UNIVERSITY OF TARTU
Faculty of Science and Technology
Institute of Computer Science
Computer Science Curriculum

Karl Hannes Veskus

Privacy-Preserving Data Synthesis Using
Trusted Execution Environments

Master’s Thesis (30 ECTS)

Supervisor(s): Liina Kamm, PhD
Sven Laur, PhD

Tartu 2022

Privacy-preserving data synthesis using trusted execution environ-
ments

Abstract:

Data synthesis is the process of generating new synthetic data from existing data. Often
companies do not have the the in-house competence to synthesize data themselves, and
are willing to outsource the process. However, synthesis requires access to the original
data. Sharing data with a third party can be complex, especially so if it contains sensitive
information or is considered as personal data by regulations such as the GDPR.

The goal of this thesis is to develop a proof-of-concept privacy-preserving data
synthesis service showing that it is possible to use trusted execution environments to
perform data synthesis in a privacy-preserving manner. Such a service would enable
outsourcing the data synthesis process to an untrusted remote server by ensuring that
both the original and synthesized data are fully hidden from the untrusted server host
throughout the lifecycle of the service.

A prototype of the service was developed in the scope of an ongoing proof-of-concept
project. To achieve the required security goals the service prototype uses trusted execution
environment technologies, specifically the Sharemind HI development platform, which is
in turn based on the Intel SGX platform. The developed service shows that synthesizing
data in a privacy-preserving manner is indeed feasible if trusted execution environments
are used. However, future work is needed to optimize the service to allow larger input
and output files, and to support additional data synthesis methods.

Keywords:
Data synthesis, trusted execution environments, privacy-preserving technologies.

CERCS: P170 Computer science, numerical analysis, systems, control.

Privaatsust sailitav andmesiintees usaldatavas taitmiskeskkonnas

Luhikokkuvote:

Andmete siinteesimine on olemasolevate andmete pdhjal uute siinteetiliste andmete
loomine. Paljudel organisatsioonidel ei ole kompetentsi ise andmeid siinteesida ning nad
on valmis seda teenusena ostma. Andmesiintees vajab aga juurdepidisu algandmetele.
Andmete jagamine kolmanda osapoolega v3ib olla raske, eriti kui tegu on isikuandmetega
vOi muul viisil privaatsete andmetega.

Magistritoé eesmirk on luua privaatsust séilitav andmesiinteesi teenuse protiiiip, mis
tOestab, et usaldatavaid tditmiskeskkondi on voimalik kasutada andmesiinteesiks. Teenust,
mis tagab, et nii algsed kui ka siinteesitud andmed on kogu teenuse elutsiikli jooksul
serveri haldaja eest tdielikult peidetud, on vdimalik juurutada ebausaldusviirsetesse
serveritesse, kaasa arvatud pilvteenusetarnija poolt pakutavatesse serveritesse.

Magistritoo kdigus valmis todtav teenuse protoiilip, mis turvanduete tagamiseks
kasutab Sharemind HI arendusplatvormi, mis omakorda pohineb Intel SGX usaldatava
tditmiskeskkonna tehnoloogial. Valminud prototiiiip on tdestuseks, et usaldatavaid
taitmiskeskkondi on tdepoolest voimalik kasutada privaatsust-siilitava andmesiinteesi
teenuse loomiseks. Edasisteks iilesanneteks jddb teenuse joudluse optimeerimine, mis
voimaldaks kasutada suuremaid andmehulki sisendina ning ka siinteesisida rohkem
andmeid, ja teenusele rohkemate siinteesimeetodite lisamine.

Votmesonad:
Andmesiintees, usaldatavad tditmiskeskkonnad, privatsust sdilitavad tehnoloogiad.

CERCS: P170 Arvutiteadus, arvutusmeetodid, siisteemid, juhtimine (automaatjuhtimis-
teooria).

Acknowledgments

The prototype, on which this thesis is based on, is developed in cooperation with Cy-
bernetica A, in the scope of an ongoing proof-of-concept (PoC) project called “Data
protection Aware syNthesis of test databases using secure Computing tEchnology” or
“DANCE". The project is funded by the PoC grant EAG189. The author of this thesis
works in Cybernetica AS as a member of the team responsible for the “DANCE” project.
Writing the thesis was funded by STACC OU.

The author would like to thank the project team in Cybernetica for providing valuable
feedback and support throughout the project, as well as the supervisors, Liina Kamm
and Sven Laur, for their constructive criticism and support in writing the thesis.

https:/icyber.ee/

Contents

1 Introduction 9
2 Preliminaries 11
2.1 Dataprotection 11
2.2 Informationsecurity. 12
2.3 Privacy-enhancing technologies 13
24 Datasynthesis 13
2.4.1 Synthesismethods 14
2.4.2 The Gaussian mixture modelingmethod 16
25 IntePSGX, 17
251 Enclaves 18
2.5.2 Attestation 21
253 Datasealing. 24
254 Security 24
26 SharemindHI 26
2.6.1 Access controls and data ow con guration. 26
2.6.2 Architecture. 28
2.6.3 SecCurity 29
3 Privacy-preserving data synthesis service 31
3.1 Usecasesandmotivation 31
3.2 Designoftheservice e 33
3.2.1 Stakeholdersandroles 33
3.22 Components 33
3.2.3 AccessrightsandtheDFC 36
3.2.4 Servicelifecycle 36
3.25 Userinterface 37
4 Service Architecture 41
4.1 Server-side architecture L Lo oo 41
4.1.1 Datasynthesislibrary. 42
41.2 Modeltaskenclave 42
4.1.3 Synthesistaskenclave 43
4.1.4 Adding support for the Rustlanguage 43
4.2 Client-side architectureo L 45
42.1 CSVprocessinglibrary 45
422 Userinterface 45
423 Publicmetadata. 46

5 Security of the service

6 Service performance and benchmarks
7 Conclusion

References

A BPMN

48

51

55

56

59

Acronyms
API application programming interface
BPMN Business Process Model and Notation

CA certi cation authority
CCPA California Consumer Privacy Act
CPU central processing unit

CSV comma-separated values

DANCE Data protection Aware syNthesis of test databases using secure Computing
tEchnology

DFC data ow con guration le

DRAM dynamic random access memory

EM expectation-maximization algorithm

EPID Enhanced Privacy ID
FFI foreign function interface

GAN generative adversarial network
GDPR General Data Protection Regulation

GMM Gaussian mixture modeling

HIPAA Health Insurance Portability and Accountability Act
IAS Intel Attestation Service

LE Launch Enclave

MAC message authentication code
MEE Memory Encryption Engine

MPC secure multi-party computation

PET privacy-enhancing technology
PoC proof-of-concept

PRM Processor Reserved Memory
QE Quoting Enclave
SGX Software Guard Extentions

TEE trusted execution environment

TTP trusted third party

Ul user interface

1 Introduction

Data synthesis is the process of generating new synthetic data from existing data. Recent
communications by European data protection authorities indicate that synthetic data is
not considered to be personal data in terms of the General Data Protection Regulation
(GDPR) [1], even when generated from personal data. This would allow to use synthetic
data instead of personal data for testing of information systems, accelerating the develop-
ment of many data-driven services including arti cial intelligence and machine learning.
Synthesizing data can be a complex process, which many organisations are willing to
buy as a service as they lack the competence to implement it themselves. While several
commercial solutions for outsourcing data synthesis already exist on the market, all of
them have to process the original data to do so, which needs a lawful basis and trust from
the data owner. The requirements set by data protection regulations for sharing personal
data to third parties, can often be a blocking factor when considering outsourcing. The
guestion arises whether it is possible to use privacy-preserving technologies to perform
data synthesis in a cloud environment in a way that protects the original data from the
service provider. Such a service would enable outsourcing the synthesis process in
compliance with privacy regulations with minimal effort from the data owner.

