
CYBERNETICA
Institute of Information Security

The design and implementation of a
two-party protocol suite for Sharemind 3

Pille Pullonen, Dan Bogdanov, Thomas Schneider

T-4-17 / 2012

Copyright c©2012
Pille Pullonen1,2, Dan Bogdanov1,2, Thomas Schneider3.
1 Cybernetica, Institute of Information Security,
2 University of Tartu, Institute of Computer Science,
3 European Center for Security and Privacy by Design (EC SPRIDE)

The research reported here was supported by:

1. the European Regional Development Fund through the Estonian
Center of Excellence in Computer Science, EXCS

2. Estonian Science foundation, grant(s) No. 8124

All rights reserved. The reproduction of all or part of this work
is permitted for educational or research use on condition that this
copyright notice is included in any copy.

Cybernetica research reports are available online at
http://research.cyber.ee/

Mailing address:
Cybernetica AS
Mäealuse 2
12618 Tallinn
Estonia

2

http://research.cyber.ee/

The design and implementation of a two-party protocol suite

for Sharemind 3

Pille Pullonen, Dan Bogdanov, Thomas Schneider

August 30, 2012

Abstract

This report introduces the basics of two-party secret sharing protocols based on additive
secret sharing implemented in Sharemind. The main contribution is the multiplication pro-
tocol which uses Paillier’s additively homomorphic cryptosystem. One approach is to directly
use this protocol for multiplication and the other is to generate Beaver’s triples and use them
for the multiplication. The benchmarking results show that the protocol that directly uses
Paillier’s cryptosystem is slow compared to the native Sharemind protocol, but would be fea-
sible as a precomputation phase. The online protocol using Beaver’s triples outperforms the
three-party Sharemind multiplication.

1 Introduction

Sharemind [BLW08] is a framework for secure multi-party computation using additive secret shar-
ing. The traditional protection domain model consists of three miner servers and a client or a
controller application. The controller is responsible for sharing the inputs and scheduling compu-
tations on these inputs as well as receiving the results. The servers and the controller communicate
with each other over encrypted network channels and all computation protocols are designed to
protect the privacy of inputs. One of the currently active research areas for Sharemind 3 is de-
veloping protocol suites for settings other than additively shared secrets and three miners. This
work describes a protection domain, that is similar to the traditional one, but uses only two miners.
Some of the three-party protocols are easily usable with two parties and the main contribution of
this work is the development of the multiplication protocol that uses an additively homomorphic
cryptosystem. We also explore the possibility to use the proposed protocol as a precomputation
phase to generate Beaver’s triples and use these triples in the multiplication protocol.

This report is structured as follows. Section 2 introduces the concepts necessary for understand-
ing the developed protocols. More precisely, it covers Paillier’s cryptosystem as an example of an
additively homomorphic cryptosystem, basics of the additive secret sharing scheme and the main
ideas for proving the security of the Sharemind protocols. The following Section 3 describes the
main protocols of the two party system and provides argumentation for their security. Section 4
explains the implementation details and choices, concentrating on the multiplication protocols and
Paillier’s cryptosystem. Finally, Section 5 gives the performance results of the implemented proto-
cols and compares them to the native Sharemind protocols. Section 6 concludes this report.

3

2 Preliminaries

2.1 Paillier’s cryptosystem

Paillier’s public-key cryptosystem [Pai99] uses an RSA modulus N = pq where the secret compo-
nents p and q are large primes with equal bit length. In fact, it must hold that gcd(pq, (p−1)(q−1)) =
1, which is easily satisfied if p and q are of equal bit length. The public key is (N, g), where g ∈ Z∗N2

and the private key is λ = lcm(p − 1, q − 1). The encryption function E(m, r), where m ∈ ZN ,
requires a randomness r ∈ Z∗N and defines the ciphertext as c = E(m, r) = gmrN mod N2. The de-

cryption function D(c) = L(cλ mod N2)
L(gλ mod N2)

mod N uses a helper function L(x) = x−1
N that is evaluated

as an integer division.
Paillier’s cryptosystem is additively homomorphic, allowing to compute the sum of the messages

under encryption E(m1 +m2, r1 · r2) = E(m1, r1) ·E(m2, r2). This property also allows to evaluate
the multiplication of an encrypted message and a plain value k under encryption E(km, rk) =
E(m, r)k.

The modulus N must be difficult to factor and for medium term security the length of N should
be at least 2048 bits, as can be seen from various recommendations at [Gir]. Paillier’s cryptosystem
is indistinguishable under chosen plaintext attacks (IND-CPA) under the Decisional Composite
Residuosity Assumption. We say that the Paillier’s cryptosystem is (t, ε)-indistinguishable if for
two known messages m0 and m1 the probability of distinguishing between the encryptions of these
messages

