
TALLINN UNIVERSITY OF TECHNOLOGY

Faculty of Information Technology

Department of Informatics

Jevgeni Tolstouhhov

Conceptual analysis and development 

of the user interface framework

 
MASTER THESIS 

 IDX70LT

Supervisor: Professor Jaak Tepandi

Tallinn 2008



This work is  composed by myself  independently. All  other authors'  works,  essential 

states from literary sources and facts from other origins, which were used during the 

composition of this work, are referenced.

Jevgeni Tolstouhhov

12.05.2008

2



Annotation
Current  work  introduces  conceptual  approaches  for  implementing  a  user  interface 

framework of Customs Engine platform developed at Cybernetica AS by the author of 

this thesis. This thesis embraces the complete evolutionary process from the very first 

version of the framework to its second and third generations. Throughout this work all 

pros and cons of each implementation approach are being deeply analyzed and solutions 

to  the  problems  are  explained.  Therefore,  the  reader  of  the  thesis  will  not  only 

understand the technical aspect and many subtleties of the implementation, but will also 

see, why the user interface framework was initially built (and reimplemented later) one 

or another way.

3



Annotatsioon
Käesolev  töö  tutvustab  kontseptuaalnset  lähenemist  kasutajaliidese  raamistiku 

realiseerimiseks. Raamistiku uurimis- ja arendustöö oli teostatud autori poolt Customs 

Engine  platvormi  raames  teadus-arendus  ettevõtes  Cybernetica  AS.  See  töö  hõlmab 

täieliku arenguprotsessi alates kõige esimesest raamistiku versioonist kuni selle tesie ja 

kolmanda põlvkonnani. Antud töö ulatuses iga realisatsiooni lähenemise kõik eelised ja 

puudused on sügavalt  läbi analüüsitud ja probleemide lahendused on lahti  seletatud. 

Kokkuvõteks, antud töö lugeja saab aru mitte ainult tehnilisest aspektist ja realisatsiooni 

peenust,  vaid  samuti  näeb,  miks  kasutajaliidese  raamistik  oli  esialgselt  ehitatud  (ja 

hiljem ümbertehtud) ühel või teisel viisil.

4



Table of Contents
 Annotation.........................................................................................................................3
 Annotatsioon.....................................................................................................................4
 Introduction.......................................................................................................................6
1 The Customs Engine platform........................................................................................8
2 The original design of the CuE user interface framework............................................10

2.1 User interface definition language........................................................................10
2.2 XML-based forms.................................................................................................14

2.2.1 Making a mapping of XML-fields................................................................14
2.2.2 Defining a screen for XML-based form........................................................15
2.2.3 Writing a XML-handler.................................................................................17
2.2.4 A brief technical overview of the concept.....................................................19

2.3 Putting it all together.............................................................................................20
3 The problem..................................................................................................................23

3.1 Readability............................................................................................................23
3.2 Extendability.........................................................................................................26
3.3 The tight knot........................................................................................................28

4 Solving the problem......................................................................................................30
4.1 The concept of scenarios and steps.......................................................................31

4.1.1 The idea.........................................................................................................31
4.1.2 Advantages....................................................................................................37
4.1.3 The trade-offs................................................................................................38

4.2 Further refactoring................................................................................................40
4.2.1 The new implementation...............................................................................41

4.2.1.1 Avoid global session variables...............................................................41
4.2.1.2 A stateless functional concept................................................................42
4.2.1.3 Laziness.................................................................................................43
4.2.1.4 Everything is a scenario.........................................................................44
4.2.1.5 The implementation details....................................................................45
4.2.1.6 Binding with the rest of the framework.................................................47
4.2.1.7 Still call it “scenario”?...........................................................................48

4.2.2 Benefits achieved..........................................................................................48
4.2.3 Something we must sacrifice.........................................................................50

5 The work to do..............................................................................................................52
5.1 Describe navigational logic...................................................................................52

 Conclusions.....................................................................................................................54
 References.......................................................................................................................55

5



Introduction
The business today is becoming increasingly demanding. The rapidly changing world 

significantly  influences  a  wide  variety  of  domains,  forcing  them  to  adapt.  Any 

adaptation usually means applying a number of constraints to the business processes 

that should not necessary be beneficial for a particular organization.

