
cryptography

Article

Foundations of Programmable Secure Computation

Sven Laur 1,† and Pille Pullonen-Raudvere 2,*,†

����������
�������

Citation: Laur, S.; Pullonen-Raudvere,

P. Foundations of Programmable

Secure Computation. Cryptography

2021, 5, 22. https://doi.org/10.3390/

cryptography5030022

Academic Editor: Josef Pieprzyk

Received: 30 April 2021

Accepted: 18 August 2021

Published: 21 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Institute of Computer Science, University of Tartu, Narva mnt 18, 51009 Tartu, Estonia; sven.laur@ut.ee
2 Cybernetica AS, Mäealuse 2/1, 12618 Tallinn, Estonia
* Correspondence: pille.pullonen-raudvere@cyber.ee
† Both authors contributed equally to this work.

Abstract: This paper formalises the security of programmable secure computation focusing on
simplifying security proofs of new algorithms for existing computation frameworks. Security of
the frameworks is usually well established but the security proofs of the algorithms are often more
intuitive than rigorous. This work specifies a transformation from the usual hybrid execution model
to an abstract model that is closer to the intuition. We establish various preconditions that are satisfied
by natural secure computation frameworks and protocols, thus showing that mostly the intuitive
proofs suffice. More elaborate protocols might still need additional proof details.

Keywords: secure multiparty computation; security proofs; universal composability; reactive simu-
latability; secret sharing; provable security

1. Introduction

Over the years of secure multiparty computation (MPC) research many different
frameworks [1–7] and applications [8–13] have been developed. Among the applications,
some are tailored for a specific framework, others are more general and simply assume
some underlying computation capabilities. Especially, when developing a new application
or algorithm for MPC, it would be best if we had standard notions to use to specify
the requirements (types of functionalities, data types and security assumptions) that the
algorithm has on the MPC frameworks. This would give basis for the applicability of the
algorithm as well as the security proof of the algorithm.

The security proofs and claims of the programmable MPC frameworks are usually
well documented and follow the best practices of universally composable security [14].
Therefore, we are given guarantees that everything from protocol inputs until protocol
outputs remains secure independently of the context where the protocol is being used.
However, the standard set of operations in MPC frameworks is quite small, essentially
supporting linear combinations, multiplication, giving inputs and getting outputs. In
addition, these frameworks are often specified as one monolithic secure functionality, for
example, arithmetic black box (ABB) [15]. ABB is essentially a representation of a secure
computer where you can put values and give computation commands.

It is a separate task to build all other necessary algorithms and building blocks in
order to achieve bigger applications like secure machine learning. Building full-fledged
applications, like the equality check in Algorithm 1, that do not release intermediate values,
is straightforward to model in ABB. In this case, you can give this code as commands to the
ABB that would give out the desired outcome. However, note that instead of the shared
values, the inputs would be private inputs of the participants. If the ABB is secure, then the
output z is computed securely and, for example, if the ABB operates on finite fields, then
this protocol is also correct. Formally, there is no good way to add primitive operations
inside the ABB as there is no access to the internal representation of the intermediate data.
Whenever a new operation is added, we should formally prove the security of the whole
ABB. Still, ABB is the best abstraction to define quite generic new primitives for secure
computation, for real-world uses see [16,17].

Cryptography 2021, 5, 22. https://doi.org/10.3390/cryptography5030022 https://www.mdpi.com/journal/cryptography

https://www.mdpi.com/journal/cryptography
https://www.mdpi.com
https://orcid.org/0000-0002-9891-3347
https://orcid.org/0000-0002-3255-7001
https://doi.org/10.3390/cryptography5030022
https://doi.org/10.3390/cryptography5030022
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/cryptography5030022
https://www.mdpi.com/journal/cryptography
https://www.mdpi.com/article/10.3390/cryptography5030022?type=check_update&version=2

Cryptography 2021, 5, 22 2 of 45

Many algorithms can be sped up by releasing intermediate values. For example,
consider the sorting algorithm in Algorithm 2 where the comparison result b is published
in the middle of the algorithm and elements are ordered based on this. The value b can
be seen as given out from the ABB and then a new command can be given to reorder the
values as necessary. In addition, there is no way in ABB to actually return the intermediate
representation of the secure values [[k]] and [[m]]. Therefore, the effect of such a protocol is
such that there are intermediate representations of m and k inside the ABB but the order
and its use is defined by the follow up commands sent to the ABB. In this case, the security
of the ABB is not necessarily sufficient to give security guarantees. Additional reasoning
must be carried out, as the published values and actions based on them happen outside of
the ABB.

Algorithm 1 Equality Check
Input: Two shared values [[x]] and [[y]]
Output: 0 if x = y, non-zero value otherwise
Generate a shared random non-zero value [[r]].
Compute [[z]] = ([[x]]− [[y]]) · [[r]].
Publish [[z]] as z.
return z

Our view of secure computation adds an explicit way to consider such choices and
published values as well as to consider each operation such as comparison or addition
individually, not just as one functionality. In short, our goal is to define an abstract execution
environment for secure protocols where the only details that are relevant for the security
analysis are necessary. These details are those that can be easily seen from algorithms
written down in pseudocode like our two examples. One considers secure values [[x]],
different computations can be carried out with them and a special focus is on the published
values x. For example, if some comparison-based sorting algorithm is defined similarly to
Algorithm 2, then special care should be taken to analyse what the published values can
leak. For example, they may leak something about the number of equal values in the input.

Algorithm 2 Two-element Comparison-Based Sorting
Input: Two shared values [[x]] and [[y]]
Output: Return fresh shares of x and y so that larger is the first
Shuffle [[x]] and [[y]] to learn [[k]], [[m]] where {m, k} = {x, y}.
Compute private comparison [[b]] = [[k]] ≥ [[m]], where b = 1 if k ≥ m.
Publish [[b]] as b.
return [[k]], [[m]] if b = 1 else [[m]], [[k]]

From the viewpoint of building secure computation algorithms, it is easier to think of
secure functionalities for individual protocols, like addition, multiplication, comparison,
equality checks or bit decomposition. Essentially, if we had such small secure protocols then
any algorithm described as using them could immediately be implemented in any concrete
instantiations of these protocols while the composition theorem guarantees the security of
the algorithm. Therefore, we have a conflict of interest between the frameworks that are
specified as secure computational units versus the algorithm development that benefits
from considering primitive operations of the computational unit individually. Either the
security proofs of the concrete algorithms are very generic and refer more to intuition
(e.g., that only published values should be analysed) or the algorithm is proven secure with
respect to some fixed MPC framework, e.g., [18–20]. In the first case, we lose the rigour
and good security definitions given by detailed security proofs. In the second, we are not
exploring the full setting where this algorithm could be applicable and the proofs should
be done again when implemented with different basic primitives and protection schemes.

Studying the separate arithmetic protocols as individual secure components is fairly
straightforward for the cases of passive security that operate without private setup pa-

Cryptography 2021, 5, 22 3 of 45

rameters. For example, earlier protocol development [21–23] focused their proofs on a
fixed representation of the secure values and simply stated that the protocols are more
generally applicable in practice. However, for frameworks using private setup parameters
like shared keys in their operation, the monolithic functionality is a natural and nicer choice.
Essentially, the monolithic functionality allows hiding the setup inside the protocol and
using common flavours of composable security. If we would like to consider monolithic
functionalities by their components, then we would need to take the joint state of the
components into account. This could be achieved, for example, by using the joint-state UC
framework [24] for the security proofs.

If we use a secure computation functionality as a starting point for defining a new
algorithm, then we can base the algorithm on the ideal functionality of the framework.
Therefore, the proof of the algorithm is in a hybrid model assuming interactions with the
specification of the underlying computation functionality. The resulting hybrid model is
usually still more complex than desired. A malicious adversary could possibly change the
scheduling of subprotocols, create unplanned subprotocol instances, alter intermediate
values or cause significant local computations. Most proofs first analyse the security in
the abstract setting where shares are treated as non-malleable secure storage and focus on
analysing only the values that are explicitly revealed.

We rigorously formalise the abstract execution model and study under which con-
ditions the abstract and the full hybrid model are equivalent. We first establish the foun-
dations of specifying secure computation environments and the security of both their
computation protocols and secure storage in Section 2. We call the combination of the
storage and the protocols the secure protection domain. Second, we study how to extend
the protection domain with a new protocol. Third, we show how such security proofs
can be done in an abstract setting when making some natural assumptions about the
protection domain and the protocol. In doing this, we formalise the intuition that in most
algorithms only the values that are public or malleable need proper discussion in a security
proof. The abstract model and all relevant conditions are derived in Section 3. We specify
the abstract model in a sequence of steps that each simplify some aspect of the hybrid
model. In Section 4, we summarise the abstract execution model as well as the conditions
under which it can be used. In addition, we explore why these conditions are satisfied
by most programmable secure computation frameworks and primitive protocols. For
protection domains, we specify the properties that have to be met in order for the storage
to be secure and flexible enough to allow secure computation. In addition, we define a
canonical form for reasonable functionalities defining the primitive operations for secure
computation. Essentially, we assume that all functionalities are such that their output
depends on the input values and not on the format of the protection. The storage allows for
some homomorphic modifications but does not reveal information about the stored values.
We also study the properties of the secure computation protocols that can realise these
functionalities. Overall, we note that as long as some parties in the computation remain
honest, they should also have control over which computations can be executed with the
private values. Therefore, the adversarial actions are quite limited as long as the protocols
are able to deal with malformed inputs and have reasonable semantics.

2. Materials and Methods

Modelling MPC protocols as asynchronous distributed system requires many low-
level details that cannot be neglected in the definitions and proofs. We define a visual
representation for the reactive simulatability framework (RSIM) [25–27] to visualise the
main insight and sketch how the arguments can be fleshed out to complete proofs. RSIM
is one formalisation for composable security, thus showing security according to their
definitions guarantees security in overall contexts where the protocol might be used.

In this section, we describe the RSIM framework and our visual notation for it. Second,
we discuss general privacy definitions based on observational equivalence and different
models for security and composition. Third, we establish the meta theorem showing what

Cryptography 2021, 5, 22 4 of 45

we have to prove in the following to establish that the proofs in the abstract model are
sufficient for the security in the hybrid execution model. Finally, we describe the secure
protection domains and the core assumptions that we make regarding them and their
execution environments.

2.1. Asynchronous Systems and Visual Notation

This section describes the core of the RSIM model for adaptive adversaries where
a system is described by a fixed set of machines, for more details see in [25–27]. An
asynchronous distributed system in RSIM consists of machines that we denote as boxes
and communication buffers denoted by bullets. All machines communicate with outside
world through ports. We denote input ports as white (�) and output ports as grey (��).

Standard buffers have three ports: input, output and clocking. In our notation, these
ports are never drawn, as they are always used to connect ports of the machines. Instead,
we denote a buffer as an arrow with a bullet (−→•◦). We extend this model by adding buffers
which leak information to the machine that clocks it. These can be used to ensure that
the adversary learns some meta information about the messages, such as the subprotocol
instance that receives the message. For visual clarity, we omit these details and use an
arrow with a dotted bullet (−→•◦·) for the leaky buffer. We use a dedicated notation for
sender-clocked (−→�� �•◦) and receiver-clocked (� �•◦−→) buffers and omit port squares if they
are deducible from context. By default all buffers are clocked by the adversary. The notation
is illustrated in Figure 1. A message written to the input port of a buffer is appended to
an internal queue of messages q1, . . . , qn. A leaky buffer also has a corresponding queue
of leaks `1, . . . , `n that is kept in sync. Leaks can be fetched using a dedicated port, thus
the clocking machine must have at least one input port to receive the leakage. The full
construction of it can be found in Appendix A. An input i ∈ Z to standard clocking port
causes qi to be removed from the queue and written to the output port. An empty output ε
is written to the output if the input is out of range.

B1 B2

sender-clocked-buffer

clocking-buffer

receiver-clocked-buffer

C-clocked-leaky-buffer

C

Figure 1. Notation for machines B1 and B2 communicating through various buffers with C clocking
the leaky buffer.

Input–output behaviour of a machine is determined by a state update function
δ : S × I → S ×O, where S is the state space and I is the product of the domains of
all input ports and O is the product of the domains of all output ports including clocking
ports. All domains must contain an empty output ε. A machine can clock at most one
buffer and thus only one clocking output can be non-empty. Execution rules also assure
that one and only one input is non-empty when the machine is invoked except the main
scheduler that can be invoked with empty inputs. As a result, a machine can clock only a
single sender-clocked buffer and leaks cannot reach the clocker without explicit polling.

One machine is declared as the master scheduler that manages all undefined execution
timings. In our setting, this machine is always either the adversary or the simulator. At
the start of computations, the master scheduler is invoked. The scheduler will write to
its output ports and clocks one buffer to start the chain of state transformations. When a
machine writes a message to an output port, it is absorbed by the buffer and control goes
back to the machine. When a message is written to a clocking port, the corresponding
buffer releases a specified message and the control goes to the receiver. When a machine
stops execution without clocking anything, the control goes to the master scheduler. The
execution stops when the master scheduler reaches an end state and becomes inactive.

Cryptography 2021, 5, 22 5 of 45

A collection C is a finite set of machines and buffers. It is closed if all its buffers
are connected to ports and vice versa. A free connector is a connector that has one end
attached to a buffer in a collection while the other end is not attached to any machine in
the collection. Similarly, a free port is a port that belongs to a machine in a collection and is
not connected to any buffer. An extended collection does not have free ports and a reduced
collection does not have free connectors.

Collections C1 and C2 have matching interfaces if collections can be merged by joining
free port and connector pairs while respecting restrictions posed by destination labels
as well as ensuring there are no two ports expecting the same connection. Let the short-
hand C1〈C2〉 denote the resulting collection. Notation emphasises that C2 is a distributed
subroutine that matches structural restrictions posed by C1〈·〉 calling it out. We also use
a shorthand C1〈C2, C3〉 for C1〈C2〈C3〉〉 to emphasise that C1〈·〉 is the outer environment
although the concept is inherently symmetric. In this setting, the interface of C2 can be par-
titioned into two sets according to the target collection. We refer to these as sub-interfaces.

We visualise the interface of an extended collection as a dashed border surrounding
its machines and buffers. Free connectors must reach a right port type on a border. For
clarity, we label these interface ports by the names of their host machine, e.g., which buffers
must be connected to the adversary A or environment Env.

2.2. Security through Observational Equivalence

Collections C1 and C2 have identical interfaces if there exists a one-to-one mapping
between interface elements that respects port types and destination labels. A distinguisher
D〈·〉 is a reduced collection that has a matching interface and has a dedicated machine
D∗ with two end states 0 and 1. Let D〈Ci〉 denote the end state of D∗ when the collection
stops. Then, the strongest equivalence form known as perfect observational equivalence
C1 ≡ C2, which means that Pr[D〈C1〉 = 1] = Pr[D〈C2〉 = 1] for any valid distinguisherD〈·〉.
Perfect observational equivalence indicates that C1 and C2 realise the same functionality
modulo implementation details that are encapsulated by the collection border. Perfect
observational equivalence is unattainable for cryptographic constructions as the security
inherently emerges from the asymmetry between honest and corrupted parties.

Let Π be a collection that models a protocol. Then, the interface naturally splits
into two sub-interfaces. A service interface specifies how to call out the protocol. An
adversarial interface exposes protocol weaknesses to the adversary. The set of adversaries
A is compatible with Π and Env if Env〈Π,A〉 is a well-defined and closed collection for
any A ∈ A. Note that the definition allows collections Env〈Π,A〉 where Env and A are
communicating. Similarly we can define a set of compatible environments E.

Definition 1 (Security). Let Π1 and Π2 be collections with an identical service interface and let E
be the set of compatible environments. Let A1,A2 be the set of compatible adversaries. Then, Π1 is
as secure as Π2 if there exists a function ρ : A1 → A2 such that Env〈Π1,A1〉 ≡ Env〈Π2, ρ(A1)〉
for all A1 ∈ A1,Env ∈ E.

Let Π1 ≥ Π2 denote that Π1 is as secure as Π2. The notation is justified as the relation is
reflexive and transitive for appropriate sets of adversaries. The corresponding equivalence
relation Π1 ≡ Π2 ⇔ Π1 ≥ Π2 ∧ Π2 ≥ Π1 captures protocols with similar security
properties. Maximal elements over the relation identify maximally secure protocols, also
known as ideal implementations.

This definition allows us to specify a wide spectrum of security definitions [28–31].
We can consider only nonuniform polynomial adversaries or different corruption models,
for example, choose between static vs adaptive adversary, or semi-honest vs. active secu-
rity [32,33]. The protocol Π2 determines the set of unavoidable attacks. By tweaking the
implementation of Π2, we can model fairness [34,35], selective failure (abort) [36,37] and
security against covert adversaries [38]. The exact definition of plausible environments
determines how and where the protocol can be used securely. Restrictions on the corre-
spondence ρ define various flavours of black-box [39] and white-box security [40,41] or

Cryptography 2021, 5, 22 6 of 45

specify tightness requirements like polynomial and superpolynomial simulation [42,43].
Restrictions to A1 and A2 usually fix the model of corruption while constraints on E place
restrictions on the protocol scheduling.

Theorem 1 (Secure two-system composition). Assume that we have three collections Πe, Π1,
Π2 such that collections Πe〈Π1〉 and Πe〈Π2〉 are well-defined and have an identical service
interface. Let E be the subset of compatible environments and let ψ : E → E∗ be a natural
construction ψ(Env) = Envo〈Πe〉. Then, the construction φ : A1 → A2 proves that Π1 ≥ Π2 for
the set of environments E∗ is also a proof for Πe〈Π1〉 ≥ Πe〈Π2〉 for the set of environments E.

The theorem is particularly useful when the set of plausible environments and ad-
versaries is closed, i.e., E = E∗ and A1 = A2. As security is commonly defined against
nonuniform polynomial-time adversaries the second constraint is trivially satisfied. The
first constraint is satisfied when environments consist of all sequential compositions of
poly-time subprotocols. The resulting sequential composition theorems [29,30,44] play a
central role in cryptography. Alternatively, we can consider the set of all concurrent com-
positions of poly-time subprotocols. The resulting security notion is known as universal
composability (UC) and has many flavours [14,25,45–50] which differ in minor details.
Most formalisations assume that machines and connections between them remain unaltered
during the execution while Canetti’s second formalisation of universal composability [51]
allows dynamic reconfiguration of the environment. We consider an extension of the RSIM
model [25,27] which has leaky buffers for proper modelling of secure communication
channels. The resulting adaptive-adversary RSIM is very close to the simplified version
of UC (SUC) that was defined to characterise MPC protocols [52]. Our formalisation of
MPC in RSIM gives us more flexibility to split protocols into components to modularise
the proofs and transformations.

2.3. Soundness and Completeness Theorems

Our main contribution is a description of an abstract execution model which hides
all irrelevant technical details while the security proof in this model remains sound and
complete. That is, a proof in the abstract model exists if and only if it exists in the original
execution model. In other words, the abstract model is both sound and complete and,
therefore, a suitable replacement for the hybrid execution model. Here, soundness means
that a proof in the abstract setting means that there is also a proof in the original execution
model. Completeness, on the other hand, specifies that if there is a proof in the original
model, then there is also a proof in the abstract model.

Let Π1 and Π2 be the protocols of interest, and let Π∗1 and Π∗2 be their counterparts in
the abstract execution model. Let E and E∗ denote the set of environments for original and
abstract execution models. Let A1,A2 and A∗1 ,A∗2 denote the set of plausible adversaries.
To show that security proofs in the abstract model are sound and complete, we define three
explicit constructions and their semi-inverses

ψ : E → E∗

ψ∗ : E∗ → E
φ1 : A1 → A∗1
φ∗1 : A∗1 → A1

φ2 : A2 → A∗2
φ∗2 : A∗2 → A2

(1)

which satisfy the following three pairs of equivalence relations

∀Env ∈ E :

∀Env∗ ∈ E∗ :

∀A1 ∈ A1 :

∀A∗1 ∈ A∗1 :

Env〈Π1,A1〉 ≡ ψ(Env)〈Π∗1 , φ1(A1)〉
Env∗〈Π∗1 ,A∗1〉 ≡ ψ∗(Env∗)〈Π1, φ∗1 (A

∗
1)〉

(2)

∀Env ∈ E :

∀Env∗ ∈ E∗ :

∀A2 ∈ A2 :

∀A∗2 ∈ A∗2 :

Env〈Π2,A2〉 ≡ ψ(Env)〈Π∗2 , φ2(A2)〉
Env∗〈Π∗2 ,A∗2〉 ≡ ψ∗(Env∗)〈Π2, φ∗2 (A

∗
2)〉

(3)

∀Env ∈ E :

∀Env∗ ∈ E∗ :

∀A2 ∈ A2 :

∀A∗2 ∈ A∗2 :

Env〈Π2,A2〉 ≡ ψ∗(ψ(Env))〈Π2,A2〉
Env∗〈Π∗2 ,A∗2〉 ≡ ψ(ψ∗(Env∗))〈Π2,A2〉 .