Pr[IND] = |Pr[A(E(m0)) = 0]− Pr[A(E(m1)) = 0]| ≤ ε

for any t-time adversary A.
There are several known improvements to the basic definition of Paillier’s cryptosystem, for ex-

ample in [Pai99] and [DJ01]. The decryption can be simplified by precomputing the constant
L(gλ mod N2)−1 mod N and reducing the complexity of the helper function L(x) by defining
L(x) = (x − 1) · u mod 2|N |, where |N | denotes the bit length of N and u = N−1 mod 2|N |

can be precomputed. Furthermore, it is possible to use the Chinese Remainder Theorem (CRT) to
reduce the decryption workload by computing separately modulo p and q and combining the results.
Using the CRT requires the definitions of two helper functions Lp(x) = x−1

p and Lq(x) = x−1
q that

can be simplified as the original L(x), resulting in Lp(x) = x−1
p = (x − 1) · up mod 2|p|, where

up = p−1 mod 2|p|. The corresponding decryption constants can also be precomputed when using
CRT, giving hp = Lp(g

p−1 mod p2)−1 mod p and hq = Lq(g
q−1 mod q2)−1 mod q. Finally, values

mp = Lp(c
p−1 mod p2) · hp mod p and mq = Lq(c

q−1 mod q2) · hq mod q are computed to decrypt
the ciphertext c and restore the message as m = CRT (mp,mq) mod N .

The part g of the public key can always be a constant value without lessening the security of the
system, a small constant could be used to simplify the computation. Alternatively, Damg̊ard and
Jurik [DJ01] propose that g could be always defined as g = N+1 which allows for faster encryption
E(m, r) = (N + 1)mrN mod N2 = (Nm + 1)rN mod N2. If the randomness rN is precomputed
before encryption, then this choice of parameters can reduce the encryption complexity from two
modular exponentiations to two multiplications. In addition, it is possible to define a second
encryption function that uses the private key and the CRT to at first compute cp = (Nm+1)rN mod
p2 and cq = (Nm+ 1)rN mod q2 and then combine them to obtain c = CRT (cp, cq) mod N2.

4

2.2 Additive secret sharing

By the definition of the additive secret sharing scheme a secret a is represented by several shares
ai that satisfy the equality

a =

n∑
i=1

ai.

For n participants the scheme is a (n, n) threshold scheme meaning that a secret is split into n
shares and all n shares are needed to restore the secret. Restoring is done according to the previous
equation by summing all the shares. A sharing algorithm can be easily obtained by fixing a1 to
an−1 at random and computing

an = a−
n−1∑
i=1

ai.

Additive secret sharing is information theoretically secure meaning that any set of less than n shares
reveals nothing about the secret value.

Additive secret sharing is in general defined over a ring, but Sharemind only considers the
cases of Z2k , mostly using Z232 . All operations on the shares are performed with respect to the
ring the shares belong to. In the following, ai ∈ Z2k marks the share of CPi and for a shared value
a ∈ Z2k it holds that a = a1 + a2 as we are working in the two-party protection domain. A secret
shared value is denoted by [[a]].

2.3 Proving security

The security goal of the current Sharemind framework is to be secure against a semi-honest ad-
versary, meaning that the adversary will follow the protocol but might try to learn something extra
from the messages it receives in the protocols. We expect that at most one of the two miners
can be corrupted at a time. Additive secret sharing provides information theoretic security and
it is possible to prove that also for protocols that use only additive secret sharing. However, the
proposed multiplication protocol uses additively homomorphic encryption and hence is only secure
in the computational model. This is not a serious drawback because if we consider the real imple-
mentations of the protocols, then, for example, the secure network traffic also uses computationally
secure cryptographic measures and implemented protocols are only computationally secure.

The following security proofs follow the framework of general Sharemind security proofs as
specified in [BLW08]. The protocols must be universally composable [Can01] so that they can be
used in combination with one another. We can achieve universal composability in the semi-honest
model by having perfectly simulatable protocols where the output shares are independent from the
input shares. The latter can typically be achieved with ending each protocol with a perfectly secure
re-sharing of the output shares.

A secure computation protocol is perfectly simulatable if there exists an efficient universal non-
rewinding simulator S that can simulate all protocol messages received by any real world adversary
A so that for all inputs, the output distributions of A and S(A) coincide. For protocols that are
symmetric to all participants we just need to show the security for one party, however asymmetric
protocols require separate constructions for both parties.

In addition, given a message a± r for a, r ∈ Z2k , where r is a uniform random element, we can
replace that message with r. If r is a random uniform element then so is a ± r. We can use this
equality to transform the views until they are trivially secure and easy to simulate.

5

3 Protocols

We have three different classes of participating parties: input parties (IP), computing parties (CP)
and result parties (RP). For the described two-party protection domain we always have two com-
puting parties denoted CP1 and CP2 accordingly. The current model supports any number of input
and result parties, whereas all three classes can overlap.

The general setup defines additive secret sharing between two parties. However, for multipli-
cation purposes, party CP1 has defined a keypair for Paillier’s cryptosystem and party CP2 has
learned the public key of party CP1. We assume the existence of secure communication channels
between the participants.

3.1 Resharing

The ideal functionality of the resharing protocol would have a trusted third party (TTP) who collects
the shares [[a]] of both parties, restores this secret value and then sends both parties uniformly
distributed new shares [[b]] of this value. The real functionality is described in Algorithm 1 and uses
the randomization of the existing shares. We need to prove that this protocol is perfectly secure so
that it can be used to achieve universal composability of other protocols. For this we must show
that all attacks against this protocol can be carried out against the ideal model of the protocol.

