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Efficient Two-Party ML-DSA Protocol in Active Security Model

Abstract:
ML-DSA is a NIST standard that defines a signature scheme: a set of algorithms for
creating and verifying digital signatures. Digital signatures can be used, for example,
to authenticate to websites online and to sign documents. ML-DSA signatures, unlike
signatures that follow so-called classical formats, are quantum-resistant: it is believed that
forging ML-DSA signatures is inviable even with a cryptographically relevant quantum
computer (that is not yet known to exist).
The security of a signing scheme relies on the secrecy of the used private key material.
One way to increase the security of a signing scheme is to distribute the secret material
across multiple devices, such that a sufficient number of them need to cooperate to create
a signature. One scheme, that distributes the key across two devices, is implemented
in SplitKey® technology, which is used in a popular signing solution Smart-ID® [1].
Unfortunately, a two-party scheme that could create standards-compliant quantum-
resistant signatures does not exist.
This thesis presents a novel two-party signing scheme capable of creating ML-DSA-
compliant signatures — Duolithium. This scheme is resistant against potential active
attacks by either party, both during the key generation and signing processes. The thesis
proposes some parts of Duolithium that were invented as a part of this thesis research and
documents the remaining parts with reliance on prior research. Additionally, this thesis
presents a complete, tested for functionality implementation of Duolithium in Python,
together with the results of the benchmarks of network overhead and computational
performance. The benchmark results suggest that Duolithium may be used to implement
a new, quantum-resistant version of SplitKey that would be fully compatible with any
signature verification component that supports ML-DSA.
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Efektiivne kaheosapoolne ML-DSA protokoll aktiivse turvalisusega
Lühikokkuvõte:
ML-DSA on NISTi standard, mis defineerib teatud signatuuriskeemi, s.t. algoritmid digi-
taalsignatuuride loomiseks ja kontrollimiseks. Digitaalsignatuure saab kasutada näiteks
veebilehtedel autentimiseks ja dokumentide allkirjastamiseks. ML-DSA signatuurid,
erinevalt signatuuridest, mis järgivad nn klassikalisi formaate, on kvantarvutikindlad:
usutakse, et ML-DSA signatuuri võltsimine on praktikas võimatu isegi krüptograafiliselt
olulise kvantarvuti abil (mida teadolevalt veel ei eksisteeri).
Signatuuriskeemi turvalisus sõltub kasutatud privaatvõtme materjali salajasusest. Üks
viis signatuuriskeemi turvalisemaks muuta on privaatvõtme jagamine mitme seadme
vahel, nii et allkirja loomiseks peavad piisavalt paljud neist koostööd tegema. Üks skeem,
mis jagab võtme kahe seadme vahel, on rakendatud SplitKey® tehnoloogias, mis on
kasutusel populaarses autentimis- ja allkirjastamislahenduses Smart-ID® [1]. Kahjuks
ei eksisteeri kahe osapoolega skeemi, mis suudaks luua mõnele standardile vastavaid
kvantarvutikindlaid allkirju.
Käesolev töö kirjeldab Duolithiumi — kahe osapoolega signeerimisskeemi, mis suudab
luua ML-DSA standardile vastavaid signatuure. See skeem on vastupidav võimalikele
aktiivsetele rünnetele kummaltki osapoolelt, nii võtme genereerimise kui ka signeerimise
protsesside ajal. Meie töö pakub välja Duolithiumi teatud alamprotokollide konstruktsioo-
nid ning dokumenteerib ülejäänud osa skeemist tuginedes eelnevatele teadusuuringutele.
Samuti esitab meie töö Duolithiumi täieliku realisatsiooni Pythonis, ühes funktsionaalsu-
se testide ning võrguliikluse ja arvutusliku jõudluse mõõtmistega. Mõõtmistulemused
viitavad sellele, et Duolithium võib olla sobiv sellise kvantarvutikindla SplitKey versiooni
loomiseks, mis oleks täielikult ühilduv kõigi ML-DSA-d toetavate signatuuriverifitseeri-
miskomponentidega.

Võtmesõnad:
ML-DSA, mitme osapoolega arvutus, aktiivne turvalisus, krüptograafia, postkvant-
krüptograafia

CERCS:
P170 Arvutiteadus, arvutusmeetodid, süsteemid, juhtimine
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1 Introduction

Estonia is recognized for its innovative electronic solutions that enable its residents to
perform financial transactions, interact with governmental services and even participate
in elections, all via the internet. One such solution is built on SplitKey [2]. SplitKey is a
threshold cryptography technology that allows creating digital signatures using a private
key that is sharded (split) across two devices. This prevents either party from using the
private key without the cooperation of the other party. A potential attacker would need to
compromise both devices to extract the private key.

The original SplitKey creates RSA-compatible signatures. Since the RSA algorithm
is not quantum-resistant, RSA-compatible signatures do not provide the desired level of
protection against forgeries in the presence of an attacker with a cryptography-relevant
quantum computer. Such a computer is not yet known to exist, but advancements in
quantum computing could make it feasible in the future. In a 2022 survey of 40 leading
experts in the field, more than half found that the likelihood of a quantum computer
being able to break RSA-2048 within fifteen years is around 50% or more [3, Figure
6]. Additionally, in November 2024, NIST published a draft [4] for a recommendation
to discontinue the use of non-quantum-resistant digital signatures in the USA govern-
mental institutions by 2035. The survey and the recommendation underscore the urgent
need for transitioning to post-quantum cryptographic standards, due to both security
considerations and regulatory requirements.

Development of threshold schemes that would produce signatures compatible with
standardized and widely-supported cryptographic algorithms is an ongoing pursuit. This
thesis describes a novel Multi Party Computation based threshold scheme for two par-
ties (named Duolithium) that creates signatures compatible with ML-DSA, which are
quantum-resistant. This scheme is secure against key extraction attacks and signature
forgeries, even in the case of active attacks by the Server or the Client. To function,
Duolithium relies on a third participant — the Correlated Randomness Provider (abbrevi-
ated as CRP).

1.1 ML-DSA

ML-DSA is a digital signature algorithm, standardized by NIST in FIPS 204 [5] in
August 2024. ML-DSA is a lattice-based quantum-resistant algorithm: it is believed that
even with a sufficiently powerful quantum computer, it would be infeasible to forge an
ML-DSA signature. The first version of the algorithm later standardized as ML-DSA
was proposed [6] in 2017 under the name CRYSTALS-Dilithium.
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ML-DSA variants (parameter sets) are ML-DSA-44, ML-DSA-65, and ML-DSA-87.
These variants provide different claimed security strength levels (2, 3 and 5, respectively)
and their construction is different only in the values of some constants. The “weakest”
of these levels (level 2) is defined [7] to be met if any attack that breaks the relevant
security definition (for ML-DSA: signature unforgeability) must require computational
resources comparable to or greater than those required for collision search on a 256-bit
hash function. The “strongest” level is tied [7] to the difficulty of a key search on a block
cipher with a 256-bit key.

1.2 MPC

Multiparty computation (MPC) is a branch of cryptography that deals with the design and
analysis of algorithms that allow multiple parties to compute a function over their inputs
while keeping those inputs private. A special case of MPC is two-party computation
(2PC). In the context of this thesis, two-party computation allows creating ML-DSA
signatures without either party possessing the corresponding private key.

1.3 Scope and contributions

This thesis documents the protocols that are required for implementing a 2PC ML-DSA
scheme, while also providing some functionality and security proofs. The described
protocols can be divided into three categories:

A. General-purpose 2PC protocols that are already published

B. ML-DSA-specific protocols that were proposed [8] (but not published) before the
commencement of the research work for this thesis

C. ML-DSA-specific protocols that were invented as a part of this thesis research

Thus, the main research question of this thesis is: “Is it possible to create a practical
2PC system, capable of producing ML-DSA-compatible signatures?” The engineering
research method was employed to develop prototype programs that implement the
ML-DSA key generation and signature creation protocols (according to how they are
presented in this thesis). Experimentally, these programs were tested for functionality
and benchmarked for computational performance and for used traffic. The empiric
benchmark results were used to answer the main research question.
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1.4 Structure of the thesis

The thesis is structured as follows. Chapter 2 outlines the aspects of ML-DSA and
MPC that are relevant to the described scheme, as well as the necessary general-purpose
2PC protocols. Chapter 3 documents the unpublished subprotocols for 2PC ML-DSA.
Chapter 4 describes the subprotocols for 2PC ML-DSA that were created as part of the
research for this thesis. Chapter 5 documents the unpublished ML-DSA key generation
and signing protocols, which leverage the protocols discussed in the previous three
chapters. Chapter 6 provides a general description of the prototype implementation, as
well as performance and traffic measurements for this implementation. Chapter 7 points
out the potential application of the scheme described in this thesis and outlines the topics
for further research.
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2 Background
This chapter provides the necessary background for the following chapters of the thesis.
First, the used mathematical objects and operations on them are explained. Then, ML-
DSA key generation and signing algorithms are described, with focus on details relevant
for creating the corresponding 2PC protocols. Then, the basics of 2PC are outlined, along
with some supporting subprotocols that are used in Duolithium.

2.1 Polynomial ring
This section describes the relevant mathematical background: modulo rings Zq and oper-
ations on them; polynomial rings Zq[X]/(Xn + 1), polynomial addition, multiplication
and reduction; NTT-form of a polynomial.

Modular arithmetic. The operation of taking the modulo of an integer a under modu-
lus q (q ≠ 0) is denoted as amod+q and is defined to return the unique integer r, for which
0 ≤ r < q and there exists an integer1 n, such that a = q ⋅ n + r. Additionally, lets define
amod± q = r, where r is the unique integer −⌈ q2⌉ < r ≤ ⌊

q
2⌋, such that rmod+ q = amod+ q

[5, Page 6]. Addition of integers under modulus q is equivalent to adding these integers
and then taking the modulo of the result under modulus q. Multiplication of integers
under modulus q is equivalent to multiplying these integers and then taking the modulo
of the result under modulus q.

Modulo ring. A ring is a set with two binary operations on the elements of the set —
addition (denoted as a + b) and multiplication (denoted as a ⋅ b) — such that for all a, b, c
in this ring:

1. a + b = b + a (addition is commutative)

2. (a + b) + c = a + (b + c) (addition is associative)

3. There exists an additive identity 0. That is, for every a: a + 0 = a

4. For every a there exists an additive inverse −a, such that a + (−a) = 0

5. a ⋅ (b ⋅ c) = (a ⋅ b) ⋅ c (multiplication is associative)

6. a ⋅ (b+ c) = a ⋅ b+ a ⋅ c and (b+ c) ⋅ a = b ⋅ a+ c ⋅ a (multiplication is distributive over
addition)

1This integer n may be positive, zero, or negative.
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Note that it is implied that both addition and multiplication produce the elements of the
same set. Subtraction of b from a is defined as a − b = a + (−b). One example of a ring is
a set of integers modulo q, with operations of addition and multiplication under modulus
q. Such a ring is called a modulo ring and denoted as Zq. In this ring, there exists the
unique multiplicative identity element, denoted as 1, such that 1 ⋅ a = a for every a; and
multiplication is commutative: for all a, b in this ring a ⋅ b = b ⋅ a. [9, Chapter 12]

A field is a ring with commutative multiplication and multiplicative identity 1, where
every element a ≠ 0 has a multiplicative inverse a−1. Every modulo ring Zq, where q is a
prime, is a field. [9, Chapter 13]

Polynomial ring. The ring of polynomials over R, denoted as Zq[X] is the following
mathematical object:

Zq[X] = {an ⋅X
n + an−1 ⋅Xn−1 + ⋅ ⋅ ⋅ + a1 ⋅X + a0 ∣ ai ∈ Zq},

where necessarily n ≥ 0. Here X is a formal variable, thus the write-up an ⋅Xn + ⋅ ⋅ ⋅ +a1 ⋅
X + a0 really denotes the tuple (an, . . . , a1, a0), while reflecting how the operations in a
ring of polynomials are defined. Suppose f = an ⋅Xn + ⋅ ⋅ ⋅ + a0 and g = bn ⋅Xn + . . . b0
belong to Zq[X]. Then their sum is

f + g = (an + bn) ⋅X
n + ⋅ ⋅ ⋅ + (a0 + b0)

and their product is

f ⋅ g =
n−1
∑
i=0

n−1
∑
u=0
(ai ⋅ bu) ⋅X

u+i

(results of both operations also belong to Zq[X]). The operation of taking the modulo of
a polynomial f under modulus g = bn ⋅Xn + ⋅ ⋅ ⋅ + b0 (g ≠ 0) is denoted as f mod g = r
and is defined to return the unique integer polynomial r = cm ⋅Xm + ⋅ ⋅ ⋅ + c0, such that
m < n and there exists t ∈ Zq[X], for which f = g ⋅ t + r. [9, Chapter 16]

Notation ∥p∥∞ denotes the infinity norm of a polynomial. For p ∈ Zq[X],
p = an ⋅Xn+⋅ ⋅ ⋅+a0: ∥p∥∞ =maxn−1i=0 ∣aimod± q∣. Infinity norm of a vector of polynomials
is the maximum of the infinity norms of these polynomials.

Let Zq[X]/(Xn + 1) be defined as the set of polynomials modulo g = Xn + 1 with
two operations: addition modulo g and multiplication modulo g. As can be verified, this
mathematical object is a ring. In ML-DSA, polynomials that are used are in such a ring,
with fixed q and n values, which are q = 8380417 and n = 256; henceforth in this work,
only such polynomials are considered.

Notice that the multiplication of two polynomials in the ring Zq[X]/(Xn + 1) may
be performed by first multiplying them (per the formula above, considering them to
be elements of Zq[X]) and then reducing the product. This is inefficient; in ring
Zq[X]/(Xn + 1), the computational complexity of such multiplication is O(n2).
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Number Theoretic Transform. There is a more efficient way to multiply elements
of Zq[X]/(Xn + 1), with computational complexity of O(n logn), by using Number
Theoretic Transform (NTT) — a type of Discrete Fourier Transform. To multiply
polynomials f and g in Zq[X]/(Xn + 1) using NTT, first, they must be converted to
the so-called NTT-form (this step has the complexity of O(n logn)). Then, the NTT
forms of f, g are multiplied coefficient-wise (has O(n) complexity). The result is the
NTT-form of the f ⋅ g. This result can then be converted to the ”normal” form (always
possible, since NTT is a bijection; has O(n logn) complexity). NTT is linear: for any a
and b in R,

a ⋅NTT(f) + b ⋅NTT(g) = NTT(a ⋅ f + b ⋅ g).