Trusted execution environments (TEE) are a class of privacy-enhancing technologies
that enable running trusted code in untrusted computation environments. As such they
are the perfect tool to implement a privacy sensitive service where the server host is not
trusted. Furthermore, some implementations of TEEs, like the Intel SGX platform [2],
provide means to hide data from the host machine altogether by encrypting the working
memory and implementing access controls on the processor chip level.

The goal of the thesis is to verify whether it is possible to create a privacy-preserving
data synthesis service by utilizing the security guarantees provided by trusted execution
environments. This is done by developing a working prototype of the service, built
on existing secure computing platforms. The technology used in the service prototype
to ensure privacy of the original data is Sharemind HI. Sharemind HI is a commercial
product offered by Cybernetica AS, that acts as a platform for developing privacy-
preserving data analysis applications. Sharemind Hl is in turn based on the Intel SGX
trusted execution environment platform.

The service prototype, on which this thesis is based on, is developed as a team effort.
The author of this thesis worked as a member of the development team, contributing
in three general elds: developing missing features for the Sharemind HI platform,
designing and implementing the user interface, and implementing the logic, in form of a
web application, that joins all the various parts of the solution into a coherent working
service. Speci cally, the author's contributions were as follows:

» added a feature to Sharemind HI, that enables a user to add public metadata to
uploaded les;

» implemented critical input-output functionality to a prototype feature of Sharemind
HI, which enables writing solution-speci ¢ enclave code in the Rust programming
language;

» implemented the solution-speci ¢ work ow that is run inside the enclaves;
« designed and implemented the web based user interface for the service prototype;

» implemented the functionality behind the user interface that joins various parts of
the service together.

The thesis is separated into 7 sections, including the introduction and conclusion.
Section 2 gives an overview of the preliminary knowledge needed to discuss the results
and the technologies used in the service prototype. Sections 3, 4, and 5 describe the
implementation of the service prototype. Speci cally, Section 3 outlines the overall
motivations and design of the service, Section 4 describes the architecture details, and
Section 5 provides a brief security analysis. The thesis is concluded with benchmark
results of the prototype in Section 6, which prove that synthesizing data in a privacy-
preserving manner is indeed feasible.

10

2 Preliminaries

This section gives an overview of the general background knowledge needed to under-
stand the results of thesis as well as more detailed explanations of the technologies used
in the proof-of-concept (PoC) privacy-preserving data synthesis service developed as
a part of this thesis. Section 2.1 goes over the current legal situation in the privacy
landscape, providing motivations for protecting data at all. While most regions have their
own speci ¢ regulations regarding data protection, the thesis focuses on the European
Union and the General Data Protection Regulation (GDPR). Section 2.2 describes what
it means for data to be protected and secure in a practical sense, and Section 2.3 provides
a brief overview of the various technologies available for protecting data. Data synthesis
and the speci ¢ method used in the service prototype are described in Section 2.4. The
speci ¢ technologies used to implement the service prototype are described in more
detail in Sections 2.5 and 2.6.

The readers of this thesis are expected to have a basic understanding of general
computer science and software development topics. Additionally, the readers will bene t
from having familiarity with cryptography and information security, and can refer to
Introduction to Modern Cryptographlyy Katz and Lindell [3] or any other textbook on
cryptography for further reading.

2.1 Data protection

On the 25th of May 2018, the General Data Protection Regulation (GDPR) [1] started
to apply, bringing a signi cant change to the data protection landscape in the EU. The
GDPR aims to protect the personal data of European citizens by regulating how their data
can be used. While similar regulations also exist elsewhere in the world, for example
the California Consumer Privacy Act (CCPA) [4] and Health Insurance Portability and
Accountability Act (HIPAA) [5] in the US, this thesis will limit its scope to only GDPR.

Personal data is de ned as any information relating to a data subject, that is an
identi ed or identi able natural person. Personal data can be anything from a person’s
medical records to their IP address. GDPR de nes anonymous data as information
which does not relate to an identi ed or identi able natural person, or personal data
that is rendered anonymous in such a manner that the data subject is not or is no longer
identi able. It is important to note that the requirements set by the GDPR only apply to
personal data but not anonymous data [6].

GDPR introduces many principles that have to be followed in order to handle personal
data, including having a lawful basis for processing, and ensuring the integrity and
con dentiality of personal data during processing. These obligations cannot be easily
generalized and have to be considered on a case-by-case basis. The level of controls
needed to fully comply with the regulation depends on many aspects, including the
type of data being processed, the reason for processing, and the method of processing

11

itself [1].

Article 24 of the regulation states: “... the controller shall implement appropriate
technical and organisational measures to ensure and to be able to demonstrate that
processing is performed in accordance with this Regulation.” [1]. Furthermore, Article 25
requires that processing has to implement “data protection by design and by default” [1].
In essence, these and other Articles of the GDPR require that adequate protection
measures be put in place from the design phase to ensure that personal data is suf ciently
protected. Such protection measures may include both technical (e.g. encryption) and
organisational means (e.g. data processing contracts between involved parties). Privacy-
enhancing technologies (PETSs) can also function as protection measures for the purposes
of the GDPR.

Determining whether or not a given dataset contains identi able data, and which
are the appropriate measures to be implemented by design and by default, has been left
open to interpretation by GDPR. Recital 26 of GDPR states: “To determine whether a
natural person is identi able, account should be taken of all the means reasonably likely
to be used, such as singling out, either by the controller or by another person to identify
the natural person directly or indirectly. To ascertain whether means are reasonably
likely to be used to identify the natural person, account should be taken of all objective
factors, such as the costs of and the amount of time required for identi cation, taking into
consideration the available technology at the time of the processing and technological
developments.” Deciding which means are “reasonably likely to be used” has been left
as the responsibility of the data controller, who has to consult and con rm their decision
with the local data protection regulators. Disagreements between data controllers and
regulators on the matter of identi ability and suf cient measures are common, and are
solved by courts on a case-by-case basis.

2.2 Information security

In order to protect data from a would-be attacker, it is important to rst have a formal-
ization of what it means for data to be protected. A general notion of security is often
used to talk about protecting data, however a rigorous de nition is rarely given. Katz and
Lindell [3] split the security de nition into a security guarantee and a threat model. A
security guarantee describes what attacks are prevented by a given system, while a threat
model describes what the attacker is capable of doing.

For example a security guarantee of an encryption scheme could be that the resulting
ciphertext does not leak any information about the original plaintext, that the attacker
does not already have. The threat model of an encryption scheme is usually described
in the form of a plausible attack vector. For example in a ciphertext-only attack the
adversary is only capable of seeing the ciphertext(s) and has to extract information from
it about the corresponding original plaintext(s), whereas in a chosen-ciphertext attack
the adversary can rst decrypt arbitrary ciphertexts of their choosing and has to then

12

extract information from a different ciphertext. Whereas in the rst attack the adversary
must initiate the extraction with no information other than the ciphertext, in the second
attack the adversary can rst study an arbitrary number of plain- and ciphertext pairs
before having to extract any information, giving them signi cantly more information and
making the attack more powerful.

In the more general setting of information systems, it is important to specify what
pieces of data are protected, who are they protected from, and which measures are used to
do so. The threat models are often use-case speci ¢ and come directly from the speci c
data and actors involved in the system, while the security guarantees are chosen and
in uence which measures can be used.

2.3 Privacy-enhancing technologies

Privacy-enhancing technologies (PETSs) are any technological solutions that make the
data less identi able. The solutions can include any combination of anonymization
techniques, encryption schemes, secure computing methods, or data synthesis. The
common goal of PETs is to reduce the processing of personal data to a minimal level,
while still retaining all functionality of a system [7].

