
Public

Actively Secure 2-Party
Computation Protocols and
Frameworks
Technical Report

Version 1.0

2022

ID D-2-501



ID D-2-501
Public

1 Introduction
Many privacy sensitive data workflows consist of two parties separated by organizational or
physical borders sharing data for joint computation. A secure two-party computation (2PC)
framework is a desirable tool for swapping conventional data sharing for secure computation.
In doing so, the parties can improve user privacy and comply with data protection regulations.

Secure two-party computation naturally fits into a client-server computation as a swap-in re-
placement. For instance, a 2PC framework could be used for mobile analytics with the mobile
device acting as one of the two parties.

A secure data workflow should not leak secret data even in the presence of compromised hard-
ware or software. An attacker with full access to the computer executing the data analysis
should not be able to recover any secrets from the other parties. To ensure such a protection,
a 2PC framework must have input privacy in the presence of an active adversary.

Security against active adversaries In this security setting, the corrupted party is allowed to
deviate from the protocol to attempt to learn secrets and affect the output. When the corrupted
party misbehaves, the honest party should be able to halt execution and the honest party’s
secret data should remain protected. Two distrusting parties can be sure that a successful
protocol execution results in the correct output and that a party’s input can not be used for any
other computation without said party’s involvement.

In this report, active security is used to provide protection against an adversary that can have
full hardware and software access to one of the parties.

It is impossible for a 2PC protocol to protect secret data when both parties are compromised.
Thus, we need to employ organizational measures to reduce the risk of both parties being con-
trolled by the adversary. These can include: code auditing and independent compiling, using
separate cloud providers, and using public key infrastructure for authentication and securing
communication channels.

The Sharemind MPC [1] framework provides secure two and three-party computation in the
presence of a passive adversary along with many of the aforementioned organizational secu-
rity measures. The aim of this report is to survey the literature and map out the approach for
extending Sharemind MPC with two-party actively secure computation.

Contents of the report The report gives an overview of techniques for actively secure 2-party
computation. Chapter 2 explains the concept of authenticated secret sharing in brief. In chap-
ter 3, different approaches for the precomputation of correlated random values are detailed.
Chapter 4 briefly covers garbled circuits in an active security setting. Lastly, chapter 5 lists
some of the requirements for secure application development and compares them to available
2PC frameworks.

The report assumes some familiarity with multi-party computation and secret sharing.

Actively Secure 2-Party Computation Protocols and Frameworks
2022

1.0
2 / 18



ID D-2-501
Public

2 Authenticated Secret Sharing
The most prominent technique for secure function evaluation in data intensive applications is
secret sharing. The function is represented as a circuit consisting of gates and wires. The circuit
is evaluated gate by gate with an interactive protocol and the input and output wires of the gates
hold secret shared values.

In the Sharemind MPC framework, functions for secure evaluation are written in the SecreC
language [2]. SecreC code is then compiled into a bytecode that is similar to a circuit represen-
tation. The parties hosting the Sharemind MPC server can then securely evaluate the bytecode
with secure protocols for each bytecode instruction.

In the 2-party setting, we need a protocol that is secure against a dishonest majority, that is,
one of the two parties can be corrupted by an adversary. Because of the dishonest majority
requirement, many protocols based on compiling passively secure protocols into actively secure
ones such as [3, 4] are ruled out. Protocols such as GMW [5] which require expensive zero-
knowledge proofs to achieve active security are too inefficient for large data volumes. The
SPDZ family of protocols [6, 7] are currently the best approach for dishonest majority active
security.

Additive secret sharing is used in many passively secure MPC protocols. To achieve active
security, the parties need to be able to check that the other party correctly evaluated each
gate. In the SPDZ protocol, a passively secure protocol is enhancedwith homomorphic message
authentication codes to allow a party to check the other’s work without revealing their secrets.

In Sharemind MPC, integer data types are supported. We will focus on the SPDZ2k protocol [7]
because it allows for evaluating functions on finite rings such as 64-bit integers.

Definition 1 (Message authentication code) Amessage authentication systemconsists of three
algorithms (G,A, V ). Algorithm G outputs a key k. Algorithm A takes as input a message m and
a key k and outputs a message authentication code s = Ak(m). Algorithm V takes as input the
message authentication code s, the key k and the message m and outputs accept if and only if
s = Ak(m) and reject otherwise.

The authenticated secret sharing scheme consists of additive shares of the input value x and
shares of a message authentication code m = x · α. The key α is secret and both parties hold
an additive share of the key.

Definition 2 (Authenticated secret sharing) An authenticated secret share of x ∈ Z2k is the
tuple (xi,mx

i , αi) where i ∈ {1, 2} and

• x1 + x2 = x′ mod 2k+s,
• x′ = x mod 2k,
• mx = mx

1 +mx
2 mod 2k+s,

• α = α1 + α2 mod 2k+s,
• mx = x′ · α mod 2k+s.

The MAC m is created under a global key α and both parties hold additive shares of the MAC
and the key. We use JxK to denote the set of authenticated secret shares of x.
Actively Secure 2-Party Computation Protocols and Frameworks
2022

1.0
3 / 18



ID D-2-501
Public

A malicious adversary who wants to alter the value of x has to also alter the MAC share so that
the MAC relation holds. This is equivalent to the adversary guessing the s least significant bits
of α. Thus, the s additional bits in the ring form the security parameter. Setting s ≥ 40 is most
common.

2.1 Circuit Evaluation
At the start of evaluation, the parties sample random MAC key shares α1 and α2 and share their
secret inputs x and y such thatP1 holds (x1,mx

1 , α1), (y1,m
y
1, α1) andP2 holds (x2,mx

2 , α2), (y2,m
y
2, α1).

These shares are then used to evaluate the gates in the circuit computing f . Subsequently, we
implicitly assume that all arithmetic on shares is mod 2k+s.