Throughout this work, the NTT operations are performed implicitly whenever required.
The NTT forms have the same lengths as ”normal” forms and are likewise stored in
computer memory as arrays of 256 integer values. More information on NTT can be
obtained from Satriawan et. al. [10].

2.2 ML-DSA key generation
ML-DSA is a signature scheme, meaning that the purpose of the key generation algorithm
is to produce a keypair, where one key is the private key, that allows creating signatures
for specific messages (or, digests), and the other key is the public key, that allows
verifying that a given signature was indeed produced using the corresponding private
key.

The simplified version of the ML-DSA key generation algorithm is shown in Figure 1.
For the concrete values of the constants q, l, k and η, which are seen in the algorithm,
refer to the upper part of Table 1.

Gen
01: A

$
←Ð [Zq[X]/(X

n
+ 1)]k×ℓ

02: (s1,s2)
$
←Ð Sℓ

η × S
k
η

03: t ∶= As1 + s2
04: return (pk = (A, t), sk = (A, t,s1,s2))

Figure 1. Key generation algorithm (adapted) [6, Figure 1].

The domain Sη is defined as Sη ∶= {p ∈ Zq[X]/(Xn + 1) ∣ ∥p∥∞ ≤ η}.
ML-DSA employs several optimizations to reduce the size of the public key. Firstly,

the matrix A is actually generated from a seed ρ ∈ Z256
2 and only this seed is included in

the public key. This allows for saving 24 ⋅ l ⋅k ⋅n−256 bits. Secondly, not the entire value
of t is saved, but only the ”high bits” t1, where t1 = (t − tmod± 2d)/(2d), with d = 13.
This allows for saving d ⋅ k ⋅ n bits. However, due to this optimization, it is necessary

11



Table 1. Parameters defined by the ML-DSA parameter sets.

Parameter ML-DSA-44 ML-DSA-65 ML-DSA-87
q - integer modulus 8380417 8380417 8380417
(l, k) - dimensions of A (4,4) (6,5) (8,7)

η - for private key generation 2 4 2
γ1 - for obtaining y 217 219 219

γ2 - for Decompose (q − 1)/88 (q − 1)/32 (q − 1)/32
τ - for procedure H 39 49 60

β = τ ⋅ η 78 196 120

for the signing algorithm to ”aid” the verification algorithm by including additional
information in the signature — so-called hints (discussed in the next Section). These
hints do not depend on the secret material.

Additionally, the secret values s1 and s2 in the ML-DSA key generation algorithm
are derived deterministically from a seed ρ′, rather than being generated directly. The
seeds ρ and ρ′ are derived from the random seed ζ . The private key contains an additional
value K (also generated from ζ), that influences the formation of the masking vector
during signing (see the next Section).

2.3 ML-DSA signing
The simplified version of the ML-DSA signature creation algorithm is described in
Figure 2. The values of various constants are provided in Table 1.

Sign(sk, M )
01: z ∶= �
02: while z = � do
03: y

$
←Ð Sℓ

γ1−1
04: w ∶= Ay
05: wH

∶= HighBits(w,2γ2)
06: c ∈ Bτ ∶=H(M ∣w

H
)

07: z ∶= y + cs1
08: r ∶=w − cs2
09: rL ∶= LowBits(r,2γ2)
10: if ∥z∥∞ ≥ γ1 − β or ∥rL∥∞ ≥ γ2 − β
11: z ∶= �
12: return σ = (z, c)

Figure 2. Signing algorithm (adapted) [6, Figure 1].

12



Decompose(v, α)
01: q = 8380417
02: r ∶= r mod+ q
03: rL ∶= r mod± α
04: if r − rL = q − 1
05: rH ∶= 0
06: rL ∶= rL − 1
07: else
08: rH = r−rL

α

09: return (rH , rL)

Figure 3. Decompose.

The signing algorithm uses HighBits and LowBits algo-
rithms, both of which are defined in terms of Decompose
(please see Figure 3). For inputs (v,α), Decompose returns
the unique pair of values (vH , vL), such that v = α ⋅ vH + vL,
whereas 0 ≤ vH < ⌊ qα⌋ and −⌈α2 ⌉ < v

L ≤ ⌊α2 ⌋, or (vH , vL) =
(0,−⌈α2 ⌉). The design decision to include the second option
was necessitated by the need to ensure that Decompose is
defined for v = q − ⌊α2 ⌋; Decompose can only be used with
values α, such that q mod+ α = 1. For inputs (v,α), both
HighBits and LowBits perform Decompose and return ei-
ther vH , or vL, correspondingly. In the Figure 2, HighBits
and LowBits are applied coefficient-wise. Please note that
t1 (see the previous Section) is obtained using a different
procedure — Power2Round (omitted for brevity).

The procedure H in the Figure 2 obtains (using a hash function) a 256-bit digest
from the binary representation of (M ∣wH) and uses it to sample c from the domain of
polynomials {f = an−1 ⋅Xn−1 + ⋅ ⋅ ⋅ + a0 ∣ f ∈ Zq[X]/(Xn + 1),∑

n−1
i=0 ∣ai∣ = τ, ∥f∥∞ = 1}.

The standardized (non-simplified) algorithm derives the digest from (µ∣wH), where µ
depends on the hash of the public key tr and the message M .

The masking vector y is considered secret material, since obtaining it along with the
corresponding signature and the public key allows reconstructing the private key with
negligible computational effort. In the actual ML-DSA signing algorithm, y is derived
deterministically from the value K (stored in the private key), the optional randomness
value rnd (supplied to the signing algorithm) and the value µ. 2

The operation on line 10 is called rejection sampling: the value z may be revealed
only if the corresponding rejection sampling does not fail3. Due to the rejection sampling,
multiple signing attempts are typically required. According to Table 1 of FIPS 204 [5],
the while loop in the algorithm runs, on average, 4.25 times for ML-DSA-44, 5.1 times
for ML-DSA-65 and 3.85 times for ML-DSA-87.

As mentioned in the previous section, the signing algorithm incorporates extra
information — hints — in the signature. For performance, the original ML-DSA signing
algorithm uses s2 to generate hints, although hints do not depend on s2 (or other secret
values). The number of hints that need to be encoded varies. This number does not impact
the security properties of the signature. However, since FIPS 204 defines a constant size
for the hints object, hint creation fails if too many are required. The probability of failure
was heuristically estimated [11, Section 3.4] to be below 2%. 4

2Thus, ML-DSA signing can operate in the deterministic mode, without relying on a quality randomness
source, as long as K has high entropy and is kept secret.

3Revealing z after successful rejection sampling is allowed, even if the make hint procedure would fail.
4The estimation was originally obtained for CRYSTALS-Dilithium Version 3.1, but it also holds for

ML-DSA, since the algorithms were not changed in a way that would change this probability.
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2.4 ML-DSA signature verification
For completeness, we provide the simplified version of the ML-DSA signature verifica-
tion algorithm, in Figure 4. The HighBits operation is applied coefficient-wise.

Verify(pk, M , σ = (z, c))
01: wH ′

∶= HighBits(Az − ct,2γ2)
02: return ∥z∥∞ < γ1 − β and c =H(M∥wH ′

)

Figure 4. Signature verification algorithm (adapted) [6, Figure 1].

The correctness of the algorithm relies on the fact that Az = Ay − cs2 = r. Since
∥rL∥∞ < γ2 −β: (r+ c ⋅s2)H = rH , because ∥c ⋅s2∥∞ ≤ β, which means that adding c ⋅s2
to r does not change the value, such that it would affect rH . Thus, wH ′ = wH , where
wH was obtained using the signing algorithm. Please refer to FIPS 204 for a complete
proof of correctness.

The actual algorithm derives A from the seed ρ (included in the public key). Rather
that applying HighBits to compute wH ′, it instead obtains wH ′ by using t1 (from the
public key) and the hints object h (included in the signature).

The purpose of Duolithium is to create signatures that would be successfully verified
by the original (complete, non-simplified) ML-DSA signature verification algorithm.
Therefore, it is crucial for the design of Duolithium that both the signature and the public
key objects are formed precisely in the formats expected by the verification algorithm.

2.5 Additive sharing
One fundamental technique of MPC is secret sharing, which involves distributing a secret
value among multiple participants, such that no participant can recover the shared value
without cooperation from another party (or parties). A straightforward example of secret
sharing is additive sharing. An additive sharing of value v in a finite ring R to n shares is
a tuple (JvK0, JvK1, . . . , JvKn−1), such that vi ∈ R for all i ∈ [0;n) and v = ∑

n−1
i=0 JvKi. Each

individual JvKi is called a share. To enter a value v as an input in an additive sharing
scheme, the party i that possesses that value generates and sends to the other parties
shares JvKu

$
←Ð R (u ≠ i), and obtains its share as JvKi ← v −∑j∈{1,...,n}/iJvKj . Thus, even

if n − 1 parties collude, they cannot obtain any additional information about the value v
from their shares.

In a 2PC scheme, the values of which the privacy should be protected are shared to
two shares, where each party possesses one share. Duolithium is a 2PC scheme; the
parties are named Server (has index 0) and Client (has index 1).

In Duolithium, the values are additively shared in integer rings. Specifically, suppose
that a value v that is additively shared in an integer ring ZQ. Then, JvK0 and JvK1 are also
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elements of ring ZQ. An element of ring ZQ can take on an integer value between 0 and
Q − 1 (inclusive).

The following operations on shares can be performed locally5:

1. Constant introduction. A sharing of a value v known by both parties can be obtained
as follows: JvK = (v,0). Constant addition is performed as shares addition, where
one of the of the shares is an introduced constant.

2. Addition (denoted as JaK + JbK). Since Ja + bK = Ja + bK0 + Ja + bK1 = JaK0 + JbK0 +
JaK1+ JbK1 = JaK+ JbK, sharing Ja+ bK can be obtained as (JaK0 + JbK0, JaK1 + JbK1),
where the necessary computations are local. Subtraction of two shares is performed
as an addition of: the left share, the right share multiplied by −1 (see next).

3. Multiplication by a known constant (denoted as c ⋅ JvK or JvK ⋅ c). Since Jc ⋅ vK =
Jc ⋅vK0+ Jc ⋅vK1 = c ⋅ JvK0+ c ⋅ JvK1, sharing Jc ⋅vK, where c is a value known by both
parties, can be obtained as (c ⋅ JvK0, c ⋅ JvK1), where the necessary computations
are local.

A vector of shared values is denoted as JvK. The shared value at index u of this
vector is denoted as JvuK. The corresponding vector of shares that belong to party i is
denoted as JvKi. Sum of two shared vectors of the same length (sum of two vectors of
shared values) is defined as JaK + JbK = (Ja0K + Jb0K, Ja1K + Jb1K, . . . ). Multiplication of
a shared vector by a constant is defined as c ⋅ JvK = (c ⋅ Jv0K, c ⋅ Jv1K, . . . ).

Sharing of a polynomial is considered to be a shared vector of its coefficients. A
shared polynomial f can be multiplied by a known polynomial g locally. First, the
polynomials are converted to their NTT forms. Then, the NTT forms are multiplied to
obtain the NTT form of f ⋅ g. Finally, the result is converted to the ”normal” form. Note
that all performed operations — NTT, multiplication of a share by a known value and
NTT-1 — are linear.

There exist protocols that allow performing non-linear computations on the shares,
non-locally (e.g., see Section 2.8.2). The process by which the parties reconstruct a
shared value from their shares involves sending shares (either from one party to another
or from both parties to each other). This process is described in the next Section.

2.6 BeDOZa style MACs
Additively sharing a value does not provide protection against a potentially malicious
party modifying their share. If any share of a shared value is tampered with, the output
of a protocol that relies on it may be incorrect. Moreover, in some cases, the output may

5It can be shown that if the value of a function at a given point depends non-linearly on a shared value,
then the value of the function at that point cannot be computed locally.
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be unsafe to reveal, as it could expose information about the secret material, which is not
allowed.

Therefore, to achieve security against a potentially malicious party, a certain mecha-
nism is required that allows the other party to verify that the share it receives from the
potentially malicious party is correct. A typical way of achieving this is through the use of
“control values” that are revealed simultaneously with the share, the correctness of which
they allow verifying. Such “control values” bear similarity to Message Authentication
Codes (MACs); due to historical reasons, they are often referred to by the same label.

In Duolithium, BeDOZa style MACs [12] are used. For a value v, these MACs are
the values of form ∆0 ⋅ JvK1 (further referred to as Server MAC) and ∆1 ⋅ JvK0 (further
referred to as Client MAC). These values are additively shared between the parties. The
∆i value is selected (generated) by party i from the same ring as the value v and is known
only by that party and the CRP — an extra participant of the scheme, whose role will be
explained in the next Section. Due to certain security considerations stemming from the
security proofs for the properties of BeDOZa style MACs6, the ring of a ∆ value must
necessarily be a field. Therefore, only values shared in fields can be MACed.

The Protocol 1 outlines the procedure the parties use to declassify (mutually reveal
the value of) a vector of shared values. Note that a party accepts the shares of another
party only if it also receives the hash value that is consistent with the correct MAC value
for the received shares. The honest party aborts the protocol execution (and deletes the
secret material) if the security check (on line 5) enabled by the use of MACs, fails7. The
protocol can be modified in an obvious way to reveal the value to only one of the parties,
or to declassify a value that does not have MACs.

Henceforth, we define the actively secure sharing of a value v as ⟪v⟫ ∶= (JvK,
J∆0 ⋅ JvK1K, J∆1 ⋅ JvK0K), where ∆i ⋅ JvK1−i represents the MAC for a party i. Thus, ⟪v⟫
denotes a share protected by the Server MAC and the Client MAC. For certain protocols
(see Section 3.5), protection against potential active attacks is necessary only against the
Client. Similarly, we define Jv⟫ ∶= (JvK, J∆0 ⋅ JvK1K), so Jv⟫ denotes a share protected
by the Server MAC alone (that is, the Server can detect if a potentially malicious Client
tampered with the share).

In Protocol 1, h(. . . ) denotes a cryptographic hash function, a collision-resistant
function, which produces a value in Z256

2 for a vector of values. Thus, using MACs does
not significantly increase the traffic volume between the parties, as the traffic overhead
from using MACs, for a vector of an arbitrary length, is constant.

Please note that the parties send the values asynchronously; i.e. neither party needs
to wait to receive the shares of another party before sending own shares.

