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ABSTRACT
In the rapidly evolving machine learning (ML) and distributed sys-

tems realm, the escalating concern for data privacy naturally comes

to the forefront of discussions. Federated learning (FL) emerges as

a pivotal technology capable of addressing the inherent issues of

centralized data privacy. However, FL architectures with central-

ized orchestration are still vulnerable, especially in the aggregation

phase. A malicious server can exploit the aggregation process to

learn about participants’ data. This study proposes MPCFL, a secure

FL algorithm based on secure multi-party computation (MPC) and

secret sharing. The proposed algorithm leverages the Sharemind

MPC framework to aggregate local model updates for securely for-

mulating a global model. MPCFL provides practical mitigation of

trending FL concerns, e.g., inference attack, gradient leakage attack,

model poisoning, and model inversion. The algorithm is evaluated

on several benchmark datasets and shows promising results. Our

results demonstrate that the proposed algorithm is viable for devel-

oping secure and privacy-preserving FL applications, significantly

improving all performance metrics while maintaining security and

reliability. This investigation is a precursor to deeper explorations

to craft robust FL aggregation algorithms.
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1 INTRODUCTION
Machine learning (ML) has become a transformational tool from

healthcare and finance to social networking. In particular, the emer-

gence of deep neural networks (DNNs) has brought about revolu-

tionary changes and has had a tremendous impact on a wide range

of fields, from image processing to recent large language models

(LLMs) [13]. At its core, ML relies on vast amounts of data to make

predictions without explicitly programming its mechanism. This

data-driven nature has led to growing privacy concerns. Many ML

models use personal and sensitive big data, especially those in the

healthcare and finance sectors [7]. While these data are essential

for improving model accuracy, unauthorized access or compromise

can cause significant personal and financial harm. In addition, in

the case of models that identify intractable diseases, for example,

the scarcity of the data itself creates an incentive to collaborate with

other data holders. However, with laws like the European Union’s

General Data Protection Regulation (GDPR) [2] and the California

Consumer Privacy Act (CCPA) [9], organizations are mandated to

protect user data, making privacy an ethical and legal obligation.

Thus, handling data operations at the network edge, closer to the

data source, is a convenient solution [8]

Federated learning (FL) is an emerging paradigm that allows

ML models to be trained across multiple devices or servers while

keeping data localized [26]. Instead of centralizing data, the model

is sent to the edge, closer to the data source. This approach enables

compliance with the aforementioned laws and promotes cooper-

ation between devices and data holders while preserving privacy.

However, sharing models, like in the aggregation phase, raises new

privacy issues [24, 31]. One of the significant problems is model

inversion [16], where an attacker can infer the original data from a

shared model. Suppose a model was overfitted in the first place. In

that case, the model is likely a close approximation of the original

data structure, so reconstruction is relatively easy, especially for

outliers. The gradient leakage attack [33] exposes or leaks sensitive

information from the gradient updates shared between the nodes

and a central server. Secure multi-party computation (MPC) in FL

primarily aims to provide secure aggregation [12]. Specifically, it

prevents a central aggregator (or other participants) from learn-

ing model updates from individual contributors. MPC enables data

merging and computation while keeping the data secret, shared or

encrypted.
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This paper describes and demonstrates a proof-of-concept solu-

tion that uses secret sharing to perform secure FL aggregations over

DNNmodels. As the technical solution, we use SharemindMPC [10],

a framework for privacy-preserving computations, where devel-

opers can efficiently program and test their algorithms without

knowing the underlying cryptographic algorithms in detail.

The rest of this paper is organized as follows. Section 2 discusses

the study background. In Section 3 we discuss related work, and in

Section 4, we draft the problem statement and motivation scenario.

In Section 5, we discuss our methodology and experiment setup.

The experiment results and findings are discussed in Section 6. We

discuss open challenges, future work, and opportunities in Section

7 and conclude in Section 8.

2 BACKGROUND
In this section, we discuss Multi-Party Computation (MPC) and the

associated security threats on the FL aggregation layer, highlighting

the essential challenge of maintaining collaborative model integrity

without compromising privacy.

2.1 Secure multi-party computation
Secure multi-party computation (MPC) computes a function 𝑓 be-

tween a group of parties so that none of the parties gains any other

knowledge about the input except for what can be inferred from

the end result. For example, assume that there is a set of parties

𝑝1, ..., 𝑝𝑛 who want to jointly compute𝑦 = 𝑓 (𝑥1, ..., 𝑥𝑛), where each
𝑝𝑖 knows the corresponding secret share 𝑥𝑖 . In an MPC protocol, 𝑓

is correctly computed so that no party 𝑝𝑖 learns any information

other than its own input 𝑥𝑖 and the result 𝑦.

