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Abstract
A message recognition protocol (MRP) aims to exchange authenticated infor-

mation in an insecure channel using resource-restricted devices. During the initial-
ization session of the protocol, the parties exchange some authenticated information
which the adversary can passively observe. Then, one party wants to send authen-
ticated messages to the other party in an insecure channel. Such security require-
ments are often found in wireless sensor networks, where two nodes want to keep
communicating after initially meeting each other, but where all communication can
be observed by the adversary.

A common way for ensuring the authenticity is to initialize a public-key primitive
(signature scheme) during the initialization session. However, the identity of the
user does not need to be authenticated in our setting, so we do not need a certificate
authority that binds keys to users. Another way to ensure authenticity is for the
first party to commit to certain values during the initialization (typically by using
hash chains), such that these values can be later opened and used to authenticate
messages.

Public-key cryptography is computationally intensive. Protocols based on hash
chains also have significant computational requirements, but more importantly,
they are not perennial — the number of possible message authentications is fixed
in the initialization phase. Although efficient perennial MRPs based on hashing
have been proposed, they have been shown to be flawed.

In this paper, we show that if we restrict the primitives our protocol can use
to a set that is usually understood to comprise “symmetric cryptography”, then
it is impossible to construct a perennial MRP. We show that, without a common
secret, authenticating a message is not possible. We also show that a common
secret cannot be agreed on during the initialization session. Our result should be
an interesting guideline for authentication protocols in general, showing that initial
authentication cannot be potentially infinitely extended by using just symmetric
cryptography in the presence of an adversary.

1 Introduction

When considering resource-restricted devices, public-key cryptographic protocols such
as secret key exchanges and asymmetric encryption may not be practical. Without the
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use of a private channel, a MRP aims at achieving data integrity with respect to the
data origin. That is, the purpose of a MRP is to allow authenticated communication of
messages over insecure channels. In the scenario that we have in mind, there are two
honest parties, Alice and Bob, with Alice sending messages in an authenticated way to
Bob, while the adversary, Eve, interferes with the communication channel.

The protocol proceeds in two phases. Initially, Alice and Bob have no common knowl-
edge. In the initialization phase of the protocol, the channel between Alice and Bob is
authentic, but can be eavesdropped by Eve; hence, Eve cannot alter, delete, or withhold
messages during this phase. In the main phase of the protocol, the channel is insecure,
i.e. Eve can perform active attacks. As Eve would trivially succeed, we do not consider
denial-of-service attacks where Eve stops the flow of messages permanently between Alice
and Bob.

We are interested in protocols that provide authenticity and perenniality. Informally,
an MRP is authentic if for any message M that Bob accepts, the transmission of M was
previously initiated by Alice. An MRP is perennial if all messages M , whose transmission
was initiated by Alice, eventually will be accepted by Bob, provided that Eve stops active
attacks at some point in the main phase. At no point in time will Alice and Bob know
whether Eve has already stopped all active attacks, or will she intend to perform more of
them in the future. Formal definitions of authenticity and perenniality will be provided
below.

We continue the current paper with a brief survey of proposed MRPs and impossibility
results in cryptography, after which we give a formalization for two-party protocols in the
perfect cryptography (Dolev-Yao) model. We then give definitions of authenticity and
perenniality for MRPs and show that, with the chosen set of cryptographic primitives,
there can be no protocol satisfying both properties.

2 Related Work

In the literature, there have been a number of proposals for MRPs. Motivated by the
use of low-cost and low-power devices such as RFID tags, Lucks et al. proposed the Jane
Doe protocol [17] (a modified version of this protocol has been proposed by Goldberg,
Mashatan, and Stinson in [19]). Earlier work includes Anderson et al.’s Guy Fawkes
protocol [2], Mitchell’s Remote User Authentication protocol [21], Stajano and Ander-
son’s Resurrecting Duckling protocol [25], and Weimerskirch and Westhoff’s zero-common-
knowledge protocol [26]. Let’s take a closer look at these protocols.

The Jane Doe protocol uses a hash chain to authenticate a pre-determined number
of messages. For a randomly chosen a0 ∈ {0, 1}s and hash function h : {0, 1}s → {0, 1}s
with key size s, the hash chain generated is a1 := h(a0), . . . , an := h(an−1). Similar to the
Jane Doe protocol, Weimerskirch and Westhoff’s zero-common-knowledge protocol (ZCK)
uses a hash chain. Unfortunately, ZCK is flawed due to Eve’s ability to use a denial of
service attack along with a lack of recoverability in order to convince Bob that she is
Alice.

The Guy Fawkes protocol uses a commitment to a string that consists of the hash of
a triple in the form (codeword, message, [hash of next codeword]). The first codeword
needs to be bootstrapped by some external mechanism such as a conventional digital
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signature or an out-of-band authentication (which may be user-aided, for example see
[14]), which may be inconvenient. Furthermore, this protocol assumes that Bob can see
this commitment hash before the triple is revealed by Alice. In our setting, Eve controls
the flow of messages between Alice and Bob. Since the protocol does not include a
provision for Alice to be sure that Bob received the commitment hash, Eve simply has
to wait for Alice to reveal her codeword in order to impersonate her.

Building on the Guy Fawkes protocol, Mitchell’s Remote User Authentication protocol
uses a set of message authentication codes (MACs) of a random data string under different
keys to authenticate a particular user (not a message). Due to the number and size of
MACs used, this protocol can be expensive in terms of computation and storage. The
security of the scheme depends on computational assumptions about the parameters. The
number of times that this protocol can be used is limited because denial of service attacks
may cause the reuse of keys during resynchronization and allow Eve to impersonate Alice.

Stajano and Anderson’s Resurrecting Duckling protocol assumes that Alice and Bob
can share an initial secret during what they refer to as the “imprinting phase”. The solu-
tion proposed is physical contact between the two devices that Alice and Bob represent
which may not always be feasible. As Eve is a passive observer during the initialization
(or imprinting) phase, any information exchanged by Alice and Bob can be eavesdropped
by Eve.

More recent and in the same line of research, Mashatan and Stinson’s new message
recognition protocol for ad hoc pervasive networks [18] provides a MRP of fixed size.
The protocol uses a hash function to create commitment values to a current and future
“password”. However, as shown in [11], the resynchronization process rendered does not
provide the recoverability intended, and in fact, enables an adversary to create selective
forgeries.