Linear gates such as addition, subtraction and multiplication by a non-secret constant can be
computed without interaction between the two parties:

JxK + JyK = {(x1 + y1,m
x
1 +my

1, α1), (x2 + y2,m
x
2 +my

2, α2)}

c · JxK = {(c · x1, c ·m1, α1), (c · x2, c ·m2, α2)}

c+ JxK = {(c+ x1, cα1 +m1, α1), (x2, cα2 +m2, α2)}.

Before looking at the protocol for evaluating multiplication gates, we will look at how to open a
secret shared value and check the correctness of the MAC.

The procedure for checking the MAC requires committing to a secret value before revealing it. A
commitment scheme [8] is used to ensure that a party can not change their mind about a value
after learning some additional information. This eliminates the advantage of receiving the other
party’s value before sending your own.

Using the commitment scheme, we can define the procedure MACCheck in Figure 1 for opening
a single shared value and checking the MAC.

Procedure MACCheck

Procedure for opening a value JxK and checking the MAC.
1. The parties obtain a shared random value JrK.
2. The parties compute JyK = JxK + 2k · JrK locally.
3. Both parties send their share yi to the other party and reconstruct y = y1 + y2

mod 2k

4. Both parties commit to zi = my
i − y · αi where my

i is a MAC share of JyK
5. All parties open their commitments and check z = z1 + z2 = 0 mod 2k+s

6. If the check passes, output y, otherwise abort.

Figure 1. Procedure for opening a shared value and checking the MAC.

In step 2, the procedure masks the top s bits of x with a random value. This is done to prevent
leakage of whether x has overflowed.

The MACCheck procedure is used whenever a private value is opened to check that the MAC
relation holds. If the relation does not hold, than the parties have performed inconsistent oper-
ations on the private value. When a party detects such an inconsistency, it should halt or abort
the protocol execution.

Actively Secure 2-Party Computation Protocols and Frameworks
2022

1.0
4 / 18



ID D-2-501
Public

A vector of MACs can be opened in a more efficient manner by checking a random linear com-
bination of MACs at once.

Procedure BatchMACCheck

Procedure for opening a values Jx1K, . . . , JxtK and checking the MAC.
Opening the shared values: for every i ∈ 1, . . . , t:

1. The parties obtain a shared random value JriK.
2. The parties compute JyiK = JxiK + 2k · JriK locally.
3. Both parties send their share of JyiK to the other party and reconstruct yi = yi 1+yi 2

mod 2k

Checking the MACs:

1. Both parties sample random χ1, . . . , χt.
2. Both parties compute

zj =

t∑
i=1

χi ·myi
j − χi · yi · αj

where myi
j is a MAC share of JyiK and j ∈ {0, 1}.

3. The parties commit to zj .
4. The parties open their commitments and check z = z1 + z2 = 0 mod 2k+s

5. If the check passes, output y, otherwise abort.

Figure 2. Procedure for opening a vector of shared values and checking the MACs.

Using the procedure for opening secret values and checkingMACs, we can define the procedure
for multiplying two secret values. The multiplication gate in SPDZ2k requires pre-generated
correlated randomness in the form of multiplication triples (JaK, JbK, JcK) where c = a · b and a and
b are random. We will look at methods for generating these triples in chapter 3.

Procedure Multiplication

Procedure for multiplying values JxK and JyK.
1. The parties obtain a random multiplication triple (JaK, JbK, JcK).
2. Use MACCheck to open and check JxK− JaK as ϵ and JyK− JbK as δ.
3. Locally compute Jx · yK = JcK + ϵ · JbK + δ · JaK + ϵ · δ.

Figure 3. Procedure for multiplying secret shared values

The final component of the online phase that we need to evaluate a circuit is input sharing and
authenticating. This can be done using a pre-generated shared random value called the input
mask.

With these components we can assemble the online phase of the SPDZ2k protocol for function
evaluation.

The simple computations and low communication make the online phase of SDPZ2k very effi-
cient, one multiplication requires sending 4 ring elements in two rounds. With a latency of 0.2
ms, the SPDZ2k protocol in mp-spdz [9] has an amortized throughput of 760 000multiplications

Actively Secure 2-Party Computation Protocols and Frameworks
2022

1.0
5 / 18



ID D-2-501
Public

Procedure Input sharing

Procedure for secret sharing input x from party Pi.

1. The parties obtain a shared random value JrK where r is known to Pi.
2. Pi sends ϵ = x− r to the other party.
3. The parties set JxK = JrK + ϵ.

Figure 4. Procedure for creating an authenticated secret sharing of a party’s input

Protocol SPDZ2k online phase

The parties securely evaluate the function f with inputs x and y from P1 and P2 respec-
tively.

1. The parties have generate MAC key shares αi
$← Z2k+s , multiplication triples and

input masks as part of the preprocessing phase.
2. The parties create authenticated secret sharings JxK and JyK using the previous
procedure.

3. The parties evaluate the gates of the circuit computing f :
• Linear gates are evaluated without interaction.
• Multiplication gates are evaluated following the procedure Multiplication.

4. The output wires of the circuit are revealed with procedure MACCheck. Output
the revealed values.

Figure 5. Online phase of SPDZ2k protocol for function evaluation.

per second. With a larger latency of 100ms, the amortized throughput is 175 000 multiplications
per second. Most of the complexity of SPDZ2k is in the preprocessing phase.

The online phase requires authenticated shares of random values, multiplication triples and input
sharing masks. Chapter 3 looks at various approaches to precomputing these values.

2.2 Binary Circuits and Domain Conversion
The authenticated secret sharing scheme thus far can only evaluate circuits with linear and
multiplication gates. While all other functions can be expressed using these gates, doing so
would be highly inefficient. Some functions are more naturally expressed as binary circuits, so
conversions between binary and arithmetic sharings are desirable. Additionally, we would like
to provide gates for non-linear functions such as truncation and comparison.

The SPDZ2k authenticated secret sharing scheme over Z2k can also be used for evaluating bi-
nary circuits in Z2. The drawback of this approach is that the shares of the secret 1-bit value and
MAC must be in a larger ring Z21+s . Thus, the communication overhead of any binary operation
is very large relative to the input size.

