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Abstract

Yao Garbled Circuits are a known solution for the secure multi-party computation prob-

lem. However, it’s poor performance prevents the use of garbled circuits in a real life

applications. In this report we propose a protocol for secure multi-party computation that

uses Yao Garbled Circuits for Sharemind. Subtle details of existing Sharemind protocols

allow us to implement essential parts of the Yao Circuit Evaluation (YCE) differently from

general implementations. This approach could lead to a better performance result of YCE

and offer a general way of adding new internal functionality of Sharemind.

1 Introduction

Sharemind is a data processing system capable of performing computations on input data without

compromising its privacy. For an external Sharemind user, it looks like a virtual machine, that

can operate on the data, but internally, Sharemind is a distributed system of so called ‘miners‘.

A miner is just an independent machine executing Sharemind protocols. Sharemind uses secret

sharing to preserve the privacy of the data. This means that before external data is imported

into Sharemind system, it must be additively shared into three shares. Each share then goes to a

respective miner. Sharemind implements a number of secure multi-party protocols for processing

this information. As a result, the miner can produce meaningful statistics from data without

sacrificing its privacy.

Secret sharing is one of the ways to ensure security of the computation. This is, actually,

widely known and a lot of research has been done to discover possibilities to compute while pre-

serving the privacy of the data. General ways to do that were known since 1982, when A.C.C.Yao

proposed a way how to use boolean circuits to guard computation against the adversary who

will behave honestly, but investigate information available to find other parties inputs [1].

We want to add functionality for using Yao Garbled circuits to the Sharemind framework.

This will enrich Sharemind’s choice of tools for performing secure multi-party computations. In

this work we describe and implement a way to generate and evaluate garbled circuits in the
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Sharemind environment. We present a way for specifying arbitrary binary operation on shared

values between two miners. The evaluation of this operation will preserve the privacy of the

arguments, thus providing a general way to enhance Sharemind’s ability for privacy preserving

computations.

2 Motivation

Currently, Sharemind uses a dozen of protocols for basic math functions. There are protocols

for basic arithmetic, bit extracting routines, comparisons like greater-than, greater-than or equal

and matrix multiplication. These low-level protocols are written in C++ and ensure Sharemind’s

ability to perform secure multi-party computation.

There are two problems with this approach. First of all, writing cryptographically safe

protocols in C++ is not a trivial task, it is error-prone and generally difficult. So when anyone

needs to add something to this low-level functionality, the current Sharemind architecture does

not provide an easy way for so.

Another problem arises from the fact that not all math functions can be efficiently computed

on the additively shared values. For example floating point math offers particular interest for data

analysis. Usually, a floating point number is represented in a scientific notation with exponent

and significand concatenated in a single 32-bit (or 64-bit) value. The additive sharing of such

value loses the meaning of exponent and significand, so further operations on shares also cannot

preserve meaningful relation of those.

Yao garbled circuits operate however on the initial private value, actually on the bits of that

value. So the design of the floating point values don’t affect Yao Circuit Evaluation protocol

(YCE) that much. In general, there are two main factors that impact YCE and its performance:

the size of the boolean circuit that represents a function and the size of parties’ inputs. Note

that if we allow a circuit to be evaluated in parallel then the depth of the circuit plays more

important role than actual number of gates.

3 The Method

In this section we present the necessary tools and a brief proof of security of our construction of

Yao circut generation/evaluation.
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3.1 Array encryption

Usually encryption schemes tend to operate on a single message at a time, so encryption enc and

decryption dec operations are defined on the following domains:

enc : K ×M −→ C ,

dec : K × C −→M ,

where K,M and C are respectively the key, message and ciphertext spaces. To simplify matters

in this paper, we need a modified definition of the encryption scheme, as we need to encrypt

tables and arrays so a single cell can be revealed by revealing the keys. Assume, that we have

the following setup of four element array arranged in a table, see Figure 1.