Instantly developing information technologies have extreme power for solving this kind 

of problems. Automation and resource economy are the basic attributes that software 

solutions provide and are of the most important values for business. Successful software 

solutions indeed save a lot of time, making significant amounts of computation, analysis 

and information exchange that are no longer need to be performed by humans.

We may announce that  today software plays  the most  important part  in the modern 

world,  having  great  technical  potential,  probably  limited  only  by  the  human 

imagination.  This  may sound  amazing,  but  does  it  mean,  that  having  such  a  great 

potential,  software development is a very complex process and takes time to build a 

product?  Yes,  that  is  true,  the  development  process  takes  time,  which  is  the  most 

expensive resource business world often does not have.

When we speak about development time, we often mean a time schedule for a particular 

project. A year or two is a schedule, that may sound sensible to build a more or less 

complex  system  from  the  ground  up  for  a  mid-  and,  maybe,  large-size  business. 

However,  it  is  hard to  build  systems of the same scope and quality,  say,  in several 

months.  Organizational,  analytical  and  technical  processes  of  software  development 

take their time and IT-people, should always try to optimize the development efficiency.

In my opinion, the technical aspect of software development process is the one, that 

requires special attention. This is because the technicians have relatively more freedom 

and space for speeding up the development and improving the product qualities. This is 

achievable by using a set of modern tools, applying architectural and design patterns the 

6



right way or building components of the system in terms of some framework. Also, code 

reuse is usually a good practice and makes development easier. 

This thesis is about building a framework - the framework, that is intended to make 

programmer's  life  easier,  promote  code  reuse,  allow  high  extensibility  and  good 

maintainability.  The  problem  domain  is  user  interface,  but  the  implementation  of 

widgets is not going to be discussed here. The goal is to describe the whole evolutionary 

process of the conceptual idea this user interface framework is based on, concerning key 

design decisions and technical analysis of the benefits and the trade-offs met. Because 

of  the  fact  that  given  user  interface  framework is  being  developed within  Customs 

Engine platform at Cybernetica AS, the next chapter will tell what the purpose of this 

platform is and briefly cover its components.

7



1The Customs Engine platform
Customs Engine (further CuE) is the platform that the author of this thesis and some 

other people at Cybernetica AS are instantly developing and improving.  The reason, 

why CuE exists is very simple – it is code reuse. Because of the fact that at the moment 

a bunch of customs systems is being built by Cybernetica AS, it is sensible to identify 

common  components  that  would  share  common  functionality.  This  approach 

dramatically  reduces  maintainability  issues  and  makes  the  overall  development 

considerably easier.  In  the the following diagram the basic  components  of the CuE 

platform  are presented.

As it can be noticed from this diagram, CuE platform consists of quite a few basic 

components, but at the same time, it covers the classical three-layer system architecture 

(that  is  data,  application  and  presentation  layers),  also  exploiting  some  additional 

components  with useful  functionality.  Now lets  examine  each component  in  a  little 

deeper level of detail:

 User  interface  framework  is  a  layer,  which  is  quite  natural  for  almost  any 

information system we may take today. This particular framework basically consists 

of a  screen definition language (which was developed specifically for the given 

platform) and a number of widgets we might be used within this language.

 State machine framework is basically the engine for processing finite state machines 

8

Figure 1: Basic components of CuE



and  is  usually  unseparable  part  in  every  system  being  developed  within  our 

organization  (Cybernetica  AS).  State  machine  framework  takes  care  of  state 

transition mechanics, state validation (checks, if it is allowed to enter the state) and 

allows executing custom code if it is necessary to do some special processing.