The SPDZ protocol over Zp can be used instead but the soundness error is dependent on the
size of the field. Thus, for Z2, the chance of a cheating party not being detected is 1

2 . More
MACs can be used to reduce the soundness error. In [10], a protocol for authenticating binary
shares and generating binary multiplication triples from correlated oblivious transfer extensions

Actively Secure 2-Party Computation Protocols and Frameworks
2022

1.0
6 / 18



ID D-2-501
Public

(COTe) is given.

The main approach for converting between binary and arithmetic shares in a 2-party active
protocol is to use another kind of correlated random values to mask the secret value [11, 12].

A doubly authenticated bit (daBit) is a pair (JrK, JrK2) where r ∈ {0, 1} is uniformly random andJrK2 is an authenticated binary secret share of r. In other words, a daBit is a single bit value
secret shared in two different ways. Using this pair, a binary shared value JxK2 can be converted
to JxK:
1. Open d = JrK2 ⊕ JxK2
2. Compute locally JxK = d+ JrK− 2d · JrK

Extended doubly authenticated bits (edaBits) is a tuple (JrK, Jr0K2, . . . , JrkK2), where r0, . . . , rk is
the bit decomposition of r. Converting a value JxK in an arithmetic domain x ∈ Z2k to a authen-
ticated secret shared bit decomposition is easy using edaBits:

1. Open d = JxK− JrK
2. Compute [x0]2 . . . [xk]2 ← BinaryAdder(c,

[
[r0]2, . . . [rk]2

]
)

The binary adder circuit which consists of boolean gates and implements addition of k-bit num-
bers is implemented in the authenticated binary secret sharing scheme.

With edaBits, other non-linear gates can be implemented. In [12], protocols for bitshift and
truncation are given. In [13], an efficient comparison protocol uses two edaBits. Protocols using
edaBits are explained in simpler terms in [14].

Actively Secure 2-Party Computation Protocols and Frameworks
2022

1.0
7 / 18



ID D-2-501
Public

3 Preprocessing
The protocol for function evaluation using authenticated secret sharing depends on a couple
of different forms of correlated random values. These values are independent of the function
input and can thus be generated ahead of time in a preprocessing phase.

The ideal goal is a precomputation protocol that is fast enough to not be a performance bottle-
neck in data intensive applications. Such a protocol could be executed along side the function
evaluation protocol to produce correlated random values as they are needed.

In the following section, two approaches are illustrated: homomorphic encryption based and
oblivious transfer based preprocessing.

3.1 Homomorphic Encryption Based Preprocessing
The original SPDZ protocol uses a somewhat-homomorphic encryption (SHE) scheme for pre-
processing multiplication triples. Somewhat-homomorphic encryption allows for adding and
multiplying ciphertexts so that the resulting ciphertext is an encryption of the sum or product
respectively. The number of subsequent operations that can be performed on a ciphertext is
limited by the depth threshold of the SHE scheme. The SPDZ preprocessing [6] requires a single
multiplication and addition of ciphertexts.

To generate amultiplication triple (JaK, JbK, JcK)where a·b = c mod p, the parties generate random
shares of a and b locally. They then use the homomorphic property of the SHE scheme to encrypt
their shares and compute ciphertexts of the shares of a · b. A corrupted party could generate
incorrect ciphertexts resulting in incorrect triples that could be exploited in the online phase.
A zero-knowledge proof of plaintext knowledge is necessary to assure the correctness of the
ciphertext.

The SHE scheme is also used to generate theMACs for the shared triples to obtain authenticated
secret sharings of the triples.

Finally, the multiplicative property of the triple must be checked. This is done through the Triple-
Sacrifice procedure in Figure 6 where one triple is used to check the validity of another. The
triple sacrifice step is a common method in many preprocessing protocols.

Procedure TripleSacrifice

Procedure for checking whether JaK · JbK = JcK through sacrificing a potentially incorrect
triple (JfK, JgK, JhK)
1. The parties obtain two triples (JaK, JbK, JcK), (JfK, JgK, JhK). The multiplicative prop-
erty or MAC relation of these triples is not guaranteed to hold.

2. Optain and open a random authenticated secret shared value JrK.
3. Open p = r · JaK− JfK and s = JbK− JgK.
4. Open z = r · JcK− JhK− s · JfK− p · JgK− s · p.
5. If z = 0, use the triple (JaK, JbK, JcK) in subsequent secure computation, otherwise
discard the triple and abort.

Figure 6. Procedure for checking the multiplicative property of a triple.

Actively Secure 2-Party Computation Protocols and Frameworks
2022

1.0
8 / 18



ID D-2-501
Public

All combined, the preprocessing phase of SPDZ is very slow due to the high communication
cost and expensive somewhat-homomorphic encryption. The paper states that preprocessing
a single multiplication triple takes 13ms in a 3-party setting [6].

Later advancements in SPDZ preprocessing achieve higher triple throughput by using an only
additively homomorphic encryption scheme. The Overdrive protocol [15] achieves 59000 triples
per second in a 64-bit prime field. In mod 2k, the MonZa protocol [16] achieves just 19 triples
per second.

Since the current state of the art of homomorphic encryption based preprocessing is a major
bottleneck for secure function evaluation, we will consider an oblivious transfer based approach
instead.

3.2 Oblivious Transfer Based Preprocessing
Oblivious transfer (OT) is a two party protocol between a sender and a receiver. In a 1-out-of-2
OT, the sender has two messages m0 and m1 and the receiver obliviously chooses one of the
messages. The sender does not learn the receivers choice and the receiver does not learn the
other message. The functionality of OT is illustrated in Figure 7. Very efficient constructions ex-
ist for computing a large number of oblivious transfers with both active and passive security [17,
18].

The main reason for basing preprocessing protocols on oblivious transfer variants is that ef-
ficient constructions exist for pseudorandom correlation generators (PCGs) that create large
quantities of random OTs from a small setup phase. Using PCGs, the number of communication
rounds and communication amount can be reduced enough that the preprocessing can be done
on the fly during secure function evaluation [19].