Figure 1: Array encryption table

We have four key values and four messages arranged in the table. Now, we need an array

encryption scheme to use two different keys to perform encryption (decryption) operation on

each message. To accommodate this fact we modify the domains of the encryption scheme:

enc : K ×K ×M −→ C ,

dec : K ×K × C −→M .

The notion enckx,ky (m) = c means that the message m is encrypted using the keys kx and ky

to produce the ciphertext c. For the decryption operation we use the same notation with keys

written as indexes: deckx,ky (c) = m.

Let us now define a notion for the whole table encryption. Let m = (m00,m01,m10,m11), then

the following formula describes one of the options how to organize array encryption operation:
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Note, that unlike with encryption we want decryption operation to be called on each cell

explicitly. More specifically, the security requirement for such array encryption scheme is that

an adversary that has two keys, one from each pair (k0x, k
1
x) and (k0y, k

1
y), should be able to

decrypt only one cell. The desired property of the encryption scheme is to be secure under

chosen plaintext attacks, so now we define formal games for IND-CPA setting, see Figure 2.

GA0

k0x, k
1
x ← K×K

k0y, k
1
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m0,m1, bx, by ← A
if m0[bx][by] 6= m1[bx][by] then return ⊥
c0 ← AEk0
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x , kbyy )

GA1
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if m0[bx][by] 6= m1[bx][by] then return ⊥
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return A(c1, k
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x , kbyy )

Figure 2: Array encryption IND-CPA games

The advantage of an adversary defined as usual as the following difference:

AdvIND−CPA
AE (A) = |Pr[GA0 = 1]− Pr[GA1 = 1]|.

An encryption scheme is (t, ε)-array encryption IND-CPA secure, if for all t-time adversaries

A the advantage AdvIND−CPA
AE (A) is less or equal to ε.

To build a one-time pad array encryption scheme, we need 2`-bit long keys to encrypt four

element arrays with `-bit long messages. Namely, we can split each key k into `-bit long blocks

and use these blocks sequentially when we need to encrypt message with the key k. To get rid

of the restriction on the key length, we use a pseudorandom generator to stretch keys up to the

necessary length. If keys are not long enough, we use a pseudorandom generator f to stretch

them up to the needed length. The result is given in Protocol 1. For clarity, let f : K →M×M,

particularly f : {0, 1}k → {0, 1}` × {0, 1}`, and let f(x)[0] denote the first component of f(x)

and f(x)[1] the second component.

Lemma 1. If a generator used to stretch keys for array encryption scheme is a (t, ε)-pseudorandom

generator, the one-time pad array encryption scheme is (t, 8 · ε)-IND-CPA indistinguishable.

Proof. (Sketch) Protocol 2 describes the ideal functionality for array encryption AE◦.
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Input: k0x, k
1
x, k

0
y, k

1
y and message m = (m00,m01,m10,m11).

Output: ciphertext c = (c00, c01, c10, c11)

1. Compute c00 = m00 ⊕ f(k0x)[0]⊕ f(k0y)[0].

2. Compute c01 = m01 ⊕ f(k0x)[1]⊕ f(k1y)[0].

3. Compute c10 = m10 ⊕ f(k1x)[0]⊕ f(k0y)[1].

4. Compute c11 = m11 ⊕ f(k1x)[1]⊕ f(k1y)[1].

Protocol 1: Array encryption scheme using pseudorandom generator for one-time-pad AEf

Input: message m = (m00,m01,m10,m11)
Output: ciphertext c = (c00, c01, c10, c11)

1. If not provided, generate keys k0x ← {0, 1}
2`
, k1x ← {0, 1}

2`
, k0y ← {0, 1}

2`
, k1y ← {0, 1}

2`
.

