
cryptography

Article

Implementing Privacy-Preserving Genotype Analysis with
Consideration for Population Stratification

Andre Ostrak 1,2, Jaak Randmets 1, Ville Sokk 1, Sven Laur 3 and Liina Kamm 1,*

����������
�������

Citation: Ostrak, A.; Randmets, J.;

Sokk, V.; Laur, S.; Kamm, L.

Implementing Privacy-Preserving

Genotype Analysis with

Consideration for Population

Stratification. Cryptography 2021, 5, 21.

https://doi.org/10.3390/

cryptography5030021

Academic Editor: Josef Pieprzyk

Received: 29 April 2021

Accepted: 18 August 2021

Published: 20 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Cybernetica AS, 12618 Tallinn, Estonia; andre.ostrak@cyber.ee (A.O.); jaak.randmets@cyber.ee (J.R.);
ville.sokk@cyber.ee (V.S.)

2 Institute of Mathematics and Statistics, University of Tartu, 51009 Tartu, Estonia
3 Institute of Computer Science, University of Tartu, 51009 Tartu, Estonia; sven.laur@ut.ee
* Correspondence: liina.kamm@cyber.ee

Abstract: In bioinformatics, genome-wide association studies (GWAS) are used to detect associations
between single-nucleotide polymorphisms (SNPs) and phenotypic traits such as diseases. Significant
differences in SNP counts between case and control groups can signal association between variants
and phenotypic traits. Most traits are affected by multiple genetic locations. To detect these subtle
associations, bioinformaticians need access to more heterogeneous data. Regulatory restrictions in
cross-border health data exchange have created a surge in research on privacy-preserving solutions,
including secure computing techniques. However, in studies of such scale, one must account
for population stratification, as under- and over-representation of sub-populations can lead to
spurious associations. We improve on the state of the art of privacy-preserving GWAS methods by
showing how to adapt principal component analysis (PCA) with stratification control (EIGENSTRAT),
FastPCA, EMMAX and the genomic control algorithm for secure computing. We implement these
methods using secure computing techniques—secure multi-party computation (MPC) and trusted
execution environments (TEE). Our algorithms are the most complex ones at this scale implemented
with MPC. We present performance benchmarks and a security and feasibility trade-off discussion
for both techniques.

Keywords: privacy-preserving GWAS; secure multi-party computation; privacy-preserving statistics;
trusted execution environments

1. Introduction

Genome-wide association studies (GWAS) split the cohort of individuals into two
or more groups based on a phenotypic trait of interest, e.g., on the level of hemoglobin,
on the existence or non-existence of a disease. These groups are compared to each other
in the framework of case–control studies to find in the DNA sequence single-nucleotide
polymorphisms (SNPs) that are significantly overrepresented in one group. GWAS have
been performed extensively to date, and various concerns have been found. At least two of
these problems—the existence of polygenic phenotypes, and population stratification—can
be alleviated with the use of more heterogenous databases with larger volumes of data.

Polygenic phenotypes are traits that are affected by multiple genetic locations. Only
a small subset of these locations are known, and they explain only a small amount of
variance. To study them further, bioinformaticians need access to more heterogeneous data
in order to detect subtle associations.

Population stratification is most often caused by geographic isolation of subpopula-
tions over several generations [1]. If the case and control groups are compiled carelessly,
genetic differentiation caused by population stratification can confound associations be-
tween genotype and trait. The resulting false positive or negative associations may, in fact,
result from differences in local ancestry and be independent from the phenotypic trait
under investigation [2]. An example of allele frequencies differing because of ancestry

Cryptography 2021, 5, 21. https://doi.org/10.3390/cryptography5030021 https://www.mdpi.com/journal/cryptography

https://www.mdpi.com/journal/cryptography
https://www.mdpi.com
https://doi.org/10.3390/cryptography5030021
https://doi.org/10.3390/cryptography5030021
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/cryptography5030021
https://www.mdpi.com/journal/cryptography
https://www.mdpi.com/article/10.3390/cryptography5030021?type=check_update&version=2

Cryptography 2021, 5, 21 2 of 18

was shown in a case–control study [3]. In this study, a European American cohort was
investigated. They found that a SNP in the lactase gene (LCT) gave a strong statistically
significant association (p < 10−6) with height. Both height and the LCT gene have wide
variations across populations in Europe. This spurious association was reduced when
individuals were rematched on the basis of European ancestry.

While collaboration among biobanks is improving, the construction of datasets that
represent continent-wide or worldwide populations pose significant privacy risks. To alle-
viate these risks, privacy-preserving methods with cryptographic guarantees have been
identified as the potential solution. Moreover, the European Data Protection Board (EDPB)
has acknowledged certain secure computing technologies (split or multi-party processing)
as an effective technical measure for protecting personal data transfers across borders [4].
This comes in light of the recent Court of Justice of the European Union judgment in the
Schrems II case. Furthermore, the European Data Protection Supervisor has noted the
role of using technologies that enable computation over encrypted data in the context of
creating the European Health Data Space [5]. Secure multi-party computation (MPC) is
one such privacy enhancing technique that can provide cryptographic guarantees. Two
organisational models for GWAS-on-MPC were shown already in [6]. A number of imple-
mentations have been proposed since, including [7–13]. Components of GWAS have also
been implemented using fully homomorphic encryption [14,15] and Intel® Software Guard
eXtensions (SGX) trusted execution environments [16–19].

However, even in big heterogenous datasets, population stratification or
over-representation of sub-populations can lead to spurious associations. To counter-
act these effects, bioinformaticians use estimation methods that propose parameters that
represent the ancestry of the cohort. The number of these associated SNPs can greatly
vary based on how different or similar the populations are. Principal component analysis
(PCA) uses eigenvector decomposition to infer population stratification. The results can be
used to visualise genetic relationships between variables alongside reference populations
helping identify population stratification. Alternatively, the results can be used to adjust
the genotypes and phenotypes for stratification as in [20]. Stand-alone PCA for GWAS
using MPC has been demonstrated in [8,10,21]. A survey paper of privacy-preserving
techniques for bioinformatics was published in 2017 [22].

In this paper, we show how the state-of-the-art GWAS methods that account for
population stratification can be made to be privacy-preserving. That is, we present privacy-
preserving versions of the following four algorithms: EIGENSTRAT [20], FastPCA [23],
EMMAX [24] and genomic control [25]. We redesign the existing widely-used algorithms to
use two different privacy enhancing technologies (PETs)—secure multi-party computation
and trusted execution environments. The algorithms can be used on multiple protocol
backends in various security models. We compare the solutions, implement the algorithms
and present benchmark results. For implementation, we use the SHAREMIND MPC [26]
and SHAREMIND HI platforms. SHAREMIND HI uses the Intel® Software Guard eXtensions
(SGX) technology to create trusted execution environments and, thus, can be run securely
in single server setting while SHAREMIND MPC requires a more complex setup.

2. Materials and Methods
2.1. Genome-Wide Association Studies

To conduct genome-wide association studies (GWAS), the cohort of individuals is
usually split into two (or more) groups—cases and controls—based on a phenotypic trait
of interest, e.g., the colour of the eyes. Next, the genotype data of the groups are studied
to detect DNA sequence single-nucleotide polymorphisms (SNPs) that are significantly
overrepresented in one group. Although all four nucleotides (A, C, G, and T) can be located
at a SNP site, usually, only two alleles A and B are considered. The first (A) corresponds to
the reference sequence, and the second (B) represents potential mutations. SNP data are
stored as pairs of chromosomes (AA, AB, BB, and NN if the measurement could not be
completed for some reason) in text format. It is also common to use binary encoding for

Cryptography 2021, 5, 21 3 of 18

SNPs, where zero denotes the dominant nucleotide in the specific DNA location and one
denotes the remaining three alternatives. As the same genetic information is represented
in two chromosomes and common genotyping techniques measure these simultaneously,
the resulting measurement outcome can be encoded as {⊥, 0, 1, 2}, where ⊥ encodes
measurement failures.

In GWAS, genotype data are usually represented as an n×m matrix X with values
{0, 1, 2}, where the rows correspond to individuals and columns to SNP locations. Pheno-
type data are given as a {0, 1} vector y of length n, where 1 denotes the case group (the
existence of the trait(s) in question) and 0 denotes the control group (the lack of the trait(s)
in question). The measurement failures are denoted by the n× m mask matrix M with
values {0, 1} that indicate whether the corresponding SNP is available or not (0 represents
the missing SNP and 1 the available SNP). Table 1 gives an example what this dataset
looks like.