6Details are omitted for brevity.
7If Duolithium is incorporated into a PKI system, the certificate associated with the corresponding

public key must be revoked upon the failure of any security check.
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Protocol 1: declassify
Input: ⟪v⟫
Output: v (known by both parties)

1 (JvK, J∆0 ⋅ JvK1K, J∆1 ⋅ JvK0K)← ⟪v⟫
Server

2 h0 ← h(J∆1 ⋅ JvK0K0)
3 Send JvK0 and h0

4 Receive JvK′1 and h′1
5 Verify h(∆0 ⋅ JvK′1 − J∆0 ⋅ JvK1K0)

?
= h′1

Client
h1 ← h(J∆0 ⋅ JvK1K1)
Send JvK1 and h1

Receive JvK′0 and h′0
Verify h(∆1 ⋅ JvK′0 − J∆1 ⋅ JvK0K1)

?
= h′0

6 Parties accept that JvK0 + JvK′1 = JvK′0 + JvK1 = v and output v

It is easy to see that if both parties are honest, the condition on line 5 is satisfied, since
for every party i: h′i = hi and JvK′i = JvKi, from which h(∆i ⋅ JvK′1−i − J∆i ⋅ JvK1−iKi) =
h(∆i ⋅ JvK1−i − J∆i ⋅ JvK1−iKi) = h(J∆i ⋅ JvK1−iK1−i) = h1−i = h′1−i.

Let’s show that if a malicious party i tampered with its share, with high probability it
will be caught cheating during the declassification. Suppose that the party i sent JvK′i and
h′i = h(m) to the honest party 1 − i and that verify in line 5 passed. Therefore, since h is
collision-resistant, with overwhelming probability ∆1−i ⋅ JvK′i − J∆1−i ⋅ JvKiK1−i =m. If
JvK′i ≠ JvKi (i.e., if i cheated), there exists t such that JvtK′i ≠ JvtKi. Note that from the
viewpoint of the malicious party, the following is a system of linear equations with two
unknowns, ∆1−i and J∆1−i ⋅ JvtKiK1−i:

⎧⎪⎪
⎨
⎪⎪⎩

∆1−i ⋅ JvtK′i − J∆1−i ⋅ JvtKiK1−i =mt

∆1−i ⋅ JvtKi − J∆1−i ⋅ JvtKiK1−i = J∆1−i ⋅ JvtKiKi .

By solving the system (which takes negligible computational effort), the malicious party
can learn the value ∆1−i. Thus, successfully performing cheating is not easier than
obtaining the ∆1−i value. In reality, this value ∆1−i is chosen uniformly at random by the
another party. The malicious party cannot guess it with probability better than 1

Q , where
Q is the size of the ring in which v is shared.

As follows from the argument above, MACs provide sufficient protection against
tampering due to the unpredictability of the ∆ values. If the field Zq from which the ∆
value is sampled is sufficiently large (if q > 2128), the probability of successful cheat-
ing does not exceed 2−128. However, if the field is not sufficiently large, L = ⌈ 128

log2(q)⌉
independent ∆ values should be used to ensure the desired bound on the probabil-
ity of successful cheating (p ≤ 2−128). For example, for the ML-DSA Q = 8380417,
6 independently generated ∆0 values are used for the Server MAC, and 6 independently
generated ∆1 values are used for the Client MAC. The ∆ values used for different moduli
are independent.

Please note that the protocols throughout this document are rendered, for brevity, to
only note one value ∆ per party.
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Local operations from the previous section can also be performed on MACed shares.

1. Constant introduction: ⟪v⟫ = (JvK, J∆0 ⋅ JvK1K, J∆1 ⋅ JvK0K) = (v, v ⋅∆0,0) =
((v,0), (v ⋅∆0,0), (0,0)), where v is a value known by both parties and ∆0 is
only known by the Server.

2. Addition: ⟪a + b⟫ = (JaK + JbK, J∆0 ⋅ JaK1K + J∆0 ⋅ JbK1K, J∆1 ⋅ JaK0K + J∆1 ⋅ JbK0K).

3. Multiplication by a known constant: ⟪c⋅v⟫ = (c ⋅ JvK, c ⋅ J∆0 ⋅ JvK1K, c ⋅ J∆1 ⋅ JvK0K).

It is easy to show that the MACs on the results of the operations are correct. Operations
on the shares without Client MACs are performed likewise.

2.7 Multiparty computation with CRP
The two-party computation protocols described in this thesis rely on a third participant —
the Correlated Randomness Provider (CRP). The purpose of CRP is to emit (generate
and distribute) the additively shared values to the parties (the Server and the Client). The
values generated hold a specific relation (or relations) that are prescribed by the protocol,
for which these values are used.

CRP never receives any information from the Server, or the Client — except for
the randomly generated ∆ values, that the CRP, alternatively, could generate itself.
Also, honest CRP does not influence the outputs of the protocols. Thus the CRP is not
considered to be a third party in the protocol.

As will become evident from the Chapter 6, the volume of data that the CRP needs
to send to the parties is very large8. Thankfully, traffic to one of the parties can be
significantly reduced by only providing this party with a seed, which can be expanded
into a vector of shares. Let f be a cryptographically secure pseudorandom number
generator, such that f(s) = ⟪v⟫1. Then, v = ⟪v⟫0 + f(s), where ⟪v⟫0 will be sent to
the Server and s is sent to the Client.

Throughout this thesis, the format and relation of the correlated randomness (CR)
shares that are used in a protocol (if any) are specified in the description of that protocol,
before the protocol body. After the CRP generates the necessary values according to
the requirements, it represents them as vectors and shards every vector individually per
Protocol 2.

8In the developed prototype, the CRP needs to send approximately 150MB of data (on average) to the
Server, so the Server and the Client would be able to create one signature.
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Protocol 2: Shares emission procedure (performed by the CRP)
Input: v

1 s
$
←Ð Z256

2

2 ⟪v⟫1 ← f(s)
3 (JvK1, J∆0 ⋅ JvK1K1, J∆1 ⋅ JvK0K1)← ⟪v⟫1
4 JvK0 ← v − JvK1
5 J∆0 ⋅ JvK1K0 ← (∆0 ⋅ JvK1) − J∆0 ⋅ JvK1K1
6 J∆1 ⋅ JvK0K0 ← (∆1 ⋅ JvK0) − J∆1 ⋅ JvK0K1
7 ⟪v⟫0 ← (JvK0, J∆0 ⋅ JvK1K0, J∆1 ⋅ JvK0K0)
8 Send ⟪v⟫0 to the Server and s to the Client

Shares that do not require MACs or only require Server MACs are emitted in a similar
way.

Since the protocol flow in Duolithium is known in advance (except for the number of
signing iterations, see Chapter 5), the CRP can generate the required values and ”eagerly”
stream them to the parties — before these values are needed — thus reducing the latency
added by waiting for the CRP responses.

Additionally, instead of generating a new seed s for every shared vector, the CRP
could derive all s values (using a cryptographically secure pseudorandom number gener-
ator) from a single seed. Moreover, this seed could be used for multiple protocol sessions
(provided that the seeds s remain unpredictable to the Server).

2.8 General-purpose 2PC protocols
This subsection introduces several 2PC subprotocols that are used in Duolithium. All
these are trivially extendable to handle shares with MACs.

2.8.1 Multiplication of shared values

Multiplication of shared values u ∈ Zq and v ∈ Zq can be computed using a Beaver
triple [13], as described in Protocol 3. On line 4, according to the rules for adding a
known value, only the Server adds the constant −α ⋅ β to its share.

Protocol 3: shares multiplication

Input: JuK, JvK
Output: JyK, such that y = u ⋅ v

CR: JaK, JbK, JcK, such that a
$
←Ð Zq, b

$
←Ð Zq and c← a ⋅ b

1 JαK← JuK − JaK
2 JβK← JvK − JbK
3 Parties declassify α and β
4 JyKi ← α ⋅ JvKi + β ⋅ JuKi + JcKi − α ⋅ β
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Proof of functionality. As can be verified, y = u ⋅ v:

y = JyK0 + JyK1
= α ⋅ v + β ⋅ u + c − α ⋅ β

= (u − a) ⋅ v + (v − b) ⋅ u + c − (u − a) ⋅ (v − b)

= u ⋅ v − a ⋅ v + u ⋅ v − b ⋅ u + c − u ⋅ v + a ⋅ v + b ⋅ u − a ⋅ b

= u ⋅ v + c − a ⋅ b

= u ⋅ v

2.8.2 Characteristic vector

Characteristic vector (CV) of a value v ∈ Zq is a vector b of length q, such that

bi =

⎧⎪⎪
⎨
⎪⎪⎩

1 if i = v
0 else

.

Henceforth, the notation JvK(q) specifies that the value v is shared in the ring Zq,
that is, v ∈ Zq; the superscript text merely provides additional information about the JvK.
Analogous notation is used for values with MACs and for vectors of shared values.

CV protocol [14], presented as Protocol 4, allows obtaining the shared characteristic
vector Jb′K(Q) of v from JvK(q) and a desired modulus Q.

Protocol 4: characteristic vector

Input: JvK(q), Q
Output: Jb′K(Q)

CR: JrK(q); JbK(Q), such that r
$
←Ð Zq and b is the CV of r

1 JdK(q) ← JvK(q) − JrK(q)

2 Parties declassify d

3 Jb′K(Q) ← (Jb0−dK
(Q)

, Jb1−dK
(Q)

, . . . , Jb(q−1)−dK
(Q)
) ▷ Indexes are modulo q

The volume of traffic between the CRP and Server, as well as the computational
complexity for CRP, Server and Client grow linearly in the size of b. Therefore, CV
protocol is practical only for relatively small q.

Note that the characteristic vector JbK(Q) of a value JvK(q) allows computing the
value f(v) of any function f (provided that f is computable for the domain of v):
Jf(v)K(Q) = ∑q−1

i=0 f(i) ⋅ JbiK
(Q). Values of multiple functions may be evaluated, but

declassifying the value of one function may impact the secrecy of the other values.
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2.8.3 Unmasked zero check for many values

Large zero check is a commonly known protocol that allows, from JvK(q), to obtain
vector JyK(q) (∣v∣ is much greater than ∣y∣), such that all elements of y equal zero if
all elements of v equal zero, and (with overwhelming probability) there is a non-zero
element in y if there is a non-zero element in v. A version9 of this protocol is presented
as Protocol 5.

In the protocol, each party defines (via a seed) coefficients for c linear combinations
for the values in v — these linear combinations are then computed by the parties. Thus,
∣y∣ = 2 ⋅ c. The parameter c is selected, such that c ⋅ log2Q ≥ 256; ∣y∣ = 2 ⋅ c. This ensures
that the probability of obtaining JyK, such that ∀∣y∣−1i=0 yi = 0, but ∃∣v∣−1i=0 vi ≠ 0 is negligible.

Protocol 5: large zero check unmasked

Input: JvK, c
Output: JyK

1 Party p generates seed sp ∈ Z256
2

2 Parties exchange seeds, obtaining (s0, s1)
3 M0 ← f(s0)
4 M1 ← f(s1)

5 JyK← [M0

M1
] ⋅ JvK ▷Matrix multiplication

The function f used in Protocol 5 is a pseudo-random number generator,
f ∶ Z256

2 → Zc×∣v∣
q , where q is the modulus of the integer ring of v.

In practice, this protocol is used to reduce communication between the parties needed
for verifying whether JvK consists of zeros only. Since JvK may be large, declassifying
it directly would result in increased data transfer between the parties, compared to
declassifying JyK.

Note that Protocol 5, as presented, is not masked — declassifying JyK partially
reveals information about JvK, in case ∃∣v∣−1i=0 vi ≠ 0.

Security-related zero check for many values

In Duolithium, unmasked zero checks for many values are only used for conducting
“security checks”, during which the parties prove that the sent shares equal zero and that
they were not tampered with. Thus, an alternative protocol can be considered, where, for
a shared vector v, each party i computes the expected value of the other party’s share
JvK′1−i = 0 − JvKi; then parties send to each other and verify the appropriate MAC hashes.
An important consideration of this protocol is that it would trigger the security failure if
∃i=0∣v∣ − 1vi ≠ 0, even if the MACs for the shares were correct.

9Many versions of this protocol exist, the version presented here matches the one used in the developed
prototype (see Chapter 6).
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3 Existing ML-DSA-specific protocols
This section documents and formalizes the Duolithium subprotocols that were described
[8] prior the commencement of this research, but were not published.

Note that some protocols in this and the next Chapter are described (for clarity) as
operating on a single value or returning one value. During the key generation or signing,
parallel (“vectorized”) versions of these protocols are employed, meaning multiple
instances the same protocol are executed at the same time on different values.

3.1 Entry of shared values
Shares entry protocol (Protocol 6) is used by the parties to obtain ⟪v⟫ from JvK. Note
that this protocol does not modify JvK.

Protocol 6: entry
Input: JvK
Output: ⟪v⟫

Server Client
1 (Jd0K0, Jw0K0)← (∆0, JvK0) (Jd0K1, Jw0K1)← (0,0)
2 (Jd1K0, Jw1K0)← (0,0) (Jd1K1, Jw1K1)← (∆1, JvK1)
3 for u ∈ {0,1} in parallel:
4 JmuK = shares multiplication(JduK, Jw1−uK)

5 ⟪v⟫← (JvK, Jm0K, Jm1K)

This protocol is used during the key generation (in parallel for each coefficient of
Js1K and Js2K; see Section 4.1), to obtain MACs on the key shares that were generated by
the parties.

3.2 Masking vector generation
The masking vector coefficient generation protocol (Protocol 7) allows the parties to
generate ⟪v⟫, such that v ∈ (−2L, . . . ,2L], for a specific value of L. This protocol is used
during signing, in parallel for each coefficient of each polynomial of the masking vector.
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Protocol 7: generate y
Input: L
Output: ⟪y⟫(Q)

CR: ⟪b⟫(Q), such that b
$
←Ð {0,1}L+1

1 Party i generates ti
$
←Ð ZL+1

2

2 Parties send ti to each other
3 r ← t0 + t1
4 for u ∈ {0, . . . , L} in parallel:

5 ⟪pu⟫
(Q)
←

⎧⎪⎪
⎨
⎪⎪⎩

1 − ⟪bu⟫
(Q) if ru = 1

⟪bu⟫
(Q) else

6 ⟪y′⟫(Q) ← ∑L
u=0 2u ⋅ ⟪pu⟫

(Q)

7 ⟪y⟫
(Q)
← ⟪y′⟫(Q) − 2L + 1

Note that, assuming that the vector b (provided by the CRP) is correct, the distribution
of v does not depend on the information provided by the CRP. Thus, the honest CRP
does not learn any information about the masking vector y that may be used to create a
created signature. This is a desirable property because information about y of a particular
signature can be utilized in a key-extraction attack against that signature.