There are not many impossibility results in cryptography, and those that exist are
mostly for cryptographic primitives and certain proof methods. There are some results
on the impossibility of using black-box methods for constructing one primitive from an-
other one, e.g. collision-resistant hash functions from one-way permutations [24] or time-
stamping schemes and collision-resistant hash functions from each other [7, 5, 6]. For
somewhat larger systems, Backes et al. [3, 4] show that certain primitives cannot be
implemented in the universally composable cryptographic library in a certain reasonable
way.

Regarding protocols, there is a well-known result stating that a fair exchange protocol
cannot be built without a trusted third party [27]. Impagliazzo’s and Rudich’s result [12]
on the impossibility of establishment of a common secret over an authentic channel is
maybe the closest to what we achieve in the current paper, but in some sense, it is
the weakest of the ones listed here — it shows that if one manages to prove that secret
agreement is possible assuming only that one-way permutations exist, then one has proved
P 6= NP. Another result on the non-existence of a certain class of protocols is by Pereira
and Quisquater [22] which shows that Diffie-Hellman based group key exchange protocols
cannot be constructed if the parties are constrained to perform only exponentiations in
the underlying group, and only elements of the group may be exchanged between parties.
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3 Protocols and Execution

3.1 Messages

To be able to show the non-existence of a certain class of protocols, we have to specify
what a protocol is. We are working in the perfect cryptography (or Dolev-Yao) model [9].
Messages are modeled as elements of a term algebra, the operations possible with the
messages are explicitly listed, and the adversary is bound to the same list.

Let R be a countable set of formal nonces, C a countable set of formal constants,
and P a countable set of formal payloads. Let the sets R, C and P be mutually disjoint.
Let A = R ∪ C ∪ P. The set of formal pre-messages Σ# is defined as the smallest set
satisfying

• A ⊆ Σ#;

• if m1, . . . ,mk ∈ Σ# then h(m1, . . . ,mk) ∈ Σ#;

• if m1,m2 ∈ Σ# then (m1 ⊕m2) ∈ Σ#.

We say that h(m1, . . . ,mk) is the formal hash of messages m1, . . . ,mk and (m1 ⊕m2) is
the exclusive or (XOR) of the messages m1,m2.

The set of formal messages Σ is defined as the factor set Σ#/ ≡ where ≡ relates
two messages that we want to consider equal because of the properties of ⊕. We assume
there is a fixed element 0 ∈ C. The relation ≡ is the least congruence (with respect
to the operations h and ⊕) that contains x ⊕ y ≡ y ⊕ x, x ⊕ x ≡ 0, 0 ⊕ x ≡ x and
(x ⊕ y) ⊕ z ≡ x ⊕ (y ⊕ z) for all x, y, z ∈ Σ#. In the set Σ, we consider ⊕ to be a long
operation, taking any number of arguments, because of the associativity imposed by ≡.

We define the relation “is submessage of” (denoted v) on messages. We define m v m
for all messages m, and if m′ v m, then also m′ v h(. . . ,m, . . .) and m′ v (. . .⊕m⊕ . . .).

Given a set of messages M, we can construct new messages m from it (denoted
M ` m) only in the following ways:

1. M ` m for any m ∈M;

2. M ` C for any C ∈ C;

3. if M ` m1, . . . ,M ` mk then M ` h(m1, . . . ,mk);

4. if M ` m1, . . . ,M ` mk then M ` (m1 ⊕ · · · ⊕mk).

Denote 〈M〉 4= {m ∈ Σ |M ` m}.
In addition, we want to consider more limited constructions. We denote by M `h m

the construction of new messages m from M using properties (1), (2), and (3) from
above. Likewise, M `⊕ m denotes the construction of new messages m from M using
properties (1), (2), and (4). Also, two messages can be compared for equality, and given
a message, it is possible to check whether it is a constant or a payload. Note that we
assume that a nonce cannot be told apart from a formal hash. Indeed, they both model
“random-looking” bitstrings.

6



3.1.1 Modeling Symmetric Cryptography

When using perfect cryptography to model protocols, one usually understands certain sets
of cryptographic primitives under the notions of “symmetric cryptography” or “asym-
metric cryptography”. Symmetric cryptography usually includes not only symmetric
encryption and hash functions, but also message authentication codes, (pseudo)random
functions, and permutations. It may also include XOR or other computationally simple
operations with data. On the other hand, asymmetric cryptography contains primitives
like public-key encryption and signing using operations like exponentiation (to model
Diffie-Hellman key exchange).

In the current paper, we explicitly consider only hash functions and the XOR opera-
tion. Nevertheless, we claim that we are still handling most of “symmetric cryptography”
because other primitives under this label can be constructed from hashes and XORs in
a manner that a protocol using the atomic primitive is indistinguishable from a protocol
using the constructed primitive [13]. For example, (randomized) symmetric encryption
can be defined as Er

K(m) = (r, h(K,h(K, r,m))⊕m,h(K, r,m)). A pseudorandom func-
tion can be defined as PRF K(m) = h(K,m). A message authentication code can be
defined exactly in the same way. A pseudorandom permutation can be constructed from
a pseudorandom function by using the Feistel construction [10, Sec. 3.7.2].

3.2 Alice and Bob

The MRP proceeds in rounds, i.e. we assume a global clock. The construction of pro-
tocols is generally easier in the synchronous model, hence this assumption strengthens
our impossibility result. During a round, Alice and Bob read the messages sent to them
during the previous round (possibly modified by Eve), generate new messages, and send
them to each other (possibly captured by Eve). Additionally, at the beginning of a round,
Alice may receive a payload that she must somehow transmit to Bob. Also, in addition
to sending messages, Bob may also choose to accept payloads.

If Eve is not active then the messages sent by Alice and Bob are handed to each other
at the beginning of the next round. Otherwise, Eve receives those messages and replaces
them with messages of her choosing.

Recall that the protocol had two phases. During the initialization phase, Eve is not
active. The end of the initialization phase is denoted by Alice (this is w.l.o.g. as Alice
and Bob can discuss when to start with the main phase). During the main phase, Eve
becomes active. She starts interfering with the communication between Alice and Bob.
At some point, Eve may decide to become inactive again. When this happens, Alice and
Bob will get no notification.

Formally, the protocol role for Alice is defined by the following components:

• The set of internal states SA (possibly infinite) and the initial state SA0 ∈ SA of
Alice.

• The transition function δA whose type is described below.

The arguments to the transition function are the following:

• the current state S◦A ∈ SA;
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• the current message store, M◦ ∈ Σ∗ (where X∗ denotes the set of finite sequences
of elements of the set X);

• the sequence of messages MA←B ∈ Σ∗ received at the beginning of the current
round, presumably from Bob;

• the payloads Mpl ∈ P∗ that Alice received from Eve to be transmitted to Bob
(possibly empty).

