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Parallel and Cloud-Native Secure Multi-Party Computation

Abstract:

Secure multi-party computation (MPC) enables analysis based on sensitive data from
multiple data owners, applying distributed cryptographic protocols to ensure privacy.
Such protocols introduce distinct communication requirements, causing the computa-
tion to run significantly longer than its counterpart, conventional computing. General
MPC frameworks are available that make it simple to develop such privacy-preserving
applications, but running said applications assumes multiple non-colluding computing
parties that host the protocol runtimes, having rigorously set up the required infrastruc-
ture. Utilising cloud resources for this occasion is a good alternative to on-premises
deployments. First, it allows for a larger degree of automation in the infrastructure
set-up. Secondly, cloud datacenters enjoy superior network characteristics, detrimental
for MPC performance, and offer elastic compute resources at competitive price models.
This thesis presents a cloud-native deployment of the SHAREMIND MPC framework on
Kubernetes. It further proposes methods for parallel programming, with which MPC
applications could be scaled over clusters. Familiar programming models, MapReduce
and bulk-synchronous parallel, are adapted to MPC, and benchmarked in commodity
clouds, showing near-linear speedup.

Keywords: secure multi-party computation, parallel computation, cloud-native applica-
tions

CERCS: P170 Computer science, numerical analysis, systems, control

Paralleelne ja pilvepohine turvaline iithisarvutus

Lithikokkuvote:

Turvaline ithisarvutus (MPC) vdimaldab andmeanaliilisi mitme osapoole salajastel si-
senditel, rakendades hajusaid kriiptograafilisi protokolle sidilitamaks andmete privaatsus.
Erinevalt konventsionaalsest arvutusest vajavad taolised protokollid oma t66 voimalda-
miseks pidevat protsessidevahelist suhtlust. Uldotstarbelised MPC raamistikud tagavad
programmeerijale hdlpsa viisi privaatsust sdilitavate rakenduste loomiseks, kuid rakendus-
te endi jooksutamine eeldab mitme sdltmatu osapoole olemasolu, kes juurutaks vastava
protokolli kditamise jaoks tarviliku taristu. Rakendades pilvteenuseid, on véimalik juuru-
tamist automatiseerida enam, kui tundmatu vorgu ja riistvaraga keskkondades. Lisaks
on pilve andmekeskustel MPC joudlusele esmatihtis kiire vorguithendus ning voimalus
maksta vaid kasutatud resursside eest. See td0 sisaldab arhitektuuri SHAREMIND MPC
pilvepdhiseks juurutuseks Kubernetese klastritel. Lisaks esitatakse viisid paralleelse-
tele MPC rakenduste loomiseks, mis neid kiirendaks, jaotades arvutused iile klastri.
Implementeeritakse MapReduce ja bulk-synchronous parallel paradigmadel pShinevad
rakendused, nditamaks nendega pea lineaarset kiirendust.

Votmesonad: turvaline ithisarvutus, paralleelarvutused, pilvepdhised rakendused
CERCS: P170 Arvutiteadus, arvutusmeetodid, siisteemid, juhtimine (automaatjuhtimis-
teooria)
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1 Introduction

How we process data depends on its characteristics. It would not be wise to operate on
large scale data sets without careful planning to minimise cost and time. In this specific
case, the techniques of big data optimise the means to extract useful information from
huge pools of plain data within reasonable time, often employing parallel processing. For
big data and in general, much of today’s processing needs are covered by cloud providers,
however data protected under policy or legislation often calls for on-premises computing.
It is rightfully so, as the good faith and security of the providers is difficult to verify.

Data is an impactful asset that holds power over the success and well-being of busi-
nesses and individuals. Hence the need to protect delicate information from competitors
or people with ill intent. This characteristic may impose a variety of restrictions on data
usage to preserve privacy. Secure multi-party computation (MPC) presents a solution to
private data processing. It involves cryptographic protocols and multiple non-colluding
computing parties to securely operate on values without learning their actual content.
For example, MPC schemes based on secret sharing do it by splitting cleartext inputs
into seemingly random shares which can be operated with if all share holders simulta-
neously take part in the protocol, and recombined to reveal their true value. MPC can
mean privacy preserving computation offloading to potentially devious parties, but also
analysing private inputs of multiple data owners.

The cryptographic backbone of MPC does not come without significant cost in com-
plexity and performance. Comparing MPC to conventional computing, one of the main
differences is its distinct communication requirement. Certain operations, like checking
the equality of two shared values, may require multiple rounds of communication per
invocation between computing parties. The consequent blow-up in algorithm running
time is attributed to why deployments of MPC in practice are few and far between.

MPC has found little adoption in large-scale enterprise applications. One reason
for this can be speculated to be the absence of commercial offerings that support an
enterprise deployment model, which in turn may be due to underwhelming demon-
strated performance. So far, available general-purpose MPC frameworks can mostly be
characterized as academic prototypes or platforms for cryptographers to evaluate new
protocols on. Nevertheless, as the state-of-the-art in MPC gradually advances, the need
for a platform feasible for today’s enterprise landscape becomes more apparent. Such a
platform should manifest cloud nativity along with making use of the elastic nature of
cloud infrastructure.

With respect to these two issues, this thesis provides the following contributions:

1. Architecture and implementation for reproducible cloud deployment of MPC.
The devised solution follows the current industry incline towards cloud-native
technologies and presents a working prototype for automated deployment of the
SHAREMIND MPC framework on Kubernetes clusters.



2. Employ the elasticity enjoyed from contribution 1 to horizontally scale MPC
in effort to speed up execution of privacy-preserving data analysis. Proposed
parallel programming models for MapReduce and bulk-synchronous parallel are
demonstrated to exploit the new environment, following up with benchmarks of
example applications on tabular and graph-based data respectively.

The ensuing work is laid out as follows. Chapter 2 provides an introduction to the
concepts relevant for this work. Chapter 3 explores and reasons about the work of other
authors that is akin. In chapter 4, a high level overview is given of the requirements
for the planned deployment and parallel MPC programs. The architecture’s design,
implementation details, and evaluation are detailed in chapter 5. The final conclusion
and suggestions for future work are presented in chapter 6.



2 Preliminaries

This section outlines the background of concepts that support the practical area of this
thesis. Section 2.1 introduces foundations of MPC along with the SHAREMIND MPC
framework which is the MPC backend of choice for this work. In section 2.2, the focus
is on explaining general parallel programming paradigms and the motivation of their
usage with MPC. Finally, the latest practices and concepts of cloud-native applications
are given an overview in section 2.3.

2.1 Secure Multi-Party Computation

Secure multi-party computation is a cryptographic problem described by Yao [37] for
computing on secret inputs of multiple participants. In it, n parties come together to
jointly compute a known function f on their private inputs x4, . . ., x, to find the output

Y1y -5 Yn.
(Y1, -y Yn) = fx1,. .., 20)

In the process, a party learns nothing about the inputs of its neighbours and only the
output they are supposed to receive. The function f captures the functionality that is
required of the private computation, which is generally such that all output values are
dependent on all inputs. Given this, mutually distrusting participants are able to extract
useful (aggregated) information from each other’s knowledge while avoiding leakage.

The formal definition distinctly specifies n > 2 mutually distrusting parties that
take the roles of input provider, computing party, and output receiver simultaneously.
The author uses the millionaires’ problem to illustrate such a scenario — two individuals
who are adamant in hiding their net worth from each other want to know which one of
them is richer; they engage in MPC, each inputting their cumulative wealth, calculating
the comparison in private, and receiving the result [37]. It is accepted that practical
MPC deployments models can vary in attributing those roles in different manners for
supporting a wider range of business cases [21]. For example, input parties may be
different from the parties receiving results, as was the case with a study by Bogdanov, et
al [12], in which separate government institutions acting as data owners and computation
parties aggregated their records to be output to the statistics bureau interested in the
outcome. In addition, decoupling input parties from computation allows for relieving
computational load from clients. Such a scenario was exercised by the Danish sugar beet
auction [13], where MPC was used to process private bids in remote servers.

MPC relies on specific cryptographic protocols for computing f in which all par-
ticipants engage in. In essence of a general MPC protocol, parties can be thought to
hold encrypted representations of values they operate on. During the execution they
may engage in protocol communication over network channels they have established
between each other to securely evaluate the necessary expressions. Most prominent



general purpose MPC protocol implementations are based on the garbled circuits or
secret sharing techniques.

The garbled circuits technique as originally proposed by Yao [37] is a two-party
asymmetric protocol for computing the result of a binary circuit encoding of f. Asym-
metry is due to one party taking the role of the circuit garbler and the other being the
evaluator. The garbler’s task is to encrypt the truth tables of each of the circuit’s gates and
provide keys in such a manner that allows the evaluator to decrypt subsequent gate keys
one by one, learning the result at the final output layer. Both parties can input values
to the circuit — in the case of garbler-side values, the seemingly random starting keys
corresponding to O or 1 are provided to the evaluator, while the evaluator obtains keys of
their own inputs using an oblivious transfer protocol. Oblivious transfer is a construction
which in this scenario allows the evaluator to query one of the two keys without revealing
the corresponding bit. Garbled circuits is an attractive method for two-party computation
which can represent any kind of computation, as it requires only a few communication
rounds, however it can result in huge circuits, which are cumbersome to transfer over a
network [6].

2.1.1 Secret Sharing

Secret sharing is another general primitive used as a building block for MPC protocols.
Originally proposed by Shamir [31], the idea of a (k, n)-threshold sharing scheme was
to split an element v € Z,, into shares vy, . . . , v, to distribute among n parties so that

g(z)=v+ax+... +ap_12"!

and v; = ¢(i), where the coefficients of ¢ are chosen uniformly at random. The shares
can be reconstructed to v by at least k parties by first discovering the secret polynomial
using Lagrange interpolation and evaluating it on ¢(0) = v. Since interpolation of a k& — 1
degree polynomial only works if & different evaluations are known, then it holds that at
least the threshold of % parties have to come together to reveal it.

The feasibility of Shamir’s secret sharing for MPC in terms of operations on the values
is shown by Cramer, et al. [16]. The scheme conveniently supports linear operations
to be calculated locally — adding and subtracting shares with constants or other shares
requires no communication due to the properties of polynomials. Multiplication of two
shares requires communication however, and can be accomplished as described by the
authors.

A simpler method for secret sharing, although losing the threshold property, is to
construct the shares to add up to v, called additive sharing. Further material will use the
notation [v] to represent an additively shared value, in addition v, is the corresponding
additive share known by party P;. The construction of secret shares of a value v € Z,,
known to an input party is created by generating uniformly random values 4, ... 7,1 €



Zyy, 10 act as the shares for the first n — 1 parties, and calculating the last share as
Tp=U—T1—...—Tp_1 mmod m.

Share r; can then be distributed to PP; and reconstruction of v can only occur when all n
parties collaborate. In fact, no coalition of parties of size less than n can infer anything
about v since the values are chosen randomly and the derivation takes place in a ring.
Linear operations are still free in terms of communication, meaning that they can be
calculated locally by parties.