Oblivious transfer and variants of it can be used for generating multiplication triples for evalu-
ating multiplication gates in the authenticated secret sharing scheme. Additionally, OT variants
can be used to authenticate secret shared values by computing the corresponding MAC shares.

FOT
b

mb

m0,m1

Receiver Sender

Figure 7. Oblivious transfer functionality.

AuthenticatingSharedValues Wecan useOTbased techniques to createMAC shares for secret
shared values. The parties start of with shares α1 and α2 of the MAC key and shares x1 and x2
of a secret value. The goal of authentication is to get shares m1 and m2 of the MAC such that
m1 +m2 = (α1 + α2)(x1 + x2) mod 2k.

A variant of OT called correlated oblivious product evaluation (COPE) where the sender inputs x,
the receiver inputs ∆ and the parties learn q and t such that q+ t = x ·∆, is used to authenticate
a secret sharing in the MASCOT protocol [20].

The MASCOT protocol for authenticating shares in Zp is secure against a malicious adversary
and dishonest majority but it is based on a passively secure OT extension protocol. A privacy

Actively Secure 2-Party Computation Protocols and Frameworks
2022

1.0
9 / 18



ID D-2-501
Public

amplification technique is used to achieve malicious security which is of interest in the Z2k case
as well.

The SPDZ2k protocol uses a similar arithmetic OT variant to authenticate values in Z2k .

Oblivious linear evaluation (OLE) is a common variant of OT where a sender, with coefficients a
and b, and a receiver with input x, compute ax+ b while keeping their inputs secret. The output
ax+b is only seen by the receiver. Random oblivious linear evaluation (R-OLE) is a version of OLE
where the inputs x, a, and b are randomly sampled. The functionality of R-OLE is illustrated in
Figure 8. R-OLE is of particular interest because it can be used to cheaply implement regular OLE
and R-OLE output pairs can be independently generated without communication using silent-
OT [18].

FR-OLE
x

ax+ b
a, b

Receiver Sender

Figure 8. Random oblivious linear evaluation functionality.

The OLE based authentication procedure is described in Figure 9.

Procedure Authenticate

Procedure for authenticating a secret sharing of x = x1 + x2 mod 2k. The parties hold
MAC key shares α1 and α2. The parties want to obtain MAC sharesm1 andm2 such that
m1 +m2 = (α1 + α2)(x1 + x2) mod 2k.

1. P1 samples a random r1 and P2 samples a random r2.
2. The parties run FOLE with P1 as the sender. P1 inputs α1 and r1, P2 receives t1 =

α1x2 + r1.
3. The parties run FOLE with P2 as the sender. P2 inputs α2 and r2, P1 receives t2 =

α2x1 + r2.
4. P1 sets m1 = α1x1 + t2 − r1 and P2 sets m2 = α2x2 + t1 − r2.

Figure 9. Procedure for authenticating a secret sharing.

Using the authentication procedure, the parties can create input masks JrK where r is known
to one of the parties. The parties just sample random shares of r and use the authentication
procedure to obtain JrK. Then JrK is opened to one of the parties.
MultiplicationTriples fromOLE The output of R-OLE can be interpreted as amultiplication triple:

1. The parties P1 and P2 call FR-OLE twice. P1 receives x, x′, y, y′ and P2 receives a, b, a′, b′ such
that y = ax+ b and y′ = a′x′ + b′.

2. Set [u] := (x, a′), [v] := (x′, a), and [w] := (x′x+ y + y′, a′a− b− b′).

3. u · v = (x+ a′) · (x′ + a) = x′x+ xa+ x′a′ + a′a = x′x+ y − b+ y′ − b′ + x′a′ + a′a = w

Actively Secure 2-Party Computation Protocols and Frameworks
2022

1.0
10 / 18



ID D-2-501
Public

These triples from R-OLE are not authenticated, to authenticate them the OLE based procedure
can be used. The resulting authenticated triplesmight not bemultiplicative if one party deviated.
To verify that the multiplicative property holds, the sacrifice step from SPDZ can be used. This
entails generating twice as many triples as necessary and sacrificing half of them to check the
other half.

3.3 Pseudorandom Correlation Generators
The OT based preprocessing requires many calls to OLE and R-OLE functionalities. This ap-
proach to preprocessing is only efficient if these calls can be cheaply implemented. We will look
at pseudorandom correlation generators (PCGs) for silent OT and OLE extension.

PCGs allow two parties to create a large amount of correlated random values without interaction
after a small interactive setup phase. In the setup phase the parties run a protocol to generate a
seed that they can then independently expand into many correlated random values. PCGs exist
for many correlations such as random OT, random OLE and VOLE, and multiplication triples. The
most efficient constructions are for OT and VOLE which allow the parties to generate millions of
values in a second from a seed that is a couple of megabytes [19, 21, 22].

Definition 3 (PCG) A pseudorandom correlation generator for a correlation C is a pair of algo-
rithms (G,E) where G(1κ) outputs a pair of seeds (k0, k1) and E(i, ki) for i ∈ {0, 1} outputs a bit
string Ri ∈ {0, 1}n such that (R0, R1) is indistinguishable from C(1κ).

The starting point for constructing PCGs is function secret sharing (FSS) and the learning parity
with noise (LPN) assumption [23]. With FSS, the parties split the function into hiding additive
shares that can be independently evaluated. More concretely, given a function f in some class
of functions, the parties generate keys k0, k1 and using a key kb and input x, a party can evaluate
yb such that y0 + y1 = f(x).

For constructing PCGs, we are interested in FSS for a special class of functions called point
functions, fα,β(α) = β and fα,β(x) = 0 for any x ̸= α. An FSS scheme that evaluates a point
function is called a distributed point function (DPF). Multiple DPFs can be used to evaluate a
multi-point function.

