
CYBERNETICA
Institute of Information Security

Privacy-preserving Histogram Computation
and Frequent Itemset Mining with

Sharemind

Dan Bogdanov, Roman Jagomägis, Sven Laur

T-4-8 / 2009

Copyright c©2009
Dan Bogdanov1,2, Roman Jagomägis1,2, Sven Laur2.
1 AS Cybernetica, Institute of Information Security
2 University of Tartu, Institute of Computer Science

All rights reserved. The reproduction of all or part of
this work is permitted for educational or research use on
condition that this copyright notice is included in any copy.

Cybernetica research reports are available online at
http://research.cyber.ee/

Mailing address:
AS Cybernetica
Akadeemia tee 21
12618 Tallinn
Estonia

2

Privacy-preserving Histogram Computation and
Frequent Itemset Mining with Sharemind

Dan Bogdanov, Roman Jagomägis, Sven Laur

December 10, 2009

1 Introduction

1.1 Scope of this document

This report documents computational experiments conducted to estimate the fea-
sibility of privacy-preserving data analysis with the Sharemind platform [1]. We
chose histogram computation as an example of a standard data mining task. To
demonstrate more advanced combinatorial algorithms we also tested two frequent
itemset analysis algorithms.

The same results have been reported in a yet unpublished paper [2]. This research
report gives the performance results with more technical details and a more thorough
analysis.

1.2 Notational conventions

Data types. To explicitly separate private data and public data, we use the fol-
lowing convention. All private variables are in double brackets, e.g. [[x]] denotes the
secret shared variable x. The same applies to vectors and matrices, as well. Vec-
tors are denoted by bold lowercase letters (a, [[b]], . . .) and matrices are denoted by
uppercase letters (A, [[B]], . . .). Sets and list are denoted by calligraphic uppercase
letters (A, . . .).

Indexing. To simplify notations, we use the semi-standard indexing operator [·]
to select elements, rows and columns form vectors, lists and matrices. For instance,
A[5] and [[b]][3] denote respectively the 5th element of the list A and the 3rd

3

element from the vector of shares [[b]]. Similarly, A[2, 4] and [[B]][5, 1] denote
respective elements in the matrices. Additionally, we use index sets and wildcards
for brevity and convenience. That is, A[∗ , 2] denotes the second column of the
matrix A and A[I] denotes a new list ai1 , . . . , aik for an index set I = {i1, . . . , ik}.
If I is a zero-one vector of the same length as A then A[I] denotes a new list
a1, . . . , ak such that aj ∈ A[I] iff I[j] = 1 and aj /∈ A[I] iff I[j] = 0.

Matrix and vector operations. All operations on matrices are completed ele-
mentwise unless specified otherwise. A shorthand A � B denotes the elementwise
product of matrix entries with confirming dimensions. Let a ~ b denote the elemen-
twise product of vectors with potentially different lengths, where the shorter vector
is repeated to fill out the missing places.

For instance, if a = (1, 2) and b = (1, 1, 3, 5), then a~b = (1, 2, 3, 10). The nota-
tion can be naturally extended to matrices. Let vec(A) denote a vector that is ob-
tained by stacking all column vectors on top of each other, i.e., A[∗ , 1], A[∗ , 2],
Then A ~ B = C where C has the same dimensions as the larger matrix and
vec(A) ~ vec(B) = vec(C). If matrices have the same row dimensions, then the
smaller matrix is replicated as many times to match the size of the larger matrix and
elementwise multiplication is performed afterwards.

2 Standard data analysis techniques

2.1 Introduction

Data analysis with Sharemind consists of choosing and implementing the right
algorithm for the task. However, choosing the right algorithm with Sharemind is
a bit different than with standard architectures.

First, the algorithms of Sharemind should be able to declassify the minimal
amount of data. This mostly means that the algorithm should not openly distinguish
records in the input data unless this is not a risk to privacy. Typically this means
that the programmer must devise an algorithm that processes all the data equally
so that no decisions are made from private data. This would allow an attacker to
determine these values through flow control analysis.