The MPC parties can be divided into input parties who input

their data, computing parties who carry out the computations, and

result parties who receive the results. One entity can have several

of these roles, e.g., an input party can be one of the computing

parties and also get the results as a result party.

One of the primitives that can be used for MPC is linear secret

sharing. Secret sharing is a cryptographic technique for taking a se-

cret 𝑠 and splitting it into multiple shares, 𝑠1, 𝑠2, . . . , 𝑠𝑛 , distributing

these shares among parties 𝑃𝑖 . For the reconstruction of the secret

𝑠 , the parties must collaborate, each bringing their respective share

into the collective pool. A secret share is determined by means

of a sharing algorithm. In case of linear secret sharing between

𝑛 computing parties, the value 𝑠 is secret-shared in the following

way: the input party 𝑝 chooses 𝑟1, . . . , 𝑟𝑛−1 uniformly from Z𝑞 and

computes 𝑟𝑛 = 𝑠 − 𝑟1 − 𝑑𝑜𝑡𝑠 − 𝑟𝑛−1 mod 𝑞. The input party then

sends exactly one share to each computing party. It is impossible to

restore the original data with 𝑛 − 1 or fewer shares. To reconstruct

the secret, all shares must be combined.

This way, secret sharing allows a group of parties to jointly

compute a function over their inputs while keeping the data private

and only revealing the result. This concept underpins the secure

MPCFL, leveraging the distribution of a secret among multiple

parties to ensure collective security and confidentiality.

2.2 Threats on the FL aggregation layer
The aggregation layer in FL is a critical component where model

updates from various clients are combined to produce a global

model. This layer is susceptible to several threats, requiring secure

strategies to mitigate these threats effectively. These threats include:

DDoS (Distributed Denial of Service: A DDoS attack in the

context of FL could involve overwhelming the central server with a

flood of model updates or other traffic, rendering the server unable

to process legitimate updates from the participating agents. This

can disrupt the aggregation process, preventing the global model

from being updated and potentially causing downtime in the FL

system.

Model Poisoning: An attacker sendsmaliciousmodel updates to

the central server with the intention of corrupting the global model.

These malicious updates can influence the aggregation process,

leading to a compromised global model that behaves unpleasantly.

Model Inference: Model inference attacks aim to extract infor-

mation about the training data by analyzing the model updates. If

the aggregation layer is not secure, attackers could potentially use

the model updates to gain insights into the training data.

Gradient Leakage: Similarly to the model inference attacks,

attackers might be able to infer information about the local data

through the analysis of model gradients.

Model Inversion: Like to the previous two, an attacker uses

access to the model updates to infer details about the underlying

data used for training.

Securing the aggregation layer in FL is crucial to prevent these

various types of attacks that can compromise the integrity of the

global model, breach user privacy, and disrupt the overall aggrega-

tion process.

3 RELATEDWORK
Federated learning [26] is a methodology where model training is

done in separate data nodes, and the resulting models are aggre-

gated at a central node or peer-to-peer. In a centralized setting, the

centralized analysis node chooses a model to be trained and sends

it to data nodes. The data nodes train the model locally and send

the results back. The central analysis node combines the results.

In a decentralized setting, the communication and coordination

between the nodes is more complex but prevents the central node

from becoming a bottleneck or single point of failure. In this work,

we will be looking at centralized federated learning. However, the

solution can easily be adapted to the decentralized environment.

To address the security and privacy issues that arise with sharing

the models for aggregation, secure aggregation can be used [12,

25, 28, 32]. Secure multi-party computation (MPC) is a methodol-

ogy where two or more parties compute a function without seeing

the private input values of the other parties. Secret sharing, gar-

bled circuits, or homomorphic encryption can be used to enable

MPC [15]. MPC has been researched for decades and the technol-

ogy has been used for different real-world applications to alleviate

privacy concerns [4]. Even though MPC versions of any algorithm

can be implemented from the ground up, several programmable

MPC frameworks are available that allow an implementer to focus

on the algorithm rather than the underlying cryptography [18]. In

this regard, both FL andMPC can be seen as privacy-by-design tech-

nologies [6]. This paper implements our proof-of-concept prototype

using the Sharemind MPC platform [10].
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Sharemind MPC [10] is a platform for privacy-preserving data

processing. It uses secret sharing as the secure storage method and

allows computations on the secret shared values without having

to declassify them. The input values are secret shared by input

parties, and the shares are sent to computing parties so that each

gets one share from which they cannot infer information about

the original value. The computing parties all have a copy of the

computation algorithm and use MPC protocols to execute them to

compute secret shared results from secret shared data. The result

shares are sent to the result parties, who declassify them into re-

sult values. In Sharemind MPC, communication between the input,

computing, and result parties is implemented over authenticated

secure channels (TLS). Sharemind MPC provides end-to-end secu-

rity for data processing if a sufficient number of computing parties

follow the protocol. If this requirement is not met, it may result in a

wrong result or breach of privacy. Currently, efficient protocol sets

exist for two and three computing parties. More than three parties

increase the communication complexity, which is the main cause

of the overhead of these systems. To achieve better computational

performance, Sharemind MPC takes advantage of the single instruc-

tion, multiple data (SIMD) paradigm. Multiple instances of the same

operation are carried out at once with amortised performance [29].