(4)

Cryptography 2021, 5, 22 7 of 45

Note that constructions (1) together with equivalence relations (2)–(4) define a com-
mutative square in Figure 2 with the equivalence guarantees for individual elements where
for brevity pairs Env∗,Env, A1,A∗1 and A2,A∗2 are defined through up or down arrows de-
pending on the direction of traversal. As a result, the existence of ρ implies the existence of
ρ∗, and vice versa.

E× A1 E× A2

E∗ × A∗
1 E∗ × A∗

2

1E×ρ

1E∗×ρ∗

ψ
×
φ
1

ψ
∗
×
φ
∗ 1

ψ
×
φ
2

ψ
∗
×
φ
∗ 2

Env〈Π1,A1〉 Env〈Π2,A2〉

Env∗〈Π∗
1,A

∗
1〉 Env∗〈Π∗

2,A
∗
2〉

≡≡≡

≡≡≡

≡≡
≡

≡≡
≡

Figure 2. Equivalence guarantees and their relations to ρ and ρ∗.

Theorem 2. Let ψ : E → E∗, φ1 : A1 → A∗1 and φ2 : A2 → A∗2 be constructions with semi-
inverses ψ∗, φ∗1 , φ∗2 that satisfy the equivalence relations (2)–(4). Then, Π1 ≥ Π2 for environments
E if and only if Π∗1 ≥ Π∗2 for environments E∗.

Proof. For the proof, we simply trace the equivalence square depicted in Figure 2.
SOUNDNESS. Assume that there exists ρ∗ : A∗1 → A∗2 such that

Env∗〈Π∗1 ,A∗1〉 ≡ Env∗〈Π∗2 ,A∗2〉 (5)

The equivalence relations (2)–(5) assure that

Env〈Π1,A1〉 ≡ ψ(Env)〈Π∗1 , φ1(A1)〉
ψ(Env)〈Π∗1 , φ1(A1)〉 ≡ ψ(Env)〈Π∗2 , ρ∗(φ1(A1))〉

ψ(Env)〈Π∗2 , ρ∗(φ1(A1))〉 ≡ ψ∗(ψ(Env))〈Π2, φ∗2 (ρ
∗(φ1(A1)))〉

ψ∗(ψ(Env))〈Π2, φ∗2 (ρ
∗(φ1(A1)))〉 ≡ Env〈Π2, φ∗2 (ρ

∗(φ1(A1)))〉 .

The claim follows as we can define ρ = φ∗2 ◦ ρ∗ ◦ φ1 and the transitivity of equivalence
relation proves the equivalence Env〈Π1,A1〉 ≡ Env〈Π2, ρ(A1)〉.

COMPLETENESS Assume that there exists ρ : A1 → A2 such that

Env〈Π1,A1〉 ≡ Env〈Π2,A2〉 (6)

The equivalence relations (2)–(4) and (6) assure that

Env∗〈Π∗1 ,A∗1〉 ≡ ψ∗(Env∗)〈Π1, φ∗1 (A
∗
1)〉

ψ∗(Env∗)〈Π1, φ∗1 (A
∗
1)〉 ≡ ψ∗(Env∗)〈Π2, ρ(φ∗1 (A

∗
1))〉

ψ∗(Env∗)〈Π2, ρ(φ∗1 (A
∗
1))〉 ≡ ψ(ψ∗(Env∗))〈Π∗2 , φ2(ρ(φ

∗
1 (A

∗
1)))〉

ψ(ψ∗(Env∗))〈Π∗2 , φ2(ρ(φ
∗
1 (A

∗
1)))〉 ≡ Env∗〈Π∗2 , φ2(ρ(φ

∗
1 (A

∗
1)))〉 .

The claim follows as we can define ρ∗ = φ2 ◦ ρ ◦ φ∗1 and the transitivity of equivalence
relation proves Env∗〈Π∗1 ,A∗1〉 ≡ Env∗〈Π∗2 , ρ∗(A∗1)〉.

In many cases, the security definitions limit the resource consumption of the parties,
e.g., the adversaries are polynomial, in such cases ψ, φ, ρ have to keep these restrictions.
We apply this theorem to show that we can hide the vast majority of technical details when
analysing the security of a compound protocol. We split the construction into four major
blocks. In Section 3.1, we show that certain attack techniques do not help the adversary
when the protocol Π satisfies natural requirements to message scheduling. Thus, we can
consider only a subset of adversaries, i.e., we partition A1 and A2 and choose a canonical
representative for each class. As a result, the environment remains the same during the
abstraction and φ∗1 : A∗1 → A1, φ∗2 : A∗2 → A2 are also identity functions.

Cryptography 2021, 5, 22 8 of 45

In Section 3.2, we separate state from protocol participants and replace message pass-
ing with a shared memory. Again the environment remains the same but now A∗1 6⊆ A1
and A∗2 6⊆ A2. As a result, we need to explicitly define φ∗1 and φ∗2 . In Section 3.3, we expose
the internals of ideal functionalities to further simplify the memory model and remove the
share representation. We again explicitly define φ∗1 and φ∗2 . In Section 3.4, we define the
abstract model by simplifying the environment to a simple representative class of environ-
ments. Fortunately, we can define ψ and ψ∗ so that observational equivalence guarantees

∀Env ∈ E : ψ∗(ψ(Env)) ≡ Env

∀Env∗ ∈ E∗ : ψ(ψ∗(Env∗)) ≡ Env∗

hold and the last pair of equivalence relations (4) follows directly.

2.4. Programmable Multiparty Computation

Most platforms for multiparty computations, see, e.g., in [1,2,4], consist of a secure
storage and a system of primitive protocols operating on top of the storage. As a result,
one can safely combine primitive instructions to implement any algorithm, thus we call
such frameworks programmable. In this section, we formalise building blocks and show
how one can extend existing secure computation instruction set with new primitives. Our
work falls into a long list of MPC formalisations [14,25,29,52–54] where we are focused on
specifying programmable secure computation. First, we discuss the storage properties,
then we formalise two flavours of computations of the secure computation engine and
define protection domains as our abstraction of a secure computation framework. For
protection domains, we discuss their security and the natural conditions for environments
and adversaries that we expect in our following security analysis.

2.4.1. Security of Distributed Storage Domains

A modular design of multiparty computation protocols requires the ability to store
intermediate values. A secure storage can be built on top of different primitives, such as
secret sharing, encryption, commitments, trusted hardware or a combination of different
schemes. We develop the formalism for secret sharing, however, the abstract description
for storing and retrieving values is universal. A secure storage domain δ is defined by two
algorithms Sδ and Rδ which can use parameters from shared setup F4. A machine Sδ

distributes an input x ∈ Xδ into shares. A machineRδ converts shares back to the original
value or returns a special failure symbol ⊥. Throughout the paper, we explicitly assume
that the behaviour of Sδ andRδ does not depend on previous queries.

An adversarial structureAδ defines which subsets of parties can be corrupted without
losing security properties. We define privacy and integrity properties for secure storage
through observational equivalence. Our definitions are generalisations of privacy and re-
coverability of secret sharing schemes [55] and are tailored toward the concrete application
of secret sharing as a storage domain.

Intuitively, a storage is hiding if no information about the stored value leaks from
shares captured by the adversary. However, there are three subtle issues: First, the outcomes
of Sδ and Rδ could leak information about private parameters or other shared values.
Second, in security proofs we often want to simulate shares for some values and use the
remaining shares without changes. Third, we need to specify what happens when the
adversary corrupts more parties than expected. Formally, we define the hiding property
through two collections B0 and B1 that have identical layout, see Figure 3a. Machines
L and L∗ are for storing values and the corresponding shares. The state of L is a one-
dimensional array s. The state of L∗ consists of a two-dimensional array s∗ for shares and
a one-dimensional array b that specifies how the shares will be generated.

Cryptography 2021, 5, 22 9 of 45

L L∗

Sδ

S∗δ

Rδ

F4 F4 F4

A A A

(a) Hiding property.

L L∗

Sδ

Eδ

Rδ

F4 F4 F4

A A A

(b) Modification awareness and limited control.
Figure 3. Configurations defining security properties of a storage domain.

An adversary A can adaptively specify the values of s[`] and b[`], but each location
can only be set once. The adversary A can also read and write shares s∗[`k, ik] of corrupted
parties Pik . A static adversary must send the list of corrupted parties to L∗ before any
value is shared while an adaptive adversary can issue corruption calls at any moment.
When s∗[`, i] is queried and the location is uninitialised, L∗ initiates an update cycle. The
machine L∗ always asks L to share the value s[`] using Sδ in collection B0. In collection
B1, the value s[`] is shared only if b[`] = 0. If b[`] = 1, then L∗ asks a share simulator
S∗δ to create the share s∗[`, i]. A share simulator S∗δ is an efficient and potentially stateful
machine, which can query values s[`] from L only after the set of corrupted parties does
not belong into Aδ. Finally, A can place a reconstruction order for s∗[`]. The machine L∗
sends s∗[`] to Rδ if b[`] = 0. Otherwise, L∗ first asks L to share the value s[`] and then
forwards the shares toRδ. In both casesRδ sends the output back to A.

Definition 2 (Hiding storage). A storage domain δ is perfectly hiding if no adversary can
distinguish configurations B0 and B1. A storage domain δ is hiding for A if the advantage is
negligible for any adversary from A.

Many secret sharing schemes do not use private setup parameters. As a result,
different sharings are independent from each other and it is sufficient to prove simulatability
of a single sharing. In case of adaptive corruption, the secret sharing scheme must be
efficiently patchable [56] as the simulator must progressively disclose shares of an unknown
value. The existence of trusted setup F4 allows to achieve integrity even for honest
minority. However, now different shares are correlated with each other due to shared
setup parameters and we cannot reduce hiding to simpler security notions. In this case, we
assume that S∗δ uses the setup parameters of the corrupted parties.

Note that the hiding property does not guarantee privacy throughout the entire period
of computations. Instead, each storage domain can define Aδ to specify which parties can
be corrupted while still maintaining privacy. For instance, the adversary who corrupts Pi
learns its local state which is a separate trivial storage domain. Values in the public domain
become visible as soon as the adversary corrupts some participant.

As the adversary can always change shares under its control, security of a compound
protocol relies on the integrity of stored values. Robust secret sharing guarantees that
values cannot be altered while verifiable secret sharing allows to detect corrupted values.
Modification awareness for a storage domain δ is defined through an efficient extractor
machine Eδ and an efficient operation	δ. Let x = (x1, . . . , xn) be the original secret sharing
where xi is the share of Pi, and let x̂ = (x̂1, . . . , x̂n) be its adversarial modification and A
the set of corrupted parties. Then, the extractor gets (xi)i∈A, (x̂i)i∈A together with the setup
parameters of A as an input and has to output a difference ∆ such thatRδ(x)	δ ∆ = Rδ(x′).
We denote reconstruction failures by ⊥ and we expect that the modification operator is
such that a	δ⊥ = ⊥ and⊥	δ a = ⊥ for any a in the value domain. Modification function
generalises the observation that in many MPC protocols adversarial modifications result in
additive changes to the value [57].

Cryptography 2021, 5, 22 10 of 45

Intuitively, a storage domain is modification aware if there exists a good extractor
machine Eδ which cannot be fooled by an adversary. The success of an adversary is defined
through a collection B3 that also contains machines L and L∗, see Figure 3b. A two-
dimensional array s∗ forms the entire state of L∗. As before, an adversary A can adaptively
specify the values of s[`] but each value can be set only once. The adversary A has the
power to corrupt parties and read and modify the shares of corrupted parties by interacting
with Eδ. The extractor Eδ just forwards communication between A and L. Queries to
uninitialised locations s∗[`] lead to the same update cycle as in B0, i.e., Sδ generates shares
from s[`]. During a share update query Eδ additionally computes the difference ∆ and
sends a pair `, ∆ to L. As a response, L updates the value s[`] = s[`]	δ ∆ and gives control
back to Eδ. Each sharing in L∗ can be updated by A at most once. The limit on modifications
attempts eliminates trivial attacks where the adversary first invalidates its shares and then
changes them back to original values. For many storage schemes this causes Eδ to fail as
Eδ is stateless and has no knowledge of the previous modification or share values, thus it
has to assume that ⊥	δ ∆ = ⊥ for any ∆. The adversary A can also place reconstruction
orders for s∗[`]. Given such an order L∗ sends s∗[`] to Rδ who sends the output back to
A. The adversary A wins the game if the outcome of Rδ differs from s[`] and the set of
corrupted parties is in Aδ.

Definition 3 (Modification awareness). A storage domain δ is modification aware against a
class of adversaries A if the advantage against the modification game is negligible for any A ∈ A.

For robust secret sharing, the extractor Eδ always outputs the neutral element of the
modification operator because the adversary cannot affect the shared value. Local storage
is robust by definition as the adversary cannot alter local state before corrupting the party
and after corruption the definition poses no restrictions to modifications. Extractor Eδ for
verifiable secret sharing can output ⊥ or the neutral element because the adversary can
either invalidate the shared value or create a different sharing of the same value. Therefore,
for most cases the potential changes to the value are quite limited.

On the other hand, modification awareness does not guarantee that the adversary can
efficiently find a share modification for any potential change ∆ of the value. A two-way
extractor Eδ can handle such requests. The success of an adversary against the two-way
extractor Eδ is defined through a collection B4 that has the same layout as B3 in Figure 3b.
An adversary A can adaptively initialise and update the values of s[`]. For the update, A
has to provide ∆ to L. As a response L sets s[`] = s[`]	δ ∆, sends `, ∆ to Eδ. Given `, ∆
from L, the extractor Eδ first fetches (xi)i∈A from L∗ and computes new shares (x̂i)i∈A for
the corrupted parties such that Rδ(x)	δ ∆ = Rδ(x̂). Finally, Eδ sends (x̂i)i∈A to L∗ and
returns the control to L. L returns control to A. The rest of the collection specification is
identical to B3. As before, A must issue a reconstruction order for a location s∗[`] at the
end of the game. The adversary breaks the two-way extractor if the outcome ofRδ differs
from s[`] and the set of corrupted parties A is in Aδ.

Definition 4 (Limited control). A class of adversaries has a limited control over a storage domain
δ if the advantage in the collection B4 is negligible for any adversary from the class.

2.4.2. Canonical Description of Ideal Functionalities

An idealised computation Fp can be formalised in many different ways. We consider
a decomposable functionality working on the data representation of the given protection
domain and using the setup from the protection domain. In general, inputs and outputs of
an ideal functionality Fp may belong to several storage domains, e.g., some of them may
be secret shared while the others are local variables. The entire computational process can
be split into rounds where each round consists of three phases: reconstruction, compu-
tation and sharing as in Figure 4. Machines S and R are functionalities for sharing and
reconstruction which internally execute functionalities Sδ and Rδ of individual storage
domains and F4 is a combined setup procedure. Machine TR gathers inputs and interacts

Cryptography 2021, 5, 22 11 of 45

withR to reconstruct the values. These values are passed to F ∗p that evaluates a stateful
function and sends outputs to TS together with a storage domain for each output. TS
interacts with S to share outputs. If the reconstruction fails then F ∗p also outputs ⊥ and
the storage domain has to have a way to generate shares of ⊥. Most notably, there must be
a canonical way to create shares of ⊥ for verifiable secret sharing. Note that it is always
possible to define functionalities that ignore some input and where such condition may not
be necessary. However, if the input is used in the computation of the functionality then a
malformed input can only result in a malformed output, otherwise the functionality leaks
information or introduces selective failures. The adversary A can interact with Fp through
TR and TS . Machines TR and TS can coordinate their actions through a receiver-clocked
buffer between TR and TS . Note that S ,R and TR all receive setup parameters, however
there is an important distinction that we expect only S andR to get the private parameters
of different parties and TR only learns any public parameters. The latter is necessary to
correctly define F ∗p because public parameters might, for example, specify the modulus for
all computations.

Fp

TR

TS

R

F∗p

S

I1 I2

I1 I2

F4 F4F4

A A

(a) Fp.

F̂p
TR

TS

F∗p

Ru

Su

F4

I1I2

I1I2

A A

(b) F̂p with separated machinesRu and Su for reconstruction
and sharing.

Figure 4. Internal structure of a two-party functionalities.

The corruption mode for Fp is defined through a communication between TR, TS
and A. All responses to A must be computable from the inputs and outputs of the protocol
instance and the setup parameters received by Fp. For robust protocols, A is disconnected
from Fp. For fair protocols, A can send only abort signals to TS but gets no information
from Fp. For protocols without fairness the adversary could see corrupted parties outputs
before deciding to abort. After abort, all parties get shares of⊥ as output. Protocol instances
inside Fp are distinguished by instance tags sent by protocol participants Ii. All protocol
instances are run concurrently and independently.

Definition 5 (Canonical ideal functionality). An ideal functionality Fp has a standard corrup-
tion mode if all outputs are generated by S and the adversary cannot learn anything about the shares
of honest parties other than revealed by the published values. Functionality Fp is in canonical
form if it is a collection of TR,R, F ∗p , TS and S with the internal structure specified above, has a
standard corruption mode, and always outputs ⊥ if any input is ⊥.

2.4.3. Canonical Description of Local Functionalities

Ideal functionalities define operations computed together with other parties. Each
party may also perform local operations with their shares. In principle, all kinds of local
operations are possible. However, usually the storage domain defines a set of meaningful
operations where the local operations are also meaningful operations on the shared values.
For example, local linear operations are possible for linear sharing schemes. By definition,
the output share of the local functionality depends only on the input shares of this party
and, therefore, local functionalities cannot be described as canonical ideal functionalities.

Cryptography 2021, 5, 22 12 of 45

Definition 6 (Meaningful local operation). A local operation Gq implements a function gq if
for any input (y1, . . . , yt) = gq(x1, . . . , xs) where x1, . . . , xs are the values reconstructed from the
input shares of Gq and y1, . . . , yt are the values reconstructed from the output shares of Gq.

In the following, we represent local operations as G1, . . . ,Gg where each Gq is a col-
lection of machines {Gq,j}j∈Jq implementing local operations carried out by parties in
Jq. We assume that each local operation consist of a single round. More complex local
computations can be implemented as a series of local computations.

2.4.4. Security of Protection Domains

A protection domain consists of storage domains and computation protocols Π1, . . . , Πk.
For instance, a secure computation engine in the Arithmetic Black-Box model [15] is a
specific protection domain with no explicit access to the stored values. Protection domain
is also a refinement of a standard MPC deployment model [11] which divides participants
into input, result and computing parties.

Let F1, . . . ,Fk be the canonical ideal functionalities that the protection domain should
implement. We will simplify the ideal functionalities by joining their sharing and re-
construction components. More formally, let Ru be a machine that has k port pairs for
reconstruction. A query to p-th pair is sent internally toR that is part of the ideal function-
ality Fp and the reply is routed back to the corresponding output port. Let Su be analogous
extension of the machine S . Note thatRu and Su have only a single port pair for F4. Let
F̂p be a collection we obtain by removing components R and S from Fp as depicted in
Figure 4b. Then, the ideal functionality for the protection domain is defined through a
collection F̂1, . . . , F̂k,Ru,Su where F̂p only use public parameters. Let the corresponding
extended collection be denoted as Fpd. The collection F1, . . . ,Fp is observationally equiv-
alent to Fpd provided that the trusted setup F4 sends the same input parameters for all
F1, . . . ,Fk.