Algorithm 1 Resharing protocol

Input: [[a]]
Output: [[b]] = [[a]], where b1, b2 are uniformly distributed and independent from a1, a2

CP1 : generates random r1 ← Z2k

CP2 : generates random r2 ← Z2k

CP1 : sends r1 to CP2

CP2 : sends r2 to CP1

CP1 : computes b1 ← a1 + r1 − r2
CP2 : computes b2 ← a2 + r2 − r1
return [[b]]

Theorem 3.1.1. The resharing Algorithm 1 is correct.

Proof. To prove the correctness we need to show that b = a. For that we can expand the left hand
side of the equation:

b = b1 + b2 = a1 + r1 − r2 + a2 + r2 − r1 = a1 + a2 = a.

Theorem 3.1.2. The resharing Algorithm 1 is perfectly secure against a passive adversary.

Proof. The resharing protocol is symmetric for both parties, hence, we can consider a general case of
corrupted CPi, for simplicity consider a corrupted CP1. We can construct a non-rewinding interface
between the real world adversary CP1 and the ideal functionality. Firstly, the interface receives the
randomness r1 from the adversary. It then forwards the value −r1 to the TTP, who also receives
a2 as an input from CP2. The TTP restores the value a2 − r1 and sends the uniformly distributed

6

share b′1 back to the interface, as well as forwards b′2 to CP2. The interface forwards −b′1 to the
party CP1 who defines its share as b1 = a1 + r1− (−b′1). As party CP2 received b′2 from the trusted
third party then the final shares b = b1 + b′2 = a1 + r1 + b′1 + b′2 = a1 + r1 + a2 − r1 = a1 + a2 = a.
Both of the final shares b1 and b′2 are uniformly distributed and, therefore, the distributions in
the real and ideal world coincide and the simulation is perfect. The non-rewinding property of the
described interface ensures the universal composability of this protocol.

3.2 Classify and declassify

The purpose of the classifying Algorithm 2 is to share the secret input of one party IPi among both
computing parties. Correspondingly the declassify Algorithm 3 defines how the shares are collected
to allow the result parties RPi to restore the secret value. The trivial version of declassify where
parties forward their shares to each result party directly would leak information about the initial
shares and therefore we use a protocol where the value is reshared before making it public.

Algorithm 2 Sharing of private inputs

Input: a from IPi
Output: [[a]]

IPi : generates random a1 ← Z2k

IPi : computes a2 = a− a1
IPi : sends a1 to CP1

IPi : sends a2 to CP2

return [[a]]

Theorem 3.2.1. The sharing Algorithm 2 is correct.

Proof. This algorithm is trivially correct by the definition of the additive secret sharing as

a = a1 + a2 = a1 + a− a1 = a.

Algorithm 3 Restoring the shared value

Input: [[a]]
Output: a

CP1 & CP2 : perform resharing Algorithm 1 with input [[a]] to obtain [[t]]
CP1 : sends t1 to all RPi
CP2 : sends t2 to all RPi
for all RPi do

RPi : computes a = t1 + t2
end for
return a

Theorem 3.2.2. The declassify Algorithm 3 is correct.

7

Proof. For correctness we need that a = a1 + a2:

a = t1 + t2 = a1 + r1 − r2 + a2 + r2 − r1 = a1 + a2

The declassifying Algorithm 3 is perfectly simulatable because both parties CPi only receive
uniformly distributed ri and ti values. However, it is clear that learning the value a will reveal the
share a1 to party CP2 and vice versa a2 to CP1 as a1 = a−a2 if either of them belongs to the result
parties. Note that the resharing performed as a part of the declassify protocol does not protect
against this information leak and avoiding it is essentially impossible in the two party setting. The
reason behind computing the values t1 and t2 is that the Sharemind framework supports the
participation of parties who do not participate in the computation but learn the declassified results
of the protocols. In this case, the miners send the value ti also to the non-computing nodes. Hiding
the real shares with randomness to get t1 and t2 assures that these non-computing nodes do not
learn the shares of the computing miners. It is clear that ti does not reveal anything about the share
ai because of the uniformly distributed randomness used to blind the value ai when computing ti
also makes ti a uniformly distributed value.

3.3 Addition and subtraction

The addition protocol in Algorithm 4 and the subtraction protocol (comments in Algorithm 4) can
be computed locally based on the shares. The subtraction protocol is analogous to the addition
protocol in Algorithm 4, where only the addition operation has been replaced by subtraction.

Algorithm 4 Addition protocol

Input: [[a]], [[b]]
Output: [[c]] = [[a+ b]] {subtraction [[c]] = [[a− b]]}

CP1 : computes c1 = a1 + b1 {subtraction c1 = a1 − b1}
CP2 : computes c2 = a2 + b2 {subtraction c2 = a2 − b2}
return [[c]]

Theorem 3.3.1. The addition and subtraction protocols in Algorithm 4 are correct.

Proof. For correctness we need to show that c = a+ b and c = a− b correspondingly:

c = c1 + c2 = a1 + b1 + a2 + b2 = a1 + a2 + b1 + b2 = a+ b,

c = c1 + c2 = a1 − b1 + a2 − b2 = a1 + a2 − (b1 + b2) = a− b.

Theorem 3.3.1. The addition and subtraction protocols in Algorithm 4 are secure against a passive
adversary.

Proof. The protocol run is perfectly simulatable as there is no communication, however, addition
and subtraction protocols are not universally composable because the output shares depend on
the inputs. For universal composability we need to combine the addition protocol with resharing
Algorithm 1.