The Privacy Preserving Techniques Task Team of the UN considers ve major
PETs in their handbook: secure multi-party computation (MPC), homomorphic encryp-
tion, trusted execution environments (TEES), differential privacy, and zero knowledge
proofs [8]. Each of the listed technologies are suitable for different forms of processing
and offer different security guarantees. For example, while secure multi-party compu-
tation is considered to be information theoretically secure, its potential use-cases are
limited by it requiring multiple non-colluding parties and incurring signi cant commu-
nication overhead and latency. Differential privacy on the other hand deals with output
privacy, and hence cannot be used if the input needs to be private.

Among these ve PETs, TEEs are mentioned to be the most scalable and performant.
Furthermore, implementing a solution based on TEEs requires minimal organizational
measures. The only requirement is having access to specialized hardware, such as Intel
SGX-enabled processors.

2.4 Data synthesis

Data synthesis is the process of generating new realistic looking data, based on real data.
Synthetic data is created from real datasets or some knowledge of the shape and structure
of the real data, using statistical or machine learning methods. The main goal of data
synthesis is for synthetic data to have all the same statistical properties as real data.
From one side, synthetic data does not include any real data and, as such, it cannot be
considered personal data. Hence it is also not subject to the numerous legal frameworks
pertaining to personal data, such as the General Data Protection Regulation (GDPR) [1],

13

the California Consumer Privacy Act (CCPA) [4], or the Health Insurance Portability and
Accountability Act (HIPAA) [5], making sharing and using synthetic data signi cantly
easier than using real data [9]. It is important to note however that synthetic data is not
automatically anonymous simply by the merit of being synthetic data. In order to assert
whether or not a speci ¢ synthetic dataset is considered to be personal data, a thorough
analysis has to be done to con rm whether any single real person is identi able from it.

From the analytics side, the recent work on machine learning and arti cial intelligence
systems have allowed to create increasingly better methods for generating synthetic
data [9, 10], allowing more complex data models to be synthesized as well as increasing
the utility of the synthesized data, meaning it emulates the real world more accurately
and retains more of the underlying connections in the real data. This directly leads to
a trade-off between the utility and privacy of synthetic data. Synthetic data with high
utility is more similar to real data, and hence reveals more about the underlying personal
data. Conversly, in order to best hide the personal data and provide the highest levels of
privacy, the more generalized the synthetic dataset has to become, losing in utility.

In addition to sharing the data with external parties without being subject to privacy
regulations, synthesized data can be used for a number of use-cases, each with their own
requirements for data utility. For example stress-testing a system might not need the data
to have any similarity to actual real world data, there only needs to be a lot of it, hence
one could use synthetic data with low utility. On the other end of the utility spectrum,
synthetic data with very high utility can be used to train machine learning models [10]
where a large amount of data is heeded, but cannot be used due to restricted access, or
lack of resources or time [9].

As the data synthesis methods rely heavily on the structure of the real data, the
common approach is for the data owner to either build the data synthesis models and
generate the synthetic data themselves or pass the real data to a trusted third party (TTP),
who then analyses, cleans, and processes the data to create a synthesis model. The rst
case requires the data owner to have the skillset needed to synthesize data, which severely
limits the number of potential users of the approach. The second case would incur
payments to the TTP for the services, and require a signi cant organisational overhead,
such as contracts between the data owner and the TTP, analysing if the TTP is compliant
with the relevant legal frameworks (e.g., GDPR), and notifying the data subjects of the
new external data processors [9].

2.4.1 Synthesis methods

As for any subject related to data analysis, there are many different approaches that allow
to achieve similar results. Which method of synthesis to use depends on the shape and
the distribution of real data, what level of privacy and/or utility is required of the resulting
synthesized data, and what levels of computational or organizational complexity are
practically achievable. For the simplest use-cases with the need for the lowest data utility,

14

like software testing, simpler models can be used. The most basic method is to generate
the synthesized data randomly based on a few simple rules. When slightly higher utility
is needed, the data points can be sampled from distributions similar to the original data.
This approach already needs analysing the data to determine which distributions best
describe it or using prior knowledge of the eld and subject matter to come up with
rough estimates. For the highest utility requirements the most complex methods need to
be used, from older methods like Gaussian mixture modeling (GMM) [11], to areas of
current research [12] like generative adversarial networks (GANSs) [13].

The goal of the proof-of-concept project is to only synthesize tabular data, and not
image or sound. Initially, both the GMM and GAN methods were implemented for use in
the PoC privacy-preserving data synthesis service, however exploratory tests on tabular
datasets showed that the GMM method resulted in more accurate models than the GAN
method. Furthermore, training the models took signi cantly less time using GMM. As
such, it was decided to shift focus to only implementing the GMM method for the service
prototype.

Since only the GMM method was fully integrated to the service, a brief overview of
the method is provided. For further reading on the topic an interested reader can refer to
the bookFinite Mixture Distributionsby Everitt and Hand [14].

Figure 1. Example of a mixture of four Gaussian distributions tted to two dimensional
data [15].

15

2.4.2 The Gaussian mixture modeling method

Mixture models are a class of models in statistics, that describe data by combining
multiple distributions, each of which estimate some subset of the data, into a single
model. Gaussian mixture modeling (GMM) is a special case of mixture models, that
only combines Gaussian distributions. A graphical representation of a GMM is shown
on Figure 1. The following description of the GMM technique follows the textbook
Numerical Recipeby Presst al.[15].

It is clear that if we have a mixture of distributions describing the original data, gener-
ating synthetic data from the mixture only requires sampling from it. Hence, the problem
becomes nding the distributions, which, when combined, best describe the original
data. This is the classic problem of unsupervised learning and is solved by maximizing
the probability that the original dataset came from the mixture of distributions. The
maximization is commonly done using the expectation-maximization algorithm (EM).

Let there exist a datas¥t in the form of aN M matrix and let the numbé< of
Gaussian distributions used in the model be xed. Fitting the model to the dataset is
formalized by maximizing the likelihood, represented by Equation (1), wbege is
the probability of a giveM -dimensional data point, (a row inX) originating from
the mixture.

W
LX) = p(xn): (1)
X
p(%,) = N (%n;~k; k)P (K) (2
K
exp (% ~)" tn ~K)

®3)

N (%n;~k; &)=

The probabilityp(*,) in Equation (2), consists of the sum over multivariate
Gaussian density functior$ (%,; ~«;) and their corresponding mixture weights
P (k). Each mixture weighP (k) is the fraction of rows from the datasétpresent in
thek-th distributionN (%¢,; ~«; «). The shape of thik-th distributionN (%,; ~k; «).
as shown on Equation (3), is determined by the variableand , where~ is the
mean of the distribution, in the form of a4 -dimensional vector, andy is theM M
covariance matrix for the distribution. These variables are the only ones that can be
changed to maximize the likelihodd as all other variables are xed.

In order to estimate the variableg and |, that best t the model to the data,
the expectation-maximization algorithm (EM) is used. As the name suggests, the EM
algorithm consists of an expectation step or E-step, and a maximization step or M-step.
The E-step consists of calculating the probabiliigs as shown on Equation (4), given
some values ofy, , andP (k). The valuep.« represent the probability that a point

16

xn was sampled from thk'th distribution. These probabilities are used in the M-step, to
calculate the next estimations feg, , andP (k), as shown on Equations (5), (6), and
(7), respectively.

N (%n;~; k)P (K)

Prk = P (%n) (4)

P\ X”
o= Pt ©)

n Mnk
N -~ _—~
K = n Pnk (an < k) (xn k) (6)
n Prk
P 0
— n_ Mnk

P(k) = —a P ™)

Thus the EM algorithm rst needs an initial guess for the valuesof «, andP (k),
and can then run the E-step to rst obtain the probabilipgsand then the M-step
to estimate the new values of, , andP (k). The steps can be repeated until the
likelihood L converges under some set threshold, or until a desired number of repetitions
is reached.