Definition 7. A protection domain has modular representation if collections F4〈Fpd〉 and
F4〈F1, . . . ,Fk〉 are observationally equivalent.

As a next step we need to specify the class of reasonable environments. A typical
compound protocol in an MPC platform take shares as input and produces shares as
output. The latter causes subtle issues. Note that a universally composable protocol must
remain secure even if the adversary knows all inputs, while a verifiable secret sharing
could be secure only if the adversary knows only a limited set of inputs. Consequently,
universal composability is unachievable as the adversary can alter shared values without
detection. However, these protocols do not run in a generic environment, and therefore we
should also study their security in a more restricted setting where we separate the outside
environment and the other computations that happen in the protection domain. This allows
us to make reasonable assumptions about the visibility of the output shares. In the most
general case, the best we can achieve if we have any shared setup, is joint-state universal
composability [24] while joint-state sequential composition is the absolute minimum.

We define the set of plausible environments through a cartesian product {F4} ×
Eo × P where F4 is the trusted setup and P specifies all plausible compound protocols Πe

and Eo environments Envo in which Πe might be executed. The inner environment Πe〈·〉
specifies computations done in the MPC framework while Envo〈·〉 is an outer environment
representing the rest of the world in which the compound protocol should preserve security.

Definition 8. A list of protocols Π1, . . . , Πk with a shared setup F4 is secure protection do-
main if F4〈Πe〈Π1, . . . , Πk〉〉 ≥ F4〈Πe〈Fpd〉〉 for any Πe ∈ P and Envo ∈ Eo provided that
Envo〈F4〈Πe〈Π1, . . . , Πk〉〉,A〉 is a well-defined closed collection.

The signature of a protection domain (E,P,F1, . . . ,Fk) determines what can be com-
puted with the protection domain and what restrictions must be met to preserve security.

Cryptography 2021, 5, 22 13 of 45

The actual security guarantees are specified in terms of plausible adversaries A1 and A2
which depend on the environment. Each protection domain also specifies an adversary
structure Aδ which lists all sets of parties that the adversary can corrupt if we want to
keep security guarantees. The adversary structure is limited by the secure storage domains
of the protection domain and the security properties of the individual protocols in the
protection domain. The corruption mode specifies the type of tolerated adversaries ranging
from static semi-honest to adaptive malicious adversaries.

2.4.5. Secure Extension of Protection Domains

To modularise proofs, a protection domain is often defined through a minimal set
of protocols Π1, . . . , Πk that implement ideal functionalities F1, . . . ,Fk. After that each
new primitive F0 is added by defining a protocol Π〈Π1, . . . , Πk〉 and proving its security.
To establish basic security, we need to prove F4〈Π〈Π1, . . . , Πk〉〉 ≥ F4〈F0〉. Such proofs
usually follow the two phase strategy where one proves

F4〈Π〈Π1, . . . , Πk〉〉 ≥ F4〈Π〈Fpd〉〉 ≥ F4〈F0〉 .

The first step follows directly from the security definition of a protection domain.
Thus, the main bulk of the proof must be carried out in the hybrid execution model where
real protocol implementations are replaced with F1, . . . ,Fk.

To show validity of the extension, we must analyse the extended protection domain
Π〈Π1, . . . , Πk〉, Π1, . . . , Πk when using the ideal implementation Fpd. For that we have to
analyse compound protocols Πe〈Π〈Π1, . . . , Πk〉, Π1, . . . , Πk〉. It is easy to restructure these
compound protocols into observationally equivalent collections Π∗∗〈Π1, . . . , Πk, Π1, . . . , Πk〉.
For example, Π∗∗ can be obtained by joining Pi and P∗i on Figure 5. Formally, the list of
protocols Π1, . . . , Πk, Π1, . . . , Πk may not be a secure protection domain as each protocol
occurs twice. It is easy to see that a secure protection domain is securely extendable provided
that each protocol instance is independent of the other instances of the same protocol. The
next theorem describes under which conditions the second proof stage can be generalised.

P∗
1 P∗

2

Π1

Π2

P1 P2

Π1

Π2

(a) Πe〈Π〈Π1, Π2〉, Π1, Π2〉.

P1 P2

F1

F2

F4 F4 F4 F4

P∗
1 P∗

2

A A A A

(b) Π〈F1,F2〉.
Figure 5. Protection domain extension with protocols and ideal functionalities where Πe is carried out by P∗i and Π is
carried out by Pi.

Definition 9. Protocols Π1, . . . , Πk with shared setup F4 are a securely extendable protection
domain if the list of protocols Π1, Π1, . . . , Πk, Πk with F4 is also a secure protection domain.

Theorem 3. Let Π1, . . . , Πk be a securely extendable protection domain with a shared setup F4.
Let Π〈Π1, . . . , Πk〉 be as secure as an ideal functionality F0. Then, Π〈Π1, . . . , Πk〉, Π1, . . . , Πk
is a secure protection domain for compound protocols P provided that Π〈F1, . . . ,Fk〉 is a secure
protection domain for the set of compound protocols P∗ = {Πe〈F1, . . . ,Fk〉〈·〉 : Πe ∈ P}.

Proof. Let us fix a target signature (E,P,F0, . . . ,Fk) for the extended domain, and
let Πe〈·〉 ∈ P be a compound protocol. Let A1 be the set of adversaries against

Cryptography 2021, 5, 22 14 of 45

Πe〈Π〈Π1, . . . , Πk〉, Π1, . . . , Πk〉. As we can restructure the compound protocol into ob-
servationally equivalent form Π∗∗〈Π1, . . . , Πk, Π1, . . . , Πk〉, we can replace all protocols
with ideal implementations and we need to show

F4〈Πe〈Π〈F1, . . . ,Fk〉,F1, . . . ,Fk〉〉 ≥ F4〈Πe〈F0, . . . ,Fk〉〉

for environments E and adversaries A2. By pushing F1, . . . ,Fk into Πe we obtain a com-
pound protocol Πe〈F1, . . . ,Fk〉〈·〉 ∈ P∗ that interfaces only with Π〈F1, . . . ,Fk〉, A ∈ A2
and Envo ∈ Eo. Indeed, the construction just removes interface boundaries between Πe and
Fi, and nothing else changes. By the assumptions Πe〈F1, . . . ,Fk〉〈·〉 is a valid compound
protocol for Π〈F1, . . . ,Fk〉 and thus over the environments E

F4〈Πe〈F1, . . . ,Fk〉〈Π〈F1, . . . ,Fk〉〉〉 ≥ F4〈Πe〈F1, . . . ,Fk〉〈F0〉〉 .

The latter completes the proof as we can pushF1, . . . ,Fk out of the compound protocol
to obtain Πe〈F0,F1, . . . ,Fk〉.

In other words, it is sufficient to analyse the security of Π〈F1, . . . ,Fk〉 against adver-
saries A2 implicitly defined by the definition of securely extendable protection domains
with respect to compound protocols P∗ and environments E.

2.4.6. Restrictions to Environments and Adversaries

It is usually impossible to prove F4〈Πe〈Π1, . . . , Πk〉〉 ≥ F4〈F〉 for canonical F if Πe

leaks the joint state to the environment Envo. In particular, no shares can pass the service
interface between Envo and Πe nor can Πe send outputs that depend on the private setup
parameters. We can force this constraint structurally by including dedicated protocols
into the protection domain which allow parties to securely share and reconstruct values,
i.e., they are are equivalent to securely applying Su andRu to inputs and outputs.

Let us consider the inner environment Πe that shares the state with Π. Note that the
inner environment Πe can carry out the same actions as the protocol Π, thus we prefer this
notation to clearly distinguish it from Env that represents also the rest of the world and all
actions possible there. In the following, Env compatible with Π means Envo〈Πe〉 that is
the full environment against the protocol Π. Due to nesting, the same physical entity is
represented by different machines in different collections, such as P∗i and Pi in Figure 5.
In principle, a protocol participant can communicate with many machines from the inner
environment Πe. However, simple physical considerations suggest that each protocol node
Pi should have only one parent node P∗i that provides inputs to Pi and receives its outputs.
By duplicating protocols we can always reach a configuration where Pi communicates only
with a single parent node P∗i . We consider only such inner environments P that satisfy this
restriction. In addition, we assume that the state of Pi is such that it allows to restore all
computations that have occurred before it was corrupted (e.g., inputs and random choices
are stored).

Definition 10 (Generic adversary). We call the class of adversaries against a protocol Π and the
inner environment Πe generic if the only restrictions on the adversary are the port compatibility
with the protocol Π, the inner environment Πe and the environment Envo.

A real-world adversary corrupts physical hardware or administrators, thus it is natural
to assume that it will corrupt all machines hosted by it. Therefore, we assume that either all
machines representing a party are corrupted or none are. Sometimes many logical protocol
participants are represented by one physical party and in such cases it is also reasonable to
assume that they are also all corrupted together.

Definition 11 (Coherent adversary). A coherent adversary always corrupts Pi and P∗i simulta-
neously, i.e., A sends a corruption call to Pi immediately after P∗i responds to a corruption call, or
vice versa.

Cryptography 2021, 5, 22 15 of 45

Lemma 1. Any generic adversary can be extended to a coherent adversary provided that adversary
structures for Πe and Π are compatible.

3. Results

In this section, we show the required transformations from the hybrid protocol to the
abstract execution model. We show that any hybrid protocol satisfying some conditions can
be translated to the abstract setting and vice versa. Therefore, we fulfil the requirements of
Theorem 2 by defining the ψ, φ1, φ2 and their semi-inverses and showing that the protocol
designer only has to define ρ in the abstract execution model. We consider the protocol Π as
a subprotocol of Πe representing the rest of the computations in the protection domain and
the outer environment Env using and controlling the protection domain. The combination
of Πe and Env forms the class EΠ of environments against this protocol Π.

We define the transformation to the abstract model in small steps in order to make
it clear where the different conditions come from and to make it easier to argue the
correctness of these transformations. In Section 3.1, we show that it is sufficient to limit
adversarial capabilities. In Section 3.2, we modify the protocol description and adversary
to use a shared memory and limit adversarial actions to only modifications of real protocol
messages. In Section 3.3, we show how to remove share representation and only give the
adversary the access allowed by the limited control property of the storage domain. Finally,
in Section 3.4 we arrive at the abstract execution model.

3.1. Minimal Requirements to Message Scheduling

In the following, we show that under certain natural restrictions about the protocol
Π the adversaries ability to influence the execution is rather limited. All attacks can
be accomplished by only modifying the state of corrupted parties while keeping them
running. This is the first substantial step towards abstract model, as these attacks preserve
the structure of computations. In term of the soundness theorem we define a universal
construction φlazy that achieves

∀Π ∈ P : ∀Env ∈ EΠ : ∀A ∈ AΠ,Env : Env〈Π,A〉 ≡ Env〈Π, φlazy(A)〉 (7)

where P is the set of protocols that use F0, . . . ,Fk and EΠ is the set of environments where
the protocol Π is intended to run, meaning they contain the outer environment Env and
the inner environment Πe. The main result in shown in Theorem 4.

3.1.1. Basics of Protocol Execution

The formal description of a participant of Π is quite complicated, as it must be able to
execute several instances of the protocol in parallel and correctly handle corruption queries
from the adversary A. To simplify matters, we represent the participant Pi as a collection
of two machines Ii and Zi, where Ii interprets the original protocol without modifications
andZi models the effects of corruption by switching communication between the adversary
A and other machines.

The corresponding collection is depicted in Figure 6 together with the numbering of
port pairs and machine names connecting to them. The zeroth port pair between Ii and
Zi is for communicating with the adversary. Next k port pairs between Ii and Zi are for
calling out subprotocols. The last port pair between Zi and Ii is for communicating with
the inner environment Πe. All these ports are directly matched with port-pairs between
Zi and the corresponding external machines. Note that all our buffers come in pairs, thus
we also use the shorthand b+p , b−p to specify the pair, where b+p is outgoing from Pi and
b−p is incoming to the party. This notation can be enhanced with additional indices if it is
important to consider many parties or ideal functionalities at once.

Cryptography 2021, 5, 22 16 of 45

P1 P2

I1 Z1 I2Z2F2

F1

3 3

2 2

1
1

0 0

33

22

1
1

00

6

5

b+7

b−7
b+6

b−6

6

5

4

F4 F4

7
b+8

b−8
7

Πouter F4

4

F4

4

A A A

4

A

Figure 6. Internal structure of a two-party protocol Π calling out two protocols F1 and F2.

When Zi is in the honest state it mediates communication between the matching ports.
Every time Zi receives a message, it writes the respective message and also clocks the
messages to Ii. When receiving a message from Ii it also gives control back to Ii after
writing the message to the output port. When Zi is corrupted, then A can order Zi to write
a message to any of its output ports and all messages arriving to the input ports of Zi are
forwarded to A. Additionally, A can issue a special REVEAL message to Ii to receive the
internal state of Ii. Each message sent between Pi and Fp is a triple (t1, t2, m) where t1
specifies the instance of the protocol Π and t2 the instance of the sub-protocol called by
Ii. Similarly, a message sent between Pi and Πe is triple (t1, t2, m) where t2 specifies the
instance of the protocol Π and t1 the instance of Πe calling it.

3.1.2. Tight Message Scheduling

The structure of subprotocols Π1, . . . , Πk determines what the adversary can do with
ingoing and outgoing messages. For example, consider a protocol where Pi submits
several inputs x1, x2, . . . , x` without any reply from Fp. Then, the adversary can trivially
reorder inputs by delaying messages. Although sequence numbers can be added to fix the
intended order of messages, we still cannot guarantee the arrival of xi. Only a reply to Pi
after the `-th input stops the flow of inputs which the adversary can reorder. Therefore,
sending x1, . . . , x` one-by-one has no theoretical benefit over a single message (x1, . . . , x`).
In practice one could still stream these as individual messages but it does not affect the
theoretical communication model. The same argument invalidates the utility of piecewise
release of outputs. As a result, neither Pi nor Fp should send a new message before they
get a reply from their respondent. A reply in a protocol fixes time-point in a protocol after
which an input or an output is committed and can not be changed.

A protocol might include a party without consent by sending outputs Pi before it
has sent inputs. In practical protocol constructions, we always know when Pi is going to
participate in a protocol, and thus we can always assume that all parties provide an input
before receiving any outputs. The following definition summarises minimal requirements
for protocol constructions to be secure against network delays. Communication patterns of
such protocols may still depend on inputs or outputs. For example, a party can submit an
unbounded number of inputs that depend on previous replies.

Definition 12 (Tight message scheduling). An ideal functionality Fp has a tight message
scheduling if Pi and Fp cannot send two consecutive messages to their recipients. Additionally,
Pi must send the first message before receiving anything from Fp and both Fp and Pi must know
when the other stops sending messages for a given protocol instance.

3.1.3. Robustness against Malformed Inputs

As a corrupted party can arbitrarily deviate from a protocol specification, we must
relate its messages with the state progression in the honest protocol run. For that we show
that a corrupted party can always run the interpreter honestly and deliver all messages
from ideal functionalities to the interpreter instantly.

Cryptography 2021, 5, 22 17 of 45

Definition 13 (Semi-simplistic adversary). An adversary is semi-simplistic if it fulfils the
following conditions for corrupted Pi.

(a) The adversary clocks any outgoing buffer b+p and any incoming buffer b−p connected to an
honest party only when all incoming buffers b−p connected to corrupted parties are empty.

(b) Upon receiving a message from Zi that comes from Πe,F1, . . . ,Fk, the adversary immediately
orders Zi to forward it to Ii without changes.

(c) The adversary can send arbitrary messages to Πe,F1, . . . ,Fk on behalf of Pi.
(d) The adversary can fetch the state of Ii.
(e) The adversary gives no other orders to Zi.

Conditions (a)–(b) formalise instant message delivery which preserves the order of
messages: if Pi receives m1 before m2 then Ii must receive m1 before m2. Furthermore,
corrupted parties receive messages earlier than honest parties. Conditions (c)–(e) guarantee
that the adversary can not directly manipulate the state of Ii, thus Ii is running honestly.

Lemma 2. For any adversary, A, there exists an equivalent semi-simplistic adversary A∗. The
overhead in computational complexity can be arbitrary.

Proof. ADVERSARIAL BEHAVIOUR. When a party, Pi, is not corrupted A∗ just does what-
ever A does. Whenever A corrupts Pi, the new adversary A∗ also corrupts Pi and sends
the REVEAL message to get the internal state of Ii. After that, A∗ can internally simulate
the interpreter by initialising it with the state. Let I∗i denote the corresponding virtual
interpreter. Whenever A∗ gets an incoming message destined to the interpreter, it forwards
it to Ii without changes. If Ii sends back a reply, A∗ deletes it. If Ii does not send a reply,
then control still goes to A∗ when Ii stops. After that, A∗ passes the original message to A.
Whenever A wants to send a message to Ii, A∗ sends it to I∗i . If I∗i sends back a reply, A∗

forwards it to A. If A wants to send a message to other parties A∗ forwards it to Zi. As a
result, all incoming messages reach Ii without changes and right after being received by
Zi while the A∗ sends out exactly the same messages as A.

MODIFIED CLOCKING. To guarantee that A∗ can always empty a buffer b−p , we must
do another modification. First, the adversary A∗ can keep the buffer b−p empty by clocking
it immediately when Fp writes to it for corrupted Pi. This fulfils the conditions (a)–(b).
The timing of Ii might change but we only need to preserve the behaviour of A. For that,
A∗ stores the messages and internally simulates buffers b−p to A.

COMPLEXITY. The overhead in the computational complexity consists of copying and
running the interpreter. The state of the Ii must be copied and its further actions as Ii must
be simulated. Simulated interpretation comes with at most a polynomial slowdown as
the state is of polynomial size. As incoming messages of Ii are potentially altered by the
actions of A, the interpreter Ii is not guaranteed to terminate. Therefore, we can give no
overhead bound in this construction. Nevertheless, A∗ is semi-simplistic.

Adversarial actions may lead to unexpected inputs, thus the interpreter Ii is not
guaranteed to terminate. Overall, there are three possibilities to overload the interpreter.
First, they may get unexpected messages from ideal functionalities or the environment.
The interpreter should be able to ignore such messages. Second, the adversary might be
able to trick the environment or an ideal functionality to send overly long inputs to the
interpreter. These attacks are harmless as long as the interpreter knows the maximal input
length and ignores the rest. Third, the adversary might trick the interpreter to do expensive
local computations. This is a serious concern unless the amount of local computations
is bounded.

Definition 14 (Robustness against malformed inputs). A protocol is robust against malformed
inputs if the running time of the interpreter is polynomial for all semi-simplistic adversaries.

Cryptography 2021, 5, 22 18 of 45

Corollary 1. If a protocol is robust against malformed inputs, then semi-simplistic and generic
adversaries are equivalent to each other.

Proof. The robustness guarantees that the construction introduced in Lemma 2 has a
polynomial overhead. Each time A∗ invokes Ii, it is guaranteed to stop and pass the control
back to A∗. As the number of times A∗ invokes Ii is bounded by the running time of A, the
total running time of Ii can be only polynomial times bigger than the running time of A. In
addition, any semi-simplistic adversary is also a generic adversary.

3.1.4. Security against Rushed Execution

A semi-simplistic adversary may create messages that are dropped by recipients as
they are not ready to process them. Let a tuple (i, p, t1, t2 →) denote the event where Ii
writes a message (t1, t2, m) to the output port p, and let (i, p, t1, t2,←) denote the event
where the recipient Fp writes a reply (t1, t2, m) to its output port. Note that for semi-
simplistic adversaries the interpreters are always running honestly.

Definition 15 (Input and output signature). Let the input signature for a particular round
of computations in canonical ideal functionality (Definition 5) Fp be the set of parties that must
provide inputs before TR forwards recovered inputs to F ∗p , and let the output signature be the set of
parties that receive output shares from TS .

Definition 16. We say that a round of computation is rushed if the ideal functionality Fp executes
the computation before some interpreter Ii in the input signature has computed its input to this
round. A protocol is secure against rushed execution for the set of environments E if no semi-
simplistic adversary from the class of adversaries A can rush a round of computation.