2. Compute c00 = m00 ⊕ k0x[0]⊕ k0y[0].

3. Compute c01 = m01 ⊕ k0x[1]⊕ k1y[0].

4. Compute c10 = m10 ⊕ k1x[0]⊕ k0y[1].

5. Compute c11 = m11 ⊕ k1x[1]⊕ k1y[1].

Protocol 2: Ideal array encryption scheme AE◦

Remember, that the advantage of adversary A is defined in terms of winning games described

in Figure 2. Consider the following intermediate games given on Figure 3.

GA2

k0x, k
1
x ←M×M×M×M

k0y, k
1
y ←M×M×M×M

m0,m1, bx, by ← A
if m0[bx][by] 6= m1[bx][by] then return ⊥
c0 ← AE◦k0

x,k
1
x,k

0
y,k

1
y
(m0)

c1 ← AE◦k0
x,k

1
x,k

0
y,k

1
y
(m1)

return A(c0, k
bx
x , kbyy )

GA3

k0x, k
1
x ←M×M×M×M

k0y, k
1
y ←M×M×M×M

m0,m1, bx, by ← A
if m0[bx][by] 6= m1[bx][by] then return ⊥
c0 ← AE◦k0

x,k
1
x,k

0
y,k

1
y
(m0)

c1 ← AE◦k0
x,k

1
x,k

0
y,k

1
y
(m1)

return A(c1, k
bx
x , kbyy )

Figure 3: Array encryption IND-CPA games with random number generator

As AE◦ uses uniformly sampled keys, messages of the tables are xor-ed with random bit-

strings, which results in the ciphertext being uniformly sampled from all the possible ciphertexts.

Thus, these games are perfectly indistinguishable from each other, which means that there is no
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adversary that can distinguish which one of these games it is playing with significant certainty.

Let’s investigate what is the computational distance between games GA0 and GA2 . The only sig-

nificant difference in their description is that encryption is performed in GA0 using keys stretched

by a pseudorandom generator and for GA2 using uniformly random bit-strings. Essentially, the

only difference is in how c0 is computed (because adversary does not see c1). Now, in AEf

ciphertext c0 = F (m0, f(k0x), f(k1x), f(k0y), f(k1y)), where f is a pseudorandom generator and F

is a deterministic function, which actually does the same as AEf , but is written explicitly with

the keys as arguments. On the other hand, in AE◦ the respective ciphertext is computed as

c◦0 = F (m0, k̄0x, k̄
1
x, k̄

0
y, k̄

1
y), where keys are uniformly sampled from the spaceM×M. To derive

the computational distance between these games, consider the following series of hybrid games,

where the ciphertext c0 is computed in the following fashion:

G00 : c0 = F (m0, k̄0x, f(k1x), f(k0y), f(k1y)) ,

G01 : c0 = F (m0, k̄0x, k̄
1
x, f(k0y), f(k1y)) ,

G02 : c0 = F (m0, k̄0x, k̄
1
x, k̄

0
y, f(k1y)) .

Now the distance between GA0 and G00 is clearly ε. This leads to a contradiction with the

function f being a (t, ε)-pseudorandom generator. B will query the PRG game with k0x, then

form all necessary input for A by uniformly sampling three other keys, and return whatever A
returns. This strategy obviously gains the same success, as A in distinguishing GA0 from G00. By

a similar argument, the distance between G00 and G01 is ε, the distance between G01 and G02 is ε

and the distance between G02 and GA2 is ε. Thus, the total distance between GA0 and GA2 is 4 · ε.
In the same manner we show that the distance between GA1 and GA3 is 4 · ε. Thus, the total

computational distance between games GA0 and GA1 is then 8 · ε, so the encryption scheme is (t,

8 · ε)-IND-CPA indistinguishable.

3.2 Yao garbled circuits

Consider the following modified scenario of secure two-party computation. Two parties P1 and

P2 want to compute (∅, z) ← f(x1, x2), where x1 and x2 are respective parties’ inputs. An

important difference from a general two-party computation case is that only one party is going

to receive a meaningful output value, as sender P1 always receives ∅ if protocol run completes.