8

3.4 Multiplication

Let σ denote a statistical security parameter, we use σ = 112 for medium term security. The
following protocol uses an additively homomorphic public-key cryptosystem, for instance Paillier’s
cryptosystem, where E(m) denotes encryption and D(c) denotes decryption. The corresponding
keys have been omitted, because we always use the key pair of party CP1. Values computed under
encryption are not computed modulo 2k as the usual arithmetic operations on shares and therefore
require modulo reduction after decryption.

Firstly, let CP1 have the shares a1 and b1 whereas CP2 has a2 and b2, where a = a1 + a2 and
b = b1 + b2. The multiplication protocol enables these parties to respectively learn c1 and c2 such
that c = c1 + c2 = a · b as described in Algorithm 5. Here, k denotes the length of the shared value
data type and secret sharing is computed in ring Z2k . The party CP2 computes E(a1 ·b2+b1 ·a2+r)
under encryption using the homomorphic properties. Firstly, CP2 uses constant multiplication to
obtain E(a1 · b2) and E(b1 · a2) and, secondly, CP2 encrypts E(r) and uses the addition under
encryption twice to compute the end result.

Algorithm 5 Multiplication of single values

Input: [[a]], [[b]]
Output: [[c]] = [[a · b]]

CP1 : sends E(a1) to CP2

CP1 : sends E(b1) to CP2

CP2 : generates random r ← {0, 1}2·k+1+σ

CP2 : computes c2 = a2 · b2 − r
CP2 : sends E(v) = E(a1 · b2 + b1 · a2 + r) to CP1

CP1 : decrypts v = D(E(v))
CP1 : computes c1 = (a1 · b1 + v) mod 2k

return [[c]]

Theorem 3.4.1. The multiplication Algorithm 5 for single values is correct.

Proof. To show that the multiplication is correct we need to prove that c = a · b. For that we can
expand c according to the values in the protocol as follows.

c = c1 + c2 = a1 · b1 + v + a2 · b2 − r = a1 · b1 + a1 · b2 + b1 · a2 + r + a2 · b2 − r
= a1 · b1 + a1 · b2 + b1 · a2 + a2 · b2 = (a1 + a2) · (b1 + b2) = a · b

Theorem 3.4.2. The multiplication Algorithm 5 for single values is secure against a passive ad-
versary.

Proof. The view of CP2 is simulatable so that the simulation and real protocol runs are compu-
tationally indistinguishable. CP2 sees two incoming messages in the defined protocol – E(a1) and
E(b1). From the IND-CPA security of Paillier’s cryptosystem we know that these encryptions are
indistinguishable from encryptions of random elements. Therefore we could build a simulator that
sends E(r1) and E(r2), where r1 and r2 are chosen uniformly, and the input in the simulation does
not depend on the private values of party CP2. If Paillier’s cryptosystem is (t, ε)-indistinguishable

9

under chosen plaintext attacks, then the outputs of t-time CP2 differ at most by 2ε in the simulation
and the real protocol run.

The view of CP1 is more complicated because the simulator can not just send a random en-
crypted element. We know that CP1 can distinguish the simulator from the real life if the message
v < a1 + b1 because the shares are all positive elements and a1b2 + a2b1 ≥ a1 + b1 because these
computations can not overflow the encryption modulus. However, we know that a2 and b2 are
uniformly distributed values and we may choose uniform values also in the simulation. In addition,
the simulator gets the randomness r as in the real protocol and calculates the response v as in the
actual protocol. The values a2 and b2 have uniform distribution in both the simulation and the real
protocol run and so does the final value v. This part of the simulation is perfect.

The second aspect from the view of CP1 is that the value v may leak information about the
length of a2 and b2 if it is shorter than 2k+1 bits. However, the chance of choosing the randomness
r so that all σ uppermost bits are 0 is 2−σ which is negligible in the statistical security parameter
σ.

The output share of CP2 is independent from the input shares of CP2 due to the randomness r
that is used to hide the shares and has uniform distribution over Z2k . The output share of the CP1

is also uniformly distributed because of the randomness r that is indirectly included to the output
through the input from party CP2.

The one value multiplication protocol in Algorithm 5 can be trivially extended for vector mul-
tiplication by just executing this protocol independently for all corresponding pairs in the vectors.
However, as the length of the encrypted values and possible plaintexts exceeds the usual share
value, then we could reduce the cost of communication by packing some values into one ciphertext.
More precisely, if the secrets are in a ring Z2k and the Paillier modulus N has length |N |, then we
can pack |N |/l share values into one ciphertext in party CP2 response, where l = (2k + 1 + σ) or
l = (2k+2+σ). Variable l stands for the length of packed values and we consider two cases because
the first may produce an error but the latter may be less efficient. Furthermore, CP2 can encrypt
the blinding value only once for the packed response. The details of this protocol for vectors of
length m ≤ |N |/l are in Algorithm 6, which can be run multiple times to generalize it for longer
vectors.

Theorem 3.4.3. The multiplication Algorithm 6 is correct.

Proof. To show that the multiplication is correct we need to prove that ci = ai · bi for all i. For this
it is necessary to understand what happens in the packing. The final value of r = r1||r2|| . . . ||rm
and the final value for e = v1||v2|| . . . ||vm, where each element vi and ri takes l bits and is padded
with beginning zeros if necessary. The maximal actual length for each vi is 2k+1 bits if both inputs
[[a]], [[b]] are in the ring Zk2 . If l = 2k + 2 + σ then the result of addition ri + vi is also at most l
bits and summing e + r = vr1||vr2|| . . . ||vrm means that always vri = vi + ri is computed as the
single v in the single value multiplication. The correctness of the whole computation results from
the correctness of each vri and the proof of theorem 3.4.1.