 Object  persistence  layer  is  an  abstraction  level  over  Hibernate  [1],  which  main 

purpose  is  generating  object-relational  mappings  and  building  database  queries, 

where any typos you make are always detected at compile time.

 Business  rule  framework  allows  writing  and  running  validation  rules  on  XML-

documents [2]. Because there are often cases, where in some conditions value of 

one  filed  in  the  XML-document  depends  on  the  value  of  another  field,  this 

framework gives  the opportunity to run such custom checks.

 The reports subsystem allows easily create SQL-reports. There is nothing complex 

about this component. Its general idea is running SQL-statements and displaying the 

results  in a  user friendly way.  Because almost  every customs system must  have 

reporting capability, this component is a part of CuE platform.

 Heavy use of XML resulted in writing helper-code for XML processing and XML 

utilities component is the place, where such code lives. As XML is quite flexible and 

comfortable way of representing data, it is used by many components of CuE, which 

in turn use utility code from this particular component.

 The last component examined here encapsulates client code for third party services, 

which  source  code  is  not  available.  By means  of  this  component,  the  customs 

systems are able to federate and exchange information with the third party systems.

Thus, the basic components of CuE platform have been covered. It should be now clear 

for the reader, what the platform consists of and what useful functionality it provides. 

However, the scope of this thesis narrows only to the single functional component and, 

essentially, the only one the author of this work developed the most – the user interface 

framework. The next chapter is going to describe the original concepts and design of the 

CuE user interface framework far before the problems of complexity were met.

9



2The  original  design  of  the  CuE  user  interface 
framework
Actually, the initial implementation of the user interface framework of CuE was not 

written  by the author  of  the thesis.  However,  further  developments,  refactoring and 

improvements were successfully implemented by him, which led to the second and the 

third  generations  of  the  framework.  For  better  understanding,  the  newer  ideas  and 

approaches require some background from the reader, which is sensible to build on top 

of the very first – the original design of the user interface framework. This chapter is 

going to provide all necessary background and tries to create somewhat technical image 

of what the framework looked like way in the very beginning.

The user interface framework of CuE platform has two main concepts, that should be 

emphasized: the user interface definition language and XML-based forms. These two 

concepts together form a very powerful system for describing user interface structure 

and screen-to-screen navigation. Here we are going to look under the hood of these 

concepts and see the technical implementation with the design approaches used.

2.1User interface definition language
The  main  reasons  for  inventing  the  user  interface  definition  language  were  the 

following:

 make building interfaces as intuitive as possible

 hide unnecessary technical details

Consider the first  one.  Having an intuitively understandable programming language, 

which does not imply any technical background from the person, who is writing in it, 

can considerably speed up the development and reduce the maintainability issues. Of 

course some basic syntactic rules have to be taken into the account. But these syntactic 

rules express problems in a way very similar to the way humans think. To make things 

clear, lets take a simple “Hello World” program in Java and Scheme [4] programming 

languages:

package com.foo.bar;
public class HelloWorld {
    public static void main(String[] args) {
        System.out.println("Hello World");

10



    }
}

Figure 2: Representing “Hello World” in Java programming language

(display "Hello World")

Figure 3: Representing “Hello World” in Scheme programming language

The program in Java language looks far  less intuitive than the program in Scheme. 

When it is necessary to solve a problem of printing out a “Hello World”, one may think 

that he or she must have a “Hello World” statement and display it onto the screen. Take 

a look at the code in Scheme – a problem is solved exactly the same way ordinary 

people think they should solve it. Whereas the implementation in Java is significantly 

more complex,  contains a lot  of technical details (which is  necessary for successful 

program compilation and assembly) and does not directly reflect the problem.

When people (the programmers basically) think in terms of Java language, they do not 

usually think about the problem the way it was originally stated. The problem is being 

transformed to a bunch of technical details,  which are combined and put together to 

form a solution. These details make programs far less intuitive and harder to understand. 