Second, since parallel processing provides a significant performance boost in
Sharemind, algorithms should be chosen based on whether they can be composed
from vector operations. Experiments have shown that depending on the computation
it may be preferable to choose algorithms that use less operations with more data
over algorithms that use more operations with less data.

4

For example, consider an algorithm that finds the largest value from an array of
private values. Typically, one would iterate over all the values and compare each
one with a memorized candidate for the largest value. In the end, the candidate
value is used as the output. For an n-element array, this requires O(n) operations.
For Sharemind, we would choose a divide-and-conquer algorithm that recursively
divides values into pairs and pushes only the larger values into the next recursion
level. In the end, the largest value will remain. This algorithm will require O(log2n)
comparison operations with different input sizes, as all comparisons on the same level
of recursion can be performed in parallel. Due to the smaller number of operations,
the recursive algorithm performs significantly better on Sharemind when compared
to the linear one. This is despite the seemingly larger complexity.

2.2 Histogram computation

A histogram is often the simplest and yet a very powerful way to visualise data and
thus used in many data analysis applications. For example, when reporting surveys,
graphical histograms are used to describe the distribution of answers to questions
with fixed choices. Moreover, if the resolution is properly chosen then the histogram
does not disclose much about individual data points.

As a histogram consists of individual bars being proportional to the counts ci of
values in the range [ai, bi], the task reduces to finding out how many entries of the
vector x are in the range [a, b]. If the values are discrete, it may also happen that
ai = bi and one bar counts the occurrences of a single value.

The tested histogram computation code is straightforward—the private data is
passed on directly to the counting code that counts the number of values in a certain
range. The counts are declassified and gathered into a vector. The implementation
loads the input data from the Sharemind private database and runs the histogram
function with different value ranges.

Vectorization is used so that a possible value or range is compared to every value
in the input data at once. Separate comparison operations are used for testing sep-
arate values although even this operation could be vectorized for possibly improved
performance. Refer to the histogram example application in Sharemind 1.91 or
later for the SecreC code. The principle of the algorithm is shown in Algorithm 1.
The input data is given in the form of a private vector [[V]]. The second parameter is
the number of possible choices n. Note, that the presented code can easily be adapted
to support ranges, if the equality is replaced with two greater-than comparisons.

5

Algorithm 1 Pseudocode for the SecreC histogram algorithm

1: function Histogram([[V]], n)
2: for i ∈ {0, . . . , c− 1} do
3: ??? The single value i is duplicated for the elementwise comparison. ???
4: ? ? ? If values were equal, the result is one, otherwise it is zero. ? ? ?
5: [[I]]← ([[V]] == i)
6: [[f]]← ColSum([[I]])
7: f ← Declassify([[f]])
8: F i = f
9: end for

10: return F
11: end function

Security analysis. To show that an algorithm is private, we have to make sure
that the execution flow can be efficiently reconstructed from the public parameters
and intended outputs and declassified values can be efficiently computed from the
public parameters and intended outputs. While fulfilling these requirement will not
directly give us a cryptographic proof, it will show that the private inputs have not
been compromised.

For the histogram, it is easy to see that the execution flow of the algorithm
depends only on the public input n. All comparisons are performed in parallel
and the results are not published. Instead, we make use of the specific comparison
operation in Sharemind that returns ones and zeroes depending on the result of
the comparison. These ones and zeroes are added together to find the number of
values that satisfied the equality. Only the number of such values is disclosed, so the
algorithm preserves privacy.

2.3 Description of the experiment

We designed the histogram benchmark as follows. We simulated four questions with
two, three, five and ten answer choices by creating a table with four columns. Each
column contained numeric values from the set {0, · · · , n− 1} where n is the number
of answer choices. We generated four such tables, containing 100, 1 000, 10 000 and
100 000 values. The application that creates the database and generates data was
created using the Sharemind controller library.