Algorithm 1: SHAREMIND protocol for secure multiplication [9]
Input: Parties P;,,,Ps hold [u] and [v]
Result: Parties P;,P,,P3 hold [w], the product of [u] and [v]

1 [u]’ < Reshare([u])

2 [v]’ + Reshare([v])

3 foreach i, j € {(1,2),(2,3),(3,1)} do

4 L send u;, v} to Pj; // Done by P;
s foreach i, j € {(1,3),(2,1),(3,2)} do
6 L w; = wv; + w4 uGugs // Done by P;

7 [w] + Reshare([w]")

Procedure Reshare([v])

Input: Additively shared value [v].
Result: New additively shared value [v]’, with new random v] such that
DV =v
1 foreach i, j € {(1,2),(2,3),(3,1)} do

2 Tij ﬁ Liom // Done by P;
3 | sendrtoP;; // Done by P;
4 foreach i, j k € {(1,2,3),(2,3,1),(3,1,2)} do

5 LUZ{%Uri"f’i;’—’f’m; // Done by P;
6 return [v]’

The latter secret sharing scheme is used in the main three-party protocol of the
SHAREMIND MPC framework. Communication requirements can be exemplified using
its shared value multiplication procedure as shown in algorithm 1 [9]. Transmissions
that do not have data dependencies can be batched together to optimise communication
rounds. A single n-bit integer multiplication can be boiled down to a single round of



communication of 15n bits [9]. In the additive scheme there are other operations that
require even more communication, for example division, checking equality, inequalities,
and bitwise operations on shared values.

2.1.2 SHAREMIND MPC

SHAREMIND MPC (hereinafter called SHAREMIND for brevity) is a framework for
doing secure data analysis and storage with MPC [8]. The framework comprises an
extensive set of facilities for developing and running MPC applications. This includes the
SECREC 2 domain-specific language (DSL) and compiler for writing programs, server
runtime for the computation, and client libraries for interacting with the servers. In this
thesis, components of the SHAREMIND framework are used and built around to develop
a system capable of scalable parallel computation.

SECREC is an imperative C-style language for developing privacy preserving data
analysis applications [30]. Its standard library and programming facilities aim to make
it straight forward to implement various business logic while not requiring extensive
cryptographic prowess. Abstractions enable programmers to make distinctions between
public information and data supposed to be kept secret. During the analysis task, they
may for example choose to declassify some intermediate values to the parties to use them
as control flow conditions, or publish end results to the client without the server ever
learning the data in clear.

The SECREC language heavily relies on vectorised operations to facilitate perfor-
mance optimizations, most prominently Single-Instruction Multiple-Data (SIMD) to
batch together communication rounds that would have otherwise been executed one
after another [30]. Early benchmarks show a four orders of magnitude increase in the
multiplication and equality operations per second over using loops [9]. Therefore it is
the programmers responsibility to employ this practice, otherwise their program will be
heavily bottlenecked by synchronous back-and-forth protocol communication, the speed
of which is dependent on the latency between parties.

The framework is modular in the types of protocols it supports — these are called
protection domains within SHAREMIND. This work considers the SHARED3P protection
domain, a protocol set for additively shared three-party computation with passive security,
because it is the most mature and fully featured of the existing ones. Passive security
means that the protocol does not protect against an active adversary — a corrupted party
that works unfaithfully against the protocol by sending falsified data to its peers or alike.
Nonetheless, the party is not able to infer any useful information about the private values
by itself, due to additive secret sharing.

The SHARED3P protocol requires a set of three SHAREMIND servers to perform the
computation on behalf of the client(s). The server instances run within the infrastructure
of the logical party which exposes a public port, enabling incoming protocol communi-
cation from peers. Servers are configured to authenticate the neighbouring SHARED3P



parties with mutual TLS and encrypt all following communication, with the public key
of the recipient, with keys and network endpoints exchanged securely beforehand. On
start-up, servers will seek to establish a connection with their protocol counterparts and
will serve client’s requests as long as all peers are responding. For clarity, in this thesis a
single interconnected set of three sharemind servers is referred to as a 3-clique or clique.
Clients are persons or programs with authorization to invoke a specific computation,
upload, or retrieve (private) data from the servers. A client may be one of the logical
parties or a separate entity, depending on the business case. Multi-party computation has
to be initiated concurrently in all of the clique’s servers, providing private arguments as
the data shares if required by the program. This process is automated by the provided
client libraries which can generate additive shares locally and negotiate processes with
the clique. Over the years, various client applications have been developed to fulfil
various requirements, including a CSV data uploader, statistical analysis tool Rmind, and
gateway libraries that intermediate HTTP communication from browser-based clients.

2.2 Parallel Programming Models

Motivation behind parallelisation of algorithms is the achievable speedup from allocating
more resources towards a single goal. The speedup of a parallel program is a performance
metric for measuring its improvement in running time, calculated as S = %, where
T is the time spent running in serial, and 7’ in parallel. Two kinds of speedup are
generally distinguished: relative and absolute speedup — relative speedup defines 1’s
as the time taken by the same parallel program running as a single process, while for
absolute speedup, T is taken as the running time of the best known serial algorithm
counterpart.

Classically, the doctrine for designing parallel algorithms is to maximise the amount
of useful CPU cycles per round of communication and synchronisation points. Network
communication is considered as a bottleneck that can be minimised, batched, or otherwise
optimised with clever parallel algorithm design.

In the case of MPC, we may find ourselves with a certain cryptographic protocol
that unavoidably requires frequent and synchronous communication between parties.
Despite the cryptographic community actively working on new protocols with improved
round efficiency, practice shows that they are always hindered by network bandwidth and
latency. This prompts viewing the network channel as a resource — parallel applications
distributed across several channels may combine bandwidth allowances of a single node
and run several protocols concurrently, resulting in less cumulative waiting and faster
completion.

There are no practical limitations to the kinds of parallel programming models that
could be adapted to MPC. A clique could be thought of as a regular processor or thread
running a task in a parallel program, only spanning over multiple parties. That is as
long as the program is deterministic, ensuring identical control flow and ordering of data

10
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Figure 1. A visual representation of bulk-synchronous parallel supersteps.

during execution. In practice, some programming models are more straightforward to
implement, depending on the MPC framework and its flexibility.

In this thesis, we will test our solution based on two parallel programming models:
bulk-synchronous parallel and MapReduce. Both models offer data-oriented parallelism
and support algorithms for graph and geometric data decomposition respectively. This
choice was made due to their simplicity and clear synchronisation barriers.

2.2.1 Bulk-Synchronous Parallel

Bulk-synchronous parallel (BSP), as described by Valiant [33], is an early attempt to
describe a model for a parallel computer, much like the von Neumann model is in the
sequential context. Contrary to the ubiquitous parallel random-access machine (PRAM)
concept, BSP does not share a global address space between processors but describes a
distinctive manner of communication and synchronisation.

The high-level operation of a BSP program is shown on figure 1. A set of processors
is given a task each to perform independently that within itself has no data dependencies.
The execution of the task, indicated on the figure as P, may take varying amounts of
time, so processors are synchronised by a global barrier until the last P finishes. During
this time, message exchange occurs between processors as defined by the task. The two
phases of computation and communication form a so-called superstep, several of which
may be run one after another to build useful parallel algorithms.

The BSP model’s global synchronisation and a clear separation of computation and
communication stages alleviate some key stumbling blocks of parallel programming:
deadlocks and race-conditions, which usually have to be mitigated by the program-
mer [27]. Conversely, load balancing task sizes between processors has a pivotal role in
the efficiency of algorithms implemented on BSP due to barriers.

The notion of chaining identical supersteps makes BSP a useful tool for iterative
algorithms. Particularly, big data graph processing systems exercising vertex-centric

11



computation are often built on the principles of BSP. Google’s Pregel [24], Apache’s
Giraph', Hama?, and Spark GraphX® are some examples of the kind of graph parallel
frameworks.

A vertex-centric (or think-like-a-vertex) programming model is computation from the
view of each individual vertex — its state and the messages it receives from neighbouring
vertices [27]. Each vertex is usually adorned with some local data and the targets of
its outgoing edges. A user-defined function (UDF) is invoked for each vertex, first
processing incoming messages from the previous iteration to update its state, then
emitting messages to other vertices. In practice, vertices may even alter the topology of
the graph by altering their outgoing edges and mark themselves as inactive to abstain
from further participation or to indicate completion of the iterative algorithm, making
the paradigm a powerful tool for certain tasks [24].

In the iterative lockstep nature of the BSP, the method of parallelisation is evident.
Vertices are partitioned among processors, with each processor responsible for handling
the computational needs of their subset of vertices — state of a vertex is kept in memory
throughout the whole run. Clever partitioning of the more connected components of the
graph can be seen as an optimisation to exploit locality of messages.

2.2.2 MapReduce

Google shared their success story with the MapReduce model originally in 2004 [17]. It
is described as a programmer friendly abstraction to large scale data processing inside a
cluster. The programmer’s responsibility is to provide implementations of at least two
functions:

* Map takes as input a single key-value pair {k, v}, emits zero or more key-value
pairs {k’, v'}. The goal of the map stage is to prepare raw data into key-value pairs
specific to the task.

* Reduce, reminiscent of FOLD from functional programming, takes as input a pair
of key and all of the emitted values with that key {%’, v/, ..., v} }, and outputs
{K",v"}. The goal of this function is to aggregate values into meaningful results.

This creates natural parallelisation of the map phase, which in turn should refine the raw
data into much smaller key-value pairs. Prior to the reduce phase, which is also executed
in parallel, keys &’ need to be sorted, grouped by key, and shuffled among the workers
such that each reduce worker receives the full set of values emitted under the same key.

In addition, MapReduce allows for some optional refinement functions to be specified
in the pipeline as they may be needed [17]. The first is the combiner function, which is

"https://giraph.apache.org
Zhttps://hama.apache.org
3https://spark.apache.org/docs/latest/graphx-programming-guide.html
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executed right after map within the same worker. Its general role is to act as an early
reducer, aggregating the {k, v} pairs that an individual worker has emitted — minimising
the amount of emitted values leaves less keys to transfer, sort and distribute, which can
become a bottleneck in the system otherwise. The second user-defined function is the
partitioner that can be used to specify the concrete reduce instance that must process a
given key. Left unimplemented, the default behaviour partitions the keys based on their
hash and the number of reducers equally. A custom partitioner can be used to manage
workload imbalances or to ensure systematic structure of outputs (eg. ordering).

While the API may seem primitive, the virtue of it lies in the supporting facilities
and orientedness towards commodity hardware. MapReduce is performant with big
data mainly due to its approach of moving the computation to the data in a distributed
setting, rather than the other way around. A prerequisite for this is a distributed filesystem
running alongside the workers, used for locally storing shards of inputs, results, and the
intermediate emissions. A master node, aware of the locations of input shards, may then
schedule map tasks on the workers enjoying data locality, and point reducers to retrieve
relevant intermediate data from other nodes. Visual reference of the whole MapReduce
pipeline is given in figure 2.