Definition 4 (MPFSS) Let S be an ordered size t subset of {0, . . . , n − 1}. An (n, t)-multi-point
function secret scheme is a pair of algorithms (G,E) where G(S,−→y ) outputs a pair of keys
(K0,K1) such thatE(Ki) is a vector of additive secret shares of {si | si = −→y i if i ∈ S otherwise si =
0}.

Definition 5 (Learning Parity with Noise (LPN) assumption) Let D be a family of distributions
over a ring R and C be a probabilistic code generation algorithm such that C(k, q,R) outputs a
matrix A ∈ Rk×q. For dimension k, number of samples q and ring R, the (D, C,R) − LPN(k, q)
assumption states that {(A, s · A + e) | A ← C(k, q,R), e ← Dk,q, s ← Rk} is computationally
indistinguishable from {(A, b) | A← C(k, q,R), b←Rq}.

More informally, the LPN assumption states that for some code generator matrices A, a noisy
codeword s · A + e from a uniformly random input s, is uniformly random. Different variants of
the LPN assumption exist which result in more efficient PCGs [24].

A pseudorandom correlation generator for VOLE correlations is introduced in [22]. An outline of
this PCG is given in Figure 10.

Actively Secure 2-Party Computation Protocols and Frameworks
2022

1.0
11 / 18



ID D-2-501
Public

Procedure PCG for VOLE

Hm,n ∈ Fm×n is a public parity check matrix of a dual code and t is the noise threshold.
(G,E) is a (m, t)-multi-point function secret sharing scheme.

Setup

1. Pick a random size t subset S ⊂ {1, . . . ,m} and a random vector −→y ∈ Ft and
random x ∈ F

2. Compute (K0,K1) = G(S, x · −→y ).
3. Set seed0 = (F,m, n,K0, S,

−→y ) and seed1 = (F,m, n,K1, x). Output the seeds to the
respective parties.

Expand

1. Party P0 gets (F,m, n,K0, S,
−→y ). P0 sets −→µ = spreadn(S,−→y ) and −→υ0 = E(K0). P0

outputs (−→µ ·Hm,n,−−→υ0 ·Hm,n).

2. Party P1 gets (F,m, n,K1, x). P1 sets −→υ1 = E(K1) and outputs (x,−→υ1 ·Hm,n).

Figure 10. Outline of a procedure for generating and expanding keys of a pseudorandom correlation
generator for vector oblivious linear evaluation.

The correctness of this PCG follows from the correctness of the multi-point function secret
sharing. The security of the PCG holds if the MPFSS is secure and dual LPN assumption holds
for the chosen parameters.

A maliciously secure PCG for VOLE correlations over an integer ring is used for zero-knowledge
proofs in [25]. A PCG for the daBits and edaBits is given in [26]. Assuming the hardness of de-
coding some LDPC codes instead of the LPN assumption results in more efficient PCGs for VOLE
and OT [21]. The ring-LPN assumption can be used to construct PCGs for OLE correlations [24].

PCGs can be used to reduce the bottleneck of the preprocessing phase in two-party com-
putation. Instead of a homomorphic encryption based preprocessing for multiplication triples
and other correlated randomness, a small setup phase generates keys for a number of dif-
ferent PCGs that are expanded during the online phase. The remaining online phase is non-
cryptographic and computationally much less complex. The resulting protocol steps are illus-
trated in Figure 11.

1. PCGs are setup for
OLE, VOLE, daBits, etc.

2. PCG keys are expanded
according to protocol
requirements.

3. SPDZ2k online phase
uses different types of
correlated randomness.

Figure 11. Outline of a SPDZ2k style secure function evaluation protocol using PCGs.

Actively Secure 2-Party Computation Protocols and Frameworks
2022

1.0
12 / 18



ID D-2-501
Public

4 Garbled Circuits
Garbled circuits (GC) is an approach for secure function evaluation that has a constant commu-
nication pattern, independent of the function circuit. Instead of evaluating each gate in a circuit
with a secure protocol, garbled circuits transforms the circuit into a privacy preserving garbled
circuit that can be evaluated by one of the parties locally.

The protocol works in two phases. Firstly, one of the parties, called the garbler, embeds their
input into the circuit and creates ”encrypted” truth-tables for the gates in the circuit. The garbled
circuit is then sent to the other party, the evaluator, who uses their input to evaluate the circuit
to receive an ”encrypted” result which can then be opened by the garbler.

The garbling and evaluating steps are computationally heavy and the total communication cost
is higher than that of secret sharing based function evaluation, but unlike secret sharing, the
number of communication rounds is constant and low. Therefore, for very deep circuits that
have relatively small inputs, GC based function evaluation can be faster.

Circuit Garbling Let G(A,B, i) be a pseudo-random function where A and B are k-bit keys, i ∈
{0, . . . , T}, and the output is 2k bits. In loose terms, the circuit garbling works as follows:

1. For each wire i ∈ {0, . . . , T} in the circuit, the garbler picks two random k-bit keys (Ki
0,K

i
1).

2. Let i be the index of an output wire of an AND gate and l and r be its left and right input
wires respectively. To create the garbled tabled of the gate:

a. For each (a, b) ∈ {0, 1} × {0, 1}, Ca,b = G(K l
a,K

r
b , i)⊕ (Ki

a∧b ∥ 0k).
b. Randomly permute (C00, C01, C10, C11)

3. Any other logical gate can be garbled in the same manner.

In the beginning of evaluation, the evaluator has inputs b0, . . . , bn for wires i ∈ {0, . . . , n}. Using
an oblivious transfer protocol, the evaluator obtains keys K0

b0
, . . . ,Kn

bn
from the garbler.

The evaluator uses the input wire keys to evaluate the circuit gate-by-gate. For each gate i,
the garbler computes G(K l

x,K
r
y , i), and uses it to decrypt the garbled table. Only one of the

decryptions will be correct giving the value (Ki
x∧y ∥ 0k).

More advanced constructions use key derivation algorithms to reduce the communication of
wire keys and XOR gates can be evaluated without the need for a garbled table [27].