Sharemind MPC has been used to preserve privacy in real-world

studies [11] and has been shown to work with statistical machine

learning algorithms [27].

Deep neural networks (DNNs) are a special type of neural net-

work characterized by having multiple layers between input and

output layers. In 2006, Hinton et al. [19] introduced deep belief

nets, demonstrated their capabilities and opened the door to fur-

ther development. In recent years, as seen in the success of large

language models (LLMs) [13], DNNs are changing our lives greatly.

The DNN training process is to optimize their networks’ weights by

minimizing a loss function, typically by stochastic gradient descent

(SDG) or its variants [17].

4 PROBLEM FORMULATION
This paper focuses on how to train models collaboratively across

multiple data sources without revealing individual data points,

models nor model updates. With the benefit of FL, training data

remains local. However, privacy and confidentiality issues may

arise during the model aggregation phase, where local models are

combined to generate a global model. An adversary accessing these

updates can potentially infer information about the local datasets,

which in turn can lead to privacy leaks.

4.1 Scenario: Cross-Departmental Fraud
Detection

In the digital era, the increasing transparency and accountability

in financial transactions of public services have become crucial,

especially in the realm of government subsidies that span areas

like education, housing, and agriculture. The multitude of these

subsidies and the attendant databases maintained by various gov-

ernmental departments, while ensuring data integrity on the one

hand, inadvertently contribute to an isolated approach to fraud

detection on the other. This isolation, dictated by data privacy

concerns, often results in algorithms that, despite being adept at

department-specific fraud patterns, are blind to cross-departmental

patterns that may suggest fraud.

Modern governments comprise many departments, each main-

taining individualized records and deploying isolated fraud de-

tection mechanisms. Though this modular approach is practical

for domain-specific fraud detection, it poses a challenge when ad-

dressing complex fraud scenarios across multiple departments. For

instance, individual subsidy claims across departments may appear

genuine when viewed in isolation. However, a combined, holistic

view might reveal patterns indicative of fraudulent activity.

To address this challenge, the proposed MPCFL architecture

synergizes FL with MPC for collaborative fraud detection. The pro-

posed architecture functions as follows. Each department starts

with training a local fraud detection model on its dataset. Post-local

training, model updates, or gradients for a global model are pro-

duced. Instead of transmitting these raw gradients directly, each

department creates shares of its update using secret sharing. A

secure central server aggregates these shares without accessing

the raw data from any department nor seeing the contents of the

update. The resulting global fraud detection model thus encapsu-

lates knowledge from all departments, enabling it to identify fraud

patterns that might escape department-specific models.

Consider a hypothetical scenario wherein an entity solicits sub-

sidies across multiple sectors quickly. For instance, an individual

might simultaneously apply for educational aid, housing benefits,

and agricultural grants. While individual departments might pro-

cess each of these claims without raising flags, the integrated model

developed via our proposed FL and MPC approach would recognize

the anomalous pattern in these individual solicitations, potentially

identifying a fraud attempt.

The combination of the FL collaborative strengths of FL and the

privacy-preserving nature of MPC offers an innovative solution for

governments. This architecture provides a proactive mechanism

to detect and counteract subsidy frauds, ensuring the optimal and

genuine allocation of resources without compromising the privacy

of departmental data.

In the next sections, we formallymodel the proposed architecture.

We also demonstrate its methodology and provide a proof of concept

experiment to validate the primary contribution of MPCFL.

4.2 MPCFL Formulation
We assume that there are 𝑁 clients in the FL. Each client 𝑘 has a

local dataset 𝐷𝑘 and trains a local DNN model 𝑀 (𝑘 ) using only

local 𝐷𝑘 . For simplicity, let𝑊
(𝑘 )
𝑗

represent the parameters of the

𝑘𝑡ℎ client’s DNN model.

4.2.1 Weighted Average Aggregation.
The global model is updated by taking the weighted average of

the local updates

𝑊 (𝑔𝑙𝑜𝑏𝑎𝑙 ) =
𝑁∑︁
𝑘=1

𝛼𝑘 ×𝑊 (𝑘 ) , (1)

where 𝛼𝑘 is the weight for each client, according to the local dataset

size, determined as follows:

𝛼𝑘 =
|𝐷𝑘 |∑𝑁

𝑘=1
|𝐷𝑘 |

. (2)
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Figure 1: MPCFL Architecture prototype.