The explicit limitations on the set of adversaries is necessary, as there may be a gap
between protocols that unbounded adversaries can rush vs. polynomial time adversaries.
Usually, one considers only polynomial-time adversaries. Security against rushing allows
us to avoid situations where semi-simplistic adversaries desynchronise a protocol by
sending out messages (t1, t2, m) way earlier than the event (i, p, t1, t2,→) takes place.

Definition 17 (Lazy adversary). A semi-simplistic adversary is lazy if it always waits for
(i, p, t1, t2,→) signal from Ii to clock a message (t1, t2, m) out of the buffer b+p and it always clocks
at most one message with right tags per signal.

Lemma 3. Assume that ideal functionalities F1, . . . ,Fk and protocol Π have tight scheduling. If
a protocol Π is secure against rushed execution, then semi-simplistic adversary can be converted to
equivalent lazy semi-simplistic adversary.

Proof. Assume that all ideal functionalities have unlimited buffering. Let A∗ be a modified
adversary that internally runs the original adversary A and monitors what messages are
written to outgoing buffers and when they are clocked. This allows A∗ to catch all events
where A tries to clock a message (t1, t2, m) out of a buffer b+p before the interpreter Ii has
produced the event (i, p, t1, t2,→). For these events, A∗ catches the clocking signal and
forwards it as soon as the event (i, p, t1, t2,→) occurs. Note that thanks to tight scheduling
the tags t1, t2 and the port uniquely determine the buffer and the message of the protocol
and it is clear which message can be clocked.

Such delays have no effect on execution. If nobody submits its input after the event
(i, p, t1, t2,→), then we have a prohibited a rushing event. As we have security against
rushing, TR still waits for inputs when A∗ clocks (t1, t2, m). If A∗ never clocks a message,
then the event (i, p, t1, t2,→) never occurs, and thus security against rushing guarantees
that the corresponding round of computation is never completed or this party was not in
the input signature. Consequently, the overall execution does not change.

Cryptography 2021, 5, 22 19 of 45

In the general case, Fp might keep (t1, t2, m) after a delay while its dropped in the
original run. The reverse is not possible as no messages can take the place of delayed
(t1, t2, m) because tightness ensures Pi has only one outstanding message for instance t2 of
Fp. As A∗ knows all messages sent and received by Fp, tight message scheduling guaran-
tees that A∗ knows which rounds of computations are completed or pending. Therefore, A∗

can efficiently compute whether a message will be dropped or not. Thus, we can always
convert A to the lazy adversary that never clocks a message that is dropped.

Note that the the communication between Π and Πe is similar, except that Π is in
the role of the Fp (with tight scheduling), and we can only convert the adversary to lazy
clocking if Πe is secure against rushing. Otherwise, for a coherent adversary, we know
that adversary can only create messages to the buffers between the corrupted party in
Π and Πe. Therefore, delays can affect only corrupted buffers and without lessening of
generality we can assume that instead the adversary could perform the follow up actions
of the corrupted party in Πe without really clocking this message.

Theorem 4. If a protocol is robust against malformed inputs and is secure against rushed execution,
then lazy semi-simplistic and generic adversaries are equivalent to each other.

Proof. From Corollary 1, we know that generic adversaries are equivalent with semi-
simplistic adversaries. Lemma 3 proves that any semi-simplistic adversary can be trans-
formed to a lazy semi-simplistic adversary. In turn, each lazy semi-simplistic adversary is
also a semi-simplistic adversary.

Theorem 5 (Characterisation of rushing). A semi-simplistic adversary can rush a round of
computation π for a functionality with tight scheduling only if one of the following holds for a
corrupted Pi in the input signature.

(a) The round π is not in the program code of the interpreter Ii.
(b) The interpreter Ii needs an input from Πe to submit an input to π.
(c) The interpreter Ii needs an output from a round of computation π′ to submit an input to π

and π′ is executed concurrently or after π.

Proof. Let a party Pi be in the input signature of a rushed round of computation π such
that its interpreter Ii computes the input for the round after π is completed and let b+p
be the corresponding outgoing buffer. As TR does not proceed without the input from
Pi, the input had to be present in b+p . For honest parties, only Ii can create such inputs.
Consequently, Pi must have been corrupted before the input to π was clocked.

There are two options why the interpreter Ii cannot produce input before this clocking
event. First, the program code of Ii never computes inputs for π, i.e., π is not scheduled.
Second, Ii must be waiting for a message m to arrive through some incoming buffer b−q
before it can compute the input to π. For semi-simplistic adversaries, the buffer b−q is
always emptied before clocking of b+p . Thus, the input m must be created by another round
of computation π′ or inputs from Πe that is still incomplete.

The possibility of (b) can be eliminated by the design of Π or Πe. We can include
Byzantine agreements in Π to make sure that no honest party starts π before necessary
inputs are received from Πe, or we can restrict Πe to give inputs in a manner that all parties
who execute π receive inputs in one go. Let F0 be the canonical ideal functionality for
Π. Then, we can analyse if the adversary can rush F0 in Env〈F4〈F0,F1, . . . ,Fk〉〉 using
Theorem 5. If rushing is impossible, then all corrupted parties in round π are guaranteed
to get input from Πe before executing π and we need to exclude only possibilities of
(a) and (c).

The majority of all multiparty computation protocols operate with values that are
secret shared among all participants. Consequently, no computation round can be rushed
if the protocol consists of sequential execution of subprotocols and some party is honest. In
particular, if a protocol description is symmetric for all parties and input functionalities are

Cryptography 2021, 5, 22 20 of 45

also symmetric, then dependencies between rounds of computation are the same for all
parties and no round is computed without the inputs from honest parties.

3.2. Shared Memory and Simplistic Adversaries

Lazy semi-simplistic adversaries are quite restricted, as they clock messages to Fp
according to protocol specification. Still, they can send out more messages than are finally
clocked. We define a shared memory model where such attacks can be carried out by
modifying a limited set of memory locations and call this the simplistic adversary. In more
formal terms, we define a ./-operator that acts on protocols and their components together
with a universal construction φ./ and its semi-inverse φ∗./ that achieves

∀Π ∈ P : ∀Env ∈ EΠ : ∀A ∈ Alazy
Π,Env : Env〈Π,A〉 ≡ Env〈Π./, φ./(A)〉 (8)

∀Π ∈ P : ∀Env ∈ EΠ : ∀A ∈ A./
Π,Env : Env〈Π./,A./〉 ≡ Env〈Π, φ∗./(A

./)〉 (9)

where P is the set of protocols satisfying the above restrictions which use F0, . . . ,Fk in
black-box way and EΠ is the set of compatible environments. The first part constructing
the memory model and simplistic adversary are shown in Theorems 6 and 7 through a
�-operator. This is extended to memory alignment in Theorem 8.

3.2.1. Interpreter Specification

The changes to the memory model alter the interpreters as well as the communication
patterns. The interpreter Ii in Π is a universal random access machine with two special
communication instructions DMACALL and SEND. All instances of Ii share a program p.
The internal state of Ii is a three-dimensional array s[t, δ, `] where t specifies a protocol
instance, δ a storage domain and ` a memory location. A protocol instance t can access
only its slice s[t, ·, ·]. Initially, the state s is empty and there are no active protocol instances.
Πe launches a new protocol instance by sending a special triple denoted as INIT(t1, t2, δ, m)
to Ii. Upon initialisation, Ii launches a new protocol instance t2 with the input m of type δ
and stores t1 as the instance of the parent protocol.

An instruction DMACALL(t, p, α, β) initiates a query–response round where the vector
α = ((δ1, `1), . . . , (δu, `u)) specifies the memory locations to be assembled into a tuple m
and β = ((δ′1, `′1), . . . , (δ′v, `′v)) specifies to which locations the elements of a response tuple
m′ are stored. The respondent and its protocol instance is fixed by the port number p and
the instance tag t. The instruction is not complete until the response comes. An instruction
SEND(t, p, α) initiates analogous communication without response.

Tags t1 and t2 encode the instance of a caller and a callee in all triplets (t1, t2, m).
Therefore, the outcome of DMACALL and SEND instructions depends on the port p. As
ports 1, . . . , k are meant for subprotocols, outgoing messages must be in the form (t1, t2, m)
where t1 is the current protocol instance and t2 fixes the instance of a subprotocol.

The remaining instructions formalise a type safe memory manipulation and condi-
tional jumps. Conditional jumps in the program can occur only on public or local variables.
A special local storage domain is used for storing the state of the instruction interpreter
including program counters and memory locations of incomplete DMACALL instructions.
This state can be quite complex for interpreter types that concurrently execute several
protocol instructions.

Definition 18. A program p is well-formed if the following holds.

(a) Each memory location s[t, δ, `] can be assigned only once.
(b) No instruction can read a memory location before it is initialised.
(c) A new message with tag (t1, t2) is never written to the output port p to Πe before reading a

message with tag (t1, t2) from the input port p from Πe.
(d) For instructions DMACALL(t, p, α, β) and SEND(t, p, α), no other program instruction can

read memory locations in the vector α and write the memory location β.

Cryptography 2021, 5, 22 21 of 45

Note that after the location α has been used as an input to some ideal functionality,
only F and A are allowed to read it and only F writes the return location β. For conceptual
clarity and brevity, we consider only well-formed programs. Well-formedness is largely a
property of the concrete implementation of the protocol, hence we may also address it as
the protocol with well-formed implementation.

3.2.2. Shared Memory Model for Communication

Replacing message passing with shared memory allows us to merge individual states
of interpreters into consolidated memory and limits the adversary to only work with mes-
sages sent by Ii. Let I�i be a stateless interpreter, F �io is a collection of parts of interpreters
that deal with protocol inputs and outputs, andM�

i is a memory machine for storing the
internal state of Ii. We introduce F �io to make some follow-up steps of the transformation
clearer later on. F �io contains the input–output modules of each interpreter in the protocol.
When F �io gives an input to Ii then it writes it to memory and clocks the notification to Ii.
When F �io receives output from I�i then it reads it from memory, writes it to buffer to Πe

and gives control back to I�i . Let F �1 , . . . ,F �k be modified ideal functionalities with access
to the shared memoryM�

1 , . . . ,M�
k as depicted in Figure 7.

M�
1

I�1

Z�
1

M�
2

I�2

Z�
2

F�
io

F�
1

F�
2

F4 F4 Πouter F4 F4

A A A A

Figure 7. Decomposed interpreters for protocol Π� calling out protocols F �1 and F �2 .

The memoryM�
i stores the state of Ii as a three-dimensional array s. Each buffer

pair can be used to access and modify s. Given an input FETCH(t, δ, `), M�
i returns

(t, s[t, δ, `]). Given an input SET(t, δ, `, m),M�
i updates the state by setting s[t, δ, `] = m

and replies OK(t). For convenience, there are also commands for block reads and writes.
The communication between I�i and F �p goes through the exchange of memory locations.
The interpreter I�i translates DMACALL(t2, p, α, β) into a message (t1, t2, α, β), where t1 is
the caller instance, α specifies the locations of message components and β locations for
the reply. Send instructions are translated into triples (t1, t2, α). A recipient F �p or F �io
queriesM�

i to assemble the message m and processes the resulting triple (t1, t2, m) as in
the original setting. When a reply (m′1, . . . , m′u) is generated then all elements m′j are stored
to memory locations s[t1, δ′j , `

′
j] and a special message (t1, t2, ε) is sent back. Upon receiving

INIT(t1, t2, δ, m) for Pi and protection domain δ, F �io writes components of an input m to
some default memory locations s[t?, δj, `j] and sends INIT(t1, t2, δ, α) to I�i .

The machine Z�i simulates the original execution of the protocol Π to A. For that,
Z�i must simulate a missing machine Zi and buffers b−p , b+p between Zi and Fp. Let
the buffers connecting I�i to F �p be c+p and c−p analogously to b−p , b+p between Zi and
Fp. Z�i can communicate withM�

i and clock buffers c+p and c−p but can not accessM�
i

before adversary A issues a corruption call. Z�i modifies only the memory locations α
of incomplete DMACALL(t, p, α, β) and SEND(t, p, α) calls. Define Π� as an extended
collection consisting of machines I�1 , . . . , I�n ,M�

1 , . . . ,M�
n,F �0 , . . . ,F �k ,F �io together with

Cryptography 2021, 5, 22 22 of 45

all buffers attached to the machines. Let the corresponding adversarial construction φ�(A)
be defined as a reduced collection consisting of A,Z�1 , . . .Z�n .

Theorem 6. Let Π be the protocol with a well-formed implementation and let EΠ be the set of
compatible environments. Then,

∀Env ∈ EΠ : ∀A ∈ Alazy
Π,Env : Env〈Π,A〉 ≡ Env〈Π�,A�〉

where and Alazy
Π,Env is the set of compatible lazy semi-simplistic adversaries.

Proof sketch. Let us define another extended collection Π̂� that consists of machines
I�1 , . . . , I�n ,M�

1 , . . . ,M�
n,Z�1 , . . .Z�n ,F �0 , . . . ,F �k ,F �io together with all attached buffers. We

get a trivial equivalence Env〈Π̂�,A〉 ≡ Env〈Π�,A�〉 for any A and Env. Therefore, it is
sufficient to prove that Env〈Π,A〉 ≡ Env〈Π̂�,A〉 for any Env and A that meet the restrictions.
Although collections Π and Π̂� are quite different there is a natural matching between
machines and their internal states. Initially, the internal states of Fp and F �p coincide.
The same is true for the interpreters Ii and I�i although their internal state s is stored in
different locations. Therefore, we can run the standard bisimulation argument and show
that the actions of A or Env cannot diverge execution to non-equivalent states.

First, define Z�i that achieves the goal by ignoring memory access restrictions. As
M�

i contains the entire state of I�i , Z�i can internally replicate all computations of I�i and
fetch all messages sent by Fp fromM�

i . Therefore, Z�i can perfectly simulate Zi and the
buffers b+p and b−p provided that states of Ii and I�i and Fp and F �p have not diverged
yet. However, note that only the messages from and responses to corrupted parties are
required to be accessed from the memory, thus the same Z�i can easily also satisfy memory
access restrictions.

As A is lazy semi-simplistic, we know that Ii creates a message before Fp reads the
corresponding input. Therefore, I�i translates DMACALL(t2, p, α, β) and SEND(t2, p, α)
instructions before F �p must fetch the corresponding input from the memory. Property (a)
of a well-formed program guarantees that Z�i can swap the values in the locations α just
before it clocks the address tuple to F �p . Property (d) guarantees that the change does not
alter further actions of I�i . Consequently, we can guarantee that Fp and F �p always get the
same inputs and thus the executions of the ideal functionalities in the two worlds give the
same results. Therefore, also Ii and I�i get the same results from the ideal functionalities
and the simulation done by Z�i is perfect.

To show the full equivalence of the two execution models, we need to define a class of
simplistic adversaries A�Π,Env against Π� and Env that are produced by φ� and then define
semi-inverse of φ∗� with the right properties.

Definition 19 (Simplistic adversary). An adversary is simplistic if it satisfies the following.

(a) The adversary clocks any outgoing buffer b+p and any incoming buffer b−p to an honest party
only when all incoming buffers b−p to corrupted parties are empty.

(b) The adversary can modify the state of the corrupted party only in the locations α of pending
DMACALL(t, p, α, β) and SEND(t, p, α) instructions. These changes are done before the
corresponding tuple is clocked to F �p and each value is modified at most once.

Corollary 2. For any lazy semi-simplistic adversary A and for any well-formed implementation of
Π, the construction φ�(A) is simplistic adversary.

Proof. The way Z�i alters memory just before clocking b+p in the proof of Theorem 6
guarantees that the property (b) of simplistic adversary is satisfied. The clocking rules for
φ�(A) are analogous the semi-simplistic adversary A and are therefore satisfied as φ�(A)
preserves clocking with respect to the matched buffers in the two configuration.

Cryptography 2021, 5, 22 23 of 45

We specify the semi-inverse through simulator machines Z∗i that go between Zi and
A�. The simulator translates clocking signals, provides read only access to the state of Ii
and translates memory writes to actual protocol messages. As before, let φ∗�(A�) be the
reduced collection consisting of A,Z∗1 , . . .Z∗n .

Theorem 7. Let Π� be the protocol with a well-formed implementation and let E be the set of
compatible environments. Then,

∀Env ∈ E : ∀A� ∈ A�Π,Env : Env〈Π�,A�〉 ≡ Env〈Π, φ∗�(A
�)〉

where and A�Π,Env is the set of simplistic adversaries compatible with the protocol and the environ-
ment. The resulting adversary φ∗�(A�) is lazy and semi-simplistic.

Proof sketch. Let us define another extended collection Π̂ that consists of machines
I1, . . . , In,Z1, . . . ,Zn,Z∗1 , . . .Z∗n ,F0, . . . ,Fk together with all buffers attached to the ma-
chines. Then, it is sufficient to prove that the equivalence Env〈Π�,A�〉 ≡ Env〈Π̂,A�〉 holds
for any Env and A� as Env〈Π̂,A�〉 ≡ Env〈Π, φ∗�(A�)〉 by construction.

We can use the same natural matching between machines and their internal states as
in Theorem 6. Equivalence is obvious when A� does not corruptM�

i . The machine Z∗i
just forwards all clocking signals and the equivalence follows from the construction of
I�i and F �p . To fetch a value s[t, δ, `], the machine Z∗i sends REVEAL(t, δ, `) message to Zi
and forwards the response. After a first REVEAL, call Zi is corrupted and Z∗i will instantly
forward the communication from Fp to Ii.

When A� issues memory modification instructions, Z∗i can locally store all altered
values s[t, δi, `i]. As the adversary A� is simplistic, it alters only memory locations related to
DMACALL(t, p, α, β) and SEND(t, p, α) instructions. Let tuples (t1, t2, m) and (t1, t2, α, . . .)
denote the outcomes of Ii and I�i for these instructions. Then, by construction A� can
clock a tuple (t1, t2, α, . . .) only after (t1, t2, m) is written to b+p . Moreover, A� does not
change values in the location α after (t1, t2, α, . . .) is clocked to F �p . By property (d) of
a well-formed implementation, these changes alter only the corresponding message m′

assembled by F �p and nothing more. Therefore, Z∗i must always check whether A� has
altered any of the locations α. If there are no changes, Z∗i clocks the message (t1, t2, m)
to Fp. If there are changes Z∗i orders Zi to write a message (t1, t2, m′) to b+p . After that
Z∗i can clock (t1, t2, m′) and ignore the original message (t1, t2, m). As a result, Fp and F �p
get the same message at the same time and equivalence is preserved. As A� is simplistic
then the clocking and modification rules carry over and the resulting adversary is lazy
semi-simplistic adversary.

3.2.3. Memory Alignment and Protocol Specification

Let a global state gs be a four-dimensional array that combines the states of all ma-
chinesM�

1 , . . . ,M�
n. More precisely, let gs[t, δ, `, i] = s[t, δ, `] for parties Pi in the storage

domain δ and gs[t, δ, `, i] = ε for parties Pi outside the domain δ. For brevity, let gs[t, δ, `]
denote a tuple (gs[t, δ, `, 1], . . . , gs[t, δ, `, n]).

Definition 20 (Memory-alignment). A well-formed protocol uses an ideal functionality in
memory-aligned manner if each individual input is reconstructed from gs[t, δ, `] and each output is
shared to gs[t, δ, `]. This restriction must hold regardless of adversarial behaviour.

Note that memory-aligned usage is not a property of a protocol. It easy to define
implementations where memory locations are not aligned in subprotocol calls. However,
simple incremental addressing is enough to achieve memory alignment for all ideal func-
tionalities when there are no local operations. Local operations without restrictions can
easily break the alignment if some parties carry them out and others do not. However,
alignment could be achieved by giving a dedicated memory region to local computation
outputs that are not inputs to some ideal functionality.

Cryptography 2021, 5, 22 24 of 45

However, from now we will treat local operations explicitly as external components
rather than internal affairs of the interpreter. We represent local operations reading and
writing toM� as fragmented functionalities G�1 , . . . ,G�m where each G�q is a collections of
machines {G�q,j}j∈Jq implementing local operations. Formally, we need a new interpreter
I./i and memory machineM./

i that have additional sender-clocked port pairs for commu-
nicating with G�1 , . . . ,G�m. To initiate an operation, I./i sends a tuple of locations (t, α, β) to
G�q which performs the computation and gives control back I./i . As before, α determines
the locations of inputs and β the locations of outputs in the state ofM./

i .
We add a sender-clocked buffer pair between G�q,i and F4 as local computations may

utilise setup parameters of the respective party Pi. As a result, all local operations can be
pushed out from I�i to G�q,i and I./i without changing the overall execution as shown in
Figure 8.