S — -
"""""" > master fC :
e ©®

node,

woder [} - mapy - S RN

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, r,
d — >
nodes [y —{ [ maps | —{7)  Freduce) | )
nodey BH nodeic)
(a)

Figure 2. Simplified MapReduce data and task pipeline [17]. (1) The master node
receives a job from a client. (2) Four map tasks are scheduled on four nodes. (3) A map
task takes its input shard from the distributed filesystem (a), runs the mapper, combiner,
and partitioner functions and writes the partitions to disk (b). (4) Map task reports back
the written partitions and where to find them. (5) Master schedules reduce tasks on
two nodes when all map tasks have finished. (6) Reduce starts by pulling its relevant
partitions from other nodes, merging and aggregating them by key, writing the results
back into the filesystem (c) in the end.

Comparing MapReduce with the BSP model, it can be noted that they share simi-

larities such as barriers between stages followed by an exchange of messages. Indeed,
Pace [29] has shown in his analysis that BSP can be modelled in MapReduce without
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any asymptotic penalties. He points out that the reverse may come with its hardships, as
an iterated MapReduce algorithm couldn’t access any other data that isn’t communicated
by the previous round. Generally, iterative algorithms in MapReduce is also frowned
upon, as intermediate and iteration results are frequently written to disk, as opposed to
the more efficient in-memory state keeping.

2.3 Cloud-Native Applications

Cloud computing is without a doubt the standard for Internet service deployments in
the foreseeable future. Various service models transfer management of resources, like
storage and networking, to the responsibility of the cloud provider [7]. This has proven
useful not only for streamlining deployment, but also optimising cost by only paying for
what is used. An appealing aspect of cloud computing is the seemingly endless resources
on demand, providing scaling opportunities with no upfront cost.

Multiple design patterns have been adopted for developing cloud applications with
scalability in mind [15]. Microservices and serverless computing are employed to split
traditional monolithic services into self-contained and independently scaling components,
responsible for a specific subtask. Coincidentally, microservices are central to a newer
concept called cloud-native applications. The term cloud-native has many interpretations,
but Kratzke’s and Quint’s survey on the subject defines cloud-native applications as
distributed, elastic and horizontal scalable systems of microservices with the amount
of stateful components kept to a minimum [20]. It goes further to specify that each
deployment unit (eg. microservice) exhibits cloud-focused design patterns and is operated
using a self-service platform.

Popularising this concept is the mission of the Cloud Native Computing Foundation
(CNCEF) [18]. It collates and promotes open-source projects — purpose specific compo-
nents that build on the ideology and aid adoption of cloud-native best practices. Virtues
that the CNCF seeks in its fostered projects include support for public, private, and
hybrid clouds and cloud vendor agnosticity, meaning that cloud-native infrastructures
should be easily deployed or migrated to any kind of environment.

The Kubernetes container management platform® is tightly associated with the CNCF,
and is central to many of its projects. A container management platform by itself can be
thought of as a middle ground between infrastructure- and platform-as-a-service cloud
deployment models. On one hand, it provides users the means to host containerised work-
loads on clusters without any assumptions for their inner workings. On the other hand, it
provides a vast API for common interfacing and administrative tasks generally offered
by PaaS, like scaling, load-balancing, storage, and stateful components among others.
The API itself is declarative, meaning that the Kubernetes control plane continuously

*https://kubernetes.io/

14


https://kubernetes.io/

tries to maintain a desired state of each cluster resource. The Helm® package manager is
a good example of managing complex Kubernetes deployments as sets of configuration
declarations, sharing similarities with Infrastructure-as-Code.

Shttps://helm.sh/
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3 Related Work

In this section we give an overview of relevant literature and previously made solutions.
First, in section 3.1, a recently open-sourced project that brings cloud-native MPC to
market is dissected. Following in sections 3.2 and 3.3 are previous efforts to marry
parallel programming with MPC using MapReduce and graph parallel algorithms respec-
tively. Finally, two solutions that have previously employed parallel programming with
SHAREMIND, and shown its effectiveness, are analysed in 3.4 and 3.5.

3.1 Carbyne Stack

In a recent effort to pioneer cloud-native MPC, engineers at Bosch Research have
launched its open-source platform named Carbyne Stack [14]. The project contributes
scaffolding and utility services to run two-party MPC effectively across two virtual cloud
providers acting as parties. The MP-SPDZ framework [19] is used internally as the MPC
protocol runtime, specifically its two-party protocol set.

The services are laid out as follows:

* Amphora service provides an interface to store and receive secret shared input
and output data. Data is kept in object storage (similar to Amazon’s S3) to be
consumed by the MPC program or client.

* Castor facilitates storage for correlated randomness — a necessity for the cho-
sen protocol to execute certain operations, like multiplication, efficiently. The
randomness is pre-generated by the client ahead of time.

* Ephemeral is the compute service itself, further split into three components:

— Ephemeral serverless fetches inputs from Amphora, correlated randomness
from Castor, and invokes MP-SPDZ on the requested MPC program. Imple-
mented as a serverless service, it is the entry point for the client to instantiate
the computation.

— Discovery service keeps track of the state of running computations and
coordinates the creation and teardown of inter-cluster networking.

— Network controller is defined as a custom Kubernetes operator, responsible
for monitoring the cluster for networking requests of Ephemeral instances. It
dynamically provisions service mesh routing for clique instances to commu-
nicate to its counterparts in the other cluster as per the instructions from the
discovery service.

Carbyne Stack provides valuable insight to architecting cloud native MPC deploy-
ments. Multi-party computation aligns well with the nature of serverless computing
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as long as intra-clique discovery and communication is made possible. Carbyne Stack
resolves this by networking parties with the aid of a discovery service and a multicluster
service mesh. A similar solution is implemented for this thesis.

Currently, the Carbyne Stack provides no access control for MPC programs or
for reading the secret shared data from Amphora, however the latter is planned to
be implemented®. For the former, to be practically viable, parties need to be able to
enforce which programs can run and process private inputs to prevent arbitrary scripts
from leaking information. Both are measures the SHAREMIND platform implements by
design [8].

The platform is not an effort to parallelise MPC computation, however it may be easily
adapted. This could mean writing an alternative client application, that invokes multiple
Ephemeral calls at once and synchronises the execution as per the task dependency graph
of the parallel MPC program. The cluster’s inner workings would continue working
in the same way as before, however due to the serverless function not being able to
retain state over multiple runs, the client may need to do more work keeping track of
the intermediate data and supply each clique with the object identifiers that contain their
next inputs.

3.2 MapReduce with secure multi-party computation

Volgusheyv, et al. dedicate a line of research towards practical means to enable secure
cross-organisation data analysis with MPC on big data volumes [34-36]. They make
the observation that no matter the cyptographic advancements, overhead of MPC is
still making it unviable for real-world data processing tasks. The authors propose an
intelligent analytics engine, interleaving local cleartext data processing in MapReduce
with consequently smaller MPC tasks. The principle of their Conclave engine is well
rounded: “do as little as possible and as much as necessary under MPC” [36:4].

Conclave is centred around its DSL and compiler, allowing the user to specify
relational queries in an environment where multiple parties hold the different relations.
Rather than employing an MPC framework directly, it formulates a task dependency
graph of the specified queries, detecting the steps that can be locally pre-processed and
reduced. The compiler pushes the so-called MPC frontier to a minimum, meaning that it
delegates any possible processing to the parties owning the data both before and after the
inevitable MPC region.

The cleartext processing tasks are executed in the PySpark implementation of MapRe-
duce, exploiting data-parallelism. Tasks left for secure computation will be generated

Shttps://github.com/carbynestack/amphora/blob/23fb76829bb366ce37fbdde482854be6f394c546/
amphora-service/README . md#authentication-and-authorization

7 Access control of MPC programs: https://docs.sharemind.cyber.ee/2022.03/installation/
release-notes#encrypted-computing-engine-4
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code in the MPC backend of choice, such as Obliv-C or SHAREMIND, while not com-
promising privacy guarantees. In reported metrics, the combination of MapReduce and
SHAREMIND shows convincing results — with their example queries, Conclave was able
to process a billion record relation in 20 minutes, whereas running the same example in
full in MPC could just finish a maximum of 10k records at 10 minutes.

Even though the MPC regions in the work are not run in parallel, there are takeaways
in the context of this thesis. First, it is important to note that MapReduce-like processing
pipelines also make sense within secure computation. This may be the case when the
details of the analysis are not yet known when the shares are collected, when the stored
shares are expected to be used for multiple different analyses, or simply when the devices
submitting shares are not suitable to handle heavy preprocessing. Secondly, the Conclave
system may benefit from the main outcome of this thesis, parallelising MPC in addition
to its already parallel cleartext processing.

3.3 Privacy-Preserving Graph-Parallel Computation

Efficient secure computation on graph-structured data is a coveted milestone due to
its possible applications in privacy-preserving machine learning and data mining [28].
Multiple approaches have been proposed in recent years to speed up graph processing in
MPC, utilising a variety of specialised protocols, parallelism, and general optimizations.

The GraphSC framework was devised by Nayak, et al. [28], exposing a vertex-centric
programming abstraction that is compiled and executed as a garbled circuit. Circuits are
generated such that their garbling and evaluating can be well parallelized — both parties
contribute n processors for the task, each acting as the garbler (party a) or evaluator (party
b) of a subcircuit. Secret shares representing the graph and its augmentations are kept in
shared memory of each party (one multi-core processor or a cluster, communicating via a
message passing interface), with the circuit dictating oblivious RAM operations (masking
of access patterns). With this method of creating circuits encoding Pregel-like GATHER,
SCATTER, and APPLY operations, the authors show a near linear speedup in relation to
the number of processors on implementations of PageRank, matrix factorization, and
histogram calculation.

Mazloom, et al. [25, 26] demonstrate two approaches similar to GraphSC for also
parallelising vertex-centric graph algorithms. In their first instalment [25], they introduce
the OblivGraph protocol: sharing the general construction of GraphSC, but with differen-
tial privacy instead of oblivious RAM access, relaxing the security to better efficiency.
With differential privacy, the structure of the graph is obscured with dummy edges and
oblivious shuffling of edges to hide the real structure of the graph. Followed up by the
second article [26], they move away from garbled circuits to propose a custom four-party
protocol exercising differential privacy. All in all, the final version performs a matrix
vectorisation 1872 times faster than GraphSC and 288 times faster than its predecessor,
OblivGraph.
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Anagreh, et al. [2-5] have pursued a more pragmatic avenue of efficient MPC graph
algorithms. They have proposed privacy-preserving algorithms for well-known graph
problems such as finding Minimum Spanning Trees [4], Single-Source Shortest Paths [3],
Single-Source Shortest Distances (SSSD) and All-Pairs Shortest Distance [2]. The
works target SHAREMIND and design the algorithms around vectorised operations to
deliver a type of low granularity communication parallelism that SIMD offers in the
framework. Authors present thorough benchmarks for their implementations, which
provides a reference for comparison for the vertex-centric SSSD also implemented in
this thesis on the vertex-centric model.