The first general solution to such secure two party computation problem was proposed by

A.C.C. Yao in the seminal paper [1]. His idea consists of three main techniques:

• reordering a gate’s truth table rows to hide the content of the gate;

• modifying the boolean circuit to operate on encryption scheme keys, not just bit values;

• using oblivious transfer to securely give an evaluation party input to the circuit.
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In this paper we use a xor + PRG array encryption scheme AEf described before. This

simplifies the description of Yao garbled circuit construction procedure and is somewhat easier

to understand for a reader.

3.3 Yao garbled circuit construction

Flipping values on wires. We start securing boolean circuit evaluation with the following

procedure. In the evaluation process, every wire in circuit will hold one bit value. We need

those values not to provide any meaningful information to the adversary. To do that we will

randomly modify the meaning of this value. The procedure to do that follows: for every wire,

with probability one half, we “flip” its values. Flipped values are then detached from the actual

meaning of the value on the wire, because a wire which must hold value (for instance 1) can

contain either 1 or 0 after being flipped.

If we do not modify anything else in the circuit, obviously the evaluation will not compute

the intended function correctly. Thus, we must modify the content of the truth-tables of gates

accordingly. Suppose we have an and gate with its ordinary truth-table. This gate has two input

wires and one output wire. Suppose then that we have flipped the value of the first input of the

gate (wire x in the Table 1), then 0 on that wire actually means 1. Suppose the flipped wire x

is denoted by x̄, then we modify the table in the following way.

x̄ y x ∧ y
0 0 0
0 1 1
1 0 0
1 1 0

Table 1: and gate truth table with flipped x wire

Note, that we have changed the contents of the result column of that table. If the values

on wires y or x ∧ y have also been flipped, we would need to also take that into account when

computing the table.

Extending values on wires. The procedure for this step of securing circuit evaluation is the

following. For every wire w of the circuit, we generate two random keys for the array encryption

scheme. We just create two random keys for each wire. Then we use the gates’ reorganized

truth-tables from the previous step, and substitute bit values in those with corresponding wire

keys. Let k0x, k1x, k0y, k1y be keys generated for wires x and y respectively. Additionally, let k0z ,

k1z be keys generated for gate’s output wire z.

Also, let f be a pseudorandom generator that we will feed to the array encryption scheme to

stretch keys. Then we put those keys into the truth-table of the gate and encrypt values of the

output column (see Table 2). As in the previous example, we have wire x flipped, and denote

that by using x̄ in the gate’s truth-table. Note, that the output wire key is concatenated with
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x̄ y x ∧ y
k0x k0y enck0

x,k
0
y
(k0z ||0)

k0x k1y enck0
x,k

1
y
(k1z ||1)

k1x k0y enck1
x,k

0
y
(k0z ||0)

k1x k1y enck1
x,k

1
y
(k0z ||0)

Table 2: and gate encrypted truth table

a bit value, so domains for array encryption scheme are then: K = {0, 1}128, M = {0, 1}129,

C = {0, 1}129; for AES with 128-bit keys as pseudorandom generator.

The output column of this table is filled with pseudorandom data. Garbled circuit generation

is finished now and description of the circuit will consist of:

• the description of wires, from which gate it goes to which;

• the description of gates: encrypted flipped truth table result column.

Note that in order to reverse the output of the circuit, which will be a key value, the circuit

generator, also known as generating party, must remember the corresponding key to bit value

transitions and if the output wire was flipped. This means that if the circuit generator has flipped

values on the output wires of the circuit, it must remember which wire it has flipped, because

then the value produced by circuit evaluation could be a flipped one.

Transferring keys to the evaluator. This circuit cannot be evaluated without knowing the

keys corresponding to a values for input wires. The party that generated the circuit can send

keys corresponding to its input with the circuit description. They do not reveal bits of input, so

it is still private. On the other hand, parties need to engage in an oblivious transfer protocol to

get keys that correspond to circuit evaluating party’s input to evaluator.