We then implemented the histogram computation algorithm in SecreC and de-
ployed it in the miners. Another controller application was written that invoked the
algorithm, passing input parameters. This application ran the algorithm for each

6

column of each input table.
The miners were set up on a local network connected with a 1 Gb switch. The

workstations running the miner software had dual-core Opteron 175 processors and
2 GB of RAM. Linux was used as the operating system. The integrated execution
profiling system within the miner software was used to measure the performance of
the algorithm.

2.4 Experimental results

The measured timings for histogram computation are given in Table 1.

2 choices 3 choices 5 choices 10 choices
100 answers 0,76 1,17 1,86 3,99

1 000 answers 2,01 3,59 5,37 10,2
10 000 answers 22,33 42,44 59,39 122,39

100 000 answers 181,53 330,45 524,01 1040,06

Table 1: Timings for histogram computations. Time in seconds.

We notice, that while the timings are linear in the number of choices, they are
not strictly linear in the number of inputs. This will become clear once the use of
vectorization in the algorithm is explained. The histogram implementation bench-
marked performs one vectorized comparison for each possible input value. Given
that this comparison takes roughly the same amount of time for each input vector
of the same size, it is clear why running the histogram on ten choices is about two
times slower than running it on five choices.

However, finding the histogram on 100 000 values is not a thousand times slower
from the case with just a hundred values. This is explained by the efficiency of
vectorized operations on Sharemind. Since the whole database column is processed
at once using a vector operation, Sharemind can optimize its protocol execution to
process many values at once.

We conclude the analysis by stating that these benchmarks show that Sharemind
could be used for aggregating survey results in acceptable time. While processing
a large number of inputs may be time-consuming, most large surveys aggregate no
more than a thousand records. And waiting ten seconds for the computation results
of a question is perfectly acceptable in non-critical scenarios.

7

3 Privacy-preserving market basket algorithms

3.1 Frequent itemset mining

Basic definitions. Frequent itemset mining algorithms search co-occurring items,
events or actions in transactional data. Let A = (a1, . . . , an) be the list of all possible
items in the transactional data. Then given m transactions, we can construct a large
m × n zero-one matrix D such that D[i, j] = 1 iff aj is in the ith transaction.
Otherwise, D[i, j] = 0.

The support of an itemset X = {x1, . . . , xk} is the number of transactions that
contain all the items in X . Note that the support can be expressed in terms of
multiplications and additions

supp(X) =
m∑

i=1

∏
j∈X

D[i, j] (1)

since the itemset X is present in the ith row only if D[i, j] = 1 for all j ∈ X . The
latter can be expressed with matrix operations

supp(X) = Sum(D[∗ , x1]�D[∗ , x2] · · · �D[∗ , xk]) (2)

where Sum(·) denotes sum over all matrix elements.
Observe that the vector D[∗ , x1] � D[∗ , x2] · · · � D[∗ , xk] indicates which

transactions contain X . Therefore, we use a separate shorthand

cover(X) = D[∗ , x1]�D[∗ , x2] · · · �D[∗ , xk] . (3)

Note that for any two itemsets X and Y

cover(X ∪ Y) = cover(X)� cover(Y) . (4)

The latter means that we can cache some computations and thus can do less multi-
plications than in the formula (2).

This definition of cover is a bit unconventional, as in the data mining literature
the cover usually denotes the set of rows instead of the index vector. However, in
the context of privacy-preserving algorithms it is much more efficient to work with
index vectors instead of sets.

8

Properties of frequent itemsets. Which co-occurring itemsets are frequent and
which are not is entirely subjective. Given a user specified threshold t, all itemsets
X are considered frequent if supp(X) ≥ t. Clearly, the support is an anti-monotone
function X ⊆ Y ⇒ supp(X) ≥ supp(Y) and thus all subsets of a frequent sets must
be frequent. This property is known as the Apriori principle. Secondly, note that
all frequent itemsets are reachable by iteratively adding single items to discovered
frequent itemsets till nothing can be added any more. This observation is known as
the pattern growth principle.