4.2.2 Secure aggregation using MPC.
We use additive three-party secret-sharing in our prototype. Let

J𝑥K denote the secret-shared value 𝑥 among all the computing par-

ties. After locally updating a model, each client secret-shares its

local update parameters𝑊 (𝑘 ) and sends J𝑊 (𝑘 )K to each comput-

ing party. The parties jointly compute the global J𝑊 (𝑔𝑙𝑜𝑏𝑎𝑙 )
𝑗

Kin
a privacy-preserving manner. The secure aggregation for J𝑊 K is
written as

J𝑊 (𝑔𝑙𝑜𝑏𝑎𝑙 )K = 𝐴𝑑𝑑𝐹𝑙𝑜𝑎𝑡 (J𝛼1𝑊 (1)K, . . . , J𝛼𝑁𝑊 (𝑁 )K) , (3)

where𝐴𝑑𝑑𝐹𝑙𝑜𝑎𝑡 () represents a floating-point addition as defined in

[20]. The global model parameters are reconstructed only after they

are sent back to each client.While privacy-preserving floating-point

addition has a communication overhead, it has the same precision

as the computation would have in the open. Further communication

optimisation can be done with using fixed-point numbers instead,

however we have decided for the more precise option and showing

that even in this case, the privacy-preserving aggregation is feasible.

5 METHODOLOGY
We utilized Sharemind MPC within the context of federated learn-

ing to ensure secure aggregation, enabling the construction of the

final global ML model through the fusion of locally trained mod-

els across multiple client datasets. To assess the viability of this

privacy-preserving aggregation method and the practicality of our

solution, we have implemented a proof-of-concept prototype. The

architectural diagram of our prototype is illustrated in Figure 1.

Considering the roles (input, computing, result parties) of the

MPC setting, the clients are input parties, sending their updated

models to the computing parties, and result parties, receiving the

global model from the computing parties. The computing parties in

the prototype are three parties who are considered to be indepen-

dent from each other. These parties could be chosen from among

the input parties, but they can also be contracted third parties.

Sharemind MPC enforces access control on each local update, so

no client can access nor modify the other client models.

In our experiments, we engaged three clients (referred to as

contributors or nodes) within the federation network to validate our

approach, with the understanding that this number can be scaled

as needed. Also, we used three benchmark datasets: MNIST [23],

Figure 2: MPCFL workflow diagram.

CIFAR10 [22], and CASA [14]. MNIST and CIFAR10 are used for

an image classification task and CASA for daily human activity

recognition task. Specifically, the MNIST and CIFAR10 datasets,

each consist of 60,000 training samples and 10,000 test samples and

10 classes. The CASA dataset is similarly made up of 10 classes

but with 163,689 and 40,922 training and test samples, respectively

(80:20 split rate). We randomly and equally distribute these among

the three clients.

We set up a control server—a simple web application server

for synchronizing updates between clients. Each client sends a

signal to the control server every time it receives an initial or

global model from the computing parties and each time it uploads

an update to the computing parties. The last uploading client in

each FL round sends a signal to computing parties to perform

aggregation. After the clients have completed the upload phase, they

wait until the last client finishes uploading the model. Subsequently,

all contributions are aggregated by the computing parties to build

the global model, and a copy of this global model is sent to each

client. The control server responsible for orchestrating this process

has been implemented using Flask.

In the following, we define one round as a set of three actions:

(1) a client receives an initial or global model from the computing
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Table 1: Details of the DNN Models used in the prototype

Parameters MNIST CIFAR-10 CASA

Input Shape (28, 28, 1) (32, 32, 3) (1, 36)

Layers 5 Conv + 2 Dense 6 Conv + 2 Dense 1 LSTM (100) + 2 Dense

Neurons in Dense Layers 64, 10 128, 10 32, 10

Activation Functions ReLU ReLU ReLU

Batch Normalization No Yes No

MaxPooling Yes Yes No

Dropout No 0.3 No

Loss Function Categorical Cross-Entropy Categorical Cross-Entropy Categorical Cross-Entropy

Optimizer Adam Adam Adam

Learning Rate 0.001 0.001 0.001

Batch Size 32 32 32

Local Epochs 2 2 2

Aggregation Time* 9.98s ± 0.13s 16.43s ± 0.32s 6.78s ± 0.05s

Upload Time* 4.58s ± 0.31s 10.10s ± 0.54s 3.06s ± 0.49s

Download Time* 4.83s ± 0.21s 5.53s ± 0.27s 4.32s ± 0.17s

*Average time ± 2×SD of 10 repetitions using Sharemind MPC. The unit is seconds.

parties, (2) updates the model using local data, and (3) uploads it to

the computing parties. Each update only takes two epochs. We ran

the model update for two hundred communication rounds.