Alice’s transition function outputs the following components:

• new internal state S•A ∈ SA;

• new store of messages M• ∈ Σ∗;

– We demand that M• =M◦ ·Mpl ·MA←B · N , where N ∈ R is the sequence
of formal nonces generated by Alice in the current round.

• the sequence of messages MA→B ∈ Σ∗ to be sent to Bob;

• a Boolean bm indicating whether the main phase of the protocol should start (this
component is ignored after the main phase has started).

The transition function must satisfy certain properties, described below. These properties
state that Alice can construct and compare the formal messages only according to the
rules given above.

Similarly, Bob’s role is defined by its set of internal states SB, the initial state SB0 ∈ SB

and the transition function δB. The inputs and outputs of δB are the same as of δA, except

• there is no input Mpl nor output bm;

• there is an additional output Macc ∈ P∗ of payloads Bob has accepted during the
current round.

The conditions on δA and δB are inspired by the formal meaning of epistemic modal-
ities in authentication logics [1]. Similarly to those models, Alice and Bob can only act
upon the information that they actually have. Given two message stores that look the
same to Alice, her outputs cannot allow her to distinguish these two stores. Let M
and M′ be two message stores of the same length `. Let M[i] denote the message at
the i-th position of M, where 1 ≤ i ≤ `. We say that M and M′ are indistinguish-
able (denote M ≈ M′) if there exists an isomorphism ϕ from 〈M〉 to 〈M′〉, such that
ϕ(M[i]) = M′[i] for all i ∈ {1, . . . , `}. A mapping ϕ from a set of messages X to a set
Y is an isomorphism if it is bijective and

• ∀c ∈ C : ϕ(c) = c;

• ∀m ∈ X: m is a payload iff ϕ(m) is a payload;

• ∀m1, . . . ,mk ∈ X : ϕ(h(m1, . . . ,mk)) = h(ϕ(m1), . . . , ϕ(mk)) and
ϕ(m1 ⊕ · · · ⊕mk) = ϕ(m1)⊕ · · · ⊕ ϕ(mk).
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Let S◦ ∈ SA and let M◦,M◦′,MA←B,M′
A←B,Mpl,M′

pl be sequences of messages.
Let

(S•,M•,MA→B, b) = δA(S◦,M◦,MA←B,Mpl)

(S•′,M•′,M′
A→B, b

′) = δA(S◦,M◦′,M′
A←B,M′

pl) .

If

• |M◦| = |M◦′|, |MA←B| = |M′
A←B|, |Mpl| = |M′

pl|,

• M◦ · Mpl · MA←B ≈M◦′ · M′
pl · M′

A←B, where the indistinguishability is realized
by the isomorphism ϕ◦

then the following must hold:

• S• = S•′; b = b′; |M•| = |M•′|; |MA→B| = |M′
A→B|;

• M• ·MA→B ≈M•′ ·M′
A→B where the indistinguishability can be realized by some

isomorphism ϕ• that extends ϕ◦.

Similar condition (indistinguishable inputs lead to indistinguishable outputs) must
hold for δB. The isomorphism on inputs obviously does not includeMpl, but the isomor-
phism on outputs also has to include Macc.

3.3 Global Setup

The global state S of the protocol (between the rounds) consists of the following parts:

• the states SA, SB and message stores MA, MB of Alice and Bob;

– initially SA0, SB0, and empty

• the set of messages ME that Eve has seen or generated;

– initially 〈∅〉

• the Booleans bm, ba indicating whether the protocol execution is in the main phase,
and whether Eve is active;

– initially false and true, respectively

• the sequences of messages M̄A←B and M̄B←A that Alice and Bob are about to
receive;

– initially empty

• the sequence Mpl of payloads that Alice should transmit to Bob.

– initially empty
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We say that global state S is transformed to S ′ in a single round and write S → S ′ if the
following holds. Let

(S ′A,M′
A,MA→B, b) = δA(SA,MA,M̄A←B,Mpl)

(S ′B,M′
B,MB→A,Macc) = δB(SB,MB,M̄B←A) (1)

Then S ′A, S
′
B,M′

A,M′
B must be components of S ′. The other components of S ′ must

satisfy the following conditions.

• If bm ∧ ba then there must exist a finite set of nonces and payloads N ⊂ R ∪ P
not occurring in S, M′

A and M′
B, such that M′

E = 〈ME ∪MA→B ∪MB→A ∪N〉.
Otherwise M′

E = 〈ME ∪MA→B ∪MB→A〉.

• b′m = bm ∨ b.

• If ba is false then b′a must be false.

• If bm ∧ ba then the components of the sequences of messages M̄′
A←B and M̄′

B←A

belong to M′
E. Otherwise M̄′

A←B =MB→A and M̄′
B←A =MA→B.

• If bm ∧ ba then M′
pl is a possibly empty sequence of payloads that belong to M′

E.
Otherwise M′

pl is empty.

We see that Eve acts only if both flags bm and ba are set. In this case she non-
deterministically selects the messages received by A and B. If Eve does not act then
S ′ is uniquely determined by S.

A protocol trace is an infinite sequence S0 → S1 → · · · , such that S0 is the initial
global state described above and for each i we have Si−1 → Si.

3.4 Security Properties

We say that Bob accepts payload M at the step S → S ′ if in the equation (1), the
componentMacc contains M . We say that Alice initiates the payload M in the state S,
if the component Mpl of that state contains M .

We say that the MRP is authentic if the following holds for all of its traces S0 → S1 →
· · · . If Bob accepts a payload M at the step Si → Si+1 then there exists j ∈ {1, . . . , i},
such that Alice initiates M in the state Sj.

We say that the MRP is perennial if the following holds for all of its traces S0 →
S1 → · · · . If Alice initiates the payload M in some state Si, and there exists a state
Sk, where ba is false, then there exists some j, such that Bob accepts M at the step
Sj → Sj+1.

Theorem 1. There exist no authentic perennial MRPs using hashing as the only cryp-
tographic primitive.
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4 Proof of the Theorem

We give a constructive proof, describing how Eve should attack the protocol. We explain
how Eve must construct the messages received by Alice and Bob. According to the
previous section, Eve is actually non-deterministic, hence our descriptions serve to point
out a trace where either the authenticity or perenniality is violated.