3.4 Tax Fraud Detection System Implementation

In 2014, a privacy preserving system based on SHAREMIND for automated anomaly
detection in value-added tax declarations was proposed to the Estonian Tax and Customs
Board (MTA) [10]. Employing MPC, the primary value proposition was to withhold
plain transaction data from the MTA, while still enabling discrepancy analysis of sale
and purchase transactions between local companies. The interest for this was sparked by
a law requiring companies to file their monthly transactions, but it was promptly vetoed
by the president as unconstitutional under the concern of privacy.

Non-colluding parties, envisioned hosting the computation, all had some interest in
the functioning of such a system. For one, MTA as the main stakeholder partakes in
the computation. So does the traders association, who represents the taxpayers in effort
to maintain privacy of their tax filings. Finally, the Information Systems and Registers
Centre, which reports to the Ministry of Justice, and is responsible for safety of critical
information systems in Estonia.

Among its requirements, the system had to perform analysis on a large number of
filed declarations within reasonable time. This influenced the system’s design process to
consider parallel processing. The structure of the system is as follows:

1. During the upload phase, companies upload their secret shares of fields in their
declaration forms to each of the MPC parties’ servers. The receiving end runs
a simple MPC upload program separating the sales’ and purchases’ amounts
and persists them, along with the identifiers of the associated parties, into secret
share databases. At this stage, parallelism is duly considered by distributing the
companies’ data between n aggregation queues.

2. The aggregation phase runs over n parallel cliques, with each clique processing
the data partition prepared for it in the previous phase. For each company, the
sum of its transaction totals with each partner is appended to a unified aggregation
results table.
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3. Aggregation finalisation phase pairs up the sales of one company to the purchases
from that company by each counterpart.

4. Final risk calculation phase runs a comparison of those pairs and outputs companies
with any significant deviations from the expected balance as deceitful.

It can be seen how the phases follow a MapReduce pipeline pattern. The upload
phase operates on individual declarations, much like the operation of the map stage of
MapReduce. Initial aggregation takes the role of the combiner, summing up the sale and
purchase totals of company pairs before passing them on. Final aggregation and risk
calculation make up the reduce phase — taking the partner pair as key and their balances
as values to then compare them. Even though the reduce stage in this case runs on a
single process, a modification would be possible to make it parallel as well. This could
be done by sorting and partitioning the keys so that each reduce instance gets a subset
and all the values belonging to them.

The initial paper [10] benchmarked the system in a local environment — three physical
machines connected by a 1 Gbit/s link and sub-millisecond latencies. Speedup, albeit
insignificant, is reported in the parallel phase even if all the processes communicate over
the same channel. The same system is revisited in a later report focusing on its cloud
deployment and further efficiency improvements [11]. There, 80 parallel SHAREMIND
cliques were split over four Amazon EC2 virtual machines per party. Although there are
no benchmarks for assessing the number of instances’ effect on the system performance,
which is why it is not immediately apparent as to how much parallel aggregation improves
execution time. Rather the work expresses the importance of communication between
cloud regions, showing dramatic increases in runtime and monetary cost as parties are
separated into different geographic regions. Results on the cluster do show improvements
when compared to the original article nonetheless, confirming the motivation of this
thesis of parallelising MPC programs.

Relevant to this thesis, the latter report expresses the need for further effort in bringing
MPC closer to cloud computing. This is justified with the cloud’s elasticity in terms
of resource provisioning, and no up-front costs as opposed to expensive on-premises
hardware. For this, authors note that automatic service provisioning tools need to be
developed to aid adoption and reduce the administrative know-how of future parties that
want to partake in some MPC application.

3.5 Anonymous Messaging Implementation

The second parallelisation effort of an application on the SHAREMIND platform has
been an MPC supported anonymous messaging service by Alexopoulos, et al. [1] named
MCMix. Its underlying protocol achieves anonymity with simulation-based security
guarantees against a global adversary. That is to say that any single entity in control
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of the network at each point of the protocol’s interaction with its components can not
learn any metadata of the occurring conversations other than that a specific client is
participating in the system.

The gist of the proposed functionality involves two sub-protocols that are executed at
regular intervals: dialling and conversation. Dialling allows an user to establish a random
rendezvouz point with the intended conversation partner and notify the recipient of the
request. The two users will then commence in exchanging short messages by submitting
them to be left on the set point as dead drops, which the next iteration of the conversation
program will securely pick up and deliver to the recipient. MPC programs for either of
the steps are constructed to hide the conversating partner pairs and their messages.

Benchmarking results of the protocols’ implementation on SHAREMIND show that the
system can accommodate even realistic amounts of concurrent users within reasonable
time. With a 1 Gbit/s bandwidth between each MPC party, the dialling and conversation
protocols exhibit near identical completion times, being able process 500k users in 300
seconds. With this in mind, the authors express their concern regarding performance of
just the conversation protocol, as it is the more latency critical component, to which they
propose a parallel approach. This was a non-trivial task as the messages of users had to
be partitioned over n cliques, however due to implementation details, the message had to
be able to reach an output index of some other clique. The ad hoc solution was to split
the conversation program into three sub-programs, in between which data is exchanged
among cliques. As a result of the parallelisation, the authors report a small overhead with
just two cliques, but project the speedup to allow for servicing significantly more clients
with four or more parallel instances.

Note, that the parallel conversation protocol could be depicted as a BSP program.
Three distinct sub-programs of it are run in parallel and synchronised for message
exchange, effectively forming three supersteps. After it has run, a new iteration will
begin; reading in the new diallings and incoming messages.

Internally, synchronisation and intermediate data exchange was coordinated by a cus-
tom controller application working as a gateway in front of each SHAREMIND instance®.
From a client’s perspective, an application specific controller allows for transparent
execution of multiple pipelined MPC tasks. This execution model is considered, but not
necessarily reused for the practical solution of this thesis as will be discussed shortly.

8https://github.com/druid/memix-benchmark
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4 High Level Requirements

In this section we address the requirements for components in the parallel MPC frame-
work. Starting by introducing relevant assumptions for the underlying MPC platform to
better understand the system incorporating it. The assumptions are based on SHAREMIND
MPC, as it is the chosen framework for this thesis. Then we lay out how parallelism is to
be achieved and how it should be orchestrated. Finally, we detail the specifics of running
MPC in a cluster.

4.1 Assumptions

General purpose MPC systems like SHAREMIND execute special programs containing
business logic written by the programmer as some privacy-preserving computation task.
The program defines the sequence of instructions as usual, but makes a distinction
between public and private values. Public being the variables for which the values are
known to the computation party in clear, used to determine the control flow or support the
algorithm in other ways. Private values are protected from the view of individual parties
with cryptographic means — the procedure for operating on these values is specified by
the protocol they adhere to. Protocols may need the parties to engage in communication
to compute on the values and it is expected that in practice, network constraints quickly
become the bottleneck of performance. As the program’s code is ready for deployment,
each party should examine it for any privacy-compromising logic, compile it, and upload
it to their system for it to be accessed and executed by the servers when called.

We view MPC as following a client-server model of operation, in which there are
multiple servers making up the clique. In order to start a multi-party computation, the
servers need to have previously established communication channels and be listening for
incoming tasks. The client orders the execution of a program by its name from each of
the computing parties simultaneously, providing public and private inputs to each party,
and receiving published results at its completion. Computation is a non-interruptible
process that happens in unison within a clique — sharing the same control-flow to not fall
out of sync w.r.t. the computation on private values.

Some network configuration is expected to enable the communication of the com-
ponents. Intra-clique networking depends on all servers being able to reach their coun-
terparts over TCP/IP. Due to the non-collusion of parties, the protocol, in most cases,
operates over the public Internet, meaning that the corresponding routing and firewall
entries have to be in place. The same applies for client-clique interaction, which in case
of SHAREMIND utilises the same endpoint on servers.

For decomposing tasks, we make the assumption that a task can feed intermediate
data to subsequent tasks. This can be approached in multiple ways, but at the very
least the MPC framework has to be capable of holding state outside of a single task’s
lifecycle. In the case of SHAREMIND, persisting secret shares and public values between
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program invocations within the cluster is possible — e.g. supporting use case models
such as analysis of multiple data owners’ inputs or running different queries on the same
data would not be possible otherwise. The current implementation accomplishes this
by exposing two different interfaces for storage of secret-shared values: storing tabular
data in the HDF5 format on the filesystem or in-memory key-value stores backed by
Redis. Either is a fit for carrying over specific data to subsequent stages. Using disk
based storage to communicate intermediate data should not affect the performance of the
overall task, as the intra-clique protocol communication remains as the dominant source
of overhead.

Although not extensively explored in this thesis, the authentication, authorization,
and access control for programs and data is important to note nonetheless. Control over
the pre approved programs that the clique supports is handled as mentioned in the first
paragraph, meaning that clients can not run arbitrary computation. All parties have to
agree on the clients and their public keys that are given authorization to execute certain
MPC programs, and additionally, which potentially private databases the programs
executed by them can read or modify. This is to deter clients in a multiple role scenario
that are not acting in good faith from trying to declassify information not meant for them.

4.2 Parallelisation

Several alterations to a regular MPC workflow and deployment model have to be made
when considering a parallelism-offering system. This involves establishing requirements
regarding how parallel regions are defined, client’s interaction with the parallel system,
and gathering-scattering of intermediate data.

In this work, the execution model and protocols of the MPC platform are to remain
untouched. Rather, parallelism is approached in a similar fashion to the previous work
by Alexopoulos, et. al [1] and Bogdanov, et. al [10]. The measure of granularity is
determined by a single MPC program — this can be a program that is expected to be run as
a data-parallel region, contributing a section of a larger privacy preserving computation
task, henceforth called a sub-task.

Having multiple MPC servers per party presents the issue that a client program’
would need to keep track of each individual instance by their public network address,
authenticate to each one separately, maintain multiple open connections, and synchronise
the execution of the sub-tasks. This kind of client-clique communication was used in
the tax fraud detection prototype [11] as illustrated on figure 3a, but is undesirable in
our case as it limits exploiting some elasticity properties further discussed in section 4.3.
Two alternative approaches could be considered: either employ serverless (FaaS) method-
ologies to run MPC servers on demand (similar to Carbyne Stack [14] as shown on

9Here and onwards, the application that communicates with the MPC system is referred to as just a
client — not to be confused with a person interacting with the system.
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FaaS API
gateway

(a) Tax fraud detection impl.

(b) MCMix impl. (c) CarbyneStack impl.

(d) Proposed solution

Figure 3. Different methods for clients to address parallel MPC cliques: solutions from
previous work and the planned architecture.

figure 3c), or develop a single point of entry, in the form of a gateway, to the cluster (as
was implemented in MCMix [1], figure 3b). To minimise development costs, the latter
option is preferred.

Such a gateway relieves some burden on the client. First it hides individual MPC
servers from the client — this is good as a co-located service can have a better overview
of the health of the servers and can route requests locally, along with requiring just a
single authentication from the client. Secondly, it provides a synchronisation point for
parallel regions of tasks. As can be seen by comparing figures 3b and 3d, the difference
with the MCMix solution is the 1-to-n as opposed to n-to-n relation between cliques and
gateways. This additional complexity of multiple gateways is able to be left out without
sacrificing any of the functionality.