For simplicity, we implemented weighted average for the ag-

gregation in the prototype. As the data are volume-wise evenly

distributed among clients, it is the same as average for this proof-

of-concept implementation.

The activity diagram of the whole workflow is shown on Figure 2.

The three DNN model architectures we used in the prototype are

described in Table 1 with the dataset used for each. The models are

implemented using the Tensorflow Keras API.

The initial model is created based on the chosen architecture. In

the prototype, the architecture is sent in a text file to Sharemind

MPC at the first round, but it can also be distributed via the control

server. In accordance with the default Keras initializer
1
, Sharemind

MPC adopts the glorot uniform as its initializer for weights. Models

are uploaded from the clients to Sharemind MPC.

5.1 MPCFL algorithm
MPCFL leverages secret sharing to ensure that no single entity

can reconstruct the model updates from individual parties, thus

enhancing privacy. Participating clients train or update their respec-

tive models and produce secret shares of their updates. Computing

parties aggregate these updates using secret sharing protocols and

without declassifying them. Following this aggregation, a consoli-

dated global update is generated and sent back to the FL clients.

Algorithm 1 describes the MPCFL process from the client side.

Each client node first initialises the process by computing its weight

based on its local dataset 𝐷 (line 8), and initialising the model based

on the agreed model architecture (line 9). Next, the client iterates

steps 11-15 for 𝑟 rounds, where 𝑟 is agreed on between the clients

beforehand. The iteration starts with the client training the model

1
https://www.tensorflow.org/api_docs/python/tf/keras/layers/Dense

Algorithm 1 MPCFL Client Node

1: function MPCFLClient(𝐴, 𝐷 , 𝑟 )

2: Input:
3: 𝐴: Model architecture from control server,

4: 𝐷 : local dataset,

5: 𝑟 : number of update rounds.

6: Output:
7: 𝐺 : global aggregated model.

8: 𝛼 ← weight based on 𝐷

9: 𝐺 ← initial model based on 𝐴

10: for 𝑖 ∈ [1, 𝑟 ] do
11: 𝐺 ← Update(𝐺, 𝐷)
12: J𝐺K← Classify(𝐺)
13: Send(𝑐𝑜𝑚𝑝𝑢𝑡𝑖𝑛𝑔𝑝𝑎𝑟𝑡𝑖𝑒𝑠, J𝐺K, 𝛼)
14: Receive(𝑐𝑜𝑚𝑝𝑢𝑡𝑖𝑛𝑔𝑝𝑎𝑟𝑡𝑖𝑒𝑠, J𝐺K)
15: 𝐺 ← Declassify(J𝐺K)
16: end for
17: return 𝐺

18: end function

based on their local data (11). Then the client secret shares the

obtained model using a secret sharing scheme (12), creating as

many shares as there are computing parties. For our prototype, we

use a three party additive secret sharing scheme as described in [10].

Next, the client sends exactly one share of the model to each of

the computing parties (13). The client also sends the weight. If the

weight does not change, it can be done just once instead of during

every update cycle. Now the client waits until the computing parties

have finished and send back the shares of the global model (14).

Having received a share from each computing party, the client

then combines them to obtain a declassified global model 𝐺 (15).

Once 𝑟 rounds have been carried out, the final aggregated model is

returned as the result.
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Algorithm 2 MPCFL Computing Party

1: function MPCFLComputingParty

2: 𝑛 ← number of clients from the control server

3: for 𝑖 ∈ [1, 𝑛] do
4: Receive(𝑐𝑙𝑖𝑒𝑛𝑡𝑖 , J𝑀 (𝑖 )K, 𝛼𝑖 )
5: end for
6: J𝐺K = 𝛼1J𝑀 (1)K + · · · + 𝛼𝑛J𝑀 (𝑁 )K
7: for 𝑖 ∈ [1, 𝑛] do
8: Send(𝑐𝑙𝑖𝑒𝑛𝑡𝑖 , J𝐺K)
9: end for
10: end function

Algorithm 2 describes the MPCFL process from a computing

party’s side. All the computing parties request the number of clients

𝑛 from the control server ( step number 2). Then, each computing

party waits until all the client nodes have sent their model shares

and weights ( step number4). Each computing party only receives

the shares that are meant for them, meaning that the data looks like

randomness and gives them no additional information about the

values. When all the parties have completed the sending, the com-

puting parties obliviously aggregate the model, using floating-point

addition and multiplication from [20] without declassifying the

clients’ models (step number 6). They conclude the round by send-

ing their shares of the global model back to all the client nodes (step

number 8). The computing parties then wait until the clients initiate

the next round by sending the next model shares.