During the protocol run, Alice, Bob and Eve construct new messages from messages
already in their message stores. We now formally define the procedure they use to do
it. Let V = {v1, . . . , vk} be a set of variables. The set P of message contexts over V is
defined as the smallest set satisfying

• V ∪C ⊆ P ,

• if P1, . . . , Pk ∈ P then also h(P1, . . . , Pk) ∈ P and P1 ⊕ · · · ⊕ Pk ∈ P .

Given messages m1, . . . ,mk, the notation P [m1, . . . ,mk] denotes the message one obtains
from P by substituting vi with mi.

We begin our proof in Sec. 4.1 by showing that Alice and Bob cannot perform a secret
key exchange using formal hashing and/or ⊕. We then proceed to show that during the
main phase of the protocol, Eve can force Alice to deplete the means with which she can
prove the authenticity of her messages to Bob. In order to not overwhelm the reader with
details, in Sec. 4.2, we first give the proof under the assumption that Alice and Bob do
not use the ⊕-operation in their computations. In this case, obviously, Eve has no use of
this operation as well. After that, in Sec. 4.3, we show how the proof carries over to the
full language of messages.

4.1 Impossibility of Secret Key Exchange

The impossibility of the derivation of a common secret by Alice and Bob is a direct
consequence of Schmidt et al. [23]. We provide the proof here for completeness.

Let Si be a global state reached during the initialization phase of the protocol. Suppose
that the derivation of a common secret (a message known by Alice and Bob, but not Eve)
was impossible from the message stores of Alice and Bob in state Si−1. We show that it
is impossible in state Si as well.

Alice’s message store contains the nonces that she has generated and messages that
she has received from Bob (later, it also contains payloads received from Eve). Bob’s
message store contains nonces that he has generated and messages he has received from
Alice. All exchanged messages are known to Eve. Alice now performs computations from
the messages her store contains, and Bob also performs computations from his store. We
describe an intermediate stage of this computation by stating that three sets of messages,
MA, MB and ME are a partial computation if

• MA ∩MB ⊆ 〈ME〉.

• If m ∈MA ∪MB and m′ v m, then m′ ∈MA ∪MB.

• For any message m = h(m1, . . . ,mk) in MA [resp. MB]: if some of the messages
m1, . . . ,mk do not belong to MA [resp. MB] then m ∈MB [resp. m ∈MA].
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Alice’s and Bob’s message storesMA andMB together with Eve’s knowledge ME in
Si do not form a partial computation, because the stores only contain nonces and received
messages but not intermediate computations. But if we define MA asMA together with
the results of all computation steps Alice has performed so far during the execution of the
protocol in order to construct the messages for Bob, and define MB similarly from MA,
then we end up with a partial computation. Indeed, the submessages of all messages in
MA ∪MB must be in this set too. Also, each message of the form h(m1, . . . ,mk) had to
be computed by either Alice or Bob, and the one who computed it must have known the
components m1, . . . ,mk. Finally, any message in both MA and MB is also in ME (i.e.
there are no common secrets). Let Mprev

A [resp. Mprev
B ] be the message store of Alice

[resp. Bob] in the state Si−1. No common secrets were derivable in Si−1, i.e. all messages
in 〈Mprev

A 〉 ∩ 〈Mprev
B 〉 were known to Eve. But each of the messages in MA [resp. MB]

either belongs to 〈Mprev
A 〉 [resp. Mprev

B ] or was received from Bob [resp. Alice] during the
step Si−1 → Si and is thus known to Eve.

We now show that neither XOR nor hashing help Alice and Bob derive a common
secret from a partial computation.

Lemma 2. Let MA, MB, ME be a partial computation. Let XA ⊆ MA, XB ⊆ MB be
finite sets. Let sA =

⊕
XA and sB =

⊕
XB. If sA = sB = s, then ME ` s.

Proof. Consider the sets XA and XB, and suppose that sA = sB. First, we show that
we can assume that all messages in XA and XB are nonces or formal hashes. Indeed, if
a message m = m1 ⊕ · · · ⊕ mk belongs to (say) XA, then we could replace it with the
messages m1, . . . ,mk which must exist in either MA or MB by the definition of partial
computation. Each of the messages mi will be added to either XA or XB (or removed, if
it already exists there), depending on whether MA or MB contains it.

If only nonces and formal hashes are elements of XA and XB, then nothing “cancels
out” when we compute sA =

⊕
XA and sB =

⊕
XB. Hence, if sA = sB = s, then

XA = XB = X and X ⊆ MA ∩MB. Therefore, Eve knows all elements of X and can
compute s herself.

Lemma 3. Let MA, MB, ME be a partial computation. Let m1, . . . ,mk in MA. Let
m = h(m1, . . . ,mk). If m ∈MB, then ME ` m. The same result holds if we swap MA

and MB.

Proof. If m ∈ MB, then either m1, . . . ,mk ∈ MB or m ∈ MA by the definition of a
partial computation. In the second case, m ∈MA ∩MB, thus Eve knows m. In the first
case, the premise of the lemma stating that m1, . . . ,mk ∈MA implies that Eve already
knows m1, . . . ,mk and can thus compute m herself.

Lemma 4. Let MA, MB, ME be a partial computation. Let m1, . . . ,mk ∈ MA and let
m be computed as m = h(m1, . . . ,mk) or m = m1 ⊕ · · · ⊕ mk. Then MA ∪ {m}, MB,
ME is a partial computation too. The same result holds if we swap MA and MB.

Proof. The structural properties of messages in MA∪{m} and MB are obviously satisfied
— the immediate submessages of m are already elements of MA (or in case of XOR,
possibly MB). Also, if m ∈MB, then the two previous lemmas imply that m ∈ 〈ME〉 as
well.
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The last lemma shows that if Alice and Bob perform computations with the values
that they know after a step in the initialization phase of the protocol, and they had
no common secrets before that step, then the messages they know can only be partial
computations. As a result, they can derive no common secrets. The presented lemmas
also show that no common secret can be obtained during the main phase of the protocol
— although MA, MB and ME, where MA and MB are defined asMA andMB together
with the results of all intermediate computations of Alice and Bob do not yet form a
partial computation (because a message learned by Alice may be originated by Eve and
not by Bob), the sets MA ∪ 〈ME〉, MB ∪ 〈ME〉 and ME form a partial computation as
long as there were no common secrets before the current round. Hence, Alice and Bob
cannot derive a common secret even if given access to everything that Eve knows.

4.2 Proof for Language without XOR

Suppose that the initialization phase of the protocol has just ended — at the step Si−1 →
Si, Alice decided that the main phase should start.