3.3 Asymmetric reshare to parts
This section documents a subprotocol of the rejection sampling protocol (see Section 3.5).

Let x̃ for x ∈ Zq be defined as an integer, whose value equals x; 0 ≤ x < q. Consider
(a, b) ∈ Zq for some q. Then, a + b describes the addition of ring elements, which
produces a ring element, the value of which is necessarily smaller than q. Conversely,
ã + b̃ describes the addition of two integers — the result of this addition may be equal to
or greater than q.

Asymmetric reshare to parts protocol (Protocol 8) allows, from Jv⟫(Q), radix r, output
length d and output modulo q to obtain Jp⟫(q), with ∣p∣ = d, such that ṽ = ∑d−1

i=0 ri ⋅ p̃i,
or ṽ + Q = ∑d−1

i=0 ri ⋅ p̃i, while additionally ∀d−1i=0 pi ≤ 2 ⋅ (r − 1). The following input
requirements must be satisfied: q is prime, q > 2 ⋅ (r − 1), rd > 2 ⋅Q.

In other words, the protocol ”splices” the Jv⟫(Q) into shared digits Jp⟫(q), least
significant digit first. At each position, the digit can be ”oversize”: with a value of up to
2 ⋅ (r − 1). The value that was spliced can be either ṽ or ṽ +Q (since v can be represented
by shares that add up to either of these values).

The local function split, for a value v ∈ Z, and a vector of positive integers c

(the “partition scheme”), obtains a vector of parts (“digits”) p, such that ∀∣c∣−1i=0 0 ≤ pi < ci
and v = ∑

∣c∣−1
i=0 (pi ⋅∏

i−1
u=0 cu). In other words, the function converts an integer into a

numeral system, which may have mixed base. It is easy to see that for a fixed c, split is
bijective. The local function unsplit is defined as the inverse function to split.
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In Protocol 8, split is used once by the CRP and once by the Server, in both cases
the partitioning scheme is c = [r]×d. In Duolithium, the values r, d, q for the asymmetric
reshare to parts protocol are set as constants: r = 15, d = 6, q = 29.

Protocol 8: reshare to parts ap

Input: Jv⟫(Q)

Output: Jp⟫(q)

CR: m′1 and p′1, such that m′1
$
←Ð ZQ and p′1 ← split(m′1), to the Client;

J∆0 ⋅m′1K and J∆0 ⋅ p′1K shared
Server

1 (JvK0, J∆0 ⋅ JvK1K0)← Jv⟫0
2

3 J∆0 ⋅ Jv′K1K0 ← J∆0 ⋅ JvK1K0 − J∆0 ⋅m′1K0
4 Receive Jv′K1, h′
5 Verify MAC for Jv′K1, J∆0 ⋅ Jv′K1K0, h′
6 JpK0 ← split(JvK0)
7 Jp⟫0 ← (JpK0, J∆0 ⋅ p′1K0)

Client
(JvK1, J∆0 ⋅ JvK1K1)← Jv⟫1
Jv′K1 ← JvK1 −m′1
J∆0 ⋅ Jv′K1K1 ← J∆0 ⋅ JvK1K1 − J∆0 ⋅m′1K1
Send Jv′K1, h(J∆0 ⋅ Jv′K1K1)

Jp⟫1 ← (p′1, J∆0 ⋅ p′1K1)

The CR for the parallel version of Protocol 8 is generated differently from what is
described in Protocol 2, due to the requirement that m′1 and p′1 should be sent directly to
the Client. First, seeds ms and ps are obtained for the Client. Then, ms is expanded into
the values m′1 and J∆0 ⋅m′1K1. After that, p′1 is computed from m′1. Next, ps is expanded
into J∆0 ⋅ p′1K1. Finally, the Server shares of the MACs are computed.

Note that in the protocol the Server can obtain ⟪p⟫0 locally, because the Client MACs
on JpK are not used. Since Client MACs are not used, the protocol is only passively secure
against potentially malicious Server. The security implications of this are discussed in
Section 5.2.

3.4 Long overflow
This section describes the long overflow protocol and its subprotocol, the short overflow
protocol. These protocols are the modified versions of the binary overflow protocols
presented in Attrapadung et. al [14, Protocols 5 and 6]. In the next Section, the long
overflow protocol will be combined with the asymmetric reshare to parts protocol from
the previous Section, in order to compute inequalities between shared values and a known
constant.

The Protocol 9 (short overflow), takes JvK(q), the radix r ∈ Z and the modulus qM
to obtain JbK(qM ) (is-border) and JcK(qM ) (is-carry), such that

JbK(qM ) =
⎧⎪⎪
⎨
⎪⎪⎩

1 if ṽ = r − 1
0 else

and JcK(qM ) =
⎧⎪⎪
⎨
⎪⎪⎩

1 if ṽ ≥ r
0 else

.
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The condition q ≥ 2 ⋅ r must hold for the short overflow protocol and, by extension,
the long overflow protocol.

Protocol 9: short overflow

Input: JvK(q), r, qM
Output: JbK(qM ), JcK(qM )

1 JwK(qM ) ← characteristic vector(JvK(q), qM)
2 JbK(qM ) ← Jwr−1K

(qM )

3 JcK(qM ) ← ∑qM−1
i=r JwiK

(qM )

The Protocol 10 (long overflow) from the radix r, the desired output modulus Q
and a list of parts JpK(q), such that ∀d−1i=0 (p̃i ≤ 2 ⋅ (r − 1)), obtains JbK(Q), where

b =

⎧⎪⎪
⎨
⎪⎪⎩

1 if ∑∣p∣−1i=0 ri ⋅ p̃i ≥ r∣p∣

0 else
.

This condition is equivalent to whether a carry (overflow) would occur from the most
significant digit (part), if all the carries would be propagated.

Protocol 10: long overflow

Input: JpK(q), r, Q
Output: JtK(Q)

1 qM ←min{n ∈ P ∶ n > 2∣p∣} ▷ In Duolithium, qM = 67
2 for i ∈ {0, . . . , ∣p∣ − 1} in parallel:
3 (JbiK

(qM ), JciK
(qM ))← short overflow(JpiK

(q)
, r, qM)

4 JmK(qM ) ← ∑∣r∣−1i=1 2i−1 ⋅ JbiK
(qM ) +∑∣r∣−1i=0 2i ⋅ JciK

(qM )

5 JkK(Q) ← characteristic vector(JmK(qM ),Q)
6 JtK(Q) ← ∑qM

i=2∣p∣−1 JkiK
(Q)

Both protocols discussed in this section can be trivially extended to support Server
MACs (or both MACs).

3.5 Rejection sampling
Rejection sampling (rejection check) is one of the two main operations in ML-DSA
signing. The rejection check protocol (Protocol 11), from Jv⟫(Q) and border values g
(∣g∣ = ∣v∣), obtains

t =

⎧⎪⎪
⎨
⎪⎪⎩

true if ∀∣v∣−1i=0 (∣vi mod± Q∣ < gi)
false otherwise

.

That is, the return value is true if and only if the rejection check passed.
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The protocol is actively secure against a corrupted Client and passively secure against
a corrupted Server. The security implications of this are discussed in Section 5.2.

Protocol 11: rejection check

Input: Jv⟫(Q), g
Output: t

1 for i ∈ {0, . . . , ∣v∣ − 1} in parallel:
2 Jv′i⟫

(Q)
← Jvi⟫

(Q)
+ gi − 1

3 g′i ← 2 ⋅ gi − 1 ▷ g′i ∈ ZQ

4 Jp⟫(q) ← reshare to parts ap(Jv′i⟫
(Q)
)

Server Client
5 (JpK(q)0 , J∆0 ⋅ JpK1K

(q)
0 )← Jp⟫(q)0

6 w0 ← unsplit(JpK(q)0 )

7 w′0 ← w0 − g′i
8 n← rd −Q

9 Ja⟫(q)0 ← (split(w̃0 + n), J∆0 ⋅ JpK1K
(q)
0 ) Ja⟫(q)1 ← Jp⟫(q)1

10 Jb⟫(q)0 ← (split(w̃
′
0 + n), J∆0 ⋅ JpK1K

(q)
0 ) Jb⟫(q)1 ← Jp⟫(q)1

11 Jc⟫(qr)0 ←

⎧⎪⎪
⎨
⎪⎪⎩

1 if w̃0 ≥ g′i
0 else

Jc⟫(qr)1 ← 0

12 Jya⟫
(qr) ← long overflow(Ja⟫(q), r, qr)

13 Jyb⟫
(qr) ← long overflow(Jb⟫(q), r, qr) ▷ In parallel with previous

14 Jri⟫
(qr) ← Jyb⟫

(qr) − Jya⟫
(qr) + Jc⟫(qr)

15 Jk⟫(qr) ← ∑∣v∣−1i=0 Jri⟫
(qr)

16 Jx⟫(Q) ← characteristic vector(Jk⟫(qr),Q)
17 Jy⟫(Q) ← Jx0⟫

(Q)

18 Parties declassify y

19 t←

⎧⎪⎪
⎨
⎪⎪⎩

true if y = 1
false otherwise

The constants r and d (on the line 8), should match the values that are used in the
reshare to parts ap protocol. As mentioned in Section 3.3, in Duolithium: r = 15,
d = 6 and q = 29.

Lines 2–4 of Protocol 11 compute new values v′i and borders g′i that will be used in
the later parts of the computation, such that vi passes the rejection check if and only if
0 ≤ v′i < g

′
i.

Then, the protocol computes an inequality between Jv′i⟫ and the appropriate border g′i.
The procedure for computing the inequality is derived from the comparison protocol as
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presented by Attrapadung et. al [14, Protocol 7]. This procedure ensures that ri = 1 if the
element vi is outside of the allowed region, and ri = 0 otherwise. Note that in the protocol
presented here, the Server uses JpK0 to reconstruct the value w0. This is because the used
reshare to parts ap protocol effectively reshares its argument before computing the
parts.

The lines 15–17 essentially compute a large conjunction. Note that x0 = 1 if and only
if k = 0, which is true if and only if ∀∣v∣−1i=0 ri = 0 (assuming a sufficiently large qr — see
below). Thus, as required, y = 1 if and only if all the elements passed the rejection check.

In Duolithium, the value qr is fixed as a constant with a relatively small value: qr = 71.
Note that in ML-DSA, for each element that is the rejection check is conducted on there
is only a small probability of this element being outside of the allowed range. For
any i: ri = 1 if vi is outside of the allowed range, and ri = 0 otherwise. Therefore,
while it is possible that ∑∣v∣−1i=0 r̃i ≥ qr (see line 15), the used value qr ensures that in
practice this happens only with negligible probability (less than 2−256 for all ML-DSA
parameter sets). Using a relatively small value for qr reduces the volume of data that
needs to be transmitted between the Server and the Client during the executions of the
long overflow subprotocol.

Note that Protocol 11 is presented in such a form to be more readable. The behaviour
of an optimized Duolithium implementation would differ from this form. For example,
all the values in ring qr would not be saved in memory: rather, the corresponding
computations would affect a certain counter — a single shared value with Server MAC.

27



4 Invented protocols
This section documents the protocols that were created as a part of this thesis research.

Note on the protocol optimization. Aside from correctness and security properties,
protocols can also be compared according to these efficiency metrics:

1. Total number of rounds (lower is better). Each time a value is sent by a party, the
other party receives it after a certain network delay. The Client may be connected
via a carrier provider network or Wi-Fi, both of which introduce significant delays
in the transmission of any given data object.

2. Information volume (traffic) sent from Server to the Client and from Client to the
Server (lower is better). The Client may be connected to a metered network, the
network may have low data throughput.

3. Traffic sent from the CRP to the Server (lower is better).

Protocols 14 and 15 were specifically optimized to achieve lower values on these metrics;
these protocols, as presented in this work, differ significantly from the initial draft
versions of these protocols.

4.1 Short coefficient generation
This Section introduces the CRP-wariness security property. It then describes the protocol
that is necessary for generating vectors s1 and s2 during the Duolithium key generation.
The last part of the Section shows that the described protocol is CRP-wary.

CRP-wariness property

One desirable property of the key generation protocol is that a potentially corrupt CRP
does not affect the security strength of the key, even if it provides CR incorrectly. Let
CRP-wariness be defined as a property of the protocol which is satisfied if and only if for
all adversarial CRP, the honest parties, by executing the protocol, regardless of whether
the CR provided by the CRP is correct, either (1) with overwhelming probability obtain
the output from the correct distribution, or (2) halt the execution of the protocol. In other
words, if the CRP cheats, with overwhelming probability the parties will either detect
that the CRP provided incorrect correlated randomness (and halt the protocol), or the
security strength of the produced material is not compromised.
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The protocol

The short coefficient generation protocol (Protocol 12) from the desired q obtains ⟪v⟫(Q),

where v
$
←Ð {x ∈ Z ∣ 0 ≤ x < q}.

Lines 1–10 of the protocol serve only to verify that JtK(Q) (received from the CRP) is
suitable for the formation of the shared coefficient JsK. The parties halt the protocol if
the security check on line 2 or the security check on line 10 fails. Only after both checks
pass, the parties agree on a random shared value ⟪k⟫(q). The procedure parties follow
next (on lines 13–15) is equivalent to obtaining the characteristic vector of ⟪k⟫(q) in
ring ZQ, per Section 2.8.2, and then using this CV to compute the identity of k — with
the result also being in ring ZQ.