If l = 2k+ 1 + σ, then there is a possibility ε < 2−σ that the sum ri + vi overflows the intended
length and unpacking the response from CP2 results in wrongly calculated vri. The error occurs if
the σ most significant bits of ri are all set and the sum of 2k + 1 least significant bits of ri and vi
overflows 2k+ 1 bits. However, this is acceptable in practice as the probability for this is negligible
in the statistical security parameter σ. For all other cases the protocol is correct for the same
reasons as for the longer l value.

10

Algorithm 6 Pairwise multiplication of vectors of length m ≤ |N |/l
Input: 〈[[a(1)]], .., [[a(m)]]〉, 〈[[b(1)]], .., [[b(m)]]〉, where (1), . . . , (m) are indices
Output: 〈[[c(1)]], .., [[c(m)]]〉, where [[c(i)]] = [[a(i) · b(i)]]

CP1 : sends E(a
(1)
1), .., E(a

(m)
1) to CP2

CP1 : sends E(b
(1)
1), .., E(b

(m)
1) to CP2

CP2 : fixes r = 0, e = 0, E(e) as unbounded integers
for all i ∈ {1, . . . ,m} do

CP2 : generates random ri ← {0, 1}2·k+1+σ

CP2 : computes E(vi) = E(a
(i)
1 · b

(i)
2 + b

(i)
1 · a

(i)
2)

CP2 : computes r = r · 2l + ri
CP2 : computes E(e) = E(e · 2l + vi)

CP2 : computes c
(i)
2 = a

(i)
2 · b

(i)
2 − ri mod 2k

end for
CP2 : encrypts E(r)
CP2 : sends E(v) = E(e+ r) to CP1

CP1 : decrypts and unpacks single values vr1||vr2|| . . . ||vrm = D(E(v))
for all i ∈ {1, . . . ,m} do

CP1 : computes c
(i)
1 = a

(i)
1 · b

(i)
1 + vri mod 2k

end for
return [[c]]

Theorem 3.4.4. The multiplication Algorithm 6 is secure against a passive adversary.

Proof. The security results from the universal composability of the Algorithm 5 for multiplying
a single value. The security of Algorithm 5 is shown in Theorem 3.4.2 where the non-rewinding
simulators and independence of the output shares ensure universal composability.

3.5 Multiplication using Beaver’s triples

In the following we define a two-party multiplication protocol based on the ideas from [Bea91] where
the multiplication triples were introduced. At high level the precomputation produces shared triples
〈[[a]], [[b]], [[c]]〉 where c = a · b and these stored triples can be used to perform fast multiplication.
In general the following protocol for multiplication is the same as described in [BDOZ10] except
that it has been stripped of the measures against an active adversary — the zero-knowledge proofs
and message authentication codes. Furthermore, the general protocol for triple generation as intro-
duced in [BDOZ10] can be simplified for the two party case so that it becomes the multiplication
protocol previously described in Algorithm 6. The resulting multiplication algorithm consists of
the precomputation phase in Algorithm 7 and the online computation phase in Algorithm 8. Each
precomputed triple can be used only once and must be discarded after use.

Theorem 3.5.1. The triple generation Algorithm 7 is correct.

Proof. For correctness we need that [[x(i)]] · [[y(i)]] = [[z(i)]] for i ∈ {1, . . . ,m}. The correctness
proof 3.4.3 for the multiplication Algorithm 6 also proves that the Algorithm 7 for precomputing
the Beaver’s triples results in correct triples where z = x · y.

11

Algorithm 7 Precomputing the Beaver’s triples for multiplication

Input: number of triples m
Output: triples 〈[[x(i)]], [[y(i)]], [[z(i)]]〉 where z = x · y for i ∈ {1, . . .m}

CP1 : generate random x
(1)
1 , . . . , x

(m)
1 , y

(1)
1 , . . . , y

(m)
1 ← {0, 1}k

CP2 : generate random x
(1)
2 , . . . , x

(m)
2 , y

(1)
2 , . . . , y

(m)
2 ← {0, 1}k

run multiplication Algorithm 6 with inputs [[x]], [[y]] and output [[z]]
return triples 〈[[x(i)]], [[y(i)]], [[z(i)]]〉

Algorithm 8 Pairwise multiplication of vectors of length m using Beaver’s triples

Input: 〈[[a(1)]], .., [[a(m)]]〉, 〈[[b(1)]], .., [[b(m)]]〉, where (1), . . . , (m) are indexes
Output: 〈[[c(1)]], .., [[c(m)]]〉, where [[c(i)]] = [[a(i) · b(i)]]
for all i ∈ {1, ..,m} do

parties choose a triple 〈[[x(i)]], [[y(i)]], [[z(i)]]〉
parties execute the subtraction protocol [[e]] = [[a(i)]] − [[x(i)]]
parties execute the subtraction protocol [[w]] = [[b(i)]] − [[y(i)]]
parties execute the declassify protocol for [[e]] and [[w]]

CP1 : computes c
(i)
1 = z

(i)
1 + e · y(i)1 + w · x(i)1 + e · w

CP2 : computes c
(i)
1 = z

(i)
2 + e · y(i)2 + w · x(i)2

end for
return [[c]]

Theorem 3.5.2. The multiplication Algorithm 8 that generated the Beaver’s triple with Algorithm 7
is correct.