Let Z0 be the set of all messages that Alice and Bob have sent during the initialization
phase. Consider the knowledge ME of Eve in the state Si. Let Z = {m′ |m ∈ Z0,m′ v
m}\ME, i.e. Z contains all submessages of sent messages that Eve does not know.
Because of the results of Sec. 4.1, each element of Z is known to exactly one of Alice and
Bob. Let Z = ZA ∪̇ ZB, where ZA [resp. ZB] is the set of messages in Z known only to
Alice [resp. Bob].

W.l.o.g., we partition the set of formal nonces R into three countable sets RA, RB

and RE and assume that whenever Alice, Bob, or Eve generates a new nonce, it comes
from the respective set. Let YA = ZA∪RA and YB = ZB∪RB. We now define mappings
trA and trB from messages to messages as follows:

trA(m) =


m, m ∈ Z0 ∪C

�m, m ∈ YA

m′, m = �m′
,m′ ∈ YB

h(trA(m1), . . . , trA(mk)), m = h(m1, . . . ,mk)

trB(m) =


m, m ∈ Z0 ∪C

�m, m ∈ YB

m′, m = �m′
,m′ ∈ YA

h(trB(m1), . . . , trB(mk)), m = h(m1, . . . ,mk),

where the different cases have to be considered from top to bottom. Here �m ∈ RE is a
new nonce that Eve constructs the first time that she needs to consider the second case
for the message m. Additionally, we state that trA is a permutation on payloads (but
do not specify which one). The mapping trB is also a permutation on payloads and it is
equal to the inverse of trA.

In the main phase of the protocol run, as long as Alice and Bob do not send each
other the messages in Z, the attack mounted by Eve consists of replacing all messages
m sent by Alice with trA(m), and all messages m sent by Bob with trB(m). We explain
below what happens if some message from the set Z is sent.
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Lemma 5. Eve is capable of replacing all messages m /∈ Z sent by Alice with trA(m),
and all messages sent by Bob with trB(m).

Proof. Let m be a message sent by Alice. Alice constructed it as P [~z, ~y, ~x] for a certain
message context P and messages ~z ∈ Z0 ∪C∪P (this notation means that each element
of the vector ~z belongs to the set Z0 ∪ C ∪ P), messages ~y ∈ YA, and messages ~x
presumably received from Bob after the start of the main phase. Those messages ~x were

actually generated by Eve from the messages
−−−−→
tr−1

B (x) actually constructed by Bob. Eve

can now construct trA(m) as P [~z,
−→
�y,
−−−−→
tr−1

B (x)]. The message m sent by Bob is translated
to trB(m) in the same way.

Let us now show that Alice and Bob do not notice Eve replacing the exchanged
messages m with trA(m) or trB(m). Let S◦ and S◦′ be two global states. Let Z0 be a
set of messages that Alice, Bob, and Eve all know in S◦ and S◦′. Also, let each of the
messages in Z0 appear in the message store of either Alice or Bob as a message from
the other party. Let Z be the set of submessages of Z0 unknown to Eve and known to
exactly one of Alice and Bob. The sets Z0 and Z must look like the sets of messages and
their submessages of an initial segment of a conversation between Alice and Bob. That
is, there must exist an order on Z0 such that each message in Z0 can be constructed from
previous messages of Z0, from the nonces in Z, and from the nonces in RE.

Define trA and trB as above. Let the states be isomorphic (denoted S ∼= S ′), meaning
that

• The internal states of Alice and Bob are the same in S◦ and S◦′;

• M◦ ·Mpl ·MA←B ≈M◦′ ·M′
pl ·M′

A←B, where the isomorphism ϕA is the following:

– ϕA(x) = x if x ∈ RA or x ∈ P,

– ϕA(m) = trB(m) if m is a message received from Bob

∗ in particular, ϕA(m) = m for all m ∈ Z0

(recall that message stores of Alice consist of nonces generated by her, payloads,
and messages received from the network);

• the message stores of Bob must be isomorphic too, where the isomorphism ϕB is
identity on nonces Bob has generated, and equals trA on messages received from
Alice.

Let S◦ → S•, where the step corresponds to Eve not interfering with the messages Alice
and Bob are sending to each other. Also let S◦′ → S•′ where the step corresponds to Eve
applying trA to the messages Alice is sending, and trB to the messages Bob is sending,
before forwarding them to the other party.

Lemma 6. Let the sets Z and Z0 be as defined above. LetM be a message store of Alice.
Let ϕ be a mapping from M to the set of all messages Σ defined as follows: ϕ(x) = x
if x ∈ RA or x ∈ P, and ϕ(x) = trB(x) otherwise. Let y be a message that satisfies the
following:

• y 6∈ Z.
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• If r ∈ YA and r v y, then exists z ∈ Z0, such that r v z v y. Such z exists for
each occurrence of r in y.

Let P [~x] = y for a certain message context P and messages ~x in M. Then P [
−−→
ϕ(x)] =

trB(y).

Proof. Induction over the length of computing trB(y). If y ∈ Z0 ∪ C then trB(y) = y.
As P [~x] = y, all members of the vector ~x must be submessages of y. Hence they’re
elements of Z0, Z or P. All elements in Alice’s message store that are also elements of
Z are nonces generated by Alice. Hence ϕ(x) = x for all elements x of the vector ~x and

P [
−−→
ϕ(x)] = P [~x] = y = trB(y).
If y ∈ YB then trB(y) = �y. But in this case P [~x] = y is impossible because only

Bob knows elements in YB. Also, the case y = �m′
, where m′ ∈ YA is impossible too,

because Alice does not generate nor receive nonces of the form �r where r is a secret
known to Alice.

If Z0 63 y = h(y1, . . . , yk) then we consider the shape of the context P . If P is a single
variable xi, then the message corresponding to xi cannot be a nonce or payload, hence
ϕ(xi) = trB(xi). Also, the message corresponding to the variable xi is equal to y. We
have ϕ(xi) = trB(xi) = trB(y). If P = h(P1, . . . , Pk) then Pi[~x] = yi for all i ∈ {1, . . . , k}.
The computation of trB(yi) requires fewer steps than the computation of trB(y). Hence,
if yi 6∈ Z ∪RA, then we can apply the induction assumption to Pi[~x] and yi and obtain

Pi[
−−→
ϕ(x)] = trB(yi). The case yi ∈ YA is impossible. If yi ∈ YB, then Alice would again

be capable of computing an element of YB as Pi[~x], hence this case is impossible too.