Protocol 12: generate short
Input: q
Output: ⟪s⟫(Q)

CR: ⟪r⟫(q) and ⟪t⟫(Q), such that r
$
←Ð Zq and t is CV of r

1 ⟪zA⟫
(Q)
← (∑

q−1
i=0 ⟪ti⟫

(Q)
) − 1

2 Parties declassify z and verify that zA
?
= 0

3 w ← {(i, u) ∈ Z2
q ∶ i < u}

4 Parties derive seed ms ∈ Z256
2 using some commitment scheme

5 m← f(ms) ▷ f ∶ Z256
2 → Z2×ξ×∣w∣

Q

6 for h ∈ [0; ξ) in parallel:
7 for y ∈ {0, . . . , ∣w∣ − 1} in parallel:
8 i, u← wy

9 ⟪zB⟫
(Q)
← shares multiplication(m(0,h,y) ⋅⟪ti⟫

(Q)
,m(1,h,y) ⋅⟪tu⟫

(Q)
)

10 Parties declassify zB and verify that z ?
= 0

11 Each party i generates JkK(q)i

$
←Ð Zq

12 ⟪k⟫
(q)
← entry(JkK(q))

13 ⟪d⟫
(q)
← ⟪k⟫

(q)
+ ⟪r⟫

(q)

14 Parties declassify d

15 ⟪s⟫
(Q)
← ∑

q−1
i=0 i ⋅ ⟪ti+d⟫

(Q)
▷ Indexes are modulo q

For the parallel execution of the protocol, the zero check protocol from Section 2.8.3 is
used, instead of direct declassify. On line 5, f is a cryptographically secure pseudorandom
number generator. The constant ζ is a security parameter, which is relevant for the
CRP-wariness property of the protocol.
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Discussion on the CRP-wariness of Protocol 12

Let’s show10 that Protocol 12 is CRP-wary. Note that the distribution of s matches
the desired distribution if t has exactly one non-zero element and this element is 1 —
regardless of whether the pair (r, t) is consistent. Therefore, it is sufficient to show that t
conforms to this description.

Suppose for the sake of contradiction that there is more than one non-zero element in t.
Therefore, there exists a pair of elements ti and tu, such that neither of them is zero. The
result of the multiplication protocol (on line 9) for this pair is (mi ⋅ ti) ⋅ (mu ⋅ tu)+ c−a ⋅ b,
where mi and mu were agreed upon by the parties for this pair and ti, tu, a, b, c are
provided by the CRP (see Section 2.8.1). Since the security check on line 10 passed, the
result of the multiplication protocol is equal to zero. Therefore, CRP sent the values such
that a ⋅ b − c = x = (mi ⋅ ti) ⋅ (mu ⋅ tu). Note that ti and tu are non-zero. From this it must
follow that the CRP can derive mi ⋅mu = x ⋅ t−1i ⋅ t−1u . Actually, CRP has no access to
mi ⋅mu — a product of two pseudorandom elements of ZQ, generated by the parties —
thus the CRP can predict the product with only the probability of guessing. Due to the
construction of the protocol, CRP needs to correctly predict ξ independent products for
each pair (ti, tu), where ξ is the security amplification parameter (see line 5). Depending
on the choice of ξ, the probability of correct guessing can be made negligible.

Suppose for the sake of contradiction that there are no non-zero elements. Therefore,
the zA ≠ 0. Thus, the security check on line 2 failed. Contradiction.

Therefore, with overwhelming probability, there is exactly one non-zero element.
Suppose for the sake of contradiction that this element is not 1. Therefore, zA ≠ 0

and the security check on line 2 failed. Therefore there is only one non-zero element in b
and this element is 1.

Thus, we have shown that CRP cannot affect the distribution of s, without there being
an overwhelming probability of it being caught by the parties.

In Duolithium, ξ is set as a constant: ξ = 7. This ensures that the probability of
successful cheating is less than 2−128 (the protocol is used with the value of Q = 8380417).

It can be noted that deriving values for the second security check is relatively costly
in terms of performance and network communication, since a total of ξ ⋅ q⋅(q−1)2 multiplica-
tions need to be conducted for one generated ⟪s⟫. Thankfully, the protocol is used only
with q = 3 and q = 5, and only during the key generation (Protocol 16). In the planned
operation of Duolithium, the sharded private key of a specific Client is used to create
potentially hundreds of signatures. This is to say, the significant performance impact of
the security check is tolerated in the context of the planned Duolithium operation.

10What follows is an argument; security proofs are not in the scope of this work.
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4.2 Zero-equality

The zero-equality protocol, from a shared value JvK(Q) and the border value b obtains
JzK(Q), such that

z = {
1 if v = 0
0 else

.

The protocol is functional only if the input condition is met: v < b.
Compared to a zero-equality protocol that can be trivially derived from the character-

istic vector protocol, the computational complexity and the CRP-to-Server traffic of the
protocol discussed in this section grow linearly in b. This makes the protocol discussed
herein practical for large modulo rings, such as formed by ML-DSA Q = 8380417.

Protocol 13: eqzero
Input: JvK(Q), b
Output: JzK(Q)

CR: JmK(Q), where m
$
←Ð ZQ, JtK(q), such that ∣t∣ = b + 1 and

ti =

⎧⎪⎪
⎨
⎪⎪⎩

1 if ⌊ma ⌋ = i
0 else

,where a = ⌊
Q

b
⌋

1 a← ⌊Qb ⌋

2 JdK(Q) ← JmK(Q) + a ⋅ JvK(Q)

3 Parties declassify d

4 JzK(Q) ←
r
t⌊ d

a
⌋
z(Q)

Theorem 1. Protocol 13 is functional.

Proof. There are exactly 2 cases:

1. v = 0. In this case, d = m and z = t⌊m
a
⌋. Due to the correlated randomness

construction, t⌊m
a
⌋ = 1. Thus, z = 1.

2. v ≠ 0. Then ⌊da⌋ = ⌊
m+a⋅v

a ⌋. Note that a ⋅ ṽ ≤ a ⋅ (b − 1) = a ⋅ b − a ≤ Q − a < Q.
Therefore, m̃ + a ⋅ ṽ < 2 ⋅Q. There are exactly 2 cases:

(a) m̃+a ⋅ ṽ < Q. Then ⌊m+a⋅va ⌋ = ⌊
m̃+a⋅ṽ

a ⌋ = ṽ+ ⌊
m
a ⌋ > ⌊

m
a ⌋. Thus, z ≠ t⌊m

a
⌋, which

(due to the CR construction) implies z = 0.
(b) Q ≤ m̃ + a ⋅ ṽ < 2 ⋅Q. Then d = m̃ + a ⋅ ṽ −Q ≤ m̃ + (Q − a) −Q = m̃ − a.

Therefore, 0 ≤ ⌊da⌋ ≤ ⌊
m̃−a
a ⌋ = ⌊

m̃
a ⌋ − 1 < ⌊

m
a ⌋. Thus, ⌊da⌋ ≠ ⌊

m
a ⌋. Since ti = 0

for any i ≠ ⌊ma ⌋, t⌊ da ⌋ = 0. Thus z = 0.

Therefore, the protocol’s behaviour is correct in all cases.
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The protocol is trivially extendable to support MACs. This protocol (with Server
and Client MACs) is used in the protocol described in Section 4.4, in effect to compute
conjunctions of multiple values in {0,1}, shared in a ring ZQ.

Protocol generalization. A more general protocol can be described, which would map
a shared value JvK(q), such that v < b, to a value Jf(v)K(Q), where f ∶ Zq → ZQ. For
such a protocol, the values [f(0), . . . , f(b − 1)] should be assigned to t (by the CRP),
depending on whether m < a ⋅ ⌊ qa⌋, and on the value ⌊ma ⌋.

4.3 Symmetric reshare to parts
This Section documents the symmetric reshare to parts protocol — a subprotocol of
the high-bits protocol (see Section 4.4).

The symmetric reshare to parts protocol (Protocol 14) allows, from ⟪v⟫(Q) and
a list of radixes (the partitioning scheme) r, to obtain a list of characteristic vectors
[⟪b0⟫

(Q)
, . . . ,⟪b∣r∣−1⟫

(Q)
], where bi is a CV (with length ri) of pi, such that J̃vK0+ J̃vK1 =

∑
∣r∣−1
i=0 (p̃i ⋅∏

i−1
u=0 ru). Note that the selection is unique. The following input requirement

must be satisfied: ∏∣r∣−1i=0 ri ≥ 2 ⋅Q.
The general idea of the protocol is that the parties first create the characteristic

vectors, trusting each-other (lines 1–10), and then verify that the characteristic vectors
were created correctly (lines 11–13). The parts are obtained one after another, while
propagating the carry, starting from the least significant digit, as it never receives a carry.
For each digit position i, the parties appropriately construct the characteristic vector bi
of pi, from the values provided by the CRP, as well as appropriately select the value c′,
which corresponds to whether there is a carry. The parties abort the protocol execution
if the security check on line 13 fails. This check ensures that the output of the protocol
corresponds to J̃vK0 + J̃vK1 (mod Q).

The protocol uses the split local function, that was introduced in Section 3.3.
Henceforth, let us denote ,bi=a e(i) ∶= (e(a), e(a + 1), . . . , e(b)), where e is

an expression. The empty product is equal to 1.
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Protocol 14: symmetric reshare to parts

Input: ⟪v⟫(Q), r
Output: [⟪b0⟫

(Q)
, . . . ,⟪br−1⟫

(Q)
]

CR: For i ∈ [0, ∣r∣):

JmiK
(2⋅ri), where mi

$
←Ð Z2⋅ri ,

⟪b′i⟫
(Q)

, ∣b′i∣ = ri, where b′(i,u) =
⎧⎪⎪
⎨
⎪⎪⎩

1 if (u + m̃i)mod+ ri = 0
0 otherwise

,

JciK
(2⋅ri+1), ∣ci∣ = 2⋅ri, where c(i,u) =

⎧⎪⎪
⎨
⎪⎪⎩

1 if (u − m̃i)mod+ (2 ⋅ ri) ≥ ri
0 otherwise

1 r̄ ← ,∣r∣−1i=0 ∏
i−1
u=0 ri

2 Party i computes JyKi ← split(JvK(Q)i , r)
3 Jc′K← 0
4 for i ∈ [0, ∣r∣) consecutively:
5 JkK(2⋅ri) ← (JyiK + Jc′K(2⋅ri))mod+ (2 ⋅ ri)

6 JdK(2⋅ri) ← JmiK
(2⋅ri) + JkK(2⋅ri)

7 Parties declassify d

8 ⟪bi⟫
(Q)
← ⟪b′(i,0−d)⟫,⟪b

′
(i,1−d)⟫, . . . ,⟪b

′
(i,ri−1−d)⟫ ▷ Indexes are modulo ri

9 ⟪pi⟫
(Q)
← ∑

ri−1
u=0 (u ⋅ ⟪b(i,u)⟫

(Q)
)

10 Jc′K← Jc(i,d)K

11 ⟪w⟫
(Q)
← ⟪v⟫

(Q)
−∑

∣r∣−1
i=0 (⟪pi⟫

(Q)
⋅ r̄i)

12 Parties declassify w

13 Parties verify w
?
= 0

Theorem 2. Protocol 14 is functional.

Proof. Let’s show, inductively, that at the beginning of each for loop iteration (and at the
loop exit), ∑i−1

u=0(p̃u ⋅ r̄u)+ c′ ⋅ r̄i = ∑
i−1
u=0(ỹu ⋅ r̄u). As will be shown below, at the loop exit

(when i = ∣r∣), c′ = 0.

• Base case. At the start of the for loop, both the left hand side and the right hand
side equal 0, the equation holds.

• Induction step. Note that J̃yiK0+ J̃yiK1 ≤ 2 ⋅(ri−1) and c′ ≤ 1, thus J̃yiK0+ J̃yiK1+c′ <
2 ⋅ ri.

1. Let’s show that at the end of the for loop iteration pi = k mod+ ri. Note
that bi is a rearrangement of elements of the characteristic vector b′i and that
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pi = ∑
ri−1
u=0 (u ⋅ b(i,u)). Therefore, bi is a characteristic vector of pi. Thus, it is

sufficient to show that b(i,k mod+ri) = 1. This is indeed so:

b(i,k mod+ri) = b
′
(i,(k−d)mod+ri) = b

′
(i,(k−mi−k)mod+ri) = b

′
(i,−mi mod+ri) = 1.

2. Let’s show that at the end of the for loop iteration c′ = ⌊ kri ⌋. Note that
c′ = c(i,d) = c(i,mi+k). Due to ci construction,

c(i,mi+k) =
⎧⎪⎪
⎨
⎪⎪⎩

1 if k ≥ ri (mod 2 ⋅ ri)

0 otherwise
,

which is correct.

It is easy to see that from the previous two points it follows that the equation holds
at the start of the next iteration (or at the loop exit if it was the last iteration).

Note that the input condition∏∣r∣−1i=0 ri ≥ 2 ⋅Q ensures that c′ after the last iteration is equal
to 0, thus ∑∣r∣−1i=0 (p̃i ⋅ r̄i) = ∑

∣r∣−1
i=0 (ỹi ⋅ r̄i). At the same time, due to the definition of the

split routine, J̃vK0 + J̃vK1 = ∑
∣r∣−1
i=0 (J̃yiK0 ⋅ r̄i + J̃yiK1 ⋅ r̄i). For each i: bi is a characteristic

vector of pi. The security check on line 13 passes; the protocol is functional.

For the parallel execution of symmetric reshare to parts, the protocol from see
Section 2.8.3 is used for the security check, instead of direct declassify.

Note that while this protocol obtains shares with Server MAC and Client MAC, it
is not actively secure as-is. The reason is that a potentially malicious party can with
non-negligible probability succeed in modifying the output in a way that instead of
corresponding to t = J̃vK0 + J̃vK1, it would correspond to t′ = k ⋅Q + J̃vK0 + J̃vK1, where
t′ ≥ 0 and k ≠ 0. Section 4.4 describes a workaround that allows preserving the active
security property of the superprotocol despite this trait of this protocol.

4.4 High-bits
Obtaining high bits is one of the two main operations in ML-DSA signing. The high bits
protocol (Protocol 15), from ⟪v⟫(Q) and α, obtains ⟪h⟫(Q), such that

h =

⎧⎪⎪
⎨
⎪⎪⎩

⌊
(v+α

2
−1)mod+Q

α ⌋ if v ≠ Q − α
2

0 otherwise
.

Here, Q = 8380417. As can be verified, evaluating the expression above is equivalent
to performing the HighBits operation (discussed in Section 2.3). For ML-DSA-44,
α = 190464, for ML-DSA-65 and ML-DSA-87, α = 523776.
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Please note the following about the concrete values of Q and α.
For α = 190464: Q − 1 = 44 ⋅ α = 44 ⋅ (211 ⋅ 3 ⋅ 31)
For α = 523776: Q − 1 = 16 ⋅ α = 16 ⋅ (29 ⋅ 3 ⋅ 11 ⋅ 31).