3.2 A privacy-preserving version of the Apriori algorithm

Apriori is a frequent itemset mining algorithm, which is based on level-wise search.
More precisely, it first generates a list of frequent items F1 and then runs the following
cycle. Given a list of frequent i-element itemsets Fi, it generates a list of potential
frequent (i + 1)-element itemsets Ci+1 and verifies which of those are really frequent.
Algorithm 2 depicts the pseudo-code of our privacy-preserving version of the Apriori
algorithm. The algorithm proceeds similarly except some cover vectors are cached
to reduce the number of multiplications. The algorithm also tries to parallelize
operations as much as possible. As a result, each iteration of the for loop consists of
a single multiplication instruction followed by a single comparison instruction. As
the main backside note that the memory consumption of the algorithm increases
greatly when the number of frequent itemsets is really large.

The mechanics behind the algorithm is simple though the notation is a bit cryptic.
By computing shared column sums over the matrix D, we obtain supports of indi-
vidual items. By comparing them to the threshold and publishing the corresponding
index vector reveals frequent items F1. Additionally, the covers of F1 are cached on
the line 7. In the body of the loop, we first compute set of plausible (i + 1)-element
frequent items and output two index sets I1 and I2 such that

Ci+1 = {I1[j] ∪ I2[j] : j = 1, . . . , |Ci+1|}

Thus, the equation (4) assures that the columns of Mi[∗ , I1] � Mi[∗ , I2] cor-
respond to the covers of Ci+1. The candidate generation is not different from the
standard Apriori algorithm as it is based in the public data. The only new as-
pect is proper construction of the index sets. Although it is a bit technical, it is still
straightforward. Finally, the lines 12–15 count the supports and disclose the frequent
itemsets exactly as the lines 5–7.

9

Algorithm 2 High-level description of privacy-preserving Apriori algorithm

1: function Apriori([[D]], k, t)
2: ? ? ? A is the list of column labels, e.g. A = {1, 2, . . . , r} ? ? ?
3: ? ? ? F is the list of currently discovered frequent itemsets ? ? ?
4: ? ? ? Mi is a matrix consisting of cover vectors for the sets Fi ? ? ?
5: [[s]]← ColSum([[D]])
6: f ← Declassify([[s]] ≥ [[t]])
7: F1 ← A[f], F ← F1, [[M1]]← [[D]][∗ ,F1]

8: for i ∈ {1, . . . , k − 1} do
9: (Ci+1, I1, I2)← GenerateCandidates(Fi)

10: [[M1
i+1]]← [[Mi]][∗ , I1]

11: [[M2
i+1]]← [[Mi]][∗ , I2]

12: [[Mi+1]]← [[M1
i+1]]� [[M2

i+1]]
13: [[s]]← ColSum([[Mi+1]])
14: f ← Declassify([[s]] ≥ [[t]])
15: Fi+1 ← Ci+1[f], F ← F ∪ Fi+1, [[Mi+1]]← [[Mi+1]][∗ ,Fi+1]

16: end for
17: return F
18: end function

Security analysis. Note that the flow of the algorithm depends only on public and
declassified variables. Consequently, if we show that all declassified variables can be
deduced directly form the desired output, then the protocol is secure—nothing is
leaked beyond the output. Indeed, note that given a list of frequent itemsets F
is straightforward to determine the sets F1, . . . ,Fk. From these sets it is trivial to
compute C2, . . . , Ck and thus the sizes of matrices nor the index sets I1 and I2 leak
no additional information than is revealed by the declassification operations. Note
that the index vector f can be also computed from the corresponding sets Fi and Ci.
Hence, also the declassification reveals nothing more than Fi+1 and the algorithm is
secure.