Lemma 7. If the messages sent by Alice and Bob in S◦ and S◦′ do not contain elements
of Z, then in states S• and S•′, the messages in the set Z are still known by exactly one
of Alice and Bob. Furthermore, S• and S•′ are isomorphic, and the isomorphism between
messages is related to trA and trB in the same way as for S◦ and S◦′.

Proof. First, we note that because of the conditions put on δA and δB (Alice and Bob
cannot act on information they do not have), Alice’s and Bob’s internal states are the
same in S• and S•′. Also, the message tuplesMA→B andM′

A→B that Alice sends to Bob
in S◦ and S◦′ are isomorphic; the isomorphism is given by ϕ that has been extended to
the new nonces that Alice generated. The same holds for the tuples MB→A and M′

B→A

sent by Bob.
As Alice and Bob are not sending any elements of Z to each other, they cannot learn

any of its elements. The proof of Alice and Bob not learning any messages in Z is given
in Sec 4.1.

We now turn our attention to the isomorphism of Alice’s views in S• and S•′. A
mapping ϕA is defined on the components MA · Mpl · MA←B of S• by ϕA(x) = x for
x ∈ RA and ϕA(m) = trB(m) for other messages (by induction assumption on MA

and by Eve’s behavior on Mpl and MA←B). We show that ϕA can be extended to a
homomorphism of messages.

The inability to extend ϕA to a homomorphism means that there are message contexts

P,Q and elements ~x, ~y ∈ MA ∪Mpl ∪MA←B, such that P [~x] = Q[~y], but P [
−−−→
ϕA(x)] 6=

Q[
−−−→
ϕA(y)]. If the topmost operation of both P and Q is hashing, then P = h(P1, . . . , Pk),

Q = h(Q1, . . . , Qk) (same number of arguments) and Pi[~x] = Qi[~y] for all i ∈ {1, . . . , k}.

15



As P [
−−−→
ϕA(x)] 6= Q[

−−−→
ϕA(y)], there must exist some i such that Pi[

−−−→
ϕA(x)] 6= Qi[

−−−→
ϕA(y)].

Hence, we can consider smaller contexts Pi and Qi instead of P and Q.
Consider now the case where the topmost operation of at least one of P and Q is not

hashing, i.e. where at least one of the contexts is a variable. W.l.o.g. let Q be a variable.
Then there exist ~x, y ∈ MA ∪Mpl ∪MA←B, such that P [~x] = y (i.e. all messages in ~x

are submessages of y), but P [
−−−→
ϕA(x)] 6= ϕA(y). As this cannot happen if y is an atomic

message (else we must have P = y as well, and then P [
−−−→
ϕA(x)] = ϕA(y)), it must be

a message received from Bob and ϕA(y) = trB(y). For such a message y and message

context P , we can apply lemma 6 and obtain P [
−−−→
ϕA(x)] = trB(y) = ϕA(y).

Having extended ϕA to a homomorphism, we must show that ϕA is an isomorphism
from 〈MA · Mpl · MA←B〉 to 〈M′

A · M′
pl · M′

A←B〉. For this, we have to show that

(i) ϕA maps into I = 〈M′
A · M′

pl · M′
A←B〉;

(ii) ϕA is one-to-one;

(iii) ϕA is onto.

Consider the value of ϕA onMA,Mpl andMA←B. For nonces x generated by Alice, and
for payloads, ϕA(x) = x, i.e. these values are mapped into I. Consider now a message m
received from Bob. In the state S◦, or in some earlier state, Bob constructed this message
as P [~y, ~z, ~x] for some

• nonces and messages ~y ∈ YB,

• messages ~z ∈ Z0 that Bob received from Alice;

• messages ~x outside Z0 that Bob received from Alice.

In the state S◦′, Bob constructed the same message as

P [~y, ~z,
−−−−→
trA(x)]. In state S•′, this message is

trB(P [~y, ~z,
−−−−→
trA(x)]) = P [

−−−−→
trB(y), ~z,

−−−−→
trB(x)] = ϕA(m) .

Hence ϕA maps m to the corresponding element in M′
A ·M′

pl ·M′
A←B, meaning that (i)

is satisfied. Also, (iii) is satisfied because each of the generators of I has an original with
respect to ϕA.

We still have to show that ϕA is one-to-one. Let m ∈ I, we show that it has a single
preimage by ϕA. If m = �m′

then ϕ−1
A (m) = m′ ∈ YB and there are no other preimages.

If m is a nonce in RA, then it is its own preimage (nothing else is mapped to RA). If m
is a payload, then its preimage is also a payload (uniquely determined). If m ∈ Z0 ∪C,
then it is its own preimage by the first case of defining trB. In this case, it might be
possible that there exists some other m′ such that ϕA(m′) = m. Then m′ 6∈ Z0 ∪C. The
message m′ is found as P [~x] for some message context P and for some messages ~x that are
either received from Bob or nonces generated by Alice; ϕA(m′) is defined by structural
induction over P . But Alice’s nonces and messages in Z0 ∪C are mapped to themselves.
Hence, if ~x contains only such messages, then ϕA(m′) = m′ and m′ = m. Other possible
messages in ~x can be messages received from Bob during the main phase. If they cannot
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be generated from Alice’s nonces and messages exchanged during the initialization phase,
then they must contain some messages in YB. But then ϕA(m′) will contain some �m′′

as a submessage and hence ϕA(m′) 6= ϕA(m).

Lemma 7 shows that as long as Alice and Bob do not send elements of Z to each other,
Eve is able to simulate them to each other. Indeed, Eve knows from the description of the
protocol which messages Alice and Bob are going to send to each other — which message
context they are applying to their message stores. Although Eve does not necessarily
know the message m Alice is sending to Bob, she is capable of constructing the message
trA(m). But what does Eve do when (say) Alice sends to Bob a tuple of messages
(m1, . . . ,mk) where mi ∈ Z?

In this case, Eve redefines the sets Z and Z0, by moving from Z to Z0 the message mi

and any other elements of Z she is now capable of computing. In this way, the mappings
trA and trB are also redefined. Eve now continues as before: applies trA to all messages
sent by Alice and trB to all messages sent by Bob and forwards them to Bob and Alice,
respectively. Of course, Bob now notices that Eve is performing an active attack. If Bob
had also sent messages belonging to Z, then Alice would have noticed it too.

If the following steps of Alice and Bob do not involve sending messages in the now
smaller set Z to each other, then lemma 7 is again applicable — Eve can simulate Alice
to Bob and Bob to Alice. In particular, the following result holds.