Table 1. Example genotype dataset and phenotype vector for GWAS.

Donor ID SNP1 SNP2 . . . SNPm Phenotype Vector y

D1 0 1 . . . 0 0
D2 1 0 . . . 0 1
.
Dn 2 0 . . . 2 1

2.2. Algorithms for GWAS That Account for Population Stratification

To assess the effect of SNP i on a phenotypic trait in an additive model, the allelic data
of the marker can be presented in a table as described in Table 2. For a perfectly mixed
population, the marker can be tested with the χ2-test. However, population substructure
and inbreeding can lead to an increased homozygosity, which induces extra-binomial
variance, leading to spurious associations. Within a genotype, this increased variance can
be accounted for with the Cochran–Armitage trend test, where each SNP i can be tested for
whether it satisfies the following assumption:

Y2
i =

Ni(Ni(ri1 + 2ri2)− Ri(ni1 + ni2))
2

Ri(Ni − Ri)(Ni(ni1 + 4ni2)− (ni1 + 2ni2)2)
∼ χ2 .

However, the trend test does not take into account the increased allelic variance between
genotypes caused by population substructures and hidden relatedness. We selected four
algorithms, which are used to account for population stratification, and implemented them
using secure computing techniques.

Table 2. Genotype distribution for the Cochran-Armitage trend test.

Group AA AB BB Total

Case r0 r1 r2 R
Control s0 s1 s2 S

Total n0 n1 n2 N

Genomic control. To correct for the effect of population stratification, this algo-
rithm [25] estimates the variance inflation factor, which measures the increase in allelic
variance across individuals within the samples. Genomic control assumes that this factor is
a constant for all markers, and it can therefore be estimated using the Cochran–Armitage
test statistics of all markers. To lower the rate of false positives caused by cryptic related-
ness and population stratification, the test statistics are divided by the computed estimate.
The resulting statistics are approximately distributed χ2 with one degree of freedom under
the null hypothesis.

Cryptography 2021, 5, 21 4 of 18

While powerful, it has its limitations. Mainly, if the markers are not uniformly differen-
tiated across ancestral populations, the estimation of the inflation factor can be too small,
and therefore insufficient, for some markers, leading to a number of false positive associa-
tions. For other markers, the inflation factor can be too large, thereby becoming superfluous.

Principal component analysis. It has been shown that for samples of different sub-
populations, the first principal components of the genotype data describe the differences in
ancestry [20]. Therefore, it is possible to correct for stratification by adjusting the genotype
and phenotype data using the principal components as covariates, as is done in the EIGEN-
STRAT algorithm [20]. For hypothesis testing, a generalisation of the Cochran–Armitage
trend test can be used on the adjusted genotypes and phenotypes. Unlike the genomic con-
trol algorithm, this approach does not adjust all markers uniformly. Therefore, it can better
capture the differences in allele frequencies caused by different ancestrial populations.

The main drawback of principal component analysis is that it is often unclear how
many and which principal components capture the population substructure and what
other top principal components capture in the sample structure. Usually up to 10 principal
components are used to adjust for population stratification.

FastPCA [23] is a variation of principal component analysis. It uses recent advances
in random matrix theory to reduce the computational effort in approximating the first
principal components, which are simply the top eigenvectors of the kinship matrix. We
chose FastPCA because computing eigenvectors in the privacy-preserving environment
is very time consuming, as are all operations that deal with floating-point computations,
and we do not need to compute exact eigenvectors.

EMMAX. An even more elaborate way is to use linear mixed models to correct for
population stratification with each SNP as a fixed effect [24]. The relatedness of individuals
in the sample are captured by the variance components. To assess the effect of the SNP to
the phenotype, we first estimate these variance components, after which we can test the
significance of the fixed effect by using a t-test.

The EMMAX algorithm is computationally more demanding than the previous algo-
rithms. However, it is often statistically more powerful because it is able to better capture
and correct for cryptic relatedness, especially for smaller sample substructures.

2.3. Privacy-Preserving Computation and GWAS
2.3.1. Deployment Models for Privacy-Preserving GWAS

In a typical collaborative genome-wide association study setting, two or more biobanks
or service providers run collaborative analysis on data they have collected from their
donors. Due to regulatory requirements or personal preferences, the processing of donor
data should be minimised so that data leaks can be kept to a minimum. However, donors
may still be willing to participate in research if a privacy-preserving solution is available.

Each biobank holds genotype data and medical diagnoses of a number of individuals.
The analyst wants to run the genome-wide association study on the combined data of the
gene banks. Since a person’s genotype data are sensitive, the banks cannot reveal their
data to each other. The analyst must not be able to determine any information about the
individuals in the study by performing the analysis, and they should only receive the
names of the significant SNPs. For a more detailed analysis of the usage models of MPC in
GWAS, refer to [6].

Either the donors or the biobanks act as the input parties, who provide protected
data for the computation. The biobanks, universities or dedicated service providers act as
computing parties who host and run the secure computing system. The system is used by
researchers in, e.g., universities or pharmaceutical companies who want to study a specific
disease. They are the result parties in the system.

2.3.2. Cryptographic Secure Multi-Party Computation

In secure multi-party computation (MPC), two or more parties compute a function
without seeing any of the private input values of the other parties. Most often secret sharing,

Cryptography 2021, 5, 21 5 of 18

garbled circuits or homomorphic encryption are used to enable MPC [27]. MPC technology
has reached a level of maturity required to enable real-world implementations [28]. Data
processing applications are typically implemented using one of the programmable MPC
frameworks [29].

In this paper, we prototype our implementation using the SHAREMIND MPC plat-
form [26]. SHAREMIND MPC is a distributed platform for privacy-preserving data process-
ing supporting multiple MPC protocol sets, which use secret sharing as the secure storage
method. Each value that needs to be protected is shared by the input parties according to
the secret sharing algorithm. The resulting random shares are distributed between multiple
computing parties.

Each computing party has a copy of the algorithms and runs them using MPC proto-
cols that convert secret-shared inputs into secret-shared outputs, without recovering the
private values on any computing party. Such MPC systems provide end-to-end security
for data processing if a sufficient number of computing parties follow the protocol. If one
or more do not, it may cause the computation to reach the wrong result or even breach
privacy. The particular protocol set determines the exact failure mode. Efficient protocol
sets are available for two and three computing parties, and adding more parties increases
the communication complexity, a common bottleneck in MPC based on secret sharing.

2.3.3. Trusted Execution Environments

A trusted execution environment (TEE) is a secure area of a processor. It ensures the
confidentiality and integrity of the the data that are loaded into this area. It is isolated
from the rest of the processor, and the computations cannot be monitored. In a standard
deployment, data are first sent to the TEE. Next, either computations are run immediately
or data can be sealed and stored outside the TEE (kept on the disk in an encrypted
form). For computing, the data are loaded into the TEE and decrypted there. After the
computations have been completed, results are either encrypted and stored on the disk,
or published. The host will not have access to the encryption keys for the data nor be able
see decrypted data in any other way.

The Intel® Software Guard eXtensions (SGX) has emerged as a popular way to create
trusted execution environments. SGX provides features such as enclaves, attestation and
data sealing to protect data and allow for remote audit of processing and privacy policy
enforcement. In SGX, enclaves are protected memory areas that protect the confidentiality
and integrity of data even if there is malware in the system. Attestation helps the system
prove to external parties that it is running the trusted software and the correct version of
the application. Data sealing (encryption) is used to store data outside the enclave while
protecting its confidentiality and integrity. Only the specific enclave knows the encryption
key and can decrypt the data.

Trusted execution environments do not require distributed storage; thus they can
be used to build a system where there is just a single computing party. However, that
computing party has a different trust model than computing parties in MPC. Notably,
one has to trust the provider of the hardware that is used to create the trusted execution
environments and that it has been implemented correctly. Second, applications of TEEs
need to account for side channel attacks that observe execution time, power usage or the
electromagnetic radiation of the hardware while the privacy-preserving task is running.
These can be used to recover the encrypted data in the enclave. At the same time, TEEs can
perform privacy-preserving operations significantly faster than MPC, and thus the trade-off
between their secure models requires study. See [30] for a recent review of SGX attacks and
their mitigations.

SHAREMIND HI (HI standing for hardware isolation) is a privacy-preserving data
processing platform that uses SGX enclaves, sealing, and attestation to support data
analysis processes between identified participants and provides end-to-end privacy for the
protected data for applications just as SHAREMIND MPC does.