3.3 Privacy-preserving version of the Eclat algorithm

The main drawback of the Apriori algorithm is memory consumption. This issue
is amplified even further in the privacy-preserving versions of the algorithm, as we
store not only the list of discovered frequent i-element sets but the corresponding
cover vectors. As a result, the overall performance is fast but the memory footprint
quickly goes beyond reasonable limits. Hence, we also developed a privacy-preserving

10

version of the Eclat algorithm that is based on depth-first search instead of breath-
first search. Opposed to the standard implementation, our implementation works
with unpacked cover vectors and thus is a bit more inefficient than the original Eclat
algorithm.

The Eclat algorithm is based on recursive step that takes in a frequent item-
set X and tries to elongate by adding new items into it. For efficiency reasons,
EclatStep(·) takes in a list of potential extensions elements EX and the matrix
MX of corresponding cover vectors. Since we want to list only frequent itemsets
having less than k elements, the recursion in EclatStep(·) is aborted when the
size of X is larger than k. Otherwise, shares of new cover vectors are computed and
the corresponding supports are counted. Finally, EclatStep(·) is applied for each
newly frequent itemset and results are merged.

Algorithm 3 High-level description of privacy-preserving Eclat algorithm

1: function EclatStep(X , EX , [[MX]], k, t)
2: ? ? ? F is the list of currently discovered frequent itemsets ? ? ?
3: [[M]]← [[MX]][∗ ,X] ~ [[MX]][∗ , EX]
4: [[s]]← ColSum([[M]])
5: f ← Declassify([[s]] ≥ [[t]])
6: E ← Join(X , EX[f]), F ← E ,
7: if |X | < k then
8: for Y ∈ F do
9: EY ← Succ(E ,Y), MY ← [[M]][∗ , EY]

10: F ← F ∪ EclatStep(Y , EY , [[MY]])
11: end for
12: end if
13: return F
14: end function

15: function Eclat([[D]], t, k)
16: return EclatStep(∅,A, [[D]], k, t)
17: end function

As in the Apriori algorithm the lines 3–6 construct cover vectors, evaluate sup-
ports and reveal which of those are over the threshold. Since the algorithm again
relies on the equation (4), we have to compute the corresponding sets X ∪ e for all
e ∈ Ex[f]. The latter is implemented in the function Join(). Actually, EX is a list
of itemsets instead of being a simple list but it works equally well. If Y is frequent

11

then all one element extensions of Y can be obtained by joining Y with other sets
in E . Moreover, it is enough if we consider only successor sets of Y in E . Hence, the
call of Succ(·) is used to provide the minimal number of potential extensions for Y .

Security analysis. Again note that the flow of the Eclat algorithm depends only
on public parameters and on the declassified f variable. Given the list of frequent
itemsets F , it is straightforward to compute the value of f . An element in f[e] is
one only if the corresponding set X ∪ e is frequent and the latter can be determined
form F . Hence, nothing beyond F is leaked.

3.4 Description of the experiment

In order to test our Apriori and Eclat implementations we used the mushroom dataset [3].
The dataset has 8124 transactions with 120 possible items. This dataset was im-
ported into the miners’ database by using the TransactionDataImporter tool shipped
together with Sharemind 1.9 and later versions. The tool automatically converts
data into the format specified in Section 3.1.

We implemented both algorithms in SecreC and deployed them at the same miner
setup detailed in Section 2.3. We used the ScriptingBenchmark application to
execute the assembly code generated by the SecreC compiler. The algorithm was
executed with a variety of desired support parameters ranging from 5000 to 2000.

3.5 Experimental results

In frequent itemset mining the performance is directly linked to the number of candi-
date itemsets that have to be processed. Since Sharemind cannot leave out transac-
tions that do not contribute to the frequent itemsets due to the privacy requirements,
we have to find different paths of optimization. Most importantly, we have to find a
way to use parallel execution as much as possible. It is intuitive that a breadth-first
algorithm is easier to vectorize than a depth-first algorithm. This is well illustrated
by the comparison of Apriori and Eclat runtimes shown in Table 2. The column
titles show the support parameter used when starting the algorithm.