G�q

G�q,i G�q,j

F4 F4

M./
i M./

j

I./i I./j

Figure 8. Encapsulation of local computations involving two parties.

Definition 21 (Canonical protocol). Let F �1 , . . . ,F �k , F �io, G�1 , . . . ,G�m denote ideal functionali-
ties used in a well-formed protocol. A protocol specification is in a canonical form if

(a) all conditional jumps are based on local values,
(b) the remaining local operations are implemented with G�1 , . . . ,G�m and
(c) all ideal functionalities are used in memory-aligned manner.

These conditions must hold regardless of the adversarial behaviour.

Similarly to the previous cases, any well-formed protocol can also be represented in
the canonical form. Note that in canonical protocol specification, the interpreter I./i can
be isolated from the trusted setup F4 as it runs no computations on its own. A canonical
protocol specifications guarantees that F �pd operates with aligned memory locations. There-
fore, the entire collection of memory modulesM./

1 , . . . ,M./
n can be replaced by a single

memory moduleM./ with the same set of port pairs that keeps the internal state gs to
answer all queries. To reconstruct an input or store an output, F̂ �p always addresses a block
gs[t, δ, `].

This allows us to define a collectionF ./
pd that meets the specification ofF �pd by replacing

Ru and Su with a machines R./
u and S./u which directly communicate with the shared

memoryM./. Given an input (t, δ, `), the machineR./
u fetches gs[t, δ, `], reconstructs the

underlying value x and sends it back toM./. Given an input (t, δ, `, y) the machine S./u
computes shares for y and writes them to gs[t, δ, `].

To preserve compatibility, we replace TR and TS with machines T ./
R and T ./

S that
consolidate memory locations instead of messages. The machine T ./

R collects location
tuples (t1, t2, α, . . .) instead of incoming messages. When all tuples for a particular round
of computation have arrived, T ./

R extracts all unique input locations and reconstructs
inputs with the help of R./

u . After that it sends output locations to T ./
S and proceeds as

TR. Whenever F ./
p wakes up T ./

S , it first clocks in a message from T ./
R that contains the

output locations and uses S./u to share the outputs. To isolate T ./
R and T ./

S from the memory,
we add a separate machine T ./

M between T ./
R , T ./

S and A. This machine T ./
M manages all

cases when T ./
R or T ./

S give any values to A by receiving the locations from T ./
R or T ./

S
and retrieving the necessary values itself. For clarity, let us define F̂ ./p as a collection of
T ./
R ,F ./

p , T ./
S as we push T ./

M into the adversary in the next step.

Cryptography 2021, 5, 22 25 of 45

Thanks to T ./
M, F̂ ./p can still leak inputs, outputs and their locations, or perform

selective aborts based on values. The adversary gets a limited access to the memoryM./

through T ./
M. Note that we are working with the canonical ideal functionalities as specified

in Section 2.4.2 which limits T ./
M and subsequent adversaries to only read the shares of

corrupted parties. F ./
io is defined based on F �io with the difference that it writes the values

toM./ and sends only the location information to I./. Define Π./ as an extended collection
consisting of machines I./1 , . . . , I./n ,M./, F̂ ./

1, . . . , F̂ ./
k,G�1,1, . . . ,G�g,n, F ./

io with all attached
buffers. Let φ./(A�) be the reduced collection consisting of A and all T ./

M. Therefore, the
new adversary expects memory locations from the ideal functionality and fetches corrupted
parties values from the memoryM./.

Theorem 8. Let Π� be a well-formed protocol specification that is in a canonical form and let E be
the set of compatible environments. Then,

∀Env ∈ E : ∀A� ∈ A�Π� ,Env : Env〈Π�,A�〉 ≡ Env〈Π./, φ./(A
�)〉

∀Env ∈ E : ∀A./ ∈ A./
Π./ ,Env : Env〈Π./,A./〉 ≡ Env〈Π�, φ∗./(A

./)〉

where and A�Π� ,Env is the set of compatible simplistic adversaries for Π� and A./
Π./ ,Env for Π./. The

resulting adversaries φ./(A�) and φ∗./(A./) are simplistic.

Proof. The buffers between I�j and I./j and adversary are the same in both worlds, and
the adversary accesses the same state of the interpreter inM�

i andM./. The differences
are the joiningM�

i toM./, introducing G�q,i as separate functionalities and decomposing
Fp to T ./

S , T ./
R and T ./

M that also interact withM./.
All memory addresses are written once by a well-formed protocol, thus the outputs of

G�q,i are never overwritten and the adversary can access them fromM./ when needed. In
addition, the buffers connecting G�q,i to I./i andM./ are sender-clocked and therefore this
separation is invisible for A. Therefore, separating the local functionalities is equivalent
to the local functionalities inside I� where I� writes all outputs to M./. As all ideal
functionalities are canonical, we can replace all instances of Su andRu with S./u andR./

u
provided that we rewire the memory toM./.

Adversary φ./(A�) is simplistic as it respects the clocking rules of simplistic A� and
the construction did not change the clocking or the modified memory locations. Similarly,
transforming A./ to equivalent A� is straightforward and can be accomplished getting the
same values as read fromM./ from communication with F �.

3.3. Reduction to Abstract Memory Model

Simplistic adversaries are extremely restricted. They can alter a fixed set of memory
locations and decide when ideal functionalities and interpreters perform their computations.
As a protection domain F ./

pd consists of ideal functionalities F̂ ./
1, . . . , F̂ ./

1 which use two
universal machines R./

u and S./u for reconstruction and sharing, it is straightforward
to define an intermediate memory module M0 that stores reconstructed values. With
additional simplifications we can restate all operations in terms of M0 and quantify
memory modifications in terms of underlying values instead of shares. In more formal
terms, we define a ∗-operator that acts on protocols and their components together with a
universal φ∗ : A./ → A∗ and its semireverse φ∗∗ : A∗ → A./ that achieves

∀Π ∈ P : ∀Env ∈ EΠ : ∀A ∈ A./ : Env〈Π./,A./〉 ≡ Env〈Π∗, φ∗(A./)〉 (10)

∀Π ∈ P : ∀Env ∈ EΠ : ∀A ∈ A∗ : Env〈Π∗,A∗〉 ≡ Env〈Π./, φ∗∗(A
∗)〉 (11)

where P is the set of protocols with canonical specification and EΠ is the set of compatible
environments. The forward transformation is covered step by step through the whole
section and the reverse is summarised in Lemma 12.

Cryptography 2021, 5, 22 26 of 45

3.3.1. Introduction of Abstract Memory

We split the memoryM./ of values and shares and introduce a dedicated memory
moduleM0 for the values. The internal state ofM0 is a three-dimensional array s0 is such
that an entry s0[t, δ, `] contains the value corresponding to shares in gs[t, δ, `] inM at all
critical time-steps. Then, we place machinesR∗u and S∗u betweenM0 andM together with
a pair of sender-clocked buffers for synchronisation as depicted in Figure 9. Recall that TR
only receive public parameters. Local variables and the state of each party are also stored
inM0. For that we replace the pair of sender clocked buffers between each interpreter I./i
andM./ with a corresponding buffer pair between I∗i andM0. M0 allows the adversary
can read and write local variables of corrupted parties.

M0 M

R∗u

S∗u

F̂∗1

T 1
R

F∗1

T 1
S

F̂∗2

T 2
R

F∗2

T 2
S

I1 I2 F4 F4

I1
I2

I1
I2
I1
I2

I1
I2

A A A A AA

F./io

G�1

G�2

F4 F4

Figure 9. Separating memory toM0 for values andM for shares, F1.

We synchronise the states of s0 and gs as follows. When a machine queries a share
from a location (t, δ, `) and gs[t, δ, `] is empty or invalidM writes SHARE(t, δ, `) to the
synchronisation buffer. Then, M0 uses S∗u to share s0[t, δ, `] and gives control back to
M who uses gs[t, δ, `] to complete the query. Whenever gs[t, δ, `] is updatedM writes
UPDATE(t, δ, `) to the synchronisation buffer. After thatM0 uses R∗u to update s0[t, δ, `]
and gives control back toM. Finally,M0 must write INVALID(t, δ, `) to the synchronisation
buffer when the value of s0[t, δ, `] is updated. After thisMmarks the location (t, δ, `) as
invalid and gives control back toM0. This mechanism guarantees thatM0 andM give
always coherent replies to other machines.

As a result, we can connect F̂ ./p directly to M0 instead of R./
u and S./u without

changing the execution, let this be F̂ ∗. When TR queries (t, δ, `), the machineM0 replies
s0[t, δ, `]. When TS wants to share a value x to a location (t, δ, `), the machineM0 sets
s0[t, δ, `] = x and marks the location (t, δ, `) as invalid. The latter allows us to replace a
sub-collection inside Π./ without changing the execution outcome. More precisely, let
F0 be an extended collection consisting of F̂ ./

1, . . . , F̂ ./p,R./
u ,S./u ,M./ and let F1 be an

extended collection consisting of F̂ ∗1, . . . , F̂ ∗p,M0,R∗u,S∗u ,M.

Theorem 9. Collections F0 and F1 are observationally equivalent for well-formed protocol specifi-
cation in a canonical form.

Proof. The substitution does not change communication between the collection and F4.
Therefore, it is sufficient to show that machinesM, F̂ ∗1 , . . . , F̂ ∗p run in the same order and
provide identical replies to A and Πe. The latter is sufficient as communication with other
machines in the collection is sender clocked and invisible to outside observers.

In particular, we need to show that when a machine queries gs[t, δ, `] its value is same
in both collections. Assume that so far all queries have yielded identical results. In F0, the
response to T ./

R is computed from gs[t, δ, `], whileM0 responds s0[t, δ, `]. By the construc-

Cryptography 2021, 5, 22 27 of 45

tion the value of s0[t, δ, `] is invalidated whenever gs[t, δ, `] is updated. Consequently, the
reply s0[t, δ, `] contains the reconstruction of gs[t, δ, `] as in F0.

Assume that the location gs[t, δ, `] of a new query is initialised. If T ∗S was the last ma-
chine to update gs[t, δ, `] in F0 then it was also the last to update s0[t, δ, `] in F1. Therefore,
s0[t, δ, `] contains the correct value. By the construction, the update marked the location
gs[t, δ, `] as invalid and thus the reply yields shares generated by Su. For other machines,
the memory cells are updated identically in both collections. If gs[t, δ, `] is uninitialised
in F0, then no machine has updated this location. Thus, T ./

S could not have initialised
s0[t, δ, `] nor could any other machine have initialised gs[t, δ, `] in F1.

3.3.2. Extended Modification-Awareness

As the adversary can modify shares of corrupted parties and therefore change the
values inM0. Here, we study under which assumptions the adversary can update s0[t, δ, `]
itself after modifying shares gs[t, δ, `]. The concept of modification awareness (Definition 3)
is meant to tackle this, but some interactions in the computations are not captured by the
definition. We can apply the extractor from the modification awareness in our current
setting but its success is not necessarily the same.

We define a collection F2 where we place the extractor E betweenM0,M and A as in
Figure 10. The extractor E which forwards messages between A toM and simultaneously
extracts changes ∆ corresponding to share modifications. These modifications are sent
toM0 who updates the state s0 accordingly. A slightly modified machineM does not
invalidate a location s0[t, δ, `] when the extractor E alters the location gs[t, δ, `].

M0 M

R∗
u

S∗u

E

F4 F4 F4

A

F1

F2

F./io

G�1

G�2

Ii Ij

Figure 10. Separating a value modification module E fromM, collection F2.

Definition 22. An adversarial modification of gs[t, δ, `] is oblique if the extractor E fails to correctly
update the value of s0[t, δ, `].

Theorem 10. Collections F1 and F2 are observationally equivalent for an environment adversary
pair provided that the extraction failure is negligible.

Proof. As the machine E forwards the communication between A andM without mod-
ification, the states of the configurations can diverge only if the values of s0[t, δ, `] differ
whenM0 replies to some query. It is straightforward to see that the latter occurs only if
the extraction fails for gs[t, δ, `].

Definition 23. Local operation is transparent if any modification of output shares can be effectively
converted to a modification of inputs and oblique modification goes to oblique modification.

Cryptography 2021, 5, 22 28 of 45

Common local operations—copying and linear combination—do not contribute to
extraction failures as they are reversible and thus oblique modifications can be back-
propagated. To bind the probability of extraction failures, we need to reason about the
environment Πe and protocol Π together as oblique changes may enter the protocol through
inputs. For instance, in verifiable storage domains, an adversary can corrupt a parent party
in Πe and invalidate its input shares for Π. As A knows the original shares, it can modify
invalid shares to the originals inside Π. The resulting modification is oblique. By definition,
M0 holds ⊥ in that location meaning that the modification function always results in ⊥
independently of the extractor outcome.

Non-canonical ideal functionalities are a potential source of oblique modifications.
For example, consider a weird flavour of non-fair computations where the adversary learns
the output shares of honest parties before it can invalidate some of them. To create an
oblique modification, the adversary can later corrupt a party with invalidated share and
replace it with the original. Unconventional local functionalities can also create oblique
modifications simply by invalidating the input shares. As the adversary knows the original
shares, it can create oblique modification by restoring the valid share.

Lemma 4. Assume that all local operations are transparent and ideal functionalities are in a
canonical form. Assume that Sδ generates all protocol inputs for domain δ and the inputs of Sδ are
determined by the adversary. Then, the probability of extraction failures in a well-formed program is
negligible for simplistic adversaries provided that every storage domain is modification aware.

Proof. Let A be a simplistic adversary that with probability ε creates an extraction failure
in storage domain δ in some protocol instance. Then, we can define a new adversary B
against modification awareness of storage domain δ (see Figure 3b).

First, note that the adversary B can perfectly simulate S and R, as it has direct
access to Sδ (inputting values through L and reading from L∗ through Eδ) andRδ in the
modification game and can run the trusted setup for all other domains. As a consequence,
B can perfectly simulate protocol inputs and ideal functionalities Fp. The simulation of the
protocol is straightforward, as the flow of the interpreters depends only on local values
and new local values can be created by ideal functionalities or local operations. As B learns
the entire output of Sτ for protection domains τ 6= δ, the shares of gs[t, τ, `] can be directly
computed. The requested shares of δ can be computed by backtracking all dependencies to
shares generated by Sδ and then redoing all local operations.

Next, we add back-propagation of modified shares for the domain δ. By definition, a
simplistic adversary A can modify only the inputs of ideal functionalities. If a modification
is generated by Sδ then this modification can be used to win the modification game. If
the modification is computed by a local functionality then due to transparency, B can
always back-propagate a change to a change of one input of Gq and an oblique change
is guaranteed to remain oblique. This process can be repeated until B reaches a protocol
input or an output of ideal functionality Fp. These are potential challenge shares generated
by Sδ.

Each input modification leads to a modification of a potential challenge. The total
number of such modifications is bounded by the number of inputs to ideal functionalities
that have domain δ. Let the corresponding number be n. As we cannot check which
modification is oblique, B must set one of them randomly as the challenge modification
when it generates the shares. As a result, B succeeds in modification awareness game with
probability ε

n . The claim follows as ε is negligible whenever ε
n is negligible.

Corollary 3. If all local operations are transparent, ideal functionalities are in a canonical form
and the environment is simulatable; then, the probability of extraction failures in a well-formed
program with modification aware storage domain is negligible for simplistic adversaries.

Proof. The proof of Lemma 4 can be generalised to a class of environments that can be
simulated in the modification awareness game. Simulation means running the environment

Cryptography 2021, 5, 22 29 of 45

analogously to the protocol as part of the modification game. Therefore, we require the
assumption that Πe does not leak the setup parameters or joint state. In addition, in such
simulation we can notice the modifications to inputs of Π done in Πe that could be oblique.
Such modifications can be used or propagated similarly to the actions with values of Π in
Lemma 4.

3.3.3. Meaningful Local Operations

Local operations cause another state update procedure where the information flows
from the machine M to M0. Meaningful local operations (Definition 6) produce such
output shares that the state s0 can be updated from itself. Note that a value s0[t, δ, `] inM0
is read-only by Fp. An adversary can obliviously update s0[t, δ, `] by sending differences ∆
toM0 through E . The canonical protocol description guarantees that F ∗p reads s0[t, δ, `]
only after the location gs[t, δ, `] has been initialised. Thus, if a local operation Gq initialises
gs[t, δ, `] then it is always completed before the read of s0[t, δ, `].

This allows us to define a new collection F3 where machines G0
q update the state s0

instead ofR∗u. Each G0
q interacts with interpreters {Ij}j∈Jq and the abstract memoryM0

and receives public parameters from F4. For that we slightly modify the behaviour of Ii,
M andM0. Whenever Ii calls Gq it also calls G0

q after it gets the control back. The machine
G0

q immediately checks if the operation has been computed inM0 or if there are enough
inputs in M0 to complete the local operation in M0. If all inputs are present and the
operation has not been executed yet, then G0

q reads inputs from s0, computes the outputs
according to gq and writes it to s0. ModifiedM does not invalidate a location s0[t, δ, `]
when the functionality Gq alters the location gs[t, δ, `] but otherwise behaves as before.

Theorem 11. Collections F2 and F3 are observationally equivalent provided that a well-formed
protocol specification is in a canonical form and all local operations are meaningful and implement
some deterministic functionality.

Proof. Modifications to the collection F2 do not change the order of machine activations. In-
deed, changes inM eliminate only a ping-pong interaction betweenM andM0. Changes
in Ii inject a ping-pong interaction between Ii and G0

q . As the communication in these
interactions is sender-clocked the other machines can distinguish collections only based on
the states ofM0 andM. Clearly, modifications do not change the state ofM as long as
responses to queries gs[t, δ, `] and s0[t, δ, `] remain same in both collections. Therefore, it is
sufficient to consider only the responses to queries s0[t, δ, `].

Only an ideal functionality F ∗p (or F �io) can query s0[t, δ, `]. Therefore, it is sufficient to
consider when Gq updates gs[t, δ, `], as otherwise both collections behave identically. For
well-formed programs, the value gs[t, δ, `] is never fetched by Fp before all interpreters
have defined their shares. Although gs[t, δ, `] may depend on several local operations we
know that all of them complete by that time. As the adversary never overwrites inputs
of local computations, we can inductively prove that the update chain gives the the same
result for s0[t, δ, `] as the reconstruction step in F2.

The result can be generalised to meaningful non-deterministic local functionalities.
First, all inputs to Gq must have a correct distribution, or otherwise we cannot apply the
definition. Second, the inputs of local functionalities with non-deterministic outputs must
be independent. For instance, if the local functionality Gq is deterministic and we re-run
the same shares we get the same output while gq gives two independent outputs.

3.3.4. Isolation of Protocol Outputs

By construction all protocol outputs are obtained by releasing shares of type gs[t, δ, `]
even if outputs are locally private values. As a next step, we modify the construction so
that all output shares are generated anew by S∗u . This a major prerequisite for isolating
the adversary from the memoryM. We define a new collection F4 in Figure 11 where F �io
is replaced byR+

u to construct inputs and S+u to create outputs. S+ always gives control

Cryptography 2021, 5, 22 30 of 45

back to Ii that called it. R+
u writes the value toM0 as soon as sufficient shares have been

received and always forwards the signal to the party Ii whose input was clocked to it. All
these added buffers are sender clocked. SEND instructions from Ii are forwarded only to
S+u . The behaviour of S+u is different from F �io. The machine S+u keeps a special cache L
of published values which is initially empty. For each input SEND or DMACALL from Ii,
it extracts all locations (t, δ, `) of output shares. If a triple (t, δ, `) /∈ L, the machine S+u
fetches the corresponding value fromM0, computes the shares and stores them into L[t, δ].
If (t, δ, `) ∈ L, then it uses the shares in L[t, δ].