Cryptography 2021, 5, 21 6 of 18

2.3.4. Adapting Algorithms for Secure Computing

The privacy-preserving algorithms that we design in this paper minimise data leakage.
Our design process follows the security goals for privacy-by-design statistical analysis
algorithms as defined by [31] (The authors of [31] also note the importance of query
restrictions that prevent new, possibly insecure, algorithms from being executed on a
secure computing platform before whitelisting. However, this does not affect the design of
algorithms and only affects the choice of the secure computing platform the algorithms
will run on).

1. Cryptographic security. During computation, no computing party learns any private
input or intermediate value computed by the function unless the value is explicitly
published. Private values are also not leaked through changes in the running time
of the algorithm. We achieve this by designing algorithms that process all private
values either by using MPC and TEEs or by making the algorithm running time
as independent of the inputs as possible. This means designing the algorithms as
straight-line programs that have no branching based on private values or where each
branching decision is analysed with regard to what it could leak in the running time.

2. Source privacy. An algorithm is source-private if all its outputs and all intermediate
values do not depend on the order of inputs. The GWAS algorithms in this paper
are designed to avoid leaking information based on the order of donors’ data in the
inputs. The order of SNPs in the inputs will affect the SNPs in the output, but this is
by design as the related metadata are not private data.

3. Output privacy. An algorithm is output-private if the results it declassifies do not
leak the private inputs. The GWAS algorithms in this paper can be used either as
parts of larger processing workflows, and in this case they do not declassify outputs.
However, the results of the algorithms are statistical significances per SNP and contain
no personal data given a sufficient amount of inputs.

The algorithms also need adaptation for performance. In secure multi-party computa-
tion based on secret sharing, servers need to communicate with each other to run the shared
computations. It has been shown that redesigning algorithms with maximum parallelisa-
tion helps use the communication channel more efficiently, reducing the round count and
improving speed. Thus, the algorithms in this paper are adapted to use single-instruction,
multiple-data (SIMD) vector and matrix operations to the maximum reasonable extent.

The algorithms are designed for secure computing frameworks supporting integer,
fixed and floating-point arithmetic. In this paper, we implement the algorithms using the
SHAREMIND MPC and SHAREMIND HI platforms as they support a comparable applica-
tion model on different secure computing technologies. This allows us to compare the
techniques. However, the algorithms would work on any secure computing technique,
including fully homomorphic encryption or zero knowledge.

In the following algorithm representations, we use the notation JxK to denote a value x
that is protected by the selected secure computing system. For example, in an MPC runtime
based on secret sharing, JxK means that x has been secretly shared among multiple parties
so that no party can recover it. For trusted execution environments, JxK means that x is only
processed within the enclave. Similarly, JxK, JXK denote protected data structures (vector x
and matrix X, respectively). For a matrix X and indexes i, j, k, l, we denote by X[i : j, k : l]
the submatrix of X consisting of elements from rows i, . . . , j− 1 and columns k, . . . , l − 1.
A missing index means that we take all the elements up until or starting from an index.

The operator ∗ denotes element-wise multiplication between two matrices or multi-
plication by a scalar and is used to distinguish this operation from matrix multiplication.
The operator/denotes element-wise division by scalar, vector or matrix, as necessary.
The functions rowSums and colSums compute the sum of each row or column of a matrix,
respectively. The output is a vector.

The function reshape takes as input a vector and two integers n and m and reshapes
the vector row-wise into an n×m matrix. The function flatten flattens a matrix row-wise
into a vector. The function choose takes as inputs a Boolean vector JmK and two vectors

Cryptography 2021, 5, 21 7 of 18

JxK JyK of the same type and chooses elements point-wise from either JxK or JyK based
on the values in vector JmK. The operator cut takes as arguments a Boolean vector JmK
and a same size vector JxK of any type and discards the elements point-wise from JxK
if the corresponding value in JmK is false. While the size of the output vector can leak
information, since the size of the output vector is equal to the number of true values in JmK,
in our implementations, we make sure that the function always outputs a vector with a
single value. This guarantees that no information is leaked.

3. Results

In this section, we describe the privacy-preserving versions of the algorithms and give
the benchmark results. We first describe and discuss EIGENSTRAT and FastPCA, and then
we go to EMMAX and finally we describe the genomic control algorithm. The EIGENSTRAT
and EMMAX algorithms use the privacy-preserving GS-PCA algorithm from [8]. GS-PCA
is highly parallelisable and therefore especially suits the secure multi-party setting. Our
privacy-preserving genomic control algorithm uses the privacy-preserving version of
quicksort from [32].

The nature of the algorithm adaptation was twofold: firstly, we made the modifications
that were needed for the algorithm to work in the privacy-preserving setting, and secondly,
we added implementation details for SHAREMIND, the MPC framework we used. To lower
the computing time while maintaining accuracy, our MPC implementations use a mix of
floating-point and fixed-point arithmetic. The conversion was only done in cases where
the accuracy loss was at acceptable levels.

It is important to note that the algorithms can be viewed separately from their im-
plementations, as the algorithms can be implemented for any MPC platform that has
the necessary fixed-point and floating-point arithmetic available. The fixed-point and
floating-point conversions that are discussed in these subsections can be beneficial for
implementations on other platforms as well, and, therefore, we have added these directly
into the algorithm description.

3.1. Privacy-Preserving EIGENSTRAT and FastPCA

Algorithm 1 describes the privacy-preserving version of EIGENSTRAT [20]. As input
it receives the genotype matrix JXK, the corresponding matrix of mask vectors JMK, and the
phenotype vector JyK. It also receives the number of components k and the number of
GS-PCA iterations J. According to [20], k is usually 10 but can also be 1, 2 or 5. In our
benchmark tests, we set k = 2. The GS-PCA algorithm requires the number of iterations
J as an input. Using a public predetermined number of iterations avoids side channel
attacks based on the number of iterations. In our benchmarks, we set J to 15 as this gives
us sufficient precision.

We start by computing the vector JµK of the means of the columns and use this to
normalise the columns. In the MPC implementation, we use floating-point arithmetic
to compute the normalised genotype matrix JZK, and we convert this matrix to fixed-
point values before finding the scaled kinship matrix JKK ← JZKJZKT , which is n − 1
times the covariance matrix. We do not perform the division with n − 1, as this is an
expensive operation, and it does not influence the properties of eigenvalues that we need
for our computations.

Using the privacy-preserving GS-PCA algorithm, we find the vector JλK of the k largest
eigenvalues and the n× k matrix JUK of corresponding eigenvectors of matrix JKK. In this
algorithm, we do not need the vector JλK of eigenvalues, so we simply drop this result. Our
MPC implementation of the GS-PCA algorithm also uses fixed-point arithmetic. To adjust
for stratification, the entries are converted back to floating-point values as this keeps the
accuracy loss to a minimum. Using the eigenvectors from JUK, we iteratively adjust the
genotype matrix and phenotype vector and then compute the trend statistics using the
adjusted values. No values are declassified during the execution.

Cryptography 2021, 5, 21 8 of 18

The biggest issue with this algorithm in the privacy-preserving setting is that finding
JZZTK requires a lot of computational effort. The computation time of the GS-PCA algo-
rithm also increases quadratically as the number of rows in JZK (the size of the sample)
increases. To deal with this, we can instead use FastPCA [23], which makes use of random
matrix theory.

Algorithm 1: Privacy-preserving EIGENSTRAT
Input: Genotype matrix JXK (private), mask matrix JMK (private), phenotype vector JyK (private), number of

components k (public), number of GS-PCA iterations J (public)
Output: Private vector of statistics JstatK for the χ2-test

1 JsumMK← colSums(JMK)
2 JµK← colSums(JXK)/JsumMK
3 JpK← colSums(1 + JXK)/(2 + 2JsumMK)
4 JdivK← sqrt(JpK(1− JpK)
5 JµMatK← JµK // µMat is an n×m matrix, each row is equal to µ.
6 JdivMatK← JdivK // divMat is an n×m matrix, each row is equal to div.
7 JZK← (JXK− JMK ∗ JµMatK)/JdivMatK
8 JKK← JZKJZKT

9 JλK, JUK← GS-PCA(JKK, k, J)
10 JXadjK← JXK
11 JyadjK← JyK
12 for j = 0, . . . , k− 1 do
13 JUjK← JU[j, :]K
14 JU2

j K← JUjK ∗ JUjK
15 JUjMatK← JUjK // UjMat is an n×m matrix, each row is equal to Uj.
16 JU2

j MatK← JU2
j K // U2

j Mat is an n×m matrix, each row is equal to U2
j .