The setting for Yao garbled circuit protocol is such, that generating party has two keys and the

evaluating party has a bit value for each input wire. During oblivious transfer for every bit of

the evaluator’s input value it will learn a corresponding key value and the generator will learn

nothing.

To evaluate a garbled circuit, the evaluator receives its description and keys corresponding to

the input of the generating party. The evaluator then obtains the keys corresponding to its own

input using an oblivious transfer protocol. Then the evaluator is able to evaluate the circuit by

decrypting all its gates one by one. If there is a gate where all input wires contain known key

values, the evaluator can decrypt the truth table. As every row of the truth table is encrypted

with different key pairs it will be able to decrypt only one row. The decrypted value specifies

keys for the outgoing values of this gate. Proceed with such gate by gate evaluation until no

non-evaluated gates are left. Collect circuit output value from the circuit’s output wires. For

every output wire w these values will be in the form of outw = key || b, where key is one of the

keys generated for output wires and b is a bit value of the output. Note, that keys contained
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on an input or intermediate wires are used in the circuit evaluation. However, we do not use

values of output wires, because nothing is encrypted with those. So the generator of the circuit

can put any bit-string of corresponding length there. The array encryption scheme works fine

on any bit-strings and can actually be used to encrypt messages of arbitrary length, so it does

not limit the information that can be put on an output wire. Also note, that output wires can

be either flipped or not. The evaluator’s ability to learn the actual output depends of how the

setting is fixed. If the values on output wires were possibly flipped, it will not know the output.

Otherwise, the evaluator will know the actual output.

3.4 Oblivious transfer in Sharemind

Oblivious transfer in Sharemind can be implemented in the following way. Let’s refer the miners

of Sharemind as P1, P2 and P3 respectively. Additionally, we use the envelope notation [[x]] to

denote operations performed on a shared value x. A result of an operation on shared values is

also a shared value, so, for example, notion [[z]] = [[x]] + [[y]] means that parties compute a shared

value for z as a sum of their shared values for x and y. Suppose now that P1 has two values

x0 and x1 and P2 knows bit b. We want to perform an oblivious transfer so P2 learns xb, but

not x1−b and no miner learns b. To do so, P1 shares x0 and x1 between miners and P2 shares b.

Then miners compute message m.

[[m]] = [[x0]] · ([[1]]− [[b]]) + [[x1]] · [[b]] =

[[x0]] if b = 0

[[x1]] if b = 1

When this is done all miners communicate their shares of m to P2 which then learns xb.

3.5 Summary

Having all the tools described above, we can implement Yao circuits protocols for Sharemind. Our

implementation follows exactly the procedure of generating a Yao garbled circuit described above.

This construction is information-theoretically secure against passive adversaries [2]. We provide

a proof-of-concept implementation of YCE and its integration into the Sharemind environment.

4 Results

We have successfully created a Python implementation of the Yao Garbled Circuits protocol.

The implementation is compatible with version 2.6.2 (and several other versions) of Python.

4.1 YCE implementation

Our implementation of the YCE uses AES key stretching procedure to generate randomness.

Other implementation details correspond to a method of generating/evaluating garbled circuits
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described earlier in this paper.

Our implementation is able to parse a specific format for describing boolean circuits (this for-

mat is described in the following sections) and is verified to work on circuits up to few thousands

of logical gates.

4.2 Integration with Sharemind

Integration with Sharemind is done via a typical C++/Python integration. Sharemind code im-

ports the Python.h header and is linked with a Python dynamic libraries. This allows Sharemind

to create a Python interpreter and execute Python scripts programmatically. Communication

between miners (which includes oblivious transfer of the input keys) is done on the Sharemind’s

part of the solution and uses general patterns of inter-miners’ communication.

Oblivious transfer is done in Sharemind and its implementation corresponds exactly to a

method described earlier in this paper.

4.3 The circuit description format

A circuit consists of several boolean expressions. Actually, we think of a circuit as a set of

boolean expressions one per each output.