The gateway application should not be specific to the parallel algorithm for minimis-
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ing the amount of custom components, i.e the gateway does not execute sub-tasks or
scatter data among cliques on its own initiative. Ideally, only the MPC program and client
should be aware of the task and its composing sub-tasks. This shifts keeping track of
the execution flow to the client, but in turn offers more flexibility and saves deployment
effort for different parallel models. Parallel regions must be accommodated by prior
provisioning of as many parallel cliques as the computation requires. The degree of
parallelism of a sub-task is to be decided by the client and passed along as an argument
of the process negotiation to each party’s gateway.

The client should not mediate data in between parallel regions, instead a distributed
storage solution should be used for communication of intermediate shares or public
values between one party’s cliques. This is to save bandwidth and minimise data transfer
time, but also support MPC use cases where the client initiating the computation should
not be able to learn the data being analysed. An alternative to the storage based solution
would be to delegate the transport of communicated values to the gateways. This was the
approach of MCMicx [1], in which all intermediate values were sent back as computation
results to a task specific gateway so that they could be gathered and given to the following
sub-task as arguments. As discussed earlier, a general parallel gateway implementation
is preferred to one that is purpose-made to handle a specific application. Choosing the
proposed solution also comes with an accompanying benefit, that of failure tolerance in
multiple-stage tasks — if a sub-task fails, then it can be restarted without data loss, as the
communicated values from the preceding sub-task are persisted on disk.

The gateway has to allow the client to invoke parallel MPC sub-tasks with inputs and
receive outputs when applicable. An exception of passing input to sub-tasks can be meta-
arguments. As the MPC programs have to be written in consideration of their parallel
environment, it may need to know from which files or index ranges to consume data
from, and how to prepare its intermediate results for the next sub-task. Good examples of
this are data-parallel algorithms and the gather-scatter behaviour of the message-passing
paradigm. Parallel regions spawned to handle a partition of a large input dataset have to
know at minimum their index and the amount of siblings in the parallel region.

To reiterate,

1. data owner(s) upload their dataset(s) to the clusters;

2. aclient orders the execution of a sub-task from the gateway, specifying the degree
of parallelism n;

3. the gateway delegates the order to its servers, supplementing their arguments with
the unique instance’s index i € {0,...,n — 1} that the program uses to select the
partition of data to process (in the case of a data-parallel algorithm);

4. if results are published from any of the instances, they are concatenated and sent
to the client;
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Figure 4. Visual representation of a parallel three-party MPC computation with three
cliques, with colours showing the domain of each party. (a) The client negotiates a
parallel MPC sub-task, requesting it to be run on three instances. (b) The gateway relays
the requests to the individual MPC servers which are numbered by their clique ID. (c¢)
The servers fetch their specific partition of data from the shared filesystem. (d) All
three cliques engage in multi-party computation and run the distributed protocol over all
parties.
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5. if there are any more sub-tasks to perform, repeat item 2.

A simplified diagram of steps 2 and 3 is shown on figure 4.

4.2.1 Goals

Motivation behind parallelisation remains the same as is the case for parallel computing
in general: solely to accelerate execution of tasks. The technical solution presented in
this thesis has to provide speedup of a task as more cliques are concurrently engaged
in computation. The ultimate goal of parallelisation of MPC is spreading of network
workload over multiple nodes. In practice, this should offer improved throughput of
multi-party protocol communication as it would 1) combine bandwidth quotas enforced
on individual nodes and distribute load over several network interface controllers and 2)
reduce collective waiting time of blocking protocol steps that stems from latency.

Quality assurance is performed by analysis of metrics extracted from clusters during
the benchmarks in section 5.3. By observing the network and filesystem usage, it is
assessed whether the devised system and programming models exploit the proposed
environment to their benefit. Processor utilisation is additionally monitored to verify that
the computation is not CPU-bound.

The concept and usage of the devised system on any subsequent MPC applications
needing to be parallelised should be easy to grasp for a programmer that is familiar with
the SECREC language based on the given examples. It should be clear how to implement
new privacy-preserving parallel algorithms while being aware of the privacy implications
caused by those design decisions — pointers in both of these areas are discussed in the
following sections based on the implementations of MapReduce and BSP. While not
mutually exclusive, the SIMD execution model used in SHAREMIND is unrelated to the
much larger granularity parallelism considered here. It is encouraged to still practise
SIMD inside the parallel programs as its performance benefits remain relevant.

4.2.2 Programming Models

The prospect for employing MPC on large datasets is still problematic due to the overhead
of protocols, however this thesis argues that it could be remedied with appropriate parallel
algorithm design. To an extent, inspiration for programming models can be taken from
big data solutions that share resemblance with the style of data analysis often needed
from MPC. Further, those models are easy to grasp or already familiar to many, not to
mention the root problem of increased data volumes that these solve are reminiscent to
what is hindering MPC.

In this thesis, provided examples focus on data-centric decomposition of tasks — a
simple approach for utilising parallelism where a significant part of the computation can
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be done in a secluded manner before requiring inter-process communication. Program-
ming models of MapReduce and bulk-synchronous parallel are taken as well-known
illustrative examples and their general operation is mimicked to evaluate the system.

MapReduce is characterised by a highly synchronous three-step data processing flow
that allows for a high degree of parallelism and can be expressed with tools provided by
SHAREMIND. Two of its three stages, map and reduce, can be spread across virtually
any number of processes. Either can accommodate processing that ultimately makes up
the significant part of computation.

User defined combiner and partitioner is not explored explicitly, but the map and
partition programs can be extended accordingly to include this logic if needed. By
default, partitions are split equally between the reducers, giving the first instance the
smallest keys w.r.t their ordering. Keys throughout the processing pipeline should be
integer values in the interest of efficiency — values on the other hand can be integers,
floating point numbers, strings, or vectors. Tokenization can be used as local pre and
post processing to accommodate string keys, if so desired.

Throughout the privacy-preserving MapReduce application, no input, intermediate,
or output keys and values should leak. Due to partitioning it is however difficult to hide
the amount of key-value pairs at each stage. As it requires sorting and grouping emitted
values by keys, a curious party profiling the process could learn how many key-value
pairs were emitted for certain keys by assuming the keys based on their order.

Proposed general operation of the stages are given as MPC specific pseudocode in
algorithms 2, 3, and 4. Map operates only on individual data entries, thus its parallelisa-
tion is trivial. Note that the map user-defined function (UDF) and step 4 of algorithm 2
would preferably be applied to vectors instead of individual values if SIMD optimizations
are in place. Partitioning follows (algorithm 3), which is a single-process sub-task in
order to ensure that the reduce stage process receives all key-value pairs emitted by
map with the same key. While the partitioning in cleartext MapReduce is done within
the map task in parallel, the same is not trivially accomplished here if keys are to be
kept private throughout the process — partitions should be prepared in such manner that
the subsequent parallel reduce instances would be able to differentiate partitions’ keys
that only they should process. One possibility would be declassifying the result of an
oblivious hashing [32] of the partition’s keys so that equal keys could be identified, but
due to added complexity this is not considered.

Notable steps in partition are 6 and 7, the purpose of which is to find the indices
on which it is possible to split partitions. Step 6 sorts the emitted key-value pairs using
privacy-preserving sorting, so as to not reveal the keys. Step 7 checks non-equality of
each key with the next, only revealing the indices at which there is a change in the key
value, saving the array of truth-values into variable splits. This is consequently the only
necessary leakage. Split values are used to partition reduce databases at the correct
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Algorithm 2: MPC MapReduce map program

Input: UDF map([£], [v]); Clique index i; database db,, ; with two columns,
[k] and [v], corresponding to keys and values for the i-th map clique.
Result: Database db.,,;;; contains columns [£'] and [v'].

1 m + readColumn(db;,, ;,0); m + readColumn(db, ;, 1)

[

[K'] < 0; [v'] @_} .
foreach [£], [v] in [K], [v] do
L []. [v] + map([i]. [o]
[E'].push([£']); [v']-push([v'])

—>

writeColumn(dbem: , 0, [K']); writeColumn(dbepiz i, 1, [[T’ﬂ)

PN

wn

=)

Algorithm 3: MPC MapReduce partition program

Input: Amount of map cliques n; amount of reduce cliques m; databases of map
outputs dbe,;; forall 0 <7 < n.

Result: Database db,,,; contains columns m and m sorted by [£'], such that
foralliand 5 (0 <4,j < mandi # j), dbpa,, shares no keys with

. dbﬂy.

[K'] < 0; [v'] <0

2 foreachi: <~ 0...n —1do

L m.extend(readColumn(dbemit,i, 0))

o

w

m.extend(readCqumn(dbemit,i, 1))

-

e

[ + [K'].size()

securely sort vectors as matrix [[[k’ 1, [[7’]@ by the first column

wn

=)

—> —>

split < declassify([£'] # concat([%'][0], M[O 1 —1)))
step < |l/m|
foreachi < 0...m —1do

= e

10 if - = m — 1 then

no| |t [#]size()

12 else

13 |t « index(split[step :], true)

14| writeColumn(db,grt,i, M[O 2 t], 0); m — M[t ]
15| writeColumn(dbyae, [0 : 4], 1); [v'] < [V][t 1]
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Algorithm 4: MPC MapReduce reduce program

—

Input: UDF reduce([k], [v]); clique index i; sorted database dbpq,+ ;-
Result: Database db,,;; contains columns [£"] and [v"].

1 m «+ readColumn(dbyg;+,, 0); [[v_’ﬂ « readColumn(dbyg;,i, 1)
2 [K'] < 0; "] < 0

ceey

[ < [K'].size()

w

4 split + declassify(m + concat(M[O], M[O 1—1]))
s unique < split.count(true)

6 foreach i <— 0...unique — 1 do

7 if © = unique — 1 then

8 \ t+ m.size()

9 else

10 |t < index(split, true)

n | [k, [v"] < reduce([¥][0], [V][: #)

12 [[_k’l<— [E[t -] [[Qﬂ_ﬁ_ [v'][t ]

13| [K"].push([£"]); [v"].push([v"])

—>

14 writeColumn(db,y: ;, 0, [£"]); writeColumn(dboy: ;, 1, M)

indices.

The reduce stage can then run aggregational operations on its partitions’ values per
key and output the results. This is shown in algorithm 4. The same splitting logic is
employed as in algorithm 3, now to find the slices on which to run the reduce UDF;
sorting is not required as the partition sub-task has already sorted the partitions by key.

For clarification, the only virtues the MPC example lends from the original MapRe-
duce implementation is the general programming model. By conjecture, the distributed
in-place data processing as exercised by real MapReduce implementations would not
benefit this system by much, since the data volumes are expected to be inherently smaller.

Bulk-synchronous parallel model is used to show iterative parallel computation with
MPC. It allows for interleaving computation and communication with clear synchronisa-
tion barriers. As is apparent from the name of the model, a set of computations takes
place in isolation before a collective synchronised communication. This naturally fits the
communication requirements set in section 4.2.