17 JU2
j MK← colSums(JU2

j MatK ∗ JMK)
18 JUjMK← JUjMatK ∗ JMK
19 JγK← colSums(JUjMK ∗ JXadjK)/JU2

j MK
20 JγMatK← JγK // γMat is an n×m matrix, each row is equal to γ
21 JXadjK← JXadjK− JγMatK ∗ JUjMK
22 JγyK← sum(JUjK ∗ JyadjK)
23 JyadjK← JyadjK− JγyK ∗ JUjK
24 end
25 JyadjMatK← JyadjK // yadjMat is an n×m matrix, each row is equal to yadj

26 JsumXyK← colSums(JXadjK ∗ JyadjMatK) ∗ JsumMK
27 JsumXK← colSums(JXadjK)
28 JsumyK← colSums(JyadjMatK)
29 JvarXK← colSums(JXadjK ∗ JXadjK ∗ JMK) ∗ JsumMK− JsumXK ∗ JsumXK
30 JvaryK← colSums(JyadjMatK ∗ JyadjMatK ∗ JMK) ∗ JsumMK− JsumyK ∗ JsumyK
31 return JstatK← (JsumMK− k− 1) ∗ (JsumXyK− JsumXK ∗ JsumyK)2/(JvarXK ∗ JvaryK)

Algorithm 2 describes the privacy-preserving version of the FastPCA randomised
algorithm for finding the top k left singular vectors [23]. As input, it receives the normalised
genotype matrix JZK, the number of components k, the oversampling parameter p and the
number of iterations J. We estimate that J = 12 is enough to ensure accuracy.

The privacy-preserving implementation is fairly straightforward. We use the Marsaglia
polar method to generate the entries for the random matrix JGiK. To speed up the process
of finding JUkK, we used fixed-point not floating-point values. The biggest difference in
fixed and floating-point computation comes from computing JGi(ZZT)JZK. While this
process is faster when done with fixed-point values, it causes accuracy loss in some cases.

Cryptography 2021, 5, 21 9 of 18

It is important to keep in mind that when using fixed-point values, we can get overflows
during the iterative matrix multiplication. To prevent this, we divide the product matrix
JGi(ZZT)iK with a suitable constant after each iterative step.

For QR factorisation and eigendecomposition, we used the Householder QR algorithm
and the symmetric QR algorithm [33], respectively. Having found the k top principal
components, we can use them to adjust our genotype and phenotype vectors like in
EIGENSTRAT. Again, no values are declassified during the execution.

Algorithm 2: Privacy-preserving FastPCA randomised algorithm for top k left singular vectors
Input: Normalised genotype matrix JZK (private), number of components k (public), oversampling parameter p

(public), number of iterations J (public)
Output: Matrix JUkK of k top eigenvectors of ZZT (private)

1 n← shape(JZK)[0] // sample size
2 JGiK← normal(k + p, n) // generating a (k + p)× n matrix whose entries are from the standard Gaussian

distribution, uses the Marsaglia polar method.
3 for i = 0, . . . , J − 1 do
4 JHiK← JGiKJZK
5 JGiK← JHiKJZKT

6 JMK← max(flatten(JGiK))
7 JGiK← JGiK/JMK
8 end
9 JHiK← JGiKJZK

10 JQK← QR(JHiKT) // Householder QR factorisation
11 JTK← JZKJQK
12 JTTK← JTKTJTK
13 JλK, JW̃K← eigendecomposition(JTTK) // λ is the (k + p) vector of eigenvalues and W̃ the (k + p)× (k + p)

matrix of eigenvectors
14 JλinvK← 1/sqrt(Jλ[: k]K)
15 JλinvMatK← JλinvK // λinvMat is (k + p)× k matrix, each row is equal to λinv
16 JTW̃K← JTKJW̃[:, : k]K
17 return JUkK← JTW̃K ∗ JλinvMatK

3.2. Privacy-Preserving EMMAX

Algorithm 3 describes the privacy-preserving version of EMMAX [24]. Although the
algorithm can generally be used for the analysis of quantitative phenotypic traits, we
implemented it with case–control studies in mind. Therefore, as input, the algorithm
takes a similar genotype matrix JXK as EIGENSTRAT, the mask matrix JMK indicating
the missing values, the phenotype vector JyK indicating the inclusion into the case group,
and the number of GS-PCA iterations J.

We use a mix of fixed-point and floating-point arithmetic in our MPC implemen-
tation of the EMMAX algorithm. We start by normalising the columns of JXK. As with
the privacy-preserving EIGENSTRAT, we use floating-point arithmetic to compute the
normalised genotype matrix JZK and convert the entries to fixed-point values to compute
the the covariance matrix JKK← JZKJZTK. We then use the GS-PCA algorithm to find the
eigendecomposition of JKK. The resulting eigenvectors and eignevalues are converted to
floating-point values again. The rest of the computations in the MPC implementation use
floating-point arithmetic. This keeps the accuracy loss to a minimum.

We denote by JξK the vector of eigenvalues and by JUFK the matrix of correspond-
ing eigenvectors, by JλK the vector of n− 1 largest eigenvalues and by JURK the matrix
of corresponding eigenvectors. After finding the vector JηK = JURKTJyK, we create a
101× (n− 1) matrix δMat, where every column has values ranging from 10−5 to 105. Cre-
ating 101× (n− 1) matrices Jη2MatK and JλMatK, where the columns are vectors Jη2K and
JλK, respectively, allows us to compute the value of the restricted log-likelihood function

Cryptography 2021, 5, 21 10 of 18

fR at each δ in parallel. Amongst these, we choose the δ for which fR obtains the greatest
value, roughly approximating the maximum point of the restricted likelihood function. We
improve upon this approximation by using the Newton–Rhapson method to obtain JδmaxK.

Algorithm 3: Privacy-preserving EMMAX
Input: Genotype matrix JXK (private), mask matrix JMK (private), phenotype vector JyK (private), number of

GS-PCA iterations J (public)
Output: Vector t of statistics for the t-test

1 JµK← colSums(JXK)/colSums(JMK)
2 JZK← (JXK− JMK ∗ JµK)/(sqrt(JµK/2(1− JµK/2)))
3 JKK← JZKJZKT

4 JξK, JUFK← GS-PCA(JKK, n, J)
5 JλK← Jξ[: n− 1]K
6 JURK← JUF[:, : n− 1]K
7 JηK← JURKTJyK
8 Jη2K← JηK ∗ JηK
9 Jη2MatK← Jη2K // η2Mat is a 101× (n− 1) matrix, each row is equal to η2

10 JλMatK← JλK // λMat is a 101× (n− 1) matrix, each row is equal to λ

11 δ← (10−5, . . . , 105)
12 δMat← δ // δMat is a 101× (n− 1) matrix, each column is equal to δ
13 JΛpδK← JλMatK+ δMat
14 JfpotK← −(n− 1)ln(colSums(Jη2MatK/JΛpδK))− colSums(ln(JΛpδK))
15 JfpotK← JfpotK+ δ ∗ (max(JfpotK) == JfpotK) // Adds a different positive constant to each maximum value in

fpot to make sure that there is a single largest value in the vector, prevents leakage when using cut to find δpot
16 JδpotK← cut(JδK, max(JfpotK) == JfpotK)
17 JδmaxK← Newton–Rhapson(JδpotK) //Newton–Rhapson algorithm
18 JX1K← JXK
19 JdiagK← 1/(JξK+ JδmaxK)
20 JdiagMatK← JdiagK // diagMat is a square matrix with diag at the diagonal
21 JXHK← JX1KJUFKJdiagMatKJUFKT

22 JdiagXHXK = rowSums(JXHK ∗ JX1K)
23 JXHX[:, 0]K← JdiagXHX[0]K
24 JXHX[:, 3]K← JdiagXHX[1 :]K
25 JXHX[:, 1]K← rowSums(JXHK)
26 JXHX[:, 2]K← JXHX[:, 1]K
27 JdetK← JXHX[:, 0]K ∗ JXHX[:, 3]K− JXHX[:, 1]K ∗ JXHX[:, 2]K
28 JiXHX[:, 0]K← JXHX[:, 3]K/JdetK
29 JiXHX[:, 3]K← JXHX[:, 0]K/JdetK
30 JiXHX[:, 1]K← −JXHX[:, 1]K/JdetK
31 JiXHX[:, 2]K← JiXHX[:, 1]K
32 JyMatK← JyK // yMat is an m× n matrix, each row is equal to y
33 JXHyK← rowSums(JXHK ∗ JyMatK)
34 JβK← JiXHX[:, 2]K ∗ JXHy[0]K+ JiXHX[:, 3]K ∗ JXHy[1 :]K
35 JyMat2K← JyK // yMat2 is an n× n matrix, each row is equal to y
36 JyUFK← rowSums(JyMat2K ∗ JUFK)
37 JyHyK← sum(JyUFK ∗ JdiagK ∗ JyUFK)
38 JR1K← (JiXHX[:, 0]K ∗ JXHy[0]K+ JiXHX[:, 2]K ∗ JXHy[1 :]K) ∗ JXHy[0]K
39 JR2K← JβK ∗ JXHy[1 :]K
40 return JtK← JβK/sqrt(JiXHX[:, 3]K ∗ (JyHyK− (JR1K+ JR2K)))

In order to estimate the linear coefficient JβkK of SNP k for every k = 1, . . . , m, we need
to compute (JXkKJHKJXkKT)−1JXkKJHKJyK for each k, where

Cryptography 2021, 5, 21 11 of 18

JHK = JUFK diag((JξK+ JδmaxK)−1)JUFKT

is an n× n matrix and

JXkK =
(

1 . . . 1
JX1kK . . . JXnkK

)
.