Lemma 8. Let · · · → Si → Si+1 → · · · → Sj → Sj+1 → · · · be a trace of the MRP.
Let Alice receive the payload M in the state Si and let Bob accept M during the step
Sj → Sj+1. If Alice and Bob do not send any elements of Z to each other during the
steps Si → Si+1, . . . ,Sj−1 → Sj, then the protocol does not have the authenticity property.

Proof. Eve can simulate the trace Si → · · · → Sj+1. In particular, she can give a different
payload M ′ to Alice and define trA(M ′) = M , trB(M) = M ′. As a result, Bob will still
accept M during the step Sj → Sj+1, but it was never given to Alice to transmit.

Suppose that the MRP has the perenniality property. Eve’s attack against the au-
thenticity of the protocol now works as follows. At the start of the main phase, Eve gives
the first payload M1 to Alice and defines trA(M1) = M ′

1. As the protocol is perennial,
Alice and Bob must exchange messages with the aim of Bob eventually accepting M1

if Eve has become inactive. During the conversation, Eve uses trA and trB to rewrite
Alice’s and Bob’s messages, until Bob accepts M ′

1 (breaking authenticity), or one of the
parties includes an element of Z in the message. So far, Alice and Bob have not noticed
the presence of Eve — they have not noticed that they have ended up in the state S ′i
instead of Si.

Eve now redefines Z and Z0, and resets trA on payloads (in the following, trA(M) = M
for an already existing payload M). Alice and Bob now learn that they are in the state
S ′i, instead of Si.

After the redefinition of Z and Z0, the premises of lemma 7 are again satisfied. If
Alice and Bob continue from the state S ′i then, as long as they do not send elements of
now smaller Z to each other, they do not notice that Eve applies trA to messages sent by
Alice and trB to messages sent by Bob. In order to make Alice and Bob talk, Eve gives
a new payload M2 to Alice and makes it a non-fixed point of trA.
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We see that Eve has means to keep Alice and Bob talking. If Bob is accepting messages
(which he must do if the protocol has the perenniality property), then Alice and Bob must
use up the elements of Z in order to have authenticity. But the set Z is finite. Hence,
it becomes empty at some point. At this point, Eve knows everything that Alice knows
and can masquerade her to Bob.

4.3 Proof for the Full Language

The structure of the proof remains the same. Again, Eve translates the messages ex-
changed by Alice and Bob such that they do not notice Eve’s presence as long as no
message from the set Z is sent (which causes the set Z to become smaller). Accepting
the message by Bob requires consuming an element of Z which eventually depletes the
set and allows Eve to masquerade as Alice. But the definition of Z is more involved, and
we have to be more careful in defining the translation functions trA and trB.

For a set of messages M, define its linear hull as 〈〈M〉〉 = {m ∈ Σ |M `⊕ m}. Let W0

be the set of all messages that Alice and Bob have sent during the initialization phase.
Let W be the set containing W0, as well as all submessages of messages in W0. Let
Z0 contain all messages in 〈〈W〉〉 that are known to Eve at the end of the initialization
phase. Let Z = 〈〈W〉〉\Z0. As before, ZA ⊆ Z is the set of messages in Z known only
to Alice, and ZB = Z\ZA is the set of messages in Z known only to Bob. As before, let
YA = ZA ∪RA and YB = ZB ∪RB. We now define trA(m) and trB(m) as follows:

trA(m) =



m, m ∈ Z0 ∪C

�m, m ∈ YA

m′, m = �m′
,m′ ∈ YB

trA(m1)⊕ · · · ⊕ trA(mk), m = m1 ⊕ · · · ⊕mk

h(trA(m1), . . . , trA(mk)), m = h(m1, . . . ,mk)

trB(m) =



m, m ∈ Z0 ∪C

�m, m ∈ YB

m′, m = �m′
,m′ ∈ YA

trB(m1)⊕ · · · ⊕ trB(mk), m = m1 ⊕ · · · ⊕mk

h(trB(m1), . . . , trB(mk)), m = h(m1, . . . ,mk)

Again, the cases must be considered from top to bottom.
Eve performs the attack by replacing messages m sent by Alice with trA(m) and

messages m sent by Bob with trB(m), as long as it is possible. In Sec. 4.2, the condition
“as long as it is possible” was very simple — the messages sent by Alice and Bob could
not contain elements of Z. With XOR, the condition is somewhat more complicated —
the messages in Z0, together with the messages sent by Alice and Bob during the main
phase should not allow Eve to find any message in Z.

We have an analogue of Lemma 5 stating that Eve can actually perform the replace-
ment of messages m with trA(m) or trB(m). The proof carries over without any changes.

We have to prove an analogue for Lemma 7. We have the same situation as before —
there are two global states S◦ and S◦′. In both of these states, W0 is a set of messages
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that are known to both Alice and Bob (and hence also Eve), W contains all messages in
W0 and their submessages, Z0 is the set of messages in 〈〈W〉〉 that are known to both
Alice and Bob (and Eve), and Z = 〈〈W〉〉\Z0. In states S◦ and S◦′, Alice’s and Bob’s
internal states are equal. Also, Alice’s views in S◦ and S◦′ are related by an isomorphism
ϕA that is the identity on nonces in RA and equals trB on messages received from Bob
and on payloads. Similarly, Bob’s views in S◦ and S◦′ are related by an isomorphism
ϕB that is the identity on nonces in RB and equals trA on messages received from Alice.
We consider steps S◦ → S• and S◦′ → S•′. In the first case, Eve is passive, and in the
second, Eve applies trA to messages sent by Alice and trB to messages sent by Bob. But
first we extend Lemma 6.

Lemma 6’. Let Z, Z0 and trB be defined as above. LetM be a message store of Alice.
Let ϕ be a mapping on messages defined as in Lemma 6. Let y be a message satisfying
the following:

• From y, messages in Z0, and messages received from Bob (in M), it is impossible
to derive any message in Z.

• Adding y to the knowledge of Alice does not allow her to compute any more messages
in Z compared to what she can compute just from M.

• Second condition in Lemma 6: If r ∈ YA and r v y, then exists z ∈ Z0, such that
r v z v y. Such z exists for each occurrence of r in y.

Let P [~x] = y for a certain message context P and messages ~x in M. Then P [
−−→
ϕ(x)] =

trB(y).

Proof. We note that here the message y may be just another message that Alice has
received (and then ϕ(x) = trB(x)). Hence, we assume that y is really an element of M
and prove by induction over the sum of the sizes of contexts P and Q the statement

“If P [~x] = Q[~x], then P [
−−→
ϕ(x)] = Q[

−−→
ϕ(x)]”.