Proposed general construction of BSP in MPC is given as computation and communi-
cation abstractions of programs — the steps for the former can be seen in algorithm 5,
algorithm for the latter is omitted as it is analogous to the partition program of MPC
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Algorithm 5: MPC BSP computation program

Input: UDFs newState([£], [state], [msgy ﬂ), newMessages([£], [state]);
clique index ¢; database of messages db,,,,, ;; database of states dbggte,;-
Result: Database db,,;; contains messages by key for the next iteration;
database dbgqe; contains updated states.

1 [[_k;ﬂ + readColumn(dbstate.i, 0); ﬂs?qteﬂ + readColumn(dbsaze ;, 1)

2 [kimsg] ¢ readColumn(dbns,.:, 0); [msg] + readColumn(dbyus,.i, 1)
[m, [state], [[msgsk]]} + left join [m, [[sTateﬂ and [m [[msg]]} on the
1% column, collecting msg to list msgs;,

foreach idx, [k], [state], m as row in [m, [state], [[msgsk]]] do
| [statel[idz] « newState([k], [state], [msgy))

clear(dbyare.)

7 writeColumn(dbstatei, 0, M); writeColumn(dbsaze i, 1, M)

[Eout] <= 0; [msgou] < 0

foreach [k], [state] as row in [m, m] do

10 [Etempl, [msgiemp] < NnewMessages([k], [state])

it | [Fou)-extend(kremy)

12 [msgout]-extend(msgiemy)

(5]

=

wn

=)

®

=]

e

13 writeColumn(dbout ;, 0, [Kout]); WriteColumn(dbout i, 1, [mSGout])

MapReduce already shown in algorithm 3. Computation forms the parallel region of
BSP. Realistically, the programs that run in the parallel region do not have to be the
same, but may implement different logic; this line of thought may be used to implement
task-centric parallelism.

The computation sub-task operates on the state database individual to the clique, that
is kept in storage over supersteps. A state database is essenga)lly a collection of private
key-value pairs, represented in algorithm 5 as vector pair [k] and [state]. Keys being
the abstraction for the data identifier, and state being the data that is being processed in
iterations — in vertex-centric graph processing for example, keys could be vertex id-s,
and a state could contain its edges, edge weights, and vertex augmentations. Each clique
is responsible for a specific set of keys over the duration of the whole task.

Based on algorithm 5, a computation process goes through the following general
process:

(steps 1-2) A clique reads in the states of its allotted keys (private); also reads in the
(private) messages from the previous superstep.
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(step 3) Messages are grouped by their recipient key into variable length vectors
and joined to the clique’s data keys. This has the privacy implication of
revealing the distribution of messages, as essentially, vector lengths can
not be hidden.

(step 5) The newState UDF is applied to each state with the received messages,
calculating the new state, which are updated on disk at step 7.

(steps 10-12) New messages are created based on the state and newMessages UDF,
persisted on disk to the messages database at step 13.

The communication program is triggered between computation iterations. It works
similarly to the partition step of MapReduce, sorting the messages by the target vertex
and partitions them to prepare for ingestion by the following iteration. The single
divergence is the fact how messages need to be partitioned — no longer can the keys be
distributed evenly w.r.t. the amount of messages, but the partitioning has to be aware
of the cliques’ key ranges for which they are prepared for. This can be achieved with a
separate supplementary database that holds the clique-key relation; as these have to be
kept in clear, it is advisable to not adorn any significant meaning to the keys. To hide
the movement of messages between cliques, a privacy preserving shuffle, introduced by
Laur, et al. [22], can be applied by the partitioner on the total set of messages before
sorting.

Focusing on a specific type of computation may help better understand the privacy
considerations. Privacy goal of vertex-centric iterative graph processing in this model is
to hide the structure of the graph — edge relations, edge weights, and augmentations kept
in the state. Not hidden is the distribution of outbound degrees, due to the graph being
internally encoded as variable length adjacency lists. Another privacy relaxation is due
to the fact that specific computation instances require messages only from the vertices
allotted to them. This means that the partitioner has to be aware of the vertex identifier
to know which clique to prepare its messages to. It does not mean that this would lead
to leakage of the graph structure, for example by tracing which clique sent messages to
which other. This is because all vertex identifiers are kept hidden as they are shuffled and
sorted using privacy preserving methods by the partitioner before declassification, not
revealing the source of the message.

4.3 Clustered Deployment and Scaling

One aim of this thesis is to propose a suitable and modern environment in which parties
could host and scale their MPC resources with cost efficiency and ease. As discussed by
Bogdanov, et al [11], MPC has great potential to make use of elastic cloud infrastructure,
but further work is needed to develop the necessary provisioning tools. The Carbyne
Stack project [14] achieved this to a large extent, but due to shortcomings mentioned in
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section 3.1, 1s not yet ready to take on real data analysis tasks. Contribution 1 of this
thesis shares a common goal with the project, to create a cloud-native deployment of
MPC running in clusters, however due to its late emergence, coming to attention of the
author during ongoing development, it does not deliberately aim to improve on it. Rather,
this work proposes an alternative, building it around the production-ready SHAREMIND
framework.

The new deployment should relieve the work and cost usually arising from setting
up bare metal servers, networking, and configuration. Instead, an MPC party should
be able to bring up, tear down, and configure the system from a single point with
provided automation scripts. This enhances accessibility of MPC to a wider user space
by eliminating the need for most of the technical know-how required to set up parties’
infrastructure today. The solution should also be cost effective compared to on-premises
deployments. This can naturally be achieved on the elastic cloud due to the ubiquitous
pay-as-you-go model and short-term commitments. All in all, successfully fulfilling these
requirements should encourage adoption of MPC in new privacy preserving applications.

The system requires each computing party to host the relevant components in their
own cluster. A party alone manages their own configuration and necessary keys, either of
which have to be agreed upon in secure means prior to setting it up — public keys of clients
and neighbouring parties can be communicated via email as digitally signed documents.
To minimise unequal influence over the execution from any single party, the system
should not exercise disproportional orchestration patterns, ruling out master-worker or
leader designation across parties.

Seamless interconnection for protocol communication has to be set in place. This
means that clique servers should automatically be able to discover and reach their
counterparts in other clusters without any low level networking configuration. In addition,
this should even work for any number of cliques running in parallel over the clusters.
Any possible added components that enable this behaviour should not impose excessive
latency or bandwidth constraints that would inhibit performance of the protocol.

Horizontally scaling up the cliques should occur on demand of the client. This is
to be integrated with the gateway discussed in section 4.2, which should have rights
to manage the scaling factor of MPC servers in its cluster if more are requested than
currently available. Pruning unused cliques to save costs should happen automatically by
checking whether the instance is idle. The latter should not be the responsibility of the
gateway, but rather delegate it to standard cluster auto-scaling facilities.
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5 Cluster Deployment of SHAREMIND MPC

This chapter documents the devised system based on SHAREMIND. Section 5.1 outlines
the architecture and technological choices and specifies how they satisfy requirements
set in chapter 4. In section 5.2, the more intricate implementation details of contributed
components are given along with examples of applications for the two proposed program-
ming models. Finally, section 5.3 presents benchmarking results and quality assurance
analysis.

5.1 Architecture

Components of the system are deployed in a Kubernetes cluster, with each computation
party managing their own environment at a cloud provider of their choice, or on-premises.
A diagram of the resulting architecture explained in this section is illustrated on figure 5.
Kubernetes is opted for due to its design features, most importantly making it easy to scale
application containers over a large set of physical machines, fulfilling the requirement of
spreading the network workload. It is also the most widespread container management
platform, with many cloud providers offering managed control planes and amenities like
networked storage, meanwhile useful supporting applications are in large supply thanks
to the thriving communities like CNCF. The Docker Swarm platform was considered as
an alternative, however Kubernetes was deemed more flexible and extensible for certain
tasks. Developing the Kubernetes deployment, vendor agnosticism is kept in mind and it
is further demonstrated to run on multiple cloud provider environments in the section 5.3.

5.1.1 SHAREMIND Server StatefulSet

SHAREMIND servers are deployed in the cluster as a StatefulSet'” resource. StatefulSets
provide means to scale application instances in such a way that each replica is adorned
with a stable, unique and ordered network identifier. Depending on its scaling factor,
it maintains a desired state of a specific amount of containers serving a SHAREMIND
instance in the cluster. It provisions the servers, following an anti-affinity rule, to spread
evenly among the available nodes, so as to maximize bandwidth quotas of each node.
Other cluster services can reach the instances using their local DNS name.

All server instances mount a single network filesystem for communicating intermedi-
ate results of sub-tasks. This is backed by a Kubernetes PersistentVolume that allows
concurrent write access by multiple Pods (i.e. containerised workloads), which in turn is
using a storage solution of the cloud provider. A filesystem approach for data gathering
and scattering is chosen due to the tabular data storage interface of SHAREMIND. Other
methods such as Redis key-value data stores could also be used by running it in the same

https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/
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Figure 5. Components and their interactions in the cluster architecture from the view of
a single MPC party.

cluster. Redis specifically has utility only in cases where keys can be public values, as it
can not index secret shares.

5.1.2 Gateway

The single cluster entry point for clients to initiate multi-party computation is a Java web
server, or gateway. Its core is a modified version of a pre-existing library for creating
web-based applications supporting SHAREMIND. The original library is a Java analogue
of the Node.js Sharemind Web Gateway module!!, containing the native interface of

https://docs.sharemind.cyber.ee/2022.03/development/sharemind-web-application-tutorial
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SHAREMIND clients, meaning it acts as a client by nature, only translating and proxying
the HTTP based process negotiations.

Two main changes are necessary to support parallel deployments of SHAREMIND
servers. First, the gateway is required to handle multiple MPC process negotiations,
distributing users’ inputs to and returning outputs from multiple servers. Parallel process
negotiations are always distributed sequentially to each StatefulSet instance, starting
from zero. Only data-parallel sub-tasks are considered in the scope of this thesis, aligning
with the MapReduce and vertex-centric graph processing usage examples presented in
section 5.3, where identical programs are being run in each parallel region. This said,
further modifications to the gateway could be done to also support task-based parallelism.

Secondly, it processes clients’ parallelisation requests and dictates the desired scale
of the server StatefulSet in the cluster. This can be done by granting the gateway resource
the sufficient rights to make the respective calls to the Kubernetes control plane’s API.

As scaling up is done on demand, scaling down the servers is automated. The Kuber-
netes HorizontalPod Autoscaler resource is configured to observe the CPU utilisation of
the cliques w.r.t. the last server, and initiate a gradual scale-down in the reverse order.
This means that any parallel computation taking place with a lower amount of cliques
than currently provisioned can continue.

In real-world use, the gateway should itself implement authentication and granular
access control, as currently, the gateway library can not carry any client-provided cre-
dentials over to the servers. The current architecture has not prioritised this, but if such
requirements arise in the future, then it would be straight-forward to implement.