Consider the following example of full-adder circuit description:

g1 : xor a b

g2 : xor g1 c

g3 : and a b

g4 : and c g1

g5 : or g3 g4

add2 g2 g5

The last line contains the circuit’s name add2 and describes two circuit’s outputs. Now

we don’t want to describe each output as one big expression as it would be inefficient. So we

introduce a concept of a ”named gate/expression”.

Named expression is a boolean expression that has a name assigned to it. In the example

above - g1, g2 etc are named gates. A named gate is described in the following way: gatename :

expression. (note the colon), where thhe name of the gate can contain only alphanumeric

characters. An expression may be complex (like: and u28 and a27 not b27) and not just a single

operation.

The whole point of having a named gate is to reuse it. As you can see, g1 is used twice, in

the g2 and g4 definitions.

Now, all arguments for any expression, that are not a named expressions themselves (like a,

b, c in the example above) are assumed to be circuit inputs. Remember, that those are single
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bits, so if you need an int input a, a comfortable way to represent that will be bits: a0, a1, . . . ,

a31.

Possible operations for expressions are: and, or, xor, eq, nand and unary not.

When a circuit is parsed, one gate will be created for every operation. Also, to ensure that

inputs can be used more than once in the circuit, an identity gate will be created for every input

value.

We must note that due to constraints of generating randomness using AES key stretching

procedure, our proof-of-concept implementation can lead to undefined behavior, when encounter

a gate with more than 4 output wires.

There are example circuits created for the following operations:

1. full adder;

2. sum of two 4 bit integers;

3. greater-than or equal for two 32 bit integers;

4. sum of three 32 bit integers;

There are additional constraints for circuits created to be evaluated from Sharemind. Cur-

rently our implementation effortlessly supports binary operations on a shared values. Consider

an operation on the shared values [[A]] ∗ [[B]] = [[C]]. As boolean circuit needs to assign a name

for every single input value, out implementation follows a convention:

• a = [[A]]1

• b = [[A]]2

• c = [[A]]3

• d = [[B]]1

• e = [[B]]2

• f = [[B]]3

• x = [[C]]1

• y = [[A]] ∗ [[B]]− (x + z)

• z = [[C]]3

Note that, y looks differently from every other variable. It is considered to be an output of

the circuit and must hold a share of the operation’s result. As shares of miners 1 and 3 are

known to them beforehand y gets the view above.

Following this convention will ensure that one can implement all kinds of binary functions

for Sharemind without implementing them in low-level C.

We have implemented two sample circuits for addition of 32 bit integers (represented as

shares) and comparison of a value with 0, where value is also shared between miners.

13



4.4 Performance details

Tests were executed on a 32 bit Windows 7 Professional machine with Intel Core i5 CPU (2.67

GHz) and 4.00 GB of memory. This test measured only our Python YCE implementation, with

no integration with Sharemind. Oblivious transfer protocols were simulated with a negligible

performance overhead, so actual performance within the Sharemind environment can slightly

decrease due to that. Tests were performed on two sample functions: shared sum - a sum of 2

32 bit shared integers and shared gt - a greater than function on 2 shared integers. The result

is shown in the table 3.

Function Gates Generation (s) Evaluation (s) Total time (s)
shared sum 1419 1.138 0.345 1.483
shared gt 1329 1.017 0.319 1.336

Table 3: YCE performance results

The column Gates shows the number of gates the function’s circuit consists of, Generation,

Evaluation show time taken by the generation and the evaluation of the circuit. Further profiling

of the implementation showed that the average time to garble a circuit was much less than the one

presented above (about 0.67 s). However, to integrate with Sharemind our implementation needs

to post-process the circuit and the keys and that part also takes quite some time. Additionally,

we want to note, that most of the time were spent initializing AES for the randomness.

Overall results show that it is definitely a proof-of-concept implementation, which perfor-

mance can be greatly improved.
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