Proof. To prove the correctness of Algorithm 8 we need to consider if c = a · b for each single value
in the vector.

c = c1 + c2 = z1 + e · y1 + w · x1 + e · w + z2 + e · y2 + w · x2
= z + e · y + w · x+ e · w = z + (a− x) · y + (b− y) · x+ (a− x) · (b− y)

= z + a · y − x · y + b · x− x · y + a · b− a · y − x · b+ x · y = z − x · y + a · b
= z − z + a · b = a · b

Theorem 3.5.3. The Algorithm 7 for computing Beaver’s triples is secure against a passive ad-
versary.

Proof. The security of the triple precomputation results from the security of the multiplication
Algorithm 6 stated in Theorem 3.4.4.

Theorem 3.5.4. The multiplication Algorithm 8 using Beaver’s triples is secure against a passive
adversary.

Proof. The multiplication protocol is mostly combined from the previously introduced protocols
for subtraction and declassification. The subtraction protocol is perfectly simulatable according

12

to Theorem 3.3.1. The value that is declassified has been blinded using the values from the triple
and does not reveal anything about the input shares of the party. The remaining part of the
protocol requires only local computations and is therefore easy to simulate, as a result all parts of
the protocol are simulatable. In addition, as the triple is used only once and is discarded after the
protocol then we can view it as the randomness and therefore the output shares are independent
from the input shares and this protocol is universally composable.

4 Implementation details

The Sharemind framework is implemented in C++ and so is the additional protection domain
described in this paper. There are several additional libraries needed for Sharemind, but the given
two-party protection domain only adds the need for the NTL number theory library [Sho].

The current implementation has a hard-coded statistical security parameter σ = 112 which
stands for medium term security and the demo keys therefore have a 2048-bit modulus. A further
restriction is that currently the uint32 is the only secret data type provided in the implementation
of the protection domain. However, adding other integer types should not be difficult as they are
supported by the implementation of Paillier’s cryptosystem and would work with all the proposed
protocols without modifications.

The current encoding of ciphertext vectors where elements are of type NTL::ZZ only allows to
use ciphertexts with size of 65536 bytes, because the length of the ciphertext is encoded using two
bytes. This is sufficient for the chosen 2048-bit modulus that results in 4096 bits of ciphertext
length. Furthermore, the current encoding would also suit a modulus of 4096 bits.

4.1 Paillier’s cryptosystem

Paillier’s cryptosystem is implemented using the NTL [Sho] number theoretic library for C++ that
was developed by Victor Shoup. This library was mainly chosen for the readability of the code
written with NTL. However, as there were no efficiency comparisons between the number theoretic
libraries for C++ before this choice, then it is likely that there are libraries that would prove more
efficient. Furthermore, NTL can be compiled using GNU Multi-Precision library [Gra] to achieve
better performance of long integer arithmetic.

The keys for the cryptosystem are read from PEM encoded RSA key files using the OpenSSL
[YH] API for C++. Suitable keys can, for example, be generated using the OpenSSL tool. Keeping
keys as RSA key files is not space efficient as the RSA keys have many extra values that are not
necessary for the Paillier’s cryptosystem. However, this representation has been chosen for the
simplicity of both, generating new strong keys and parsing the key files. There is no standard
representation of the Paillier’s keys yet, if such a standard is created then is should be used instead
of currently used RSA keys.

The Paillier’s cryptosystem implementation has all of the aforementioned improvements except
the precomputation of the encryption randomness. However, precomputing the randomness should
be added to achieve considerable speed-ups for the encryption and therefore also for the multipli-
cation protocol. Each miner can compute and store randomness for its own use by performing only
local operations. Ideally, the miner could use the times when it is otherwise idle to compute the
randomness and use the precomputed randomness during encryption. However, this would also
mean, that in case of no idle time and active encryption the miner might occasionally still need to

13

compute the randomness during encryption because there may not be enough precomputed values
available.

4.2 Multiplication

The multiplication protocol puts a lot of workload on party CP1 who has to separately encrypt all
of its input elements. Considerable speed-ups can only be achieved if the encryption function is as
fast as possible. Although precomputation can shorten the protocol execution time, it is important
to notice that it does not reduce the overall workload of the miners, just enables to distribute the
workload more evenly during the miner uptime.

Nevertheless, taking the large workload on CP1 side into account can help to speed up the
protocol on the side of CP2, who can perform precomputations before waiting for inputs from CP1

and can reduce the workload when actually computing on the inputs from CP2. Analysing the
protocol in Algorithm 6 reveals that party CP2 can precompute its final share and the randomness
r without knowing the inputs from CP1. As the main improvement, CP2 can also perform the
expensive encryption operation at the precomputation phase. This can improve the running time
because it is highly likely that CP2 finished all the precomputations before it even could receive the
vectors. However, even in the case of a very fast CP1 the party CP2 would still need to perform all
these computations and such ordering should not have a big negative effect on the running time.