5.1.3 Multi-cluster

Enabling discovery of dynamically provisioned cliques is accomplished by linking the
parties’ clusters into a multi-cluster. How it works is that parties mirror certain services
running in their cluster to the clusters of other parties. For example, if the first party runs a
service sm-set-2 that is flagged for export, then mirroring facilities in clusters of parties
2 and 3 get notified of it, subsequently spawning a local endpoint with a descriptive
DNS name like sm-set-2-org-1.default.svc.cluster.local that tunnels outgoing
requests to the cluster service of party 1. Tunneling happens through a replicated multi-
cluster gateway as pictured on figure 5.

This functionality is offered by Linkerd and its multi-cluster extension'?. Similar
solutions for routing between cluster services can be achieved with Istio'® and Consul
Connect'*. The central use case for each of these technologies is federating several clus-
ters of a single organisation for seamless interoperability. In this work, federation should
take place across non-colluding parties and assume no further influence of one cluster

2https://linkerd.io/2.11/features/multicluster/
Bhttps://istio.io/latest/docs/ops/deployment/deployment-models/
4https://www.consul.io/docs/k8s/installation/multi-cluster
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over its neighbour other than proxying traffic of appropriately marked services. Linkerd’s
multi-cluster stands out in this regard, as its requirements'> prioritise decentralisation of
state and control plane, aligning with the isolation and equality requirements for MPC
parties.

As a side note, circumventing exotic methods like service mirroring would be possible
to an extent while still providing discovery between SHAREMIND servers. For example,
the provisioned server instances could be exposed outside of the cluster with unique IPs.
This way, the external cloud load balancer could route requests to specific nodes which
host the server instance and minimise hops — node hopping being the phenomenon where
requests are proxied by intermediate routing facilities between cluster nodes. However,
more often than not, every additional public IP comes with extra cost, not to mention
that the exposed IPs of parallel instances have to be communicated and kept track of as
every cluster scales their deployment. A managed kubernetes platform may allow for
multiple LoadBalancer-type services to listen on different ports of the same public IP, in
which case parallel instances could allocate consecutive port numbers. Popular cloud
providers have different behaviours in this regard — Azure Kubernetes Service allows
it, whereas Google Kubernetes Engine does not'® — although it would be a good fit for
the current use case, it is a nonstandard one. Another possibility would be to use an
ingress controller, which manages OSI layer 7 routing from within the cluster based
on the HTTP-path requested. It is not applicable for SHAREMIND as it currently relies
on TCP for intra-clique communication. Linkerd multi-cluster is not susceptible to any
provider-based limitations, but it is still important to cover the throughput and latency
overhead that may be caused by its proxying nature, which is shown in section 5.3.

5.2 Implementation

This work’s tangible output, including deployment scripts and applications can be found
alongside its documentation under appendix 6. The following section may reference
certain files and directories to aid the reader in navigating its content, but covers the
implementation on a general level, reserving the more technical details and instructions
for the accompanying README.md files.

Deployment of the devised system in existing Kubernetes clusters is automated
by Helm charts. Two charts present in the helm top-level directory are multicluster
and sharemind for provisioning the Linkerd multi-cluster facilities and MPC-related
components, respectively. Setting up the multi-cluster requires some involvement among
all MPC parties that employ this system, as a simple public key infrastructure has to be
set up for the clusters to securely be able to query each other’s API to mirror their services
and provide mutual TLS for these channels. This means creating a shared trust anchor,

Bhttps://linkerd.i0/2020/02/17/architecting-for-multicluster-kubernetes/
16https://cloud.google. com/kubernetes-engine/docs/how-to/service-parameters#lb_ip
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or root certificate authority, to sign each Linkerd instance’s certificate. The specific
possession of the trust anchor’s private key is not of significance to the security of MPC,
as SHAREMIND employs its own security measures underneath, and of small significance
to the clusters — even though Linkerd limits the API interaction to specific calls that do
not reveal much, leaking the key might open opportunities for denial-of-service or other
attacks. For example, one of the more proactive parties could be chosen to distribute the
required certificates. After that matter, the computing parties should select a short DN'S
suffix, identifying the neighbouring clusters, and configure multi-cluster to differentiate
the mirrored services accordingly.

The /helm/sharemind directory contains a chart for deploying the gateway and server
StatefulSet using a unified configuration file, values.yaml. As prerequisites, the cluster
administrator must first follow the standard procedure of generating public and private
keys for the SHAREMIND servers and the gateway, and distribute the server’s public key
to its neighbouring parties. Further, they must ensure the Kubernetes cluster access to
the container registry hosting the gateway and server images. This registry might be
provided by the MPC framework’s developer in a real scenario, or self-hosted as during
the testing of this thesis, but is not publicly served by the author. Cluster administrators
are also expected to choose the backing storage medium for server’s databases, provision
the corresponding cloud resources, and apply possible configurations it may need;
section 5.3 and file /helm/sharemind/cluster-storage.md contain further discussions
regarding possible options on popular cloud providers. Finally, the configuration has to
be filled in with identities of the neighbouring parties’ servers and the SECREC programs
that the servers support.

Project files for the parallel gateway implementation reside in /gateway/. It serves
a dual-protocol WebSocket/HTTP API based on Socket.IO, that the SHAREMIND Web
Client library interfaces with. Originally, with a single gateway per server, it relayed
the client’s negotiation messages to a single instance of the gateway library. In turn,
parallel deployments required those messages to be terminated and scattered among
multiple instantiations. Minimal modifications to the underlying library were required to
accommodate this design, however these are not included with this thesis due to involving
proprietary code.

Demonstrating the usage of proposed parallel programming models and benchmark-
ing the system, examples of applications are implemented for both MapReduce and
BSP. Example client applications for running the MPC tasks can be found in /client/-
coocurrence and /client/sssd. For the MapReduce application, a program for computing
a term co-occurrence matrix is implemented. In addition to being a classic demonstrative
MapReduce use case, term co-occurrence is a counting problem, in which the goal is to
find the total amount co-occurring value pairs in a set of input value vectors — or more
generally, calculating the distribution of pairs of discrete events occurring in a large
set of observations [23]. Given the values are words, and vectors being sentences from
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a corpus, this kind of approach is commonly used for analysing lexical semantics in
natural language processing. A more motivating use-case for MPC would be commerce
analytics of products or categories of products bought by users over multiple merchants
who don’t want to reveal their exact sales.

The implementation follows the stripes method of keeping intermediate values [23].
Contrary to the so called pairs method, which is arguably the intuitive way to approach
this problem by having the map program emit the counts of each term-pair occurring in a
vector, the stripes method calls for emitting a vector of counts instead. To illustrate, if
an input term vector is [a, b, a, cJ, then rather than emitting [{(b, a), 2}, {(b,
c), 13}, ...] resulting in a large amount of intermediate values, the stripes method
preemptively combines them into a more compact form of {b: {a: 2, c: 1}}. Inthe
MPC implementation, the maximum amount of values that can be put in this stripe is
bounded by the stripe length parameter. This allows putting the emitted values into a
rectangular tabular database, and enabling some vectorized operations to be used in the
reduce stage — stripes shorter than the bounded length would be padded to the according
size with null-terms. All terms and counts, in input, intermediate, and output values are
kept private.

For the BSP application, single-source shortest distances (SSSD) with an iterative
vertex-centric approach is chosen. In this example, SSSD finds the walk lengths of least
weight from a selected vertex to every other vertex on a weighted directed graph. As
messages, the vertices send their currently known best length from the source to each
neighbour, adding to it the weight of the edge that connects them. Message aggregation is
a function for computing the minimum of the messages to acquire the new best length to
the vertex. The implementation can be easily adapted to output the sequence of vertices
on each shortest path also known as single-source shortest paths.

In the implementation, the state of a vertex contains its outgoing edge targets, the
edges’ weights, and the currently known shortest path from the source. The state is
provided for the first iteration by the client or clients who want to perform data analysis
on a graph, each providing a subgraph with agreed upon vertex identifiers. Selecting
the source vertex involves setting the specific vertex path length to zero at the start, and
the lengths of all other vertices to some sufficiently large value, representing infinity.
Careful to avoid overflows, the implementation specifies this as 232 /2, or half of the
32-bit unsigned integer that lengths are represented as internally. In light of privacy and
the fact that this algorithm does not alter the graph’s topology, each iteration does the
same amount of work in order to hide the graph’s structure. This means that each vertex
always emits messages, even if the value is a representation of infinity — a party must not
know this fact as it would compromise the structure of the graph. As the iteration count
of this algorithm can not be known ahead of time, all cliques check whether the message
aggregation modified the state in the given iteration, publishing a vote to abort otherwise.
If the client receives aborts from all cliques, it refrains from negotiating further processes
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and considers the computation concluded.

5.3 Evaluation

To get a better understanding regarding the viability and realistic performance benefits
of the system, the example programs are ran over three different cloud’s managed
Kubernetes clusters. This is to mimic a real MPC deployment, where parties are free to
use a cloud provider of their choosing, preferably diversifying their choices to mitigate
colluding providers. This evaluation makes use of the services offered by Google Cloud
Platform (GCP), Amazon Web Services (AWS), and Microsoft Azure to act as cloud
platforms of the three parties. All mentioned platforms offer services required by the
described architecture:

* managed Kubernetes control planes;

GCP - Google Kubernetes Engine (GKE)
EKS - Elastic Kubernetes Service (EKS)
Azure — Azure Kubernetes Service (AKS)

* provisioned compute node pools;

GCP - Google Compute Engine (GCE)
EKS - Elastic Compute Cloud (EC2)

Azure — Azure Virtual Machines

* network file storage with support for concurrent writing by multiple nodes;

GCP - Filestore
EKS - Elastic File System (EFS)

Azure — Azure Files

Clusters were deployed in close proximity to each other and the client. This meant
provisioning the cloud assets in regions within Northern Europe of each provider. AWS
and Azure offer all necessary services in Central Sweden, whereas the closest region
under GCP is in Southern Finland. All availability zones were utilised to spread any
resources within the regions. Node instance sizes were chosen to closely match their
counterparts in neighbouring clusters. The common parameters were two virtual CPUs
with four GB of RAM per node. Maximum number of provisioned nodes was limited
to six due to regional quotas set by Azure. A summary of the cluster details is given in
table 1.

40



Table 1. Details of the cloud environments.

Cloud Platform Region Nodes Network Storage
GCP europe-northl 6xe2-medium 1 TiB Google Filestore Basic HDD
AWS eu-north-1 6xt3.medium 5 GiB Elastic File System Standard
Azure swedencentral 6xB2s 100 GiB Azure Files Standard

Table 2. Storage characteristics

GCP AWS Azure

read write read write read write

Sequential 1776 MiB/s 129 MiB/s 302 MiB/s 102 MiB/s 270 MiB/s 66.6 MiB/s
Random 1097 MiB/s 126 MiB/s 305 MiB/s 99.1 MiB/s 255 MiB/s 83.5 MiB/s
Avg. Latency 172 us 2539 us 3031 us 9780 us 8750 us 2497 us

Each cloud provider required unique approaches for PersistentVolumes supporting
concurrent reading and writing by multiple nodes. Such functionality is generally
offered by network file systems (NFS), which was settled on for each of the clusters.
Azure offered the most convenient workflow with dynamic provisioning of Azure Files
instances, but minimum size of 100GiB. AWS allowed for mounting dynamically sized
Elastic File System (EFS) instances. GCP’s Filestore service required pre-provisioning
expensive storage devices — for HDD storage, the minimum size being 1TiB, and quotas
for new accounts restricted creation of SSD-backed storage. All storage solutions
exercised a bursting or throughput allowance system based on the chosen storage type
and size, effectively limiting I/O operations if they are used exuberantly. This could be
circumvented by deploying an in-cluster network file system on block storage attached
directly to some nodes with tools like Rook Ceph!’. Even though this has the potential
to outperform cloud file storage solutions, it incurs significant processing requirements
in the cluster and consequently requires more, or more capable nodes.

