodustavaid ülesandeid.

Web service

Software service made available over the

World Wide Web.

Veebiteenus

Ülemaailmse võrgu vahendusel kasutatav

tarkvaraline teenus.

Forward compatibility

An applications preparedness to

changing environment and adoption of

technologies.

Edasiühilduvus

Rakenduse valmidus keskkonna muutus-

teks ja uute tehnoloogiate kasutusele-

võtuks.

Extensibility

An applications capability to be extended.�

Laiendatavus

Rakenduse laiendamise võimalikkus.

Abstraction�

Withdrawal or separation of components.�

Abstraktsioon, üldistus

Osiste eraldamine või mitte arvestamine.

n-tier application

An application that can be functionally

separated into n abstract layers.

n-kihiline rakendus

Rakendus, mida saab jaotada n

abstraktseks funktsionaalseks kihiks.

Componentization

Separation of an application into

separate executable components.

Komponentideks jaotamine

Rakenduse eraldiseisvateks täidetavateks

komponentideks jaotamine.

46

Future proof design�

Solutions design where the solution can be

used with future technologies without

having to make any changes to the

solution itself.�

Tulevikukindel arhitektuur

Arhitektuur, mida saab muutmata kujul

kasutada uute tehnoloogiatega.

Web Services

The programmatic interfaces used for

application to application communi-

cations over the World Wide Web.

Web Services

Programsed liidesed, mida kasutatakse

rakendustevahelisel suhtlemisel ülemaa-

ilmses võrgus.

Control

The complete apparatus used to control

a mechanism or machine in operation.

Juhtelement

Seade mehhanismi või masina töö

juhtimiseks.

Container

Any object that can be used to hold

things.

Konteiner

Mistahes objekt, mida saab kasutada asjade

hoidmiseks.

Widget

A combination of a graphic symbol

and some program code to perform a

specific function.

Vidin

Graafilise sümboli ja programmikoodi

kombinatsioon kindla funktsiooni

teostamiseks.

Template

A gauge, pattern, or mold, commonly a

thin plate or board, used as a guide to

the form of the work to be executed.

Mall

Näidik, muster või valuvorm, mis esitab

täitmisele võetava töö struktuuri.

Graceful degradation

Easy, elegant lowering of the rank.

Sujuv mandumine (pehme degradeerumine)

Lihtne ja elegantne tähtsuse vähendamine.