Instead of computing each of these values one at a time, we define the following
(m + 1)× n matrix

JX1K =

1 . . . 1

JX11K . . . JXn1K
...

. . .
...

JX1mK . . . JXnmK

,

and we compute
JHK = JUFK diag((JξK+ JδmaxK)−1)JUFKT

and
JXHK = JX1KJHK .

Note that the first and (i + 1)th rows of matrix JXHK are equal to the rows of the 2× n
matrix JXkKJHK. We continue by computing the entries of the m× 4 matrix JXHXK. This
matrix contains the entries of each matrix JXkKJHKJXkKT , more precisely

JXkKJHKJXkKT =

(
JXHX[k, 0]K JXHX[k, 1]K
JXHX[k, 2]K JXHX[k, 3]K

)
.

As finding the inverse of a 2× 2 matrix is easy, we can now create an m× 4 matrix
JiXHXK, which contains the entries of (JXkKJHKJXkKT)−1 in the kth row. Let JyMatK be
an (m + 1) × n matrix for which each row is equal to vector JyK. Next, we find the
vector JXHyK, where the first and (i + 1)th entries are equal to the entries of the vector
JXkKJHKJyKT . The estimate of JβkK can now be computed as

JβkK = JiXHX[k, 2]K ∗ JXHy[0]K+ JiXHX[k, 3]K ∗ JXHy[k + 1]K .

We compute all these estimates in parallel. To find the vector of t-statistics,
JtK = (Jβ1K

Js1K
, . . . , JβmK

JsmK), we compute the value JyHyK = JyKJHKJyKT and the values

(JXkKJHKJyK)T(JXkKJHKJXkKT)−1JXkKJHKJyK ,

and use them to find JskK for all k = 1, . . . , m.

3.3. Genomic Control

Algorithm 4 describes the privacy-preserving version of the genomic control algo-
rithm [25]. As input it receives the genotype matrix JXK and the phenotype vector JyK.
For this privacy-preserving algorithm, we need to manipulate the shape of the data to
achieve better performance. As comparison is rather expensive and we would have to
perform a significant number of comparisons to count the number of different combina-
tions {AA, AB, BB}, we will convert the data into the following format: the columns of the
matrix JXK indicate individuals and for each SNP we have three rows (for AA, AB and BB),
where the value is 1 for the corresponding observation and the values for the other two
rows are 0. For the missing SNP values, all three rows are marked as 0.

We would like to compute the entries in Table 2 for each SNP in parallel as parallel
operations are optimal in the privacy-preserving setting. For this, we will find the sum
of the columns corresponding to the case and control group separately. This gives us six
vectors JriK, JsiK, i ∈ {0, 1, 2}. From these we can compute

Cryptography 2021, 5, 21 12 of 18

JRK = Jr0K+ Jr1K+ Jr2K ,

JSK = Js0K+ Js1K+ Js2K ,

JNK = JRK+ JSK ,

Jn1K = Jr1K+ Js1K ,

Jn2K = Jr2K+ Js2K .

With these vectors we can now compute the Cochran–Armitage trend statistics for all
SNPs in parallel. We then find the estimate of the variance inflation factor and divide the
trend statistics with them, giving us the necessary χ2 statistics for each SNP. As previously,
no values are declassified during the execution of the algorithm.

Algorithm 4: Privacy-preserving genomic control
Input: Genotype matrix JXK (private), phenotype vector JyK (private)
Output: Vector of statistics for the χ2-test stat

1 n, m← shape(JXK)
2 nSNP← n/3
3 JrK← 0
4 JsK← 0
5 for i = 0, . . . , m− 1 do
6 JrK = JrK+ Jy[i]K ∗ JX[:, i]K
7 JsK = JsK+ (1− Jy[i]K) ∗ JX[:, i]K
8 end
9 JrMatK← reshape(JrK, nSNP, 3)

10 JsMatK← reshape(JsK, nSNP, 3)
11 Jr0K, Jr1K, Jr2K← JrMatK // ri is the ith column of rMat
12 Js0K, Js1K, Js2K← JsMatK // si is the ith column of sMat
13 JRK← Jr0K+ Jr1K+ Jr2K
14 JSK← Js0K+ Js1K+ Js2K
15 Jn1K← Jr1K+ Js1K
16 Jn2K← Jr2K+ Js2K
17 JNK← JRK+ JSK
18 JnumK← JNK ∗ (JNK ∗ (Jr1K+ 2Jr2K)− JRK ∗ (Jn1K+ 2Jn2K))2

19 JdenK← JRK ∗ (JNK− JRK) ∗ (JNK ∗ (Jn1K+ 4Jn2K)− (Jn1K+ 2Jn2K)2)
20 JmK← JdenK! = 0
21 JdenK← choose(JmK, JdenK, 1) // If denominator is equal to 0 replace it with 1
22 JcaK← JnumK/JdenK
23 Jca_sortedK← quicksort(JcaK)
24 JλK← max(Jca_sorted[nSNP/2]K/0.455, 1)
25 return stat← JcaK/JλK

3.4. Performance Measurements

All of the algorithms running on SHAREMIND MPC are implemented in the SecreC
programming language [34,35]. The trusted execution environment versions are imple-
mented in C/C++ and require the SHAREMIND HI runtime. The source code for each is
available for download as additional material. The data that we used to run and mea-
sure our implementation were taken from the NCBI Gene Expression Omnibus (GEO)
(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE44974, accessed on 19 Au-
gust 2021). It is available for download. However, the contents of the dataset do not affect
the performance results as the running times of the privacy-preserving algorithms are
data-independent by design; otherwise this would leak information about the dataset.

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE44974

Cryptography 2021, 5, 21 13 of 18

As discussed in Section 2.3, secure multi-party computation introduces a level of
complexity to already complex algorithms. In addition to designing privacy-preserving
versions of frequently used GWAS algorithms, we also show that they are implementable
and run on a volume of data that would be used for realistic genome-wide association stud-
ies. We implemented our algorithms using the privacy-preserving computation platform
SHAREMIND. For MPC, we used the three-party protocol suite in the passive adversary
model [36]. For HI, we used the Intel Software Guard Extensions (SGX).

First we present the performance results of the MPC solution, then the TEE solution,
and finally we compare the two approaches. The performance of the MPC algorithms
was benchmarked using three servers with Intel Xeon E5-2640 processors, 128 GB of
memory and dedicated 10 Gb/s connections. In the benchmark tables, we show running
times for the different subtasks of the algorithms, thus giving a better overview of where
optimisation can be attempted.

Table 3 presents benchmark results for our privacy-preserving EIGENSTRAT algo-
rithm. Table preparation includes the time needed for reading the table and normalising it.
Stratification control includes the time needed for finding the kinship matrix, subtracting
the genotype and phenotype principal components. We looked at the running times for
1500, 2000, 5000 and 20,000 SNPs for 217 donors, and then also increased the number of
donors to look at 2000 SNPs for 434 and 868 donors. The size of the case and control groups
does not influence running times.

Table 3. Benchmark results for privacy-preserving EIGENSTRAT.