In practice the initial values fory, «, andP (k) can be xed and only the dataset
itself and the number of distributions used in mixture have to be provided by the user
in order to t the model. While the dataset is usually xed, the number of distributions
used can be changed and heavily in uences the accuracy of the model. Using too few
distributions will result in a overly general and inaccurate model, while using too many
will quickly lead to over tting.

Furthermore, it is apparent that GMM method can only handle datasets that are
the shape of a two-dimensional matrix containing only numeric values, and as such
it is important, from an implementation viewpoint, that the dataset does not contain
any non-numeric values, like text elds. This is in general true for most machine
learning methods and can be circumvented with preprocessing the data. Preprocessing
replaces unusable data types, like text elds and null values, with meaningful numeric
values, by using methods like one-hot encoding and imputation. Preprocessing can also
involve transforming the data to improve the performance of the models, mostly through
normalizing and standardizing the data. Which methods to use heavily depends on the
model being trained and the data being used.

2.5 Intel® SGX

Intel's Software Guard Extentions (SGX) [2] is a collection of processor (CPU) instruc-
tions in Intel architectures that allows to create and manage secure containers, called

17

enclaves, in untrusted environments. The SGX instructions can provide protected mem-
ory areas controlled by hardware enforced access policies, isolating them from the rest
of the environment, including the operating system hosting the enclave and any hardware
peripherals.

To provide integrity and con rm that an enclave was correctly deployed, Intel pro-
vides an attestation mechanism. During the creation of an enclave, the trusted hardware
generates a cryptographic report, which includes information about how the enclave was
created, the properties it has, and the system it is running on. A remote party can then
verify this report by using the Intel Attestation Service (IAS) [16].

The enclaves can also store data outside of the protected memory using data sealing.
Data sealing is achieved by encrypting the data inside the enclave such that only that
enclave on the current platform can ever decrypt the data. This is done by deriving a
special encryption key from the immutable properties of the enclave and the underlying
system [16].

All of the information regarding SGX in this section comes from Costan and Devadas'
articleIntel SGX Explainedil7], unless explicitly cited otherwise. The article provides
an excellent and thorough overview of the Intel SGX platform, as well as an extensive
overview of background knowledge on computer architecture and security needed to
understand the details. The reader is heavily encouraged to refer to the article for any
additional details on the topics presented in this section.

2.5.1 Enclaves

The central component of SGX is the enclave. An enclave contains all of the code and
data needed to perform security-sensitive computations. For example an enclave can
contain the code for decrypting a database table, aggregating the table entries based on
some complex relations and then encrypting it again.

Access protection. All code and data of the enclave is kept in the Processor Reserved
Memory (PRM) section of dynamic random access memory (DRAM), which can only be
accessed by the processor. Access to the PRM is restricted by two separate means, one for
protecting against physical attacks and the other against software attacks. Unauthorized
access through physical means, such as directly accessing the DRAM chips, is restricted
by the Memory Encryption Engine (MEE]18] added to SGX-capable processors, which
encrypts the content of the DRAM. Similarly, all communication outside the trusted
processor, such as on the bus wires connecting the processor and DRAM chip, is kept
encrypted. While an attacker can use mechanical means to read the physical bits on the
DRAM chips or in the wires during communication, the encryption makes it impossible

18

for an attacker to interpret any of the acquired data.

Software access to the PRM is restricted by memory controllers integrated to the
CPU. The controllers run memory access checks and forbid all non-enclave software
from accessing the PRM. Hence the enclave can only be accessed through the limited set
of instructions provided by the SGX-enabled CPU.

States. The SGX instruction set provides the means to create, manage, and destroy
the enclaves. There are four major states in which the enclave can exist. non-existing,
uninitialized, initialized, and running. Transitioning between the states happens only
through the SGX instructions, notably tREREATEINIT, EENTEREXITandEREMOVE
instructions. The whole lifecycle of the enclave is illustrated on Figure 2.

During the creation of the enclave with tBEECREATiBStruction, the state moves
from non-existing to uninitialized. The CPU allocates memory in the PRM, sets up
and veri es all the needed background information about the enclave, like the enclave's
size and location in memory, as well as creates a measurement of the enclave used in
attestation. Before initializing the enclave, it is also possible to load code and data from
the untrusted environment into the enclave withEEA&DRNdEEXTENDstructions, the
latter of which also updates the enclave's measurement.

To initialize the enclave witlEINIT, a special pre-made Launch Enclave (LE) has
to rst be used to create an initialization token. The initialization token is used in the
initialization process to derive a launch key and move the enclave to the initialized state.

In essence, the LE mainly exists as a licensing mechanism, as it is provided by
Intel, signed with a special hard-coded Intel key, and checks if the enclave creators
are licenseé’s This mechanism ensures that only the enclaves, which are created by
developers that have been veri ed by Intel, can be initialized, minimizing the risk of
running an enclave, which containing malware.

From the initialized state it is possible for the host to run the enclave code using the
EENTEIiRstruction, moving the enclave to the running state. Similarly, when the enclave
has nished, it will return control to the host using tBE&XITinstruction, moving the
enclave back to the initialized state.

Finally the enclave can be moved from the initialized state back to an non-existing
state with theEREMO\riStruction. This rst makes sure that the enclave's code is not
running and then frees up memory resources, completely destroying the enclave.

Identity. For a user to be sure that it is communicating with or running a specic
enclave, there has to rst exist a mechanism for distinguishing the enclaves. This directly

2In newer processor models, starting from the 3rd Generation Intel Xeon Scalable Processors [19], the
MEE has been replaced by the Total Memory Encryption technology [20].

3With certain newer hardware combinations it is also possible for enclave developers to create and sign
the launch enclave themselves [21].

19

Figure 2. Lifecycle of an SGX enclave.

leads to a requirement of there existing some identifying factor for each enclave. In order
to distinguish between enclaves, perform attestation, and derive cryptographic keys, the
trusted hardware computes a measurement of each enclave's content. As the enclave
is created from some known and speci ¢ series of inputs to the creation instructions
ECREATEADaNdEEXTEN®hich cannot be changed after initializing the enclave, the
measurement of the enclave is de ned to be the 256-bit SHA-2 hash over those inputs.
TheEINIT instruction completes the hashing process and seals the hash, so tt could no
longer be updated by tteECREATEADDor EEXTENDstructions. The completed hash
is set as the measurement of the enclave, and denot&BSICLAVE

It is important to note, however, that the measurements of two instances of the same
enclave will be identical and, as such, a second mechanism is needed to distinguish
between two enclaves that are running the same code on the same machine. For this
the enclaves require a certi cate issued by the enclave's author. The certi cate is of a
speci ¢ format called a Signature Structu®GSTRUYLANd contains metadata about the
enclave, namely a hash of the enclave author's public key, ceIR8IGNERe enclave's
measurement and its version number. The enclave author's private key is used to sign
the SIGSTRUCTo prevent the creation of uncerti ed enclaves, EI&IT instruction
checks the validity of the certi cate and fails to create the enclave when the certi cate is
invalid [16].

Key derivation. The SGX instruction set provides tB&ETKENStruction for deriving
symmetric keys that can be used by the enclaves. The instruction can be con gured to
generate keys of different types, each intended for use in a different process and using
different derivation materials. For example, there exists a key type used for encryption
in the data sealing process and a key type for computing a message authentication code
(MAC) [3] in the attestation process. In general, the derivation material uses secrets

20

embedded in the trusted hardware, and hence the symmetric keys can only be derived by
the trusted SGX-enabled processor chip. Furthermore, the derivation material includes
information about both the untrusted system and the enclave it will be used by, ensuring
that the key is only valid for a speci c enclave on the given system. However, it is also
possible to con gure th&GETKENStruction to use the hash of the enclave author's
public key,MRSIGNERstead of the measurement of the enclMMBENCLAYE a part

of the derivation material. This allows all enclaves on the system, that are created by
the same author, to derive a shared key, allowing, for example, to easily share secrets
between different enclaves running on the same machine.