M

R∗
u

S∗u

E

F�
io

F4 F4 F4 I1 I2

A

M0

M0

M0

M0

Πe

G�1

G�2

(a) F3

M

R+
u

S+u

S∗u

E

Ii F4F4 F4Ii F4

A

M0

M0

M0

M0

M0

Πe

Πe

G�1

G�2

(b) F4

Figure 11. Memory models for input–output isolation.

Definition 24. A protocol environment pair Env〈Π〉 is in an output-isolated configuration for a
class of adversaries A and resource consumption constraints if there is a construction φ such that
Env〈F3,A〉 ≡ Env〈F4, φ(A)〉 for A ∈ A and the construction φ satisfies resource constraints. A
protocol Π is output-isolated if this property holds for any environment.

Any protocol where all outputs are returned by deterministic S (e.g., local values) or
where no shared outputs are returned are output isolated. The value L[t, δ, `] is guaranteed
to have the same distribution as gs[t, δ, `] when outputs are computed by an ideal function-
ality. However, the behaviour of Fp may still reveal the discrepancy. For instance, A may
decide whether to abort or continue based on the output shares of honest parties if Fp can
reveal them to A. The latter creates a discrepancy that is impossible to resolve in F4. It is
also an explicit weakness of a protocol. Any protocol can be converted to output-isolated
protocol by resharing outputs before returning them. Hence, almost all functionalities used
in practice can be implemented with isolated outputs.

Lemma 5. A canonical well-formed protocol specification is output-isolated for coherent adversaries
if all outputs are computed by some ideal functionalities with standard corruption mode, output
shares are not used further in computations and they are immediately returned as outputs.

Proof. It is straightforward to see that R+ in F4 processes inputs identically to F �io in
F3. Therefore, we need to consider only the output generation. In F3, output generation
starts when Fp writes its output to s0[t, δ, `]. At some point, the adversary clocks the
corresponding OK message from Fp to some Ii. Ii writes DMACALL or SEND message to
push its share of gs[t, δ, `] to Πe, and Fio fetches the corresponding part of gs[t, δ, `]. By
construction, gs[t, δ, `] is created by S∗u from s0[t, δ, `]. In F4, Ii sends DMACALL or SEND

message to S+u , which usesL[t, δ, `] instead of gs[t, δ, `] to create the output. By construction,

Cryptography 2021, 5, 22 31 of 45

gs[t, δ, `] and L[t, δ, `] have the same distribution. However, there is a discrepancy between
gs[t, δ, `] and protocol output.

Note that only A can observe the discrepancy, as honest parties do not use output
shares in further computations. Coherent A has also corrupted the parent node P∗i in the
inner environment and thus can fetch shares gs[t, δ, `] from the outputs sent to P∗i . For that,
we must guarantee that the outputs arrive earlier than A wants to read the i-th share of
gs[t, δ, `]. The latter is straightforward as the output shares are published as soon as they
become available for A and A can always clock the output to P∗i .

Lemma 6. Any protocol is output-isolated for the class of environments that do not use randomised
output shares at all.

Proof. Note that the changes introduced by F4 alter only output shares given to the
environment and only for non-deterministic S . As a result, the adversary can compute the
protocol outputs based on the state of corrupted party Pi instead of the actual protocol
output reaching the parent node P∗i . This hides the discrepancy between F3 and F4, as
these shares are never used in any other protocol.

Lemma 7. Any protocol where output shares have the same distribution as freshly generated shares
is output-isolated for the class of adversaries that do not access the protocol state at all.

Proof. By assumption all protocol outputs are identically distributed in F3 and F4. As the
adversary A learns nothing about the protocol state it cannot detect the discrepancy, nor
can the adversary alter the protocol execution as it cannot alter the protocol state.

Theorem 12. Let F be a canonical ideal functionality that does not leak shares to adversary and
let Π be a protocol that is as secure as F for a class of environments E and adversaries A. Then, Π
is also output-isolated for the same classes of adversaries and environments.

Proof. Let A ∈ A be an adversary against the original protocol and environment pair
Env〈Π〉, and let φ be the construction that proves the security of the protocol. Then, φ(A)
is an ideal adversary that defines protocol inputs and receives protocol outputs in F .
As the adversary φ(A) does not learn values from the ideal functionality F , its interface
is compatible with Env〈Π〉. By definition, Π is equivalent to F for all adversaries that
behave honestly. Indeed, if an adversary B does not corrupt parties then φ(B) cannot also
corrupt parties. The same must be true for the adversary φ(A). Although φ(A) corrupts
some parties and alters their inputs, these parties remain honest in the protocol. As a
result, Env〈Π,A〉 ≡ Env〈Π, φ(A)〉. The claim follows as φ(A) satisfies the assumptions of
Lemma 7.

A protocol is secure if any adversary can be converted to an adversary against ideal
implementation. Therefore, all adversaries against F4 can be modified to adversaries that
do not read the shares of the outputs fromM at all. That means that output-isolation is
necessary for security in general. The intuition is that since these shares are updated during
outputting and not used in the protocol then reading them is only relevant in Πe. Thus, in
the following we only consider such adversaries.

3.3.5. Complete Memory Isolation

The transformation defining protocol output isolation in the previous section cuts
the last link between the memoryM and the environment Env. Only the actions of the
adversary A can now depend on gs all local computations and ideal functionalities only
use s0. Thus, honest execution does not require gs and in this section we show how A can
simulate gs for hiding storage domains. Therefore, we will completely removeM from the
protocol description.

Cryptography 2021, 5, 22 32 of 45

First, we minimise the number of memory locations accessed by A. Memory locations
gs[t, δ, `] can be divided into three classes: protocol inputs, outputs of ideal functionalities
and outputs of local computations. A coherent adversary can always extract protocol
inputs from the parent node when the latter submits them to R+

u . Simulation of local
computations Gq is straightforward provided that we know the inputs of Gq. Only the
outputs of ideal functionalities must be fetched from the memoryM. In the following, we
consider the details of constructing the adversary that only reads these values written by
ideal functionalities fromM and does not touch other memory locations.

Let Ao be the class of adversaries that only read the outputs of Fp fromM. More
formally, let Ao ∈ Ao be the new adversary that internally runs A and clones interpreters
I1, . . . , In to answer adversarial queries about corrupted shares of gs[t, δ, `]. To reconstruct
the state of a newly corrupted party Pi, Ao has to redo all the computations done by Pi so
far. For that, Ao must get all protocol inputs submitted by P∗i . We use the assumption that
the state of P∗i contains enough information for Ao to repeat all computations and thus the
input extraction becomes trivial. The adversary Ao must also access local variables and
outcomes of random choices of Pi stored inM0. The output shares of Fp are queried from
M as usual. As a result, Ao can rerun a clone of Ii to recreate the state of Pi. In addition to
the real values fromM, Ao uses the inputs known to it to fill the simulated memory with
protocol inputs and local computation outputs that A can access.

Lemma 8. Assume that we can rerun all computations for any corrupted parent node. Then,
Env〈F4,A〉 ≡ Env〈F4,Ao〉 for any coherent simplistic adversary A.

Proof. By construction of Ao from A, we can just repeat all computations as necessary and
only read the outputs of Fp.

Clearly, the outcome of Env〈F4,A∗〉 depends only on the locations gs[t, δ, `] that are
read by the adversary which are the outputs of ideal functionalities Fp. As these locations
are directly updated by S∗u , we can remove the remaining update mechanisms for protocol
inputs and local operations. Let F5 be a simplified collection where R+

u does not updateM
and is not connected to it. Interpreters I1, . . . , In activate only G0

1 , . . . ,G0
m, and machines

G�1 , . . . ,G�m are removed. Note that while the shares are not read, the adversary can still
do modifications to all inputs of ideal functionalities and the outputs returned to Πe.
Therefore, we disconnect E fromM and join it to Ao so that can supply it with the values
that it recomputes that should be in memoryM. Let the new adversary combining Ao and
E be AEo and the respective class of adversaries AEo is such that they submit direct coherent
modifications toM0 andM.

Lemma 9. For any Ao ∈ Ao defined as above we have Env〈F4,Ao〉 ≡ Env〈F5,AEo 〉.

Proof. By definition, Ao reads only outputs of Fp fromM and these are not affected by
the changes as these are written after Fp executes. Nothing other than values inM are
affected by the transformation to F5. Note that the extractor E still sees valid shares and
works in the same manner as before but is just considered to be part of the adversary.

To shieldM completely from AEo , we use the simulator So
δ from the hiding property

definition (Definition 2) and assume the adversary A does not read the output shares as
discussed for output-isolation. Let Alc be the adversary that runs AEo internally but uses
simulators S∗δ for each protection domain instead of values inM. We denote by Alc the
class of limited control adversaries (Definition 4) that do not interact withM.

Lemma 10. Let Env be an environment that uses storage domains without private parameters.
Then, Env〈F5,AEo 〉 ≡ Env〈F5,Alc〉 for any limited control adversaries AEo ∈ AEo and Alc as defined
above using AEo and not reading the output memory locations.

Cryptography 2021, 5, 22 33 of 45

Proof. W.l.o.g. we can consider only the case where the protocol uses only one storage
domain δ as there are no parameters that might be shared by domains. Define an adversary
B against hiding games so that the first hiding game is equivalent to Env〈F5,AEo 〉 and the
second to Env〈F5,Alc〉. First, note that B needs to internally simulate all computations of
Env. As Env does not use storage domains with private variables, B can internally evaluate
Sδ and Rδ for any storage domain δ and recreate all computations inside Env. Second,
note that machines I1, . . . , In, F1, . . . ,Fk, G0

1 , . . . ,G0
m,M0, E ,S+u ,R+

u form a subcollection
Z that interacts withM through the machine S∗u . The adversary A can clock some buffers
inside Z and interact with F1, . . . ,Fk and E . After simulating Env, the adversary B can
produce all inputs to the protocol Π.

For the outputs of ideal functionality gs[t, δ, `], the adversary B interacts with the
hiding game. It corrupts locations when AEo issues corruption calls. When an ideal func-
tionality Fp wants to write x to gs[t, δ, `], B remaps a location (t, δ, `) to κ and set s0[κ] = x
by interacting with L. It also sets b[κ] = 1 to mark that the values is inside the protocol
scope. In one game this does not affect the outcome but in the second this means that all
shares will be simulated. When Ao queries corrupted shares of gs[t, δ, `], the adversary B
fetches corresponding shares from L∗.

The first hiding game is equivalent to Env〈F5,AEo 〉 as the shares are generated by Sδ.
When B is in the second game then the shares of the protocol are simulated because b[κ] = 1
and the second game is equivalent to the definition of Env〈F5,Alc〉. Most importantly, note
that the adversary AEo modifying the memory locations does not affect the interaction with
the hiding game. B always simulates the computations to learn the new value inM0 that it
can put into L in the game. B succeeds thanks to AEo that gives the coherent modification of
the value together with the share modification toM0 andM. Note that in case AEo uses the
extractor, this proof also covers the case where the hiding property is somehow invalidated
by the extraction.

The same proof can be generalised to storage domains with private setup parameters
if the environment can be simulated inside the hiding games, meaning that all sharing
operations inside the environment are carried out inside the hiding game with b[κ] = 0. As
before, this is possible if the Πe does not reveal setup parameters that would invalidate
the hiding property. For the adversary Alc, the memoryM has become meaningless, thus
define the limited control execution model F6 from F5 by removing connections between
M0 andM, including S∗u . This setup is shown in Figure 12.

F1

F2

G01

G02
M0 Πe Envo

R+
u

S+u

F4 F4 F4 F4 I1 I2 I1 I2 F4 F4

I1
I2

I1
I2
I1
I2

I1
I2

A A A I1 I2 F4 A A

Figure 12. Limited control execution model for two-party protocols.

Lemma 11. Then Env〈F5,Alc〉 ≡ Env〈F6,Alc〉 for any Alc ∈ Alc.

Proof. Trivial as Alc does not communicate with the memoryM or S∗u .

Cryptography 2021, 5, 22 34 of 45

Corollary 4. Any coherent adversary against the hybrid model can be transformed to an equivalent
coherent limited control adversary against the same protocol in F6 for hiding and modification aware
storage domains and for well-formed protocols that are in a canonical form and use meaningful
transparent local operations.

Proof. We work with a coherent adversary which works well as a generic adversary
(Lemma 1). In Lemma 2 and Corollary 1, we show that if a protocol is robust against
malformed inputs then any generic adversary is equivalent to semi-simplistic adversary. In
Lemma 3 and Theorem 4, we show equivalence of semi-simplistic and lazy semi-simplistic
adversary if all functionalities have tight scheduling and the protocol is secure against rush-
ing. In Theorem 6 and Corollary 2 we conclude that it is sufficient to consider only simplistic
adversaries when running well-formed programs. We then show that we can separate the
value and share memories (Theorems 8 and 9), limit their interactions (Theorems 10 and 11).
Assuming output isolation we continue the simplifications in Lemmas 8–10 to move from
real shares to simulated shares. Finally, in Lemma 11 we conclude that it suffices to consider
the limited control execution model.

3.3.6. From Limited Control to the Hybrid Model

Lemma 12. Any coherent limited control adversary against F6 can be transformed to an equivalent
coherent simplistic adversary against the same protocol in F0 for storage domains with limited
control and negligible extraction failure, and for well-formed protocols that are in a canonical form
and use meaningful transparent local operations.

Proof. Theorems 8, 10 and 11 guarantee that F0, F1, F2 and F3 are observationally equiva-
lent for any adversary for well-formed protocol specification in a canonical form, using
meaningful local functionalities and storage with negligible extraction failure. However,
for F3 to F6 we modified the adversary and have to consider how any coherent adversary
against F6 can be transformed to a simplistic coherent adversary against F3.

Consider the adaptor machine that connects to the abstract adversary that only inter-
acts withM0 and does clocking. If the protocol in it is using a storage domain with limited
access, then all modifications to the valuesM0 can be translated to the values of the shares
inM in F3. Note that by definition the new adversary against F3 reads only the values
that are modified from the memory and only uses them to compute the modification. If the
extraction has negligible failure then the values inM0 are the same in F3 and F6 after this
change. The added memoryM and changed interaction with Πe do not change the view
of the adversary or the values returned to Πe.

Corollary 5. For all coherent limited control adversaries Alc against the protocol Π∗ in F6 there
exists a hybrid adversary φ∗(Alc) such that Env〈Π∗,Alc〉 ≡ Env〈Π, φ∗(Alc)〉 if the protocols are
secure against rushing and malformed inputs, have well-formed specification, are in a canonical
form, use meaningful local operations for deterministic functionalities, use storage domains with
limited access and negligible extraction failure.

Proof. Semi-simplistic and lazy semi-simplistic adversary is equivalent to the generic
adversary as shown in Corollary 1 and Theorem 4 for protocols secure against rushing.
Simplistic adversaries can be transformed to equivalent lazy semi-simplistic adversaries
for the same well-formed protocol in the respective protocol description as shown in
Theorem 7. Theorem 8 shows that storing values inM in aligned manner can be reversed
to any memory layout and Gi can be merged to the interpreters. Lemma 12 shows that any
limited control adversary can be transformed to equivalent simplistic adversary for the
canonical protocol. Therefore, we have shown that any limited control adversary can be
transformed to an equivalent adversary in the hybrid protocol.

Cryptography 2021, 5, 22 35 of 45

3.4. Abstract Model

Results from previous sections allow us to consider an execution model where the
environment interacts with a system consisting of interpreters I1, . . . , In, a semi-protected
memory moduleM0, a library of idealised functionalities G0

1 , . . . ,G0
m and F1, . . . ,Fk for

local and global operations and modulesR+
u and S+u for storing and fetching values from

the memoryM0. The environment for the protocol in question consists of the rest of the
computation represented by Πe and outer Envo representing the rest of the world as in
Figure 12. The left-hand side of the figure is completely stated in terms of abstract memory
and public parameters whereas the right-hand side, especially Πe is still a complex network
of nodes exchanging shares.

In Appendix C, we discuss further means to simplify the collection F6 for many cases
where the adversary does not really need individual buffers to clock each input and output
of Fp. For example, this is allowed in the usual case where the order and execution of Fp
is sequential within one protocol instance. These simplifications would also carry over to
the abstract execution model.

3.4.1. Abstract Execution Environment

Consider a restricted class of environments Er where the inner environment Πe is
trivial, i.e., parent parties P∗i just forward inputs and outputs between Envabs and the
protocol Π that we are considering. Each instance of Πe runs only a single instance of Π.
All inputs provided by Envo are first shared in Πe using Sδ for the protection domain where
these values are and then reconstructed byR+

u in Π. The output of S+u is reconstructed by
the relevant reconstruction functionality Rδ in Πe before it reaches Envo. Therefore, the
main component of Envr is Envo and Πe is almost invisible.

For adversaries that do not read the state of corrupted parent nodes P∗i , we can
simplify Πe to F7 as depicted in Figure 13. Machines Oin and Oout handle protocol inputs
and outputs. Buffers between Oin and Oout allow instant sharing of their states. In F6,
Ii interacts with S+u only when it executes DMACALL or SEND instructions. As there is
only one instance of Π for each instance of Πe, we modify the interpreter Ii in F7 so that it
would send a message to Oout. As the buffer is clocked by the adversary, the interpreter
does not lose control and can carry out as usual. By definition the interpreter Ii expects an
input fromR+

u to launch a new protocol instance or as a reply to a DMACALL instruction.
In F7, the machine Oin sends the corresponding inputs. No changes are made to Envo that
still submits and receives plain values.

F1

F2

G01

G02
M0 Envo

Oin

Oout

F4 F4 F4 F4 I1 I2 I1 I2

I1
I2

I1
I2
I1
I2

I1
I2

A A A I1 I2 A

Figure 13. Abstract execution model for two-party protocols, F7.

Machines Oin and Oout simulate the inner environment Πe with instant clocking.
The machine Oout collects incoming instructions and forwards DMACALL to Oin who
immediately gives the control back. After that Oout treats the instruction as a message from
S+u and simulates the reactions of P∗i and Rδ. When Rδ releases some values s0[t, δ, `],

Cryptography 2021, 5, 22 36 of 45

then Oout fetches them from the memory and sends to Envo. The machine Oin simulates
the actions of Sδ, P∗i and R+

u . Based on the inputs from Oout, it knows what messages
interpreters I1, . . . , In expect and thus can assign correct memory locations to all messages
sent to R+

u . When some message arrives to R+
u , Oin writes corresponding values to

M0 and forwards the response of R+
u to the correct interpreter. Fast clocking inside the

simulation guarantees that Oin creates responses no later than in F6, and Oout writes the
outputs to Envo as soon as all release instructions have arrived. As the adversary A clocks
the buffer, A can reorder and delay protocol inputs exactly the same way as in F6.

Lemma 13. Let A be the class of adversaries against the collection F6 that do not observe the state
of corrupted parent nodes. Let A∗ be the class of adversaries against F7 and Π∗ be the protocol.
Then there exist transformations φ and φ∗ such that

∀Env ∈ Er : ∀A ∈ A : Env〈Π∗,A〉 ≡ Env∗〈Π∗, φ(A)〉
∀Env ∈ Er : ∀A∗ ∈ A∗ : Env∗〈Π∗,A∗〉 ≡ Env〈Π∗, φ∗(A∗)〉

where Env is the restricted environment in F6 and Env∗ is the corresponding environment in F7
that contain the same Envo.

Proof. First, convert the adversary A against F6 to the adversary A∗ against F7. W.l.o.g. we
can assume that the original adversary A immediately clocks buffers from P∗i to R+

u as
this alters only in which order values will be reconstructed. The adversary A can correct
the ordering and timing by clocking the leaky buffer betweenRδ and Envr. For the same
reason, we can assume that A immediately clocks buffers from S+u to P∗i .

As adversary A∗ clocks buffers from Ii to Oout instead of buffers from S+u to P∗i and
buffers from Oin to Ii instead of buffers from P∗i toR+

u then machines Oout and Oin carry
out a perfect simulation. The claim follows as the transformation is reversible.

In practical deployments, protocol inputs may come from different input parties.
However, as we cannot rule out coalitions between input parties, we must include the class
Er into the set of potential environment E. Consequently, we have established that protocol
can be secure only if it is secure in the abstract execution model defined as follows.