Subtask 1500 SNPs 2000 SNPs 5000 SNPs 20,000 SNPs 2000 SNPs 2000 SNPs
217 Donors 217 Donors 217 Donors 217 Donors 434 Donors 868 Donors

Table preparation 67.4 s 85.4 s 218.4 s 865.1 s 161.6 s 347.0 s
GS-PCA 182.8 s 187.9 s 183.3 s 704.8 s 685.8 s 2606.0 s

Stratification control 1365.9 s 1849.5 s 4520.2 s 18,684.3 s 6214.4 s 22,112.0 s
Test statistics 136.2 s 174.5 s 436.6 s 1681.7 s 344.2 s 675.4 s

Total 1752.4 s 2297.2 s 5358.4 s 21,413.2 s 7406.0 s 25,740.4 s
(29.2 min) (38.3 min) (89.3 min) (5.95 h) (2.06 h) (7.15 h)

For our privacy-preserving EIGENSTRAT, the computation of the kinship matrix
proved to be the biggest computational overhead, scaling linearly with respect to the
number of SNPs and quadratically with respect to the size of the sample in our data table.
The GS-PCA algorithm, used for finding the top eigenvectors of the kinship matrix, also
scales quadratically with respect to the size of the sample. This is because the kinship
matrix is an n × n matrix, where n is the number of people in our sample. As such,
the running time of the GS-PCA algorithm does not depend on the number of SNPs. Other
computational steps scale linearly with respect to the dimensions of the input matrix.

Table 4 presents benchmark results for our privacy-preserving FastPCA randomised
algorithm. Table preparation includes the time needed for reading the table and normal-
ising it. Stratification control includes the time needed for subtracting the genotype and
phenotype principal components. Similarly to EIGENSTRAT, we looked at the running
times for 1500, 2000, 5000, and 20,000 SNPs for 217 donors, and then also increased the
number of donors to look at 2000 SNPs for 434 and 868 donors. The size of the case and
control groups does not influence running times.

The main benefit of FastPCA is that it does not require computing the kinship matrix,
and, therefore, it scales linearly with respect to both the number of SNPs and the sample
size. In addition, eigendecomposition is only applied to a small (k + p)× (k + p) matrix,
which offers clear speed-ups with respect to the GS-PCA approach.

Cryptography 2021, 5, 21 14 of 18

Table 4. Benchmark results for privacy-preserving FastPCA.

Subtask 1500 SNPs 2000 SNPs 5000 SNPs 20,000 SNPs 2000 SNPs 2000 SNPs
217 Donors 217 Donors 217 Donors 217 Donors 434 Donors 868 Donors

Table preparation 75.7 s 102.1 s 247.9 s 1000.8 s 198.1 s 393.9 s
PCA using random 2482.0 s 3290.9 s 7920.7 s 31,355.6 s 6194.8 s 11,900.2 s

matrix theory
Stratification control 216.3 s 293.7 s 707.3 s 2800.8 s 564.9 s 1139.3 s

Test statistics 159.1 s 204.9 s 505.6 s 1998.5 s 407.9 s 815.6 s

Total 2933.0 s 3891.5 s 9381.5 s 37,155.7 s 7365.7 s 14,249.0 s
(48.9 min) (64.9 min) (2.61 h) (10.32 h) (2.04 h) (3.96 h)

Table 5 presents benchmark results for our privacy-preserving EMMAX algorithm. Ta-
ble preparation includes the time needed for reading the table and normalising it. The max-
imum likelihood times include everything in Algorithm 3 after the call to GS-PCA and
before computing the test statistics. Most of the time in this group is spent on comput-
ing JXHXK. As the privacy-preserving EMMAX algorithm is significantly slower than
the privacy-preserving PCA algorithm, we looked at the running times for 1000, 5000
and 20,000 SNPs for 217 donors and then also looked at 1000 SNPs for 100 and 434 donors.
As can be seen from Table 5, the running time for 1000 SNPs and 434 donors is already
more than 36 h, and we did not test the algorithm any further. The size of the case and
control groups does not influence running times.

Table 5. Benchmark results for privacy-preserving EMMAX.

Subtask 1000 SNPs 5000 SNPs 20,000 SNPs 1000 SNPs 1000 SNPs
217 Donors 217 Donors 217 Donors 100 Donors 434 Donors

Table preparation 44.7 s 239.3 s 891.0 s 24.7 s 89.8 s
Kinship matrix 700.0 s 3420.2 s 13,988.5 s 173.3 s 2844.0 s

GS-PCA 14,241.6 s 14,209.2 s 14,239.3 s 1912.8 s 104,067.3 s
Maximum likelihood 4934.3 s 21,381.8 s 81,961.9 s 1147.5 s 23,185.7 s

Test statistics 0.4 s 1.7 s 7.6 s 0.4 s 0.4 s

Total 19,920.9 s 39,252.5 s 111,088.3 s 3258.7 s 130,187.1 s
(5.53 h) (10.90 h) (30.86 h) (54.3 min) (36.2 h)

Similarly to EIGENSTRAT, our EMMAX implementation computes the kinship matrix,
which scales linearly with respect to the number of SNPs and quadratically with respect to
the size of the sample. We then use the GS-PCA algorithm to compute the eigenvectors and
eigenvalues of the kinship matrix. However, for EMMAX, we need the entire eigendecom-
postion instead of a few eigenvectors. This means that the process takes significantly longer
compared to the privacy-preserving PCA. It is clear that as the size of the genotype matrix
grows, the computation of the JXHXK matrix quickly overshadows the computational effort
of the rest of the algorithm.

Table 6 presents benchmark results for our privacy-preserving genomic control algo-
rithm. We performed these computations for the usual 5000 SNPs and 217 donors but then
went on to test with far larger datasets than the PCA experiments. Here, most of the
running time is spent on table preparation, which includes table reading and computing
the genotype distribution table for the Cochran–Armitage tests. Note that due to the way
data are managed in this algorithm, 300,000 SNPs will take up 900,000 rows in the dataset.

Benchmark details for the HI versions of PCA and EMMAX are given in Table 7.
Unlike the MPC benchmarks, these results are given in milliseconds. The SHAREMIND HI
tests were run on a PC with i7-7700 CPU and 16 GB RAM.

Cryptography 2021, 5, 21 15 of 18

Table 6. Benchmark results for privacy-preserving genomic control.

Subtask 5000 SNPs 300,000 SNPs 300,000 SNPs 300,000 SNPs
217 Donors 217 Donors 434 Donors 661 Donors

Table preparation 33.8 s 1912.3 s 3619.5 s 5451.1 s
Cochran–Armitage test 0.3 s 24.1 s 23.5 s 23.8 s

Stratification control 0.9 s 83.3 s 83.4 s 83.6 s

Total 34.9 s 2019.7 s 3726.4 s 5558.5 s
(0.6 min) (33.7 min) (62.1 min) (92.6 min)

Table 7. Benchmark results for the HI implementations of EIGENSTRAT and EMMAX.

Subtask
EIGENSTRAT EMMAX

2000 SNPs 5000 SNPs 20,000 SNPs 2000 SNPs 1000 SNPs 5000 SNPs
217 Donors 217 Donors 217 Donors 868 Donors 217 Donors 217 Donors

Table preparation 101 ms 253 ms 1600 ms 272 ms 28 ms 215 ms
Kinship matrix 219 ms 606 ms 2642 ms 3552 ms 111 ms 609 ms

GS-PCA 46 ms 53 ms 69 ms 735 ms 4202 ms 4220 ms
Stratification control/ 443 ms 1337 ms 15675 ms 2782 ms
Maximum likelihood 26 ms 25 ms

Test statistics 74 ms 175 ms 2489 ms 442 ms 409 ms 2076 ms

Total 883 ms 2424 ms 22475 ms 7783 ms 4776 ms 7145 ms

With the genomic control algorithm for SHAREMIND HI, the running time of
15,112 milliseconds for 300,000 SNPs and 200 donors was mostly spent on reading in-
put data (1 ms of the total running time was spent on other computations). For comparison,
we performed the experiments on the same data structures as for MPC. As discussed, this
involves having three rows for each SNP. As reading data is an expensive operation in HI
but comparing strings is not, the HI version can be optimised for real-world data encodings.
After the data was read, the computations themselves took altogether one millisecond.
Therefore, we did not run these tests for fewer SNPs.

Table 8 presents the comparison of benchmark results for the SHAREMIND MPC and
HI implementations of privacy-preserving GWAS algorithms with stratification control.
As expected, the algorithms ran nearly instantaneously on SHAREMIND HI. The table also
gives the running times if HI was 100 times slower, an artificial estimate for if we were to
take more special measures to avoid side-channel attacks. For genomic control, this would
still be around 20 s for reading input data, because the computation times themselves
would still not exceed seconds.