The vector multiplication Algorithm 6 introduced the possibility to pack several secret values
into one ciphertext. For the currently chosen 2048-bit modulus, σ = 112 and 32-bit secret values
we can pack 11 elements regardless of the exact value for l used for packing. For long term security,
we should choose a 3072-bit modulus and σ = 128 which will result in the possibility to pack 15
elements into one ciphertext.

Multiplication is currently implemented using batches so that long vectors get broken to smaller
sections. This segmentation mainly aims to reduce the size of network messages as instead of
sending the whole vector at once we send a suitably sized batch. The batch size should in the
future be determined from actual network settings and can be fixed in the configuration file of the
protection domain. As long as there is a single secret value type it would make sense to choose the
batch size as a multiple of the number of elements that can be packed together to achieve maximum
efficiency from the packing.

4.2.1 Possible improvements

CP2 may gain from finding one random element of length l× packing count to add to the concate-
nated ciphertext and then chopping it up to get all random ri values. Using the NTL randomness
generator once is faster than calling it packing count times to get all ri separately. Splitting this
one randomness to different ri values only requires cheaper truncating and bitshifting operations.
However, this optimization can only be implemented easily if we expect l to be the same as the
security constant, otherwise the randomness should have fixed zeros in places of every l’th bits to
avoid overflowing one packed element and the size of ri. We need to find a shorter final randomness
if we are processing a shorter array than the maximum amount we can pack to one ciphertext.

In addition, we may try to make the algorithm symmetric by introducing also a key pair of CP2

and divide the inputs to two parts so that both participants encrypt half of the inputs. Both parties
would process the encrypted values received from the other miner as CP2 processes the values from
CP1 in Algorithm 6. This could speed up the general protocol approximately 2 times. Using two

14

Table 1: Comparison of arithmetic operations between protection domains (milliseconds)
3 miners 2 miners

length add multiply add triples multiply CP1 multiply CP2

1000 0.033 27.538 0.030 37402.992 21.061 0.201
10000 0.309 59.717 0.298 376045.833 25.239 5.277
20000 0.603 91.396 0.571 754546.683 30.649 13.340
100000 2.556 414.367 2.548 3759854.983 94.252 81.104

sets of keys do not affect the further usage of the multiplication results or the triples in case we
perform this as a precomputation protocol.

4.3 Multiplication using Beaver’s triples

This protocol requires a precomputation mechanism for Sharemind as this protocol is composed
of two distinct steps - the precomputation phase and the online multiplication phase. However, this
precomputation differs considerably from the precomputation of encryption randomness because
it requires the two miners to perform an interactive protocol during the precomputation. Hence,
precomputation requires the two computing parties to decide when to run this protocol.

The current test implementation just performs precomputation at the beginning of the multipli-
cation protocol. Sharemind needs a mechanism to perform precomputation at start-up and during
idle times, to fully integrate this protocol idea. This may also require tests to estimate what is the
amount of precomputed triples that should be calculated initially and stored during the uptime.

The online phase of the protocol is very simple and can be implemented as described in Algo-
rithm 8. However, as the values that are declassified are blinded with the random triple then there
is no need to actually blind these values as in the full declassify Algorithm 3. In addition, there is
no need to declassify these values to non-computing nodes as they provide no information about
the protocol result.

5 Performance measurements

All measurements in this section are performed while running all miners on a single machine. This
setup reduces the time for network communication, but also means that the miners compete for the
processor time and the results in a distributed system might differ considerably from the results
presented here. These results are given for the purpose of comparing the protection domains with
two or three parties and unless specified differently, the times are average over all the participating
miners.

The measurements were performed on a Intel(R) Core(TM)2 Duo CPU 2.66 GHz Linux machine
with 4 GB of RAM. The fragment size for three-party multiplication is 100000 and for two parties
it is 500 unless specified differently. The online phase of the triple multiplication does not use
fragmentation at the moment, however it may be beneficial to add it in order to keep the network
messages smaller. There is an artificial gap between the online and offline phase of the multiplication
so that the running times of these separate parts should not affect each other.

Table 1 compares the average running times of addition and multiplication algorithms in the
two protection domains. The addition algorithm is the same for the two domains and the slightly

15

slower times for the three party version should result from the fact that all miners used the same
machine and therefore three-party version had more competition for the processor time. As addition
is performed locally and miners do the same amount of work in both domains then in real life, the
running times for the addition protocol should coincide. Nevertheless, the ideas for multiplication
algorithms are different and therefore form the more interesting part of the comparison.

The times for triple generation increase linearly as the input length increases. This is expected
because most of the protocol time is taken by the party CP1 who has to encrypt all of its inputs
separately. In addition, triple generation is slightly more time consuming for CP1 who must also
process the last network message from CP2, whereas CP2 finishes with sending the last message.
It would be possible to achieve about 2 times speed-up by using keys for both parties and making
the protocol symmetric.

The online multiplication is in general faster than the three-party multiplication, but shows
confusing trends as the lengths increase. This protocol also puts slightly more workload on CP1,
who has to compute an extra local multiplication and addition compared to CP2. This difference
well explains the case of length 100000 running times, however, the gaps between running times
of other cases seem too big to be caused by just some local operations. Interestingly, even if we
multiply only one value we currently get 0.02 ms for CP2, but still 19.8 ms for CP1. This phenomena
could be caused by the timing of processor threads, especially because some of the measurements
showed equal times for the miners. However, there is no good explanation at the moment.