2.5.2 Attestation

As the main problem that SGX is attempting to solve, is running trusted code on a remote
untrusted host machine, it needs a mechanism for verifying that the code and data have
not been modi ed. The problem is solved by using software attestation, a cryptographic
protocol for proving that an enclave with the speci ed measurements was created and
is running on trusted hardware. Additionally, the attestation process allows the enclave
and the remote trusted party to produce a shared key, which can be later used to create a
secure communication channel between the two, allowing a remote party to transport
secrets to and from the enclave.

The trust chain of the software attestation mechanism is described by Figure 3. The
gure indicates that a veri er only needs to trust Intel in order to trust the attestation
process as a whole, as the whole process relies on Intel's root key, which is embedded in
the trusted hardware.

Intel provides two separate attestation methods, one for performing attestation be-
tween two enclaves running on the same system, and one for performing attestation
between a user and an enclave initialized on a remote untrusted host machine.

Local attestation. To prove its identity to a target enclave, the enclave being attested
uses th&eREPORStruction, which prompts the trusted CPU to generate an attestation
report. The report consists of the enclave's measurement and certi cate-based identity,
a message provided by the enclave, and a message authentication code (MAC) [3] tag
over the contents of the report. The reported MAC tag is computed by the trusted SGX
processor using a special report key. The report key is derived using the measurement of
the target enclave and a secret embedded in the processor chip. The target enclave can
use theEGETKERiYstruction to derive the same key and use it to compute the MAC tag
over the report contents. If the computed MAC tag and the reported MAC tag match, the
target enclave can be sure that the enclave being attested is legitimate and can be trusted.
The report key can not be derived by anyone except the target enclave and the trusted
CPU, as they would not have access to the secret embedded in the processor, ensuring
the correctness of the local attestation process.

21

Figure 3. The trust chain of attestation [17].

Remote attestation. Remote attestation is used to verify to a remote client that the
enclave is running trusted code, and to establish an authenticated communication channel
between the enclave and the client. A few additional components are introduced for the
process.

First a new Intel provided enclave, the Quoting Enclave (QE), is used to verify the
local attestation reports coming from other enclaves, convert them into a quote and
sign it using a special device-speci c key, the Intel Enhanced Privacy ID (EPID) key.
Secondly, the EPID signature over the quote can be veri ed by the Intel Attestation
Servicé(IAS) [16].

EPID is a group signature scheme [16] where each signer, with their own private key,
is assigned into a group based on their processor type [22]. The veri er has a single
corresponding public key for the entire group, providing privacy to the signers, while
still enabling cryptographic signing.

The remote attestation process consists of 7 distinct steps involving the enclave
being attested, the Quoting Enclave (QE), the untrusted application orchestrating the
communication, the Intel Attestation Service (IAS), and the relying party or challenger.
The process is illustrated on Figure 4. The process can also be thought of as a slightly
modi ed sigma protocol [23] between the application as the prover and the challenger

41t is also possible for an enclave developer to verify the quotes themselves by implementing and
deploying their own attestation service [21].

22

Figure 4. Example of the remote attestation process.

as the veri er, where only the commitment step has been changed from a commitment
message to initializing the enclave on SGX-enabled hardware.

1.

The attestation process is initiated by requesting to create an authenticated channel
between the enclave and the challenger. The challenger sends the rst protocol
message, consisting of a challenge and a nonce.

The application, running in the untrusted operating system, requests an attestation
report from the enclave and passes on the challenger's nonce.

. The enclave generates the report, usinggREPORIStruction, and a manifest,

consisting of the user data section from the report and optionally the nonce along
with a public key for the challenger to create the authenticated channel. Both the
report and manifest are returned to the untrusted application.

. The application forwards the report to the QE, which veri es the report using local

attestation, converts it into a quote, and signs it with the EPID key.

. The QE returns the signed quote to the application.

. The application returns the quote from QE and the manifest from the enclave to

the challenger.

. The challenger sends the quote to IAS, who veri es the EPID signature over the

guote and returns the result of the veri cation.

23

Figure 5. Attack surface minimisation [22].

2.5.3 Data sealing

In order to preserve data between multiple lifetimes of a single enclave or to share data
between multiple enclaves on the same system, a data sealing procedure is used. In
essence, data sealing is storing encrypted data on the le system of the untrusted machine.
The key used to encrypt the data before storing depends on who needs to access the data
later, and can be con gured by theGETKEIYstruction. For example, it is possible to

seal data based on the measurement of an enclave, so that only the current and future
versions of that enclave, running on the same machine, can decrypt the data, or based
on the signature of the enclave author, so that all enclaves of the author on the same
platform can decrypt the data.

It is important to note that sealing data using the latter method goes somewhat against
the goal of isolating the enclaves and minimizing the attack surface. If any of the enclaves
that can access the shared data are compromised by a malicious party, all of the shared
data is leaked. However, the compromised enclave is still isolated and will not gain
access to any other data, limiting the damage to only the shared sections.

2.5.4 Security

The strongest security guarantees offered by SGX come from minimizing the attack
surface in an application, as illustrated by Figure 5. When implementing a security
sensitive application without using any PETS, a separate application running on the same
machine may be compromised and give an attacker operating system level access to
the machine, allowing them to attack the sensitive application with ease. In contrast,
isolating any security-sensitive parts of an application into enclaves circumvents the

24

operating system entirely, hence the only possible attacks involve either the processor
chip directly or the boundary points between the enclave and the application.

While securing the boundary points on the application side is the responsibility of
the application developer, everything involving the hardware and the SGX instruction set
is handled by Intel. As the speci cs of Intel's processor chips and the implementation
of SGX instructions are not publicly disclosed, a full comprehensive analysis of all
possible vulnerabilities cannot be done outside of Intel. While signi cant efforts have
been made in reverse engineering the chips and instructions, for example by Costan and
Devadas [17], any security guarantees ultimately still rely on trusting Intel and assuming
there are no backdoors or hidden critical aws [24].

An enclave is fully isolated from other hardware by means of both physical and
cryptographic protections, namely by using the Memory Encryption Engine (MEE),
removing the need to trust any peripherals except for the Intel CPU. Similarly, access
checks done by the CPU forbid unauthorized software access to the enclave, including
access by the operating system and other priviledge software. This isolation is exactly
what enables SGX to shorten the trust chain to just Intel, while normal applications need
to trust all of the hardware and software present in the computer.

Even when assuming that Intel is trustworthy, the reverse engineering done by re-
searchers has revealed several vulnerabilities. Such vulnerabilities are, however, expected
from a system this large and are largely mitigated by continued updates from Intel. While
most of the more serious vulnerabilities have been patched by Intel soon after they have
been discovered, the complexity and lack of public documentation regarding SGX give
reason to suspect other attacks still exist and are not yet mitigated.