With more itemsets, Apriori performs better than Eclat. While this indeed sup-
ported our claims about breadth-first algorithms being easier to parallelize, we per-
formed a more thorough analysis by making use of the Sharemind execution profiling
mechanism that can measure the structure of algorithm execution and present the
results in a table.

12

5000 4000 3000 2500 2000
Apriori 1,24 1,41 2,13 3,77 17,33
Eclat 1,22 1,74 4,84 10,2 26,46

Table 2: Timings for frequent itemset mining. Time in minutes.

For our experiments we aggregated the results into four categories: private mul-
tiplication, private comparison, database operations and other operations. Private
multiplications are used in scalar products to join candidate itemsets. Private com-
parison is used to determine whether an itemset is frequent. Database operations
are used to load input data and other operations consist of secret sharing, declassi-
fication, private addition and interpreter overhead.

The execution structures for Apriori and Eclat are given in Table 3 and Table 4.
We start by noticing that the database timings change little over time. This is
because both implementations cache the frequent columns in memory. Also, the
database system in the current Sharemind implementation needs optimization, as
for higher support values the database turns up to be the most expensive part of the
computation.

Support Multiplication Comparison Database Other Total
5000 2,23 1,74 70,15 0,3 74,42
4000 5,87 1,84 76,28 0,53 84,51
3000 27,57 2,42 86,88 11,2 128,06
2500 69,21 3,9 85,56 67,63 226,3
2000 404,13 16,14 88,26 531,05 1039,57

Table 3: Apriori execution structure. Time in seconds.

When we look at the multiplication complexity we see that both algorithms spend
similar amounts on multiplication. However, Eclat spends less time in multiplications
as it prunes the itemsets differently. We have to consider that private multiplication
is significantly less expensive that private comparison, at least in the version of
Sharemind used for these benchmarks. Due to this, Eclat loses to Apriori mostly
because it is unable to vectorize private comparisons with the same efficiency. And
since comparison is expensive, single operations add up to a lot of time.

Finally, we look at the rest of the execution time and see that it grows organically
in the case of Eclat but increases sharply for Apriori. This was, interestingly, a side-

13

Support Multiplication Comparison Database Other Total
5000 1,05 8,45 62,48 1,18 73,15
4000 5,38 27,15 66,74 4,85 104,12
3000 31,49 161,89 68,12 28,93 290,43
2500 75,33 397,22 67,1 72,62 612,27
2000 206,43 1109,15 70,18 201,94 1587,69

Table 4: Eclat execution structure. Time in seconds.

effect of the high level of parallelism. The large vector operations were using up a lot
of memory and it caused the servers to run out of physical RAM and start using the
swapfile. Optimizations in the memory usage patterns of Sharemind could possibly
counter this sharp increase in the execution times and make Apriori scale even better
than it currently does.

4 Conclusion

We have presented and in-depth analysis of the SecreC implementations of three
algorithms—a histogram algorithm and adaptations of the Apriori and Eclat frequent
itemset mining algorithms. We show their SecreC versions preserve privacy and
benchmark their performance.

The results show that SecreC can be used to implement well-performing al-
gorithms on the Sharemind privacy-preserving data mining platform. While the
histogram implementation is ready for use in real applications, there is room for
improvement in the frequent itemset finding performance. Future versions of the
Sharemind machine or the algorithms will certainly address the presented issues.

References

[1] Bogdanov, D., Laur, S., Willemson, J., “Sharemind: a framework for fast privacy-
preserving computations,” Proc. 13th European Symposium on Research in Com-
puter Security, ESORICS 2008, LNCS 5283, Springer-Verlag, 2008, pp. 192–206.

[2] Bogdanov, D., Jagomägis, R., Laur, S. “Privacy-Preserving Applications in the
Hybrid Execution Model”. Unpublished. 2009

14

[3] Blake, C., Merz, C. “UCI Repository of machine learning databases,” Univer-
sity of California, Irvine, Dept. of Information and Computer Sciences, http:

//archive.ics.uci.edu/ml/, 1998.

15