6 RESULTS
In this section, we discuss our experiment results and the paper

main findings.

The experiments were conducted using the Sharemind cluster

and a laptop. The Sharemind cluster consists of three servers, all

of which are hosted by Cybernetica. Each server has 2 CPUs (Intel

X5670 2.93GHz/6.4GT/12M) and 48 GB RAM, respectively, con-

nected via 4x1Gb LAN. While, the laptop is HP OMEN 15 with

AMD(R) Ryzen 7 5800h CPU, NVIDIA GeForce RTX 3070 Mobile

GPU, and 16GB RAM. All client nodes and the control server are

hosted on this laptop.

We validate our approach over three different datasets belonging

to different tasks associated with distinct models as shown in Table

1. The proposed approach was evaluated in terms of communication

and computation cost, model performance (accuracy), the model

prediction agreement with the real value (Cohen’s kappa), F1 and

AUC measures over the client’s local data in federated learning

settings. The last 3 rows of Table 1 contain the computation and

communication times for secure aggregation. Fig.3 shows the per-

formance of a global model for all tasks as bar plots trained using

centralized ML, FL, and FL with Sharemind MPC on the CIFAR10

(Fig.3a), MNIST (Fig.3b) and CASA (Fig.3c) datasets.

The results show that FL achieves comparable performance to

centralized ML, while FL with Sharemind MPC achieves slightly

lower performance. However, it must be noted that FL with Share-

mind MPC provides better privacy protection than a standard FL

solution. One possible explanation for the lower performance of

FL with Sharemind MPC is that it uses fewer local epochs per

communication round. Sharemind MPC is a more computationally

expensive protocol than vanilla FL. However, it is possible to im-

prove the performance of FL with Sharemind MPC by using more

local epochs per communication round.

However, it can be seen that, for a particular dataset as Fig.3b sug-

gests, the results are not only comparable but even slightly better

than the other two. Moreover, Fig.3c demonstrates the exact be-

haviour of the global model as it performed on the CIFER10 dataset.

Each of these figures shows the scores of centralized learning (200

epochs), the average scores of vanilla FL (FL-plain) and FL with

Sharemind MPC (2 epochs locally per communication round and

200 rounds in total). The results show that FL performs similarly to

the traditional centralized approach. However, the proposed algo-

rithm achieves slightly lower performance, but it provides better

privacy protection. This performance is due to FL with Sharemind

MPC encrypting the model updates from the participants before

they are shared with the server, which prevents the server from

learning sensitive information about the participants’ data.

The figure demonstrates that Federated Learning (FL) outper-

forms FL with Sharemind MPC on the MNIST dataset. This obser-

vation is likely due to the higher computational cost associated

with Sharemind MPC compared to standard FL. Nonetheless, it is

important to note that the difference in performance is relatively

small, with FL using Sharemind MPC still achieving an impressive

accuracy of 99.2

This process ensures that the server remains completely blind

to the participants’ data. In contrast, in vanilla FL, the server has

access to unencrypted model updates from the participants, which

could potentially allow it to glean sensitive information about the

participants’ data through analysis of these updates.

These promising results on the MNIST dataset are significant be-

causeMNIST is a widely recognized benchmark dataset for machine

learning tasks. These findings suggest that FL with Sharemind MPC

holds promise for training FL models across various real-world

applications where data privacy is a paramount concern.

Additionally, it is important to highlight the AUC scores observed

in both Fig.3a and Fig.3b for FL with Sharemind MPC. Notably,

unlike other performance metrics, the AUC scores for Sharemind

MPC are higher than those achieved by the other two methods.

However, it is essential to emphasize that, overall, even though

the performance of FL with Sharemind MPC may lag slightly be-

hind the other two methods, this difference is negligible, especially

when considering the significant privacy advantages that secure

aggregation offers.

It is worth acknowledging that the MPC environment inher-

ently introduces a substantial computational overhead. Neverthe-

less, since Sharemind MPC exclusively handles aggregations and

not the actual model training, the process remains efficient and

operates within reasonable time frames, as demonstrated in Table1.

Furthermore, let us delve into the specific scores recorded in

each round, as illustrated in Fig.4 to Fig.7. It is apparent from the

results obtained for the CIFAR10 and CASA datasets that FL with

Sharemind MPC exhibits a slower convergence compared to FL-

plain, but it does not fall behind in terms of performance.

Notably, in Fig.4b and Fig.4c, the AUC scores gradually decrease

with each round for both FL methods. However, this decline oc-

curs slower in FL with Sharemind MPC. While a comprehensive
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Figure 3: Summary of performances on MNIST, CIFAR10, and CASA datasets.

Figure 4: Accuracy scores on MNIST, CIFAR10, and CASA datasets.