The threat model of SGX aims to protect the data inside the enclave from a malicious
host system. Combining the Memory Encryption Engine (MEE), hardware level access
checks, and attestation, the Intel SGX platform manages to provide con dentiality, in-
tegrity, and freshness guarantees for the data inside the enclaves against other software,
like the operating system, running on the host machine. However, while protections
against direct attacks, using either physical or software based approaches, towards the
enclaves are suf cient, the design of SGX is not intended to protect against side-channel
attacks or attacks targeting the processor chip. As such most of the vulnerabilities
that have been found utilize some forms of side-channel attacks. While it is close to
impossible to eliminate all possible side-channel attacks, there are methods to mini-
mize and mitigate such vulnerabilities, like keeping the SGX deployment up to date,
enforcing additional access controls, and following strict secure programming practices.
Furthermore, most vulnerabilities have only been utilized by proof-of-concept attacks
carried out in controlled laboratory settings. As no such attacks have been noted in
practical settings, there is hope that exploiting these vulnerabilities requires very speci c
conditions and specialized equipment, making them unviable in practice. Some examples
of proof-of-concept attacks, which have utilized the side-channel vulnerabilities, are

25

the Nemesis attack [25], which leverages timing side-channels and relies on being able
to externally interrupt the code running in the enclave, and the Plundervolt attack [26],

which leverages voltage based side-channels. A thorough overview of the vulnerabilities

in SGX applications and potential ways to mitigate them is provided in a research report

by Randmets [24].

2.6 Sharemind HI

Sharemind HI is a platform for developing privacy-preserving data analysis applications,
where con dential data is protected throughout its lifecycle in the service. Data is
encrypted by the data owner prior to sending it to the Sharemind HI service and will
remain protected through cryptographic means throughout the analysis. The host of
the service will only ever have access to encrypted data and no means to remove the
protections applied by Sharemind HI. The security guarantees rely on a trusted execution
environment (TEE) technology, that provides secure containers for the con dential parts
of the application, isolating them from the rest of the untrusted environment using trusted
hardware. Sharemind HI uses Iifteboftware Guard Extentions (SGX) as its TEE
technology to implement the privacy-preserving data processing [27].

Sharemind HI combines the hardware-based security guarantees given by SGX
with additional organizational measures and access controls. The goal is to simplify
the implementation and deployment of the solution-speci c logic involving multiple
stakeholders, while retaining the security and privacy guarantees. It achieves this by
abstracting away key management and cryptographic measures, leaving the developer to
implement the business logic and access controls.

Sharemind HI operates as a client-server service, based on tasks running as SGX
enclaves. The client is a user-side application tasked with calling operations on the
server, encrypting data, and performing remote attestation. The server acts as a host
for the SGX-enabled processor and is tasked with managing the authentication and
authorization of users, managing and storing encryption keys of the data in a secure
manner, orchestrating the internal and external data transfers, scheduling the running of
the tasks, and keeping a log of all operations performed on the server [28].

2.6.1 Access controls and data ow con guration.

A solution deployed on Sharemind HI contains multiple interconnected components and
parties with different rights and responsibilities. For computations with con dential data,
there can exist a number of tasks with different inputs and outputs. The storing and
grouping of data with similar access requirements is handled by data topics. The topics
can also be thought of as protection domains. The stakeholders involved in the solution
can be assigned various roles, each with separate responsibilities and access rights. All
rules regarding the tasks, topics, access rights, and stakeholder roles are described in a

26

data ow con guration le (DFC). The DFC contains a list of all task enclaves involved
in the solution along with their measurements, the certi cates of all the stakeholders
along with their roles, and all topics along with a list of users and tasks that are allowed
to input or output data from a topic [28].

There are three main interactive roles for a stakeholder [28].

» The input provider who can upload data into topics.

* The output consumer who can download data from topics.

» The runner who can trigger the task enclave code to be run.
Additionally, there are three roles for providing increased security.

» The auditor who can have access to the audit logs and is responsible for validating
critical code components before deployment, issuing the application ngerprint,
and performing system audits to check if the deployment and operation conform
to the speci cation.

» The coordinator who is responsible for coordinating any activities related to setup
and deployment.

» The enforcer who can approve the DFC and is responsible for checking that the
speci ed DFC holds the security objectives that the parties want to achieve. An
agreement from all the enforcers is required before any data can be collected or
any task enclaves can be run.

Figure 6 illustrates the information ow de ned by a possible DFC. The gure
includes two distinct sequential tasks, a number of input providers, and two output
consumers, one of whom simultaneously has a runner role. The input providers encrypt
their con dential data and upload it to Topic A. The runner can start the analysis by
triggering the code in Task A to run. When run, Task A may download and decrypt any
data uploaded to Topic A, run computations on the decrypted data inside the enclave to
create some output, encrypt the output and upload it to Topic B. Similarly, the runner can
start Task B, which in turn may download and decrypt any data in Topic B and upload its
encrypted output to Topic C. Both consumers can at any point download and decrypt any
data in Topic C. Note that the con dential data is encrypted by the input providers prior
to uploading and is only ever decrypted inside the task enclaves while performing the
analysis. The outputs of the tasks are similarly encrypted inside the enclaves and can
only be decrypted by the intended recipients. This means all data is encrypted while in
transit or at rest, and only usable by the original data owners or inside the SGX enclaves.
As none of the stakeholders can access the data in Topics A and B, they never see the
original con dential data uploaded by the providers, nor the intermediate results output
by Task A.

27

Figure 6. A data ow con guration graph example.

2.6.2 Architecture

Sharemind HI consists of two distinct components, the client and the server. The client
includes application speci c code and a general purpose Sharemind HI client library,
used to interface with the Sharemind HI server, encrypt data, and perform remote
attestation. The server is split into trusted and untrusted components. The untrusted
components contain functionality for coordinating work, network communication, le
system interaction, and creating, running and delivering messages to the enclaves in the
trusted part of the server. As the name implies, the untrusted components do not run
inside SGX and therefore cannot be allowed to access any con dential information [28].
The trusted components are the solution-speci c task enclaves and three management
enclaves: the attestation enclave, the key enclave, and the core enclave. The management
enclaves provide all functionality for secure communication and task execution. They
are split into distinct enclaves in order to isolate the functionality into easily auditable
pieces with the smallest possible attack surface. The attestation enclave is responsible for
remote attestation and setting up secure communication channels between the client and
the other enclaves. The only purpose of the key enclave is to store and manage access to

28

the keys required to use any con dential data. The core enclave handles coordinating
data storage and retrieval, stores and manages the solution state, and creates the audit
log. While the core enclave is in the trusted section of the server, it does not have access
to any con dential data, except for the secure communication channel secrets. The
task enclaves implement any and all solution-speci ¢ code that actually processes the
con dential user data. They acquire input data from the core enclave and the respective
keys from the key enclave [28].

2.6.3 Security

Sharemind HI relies and builds on the security guarantees of SGX, discussed in Sec-
tion 2.5.4. While on a low-level the attack model of Sharemind HI is identical to that
of Intel SGX, it introduces additional technical and organisational measures to reduce
the risk of any high-level attacks caused by incorrect key management, awed access
controls, or mistakes in the programming or deployment of SGX-based applications. A
thorough attack model, listing all considered threats and corresponding control measures,
is provided in the Sharemind HI white paper [27]. The following gives a brief overview

of the information from the white paper.

The security goal of Sharemind HI is that any con dential data uploaded to the
Sharemind HI platform should only be accessed by those stakeholders and task enclaves
that have the necessary permissions. Any other parties, like the server host or malware
present in the system, should not be able to access the data in a unencrypted format. The
security model of Sharemind HI focuses on attacks against con dentiality and integrity.
Attacks against availability are considered to be the responsibility of stakeholders and
out-of-scope for Sharemind HI. An illustration of the security model of Sharemind Hl is
given on Figure 7.

Input data is encrypted by the data owner at their premises using the Sharemind Hi
client. The encrypted data is sent to the Sharemind HI server, where it is stored in a topic,
while the encryption keys are sent to the key enclave using secure authenticated channels.
Similarly, output data is encrypted inside of a task enclave and stored on the server in a
(possibly different) topic. When a stakeholder requests to download the output data, their
authorization to access the data is con rmed, and the key enclave securely transfers the
encryption keys to the authorized party.