Thus, the idea behind the user interface definition language is to describe the problem 

and not concerning the technical details (where the problem domain is describing the 

navigation and the structure of user interface screens). 

Here  we  smoothly  came  up  to  the  second  reason  and  the  conceptual  point  of  the 

language – hiding the technical  details.  But  what  details  this  user  interface layer  is 

intended to hide? The answer is simple – something, a programmer does not want to 

care about and this “something” is a HTML presentation code.

HTML-based  user  interfaces  are  extremely  popular  today,  because  HTML is  very 

flexible technology. This also means that HTML code with all its power may become 

clumsy and bring all sorts of maintainability and portability problems. This is why this 

interface definition language completely hides HTML part, so that ordinary programmer 

only has to concentrate only on the problem. This makes sense especially when there is 

just no need to modify HTML. All customs systems that are being built on top of CuE 

platform have standard HTML interface and the commons style, so no single developer 

should care about look and feel. The question “how” does it looks and feels has been 

11



answered once and the only thing that  should be specified with interface definition 

language is what will be on the screen – the details of HTML rendering has been taken 

care of.

To make things more clear, in the following figure a small code snippet of the user 

interface definition language is introduced.

(screen orderList
    (title "Tellimus")
    (page-table OrderLine (update 'order.getLines()')
        (col "Kauba nimi" .productName)
        (col "Ühiku Hind" .price)
        (col "Kogus" .quantity)
        (col "Kogu hind" .totalPrice)
        (col (button removeLine "Kustuta"))
    )
    (buttons
        (submit refresh "Uuenda")
        (submit ok "Edasi")
        (submit cancel "Tagasi")
    )
    (event removeLine
        'order.removeLinesById(submitId);'
        (add ORDERLIST)
    )
    (event refresh
        (add ORDERLIST)
    )
    (event ok
        (add ORDERDETAILS)
    )
    (event cancel
        (go-back)
    )
)
Figure 4: Defining a screen in user interface definition language

The user interface framework of CuE promotes heavy use of this language, which is 

12



because of its simplicity. When thinking about the problem of creating a screen, the 

presented code snippet above will look much closer to the way humans think than any 

possible  implementation  in  some general-purpose  language  like  Java.  If  a  screen  is 

needed, it is sufficient to provide the name for it. The same works with declaring titles 

for screens, where the text is the only required information that should be provided by 

developers.  Normally this language requires as input only the information that have 

sensible meaning for humans, who has no special technical skills. 

Lets now see, how to define a table. Everybody knows, that a usual table consists of 

columns and fields. Oh, probably the table consists of rows and columns, having cells in 

the intersection of the first two. This sounds quite logical and there are no arguments 

against it. However, in my opinion, it is not important, how people see things. The most 

important thing is what an object conceptually is. The concept of table is the same no 

matter physical paper or virtual software implementation of table is dealt with – it is the 

two dimensional way for organizing and representing data. It means, that when  looking 

at the code above, it is a priori known, what a table is and, hence, even if someone does 

not  know a specific  syntactical  element  (page-table in  this  case),  he or  she simply 

makes assumptions, which are eventually correct.  The same way anybody can guess 

what a mysterious  col element does and what information should it be provided with. 

The concept of buttons is very common also. It  is usually clear in advance that the 

purpose of a button is to perform an action or to spawn an event (lets put it this way). 

The  point  is  that  this  user  interface  definition  language  provides  means  to  define 

interface  elements  in  a  way that  is  conceptually  close  to  the  way humans  see  and 

understand things, at the same time hiding all unnecessary technical details which, in 

the given domain, are not of particular interest. These means usually allow building user 

interface screens of the CuE-powered systems in a matter of minutes.