Table 8. Comparison of the SHAREMIND MPC and HI implementations of privacy-preserving GWAS algorithms with
stratification control.

Experiment Data Size MPC HI If HI Was 100 Times Slower

EIGENSTRAT 5000 SNPs 5358.4 s 2.42 s 242 s
200 donors (89.3 min)

EMMAX 5000 SNPs 87,400 s 7.14 s 714 s
200 donors (24.3 h)

Genomic control 300,000 SNPs 2096.5 s 15.11 s ∼20 s
200 donors (35 min) (reading input data) (reading input data)

Cryptography 2021, 5, 21 16 of 18

4. Discussion

Feasibility. We showed how to adapt complex stratification control algorithms for
genome-wide association studies to secure computing. We especially demonstrate the
most complex PCA algorithms implemented in the literature on large datasets. In addition,
we adapted the algorithms to trusted execution environments, showcasing how the side-
channel security of the proposed algorithms can benefit both MPC and TEEs.

Security. Both secure multi-party computation and trusted execution environments
can offer cryptographic security; however, both solutions have their advantages and
drawbacks. For MPC, it requires the service providers to set up at least two servers.
More complex algorithms might not be implementable or might not finish execution
in this environment. The computations that do finish introduce a major computation
and communication overhead. However, when the input party trusts their data to the
computing parties, they do not need to trust one single party but can trust that the parties
do not collaborate. Moreover, to be certain, an input party can become a computing party
and thus gain more confidence.

The trusted execution environment does not require such a complicated setup and
collaboration from different parties. There is only one server and everyone can import their
data in encrypted format. In addition, the environment does not introduce a significant
computational or communication overhead. However, the input parties must trust the
trusted execution environment provider (Intel). If something in the enclave fails, if a critical
vulnerability is discovered, all data could be compromised. Designers of TEE-based data
analysis must create a data lifecycle that reduces these risks.

Performance. It is clear that in the MPC setting, the running times of EMMAX
are not feasible for real-world use for larger data volumes. It is a complex iterative
algorithm that includes a lot of floating-point matrix multiplications. We fear that further
optimisations would not yield a significant speed-up. However, genomic control shows
that it is feasible to also carry out privacy-preserving GWAS with stratification control using
MPC. The privacy-preserving EIGENSTRAT remains on the border of feasibility. However,
for all four algorithms, we show that the computations can be run and be completed.

For the solution based on the Intel Software Guard Extensions (SGX), it is clear that
the computations are efficient and run in similar time to the algorithms that do not use
secure computing. However, even if side channel attack mitigations make the computation
100 times slower, it will outperform MPC, according to our experiments. Thus, further
comparison of the security properties of real-world deployments of these technologies will
be needed.

Author Contributions: Conceptualisation, methodology: A.O. and S.L.; MPC algorithms, MPC im-
plementation, MPC benchmarking, writing—original draft: A.O.; HI algorithms, HI implementation:
V.S.; HI implementation, HI benchmarking: J.R.; validation, writing—original draft, writing—review
and editing, project administration, supervision: L.K. All authors have read and agreed to the
published version of the manuscript.

Funding: This work has been supported by the EU H2020-SU-ICT-03-2018 Project No. 830929
CyberSec4Europe (http://cybersec4europe.eu, accessed on 19 August 2021). This research has
also been supported by the European Regional Development Fund through the Estonian Centre of
Excellence in ICT Research (EXCITE), and by the Estonian Research Council through grants PRG49
and PRG920.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data that we used to run and measure our implementation were
taken from the NCBI Gene Expression Omnibus (GEO) (https://www.ncbi.nlm.nih.gov/geo/query/
acc.cgi?acc=GSE44974, accessed on 19 August 2021). It is available for download. However, the
contents of the dataset do not affect the performance results as the running times of the privacy-
preserving algorithms are data-independent by design. Therefore, any other dataset (real or synthetic)
can be used to reproduce the benchmark results in this paper.

http://cybersec4europe.eu
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE44974
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE44974

Cryptography 2021, 5, 21 17 of 18

Acknowledgments: The authors wish to thank Dan Bogdanov for their support and suggestions
for this paper, and Armin Daniel Kisand for their insights on trusted execution environments and
Intel SGX.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript,
or in the decision to publish the results.

References
1. Hartl, D.L.; Clark, A.G. Principles of Population Genetics, 4th ed.; Sinauer Associates: Sunderland, MA, USA, 2006.
2. Hellwege, J.N.; Keaton, J.M.; Giri, A.; Gao, X.; Velez Edwards, D.R.; Edwards, T.L. Population Stratification in Genetic Association

Studies. Curr. Protoc. Hum. Genet. 2017, 95, 1.22.1–1.22.23. [CrossRef]
3. Campbell, C.D.; Ogburn, E.L.; Lunetta, K.L.; Lyon, H.N.; Freedman, M.L.; Groop, L.C.; Altshuler, D.; Ardlie, K.G.; Hirschhorn,

J.N. Demonstrating stratification in a European American population. Nat. Genet. 2005, 37, 868. [CrossRef]
4. European Data Protection Board. Recommendations 01/2020 on Measures that Supplement Transfer Tools to Ensure Compliance

with the EU Level of Protection of Personal Data. 2020. Available online: https://edpb.europa.eu/our-work-tools/public-
consultations-art-704/2020/recommendations-012020-measures-supplement-transfer_en (accessed on 19 August 2021).

5. European Data Protection Supervisor. Preliminary Opinion 8/2020 on the European Health Data Space. 2020. Available on-
line: https://edps.europa.eu/data-protection/our-work/publications/opinions/preliminary-opinion-82020-european-health-
data-space_en (accessed on 19 August 2021).

6. Kamm, L.; Bogdanov, D.; Laur, S.; Vilo, J. A new way to protect privacy in large-scale genome-wide association studies.
Bioinformatics 2013, 29, 886–893. [CrossRef] [PubMed]

7. Constable, S.D.; Tang, Y.; Wang, S.; Jiang, X.; Chapin, S. Privacy-preserving GWAS analysis on federated genomic datasets. BMC
Med. Inform. Decis. Mak. 2015, 15, S2. [CrossRef] [PubMed]

8. Bogdanov, D.; Kamm, L.; Laur, S.; Sokk, V. Implementation and Evaluation of an Algorithm for Cryptographically Private
Principal Component Analysis on Genomic Data. IEEE/ACM Trans. Comput. Biol. Bioinform. 2018, 15, 1427–1432. [CrossRef]
[PubMed]

9. Bonte, C.; Makri, E.; Ardeshirdavani, A.; Simm, J.; Moreau, Y.; Vercauteren, F. Towards practical privacy-preserving genome-wide
association study. BMC Bioinform. 2018, 19, 537. [CrossRef]

10. Cho, H.; Wu, D.J.; Berger, B. Secure genome-wide association analysis using multiparty computation. Nat. Biotechnol. 2018,
36, 547–551. [CrossRef]

11. Tkachenko, O.; Weinert, C.; Schneider, T.; Hamacher, K. Large-Scale Privacy-Preserving Statistical Computations for Distributed
Genome-Wide Association Studies. In Proceedings of the 2018 on Asia Conference on Computer and Communications Security
(ASIACCS’18), Incheon, Korea, 4–8 June 2018; ACM: New York, NY, USA, 2018; pp. 221–235.

12. Bellafqira, R.; Ludwig, T.E.; Niyitegeka, D.; Génin, E.; Coatrieux, G. Privacy-Preserving Genome-Wide Association Study for Rare
Mutations—A Secure FrameWork for Externalized Statistical Analysis. IEEE Access 2020, 8, 112515–112529. [CrossRef]

13. Poddar, R.; Kalra, S.; Yanai, A.; Deng, R.; Popa, R.A.; Hellerstein, J.M. Senate: A Maliciously-Secure MPC Platform for Collabo-
rative Analytics. In Proceedings of the 30th USENIX Security Symposium (USENIX Security 21), Online, 11–13 August 2021;
USENIX Association: Vancouver, BC, Canada, 2021.