Definition 25. Abstract execution environment Envabs for a protocol Π∗ is defined as the collection
of Oin, Oout and Envo in F7. Let Eabs denote the set of all abstract environments.

Abstract execution environment is very close to the minimal attack model. The
adversary A gets setup information of the corrupted parties and learns the values of
protocol inputs and outputs. Adversary A can also read and write some values inM0 and
interact with ideal functionalities F1, . . . ,Fk if there is corresponding interface. Finally,
the adversary can influence the order of execution by clocking leaky buffers between the
interpreters and other machines. Depending on the environment the adversary can learn
additional information about protocol inputs and outputs but nothing more.

Definition 26. An environment class E is embeddable into the abstract model for the class of
adversaries A if there exist transformations φ : A→ A∗ and ψ : E→ Eabs such that

∀Env ∈ E : ∀A ∈ A : Env〈Π∗,A〉 ≡ ψ(Env)〈Π∗, φ(A)〉 .

For most protection domains, it is quite easy albeit highly tiresome to prove that
relevant environment classes are embeddable into the abstract model. In fact, we have
used similar assumptions in Section 3.3 as the simulatability of the Πe.

For embedding, we need to push all interactions between A and Πe to Envo. The
modified adversary φ(A) internally runs A and forwards all queries for Πe to Envo that
internally simulates Πe to provide correct responses. If all parameters generated by the

Cryptography 2021, 5, 22 37 of 45

setup F4 are public, then Envo can just redo all computations in Πe. There is a small caveat
as Env learns protocol outputs when all parties have sent them to R. Thus, Envo must
simulate initial shares of corrupted parties without knowing the secrets. The latter implies
that storage domains for the protocol Πe outputs must be hiding.

Similar simulation is possible for protocols with private setup parameters as long
as Envabs can simulate interactions with Πe knowing only protocol outputs and public
parameters generated by F4. In particular, note that the generic inner environment Πe is a
protocol for which all inputs are generated by Sδ inside Πe and S+u in Π∗ and all outputs
are processed byRδ when given to Env andR+

u when given to Π∗. By placing the same
restrictions to Πe as to Π we can carry put exactly the same simplification operations as
we did to arrive to Π∗ from Π. As modification extractor and share simulator use only
the public and corrupted parties parameters, the modified environment does not need
parameters it cannot get.

3.4.2. Security in the Abstract Model

Throughout the paper we have transformed the initial protocol Π to the same protocol
Π∗ in the abstract execution environment. We call Π∗ the abstraction of Π.

Definition 27 (Security in the abstract world). Let Π1 and Π2 be protocols and Π∗1 and Π∗2 their
abstractions. Let A∗1 and A∗2 be the abstractions of classes of adversaries A1 and A2 against original
protocols. Then, Π1 is as secure as Π2 in the abstract model if there exists a function ρ∗ : A∗1 → A∗2
such that Envabs〈Π∗1 ,A∗1〉 ≡ Envabs〈Π∗2 , ρ∗(A∗1)〉 for all A ∈ A∗1 and Envabs ∈ Eabs.

By definition, security can be defined with respect to any other protocol Π2. In practice,
our goal is to prove that the protocol Π is as secure as some canonical ideal functionality F0.
The simplifications from hybrid execution model to the abstract model can be applied to all
protocols Π〈F1, . . . ,F2〉. Similarly, they could be done for Π0〈F0〉 for the protocol Π0 that
only calls F0 once per instance and returns all results to Πe. Note that Π0 is output-isolated
and the transformation is allowed as long as F0 satisfies the rules we have set for the
canonical ideal functionalities inside the protection domain.

In the context of Section 2.3, our current transformations define φ1 and the same φ1 can
be applied to adversaries against Π0〈F0〉. Therefore, in order to prove that Π〈F1, . . . ,F2〉 is
as secure as Π0〈F0〉we can use φ1 for both A1 and A2. In order to prove that Π〈F1, . . . ,F2〉
is as secure as F0 we would need a similar transformation φ2. However, note that for
coherent adversaries the functionality F0 is equivalent to Π0〈F0〉, the details of this can
be found in Appendix B. The main intuition is that Π0〈F0〉 has also the machines of the
parties but coherent adversary corrupts them coherently with the parties in Πe and does
not gain any access that it does not have to just the F0 machine. Hence, combining the
equivalence of F0 and Π0〈F0〉 with φ1 forms the required transformation φ2. It remains to
argue that the security in the abstract model indeed suffices for the security in the hybrid
execution model. The following theorem achieves this by putting the results of this paper
into the relevant context.

Theorem 13. Let F0 be ideal functionality and Π is a protocol constructed on top of a hybrid pro-
tection domain F1, . . . ,Fk with canonical (Definition 5) Fp with tight scheduling (Definition 12),
meaningful (Definition 6) and transparent (Definition 23) local functionalities. The storage domains
in the protection domain are hiding (Definition 2), modification-aware (Definition 3) and have
limited control (Definition 4). If the protocol Π satisfies all abstraction assumptions:

• is well-formed (Definition 18) and in a canonical form (Definition 21),
• is robust against malformed inputs (Definition 14),
• is secure against rushing (Definition 16),
• is output-isolated (Definition 24)

and the environment class E is embeddable into Eabs for the class of adversaries A and Envabs ∈ E
then security in the abstract model is necessary and sufficient for security in the hybrid model.

Cryptography 2021, 5, 22 38 of 45

Proof. NECESSITY. Trivial Πe that just forwards the inputs and outputs to and from Π
and Env has to be a valid protocol. Therefore, Eabs is a valid class of adversaries against Π
as they are formed by the trivial Πe and a generic adversary in E. If Envabs ∈ E then by
security definition, the protocol must be secure against Eabs among all other environments
and from Corollary 4 the protocol running with environment in Eabs in the hybrid model
can be transformed to the abstract model.

SUFFICIENCY. Sufficiency in the abstract model results from the reversability of
the series of transformations we have made from the hybrid to the abstract world. If
all environments of interest are embeddable, then we can apply Lemma 13 showing
equivalence of the abstract execution model and the limited control model. The rest of the
sufficiency follows from Corollary 5 showing that we can move from limited control model
to the hybrid model. Hence, in total a security proof in the abstract model can be translated
to a security argument of the same protocol in the hybrid model.

4. Discussion

With the transformations in Section 3 we have established the required transformations
φ1, φ2 and ψ from Section 2.3 and shown their semi-inverses. Therefore, we have shown
the abstract execution model and that it suffices to prove security in the abstract model
when making a series of assumptions about the protection domain and the protocol.

On the side of the protection domain, we assume that all ideal functionalities are
in a canonical form (Definition 5) and have tight scheduling (Definition 12), local func-
tionalities are meaningful (Definition 6) and transparent (Definition 23), secure storage
domains are hiding (Definition 2), modification-aware (Definition 3) and have limited
control (Definition 4). These are mostly reasonable properties, however, they should be
explicitly shown for the protection domain (the framework for programmable MPC) that is
used. On the other hand, one can simply assume these properties as the requirements of
their new algorithm for secure computation. If no other preconditions are made, then the
algorithm can be securely implemented on any framework meeting these requirements.
However, note that often it is reasonable to make additional requirements for the protection
domain, for example, to specify the data types for which the algorithm works.

On the protocol side, we assume that it is well-formed (Definition 18) and in a canonical
form (Definition 21), robust against malformed inputs (Definition 14), secure against
rushing (Definition 16) and output-isolated (Definition 24). We have argued that some
of these are natural or easily achievable requirements of the protocol or the concrete
protocol implementation. Security against rushing is achievable for protocols where some
honest party is always included in the subprotocols (Theorem 5). The main open question
is the output isolation, which we have shown to hold for several special cases but for
some protocols this property should be proven in addition to the security proof in the
abstract model. Nevertheless, we have shown that secure protocols are output isolated
(Theorem 12), thus such a proof must exist for all protocols both in order to use our
framework as well as to prove security at all. In addition, most primitive functionalities
return outputs as soon as they are computed and are therefore always output-isolated
(Lemma 5).

We can consider the proposed sorting algorithm in Algorithm 2 as a concrete example
of these properties and their use. This algorithm assumes that we have a protection domain
that can shuffle values, compute comparisons and publish values. We expect all these
to be represented as some canonical ideal functionalities. A common way to read this
protocol is that parties execute these operations together. We also expect that the parties
only start the computations once they have the input values and that they only write the
outputs of the computations to the derived variables. In addition, they continue with
the next instruction only when they have completed the previous one. Therefore, when
reading this protocol description we already assume it to be executed so that it is well-
formed. It is also in a canonical form because the conditional decision in the output is
done based on a public value and we can assume that the implementation assures that

Cryptography 2021, 5, 22 39 of 45

the memory is aligned. We do not usually think of robustness against malformed inputs,
however, we indirectly assume that the inputs are correct and all errors from incorrect
formats are handled by the computation implementation outside the algorithm itself. In
secure multiparty computation, we are concerned with cases where some participant is
honest, thus we also achieve security against rushing when executing this algorithm. The
main problem with this algorithm is output isolation. It is not immediately clear that it is
output isolated since the values [[k]] and [[m]] are computed several steps before they are
returned. Hence, we should either modify the algorithm to include a step to re-randomise
the secure representation of the values right before returning them or prove output-isolation
independently.

The abstract model is quite restricted, the adversary can manage the timing of the
ideal functionalities Fp used by the protocol Π as well as the input and output timing
of Π. In addition, the adversary has access to the corrupted parties values in M0 and
other access depending on the storage domain. For reasonable schemes, either we consider
a passive adversary that does not modify M0 or we use a robust or verifiable scheme
that ensures that the adversary has limited control over the shared values as long as the
set of corrupted parties satisfies the bounds set by the storage domain. Therefore, this
satisfies the part of the intuition that in security proofs of the protocol, the focus should
be on the values that are made available to any party and can therefore also be seen by
the adversary corrupting that party. Note that this also means that, in fact, the part of the
protocol that needs to be analysed is the semantics of the published values and not really
the cryptographic properties of the secure computation framework where the protocol is
executed. One could say that we are left with security proofs without any cryptography.

If the protocol has one round, e.g., it receives some inputs and then gives outputs and
finishes its work like common for protocols implementing arithmetic operations, then they
are usually output-isolated. If, in addition, the execution of subprotocols in one instance of
the protocol has sequential scheduling then the adversary can not alter the order in which
the values are published. Therefore, being able to simulate all visible values is sufficient.
Note that most protocols for secure computation fall into this category and, therefore, the
intuitive proofs are easy to carry to formal proofs. However, if the scheduling is concurrent
or there are many rounds, then at the very least the values should be simulated within the
rounds in which they are computed and their order may depend on the scheduling. More
details might be required depending on the model.

Author Contributions: Conceptualisation, S.L. and P.P.-R.; Methodology, S.L. and P.P.-R.; Writing—
original draft, S.L. and P.P.-R.; Writing—review and editing, S.L. and P.P.-R. Both authors have read
and agreed to the published version of the manuscript.

Funding: This research was funded by Estonian Centre of Excellence in IT (EXCITE) and by the
Estonian Personal Research Grants PRG49 and PRG920.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available in article.

Conflicts of Interest: The authors declare no conflicts of interest.

Cryptography 2021, 5, 22 40 of 45

Abbreviations
The following abbreviations are used in this manuscript:

MDPI Multidisciplinary Digital Publishing Institute
MPC Secure multiparty computation
ABB Arithmetic black box
RSIM Reactive simulatability
UC Universal composability
[[x]] Secret sharing of value x
Env Environment
E Class of environments
A Adversary
A Class of adversaries
Π Protocol
Πe Inner environment representing computations in the secure computation framework
P Class of protocols
Pi Protocol participant i
Ii Code interpreter of Pi
Zi Corruption manager for Pi
F4 Secure setup functionality
Fp Ideal functionality
Fpd Ideal functionality of a protection domain
Fio Input–output functionality
Gp,i Local functionality p for Pi
G0

p Local functionality on values
S Secret sharing functionality
R Reconstruction functionality
TS Machine inside Fp that manages timing of S
TR Machine inside Fp that manages timing of S
TM Machine inside Fp that manages access toM
E Extractor
L Storage of values in a storage domain
L∗ Storage of shares in a storage domain
M Memory
M0 Memory holding only values
s Internal state of the protocol participant
gs Global state combining s of all participants
s0 State kept inM0
m Protocol message
φ Transformations of the adversary
ψ Transformations of the environment
ρ Transformation defined in the security proof
δ Storage domain called δ

Aδ Adversary structure for storage domain δ

	δ Modification operator in storage domain δ

⊥ Failure symbol denoting invalid values
Fi Configuration i

Appendix A. Buffers Leaking Message Annotations

We specify leaky buffers using standard RSIM components. The hearth of the con-
struction is a tag leaking machine T and three buffers for input, output and leakage, see
Figure A1. The machine T accepts pairs of strings as inputs. When T receives (m, t) from
the buffer b1, the pair (m, t) is written to an output buffer b2 and the annotation t is written
to the sender-clocked buffer b3. There are two ports for clocking the leaky buffer. The first
port clk1 determines when the annotation arrives to b3. The second port clk2 controls when
and in which order message pairs (m, t) are written to the port out.

Cryptography 2021, 5, 22 41 of 45

clk1 clk2type

in outT
b1 b2

b3

clk

in out

(a) Implementation (b) Notation

Figure A1. Collection implementing a leaky buffer and the corresponding notation.

Appendix B. Two Ways to Specify Ideal Functionalities

Two equivalent ways to depict ideal functionality are given in Figure A2. Commonly,
one specifies the ideal functionality as a single machine F0. Alternatively, we can specify
the ideal functionality as a special case of the hybrid protocol execution from Section 3.1.1
with just one ideal functionality The environment provides inputs to parties P1, . . . ,Pn
who forward these directly to F0. Whenever F0 sends a message to Pi, it forwards it to the
environment. Let F1 and F2 denote the these alternative configurations.

F0

Πe ΠeF4

A

P1 P2

F0

F4 F4 F4

A A A

Πe Πe

(a) F1 (b) F2

Figure A2. Two alternatives for specifying ideal functionality.

Lemma A1. For coherent adversaries configurations F1 and F2 in Figure A2 are equivalent.

Proof. In both configurations, F0 gets exactly the same inputs including tags and the
adversary controls when F0 receives its inputs. However, the message travels through two
leaky buffers in the configuration F2 instead of one in F1. Adaptation of an adversary A1
from F1 to F2 is straightforward. The new adversary clocks buffers between Pi and F0 as
soon as possible and then clocks buffers to Π∗ the same as A1.

It is straightforward to simulate clocking for A2 in F1. However, in F1 there is no way
to corrupt the party directly in F0. For coherent adversary corrupting Pi in F2 also means
corrupting P∗i in Π∗, hence any modifications can be done in P∗i in F1.

Appendix C. Combined Interpreter with Simplified Clocking

The new memory-isolated model makes many clocking signals redundant. Adver-
sarial control over buffer clocking is necessary only if this allows to control the execution
order for the protocols or provides a time slot to carry out adversarial actions. Therefore,
we simplify the model further by replacing all interpreters Ii with a joint interpreter I
that combines some buffers. The simplest construction is such where the interpreter I
is just a collection of interpreters Ii. For most protocol specifications, this model can be
further simplified to the configuration depicted in the left of Figure A3 and most sequential
protocol specifications to the configuration depicted on the right.

As the original Fp contains modules TR and TS which combine and broadcast
DMACALL-s and potentially interact with the adversary, we can extract machines Cp
and Dp which only combine or broadcast DMACALL-s. We push these into the interpreter
I . The use of sender clocked buffers forces us to add dummy buffers for passing control
from Cp to Ii and from Ii to Dp. However, the corresponding changes are straightforward
and guarantee equivalence for passive adversaries who ignore leaks.

Cryptography 2021, 5, 22 42 of 45

I

I1

I2

C1

C2

F1

F2

c11

c22

c21

c12

d1

d2

F4 F4

G01
G02
S+
R+

G01
G02
S+
R+

A A

M0

M0

(a) Introducing Ci

I

I1

I2

C1

C2

D1

D2

F1

F2

d1

d2

e1

e2

F4 F4

G01
G02
S+
R+

G01
G02
S+
R+

A A

M0

M0

(b) Introducing Di

Figure A3. Joining the interpreters by merging outgoing and incoming buffers.

In many cases, the adversary can simulate the leaks of bi,p and mimic the effect of
multiple clockings with a single buffer. The adversary must always know what is the next
DMACALL when Ii receives an input and when Cp inside Fp is going to start a new round
of computations. This is clearly true for sequential protocol implementations, but it also
holds for many concurrent implementations. We can introduce Dp if we additionally show
that the outcome of the execution cannot be influenced by clockings of ci,p. This is evident
for sequential protocol implementations, as only a single subprotocol instance is active at
all times and thus delays in clockings just pause the protocol execution.

References
1. Bogdanov, D.; Laur, S.; Willemson, J. Sharemind: A Framework for Fast Privacy-Preserving Computations. In Lecture Notes in

Computer Science, Proceedings of the Computer Security—ESORICS 2008, 13th European Symposium on Research in Computer Security,
Málaga, Spain, 6–8 October 2008; Jajodia, S., López, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2008; Volume 5283, pp. 192–206.
[CrossRef]

2. Damgård, I.; Pastro, V.; Smart, N.P.; Zakarias, S. Multiparty Computation from Somewhat Homomorphic Encryption. In
Lecture Notes in Computer Science, Proceedings of the Advances in Cryptology—CRYPTO 2012—32nd Annual Cryptology Conference,
Santa Barbara, CA, USA, 19–23 August 2012; Safavi-Naini, R., Canetti, R., Eds.; Springer: Berlin/Heidelberg, Germany, 2012;
Volume 7417, pp. 643–662. [CrossRef]

3. Bogdanov, D. Sharemind: Programmable Secure Computations with Practical Applications. Ph.D. Thesis, University of Tartu,
Tartu, Estonia, 2013.

4. Demmler, D.; Schneider, T.; Zohner, M. ABY—A Framework for Efficient Mixed-Protocol Secure Two-Party Computation. In
Proceedings of the 22nd Annual Network and Distributed System Security Symposium, NDSS 2015, San Diego, CA, USA,
8–11 February 2015.

5. Alexandra Institute. FRESCO—A Framework for Efficient Secure Computation. Available online: http://github.com/aicis/fresco
(accessed on 20 August 2021).

6. KU Leuven. SCALE-MAMBA Software. Available online: https://github.com/KULeuven-COSIC/SCALE-MAMBA (accessed on
20 August 2021).