Enforcers are required to verify that a task enclave is con gured and deployed as
agreed upon by the stakeholders. Each input provider and output consumer can select a
subset (including the empty or full set) of enforcers they trust. Access control measures
implemented in Sharemind HI ensure that the input providers can only upload data to
and output consumers can download data from tasks which have been approved by their
trusted enforcers. This trust chain ensures that any data uploaded to Sharemind HI is not
made available to undesired task enclaves, as well as that the data is only received from
approved task enclaves.

29

Figure 7. Security model of Sharemind HI [27].

Prior to deployment an auditor is required to validate the enclaves, ensuring they are
secure and privacy-preserving, resulting in a cryptographic proof of the audited code. A
client can, at any point after deployment, compare that proof against any of the deployed
enclaves, ensuring the integrity of the server.

The coordinator has to generate a deployment speci ¢ asymmetric key pair for
each Sharemind HI deployment. The public key certi cate is signed by the Cybernetica
Deployment Root CA for Sharemind HI, binding the coordinator to the key pair. Similarly,
each client who needs to communicate with the Sharemind HI server, generates an
asymmetric key pair, and their public key certi cate is signed with the coordinator's
private key. The coordinator's signed public key certi cate is loaded into the server
during deployment and used to authenticate clients in remote attestation. Analogously,
the Cybernetica Deployment Root CA certi cate is embedded into the server and veri es
the validity of the coordinator's public key certi cate. This ensures that only the parties
explicitly added by the coordinator are allowed to access the deployment, and facilitates
authenticating the stakeholders and enforcing access controls.

Sharemind HI also enforces all available measures provided by SGX to combat
side-channel attacks. While SGX only provides the option to enable the mitigations with
the cost of slower execution speeds, Sharemind HI takes a conservative approach and
enforces using all available mitigatory measures.

30

3 Privacy-preserving data synthesis service

The DANCE project, which this thesis is based on, aims to develop a proof-of-concept
(PoC) privacy-preserving data synthesis service, which enables data owners to outsource
the synthesis process while being in compliance with data protection regulations. Ul-
timately, to fully comply with GDPR, the data controller has to decide, whether or
not the organizational and technical measures offered by the service are suf cient for
their speci c use-case. However the service is designed with the goal to be suitable for
most use-cases, by ensuring that the data is protected even from the service provider. It
achieves this through the use of Sharemind Hl.

At the highest level, the whole process of synthesizing data with the service can be
separated into three steps. First the data owner encrypts their CSV le and uploads it to
the Sharemind HI server. Secondly the task enclaves in the server decrypt the CSV le,
use it to create and train a synthesizer model, and synthesize data based on the trained
model. Lastly the data owner can download and decrypt the nal synthesized data using
the Sharemind HlI client.

3.1 Use cases and motivation

As mentioned in Section 2.4, there are many use-cases for using synthetic data in general,
like stress-testing of systems, data sharing, and training machine learning models. The
main hurdle in generating synthetic data is the need to create a synthesizer model, which
requires signi cant resources and knowledge of the subject matter. While multiple
companies offering commercial solutions for data synthesis already exist, like Statice
Mostly.aP, Hazy/, Replica Analytic®, and Datageh none of them offer data synthesis
where the input data would be hidden from the service provider themselves. The DANCE
project attempts to |l that void by creating a PoC privacy-preserving data synthesis
service.

As an example use-case one can imagine a nancial institution that wishes to create
new machine learning models to combat fraud. If the institution does not have in-
house capabilities to research and develop such models, they need to outsource the
process. However since training, developing, and testing the machine learning models
requires large amounts of relevant data, in this case the nancial data collected by the
institution, it would have to be shared to the outsourced research and development
(R&D) company as well. As nancial data is highly private and subject to the strongest
clauses of data protection, banking secrecy, and con dentiality regulations, sharing it

Shttps://www.statice.ai/
Shttps://mostly.ai/
"https://hazy.com/
8https://www.replica-analytics.com/
%https://datagen.tech/

31

would require additional contracts between the parties, notifying data subjects of external
processing of their private data, analysing compliance to the relevant regulations and
implementing all appropriate technical and organizational measures required by data
protection regulations. The technical and organizational measures required by privacy
regulations can even become too dif cult or expensive to be viable, making the sharing
impossible. The issue would be solved by providing synthetic data to the R&D company,
and only doing minimal ne-tuning of the models in-house. If the nancial institution
does not have the capability to synthesize data in house, which is likely, given they did
not have the capability for building the original models, they would use a commercial
service for it. Similarly, as original data is needed to generate the synthetic data, the
same issues arise as with giving the data straight to the outsourced R&D company.

The PoC privacy-preserving data synthesis service developed during the thesis pro-
vides a solution to the issues outlined above. The service is designed with privacy in
mind, providing strong technical and organizational measures to protect the data of the
user. Once privacy regulators deem trusted execution environment (TEE) to be a ma-
ture enough technology, the service would enable minimizing the legal and operational
overhead that comes with sharing personal data.

The nancial institution can use the service to encrypt and upload their nancial data
to Sharemind HI, where the synthesized data is generated securely inside the protected
SGX enclaves. The synthetic data can then be downloaded and decrypted, and shared to
the R&D company creating the machine learning models.

The example use-case is also highly relevant as nancial institutions have been
looking into using synthetic data to drive innovation in banking as well as to include it
in their arti cial intelligence and machine learning pipelines [29]. Mostly.ai claims that
machine learning models trained using synthetic data compare with models trained using
real data with up to 99% accuracy, and can, in some cases, even provide bettetmodels
The idea of using synthetic data to train better models is further supported by Andrew
Whitet!, who also claims that in a few years time a majority of arti cial intelligence
systems will be trained using synthetic data.

In addition to hypothetical examples, Elering She Estonian Rescue Boatd
and the Information Technology Centre for the Estonian Ministry of Findriwave all
shown interest in the results of the project.

Ohttps://mostly.ai/blog/15-synthetic-data-use-cases-in-banking/

Uhttps://blogs.gartner.com/andrew_white/2021/07/24/by-2024-60-of-the-data-used-
for-the-development-of-ai-and-analytics-projects-will-be-synthetically-generated/

Phttps:/lelering.ee/en

Bhttps:/iwww.rescue.ee/

Yhttps:/iwww.rmit.ee/

32

3.2 Design of the service
3.2.1 Stakeholders and roles

The service includes a number of stakeholders with different roles. As a direct result of
using the Sharemind HI platform, the stakeholders can be described through the roles
they have in the solution. Table 1 illustrates the roles assigned to each stakeholder. The
end-users have all of the interactive roles: they have the input provider role as they are the
data owners that have to encrypt and upload the original data; they have the runner role
as they have to specify when to run the tasks and provide input parameters; they have the
output consumer role to download and decrypt the nal synthetic data. Cybernetica AS is
in the role of the coordinator, as the developer of the service and the tasks. There also has
to exist at least one auditor and one enforcer, who ensure that the service is safe to use for
the end-users and that it complies with any and all speci ed security requirements. The
physical server, where Sharemind Hl is deployed, can either be hosted by Cybernetica
AS, the external auditor, or some new stakeholder (e.g., a cloud service provider) with the
appropriate hardware (a server equipped with an SGX-enabled processor). Itis important
to note that the server host should not have the runner role, as this would facilitate easier
side-channel attacks. A host with the runner role can run a task and rollback the server
state to before running the task, allowing them to easily generate many side-channel
measurements.

Currently every end-user's access rights and roles have to be con gured separately in
the data ow con guration le (DFC). This means that all end-users have to be con gured
in the DFC prior to the launch of the service, as the DFC has to be approved by the
enforcers and additional parties cannot be added later without resetting the service. In
order to facilitate adding many end-users in a scalable way, a new feature has to be
introduced to Sharemind HI. It should be possible to con gure a stakeholder to act
as a certi cation authority (CA) that can issue certi cates to end-users, who will then
automatically have the same rights and roles as the issuing party (henceforth the rootCA
stakeholder).