14. Zhang, Y.; Dai, W.; Jiang, X.; Xiong, H.; Wang, S. FORESEE: Fully Outsourced secuRe gEnome Study basEd on homomorphic
Encryption. BMC Med. Inform. Decis. Mak. 2015, 15, S5. [CrossRef]

15. Wang, S.; Zhang, Y.; Dai, W.; Lauter, K.E.; Kim, M.; Tang, Y.; Xiong, H.; Jiang, X. HEALER: homomorphic computation of ExAct
Logistic rEgRession for secure rare disease variants analysis in GWAS. Bioinformatics 2016, 32, 211–218. [CrossRef]

16. Chen, F.; Yang, H.; Kim, J.; Ohno-Machado, L.; Ding, S.; Jiang, X.; Wang, S.; Fox, D.; Lauter, K.; Lu, Y.; et al. PRINCESS: Privacy-
protecting Rare disease International Network Collaboration via Encryption through Software guard extensionS. Bioinformatics
2016, 33, 871–878. [CrossRef]

17. Asvadishirehjini, A.; Kantarcioglu, M.; Malin, B. A Framework for Privacy-Preserving Genomic Data Analysis Using Trusted
Execution Environments. In Proceedings of the 2020 Second IEEE International Conference on Trust, Privacy and Security in
Intelligent Systems and Applications (TPS-ISA), Atlanta, GA, USA, 28–31 October 2020; pp. 138–147.

18. Kockan, C.; Zhu, K.; Dokmai, N.; Karpov, N.; Kulekci, M.O.; Woodruff, D.P.; Sahinalp, S.C. Sketching algorithms for genomic
data analysis and querying in a secure enclave. Nat. Methods 2020, 17, 295–301. [CrossRef] [PubMed]

19. Pascoal, T.; Decouchant, J.; Boutet, A.; Veríssimo, P. DyPS: Dynamic, Private and Secure GWAS. In Proceedings of the Privacy
Enhancing Technologies (PoPETS), Online, 12–16 July 2021; Volume 2, pp. 214–234.

20. Price, A.L.; Patterson, N.J.; Plenge, R.M.; Weinblatt, M.E.; Shadick, N.A.; Reich, D. Principal Components Analysis Corrects for
Stratification in Genome-Wide Association Studies. Nat. Genet. 2006, 38, 904–909. [CrossRef]

21. Simmons, S.; Sahinalp, C.; Berger, B. Enabling Privacy-Preserving GWASs in Heterogeneous Human Populations. Cell Syst. 2016,
3, 54–61. [CrossRef]

22. Mittos, A.; Malin, B.; Cristofaro, E.D. Systematizing Genomic Privacy Research—A Critical Analysis. arXiv 2017,
arXiv:abs/1712.02193.

http://doi.org/10.1002/cphg.48
http://dx.doi.org/10.1038/ng1607
https://edpb.europa.eu/our-work-tools/public-consultations-art-704/2020/recommendations-012020-measures-supplement-transfer_en
https://edpb.europa.eu/our-work-tools/public-consultations-art-704/2020/recommendations-012020-measures-supplement-transfer_en
https://edps.europa.eu/data-protection/our-work/publications/opinions/preliminary-opinion-82020-european-health-data-space_en
https://edps.europa.eu/data-protection/our-work/publications/opinions/preliminary-opinion-82020-european-health-data-space_en
http://dx.doi.org/10.1093/bioinformatics/btt066
http://www.ncbi.nlm.nih.gov/pubmed/23413435
http://dx.doi.org/10.1186/1472-6947-15-S5-S2
http://www.ncbi.nlm.nih.gov/pubmed/26733045
http://dx.doi.org/10.1109/TCBB.2018.2858818
http://www.ncbi.nlm.nih.gov/pubmed/30040659
http://dx.doi.org/10.1186/s12859-018-2541-3
http://dx.doi.org/10.1038/nbt.4108
http://dx.doi.org/10.1109/ACCESS.2020.3002966
http://dx.doi.org/10.1186/1472-6947-15-S5-S5
http://dx.doi.org/10.1093/bioinformatics/btv563
http://dx.doi.org/10.1093/bioinformatics/btw758
http://dx.doi.org/10.1038/s41592-020-0761-8
http://www.ncbi.nlm.nih.gov/pubmed/32132732
http://dx.doi.org/10.1038/ng1847
http://dx.doi.org/10.1016/j.cels.2016.04.013

Cryptography 2021, 5, 21 18 of 18

23. Galinsky, K.J.; Bhatia, G.; Loh, P.R.; Georgiev, S.; Mukherjee, S.; Patterson, N.J.; Price, A.L. Fast Principal-Component Analysis
Reveals Convergent Evolution of ADH1B in Europe and East Asia. Am. J. Hum. Genet. 2016, 98, 456–472. [CrossRef] [PubMed]

24. Kang, H.M.; Sul, J.H.; Service, S.K.; Zaitlen, N.A.; Kong, S.Y.; Freimer, N.B.; Sabatti, C.; Eskin, E. Variance component model to
account for sample structure in genome-wide association studies. Nat. Genet. 2010, 42, 348–354. [CrossRef]

25. Devlin, B.; Roeder, K. Genomic Control for Association Studies. Biometrics 1999, 55, 997–1004. [CrossRef] [PubMed]
26. Bogdanov, D. Sharemind: Programmable Secure Computations with Practical Applications. Ph.D. Thesis, University of Tartu,

Tartu, Estonia, 2013.
27. Cramer, R.; Damgård, I.; Nielsen, J. Secure Multiparty Computation and Secret Sharing; Cambridge University Press: New York, NY,

USA, 2015.
28. Archer, D.W.; Bogdanov, D.; Lindell, Y.; Kamm, L.; Nielsen, K.; Pagter, J.I.; Smart, N.P.; Wright, R.N. From Keys to Databases—

Real-World Applications of Secure Multi-Party Computation. Comput. J. 2018, 61, 1749–1771. [CrossRef]
29. Hastings, M.; Hemenway, B.; Noble, D.; Zdancewic, S. SoK: General Purpose Compilers for Secure Multi-Party Computation. In

Proceedings of the 2019 IEEE Symposium on Security and Privacy (SP), San Francisco, CA, USA, 19–23 May 2019; pp. 1220–1237.
30. Randmets, J. An Overview of Vulnerabilities and Mitigations of Intel SGX Applications; Technical Report D-2-116; Cybernetica AS:

Tallinn, Estonia, 2021.
31. Bogdanov, D.; Kamm, L.; Laur, S.; Sokk, V. Rmind: A tool for cryptographically secure statistical analysis. IEEE Trans. Depend.

Secur. Comput. 2016, 15, 481–495. [CrossRef]
32. Bogdanov, D.; Laur, S.; Talviste, R. A Practical Analysis of Oblivious Sorting Algorithms for Secure Multi-party Computation. In

Proceedings of the 19th Nordic Conference on Secure IT Systems (NordSec 2014), Tromsø, Norway, 15–17 October 2014; LNCS;
Springer: Cham, Switzerland, 2014; Volume 8788, pp. 59–74.

33. Golub, G.H.; Van Loan, C.F. Matrix Computations, 4th ed.; John Hopkins University Press: Baltimore, MD, USA, 2013.
34. Laud, P.; Randmets, J. A Domain-Specific Language for Low-Level Secure Multiparty Computation Protocols. In Proceed-

ings of the 22nd ACM SIGSAC Conference on Computer and Communications Security (ACM 2015), Denver, CO, USA,
12–16 October 2015; pp. 1492–1503.

35. Randmets, J. Programming Languages for Secure Multi-Party Computation Application Development. Ph.D. Thesis, University
of Tartu, Tartu, Estonia, 2017.

36. Bogdanov, D.; Niitsoo, M.; Toft, T.; Willemson, J. High-performance secure multi-party computation for data mining applications.
Int. J. Inf. Secur. 2012, 11, 403–418. [CrossRef]

http://dx.doi.org/10.1016/j.ajhg.2015.12.022
http://www.ncbi.nlm.nih.gov/pubmed/26924531
http://dx.doi.org/10.1038/ng.548
http://dx.doi.org/10.1111/j.0006-341X.1999.00997.x
http://www.ncbi.nlm.nih.gov/pubmed/11315092
http://dx.doi.org/10.1093/comjnl/bxy090
http://dx.doi.org/10.1109/TDSC.2016.2587623
http://dx.doi.org/10.1007/s10207-012-0177-2

	Introduction
	Materials and Methods
	Genome-Wide Association Studies
	Algorithms for GWAS That Account for Population Stratification
	Privacy-Preserving Computation and GWAS
	Deployment Models for Privacy-Preserving GWAS
	Cryptographic Secure Multi-Party Computation
	Trusted Execution Environments
	Adapting Algorithms for Secure Computing

	Results
	Privacy-Preserving EIGENSTRAT and FastPCA
	Privacy-Preserving EMMAX
	Genomic Control
	Performance Measurements

	Discussion
	References