7. Keller, M. MP-SPDZ: A Versatile Framework for Multi-Party Computation. In Proceedings of the 2020 ACM SIGSAC Conference
on Computer and Communications Security—CCS’20, Virtual Event, 9–13 November 2020; Association for Computing Machinery:
New York, NY, USA, 2020; pp. 1575–1590. [CrossRef]

8. Bogetoft, P.; Christensen, D.L.; Damgård, I.; Geisler, M.; Jakobsen, T.P.; Krøigaard, M.; Nielsen, J.D.; Nielsen, J.B.; Nielsen, K.;
Pagter, J.; et al. Secure Multiparty Computation Goes Live. In Lecture Notes in Computer Science, Proceedings of the Financial
Cryptography and Data Security, 13th International Conference, FC 2009, Accra Beach, Barbados, 23–26 February 2009; Revised Selected
Papers; Dingledine, R., Golle, P., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; Volume 5628, pp. 325–343. [CrossRef]

9. Mohassel, P.; Zhang, Y. SecureML: A System for Scalable Privacy-Preserving Machine Learning. In Proceedings of the 2017 IEEE
Symposium on Security and Privacy, SP 2017, San Jose, CA, USA, 22–26 May 2017; pp. 19–38. [CrossRef]

10. Bogdanov, D.; Kamm, L.; Kubo, B.; Rebane, R.; Sokk, V.; Talviste, R. Students and Taxes: A Privacy-Preserving Study Using
Secure Computation. PoPETs 2016, 2016, 117–135. [CrossRef]

11. Archer, D.W.; Bogdanov, D.; Lindell, Y.; Kamm, L.; Nielsen, K.; Pagter, J.I.; Smart, N.P.; Wright, R.N. From Keys to Databases—
Real-World Applications of Secure Multi-Party Computation. Comput. J. 2018, 61, 1749–1771. [CrossRef]

http://doi.org/10.1007/978-3-540-88313-5_13
http://dx.doi.org/10.1007/978-3-642-32009-5_38
http://github.com/aicis/fresco
https://github.com/KULeuven-COSIC/SCALE-MAMBA
http://dx.doi.org/10.1145/3372297.3417872
http://dx.doi.org/10.1007/978-3-642-03549-4_20
http://dx.doi.org/10.1109/SP.2017.12
http://dx.doi.org/10.1515/popets-2016-0019
http://dx.doi.org/10.1093/comjnl/bxy090

Cryptography 2021, 5, 22 43 of 45

12. Mohassel, P.; Rindal, P. ABY3: A Mixed Protocol Framework for Machine Learning. In Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security, CCS 2018, Toronto, ON, Canada, 15–19 October 2018; Lie, D., Mannan, M.,
Backes, M., Wang, X., Eds.; ACM: New York, NY, USA, 2018; pp. 35–52. [CrossRef]

13. Laud, P.; Pankova, A. Privacy-preserving record linkage in large databases using secure multiparty computation. BMC Med.
Genom. 2018, 11, 35–55. [CrossRef] [PubMed]

14. Canetti, R. Universally Composable Security: A New Paradigm for Cryptographic Protocols. In Proceedings of the 42nd Annual
Symposium on Foundations of Computer Science, FOCS 2001, Las Vegas, NV, USA, 14–17 October 2001; pp. 136–145. [CrossRef]

15. Damgård, I.; Nielsen, J.B. Universally Composable Efficient Multiparty Computation from Threshold Homomorphic Encryption.
In Lecture Notes in Computer Science, Proceedings of the Advances in Cryptology—CRYPTO 2003, 23rd Annual International Cryptology
Conference, Santa Barbara, CA, USA, 17–21 August 2003; Boneh, D., Ed.; Springer: Berlin/Heidelberg, Germany, 2003; Volume 2729,
pp. 247–264. [CrossRef]

16. Lipmaa, H.; Toft, T. Secure Equality and Greater-Than Tests with Sublinear Online Complexity. In Lecture Notes in Computer
Science, Proceedings of the Automata, Languages, and Programming—40th International Colloquium, ICALP 2013, Riga, Latvia, 8–12 July
2013; Fomin, F.V., Freivalds, R., Kwiatkowska, M.Z., Peleg, D., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; Volume 7966,
pp. 645–656. [CrossRef]

17. Escudero, D.; Ghosh, S.; Keller, M.; Rachuri, R.; Scholl, P. Improved Primitives for MPC over Mixed Arithmetic-Binary
Circuits. In Lecture Notes in Computer Science, Proceedings of the Advances in Cryptology—CRYPTO 2020—40th Annual International
Cryptology Conference, CRYPTO 2020, Santa Barbara, CA, USA, 17–21 August 2020; Micciancio, D., Ristenpart, T., Eds.; Springer:
Berlin/Heidelberg, Germany, 2020; Volume 12171, pp. 823–852. [CrossRef]

18. Damgård, I.; Escudero, D.; Frederiksen, T.K.; Keller, M.; Scholl, P.; Volgushev, N. New Primitives for Actively-Secure MPC over
Rings with Applications to Private Machine Learning. In Proceedings of the 2019 IEEE Symposium on Security and Privacy, SP
2019, San Francisco, CA, USA, 19–23 May 2019; pp. 1102–1120. [CrossRef]

19. Kamm, L.; Willemson, J. Secure Floating-Point Arithmetic and Private Satellite Collision Analysis. Int. J. Inf. Secur. 2015,
14, 531–548. [CrossRef]

20. Veugen, T.; Abspoel, M. Secure integer division with a private divisor. Proc. Priv. Enhancing Technol. 2021, 2021, 339–349.
[CrossRef]

21. Catrina, O.; de Hoogh, S. Improved Primitives for Secure Multiparty Integer Computation. In Lecture Notes in Computer Science,
Proceedings of the Security and Cryptography for Networks, 7th International Conference, SCN 2010, Amalfi, Italy, 13–15 September 2010;
Garay, J.A., Prisco, R.D., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; Volume 6280, pp. 182–199. [CrossRef]

22. Nishide, T.; Ohta, K. Multiparty Computation for Interval, Equality, and Comparison Without Bit-Decomposition Protocol. In
Lecture Notes in Computer Science, Proceedings of the Public Key Cryptography—PKC 2007, 10th International Conference on Practice and
Theory in Public-Key Cryptography, Beijing, China, 16–20 April 2007; Okamoto, T., Wang, X., Eds.; Springer: Berlin/Heidelberg,
Germany, 2007; Volume 4450, pp. 343–360. [CrossRef]

23. Damgård, I.; Fitzi, M.; Kiltz, E.; Nielsen, J.B.; Toft, T. Unconditionally Secure Constant-Rounds Multi-party Computation for
Equality, Comparison, Bits and Exponentiation. In Lecture Notes in Computer Science, Proceedings of the Theory of Cryptography,
Third Theory of Cryptography Conference, TCC 2006, New York, NY, USA, 4–7 March 2006; Halevi, S., Rabin, T., Eds.; Springer:
Berlin/Heidelberg, Germany, 2006; Volume 3876, pp. 285–304. [CrossRef]

24. Canetti, R.; Rabin, T. Universal Composition with Joint State. In Lecture Notes in Computer Science, Proceedings of the Advances in
Cryptology—CRYPTO 2003, 23rd Annual International Cryptology Conference, Santa Barbara, CA, USA, 17–21 August 2003; Boneh, D.,
Ed.; Springer: Berlin/Heidelberg, Germany, 2003; Volume 2729, pp. 265–281. [CrossRef]

25. Pfitzmann, B.; Waidner, M. A Model for Asynchronous Reactive Systems and its Application to Secure Message Transmission. In
Proceedings of the 2001 IEEE Symposium on Security and Privacy—SP’01, Oakland, CA, USA, 14–16 May 2001; pp. 184–200.

26. Backes, M.; Pfitzmann, B.; Waidner, M. A General Composition Theorem for Secure Reactive Systems. In Lecture Notes in Computer
Science, Proceedings of the Theory of Cryptography, First Theory of Cryptography Conference, TCC 2004, Cambridge, MA, USA, 19–21
February 2004; Naor, M., Ed.; Springer: Berlin/Heidelberg, Germany, 2004; Volume 2951, pp. 336–354. [CrossRef]

27. Backes, M.; Pfitzmann, B.; Waidner, M. The reactive simulatability (RSIM) framework for asynchronous systems. Inf. Comput.
2007, 205, 1685–1720. [CrossRef]

28. Goldreich, O. The Foundations of Cryptography—Volume 2: Basic Applications; Cambridge University Press: Cambridge, UK, 2004;
[CrossRef]

29. Canetti, R. Security and Composition of Multiparty Cryptographic Protocols. J. Cryptol. 2000, 13, 143–202. [CrossRef]
30. Micali, S.; Rogaway, P. Secure Computation (Abstract). In Lecture Notes in Computer Science, Proceedings of the Advances

in Cryptology—CRYPTO’91, 11th Annual International Cryptology Conference, Santa Barbara, CA, USA, 11–15 August 1991;
Feigenbaum, J., Ed.; Springer: Berlin/Heidelberg, Germany, 1991; Volume 576, pp. 392–404. [CrossRef]

31. Beaver, D. Secure Multiparty Protocols and Zero-Knowledge Proof Systems Tolerating a Faulty Minority. J. Cryptol. 1991,
4, 75–122. [CrossRef]

32. Canetti, R.; Feige, U.; Goldreich, O.; Naor, M. Adaptively Secure Multi-Party Computation. In Proceedings of the Twenty-Eighth
Annual ACM Symposium on the Theory of Computing, Philadelphia, PA, USA, 22–24 May 1996; Miller, G.L., Ed.; ACM:
New York, NY, USA, 1996, pp. 639–648. [CrossRef]

http://dx.doi.org/10.1145/3243734.3243760
http://dx.doi.org/10.1186/s12920-018-0400-8
http://www.ncbi.nlm.nih.gov/pubmed/30309353
http://dx.doi.org/10.1109/SFCS.2001.959888
http://dx.doi.org/10.1007/978-3-540-45146-4_15
http://dx.doi.org/10.1007/978-3-642-39212-2_56
http://dx.doi.org/10.1007/978-3-030-56880-1_29
http://dx.doi.org/10.1109/SP.2019.00078
http://dx.doi.org/10.1007/s10207-014-0271-8
http://dx.doi.org/10.2478/popets-2021-0073
http://dx.doi.org/10.1007/978-3-642-15317-4_13
http://dx.doi.org/10.1007/978-3-540-71677-8_23
http://dx.doi.org/10.1007/11681878_15
http://dx.doi.org/10.1007/978-3-540-45146-4_16
http://dx.doi.org/10.1007/978-3-540-24638-1_19
http://dx.doi.org/10.1016/j.ic.2007.05.002
http://dx.doi.org/10.1017/CBO9780511721656
http://dx.doi.org/10.1007/s001459910006
http://dx.doi.org/10.1007/3-540-46766-1_32
http://dx.doi.org/10.1007/BF00196771
http://dx.doi.org/10.1145/237814.238015

Cryptography 2021, 5, 22 44 of 45

33. Zikas, V.; Hauser, S.; Maurer, U.M. Realistic Failures in Secure Multi-party Computation. In Lecture Notes in Computer Science,
Proceedings of the Theory of Cryptography, 6th Theory of Cryptography Conference, TCC 2009, San Francisco, CA, USA, 15–17 March
2009; Reingold, O., Ed.; Springer: Berlin/Heidelberg, Germany, 2009; Volume 5444, pp. 274–293. [CrossRef]

34. Gordon, S.D.; Katz, J. Complete Fairness in Multi-party Computation without an Honest Majority. In Lecture Notes in Computer
Science, Proceedings of the Theory of Cryptography, 6th Theory of Cryptography Conference, TCC 2009, San Francisco, CA, USA, 15–17
March 2009; Reingold, O., Ed.; Springer: Berlin/Heidelberg, Germany, 2009; Volume 5444, pp. 19–35. [CrossRef]

35. Cohen, R.; Lindell, Y. Fairness Versus Guaranteed Output Delivery in Secure Multiparty Computation. J. Cryptol. 2017,
30, 1157–1186. [CrossRef]

36. Kiraz, M.; Schoenmakers, B. A protocol issue for the malicious case of Yao’s garbled circuit construction. In Proceedings of the
27th Symposium on Information Theory in the Benelux, Noordwijk, The Netherlands, 8–9 June 2006; pp. 283–290.

37. Mohassel, P.; Franklin, M.K. Efficiency Tradeoffs for Malicious Two-Party Computation. In Lecture Notes in Computer Science,
Proceedings of the Public Key Cryptography—PKC 2006, 9th International Conference on Theory and Practice of Public-Key Cryptography,
New York, NY, USA, 24–26 April 2006; Yung, M., Dodis, Y., Kiayias, A., Malkin, T., Eds.; Springer: Berlin/Heidelberg, Germany,
2006; Volume 3958, pp. 458–473. [CrossRef]

38. Aumann, Y.; Lindell, Y. Security Against Covert Adversaries: Efficient Protocols for Realistic Adversaries. In Lecture Notes
in Computer Science, Proceedings of the Theory of Cryptography, 4th Theory of Cryptography Conference, TCC 2007, Amsterdam, The
Netherlands, 21–24 February 2007; Vadhan, S.P., Ed.; Springer: Berlin/Heidelberg, Germany, 2007; Volume 4392, pp. 137–156.
[CrossRef]

39. Küsters, R.; Datta, A.; Mitchell, J.C.; Ramanathan, A. On the Relationships between Notions of Simulation-Based Security. J.
Cryptol. 2008, 21, 492–546. [CrossRef]

40. Goyal, V.; Gupta, D.; Sahai, A. Concurrent Secure Computation via Non-Black Box Simulation. In Lecture Notes in Computer
Science, Proceedings of the Advances in Cryptology—CRYPTO 2015—35th Annual Cryptology Conference, Santa Barbara, CA, USA, 16–20
August 2015; Gennaro, R., Robshaw, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2015; Volume 9216, pp. 23–42. [CrossRef]

41. Kiyoshima, S. Non-black-box Simulation in the Fully Concurrent Setting, Revisited. J. Cryptol. 2019, 32, 393–434. [CrossRef]
42. Pass, R. Simulation in Quasi-Polynomial Time, and Its Application to Protocol Composition. In Lecture Notes in Computer Science,

Proceedings of the Advances in Cryptology—EUROCRYPT 2003, International Conference on the Theory and Applications of Cryptographic
Techniques, Warsaw, Poland, 4–8 May 2003; Biham, E., Ed.; Springer: Berlin/Heidelberg, Germany, 2003; Volume 2656, pp. 160–176.
[CrossRef]

43. Barak, B.; Sahai, A. How To Play Almost Any Mental Game Over The Net—Concurrent Composition via Super-Polynomial
Simulation. In Proceedings of the 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2005), Pittsburgh,
PA, USA, 23–25 October 2005; pp. 543–552. [CrossRef]

44. Oren, Y. On the Cunning Power of Cheating Verifiers: Some Observations about Zero Knowledge Proofs (Extended Abstract). In
Proceedings of the 28th Annual Symposium on Foundations of Computer Science, Los Angeles, CA, USA, 27–29 October 1987;
pp. 462–471. [CrossRef]

45. Canetti, R. Universally Composable Security: A New Paradigm for Cryptographic Protocols. Cryptology ePrint Archive, Report
2000/067. 2000. Available online: https://eprint.iacr.org/2000/067 (accessed on 20 August 2021).

46. Maurer, U.; Renner, R. Abstract Cryptography. In Proceedings of the Innovations in Computer Science—ICS 2011, Beijing, China,
7–9 January 2011; Chazelle, B., Ed.; Tsinghua University Press: Beijing, China, 2011; pp. 1–21.

47. Küsters, R. Simulation-Based Security with Inexhaustible Interactive Turing Machines. In Proceedings of the 19th IEEE Computer
Security Foundations Workshop, (CSFW-19 2006), Venice, Italy, 5–7 July 2006; pp. 309–320. [CrossRef]

48. Hofheinz, D.; Shoup, V. GNUC: A New Universal Composability Framework. J. Cryptol. 2015, 28, 423–508. [CrossRef]
49. Böhl, F.; Unruh, D. Symbolic universal composability. J. Comput. Secur. 2016, 24, 1–38. [CrossRef]
50. Camenisch, J.; Krenn, S.; Küsters, R.; Rausch, D. iUC: Flexible Universal Composability Made Simple. In Lecture Notes in Computer

Science, Proceedings of the Advances in Cryptology—ASIACRYPT 2019—25th International Conference on the Theory and Application of
Cryptology and Information Security, Kobe, Japan, 8–12 December 2019; Galbraith, S.D., Moriai, S., Eds.; Springer: Berlin/Heidelberg,
Germany, 2019; Volume 11923, pp. 191–221. [CrossRef]

51. Barak, B.; Canetti, R.; Lindell, Y.; Pass, R.; Rabin, T. Secure Computation Without Authentication. In Lecture Notes in Computer
Science, Proceedings of the Advances in Cryptology—CRYPTO 2005: 25th Annual International Cryptology Conference, Santa Barbara, CA,
USA, 14–18 August 2005; Shoup, V., Ed.; Springer: Berlin/Heidelberg, Germany, 2005; Volume 3621, pp. 361–377. [CrossRef]

52. Canetti, R.; Cohen, A.; Lindell, Y. A Simpler Variant of Universally Composable Security for Standard Multiparty Computation.
In Lecture Notes in Computer Science, Proceedings of the Advances in Cryptology—CRYPTO 2015—35th Annual Cryptology Conference,
Santa Barbara, CA, USA, 16–20 August 2015; Gennaro, R., Robshaw, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2015;
Volume 9216, pp. 3–22. [CrossRef]

53. Yao, A.C. Protocols for Secure Computations (Extended Abstract). In Proceedings of the 23rd Annual Symposium on Foundations
of Computer Science, Chicago, IL, USA, 3–5 November 1982; pp. 160–164. [CrossRef]

54. Beaver, D. Foundations of Secure Interactive Computing. In Lecture Notes in Computer Science, Proceedings of the Advances
in Cryptology—CRYPTO’91, 11th Annual International Cryptology Conference, Santa Barbara, CA, USA, 11–15 August 1991;
Feigenbaum, J., Ed.; Springer: Berlin/Heidelberg, Germany, 1991; Volume 576, pp. 377–391. [CrossRef]

http://dx.doi.org/10.1007/978-3-642-00457-5_17
http://dx.doi.org/10.1007/978-3-642-00457-5_2
http://dx.doi.org/10.1007/s00145-016-9245-5
http://dx.doi.org/10.1007/11745853_30
http://dx.doi.org/10.1007/978-3-540-70936-7_8
http://dx.doi.org/10.1007/s00145-008-9019-9
http://dx.doi.org/10.1007/978-3-662-48000-7_2
http://dx.doi.org/10.1007/s00145-018-09309-5
http://dx.doi.org/10.1007/3-540-39200-9_10
http://dx.doi.org/10.1109/SFCS.2005.43
http://dx.doi.org/10.1109/SFCS.1987.43
https://eprint.iacr.org/2000/067
http://dx.doi.org/10.1109/CSFW.2006.30
http://dx.doi.org/10.1007/s00145-013-9160-y
http://dx.doi.org/10.3233/JCS-140523
http://dx.doi.org/10.1007/978-3-030-34618-8_7
http://dx.doi.org/10.1007/11535218_22
http://dx.doi.org/10.1007/978-3-662-48000-7_1
http://dx.doi.org/10.1109/SFCS.1982.38
http://dx.doi.org/10.1007/3-540-46766-1_31

Cryptography 2021, 5, 22 45 of 45

55. Bellare, M.; Rogaway, P. Robust Computational Secret Sharing and a Unified Account of Classical Secret-Sharing Goals.
In Proceedings of the 14th ACM Conference on Computer and Communications Security—CCS’07, Alexandria, VA, USA,
2 November–31 October 2007; Association for Computing Machinery: New York, NY, USA, 2007; pp. 172–184. [CrossRef]

56. Damgård, I.; Nielsen, J.B. Adaptive versus static security in the UC model. In Proceedings of the International Conference on
Provable Security, Hong Kong, China, 9–10 October 2014; Springer: Berlin/Heidelberg, Germany, 2014; pp. 10–28.

57. Genkin, D.; Ishai, Y.; Prabhakaran, M.; Sahai, A.; Tromer, E. Circuits resilient to additive attacks with applications to secure
computation. In Proceedings of the Symposium on Theory of Computing, STOC 2014, New York, NY, USA, 31 May–3 June 2014;
Shmoys, D.B., Ed.; ACM: New York, NY, USA, 2014; pp. 495–504. [CrossRef]

http://dx.doi.org/10.1145/1315245.1315268
http://dx.doi.org/10.1145/2591796.2591861

	Introduction
	Materials and Methods
	Asynchronous Systems and Visual Notation
	Security through Observational Equivalence
	Soundness and Completeness Theorems
	Programmable Multiparty Computation
	Security of Distributed Storage Domains
	Canonical Description of Ideal Functionalities
	Canonical Description of Local Functionalities
	Security of Protection Domains
	Secure Extension of Protection Domains
	Restrictions to Environments and Adversaries

	Results
	Minimal Requirements to Message Scheduling
	Basics of Protocol Execution
	Tight Message Scheduling
	Robustness against Malformed Inputs
	Security against Rushed Execution

	Shared Memory and Simplistic Adversaries
	Interpreter Specification
	Shared Memory Model for Communication
	Memory Alignment and Protocol Specification

	Reduction to Abstract Memory Model
	Introduction of Abstract Memory
	Extended Modification-Awareness
	Meaningful Local Operations
	Isolation of Protocol Outputs
	Complete Memory Isolation
	From Limited Control to the Hybrid Model

	Abstract Model
	Abstract Execution Environment
	Security in the Abstract Model

	Discussion
	Buffers Leaking Message Annotations
	Two Ways to Specify Ideal Functionalities
	Combined Interpreter with Simplified Clocking
	References