These factorizations were used to derive the partition schemes, that are shown on the
algorithm line 3. 11

Protocol 15: high bits

Input: ⟪v⟫(Q), α
Output: ⟪h⟫(Q)

1 ⟪v′⟫← ⟪v⟫ + α
2 − 1

2 j = Q−1
α

3 r ←

⎧⎪⎪
⎨
⎪⎪⎩

(31,24,16,16,2 ⋅ j + 1) if α = 190464
(31,33,32,16,2 ⋅ j + 1) if α = 523776

4 [⟪b0⟫
(Q)

, . . . ,⟪b∣r∣−1⟫
(Q)
]← symmetric reshare to parts(⟪v′⟫,r)

5 ⟪kv⟫← ∣r∣ −∑
∣r∣−2
i=0 ⟪b(i,0)⟫ −∑

2⋅j
i=j+1⟪b(∣r∣−1,i)⟫

6 ⟪kr⟫← eqzero(⟪kv⟫, ∣r∣ + 1)
7 ⟪cv⟫← 1 − ⟪b(∣r∣−1,2⋅j)⟫ + ⟪kr⟫
8 ⟪cr⟫← eqzero(⟪cv⟫,3)
9 Parties declassify cr

10 Parties verify cr
?
= 0

11 ⟪h′⟫← ∑j−1
i=0 (i ⋅ ⟪b(∣r∣−1,i)⟫) +∑

j−1
i=0 (i ⋅ ⟪b(∣r∣−1,j+i)⟫) + j ⋅ ⟪b(∣r∣−1,2⋅j)⟫

12 ⟪h⟫← ⟪h′⟫ − ⟪kr⟫

The Protocol 15 is engineered as follows. First, value v′ is computed from v, such
that the special case (v = Q − α

2 ) corresponds to the value of v′ = Q − 1. Then, v′ is split
into parts in such a way that discrimination on the value of the most significant part p∣r∣−1
would allow obtaining the correct output value. The discrimination is performed on the
line 11, where the coefficients for the values in b∣r∣−1 are selected precisely in the way
that would obtain the correct output, with the exception of the following unfortunate
case: if w = J̃v′K0 + J̃v′K1 ≥ Q and w − (Q − 1) = 0 (mod α), the value h′ is larger by 1
than the correct output. 12 This is corrected in the next line by subtracting kr, which is 1
if and only if both of these conditions are true, and 0 otherwise13. This value is obtained

11It is a very fortunate happenstance that values α do not have large factors. If α would have had a large
factor, the described high-bits protocol would not have been practical due to the computational cost and
CRP-to-Server traffic in the symmetric reshare to parts subprotocol.

12Surprisingly, the value w = Q−1 does not require special handling, given the values of the coefficients
on line 11.

13As a protocol design decision, it was decided that the correction should also be applied to the value
w = 2 ⋅Q − 2. Thus, a suitable coefficient for b(∣r∣−1,2⋅j) was specified on line 11 and an upper bound
for the second sum on line 5 was adjusted. This allows reusing kv for the security check, which is an
optimization over an earlier design of the same protocol.
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(on lines 5–6), effectively by performing a conjunction of 5 values. The first four values
correspond to the other parts, whereas a value is 1 in case if the corresponding part has a
value of 0. The conjunction of these four values gives 1 if and only if wmod+ (Q−1) = 0.

The fifth value is obtained from b∣r∣−1 such that the value of kr would be 1 only if
(Q − 1) + α ≤ w ≤ 2 ⋅ (Q − 1). If Q − 1 ≤ w < (Q − 1) + α, the conjunction of 5 values
will lead to 0, as required.

Lines 7–10 act as a security check, the purpose of which will be described in a later
part of this Section.

For the parallel execution of the protocol, the traffic between the Server and the Client
may be reduced if the parties only declassify the sum of the cr values14.

Computational performance of the high bits and symmetric reshare to parts
protocol pair can be improved by implementing certain joint optimizations. For example,
computing the complete characteristic vectors for the digits other than the most significant
one is not necessary.

Theorem 3. The Protocol 15 is functional.

Proof. Note that the protocol is functional if

h =

⎧⎪⎪
⎨
⎪⎪⎩

⌊v
′

α ⌋ if v′ ≠ Q − 1
0 otherwise

.

Let’s consider the possible values of p = ,∣r∣−1i=0 ∑
ri
u=0 (u ⋅ b(i,u)). There are exactly three

cases (note that the security check is not triggered in any of these):

1. 0 ≤ p∣r∣−1 < j. In this case, w = J̃v′K0+J̃v′K1 < Q−1. The values during the execution
of the protocol will be: kv ≥ 1 and kr = 0; h = ∑j−1

i=0 (i ⋅ b(∣r∣−1,i)) + 0 + 0 − 0 = p∣r∣−1.
Note that α = ∏∣r∣−2i=0 . Thus, h = p∣r∣−1 = ⌊v

′

α
⌋, which is correct, since v′ < Q − 1

(follows from 0 ≤ p∣r∣−1 < j).

2. j ≤ p∣r∣−1 < 2 ⋅ j. In this case Q − 1 ≤ w < 2 ⋅Q − 2.

Firstly, consider the case where v′ = Q − 1. Then, p∣r∣−1 = j and ∀∣r∣−2i=0 pi = 0. This
leads to kr = 0 and h = 0 +∑

j−1
i=0 (i ⋅ ⟪b(∣r∣−1,j+i)⟫) + 0 − 0 = 0, which is correct.

Secondly, consider the case where v′ ≠ Q − 1. Note that

⌊
v′

α
⌋ = ⌊

w −Q

α
⌋ = ⌊

w − 1

α
⌋ − j =

⎧⎪⎪
⎨
⎪⎪⎩

⌊w
α
⌋ − j if w − (Q − 1) ≠ 0 mod α

⌊w
α
⌋ − j − 1 otherwise

.

(a) If w− (Q− 1) ≠ 0 (mod α): ∃∣r∣−2i=0 pi ≠ 0. Thus, kv ≠ 0 and kr = 0. Therefore,
h = 0 +∑

j−1
i=0 (i ⋅ ⟪b(∣r∣−1,j+i)⟫) + 0 − 0 = p∣r∣−1 − j.

14This assumes that there are fewer than Q values.
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(b) If w− (Q−1) = 0 (mod α): ∀∣r∣−2i=0 pi = 0. Thus, kv = 0 and kr = 1. Therefore,
h = 0 +∑

j−1
i=0 (i ⋅ ⟪b(∣r∣−1,j+i)⟫) + 0 − 1 = p∣r∣−1 − j − 1.

Note that ⌊wα ⌋ = p∣r∣−1. Therefore, for both (a) and (b): h = ⌊v
′

α ⌋, which is correct.

3. p∣r∣−1 = 2 ⋅ j. During the protocol execution by honest parties15, this equality holds
only if J̃v′K0 = J̃v′K1 = Q − 1, which implies w = 2 ⋅Q − 2. For w = 2 ⋅Q − 2, values
during the execution of the protocol will be: kv = 0, kr = 1 and h = 0+0+j−1. This
is correct, since J̃v′K0 = J̃v′K1 = Q − 1 implies v′ = Q − 2, and ⌊v

′

α ⌋ = ⌊
Q−2
α ⌋ = j − 1.

Therefore, the protocol is functional.

As discussed in the previous Section, the symmetric reshare to parts protocol is
not actively secure as-is, since if an active attack is performed, it may return characteristic
vectors for parts that correspond to the value t′ = k ⋅ Q + J̃v′K0 + J̃v′K1, t′ ≥ 0, k ≠ 0.
Suppose that such an attack was conducted successfully. Let’s consider all the possible
cases:

1. 0 ≤ t′ ≤ Q − 1 and t′ = t − Q, or Q ≤ t′ ≤ 2 ⋅ Q − 2 and t′ = t + Q. As shown
above, the protocol is functional for all values 0 ≤ w ≤ 2 ⋅ Q − 2: the protocol
returns the same value JhK for the shared input Jv′K, regardless whether w < Q
or w ≥ Q. Therefore, even if the attack on symmetric reshare to parts is
successful, high bits produces the correct output.

2. t′ > 2 ⋅Q − 2. Note that, due to the specific choice of values r: b(∣r∣−1,2⋅j) = 1 and
∃
∣r∣−1−1
i=0 b(i,0) = 1. Therefore, during the execution of the protocol, kv ≠ 0, from

which kr = 0. Following this, cv = 0 and cr = 1. The security check on line 10 will
fail — the attack is detected, execution of the protocol is stopped and the secret
material, necessary for creating signatures, is erased.

Note that the other cases are not possible due to the specific choice of values r. Therefore,
despite the limitation of the symmetric reshare to parts protocol, a potential attacker
cannot force the high bits protocol to output incorrect values. As will be discussed
in the following subsection, a potential attacker’s ability to learn information about the
protocol inputs is drastically limited.

15The argument for the active security property of this protocol follows the functionality proof.
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Selective failure attack

Very generally, a selective failure attack is a type of attack where the adversary changes
their behaviour during the protocol execution in a way that would trigger or not trigger a
failure (protocol abort), depending on the input value of another party. As one example:
in a Yao garbled circuit construction, the circuit constructor party can create the circuit
in such a way, that evaluating it would fail on a certain input of the evaluator party [15,
Section 3]. If the circuit constructor party learns, whether the protocol abort occurs, it
can learn information about the input of the evaluator party.

As discussed above, the symmetric reshare to parts protocol is not secure against
an active attack, where the attacker may cause it to return characteristic vectors for parts
that correspond to the value t′ = k ⋅Q+ J̃v′K0+ J̃v′K1, t′ ≥ 0, k ≠ 0. For a specific k, whether
the attack is detected depends on the value of J̃v′K0 + J̃v′K1. Therefore, the high bits
protocol has the unfortunate property of allowing a selective failure attack.

Such an attack could be conducted as follows. After the computation of ⟪v′⟫, the
attacker would make a guess of whether J̃v′K0 + J̃v′K1 = w < Q. Then, the attacker would
influence the execution of the symmetric reshare to parts protocol, so, depending
on the guess, parts for w +Q (if the guess is w < Q) or w −Q (if the guess is w ≥ Q)
would be obtained. Note that the malicious party will be caught if the guess was incorrect.
In this case, the attacker would not learn anything that depends on the private key; the
honest party will erase its private key shares. However, if the malicious party is not
caught, it learns some information about the distribution of v, which, stemming from the
construction of the superprotocol16, may be useful for deriving information about the
secret material.

Despite that, for every useful guess, there is always a risk that the guess will be
incorrect and the attack will be detected. Any adversary, on average, would be able to
obtain no more than 1 bit of information about the secret material before it is caught.
The probability that an adversary would obtain k or more bits of information is at most
2−k. The detection of an attack erases a private key shard and a new private key should
be generated to continue using the system. In the planned Duolithium operation, this is a
manual process.

Considering the above, we believe that this attack does not constitute a practical
security risk.

16The only superprotocol of high bits protocol is signing attempt, which will be discussed in Sec-
tion 5.2.
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5 Principal 2PC ML-DSA protocols
The protocols listed in this chapter allow for the ML-DSA key generation and signature
creation in the two-party (plus CRP) setting. For details on the construction of the original
ML-DSA algorithms, please refer to Sections 2.2–2.4. The two protocols discussed in
this Chapter rely on the protocols described in the previous chapters of this thesis and
are intended to be the ”entry points” of Duolithium.

In the protocols of this chapter, n, l, k, η, γ1, γ2, β are compile-time integer constants
defined by the used ML-DSA parameter set (the concrete values are provided in Table 1).

Both protocols may run only after the ∆ values are communicated by the parties to
the CRP. In the case of key generation, these values are freshly generated by the parties.
In the case of signing, the parties reuse the ∆ values that they have memorized after the
key generation process has finished.

5.1 Key generation
The Protocol 16 describes the key generation process in Duolithium. After successfully
executing this protocol, both parties save the public key (in the ML-DSA format), the
complementary private key shards, as well as the ∆ values that are necessary for the
formation of MACs for future executions of the signature creation protocol.

Protocol 16: keygen
Input: ∅
Output: Public key, sharded private key

1 (qs, ys)←

⎧⎪⎪
⎨
⎪⎪⎩

(5,1) if η = 2
(3,2) if η = 4

2 for i ∈ [0; l + k) in parallel:
3 for u ∈ [0;n) in parallel:
4 for j ∈ [0; ys) in parallel:
5 ⟪cj⟫← generate short(qs)

6 ⟪r(i,u)⟫← (∑
ys−1
j=0 (qs)j ⋅ ⟪cj⟫) − η

7 ⟪s1⟫← ⟪r0⟫,⟪r1⟫, . . . ,⟪rl−1⟫
8 ⟪s2⟫← ⟪rl⟫,⟪rl+1⟫, . . . ,⟪rl+k−1⟫
9 Parties derive seed ρ using some commitment scheme

10 Parties expand ρ into A
11 ⟪t⟫← A⟪s1⟫ + ⟪s2⟫ ▷ NTT forms are used for matrix multiplication
12 Parties declassify t
13 Parties compute the public key from (ρ, t)
14 Parties compute the public key hash tr
15 Party i saves the private key shard as (ρ, tr,⟪s1⟫i,⟪s2⟫i, t)
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The coefficients of s1 and s2 should be sampled from the distribution {x ∶ ∣x∣ ≤ η}.

• For ML-DSA-44 and ML-DSA-87, η = 2, which corresponds to 2⋅2+1 = 5 possible
coefficient values. Each coefficient for s1 and s2 is obtained (independently) as
⟪s⟫ = ⟪sA⟫ − 2, where ⟪sA⟫ is generated by the generate short protocol with
q = 5.

• For ML-DSA-65, η = 4, which corresponds to 2⋅4+1 = 9 possible coefficient values.
Coefficients are obtained (independently) as ⟪s⟫ = 3 ⋅ ⟪sA⟫ + ⟪sB⟫ − 4, where
⟪sA⟫ and ⟪sB⟫ are generated (independently) by the generate short protocol
with q = 3.

The behaviour of Protocol 16 deviates from the key generation algorithm behaviour
as specified in FIPS 204. Specifically, Protocol 16 effectively generates s1,s2 coefficients
uniformly at random (from the allowed range), instead of deriving the coefficients from
the seed ρ′. Also, the seed ρ is generated directly, instead of being derived from ζ . Neither
of these deviations affect the security of the key generation, because for the security
proofs of ML-DSA, the values s1, s2 and ρ are considered to be sampled uniformly at
random from their respective distributions. The value K is omitted entirely, since it is not
used for deriving the masking vector during the signing (see next Section). Additionally,
the entire value t is saved as a part of the private key, since it is needed during the signing:
for the local rejection check and for producing hints.