Actively SecureGarbledCircuits An actively corrupted garbler can break the evaluator’s privacy
by garbling a circuit that reveals the evaluator’s secret input. Since the evaluator can not see the
logic of the underlying circuit from the garbled circuit, the garbler has many ways to cheat. A
way to mitigate this is to garble lots of circuits so that the evaluator can open a random selection
of them and validate the function that they compute. This approach is referred to as cut-and-
choose [28].

A newer technique for actively secure garbled circuits uses a preprocessing phase and corre-
lated randomness to create an authenticated garbled circuit [29]. The technique is comparable
to the MACs in the authenticated secret sharing scheme. The resulting protocol evaluates AES
circuits in 6.7 ms when amortized over 1048 executions.

Actively Secure 2-Party Computation Protocols and Frameworks
2022

1.0
13 / 18



ID D-2-501
Public

In brief, the authenticated garbled circuit is secret shared between the garbler and the evaluator.
As a result, the garbling step is performed in a distributedmanner and the garbler can not change
the logic of the garbled circuit on their own.

An effective approach is to combine authenticated secret sharing and garbled circuits in a mixed
protocol. The SCALE-MAMBA MPC framework converts between authenticated secret shares
and garbled circuit representation using edaBits [30]. Evaluating neural networks is more ef-
ficient with a mixed protocol where neuron activation functions are evaluated using garbled
circuits and matrix multiplications are done using secret sharing [31].

Actively Secure 2-Party Computation Protocols and Frameworks
2022

1.0
14 / 18



ID D-2-501
Public

5 2PC Frameworks for Application
Development
The most notable frameworks for developing applications using two-party actively secure com-
putation are MP-SPDZ [9] and SCALE-MAMBA [32]. Both are intended to be research tools for
developing and benchmarking MPC protocols and applications. Their standout feature is the
large number of deployment configurations and underlying MPC protocols supported.

MP-SPDZ implements, among others, SPDZ2k online phase with homomorphic encryption and
oblivious transfer based preprocessing. The protocol includes arithmetic functions for inte-
gers, floating point numbers and fixed point numbers. Applications on top of MP-SPDZ are
programmed in a Python-like programming language.

SCALE-MAMBA implements SPDZ with homomorphic encryption based preprocessing for the
two-party case. Arithmetic functions for integers, floating point numbers and fixed point num-
bers are included. In recent versions of SCALE-MAMBA, MPC applications are built in the Rust
language.

In both frameworks, branching over a public conditional and array types are supported. MP-
SPDZ additionally has built-in ORAM support and neural network evaluation.

Themajor deficit of these frameworks is the lack of persistent secure table storage and table op-
erations. For application deployment, another important missing feature is role assignment and
access control to indicate which party is allowed to execute which secure computation. These
are features that are available and commonly used in MPC applications built using Sharemind
MPC.

Adding actively secure two-party computation to Sharemind MPC Sharemind MPC includes
a large library of functions for three-party passively secure MPC. These functions are imple-
mented in a domain specific language for MPC protocols (PDSL) [2]. PDSL is a side-effect free
functional language. The PDSL compiler vectorises protocols and applies various optimizations
as well as checking the privacy of the resulting protocols [33].

For implementing actively secure two-party protocols the PDSL compiler has to be adapted.
Active security adds the side effect of protocol abort. Thus, the language has to account for this
new possible outcome. A failed security check, such as a MAC check or commitment opening,
should result in the party aborting the remaining computation and not sending any additional
messages to the other party. Since the Sharemind MPC application server can execute multiple
secure computations simultaneously, one aborted computation should not interfere with other
computations.

The passively secure three party protocols do not rely on any precomputed correlated ran-
domness, only a regular tape of pseudo-random bits. The compiler accounts for all consumed
random bits and for every protocol specifies the length of the random tape. For 2PC, the com-
piler has to be adapted to account for the many different types of correlated pseudo-random
values.

The static privacy checking of [33] does not apply to actively secure two-party protocols and
how to achieve a similar static checker is not immediately clear.

Actively Secure 2-Party Computation Protocols and Frameworks
2022

1.0
15 / 18



ID D-2-501
Public

Bibliography
[1] Dan Bogdanov, Sven Laur, and JanWillemson. “Sharemind: A Framework for Fast Privacy-

Preserving Computations”. In: Computer Security - ESORICS 2008. Ed. by Sushil Jajodia
and Javier Lopez. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp. 192–206. ISBN:
978-3-540-88313-5.

[2] Jaak Randmets. “Programming Languages for Secure Multi-party Computation Applica-
tion Development”. PhD thesis. University of Tartu, 2017. URL: http://hdl.handle.
net/10062/56298.

[3] Ivan Damgård, Claudio Orlandi, and Mark Simkin. Yet Another Compiler for Active Secu-
rity or: Efficient MPC Over Arbitrary Rings. Cryptology ePrint Archive, Paper 2017/908.
https://eprint.iacr.org/2017/908. 2017. URL: https://eprint.iacr.org/
2017/908.

[4] Hendrik Eerikson et al. “Use Your Brain! Arithmetic 3PC for Any Modulus with Active Se-
curity”. In: 1st Conference on Information-Theoretic Cryptography (ITC 2020). Ed. by Yael
Tauman Kalai, Adam D. Smith, and Daniel Wichs. Vol. 163. Leibniz International Proceed-
ings in Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum für In-
formatik, 2020, 5:1–5:24. ISBN: 978-3-95977-151-1. DOI: 10.4230/LIPIcs.ITC.2020.5.
URL: https://drops.dagstuhl.de/opus/volltexte/2020/12110.

[5] O. Goldreich, S. Micali, and A. Wigderson. “How to Play ANY Mental Game”. In: Proceed-
ings of the Nineteenth Annual ACM Symposium on Theory of Computing. STOC ’87. New
York, New York, USA: Association for Computing Machinery, 1987, pp. 218–229. ISBN:
0897912217. DOI: 10.1145/28395.28420. URL: https://doi.org/10.1145/28395.
28420.