Figure 5: KAPPA scores on MNIST, CIFAR10, and CASA datasets.

Figure 6: F1 measure of MNIST, CIFAR10, and CASA datasets.

investigation into why only AUC scores decrease from round to

round, unlike other metrics, remains a potential area for future

research, we propose that overfitting might play a role. If this hy-

pothesis holds, it is plausible that the inaccuracies introduced by
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Figure 7: AUC scores on MNIST, CIFAR10, and CASA datasets.

floating-point rounding errors, as mentioned earlier, contribute to

preventing overfitting.

Particularly, Figures 6b to 6c highlight the accuracy of a federated

learning (FL) model trained on the three datasets. A noteworthy

achievement is that FLwith SharemindMPC can attain performance

comparable to centralized ML on the MNIST dataset while offering

even stronger privacy protection. This breakthrough opens up ex-

citing possibilities for applying FL to a wider array of applications,

especially those where data privacy is of paramount importance.

Another notable strength of this accomplishment is its valida-

tion on the MNIST benchmark dataset. This choice enhances the

generalizability of the results to other datasets and scenarios.

As we look to the future, research efforts should concentrate on

enhancing the performance of FL with Sharemind MPC, exploring

strategies to make it even more efficient and scalable. Moreover,

there is considerable potential for developing new and innovative

applications for this privacy-preserving technology, expanding its

utility across various domains and addressing a broader spectrum

of real-world challenges.

7 DISCUSSION
Implementing an FL and MPC system for secure aggregation poses

several challenges. In this section, we discuss these challenges and

draft future work. We also discuss the opportunities behind such

implementation and the attacks to be addressed by MPCFL.

Scalability concerns: As more clients (departments) partici-

pate, the system must be able to handle an increasing number of

clients, model updates, and secure aggregations without significant

slowdowns or resource constraints. this is particulary important in

decentralized FL and IoT applications [3].

Communication overhead: The exchange of model updates

or gradients, especially in the form of MPC shares, introduces sig-

nificant communication overhead, especially when many clients

are involved or when the models are large.

Computational complexity: MPC, while providing robust pri-

vacy guarantees, can be computationally intensive, particularly

when dealing with complex models or when aggregating updates

from numerous clients.

Trust issues among clients: Some clients might be skeptical

about sharing even encrypted or transformed data, fearing potential

leaks or misuse. Establishing trust and ensuring transparency in the

system is crucial. Utilizing advanced authentication mechanisms

might be inevitable, e.g., blockchain techniques [21].

System integration: Integrating such a system into existing

departmental IT infrastructures without causing disruptions can be

challenging. There might be compatibility issues, legacy systems

to deal with, or even bureaucratic red tape.

Latency: Real-time or near-real-time fraud detection is prefer-

able. However, the combined latency from FL and MPC operations

might impact the timeliness of fraud alerts.

Regulatory and compliance issues: Implementing such a sys-

tem might have legal implications. For instance, certain data might

be protected by laws that prevent its use, even indirectly, outside

its original context.

Addressing these challenges would require a combination of

technological innovations, strategic planning, and collaboration

across participating entities.

7.1 Challenges
Computational overhead: One of the predominant concerns

when combiningMPCwith FL is the added computational overhead.

MPC protocols inherently demand a series of secure multi-party

interactions, ensuring data remains private during computations.

The cumulative computational requirements could be substantial

once integrated into an FL framework, where each participant lo-

cally trains models. This escalation in overhead not only implies

potential delays in the learning process but also raises concerns

about the feasibility of such a combination in applications with

stringent real-time requirements.

Communication costs: Beyond computational complexities,

communication overhead becomes a pivotal challenge. The secure

nature of MPC often mandates the exchange of multiple encrypted

messages among participants. In a federated environment, where

nodes frequently communicate model updates, the sheer volume of

this secure exchange can be magnified. The implication of this is

twofold: firstly, the iterative process of FL could become consider-

ably protracted, making timely convergence challenging. Secondly,

the increased communication demands are prohibitively expensive

or infeasible for nodes operating under bandwidth constraints.

Scalability: With every additional participant, the complexity of

secure computations and aggregations in MPC rises, potentially ex-

ponentially. This escalation in complexity can render the combined

system inefficient and unmanageable when scaled to large networks

of participants. It underscores the need for scalable MPC protocols

that gracefully handle the intricacies of federated environments.
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Table 2: Description of potential attacks to be addressed by MPCFL

Attack Goal Difficulty Impact MPCFL Solution

DDoS Overwhelm the system

with traffic

Easy Making it unavailable to

legitimate clients

MPCFL is a distributed aggregation sys-

tem that can be scaled to multiple parties.

Model

poisoning

Modify updates

maliciously

Easy Causing unpleasant

behaviors in the global

model

MPCFL provides end-to-end security. In

addition, the access control of Sharemind

MPC prevents unauthorised users.