5.2 Signing
The Protocol 17 describes the signing in Duolithium. It relies on Protocol 18 to perform
signing attempts.

Please note the following peculiarities of the protocol:

• The Client derives µ locally and then sends it to the Server. Thus, the Server never
receives M and it cannot verify whether µ is derived correctly or is malformed.

• Only the Client learns the signature value, since the Server never learns ⟪z⟫1.

• After assembling z, the Client performs the local rejection check procedure.

• The Client performs make hint locally and notifies the Server on whether it was
successful. The Server cannot verify whether the reported and the actual outcome
match.
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Protocol 17: sign
Input: Message M (on the Client side), private key shards
Output: Signature (on the Client side)

1 Party i loads private key shard (ρ, tr,⟪s1⟫i,⟪s2⟫i, t)
2 Client derives µ (from public key hash tr and M ) and sends it to the Server
3 Parties expand ρ into A
4 for i ∈ {0, . . .} consecutively:
5 r ← signing attempt(s1,s2,A,µ)
6 if r = � then
7 continue
8 ⟪z⟫, ct ← r

Server Client
9 Reveals ⟪z⟫0 Accepts ⟪z⟫0 and verifies MAC

10 z ← ⟪z⟫0 + ⟪z⟫1
11 Performs local rejection check

12 Performs make hint, obtaining h
13 Client notifies the Server whether h = �
14 if h = � then
15 continue
16 else
17 Client computes the signature from (z, ct, h)

Note the following way in which the rejection check performed in Protocol 18
differs from the rejection sampling operation performed by the standardized ML-DSA
signing algorithm. The standardized algorithm verifies that all coefficients of r′L =
(w − c ⋅ s2)L fall into the desired region, whereas Protocol 18 performs this check (with
the same region) on the value rL =wL − c ⋅ s2. Note, however, that a coefficient of r′L

falls within the desired region if and only if the corresponding coefficient of rL falls
within this region. Thus, the rejection check in Protocol 18 and the rejection sampling
operation in the standardized ML-DSA signing algorithm are equivalent.

After the Server reveals ⟪z⟫0 to the Client, the Client performs an additional
local rejection check with a purpose that will be made clear later in this Section.
Firstly, this check verifies that for every coefficient c of z: ∣cmod± q∣ < γ1 − β. This
part matches the first rejection sampling condition of the standardized ML-DSA signing
algorithm. Secondly, this check computes r′′L = (Az − c ⋅ t) and verifies that for every
coefficient c of r′′L: ∣cmod± q∣ < γ2 − β. However, it is a known fact [6, Section 1.1,
Verification] that Az − c ⋅ t = Ay − c ⋅ s2. Thus (since Ay = w), r′L = r′′L, which is to
say that this part is equivalent to the second rejection sampling condition. Therefore, the
local rejection check is equivalent to the rejection check, but can be performed
by the Client that possesses z, without possessing the private key.
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Protocol 18: signing attempt
Input: s1,s2,A,µ
Output: r, such that either r = (⟪z⟫, ct), or r = �

1 for i ∈ [0; l) in parallel:
2 for u ∈ [0; 256) in parallel:
3 ⟪y(i,u)⟫← generate y(log2 γ1) ▷ γ1 is a power of 2

4 ⟪w⟫← A⟪y⟫ ▷ NTT forms are used for matrix multiplication
5 ⟪wH⟫← high bits(⟪w⟫,2 ⋅ γ2)
6 Parties declassify wH

7 Parties compute seed ct from µ,wH

8 Parties compute c from ct
9 ⟪z⟫← ⟪y⟫ + c ⋅ ⟪s1⟫ ▷ NTT forms are used for multiplication

10 ⟪wL⟫← ⟪w⟫ − 2γ2 ⋅ ⟪wH⟫

11 ⟪rL⟫← ⟪wL⟫ − c ⋅ ⟪s2⟫ ▷ NTT forms are used for multiplication

12 b← (,∣z∣−1i=0 (γ1 − β) ∣,∣rL∣−1
i=0 (γ2 − β))

13 h← rejection check(⟪z⟫∣⟪rL⟫,b)
14 if h then
15 r ← (⟪z⟫, ct)
16 else
17 r ← �

Remember that the rejection check protocol is only passively secure against a
potentially malicious Server. That is, a malicious Server can change its share or shares
and thus alter (interfere with) the output of the protocol. Consider the following scenarios.

• Suppose the expected result is true, but the malicious Server affected the execution
such that the actual result was false. In this case, the signing attempt fails and
the Client will conduct the next signing attempt. This merely gives the Server an
opportunity to stall the signing until the Client gives up.

• Suppose the malicious Server caused the result to be true. In this case, the
honest Client expects to receive ⟪z⟫0 and will terminate protocol execution if it
does not. As a result of the local rejection check (which is mathematically
equivalent to rejection check), the Client will detect that the Server cheated,
since rejection check should have returned false. The Client will discard the
rejected signature and delete the secret key material.

Therefore, in the context of how the rejection check protocol is used, the lack of active
security against a potentially malicious Server (while the passive security is maintained)
in this protocol is not a security concern.
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Note that the value wH is declassified during the protocol execution. We believe that
this is also not a security concern. Briefly:

• The value wH itself does not depend on (s1,s2), so it initially can be revealed.

• Value w depends on y, but wH does not computably depend on y. Thus, even
though z and rL depend on (s1,s2) and y, revealing wH alongside (before) h
does not reveal more information about (s1,s2) and y than revealing h alone.

• If the rejection check passes, ML-DSA hardness assumptions imply that the
signature is safe to reveal. Since wH can be obtained from the public key and the
signature with negligible computational effort, it is safe to reveal wH alongside
(before) z.

Unlike the ML-DSA signing algorithm, Protocol 18 generates the masking vector y
directly. This is the reason why the Duolithium key generation protocol (see the previous
Section) does not generate the value K (which is used in the ML-DSA key generation
protocol). Again, this does not undermine the security properties of the scheme, because
for the security proofs of ML-DSA, the value y is considered to be sampled uniformly at
random from the necessary distribution.

The local procedure make hint that is performed by the Client also differs from the
standardized version. In Duolithium, the hints are obtained as the positions where the
coefficients of (Az − c ⋅ t)H and (Az − c ⋅ t + c ⋅ t0)H do not match. Here, (⋅)H denotes
performing the HighBith operation; t0 is derived from t according to the Power2Round
algorithm of the ML-DSA standard. This make hint procedure is equivalent to the
standardized make hint algorithm. Note that it uses t, which is saved in full during the
key generation protocol.

Note that in Protocol 18, µ — the only value that depends on the message — is used
for the first time on line 7. Therefore, the signing process may be reorganized such that
the high bits protocol and the wH declassification are performed as a precomputation,
perhaps in parallel with the execution of rejection check from a previous signing
attempt, or perhaps during times of lesser network and server load (such as at night).
Also, multiple signing attempts could be conducted in parallel.
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6 Prototype
As a part of this research, a Python implementation of the Duolithium scheme was
implemented. This chapter documents this prototype.

6.1 Overview
The prototype is implemented to support key generation and signing, as per the protocols
described in the previous chapters of this thesis. All the three standardized ML-DSA
parameter sets are supported (ML-DSA-44, ML-DSA-65 and ML-DSA-87)17.

The prototype is written from scratch, with the exception of some ML-DSA
algorithms (as described in FIPS 204), borrowed from the GiacomoPope/dilithium-py
repository18.

The prototype consists of 3089 lines of code, of which 763 lines are tests and 266
lines are borrowed (with some adaptations applied) from the repository mentioned above.

The created prototype produces public keys and signatures, whose format matches
exactly such of the public keys and signatures created by the ML-DSA algorithms.
This means that the keys and signatures created by the prototype can be verified with
off-the-shelf cryptographic libraries, such as liboqs19, Botan320 and others.

A test of prototype functionality was conducted in the following way. First, the
CRP and the Server components were launched. Then, for each out of the three ML-
DSA parameter sets, 1000 testing iterations were conducted. In each: first the Client
component was launched with the key generation command, then launched again to
produce one signature of a certain message. All the signatures with their correspondent
keys were successfully verified using Botan3.

The prototype follows the protocols as presented in this thesis: the sent messages and
the performed computations are equivalent to such defined in the protocols. However,
to improve computational performance, some operations in the prototype are paralleled,
consolidated (fused together) or omitted21. The prototype performs key generation in 12
rounds and conducts one signing attempt in 17 rounds. Here, the round is a sequence
of actions: (1) the party or parties compute some values locally, (2) either the server,
the client, or both concurrently send each other some data, (3) the parties wait until
they receive the data that was sent. The ∆ values are communicated to the CRP on
each connection establishment. A certain limitation regarding the processing of the
CRP-generated values is discussed in Section 6.4.

17In the earlier stages of development, Dilithium 3.1 was supported, instead of ML-DSA.
18https://github.com/GiacomoPope/dilithium-py
19https://openquantumsafe.org/liboqs/
20https://botan.randombit.net/
21For instance, the prototype does not compute characteristic vectors for all the parts in the symmetric

reshare to parts protocol, since only some characteristic vectors are needed.
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6.2 Used technologies
The prototype is implemented in Python and was tested to work with Python versions
3.10 and 3.12. This programming language was selected for the ease of prototyping.

The prototype heavily relies on the NumPy library to significantly speed up compu-
tations involving large arrays. The prototype was tested with NumPy versions 1.26.0
and 2.1.0. Although using NumPy allowed for faster computations, comparatively low
performance remained one of the math drawbacks of using Python as the programming
language.

The cryptography library Botan3 is used as a test dependency for verifying the
correctness (conformity) of the produced signatures. The Python galois22 library is
used in a test of the NTT-based polynomial multiplication.

6.3 Implementation details
The cryptographic hash function used for hashing MAC values (see Protocol 1) and for
the hash-based commitment scheme (see Protocols 12 and 16) is SHAKE-256.

Generation of an array from a seed (see Protocols 2 and 16) is performed using
a pseudo-random number generator that leverages the same hash function. For array
generation, the seed is first absorbed into SHAKE-256. Then, as long as more elements
need to be generated, either 1, 2, or 4 bytes (depending on the modulo q of the elements
of the array) are squeezed from SHAKE-256. Only l least significant bits of the squeezed
value are kept (where 2l−1 ≤ q ≤ 2l). The value v is used as a generated value only if
v < q.

In the prototype, the ∆ values are generated indirectly. Each party initially chooses a
256-bit seed di uniformly at random. These seeds are then sent to the CRP. Afterward,
seed di can be deterministically expanded into all the values ∆i.

Runnable scripts for the Server component and the Client component each instantiate
an object of the MPC class, which implements the protocols executed by the parties.
Hence, most logic is shared between the Server and the Client.

The tests created for the prototype can be categorized into three groups.

• Primitive tests for serialization and deserialization routines, some of the CR gener-
ation functions, NTT, NTT-1, the local function split and matrix multiplication.

• The MPC protocols test. The test runs the protocols with various input values and
verifies that the outputs of the protocols are correct. It covers the Protocols 3–8
and 13–15. To run the protocols, the test instantiates two objects of the TestMPC
class (which inherits the MPC class) — one for each party — and then runs the
same methods of these objects in parallel. The TestMPC class is designed such

22https://github.com/mhostetter/galois
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that the parties communicate by placing and retrieving bytes from stacks. The
Server generates the CR and places the Client’s shares in the corresponding stack.
Additionally, this class implements traffic logging (refer to Section 6.5), which
also supports the key generation and signing iteration protocols.

• Key and signature tests. These tests operate on the objects, saved to the computer
storage. The key test verifies consistency between the public key and the two
shards of the private key. It also verifies the distribution of values in the private
key. The signature tests ensure that the signature matches the public key and the
signed message.

6.4 Limitations
For communication, the prototype utilizes ”raw” TCP sockets. Thus, the communication
between the participants is not authenticated, not integrity protected and not encrypted.
Of course, this means that this prototype must not be used to securely create signatures,
unless the participants are connected using protected communication channels. An
example of such channel would be a WireGuard connection, established between the
three participants as one-to-one links. 23

The prototype is not side-channel resistant.
Another limitation of the prototype is the lack of support for the ”eager” streaming as

discussed in Section 2.7. In the prototype, the correlated randomness is requested by the
Server every time new correlated randomness is needed, thus the client needs to wait for
the seed every time a new object is required. Implementing the eager streaming would
significantly reduce latency, especially in networks with large packet transmission delay
(see Section 6.6).

Furthermore, ML-DSA signing iterations in the prototype are performed consecu-
tively. Performing the iterations concurrently would significantly reduce the expected
(average) number of rounds needed for creating a signature.

6.5 Traffic measurements
This section presents the results of the traffic logging of the prototype for the key
generation and signing protocols. Note that the traffic volumes in directions S→CRP,
C→CRP and CRP→C are insignificant (less than 3kB each for key generation or signing
attempt for any parameter set). Due to the prototype implementation details, the traffic
volume in directions S→C and C→S is always equal; henceforth the traffic volume

23For a potential production system, TLS 1.3 with certificate pinning would be desirable for the
CRP-Client connection and the Server-Client connection. Due to the large traffic volume, a dedicated
physical one-to-one cable is desirable for the CRP-Server connection. The channel should be protected
from sniffing attacks, perhaps by employing encryption with a symmetric cipher.
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in either of these two directions is denoted as C↔S (i.e., the total number of bytes
exchanged between the Server and the Client is twice this value).

The actual values constitute the cumulative volume of data transmitted from one
party to another. These values were measured by the MPC protocol test code24 (see
Section 6.3) — note that these values do not reflect the TCP overhead. The idealized
values represent the information-theoretical limit of compression for the transmitted
data. To derive these values, the information transmitted was imagined to consist solely
of the array elements, where each element was considered to require log2(q)

8 bytes to
represent, where q is the modulus of the array. In the presented tables, the idealized
traffic volume values are displayed in brackets, next to the actual traffic volumes (all
values are rounded).

Table 2 shows the traffic measurements for the key generation protocol. Table 3
shows the traffic measurements for one signing attempt (Protocol 18). During the signing
process, the traffic outside of signing iterations (i.e., transmitting µ and revealing z to
the Client) has a volume not exceeding 10kB for any parameter set.

Table 2. Traffic measurements for the key generation protocol.