[6] Ivan Damgård et al. “Multiparty Computation from Somewhat Homomorphic Encryption”.
In: Advances in Cryptology – CRYPTO 2012. Ed. by Reihaneh Safavi-Naini and Ran Canetti.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 643–662. ISBN: 978-3-642-32009-
5.

[7] Ronald Cramer et al. “SPDZ2k: Efficient MPCmod 2k for Dishonest Majority”. In: Advances
in Cryptology – CRYPTO 2018. Ed. by Hovav Shacham and Alexandra Boldyreva. Cham:
Springer International Publishing, 2018, pp. 769–798. ISBN: 978-3-319-96881-0.

[8] Carmit Hazay and Yehuda Lindell. Efficient Secure Two-Party Protocols. Springer, Jan.
2010. ISBN: 978-3-642-14302-1. DOI: 10.1007/978-3-642-14303-8.

[9] Marcel Keller. “MP-SPDZ: A Versatile Framework for Multi-Party Computation”. In: Pro-
ceedings of the 2020 ACM SIGSAC Conference on Computer and Communications Se-
curity. 2020. DOI: 10.1145/3372297.3417872. URL: https://doi.org/10.1145/
3372297.3417872.

[10] Tore Kasper Frederiksen et al. A Unified Approach to MPC with Preprocessing using OT.
Cryptology ePrint Archive, Paper 2015/901. https://eprint.iacr.org/2015/901.
2015. URL: https://eprint.iacr.org/2015/901.

[11] Dragos Rotaru and Tim Wood. MArBled Circuits: Mixing Arithmetic and Boolean Circuits
with Active Security. Cryptology ePrint Archive, Paper 2019/207. https://eprint.
iacr.org/2019/207. 2019. URL: https://eprint.iacr.org/2019/207.

Actively Secure 2-Party Computation Protocols and Frameworks
2022

1.0
16 / 18

http://hdl.handle.net/10062/56298
http://hdl.handle.net/10062/56298
https://eprint.iacr.org/2017/908
https://eprint.iacr.org/2017/908
https://eprint.iacr.org/2017/908
https://doi.org/10.4230/LIPIcs.ITC.2020.5
https://drops.dagstuhl.de/opus/volltexte/2020/12110
https://doi.org/10.1145/28395.28420
https://doi.org/10.1145/28395.28420
https://doi.org/10.1145/28395.28420
https://doi.org/10.1007/978-3-642-14303-8
https://doi.org/10.1145/3372297.3417872
https://doi.org/10.1145/3372297.3417872
https://doi.org/10.1145/3372297.3417872
https://eprint.iacr.org/2015/901
https://eprint.iacr.org/2015/901
https://eprint.iacr.org/2019/207
https://eprint.iacr.org/2019/207
https://eprint.iacr.org/2019/207


ID D-2-501
Public

[12] Daniel Escudero et al. Improved Primitives for MPC over Mixed Arithmetic-Binary Circuits.
Cryptology ePrint Archive, Paper 2020/338. https://eprint.iacr.org/2020/338.
2020. URL: https://eprint.iacr.org/2020/338.

[13] Eleftheria Makri et al. Rabbit: Efficient Comparison for Secure Multi-Party Computation.
Cryptology ePrint Archive, Paper 2021/119. https://eprint.iacr.org/2021/119.
2021. URL: https://eprint.iacr.org/2021/119.

[14] Daniel Escudero. “Multiparty Computation over Z/2kZ”. PhD thesis. Aarhus University,
2021.

[15] Marcel Keller, Valerio Pastro, and Dragos Rotaru. “Overdrive: Making SPDZ Great Again”.
In: Advances in Cryptology – EUROCRYPT 2018. Ed. by Jesper Buus Nielsen and Vin-
cent Rijmen. Cham: Springer International Publishing, 2018, pp. 158–189. ISBN: 978-3-
319-78372-7.

[16] Dario Catalano et al. MonZa: Fast Maliciously Secure Two Party Computation on Z2k.
Cryptology ePrint Archive, Report 2019/211. https://ia.cr/2019/211. 2019.

[17] Marcel Keller, Emmanuela Orsini, and Peter Scholl. Actively Secure OT Extension with
Optimal Overhead. Cryptology ePrint Archive, Paper 2015/546. https://eprint.iacr.
org/2015/546. 2015. URL: https://eprint.iacr.org/2015/546.

[18] Tung Chou and Claudio Orlandi. The Simplest Protocol for Oblivious Transfer. Cryptology
ePrint Archive, Paper 2015/267. https://eprint.iacr.org/2015/267. 2015. URL:
https://eprint.iacr.org/2015/267.

[19] Damiano Abram et al. An Algebraic Framework for Silent Preprocessing with Trustless
Setup andActive Security. Cryptology ePrint Archive, Paper 2022/363. https://eprint.
iacr.org/2022/363. 2022. URL: https://eprint.iacr.org/2022/363.

[20] Marcel Keller, Emmanuela Orsini, and Peter Scholl. MASCOT: Faster Malicious Arithmetic
Secure Computation with Oblivious Transfer. Cryptology ePrint Archive, Paper 2016/505.
https://eprint.iacr.org/2016/505. 2016. DOI: 10.1145/2976749.2978357. URL:
https://eprint.iacr.org/2016/505.

[21] GeoffroyCouteau, Peter Rindal, and Srinivasan Raghuraman.Silver: Silent VOLE andObliv-
ious Transfer fromHardness of Decoding Structured LDPCCodes. Cryptology ePrint Archive,
Paper 2021/1150. https://eprint.iacr.org/2021/1150. 2021. URL: https://
eprint.iacr.org/2021/1150.

[22] Elette Boyle et al. Compressing Vector OLE. Cryptology ePrint Archive, Paper 2019/273.
https://eprint.iacr.org/2019/273. 2019. DOI: 10.1145/3243734.3243868. URL:
https://eprint.iacr.org/2019/273.