The different l values result in 376.0 seconds on average for l = 2k + 1 + σ and 375.5 seconds
on average for l = 2k + 2 + σ for 10000 elements multiplication. Therefore, there is no significant
difference at the moment and this question should be reconsidered once the protocol in general
becomes faster. As long as there is no difference, we could use l = 2k + 1 + σ which will allow to
compute the randomness faster as described in Section 4.2.1.

All previous measurements were performed with the multiplication fragment size 500, choosing
2000 results in an average of 377.5 seconds, choosing 1000 gives an average of 375.8 seconds, and
choosing 250 gives an average of 376.1 seconds for length 10000. These results do not distinguish
any of the choices, but they may give different results in real networks where a suitable parameter
should be chosen for each setup.

Precomputing the exponentiation of the randomness can decrease the running time of encryp-
tion operation about 100 times and should also considerably affect the time requirements of the
multiplication protocol that uses homomorphic encryption. However, it is questionable if it would
give any noticeable speed-up in the final setting, where we only need encryption as part of the
precomputation phase.

6 Conclusion

This report introduced the basic protocols for secure two-party computation based on additive secret
sharing. Most of the protocols were directly ported from the tree-party protocols of Sharemind,
the only exception being the multiplication protocol. The proposed multiplication protocol uses
the homomorphic properties of Paillier’s cryptosystem to perform multiplication by combining
multiplication with a public value and addition under encryption. In addition it is possible to
pack several values into one ciphertext to reduce the cost of communication. The time requirement
for the Paillier encryption is currently the main difficulty of the protocol. This problem could be
reduced by precomputing the randomness for encryption, but the current implementation does not
have a mechanism for precomputation.

16

The second possibility is to use the multiplication protocol based on additively homomorphic
encryption as the precomputation phase. This protocol can be used to produce Beaver’s triples
and then use a simple multiplication protocol which requires these triples. The experiments show
that the triple multiplication protocol is usable for practical purposes, whereas the initial idea was
time-consuming.

Further work could consider different ways to more efficiently pack the values into a ciphertext to
reduce the amount of network traffic and separate encryptions. It would be beneficial to precompute
the randomness of encryption and possibly check the efficiency of NTL functions. In addition, it
would be interesting to develop other protocols using precomputation ideas similar to the final
multiplication. Furthermore, it would be important to establish a framework for precomputing
protocols and storage of the precomputed values. Finally, it could be beneficial to add a protocol
to alter between the two protection domains.

7 Acknowledgments

The authors would like to thank Sven Laur for helpful discussions and suggestions.

References

[BDOZ10] Rikke Bendlin, Ivan Damgrd, Claudio Orlandi, and Sarah Zakarias. Semi-homomorphic
encryption and multiparty computation. Cryptology ePrint Archive, Report 2010/514,
2010.

[Bea91] Donald Beaver. Efficient multiparty protocols using circuit randomization. In Joan
Feigenbaum, editor, Proceedings of the 11th Annual International Cryptology Confer-
ence. CRYPTO ’91, volume 576 of Lecture Notes in Computer Science, pages 420–432.
Springer, 1991.

[BLW08] Dan Bogdanov, Sven Laur, and Jan Willemson. Sharemind: a framework for fast
privacy-preserving computations. Cryptology ePrint Archive, Report 2008/289, 2008.
http://eprint.iacr.org/.

[Can01] Ran Canetti. Universally composable security: A new paradigm for cryptographic pro-
tocols. In FOCS, pages 136–145. IEEE Computer Society, 2001.

[DJ01] Ivan Damg̊ard and Mats Jurik. A generalisation, a simplification and some applica-
tions of paillier’s probabilistic public-key system. In Proceedings of the 4th International
Workshop on Practice and Theory in Public Key Cryptography: Public Key Cryptogra-
phy, PKC ’01, pages 119–136, London, UK, UK, 2001. Springer-Verlag.

[Gir] Damien Giry. BlueKrypt - cryptographic key length recommendation. http://www.

keylength.com.

[Gra] Torbjörn Granlund. The GNU multiple precision arithmetic library. http://gmplib.

org/.

17

http://eprint.iacr.org/
http://www.keylength.com
http://www.keylength.com
http://gmplib.org/
http://gmplib.org/

[Pai99] Pascal Paillier. Public-key cryptosystems based on composite degree residuosity classes.
In Proceedings of the 17th international conference on Theory and application of
cryptographic techniques, EUROCRYPT’99, pages 223–238, Berlin, Heidelberg, 1999.
Springer-Verlag.

[Sho] Victor Shoup. NTL: A library for doing number theory. http://www.shoup.net/ntl/.

[YH] Eric A. Young and Tim J. Hudson. OpenSSL: Cryptography and SSL/TLS toolkit.
http://www.openssl.org/.

18

http://www.shoup.net/ntl/
http://www.openssl.org/

	Introduction
	Preliminaries
	Paillier's cryptosystem
	Additive secret sharing
	Proving security

	Protocols
	Resharing
	Classify and declassify
	Addition and subtraction
	Multiplication
	Multiplication using Beaver's triples

	Implementation details
	Paillier's cryptosystem
	Multiplication
	Possible improvements

	Multiplication using Beaver's triples

	Performance measurements
	Conclusion
	Acknowledgments