Since storage throughput is central to the performance of the chosen method of
communication, then making note of the metrics is important. The throughput of selected
storage solutions were tested with DBENCH'® from within the cluster and shown in
table 2. Tests were performed on freshly provisioned clusters and accounts, so are not
expected to reflect any throttling from bursting allowances. Used for prolonged periods,
proposed storage solutions may however affect the performance of communication in the
parallel applications, so in-cluster storage might be preferred in that case. The observed

https://rook.io/
18https://dbench.samba.org/
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Table 3. Network characteristics of Pods communicating via Linkerd’s multicluster
gateways. Single instance achieved bandwidth is reported in both directions: horizontal
axis represents the uploading cluster, whereas vertical is for download throughput.

GCP AWS Azure
throughput 1.53 Gbits/sec 996 Mbits/s
GCP
latency 15 ms 15 ms
throughput 807 Mbits/sec 1.04 Gbits/sec
AWS
latency 15 ms 11 ms
throughput 933 Mbits/sec  1.03 Gbits/sec
Azure
latency 15 ms 11 ms

measurements are not expected to impact the running time of the programs by much,
since data volumes in the upcoming benchmarks are at maximum a few megabytes in
size and written sequentially.

The larger impact for MPC is due to network performance, most notably latency. Ta-
ble 3 gives insight about the network characteristics between the clusters. Measurements
are taken over the Linkerd multi-cluster and therefore contain the processing overhead
that it may add.The metrics were collected with iPerf3 and Linkerd’s monitoring utility
Viz.It can be seen that Linkerd’s multi-cluster offers high performance even when running
on relatively small nodes. The observed effective bandwidth of around 1 Gbits/sec and
latencies under 20 ms provides a favourable environment for benchmarking MPC in.

Performance metrics of the implemented MPC applications were gathered from
client logs, SHAREMIND’s built-in profiling, and Kubernetes cAdvisor reporting of
cluster resource usage. All reported runtimes are measured from the start of the process
negotiation by the client to when the gateway has reported the completion of the sub-task.
Parallel regions were run on one through six servers, distributed equally over every
cluster node.

The term co-occurrence program was run on 1000 term vectors, each containing 4
to 11 terms represented as integers from 1 to 128; distributions of terms and the vector
lengths were uniformly random. The intermediate vector stripes had a fixed length of
ten.

The effect of parallelisation on the term co-occurrence implementation can be seen
on figure 6. A near linear relative speedup can be observed: two instances finished 1.98
times faster than a single instance, while six instances performed the task 5.21 times
quicker. As the number of parallel instances grows, the partition sub-task will take longer
to complete, taking around 11 to 17 seconds in the smallest and largest tests, respectively.
Since the partition task does not do any operations on shared values that is dependent on
the number of the preceding and succeeding parallel instances and the input size stays
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Figure 6. Speedup of term co-occurrence MapReduce application over one to six parallel
map and reduce cliques.

the same, then this runtime difference could only be explained by the increase in work
for preparing data for the additional reduce instances.

Network efficiency optimisations of SHAREMIND programs depend heavily on the
programmer using vectorized operations on shared values. Naively porting a MapReduce
solution of a problem to MPC most probably leaves much to be desired in terms of
efficiency. This is partly the case with the stripes implementation of term co-occurrence
— even though addition in additive secret sharing is free, the map stage requires many
equality checks to construct the count stripes with SIMD only possible to utilise within
the individual input term vectors, but not on a larger scale. Shared integer equality checks
in the used protocol set involve log, n + 2 communication rounds for n-bit integers [8] —
the given term co-occurrence implementation uses 32-bit terms, requiring seven rounds
of synchronous communication.

Indeed, by figure 7a, bandwidth utilisation stays low around 0.1 Mbits/s for the
duration of the map stage. The partition task runs naturally quickly, as its only non-
free operations are fully vectorized. Reducing has some better opportunities for SIMD
optimizations than map, utilising 1.5-2 Mbit/s of bandwidth throughout.

Figure 7b illustrates the effect that the non-ideal programs running on parallel in-
stances have on total used bandwidth. With six instances of mappers and reducers, both
stages enjoy a linear increase in cumulative throughput. This observation has positive
connotations for the practicality of running MPC applications that are difficult to optimise
in conventional means, but are easily parallelised otherwise.

The SSSD implementation was tested with a random sparse graph of 10k vertices
and 30k edges. The vertex-centric model took 21 iterations to reach a fixpoint and abort.
Runtimes reported in figure 8 are extrapolated from a single iteration of computation
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Figure 8. Speedup of SSSD BSP application over one to six parallel cliques.

and communication, supported by the fact that the privacy preserving implementation
does the same amount of work in every iteration. Speedup characteristics are identical to
those of term co-occurrence, linear w.r.t number of parallel processes. As computation
processes were scaled, no evident growth of the communication sub-task’s running time,
like could be observed from the term co-occurrence’s partition program, was noted.
Computing SSSD with MPC was also exercised by Anagreh, et al. [2] with algorithms
optimised for vectorized execution in SHAREMIND. Results can not be compared directly
due to variations in network characteristics experienced by the different environments
— the authors artificially introduce delay of 40 ms for their high-latency benchmarks,
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Figure 9. SSSD bandwidth consumption by cluster.

low-latency benchmarks use sub-millisecond latencies of a local network, meanwhile
the current setup lies in between the two with 15 ms. Their sparse graph oriented
Bellman-Ford implementation finished a relatively similar task size of 9.5k vertices
and 28.5k edges within 19.4k seconds in a low-latency environment, while in a high
latency environment, a 3k vertex and 9k edge graph took 39.8k seconds. Their dense
graph oriented Djikstra’s algorithm implementation was not affected by the number of
edges, and finished a 10k-vertex graph with 6k seconds in low-latency, with high-latency,
only a 1k-vertex graph could be processed during the same amount of time. This shows
that performance wise, the vertex-centric solution is comparable to a highly optimised
algorithm even in a single clique case, where it demonstrated a 25k second runtime with
10k vertices and 30k edges. Nevertheless, it is important to keep in mind that the current
implementation reveals the distribution of edges, and therefore has weaker privacy than
algorithms that are compared against.

Similarly to the term co-occurrence map phase, the computation sub-task leaves the
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bandwidth heavily unutilized. Single clique network throughput over time is shown on
figure 9a and 9b for the computation and communication, respectively. Computation
results in low bandwidth usage of around 0.05 Mbit/s, much due to its iterative nature
in processing messages. With a sparse graph as the one used for this experiment, the
vectors of messages moved between iterations are short but plentiful, therefore there are
less opportunities to employ SIMD in aggregating them. Figure 9c shows that, as was the
case with term co-occurrence, a parallel deployment enjoys linearly scaling bandwidth
as more servers are used.

To rule out any other bottlenecks, CPU and RAM usage were monitored in the cluster.
The server’s container was witnessed utilising a peak of 20% of the two virtual cores
of its host during the partition stage of term co-occurrence and communication stage of
SSSD. The processors were never throttled by the Kubernetes’ scheduler. Working set
size (RAM) did not exceed 100 MB during any execution. These observations confirm
that MPC is fitting to use in a cluster environment, utilising many small and affordable
machines and parallel algorithms to spread the workload, but also enjoy natural relative
speedup that results from parallel protocol execution.

The architecture, proposed method of parallelisation, and chosen cloud resources
worked together well. Chosen storage solutions were successful in accommodating the
storage-based communication between cliques efficiently compared to the performance
of MPC. This said, in-cluster storage may be the better choice if data volumes are
expected to grow, as it could potentially speed up the communication procedure. The
multi-cluster architecture fulfilled its function of routing requests between individual
cliques, while not imposing significant overhead in latency. It automatically managed
the discovery through DNS, reducing complexity of setting up the MPC environment.

This deployment should also be tested with better optimised MPC programs. Current
example applications were bound by latency due to not utilising enough SIMD operations.
It would be insightful to see MPC programs saturating the bandwidth, becoming bound
by throughput instead. In that case, parallelism could be employed to hypothetically
achieve more throughput than of a single node or virtual machine, which may be limited
otherwise due to undisclosed quotas or physical network interface restrictions.
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6 Conclusion

This thesis’ goals were two-fold. First, architecting an environment for secure multi-
party computation that is up to date with the latest cloud-computing practices. This was
delivered on as a Kubernetes deployment, with the main focus on automatic discovery
and enablement of protocol communication between MPC servers. Furthermore, it
improves the accessibility of MPC for a wider audience, most notably due to cost savings
of pay for what you use cloud pricing models as opposed to on-premises hardware,
but also by demanding less expertise than manually setting up the infrastructure. The
second goal was to exploit the elasticity of the devised cluster deployment to speed
up MPC with coarse-grain parallel algorithms over multiple compute instances. This
warranted analysis of parallel programming models that are suitable for MPC, both in
terms of efficiency and privacy preservation characteristics, lending many ideas from
big data processing. MPC constructions and example programs of MapReduce and
bulk-synchronous parallel models were presented and benchmarked to show near linear
speedup, confirming the results of previous work.

A prospect for further work is apparent for both of these directions. Cloud native
MPC could be the next step in the proliferation of privacy-preserving data analysis.
For this, MPC frameworks should adapt to, or be designed around cloud and cluster
deployments. This work designed its solution for one specific framework, SHAREMIND
MPC, requiring it to conform to its specific needs. Better architectural choices could
be made if frameworks natively support standard cloud storage options and serverless
deployment, as demonstrated by CarbyneStack. The utility of parallel programming
as shown in this work should be evaluated on real business cases. This is to verify
whether it could sustain its benefits outside of simulated scenarios, with realistic analysis
requirements, data models and volumes. An immediate subject for further experiments
could be to parallelise subroutines of the Rmind statistical analysis tool.

As for concrete functionalities, the gateway application created in this thesis could be
further developed to support configurable client authentication and authorization to run
specific tasks, without which, the system is not yet feasible to be deployed in production.
Use cases for task-oriented MPC parallelism may also turn out to be desirable, prompting
further modifications to the currently data-oriented parallel gateway.
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Appendix

I. Source Code Repository
Programmes and deployment scripts developed for this thesis are openly accessible with

supplementing documentation at the following code repository:
https://github.com/ktali/clustered-parallel-mpc.
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