ML-DSA-44 ML-DSA-65 ML-DSA-87
Total
C↔S 1613kB (962kB) 2784kB (1048kB) 3024kB (1803kB)
CRP→S 23.8MB (16.7MB) 23.0MB (14.6MB) 44.7MB (31.4MB)

The obtained measurements demonstrate that the potential commercial roll-out of
Duolithium, in which clients would be edge devices (smartphones), would not be imprac-
tical due to prohibitively high server-client traffic requirements. However, significant
throughput requirements are imposed on the CRP-to-server communication channel due
to the high volume of traffic.

Full traffic listings (for ML-DSA-44) are provided in the Appendix A.

6.6 Runtime performance
The computational performance of the prototype was tested using Lenovo Thinkpad T490s
computers, equipped with Intel Core i5-8265U processors, running Ubuntu 24.04.1 LTS,
with Power Mode set to Performance.

24As an additional precaution against the possibility of the measuring code being incorrect, the traffic
volume for the ML-DSA-44 key generation and the total traffic volume for one signing iteration of ML-
DSA-44 were also measured using Wireshark (https://www.wireshark.org/). The measured values
were consistent with the values obtained from the MPC protocols test code.
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Table 3. Traffic measurements for one signing attempt (signing iteration) protocol.

ML-DSA-44 ML-DSA-65 ML-DSA-87
Generating masking vector
C↔S 2kB (2kB) 3kB (3kB) 5kB (5kB)
CRP→S 1.0MB (0.7MB) 1.3MB (1.0MB) 1.9MB (1.3MB)
Obtaining high bits
C↔S 18kB (13kB) 27kB (19kB) 36kB (26kB)
CRP→S 10.2MB (7.4MB) 13.0MB (9.3MB) 17.3MB (12.4MB)
Rejection sampling
C↔S 38kB (24kB) 51kB (34kB) 69kB (44kB)
CRP→S 23.6MB (17.7MB) 32.4MB (24.5MB) 44.2MB (33.4MB)
Total (one attempt)
C↔S 58kB (39kB) 81kB (56kB) 110kB (75kB)
CRP→S 34.8MB (25.8MB) 46.7MB (34.8MB) 63.4MB (47.1MB)

In total, three test configurations were employed.

• In the first test configuration (local), CRP, Server and Client components all ran
on a single computer. Communication was performed via localhost IP networking.

• In the second test configuration (Ethernet), CRP, Server and Client components
ran on three different computers, connected to a local network with Ethernet cables;
between each pair of computers, the roundtrip delay (as measured by the ping
utility) did not exceed 1 ms.

• In the third test configuration (Wi-Fi), the setup was deliberately constructed to
increase the average latency to the client. This configuration matched the second,
except that the client was connected via a Wi-Fi network, shared with a phone,
which was in turn connected to the Internet via a the cellular LTE network. The
roundtrip delay between the client and the server was measured continuously
during the tests: the median roundtrip delay was 35 ms.

For each test configuration, a total of 50 key generation processes and 50 signing
processes were performed for each parameter set. All the time intervals were measured
by the client. The value in the brackets shows the standard deviation, the value to the left
of the brackets shows the average.
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Table 4 shows the average measured wall clock time of the key generation process,
in seconds.

Table 4. Average run times for the entire key generation process.

ML-DSA-44 ML-DSA-65 ML-DSA-87
Total
local 2.480s (0.464s) 2.440s (0.304s) 4.417s (0.424s)
Ethernet 2.652s (0.043s) 2.837s (0.051s) 4.963s (0.073s)
Wi-Fi 5.491s (1.224s) 7.564s (3.969s) 9.298s (2.230s)

Table 5 shows the average measured wall clock time (in seconds) for the different
parts of the signing attempt, average time for the entire signing attempt.

Table 5. Average run times for the signing iteration.

ML-DSA-44 ML-DSA-65 ML-DSA-87
Generating masking vector
local 0.101s (0.054s) 0.121s (0.062s) 0.184s (0.106s)
Ethernet 0.089s (0.015s) 0.113s (0.016s) 0.151s (0.029s)
Wi-Fi 0.132s (0.028s) 0.155s (0.030s) 0.190s (0.037s)
Obtaining high bits
local 0.380s (0.103s) 0.490s (0.113s) 0.661s (0.149s)
Ethernet 0.438s (0.015s) 0.551s (0.016s) 0.712s (0.024s)
Wi-Fi 0.932s (0.135s) 1.033s (0.121s) 1.212s (0.120s)
Obtaining signature candidate
local 0.071s (0.026s) 0.086s (0.025s) 0.122s (0.036s)
Ethernet 0.054s (0.002s) 0.067s (0.002s) 0.093s (0.003s)
Wi-Fi 0.056s (0.007s) 0.069s (0.003s) 0.095s (0.004s)
Rejection sampling
local 1.822s (0.333s) 2.562s (0.411s) 3.483s (0.475s)
Ethernet 1.966s (0.053s) 2.714s (0.083s) 3.688s (0.108s)
Wi-Fi 2.360s (0.107s) 3.155s (0.100s) 4.241s (0.128s)
Total (one attempt)
local 2.386s (0.460s) 3.277s (0.531s) 4.464s (0.615s)
Ethernet 2.548s (0.064s) 3.449s (0.097s) 4.646s (0.121s)
Wi-Fi 3.484s (0.238s) 4.413s (0.214s) 5.741s (0.250s)
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Average total time, as well as total median time (in seconds), for obtaining one
signature for different scenarios is presented in Table 6. The large standard deviation can
be explained by the fact that the number of iterations necessary to obtain one signature
varies between runs.

Table 6. Average and median run times for the entire signing process.

ML-DSA-44 ML-DSA-65 ML-DSA-87
Total (one signature), average
local 9.245s (9.117s) 16.354s (12.366s) 17.274s (10.288s)
Ethernet 9.144s (7.725s) 14.990s (12.886s) 18.140s (14.154s)
Wi-Fi 16.502s (13.042s) 23.969s (17.027s) 24.734s (18.353s)
Total (one signature), median
local 6.848s 14.630s 17.773s
Ethernet 7.716s 10.384s 14.498s
Wi-Fi 12.447s 18.722s 20.701s

The presented values demonstrate that it is plausible that an optimized implementation
of the Duolithium client component capable of producing signatures in near-real time
could be created for edge devices (smartphones). 25

25After the Python prototype discussed in this thesis was created, a different, more optimized implemen-
tation of Duolithium was developed by a third party, in Rust. Preliminary performance testing concluded
that the current at the time of testing version of the prototype is capable of performing one ML-DSA-44
signing iteration on a local machine in half a second.
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7 Conclusion
In this work, a novel two-party computation cryptographic scheme capable of producing
ML-DSA-compatible public keys and signatures was documented. Some of the sub-
protocols that the scheme relies upon were invented as part of the research for this thesis.
Functionality proofs are presented for the invented protocols. A prototype that fully
implements the scheme was developed and successfully tested for functionality. The
practicality of the scheme was demonstrated by measuring the traffic requirements and
the computational performance of the developed prototype.

Both the key generation protocol and the signature creation protocol of the docu-
mented scheme are secure against potentially malicious Server, potentially malicious
Client. Additionally, the key generation protocol is CRP-wary. As part of future work,
rigorous security proofs will be given for these security properties, most likely in the uni-
versal composability framework. The security implications of the selective failure attack
on the presented symmetric reshare to parts protocol will be analyzed in more detail. Se-
curity improvements against selective failure attacks will be proposed. The permissibility
of the declassification of wH in the signing protocol will be shown formally.

As part of future work, production-grade code that implements this scheme will be
developed, potentially allowing for the rollout of a commercial digital identity solution.
This solution could enable authentication and digital signing, relying on this scheme.
Using a compiled, low-level programming language (or languages) would allow running
the CRP and the server components in Hardware Security Modules and the client
component in Android- and iOS-run devices.

The work is already underway on both creating the security proofs as well as creating
an optimized implementation of the scheme in a low-level programming language.
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Appendices

A. Prototype traffic extracts
This appendix contains the traffic listings for ML-DSA-44, obtained by the TestMPC
code. In both listings, the first column denotes the direction of the traffic, the values in
the next two columns denote the actual traffic volume and the rounded idealized traffic
volume for the sent data object (in bytes). The final column contains the description of
the sent object. For CRP traffic, it is the CR description, which consists of the requested
CR dimensions, CR type, and requested MACs (lf for both MACs, l for only Server
MACs). For S↔C traffic, it is a description of the point in the protocol at which the
declassification is performed.

Key generation (Protocol 16).
CRP ->S | 344213 | 99862 | (56, 8, 1, 256, 1) x mult_5 ()
CRP ->C | 308 | 96 | (56, 8, 1, 256, 1) x mult_5 ()

S->C | 229527 | 66639 | generate_s12 >entry >leader_mac >mult >alpha_beta
C->S | 229527 | 66639 | generate_s12 >entry >leader_mac >mult >alpha_beta

CRP ->S | 344213 | 99862 | (56, 8, 1, 256, 1) x mult_5 ()
CRP ->C | 308 | 96 | (56, 8, 1, 256, 1) x mult_5 ()

S->C | 229527 | 66639 | generate_s12 >entry >follower_mac >mult >alpha_beta
C->S | 229527 | 66639 | generate_s12 >entry >follower_mac >mult >alpha_beta

CRP ->S | 764014 | 449866 | (8, 1, 256, 1) x cv_5_8380417 (lf)
CRP ->C | 212 | 64 | (8, 1, 256, 1) x cv_5_8380417 (lf)

S->C | 86 | 32 | generate_s12 >cv_zc >seed
C->S | 86 | 32 | generate_s12 >cv_zc >seed
S->C | 316 | 216 | generate_s12 >m_seed >shared_bytes (& commitment)
C->S | 316 | 216 | generate_s12 >m_seed >shared_bytes (& commitment)

CRP ->S | 22364327 | 16073255 | (8, 1, 256, 1, 10, 7) x mult_8380417 (lf)
CRP ->C | 338 | 96 | (8, 1, 256, 1, 10, 7) x mult_8380417 (lf)

S->C | 1147039 | 824334 | generate_s12 >mult >alpha_beta
C->S | 1147039 | 824334 | generate_s12 >mult >alpha_beta
S->C | 102 | 32 | generate_s12 >mult_zc >seed
C->S | 102 | 32 | generate_s12 >mult_zc >seed
S->C | 215 | 133 | generate_s12 >zc_open
C->S | 215 | 133 | generate_s12 >zc_open
S->C | 2120 | 627 | generate_s12 >masked_keyshare
C->S | 2120 | 627 | generate_s12 >masked_keyshare
S->C | 188 | 124 | rho >shared_bytes (& commitment)
C->S | 188 | 124 | rho >shared_bytes (& commitment)
S->C | 4164 | 2976 | t_declassify
C->S | 4164 | 2976 | t_declassify

Signing attempt (Protocol 18).
CRP ->S | 958517 | 688854 | (18432 ,) x bits_8380417 (lf)
CRP ->C | 90 | 32 | (18432 ,) x bits_8380417 (lf)

S->C | 2364 | 2336 | generate_y >flipped_bits
C->S | 2364 | 2336 | generate_y >flipped_bits

CRP ->S | 9555534 | 6865317 | (4, 1, 256) x partsaa_31 ;24;16;16;89 (lf)
CRP ->C | 1256 | 448 | (4, 1, 256) x partsaa_31 ;24;16;16;89 (lf)
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S->C | 1092 | 795 | highbits >parts >b0
C->S | 1092 | 795 | highbits >parts >b0
S->C | 1092 | 747 | highbits >parts >b1
C->S | 1092 | 747 | highbits >parts >b1
S->C | 1092 | 672 | highbits >parts >b2
C->S | 1092 | 672 | highbits >parts >b2
S->C | 1092 | 672 | highbits >parts >b3
C->S | 1092 | 672 | highbits >parts >b3
S->C | 1092 | 989 | highbits >parts >b4
C->S | 1092 | 989 | highbits >parts >b4
S->C | 78 | 32 | highbits >parts >security_check >seed
C->S | 78 | 32 | highbits >parts >security_check >seed
S->C | 108 | 67 | highbits >parts >security_check_declassify
C->S | 108 | 67 | highbits >parts >security_check_declassify

CRP ->S | 426096 | 306158 | (4, 1, 256) x eqzero_8380417_6_8380417 (lf)
CRP ->C | 206 | 64 | (4, 1, 256) x eqzero_8380417_6_8380417 (lf)

S->C | 4164 | 2976 | highbits >correction >d
C->S | 4164 | 2976 | highbits >correction >d

CRP ->S | 266352 | 191349 | (4, 1, 256) x eqzero_8380417_3_8380417 (lf)
CRP ->C | 206 | 64 | (4, 1, 256) x eqzero_8380417_3_8380417 (lf)

S->C | 4164 | 2976 | highbits >security_check_eqzero >d
C->S | 4164 | 2976 | highbits >security_check_eqzero >d
S->C | 80 | 44 | highbits >security_check_declassify
C->S | 80 | 44 | highbits >security_check_declassify
S->C | 4164 | 2976 | wh_declassify
C->S | 4164 | 2976 | wh_declassify

CRP ->S | 190573 | 118399 | (4, 1, 256) x partsap_15_6_29 (l)
CRP ->C | 200 | 64 | (4, 1, 256) x partsap_15_6_29 (l)
CRP ->S | 190573 | 118399 | (4, 1, 256) x partsap_15_6_29 (l)
CRP ->C | 200 | 64 | (4, 1, 256) x partsap_15_6_29 (l)

S->C | 8327 | 5952 | rejection >parts >leftover_forward
C->S | 8327 | 5952 | rejection >parts >leftover_forward

CRP ->S | 17080426 | 12847427 | (6, 8, 2, 256) x cv_29_67 (l)
CRP ->C | 208 | 64 | (6, 8, 2, 256) x cv_29_67 (l)

S->C | 24648 | 14956 | rejection >comp >s_ovf >d
C->S | 24648 | 14956 | rejection >comp >s_ovf >d

CRP ->S | 6131810 | 4712575 | (8, 2, 256) x cv_67_71 (l)
CRP ->C | 192 | 64 | (8, 2, 256) x cv_67_71 (l)

S->C | 4164 | 3138 | rejection >comp >l_ovf >d
C->S | 4164 | 3138 | rejection >comp >l_ovf >d

CRP ->S | 2105 | 1446 | (1, 1) x cv_71_8380417 (l)
CRP ->C | 181 | 64 | (1, 1) x cv_71_8380417 (l)

S->C | 65 | 33 | rejection >cv>d
C->S | 65 | 33 | rejection >cv>d
S->C | 68 | 35 | rejection >open
C->S | 68 | 35 | rejection >open
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