Model

inference

Learn the distribution

of the training data

Medium Limited information

about the training data

Secret sharing prevents the attacker from

learning anything about the individual

updates.

Gradient

leakage

Learn the gradients of

the model parameters

regarding the input data

Medium Information about the

model parameters, which

can be used to improve

the performance of an

attack

Secure aggregation aggregates the clients’

updates without revealing anything nei-

ther to the aggregator nor to an attacker.

This is done using secret sharing proto-

cols that ensure the aggregate update is

computed correctly, even though the in-

dividual updates are kept secret.

Model

inversion

Reconstruct the actual

training data

Difficult Information about the

training data, including

the actual values of the

features

Secret sharing and secure aggregation en-

sure that no single entity can reconstruct

the model updates from individual par-

ties.

7.2 Opportunities
Federated Learning with Sharemind MPC (FL with MPC) is a novel

approach to machine learning that offers significant advantages

over traditional FL aggregation methods in terms of privacy pro-

tection and robustness to malicious attacks. FL with MPC enables

multiple participants to train a shared model without sharing their

data. It is particularly attractive for applications where data privacy

is critical, such as healthcare, finance, Code-Smell Detection [1],

and manufacturing.

One of the critical opportunities of FL with MPC is its ability

to facilitate training ML models on sensitive data without compro-

mising participants’ privacy. This mitigation of privacy is because

FL with MPC can use encryption approaches or secret sharing to

update the participants before they are aggregated at the servers,

preventing the servers from learning any sensitive information

about the participants’ data with minimum impact on performance

[5]. For example, FL with MPC could be used to train ML models

to diagnose diseases, predict patient outcomes, and develop new

treatments in the healthcare sector without compromising patients’

privacy. Similarly, FL with MPC could be used to train ML models

to detect fraud, predict stock market prices, and develop personal-

ized financial advice in the finance sector without compromising

customers’ privacy.

In addition to its enhanced privacy protection capabilities, FL

with MPC is more robust to malicious attacks than traditional FL ag-

gregation methods. In traditional FL aggregation, a malicious server

can exploit the aggregation process to learn about the participants’

data [30]. This approachmakes learning sensitive informationmuch

more difficult for a malicious server. This enhanced robustness to

malicious attacks makes FL with MPC a particularly attractive

choice for applications in sensitive domains such as healthcare and

finance.

Overall, FL with MPC is a promising new approach to machine

learning with a wide range of potential applications, especially in

domains where data privacy is a critical concern. FL with MPC of-

fers advantages over traditional FL aggregation methods regarding

privacy protection and robustness to malicious attacks.

Combining MPC and FL offers an avenue for private and decen-

tralized machine learning. Table 2 summarizes the potential attacks

on an FL model at the aggregation phase. Addressing these chal-

lenges is instrumental in determining the future research trajectory

in this domain and its real-world applicability.

7.3 Future Work
In future research endeavors, a comprehensive analysis will be

orchestrated to delineate the nuances between secret sharing and

homomorphic encryption within multi-party computation (MPC).

This comparison is anticipated to shed light on these paramount

encryption methodologies’ distinctive attributes and potential syn-

ergies in securing data during FL aggregation. Furthermore, to

cultivate a more panoramic view of the application spectrum, the

investigation will be extended to incorporate additional datasets,

namely imbalanced and non-IID. This inclusion aims to substantiate

the robustness and versatility of the proposed model across varied

data realms. Moreover, to hone the precision and efficiency of FL im-

plementations, we envisage exploring alternative aggregation algo-

rithms, transcending the confines of the currently utilized FedAvg.

In tandem, a meticulous tuning of the algorithmic configurations
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will be undertaken, encompassing parameters such as the number

of epochs, local learning rounds, and communication rounds. This

iterative tuning process aims to optimize the convergence rates and

the overall performance of the FL framework, thereby propelling it

towards a more adaptive and resilient paradigm for collaborative

learning environments.

8 CONCLUSION
This research has highlighted the inherent vulnerabilities of the

model aggregation phase in FL settings and provided a solution

by introducing secure aggregation using secure multi-party com-

putation. As we demonstrated, secure aggregation of DNNs in FL

is feasible without sacrificing model accuracy. Both secure multi-

party computation and federated learning stand as quintessential

privacy-preserving techniques, adept at conducting data analysis

without jeopardizing individual data confidentiality. Their integra-

tion promises robust solutions tailored for a broad spectrum of

federated learning applications, thus marking a significant stride to-

ward secure, privacy-centric data analysis and model development.

We advocate using MPC and FL as privacy-by-design techniques

for handling data processing without exposing the underlying data.

In tandem, these methods can provide robust solutions for ML

applications.
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