Base: P and Q are variables. Then they must point to the same message.
Step: We consider the possible shapes of P and Q. If P = h(P1, . . . , Pk) and Q

is a variable y (an element of ~x), then the message y must also be a formal hash and
hence received from Bob. Similarly to the proof of Lemma 6, we consider which case
was used to define trB(y). If y ∈ Z0 ∪C, then trB(y) = y and for all elements x of the
vector ~x that actually occur in the context, ϕ(x) = x. If trB(y) was defined inductively,

then the induction assumption gives us Pi[
−−→
ϕ(x)] = trB(yi) for all i ∈ {1, . . . , k}. Here

y = h(y1, . . . , yk). Note that for the induction step, we can add y1, . . . , yk to M. They
do not allow Alice the computation of any more elements of Z, because she can already
compute yi as Pi[~x].

If P = P1 ⊕ · · · ⊕ Pk (where each Pi is a variable of has hashing as the outermost
operation) and Q is the constant 0, then let us define H as the set of messages where

• each element of H is a formal hash or a nonce;

• for all message contexts Pi, if the topmost constructor of Pi is hashing, then Pi[~x] ∈
H;
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• for all contexts Pi, if Pi is a variable xj and the message corresponding to this
variable is m1 ⊕ · · · ⊕ mr, where m1, . . . ,mr are formal hashes or nonces, then
m1, . . . ,mr ∈ H.

That is, the elements of H are the immediate submessages of P [~x] after flattening the
outermost ⊕-operations. Each m ∈ H is caused to be in H by an even number of contexts
Pi (we assume that the context P has been simplified as much as possible).

If there is some Pi whose topmost operation is hashing, then let mi = Pi[~x]. By the

induction assumption, Pi[
−−→
ϕ(x)] = ϕ(mi) = trB(mi) (we may add mi to M). Also, let

P ′ = P ⊕ Pi ⊕ v, where v is a new variable. The size of P ′ is smaller than the size of
P (the components Pi cancel out). We have P ′[~x,mi] = 0 (the message mi is assigned

to the new variable v). Again by induction assumption, P ′[
−−→
ϕ(x), ϕ(mi)] = ϕ(0) = 0.

Combining it with Pi[
−−→
ϕ(x)] = ϕ(mi) gives us P [

−−→
ϕ(x)] = 0.

If P1, . . . , Pk are all variables, then let m1, . . . ,mk be the messages in M assigned to
them. We have mi =

⊕
Hi, where Hi ⊆ H is the set of nonces and formal hashes whose

XOR is mi. We know that m1 ⊕ · · · ⊕mk = 0 and must show ϕ(m1)⊕ · · · ⊕ ϕ(mk) = 0.
If all messages mi are received from Bob, then ϕ(mi) = trB(mi) =

⊕
z∈Hi

trB(z) and
they cancel out when XOR’ed. If some mi is a nonce r ∈ RA generated by Alice, then
the same r must also occur in some other message mj from Bob. But in this case, it is
possible to find either r or some XOR of Alice’s nonces from the messages in Z0 and the
messages received from Bob. This is impossible according to the premises of the lemma.
We have handled the case P = P1 ⊕ · · · ⊕ Pk and Q = 0.

If P = h(P1, . . . , Pk) and Q = h(Q1, . . . , Qk), then we apply induction assumption to
each Pi and Qi. If P = P1⊕· · ·⊕Pk and Q 6= 0, then we apply the induction assumption
to the contexts P ′ = P ⊕Q and 0.

Lemma 7’. If the messages sent by Alice and Bob in S◦ and S◦′ do not allow Eve
to deduce elements of Z, then in states S• and S•′, the messages in the set Z are still
known by exactly one of Alice and Bob. Furthermore, S• and S•′ are isomorphic, and
the isomorphism between messages is related to trA and trB in the same way as for S◦
and S◦′.

Here “messages sent by Alice and Bob” that Eve may consider to deduce elements
of Z include all messages in Alice’s store that are not nonces created by Alice, and all
messages in Bob’s store that are not nonces created by Bob.

Proof. As before, Alice’s internal state in S• and S•′ are the same. Also, Bob’s internal
state is the same, and Alice and Bob do not learn any messages in Z.

Next, consider again the extension of ϕA to a homomorphism of Alice’s views in S•
and S•′. The mapping ϕA is defined on the components MA · Mpl · MA←B of S• by
ϕA(x) = x for x ∈ RA and ϕA(m) = trB(m) for other messages. The possibility to
extend ϕA to homomorphism follows directly from Lemma 6’.

We also have to show that ϕA is an isomorphism from 〈MA · Mpl · MA←B〉 to I =
〈M′

A ·M′
pl ·M′

A←B〉. The proof that ϕA maps into I and onto I remains the same. Also,
showing that ϕA is one-to-one proceeds exactly as before by showing that each m ∈ I
has just a single preimage.
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Having proved the simulatability Lemma 7’, the rest of the proof proceeds exactly as
in Sec. 4.2. Eve translates the messages as long as no elements of Z (or messages that
allow the computation of elements of Z) are exchanged between Alice and Bob. Should
that happen, Eve redefines the sets Z0 and Z and continues with the simulation. Alice
and Bob must keep talking (because of the perenniality property) and opening elements
of Z. Eventually, the finite set Z will be depleted and Eve can masquerade as Alice.

5 Conclusions

With advances in hardware, asymmetric cryptography is fast becoming a viable option
for small devices. For example, in wireless sensor networks, Claycomb et al. propose a
key-establishment protocol using group-based techniques combined with identity-based
cryptography [8]. In [16], Liu and Ning propose using TinyECC, a configurable library
in wireless sensor networks using elliptic curve cryptography. Nevertheless, we believe
that there will always exist devices, ever smaller, with computational capabilities similar
to the least powerful devices of today. Our results show that for these devices, certain
forms of authentication are impossible.

We have shown that for a certain set of cryptographic primitives, the perennial au-
thentication is impossible. An interesting future work, complementing [23] would be
the determination of necessary and/or sufficient properties on symbolic cryptographic
primitives for the possibility of authentication.

Our result has been established in the symbolic setting. Interestingly, it does not hold
in the computational setting where signature schemes can be constructed from symmetric
encryption [20] and one-way hash functions. This points out a gap between the two mod-
els, which according to our knowledge has not been recognized before. It would be inter-
esting to study the gap and find out methods to reduce it, thereby finding symbolic model
that better capture the essentials of cryptography. Regarding Merkle’s construction, one
of its main tools is decomposing messages to their constituent bits. The introduction of
bits to the symbolic model is well-known to be very difficult [15].
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