3.2.2 Components

In addition to the stakeholders, the service also involves multiple technical components
inside the Sharemind HI server, namely data topics and task enclaves. There are three
primary data topics involved in the service:

» anlInputData topic, which stores the preprocessed contents of the CSV les
uploaded by end-users,

Bwhile the external auditors are important to ensure the security of the solution, for the PoC phase
there are no external auditors and the enforcer and auditor roles will be assigned to the end-users and
Cybernetica AS.

33

Stakeholders
Cybernetica AS | End-user | External auditor(s)*®
Server host +
Coordinator +
Enforcer +
Roles Input provider +
Output consumer +
Runner +
Developer +
Auditor +

Table 1. Assignment of roles to stakeholders.

» aModeltopic, which stores the trained synthesizer models, and
» aSynthesizedData topic, which stores the synthesized data.
There are also two auxiliary data topics:

» a Metadata topic, which stores sensitive metadata about the data items in the
primary topics, like lenames, and

» aPreprocessing topic, which stores parameters related to the preprocessing of
user CSV les, like normalization ranges and encodings of any categorical elds
in the original data.

The processing of data is split into two task enclaves:
* aModeltask, which creates and trains a synthesizer model, and
» aSynthesis task, which generates synthetic data.

The service also includes a web based user interface (Ul). The Ul acts as a wrapper
for the Sharemind HI client, displays all relevant metadata about the data items currently
in the topics, and is tasked with preprocessing the CSV les before uploading. From this
list of responsibilities the Ul can be separated into three components:

« the Sharemind Hl client,
 visualization, and

» a CSV processor, which parses the CSV les and preprocesses their contents.

34

Stakeholders:
Name: rootCA
CertificateFile: path/to/rootCA.crt
Name: externalAuditor

CertificateFile: path/to/externalAuditor.

Auditors:
externalAuditor
Enforcers:
externalAuditor
Tasks:
Name: model_task
EnclaveFingerprint:
SignerFingerprint:
Runners:
rootCA
Name: synthesis_task
EnclaveFingerprint:
SignerFingerprint:
Runners:
rootCA

Topics:

Name: InputData
Producers:

rootCA
Consumers:

model task
Name: Model
Producers:

model_task
Consumers:

synthesis_task
Name: SynthesizedData
Producers:

synthesis_task
Consumers:

rootCA
Name: Preprocessing
Producers:

rootCA
Consumers:

rootCA
Name: Metadata
Producers:

rootCA
Consumers:

rootCA

crt

Listing 1. DFC le of the service.

35

3.2.3 Access rights and the DFC

Prior to any data being uploaded or processed, all stakeholders, tasks, topics, and access
rights have to be formalized in the DFC le, as outlined in Section 2.6.1. An example of a
DFC le used in the service can be seen on Listing 1 and is illustrated by a corresponding
data ow con guration graph on Figure 8.

Note that while the end-users are not explicitly listed in the DFC le, the rootCA

stakeholder is. As a result everyone who is issued a certi cate by the rootCA, will have
all the same access rights as the rootCA. The end-users and the rootCA are allowed to
upload data into thénputData topic, download data from th®ynthesizedData topic,
and both upload and download data from Metadata and Preprocessing topics.
They are also allowed to run both tModelandSynthesis tasks. TheModeltask is
only allowed to read data from theputData topic and upload data to tidodeltopic.
Similarly, theSynthesis task is only allowed to read data from tMeodeltopic and
upload data to th&ynthesizedData topic.

The external auditor does not interact with the launched service, and as such, is
not depicted on the graph in Figure 8. However, due to having the enforcer role, they
are allowed to and responsible for approving the DFC before the service is launched.
Additionally, due to having the auditor role, they are allowed to download and decrypt
the audit logs at any point after the service has been launched.

3.2.4 Service lifecycle

The lifecycle of the service can be separated to pre- and post-launch phases. In the
pre-launch phase the stakeholders generate asymmetric key pairs and corresponding
certi cates, the DFC is constructed and approved, and enclaves are initialized. In the
post-launch phase, only the rootCA, end-users, and the server will be involved with the
service. The whole process ow of the deployed service can be separated into 11 distinct
steps as shown on Figure 8.

1. The rootCA stakeholder issues a certi cate to an end-user, giving them access to
the service.

2. The end-user uses the Sharemind Hl client to encrypt and upload their CSV le to
thelnputData topic on the Sharemind HI server.

3. The end-user uses the Sharemind HI client to triggeMbdeltask to run, and
to provide the necessary input arguments to the task (e.g., which CSV le to use,
model speci c parameters, metadata).

4. TheModeltask downloads the speci ed CSV le from tHaputData topic.

5. TheModeltask decrypts the CSV le, and uses it to create and train the synthesizer
model.

36

6. TheModeltask encrypts the trained model and uploads it toMloeleltopic.

7. The end-user uses the Sharemind HI client to triggeSymhesis task to run,
and to provide the necessary input arguments to the task (e.g., which model to use,
how many rows of data to synthesize, metadata).

8. TheSynthesis task downloads the speci ed model from thdeltopic.
9. TheSynthesis task decrypts the model, and uses it to generate synthesized data.

10. TheSynthesis task encrypts the synthesized data and uploads it t8yhéhesizedData
topic.

11. The end-user uses the Sharemind HI client to download and decrypt a synthesized
CSV le from the SynthesizedData topic on the Sharemind HI server.

More detailed Business Process Model and Notation (BPMN) diagrams of uploading
a CSV le, running theModeltask, running theSynthesis task, and downloading
synthetic data, can be found in Appendix A on Figures 15, 16, 17, and 18, respectively.

3.2.5 User interface

For a more streamlined user experience, the service includes a web application that
handles the preprocessing of CSV les, provides a user interface (Ul) to the Sharemind
HI client, and displays the data present in Sharemind HI servers to the user.

The CSV preprocessing consists of converting all categorical text values in the CSV
le to numeric values using label-encoding, standardizing all numeric values column-
wise, and serializing the resulting matrix. By default, standardization uses the minimum
and maximum values of each column. However these ranges are also displayed to the
user, who can modify the ranges to better suit their needs, and the user provided values
are used for standardization instead. The user-provided ranges are also used during
synthesis to ensure no values outside the speci ed range are generated. This Itering
is needed to ensure that, for example, the synthesized data does not include negative
values in the column representing a person's age. While some existing models, like the
truncated mixture models, can handle such limitations natively, the Gaussian mixture
modeling (GMM) included in the service does not. To avoid limiting the selection of
models that could be added to future iterations of the service, the Itering was added
instead of changing the model.

The preprocessing is done entirely inside the end-user's browser, due to security,
performance, and usability considerations. From the security side, parsing text elds in a
side-channel safe manner is dif cult and requires more sophisticated methods instead of
naively parsing the le row-by-row. For example, the length of each row in the CSV le
can already leak a substantial amount of information, if timing attacks are used. From the

37

	Introduction
	Preliminaries
	Data protection
	Information security
	Privacy-enhancing technologies
	Data synthesis
	Synthesis methods
	The Gaussian mixture modeling method

	Intel® SGX
	Enclaves
	Attestation
	Data sealing
	Security

	Sharemind HI
	Access controls and dataflow configuration.
	Architecture
	Security

	Privacy-preserving data synthesis service
	Use cases and motivation
	Design of the service
	Stakeholders and roles
	Components
	Access rights and the dfc
	Service lifecycle
	User interface

	Service Architecture
	Server-side architecture
	Data synthesis library
	Model task enclave
	Synthesis task enclave
	Adding support for the Rust language

	Client-side architecture
	CSV processing library
	User interface
	Public metadata

	Security of the service
	Service performance and benchmarks
	Conclusion
	References
	BPMN