[23] Elette Boyle et al. Efficient Pseudorandom Correlation Generators: Silent OT Extension
and More. Cryptology ePrint Archive, Paper 2019/448. https://eprint.iacr.org/
2019/448. 2019. URL: https://eprint.iacr.org/2019/448.

[24] Elette Boyle et al. Efficient Pseudorandom Correlation Generators from Ring-LPN. Cryp-
tology ePrint Archive, Paper 2022/1035. https://eprint.iacr.org/2022/1035.
2022. DOI: 10.1007/978-3-030-56880-1_14. URL: https://eprint.iacr.org/
2022/1035.

[25] Carsten Baum et al.MozZ2karella: Efficient Vector-OLE and Zero-Knowledge Proofs Over
Z2k . Cryptology ePrint Archive, Paper 2022/819. https://eprint.iacr.org/2022/
819. 2022. URL: https://eprint.iacr.org/2022/819.

Actively Secure 2-Party Computation Protocols and Frameworks
2022

1.0
17 / 18

https://eprint.iacr.org/2020/338
https://eprint.iacr.org/2020/338
https://eprint.iacr.org/2021/119
https://eprint.iacr.org/2021/119
https://ia.cr/2019/211
https://eprint.iacr.org/2015/546
https://eprint.iacr.org/2015/546
https://eprint.iacr.org/2015/546
https://eprint.iacr.org/2015/267
https://eprint.iacr.org/2015/267
https://eprint.iacr.org/2022/363
https://eprint.iacr.org/2022/363
https://eprint.iacr.org/2022/363
https://eprint.iacr.org/2016/505
https://doi.org/10.1145/2976749.2978357
https://eprint.iacr.org/2016/505
https://eprint.iacr.org/2021/1150
https://eprint.iacr.org/2021/1150
https://eprint.iacr.org/2021/1150
https://eprint.iacr.org/2019/273
https://doi.org/10.1145/3243734.3243868
https://eprint.iacr.org/2019/273
https://eprint.iacr.org/2019/448
https://eprint.iacr.org/2019/448
https://eprint.iacr.org/2019/448
https://eprint.iacr.org/2022/1035
https://doi.org/10.1007/978-3-030-56880-1_14
https://eprint.iacr.org/2022/1035
https://eprint.iacr.org/2022/1035
https://eprint.iacr.org/2022/819
https://eprint.iacr.org/2022/819
https://eprint.iacr.org/2022/819


ID D-2-501
Public

[26] SameerWagh.BarnOwl: SecureComparisons using Silent PseudorandomCorrelationGen-
erators. Cryptology ePrint Archive, Paper 2022/800. https://eprint.iacr.org/
2022/800. 2022. URL: https://eprint.iacr.org/2022/800.

[27] Vladimir Kolesnikov and Thomas Schneider. “Improved Garbled Circuit: Free XOR Gates
and Applications”. In: Automata, Languages and Programming. Ed. by Luca Aceto et al.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp. 486–498.

[28] Yan Huang, Jonathan Katz, and Dave Evans. Efficient Secure Two-Party Computation Us-
ing Symmetric Cut-and-Choose. Cryptology ePrint Archive, Paper 2013/081. https://
eprint.iacr.org/2013/081. 2013. URL: https://eprint.iacr.org/2013/081.

[29] Xiao Wang, Samuel Ranellucci, and Jonathan Katz. Authenticated Garbling and Efficient
Maliciously Secure Two-Party Computation. Cryptology ePrint Archive, Paper 2017/030.
https://eprint.iacr.org/2017/030. 2017. URL: https://eprint.iacr.org/
2017/030.

[30] AbdelrahamanAly et al. Zaphod: Efficiently Combining LSSS andGarbledCircuits in SCALE.
Cryptology ePrint Archive, Paper 2019/974. https://eprint.iacr.org/2019/974.
2019. URL: https://eprint.iacr.org/2019/974.

[31] Arpita Patra et al. “ABY2.0: Improved Mixed-Protocol Secure Two-Party Computation”.
In: 30th USENIX Security Symposium (USENIX Security 21). USENIX Association, Aug.
2021, pp. 2165–2182. ISBN: 978-1-939133-24-3. URL: https://www.usenix.org/
conference/usenixsecurity21/presentation/patra.

[32] Abdelrahaman Aly et al. SCALE–MAMBA v1.14 : Documentation. 2022. URL: https://
homes.esat.kuleuven.be/~nsmart/SCALE/Documentation-SCALE.pdf.

[33] Martin Pettai and Peeter Laud. “Automatic Proofs of Privacy of SecureMulti-party Compu-
tation Protocols against Active Adversaries”. In: 2015 IEEE 28th Computer Security Foun-
dations Symposium. 2015, pp. 75–89. DOI: 10.1109/CSF.2015.13.

Actively Secure 2-Party Computation Protocols and Frameworks
2022

1.0
18 / 18

https://eprint.iacr.org/2022/800
https://eprint.iacr.org/2022/800
https://eprint.iacr.org/2022/800
https://eprint.iacr.org/2013/081
https://eprint.iacr.org/2013/081
https://eprint.iacr.org/2013/081
https://eprint.iacr.org/2017/030
https://eprint.iacr.org/2017/030
https://eprint.iacr.org/2017/030
https://eprint.iacr.org/2019/974
https://eprint.iacr.org/2019/974
https://www.usenix.org/conference/usenixsecurity21/presentation/patra
https://www.usenix.org/conference/usenixsecurity21/presentation/patra
https://homes.esat.kuleuven.be/~nsmart/SCALE/Documentation-SCALE.pdf
https://homes.esat.kuleuven.be/~nsmart/SCALE/Documentation-SCALE.pdf
https://doi.org/10.1109/CSF.2015.13

	Introduction
	Authenticated Secret Sharing
	Circuit Evaluation
	Binary Circuits and Domain Conversion

	Preprocessing
	Homomorphic Encryption Based Preprocessing
	Oblivious Transfer Based Preprocessing
	Pseudorandom Correlation Generators

	Garbled Circuits
	2PC Frameworks for Application Development