There is one more critical feature of the user interface definition language we need to be 

aware of.  Because  the  user  interface  definition  language is  implemented  in  Java,  it 

allows to insert Java code almost at any place, in order to assist or customize the user 

interface rendering process. In fact, ordinary Java classes are generated from the user 

interface definition language, so there is always a chance to see the implementation 

code. But why would it be so important? Why is it necessary to emphasize the fact that 

user interface definition language generates pure Java? This is important, because this is 

the natural way of integrating the user interface definition language (and actually the 

13



whole user interface framework of CuE) with the rest of the system that runs on top of 

CuE. This means that it is always possible to get control over what to render and when 

to render it – this is a good flexibility aspect and it is going to be discussed soon.

To sum up, the user interface definition language is a quite powerful and flexible way of 

telling the system, what is required to be on the screen. At the same time, this language 

sustains simplicity, so that not necessarily experienced programmers is the only people 

who understand the way things work. Thus, these properties of the language are very 

essential when building highly informative user interfaces with complex navigational 

logic.

2.2XML-based forms
XML-base forms are the second important concept of the CuE platform user interface 

framework. The idea behind XML-based forms is that user interface rendering may be 

based on the XML-document. Such approach makes development a lot easier, when you 

need to work with forms, where the data you display is read from XML [9]. It is quite 

hard and inconvenient to make such forms by hand exploiting user interface definition 

language discussed earlier. 

However,  there is  certainly some information,  which still  has to be provided to the 

system and written by hand. First  of  all,  it  is  necessary to  give each field of XML 

document some unique name and write a mapping file. Second, describing the structure 

of the screen is needed. Describing a screen structure for your XML-form has to be 

done using names of the fields, defined in the mapping file. And final and the most 

important thing is writing a handler for the XML-form. In further chapters, all that is 

going to be discussed and explained in a slightly deeper level of detail.

2.2.1Making a mapping of XML-fields
The mapping of XML-fields is a very simple concept – enumerate the fields you want 

to obtain access to and give them names. In other words, a name is given to each XML-

element,  identified by unique XML-path (XPath). By doing this a compact overview of 

all  the  elements  is  achieved.  Moreover,  such  overview  promotes  flexibility  also. 

Consider a situation, where at the early development phases the XML-schema of the 

XML document  is  quite  unstable.  It  means  that  programmers  may often  play with 

XML-elements,  renaming  them  frequently  or  changing  their  location  within  the 

document. Having such single mapping file is very useful, as you always make changes 

14



in one place. In the following figure a snippet of such XML-document mapping file is 

presented.

(values
(80B 'Lehtede arv'

(attr xpath "xmlVoucher/tirCarnet/vouchers"))
(50A 'Kehtib kuni'

(attr xpath "xmlVoucher/tirCarnet/validUntil"))
(80K 'Lehe number'

(attr xpath "xmlVoucher/voucherNumber"))
(27 'Laadimiskoht'

(attr xpath "xmlVoucher/loadingPlace"))
(8B 'Saaja nimi'

(attr xpath "xmlVoucher/consigneeTrader/name"))
(2B 'Saatja nimi'

(attr xpath "xmlVoucher/consignorTrader/name"))
(50K 'Esitamise kuupäev'

(attr xpath "xmlVoucher/declarationDate"))
(50L 'Esitamise koht'

(attr xpath "xmlVoucher/declarationPlace"))
(80S 'Esindaja nimi'

(attr xpath "xmlVoucher/representative/name"))
(80AF 'Tõkendi ID'

(attr xpath "xmlVoucher/seals/identity"))
(80CL 'Paigaldaja'

(attr xpath "xmlVoucher/seals/installer")))

Figure 5: A mapping document for XML-elements 

The above example has been taken from TIR customs system, that has been built on top 

of CuE, featuring its user interface framework capabilities. In this snippet we see, that 

each XML-path maps to the name, which consists of two parts  – the programmatic 

identifier  and a  title  of  the  field.  Take  the  first  line,  for  example.  In  this  case,  the 

programmatic identifier is 80B, which is necessary when defining a XML-form screen 

structure. The title is 'Lehtede arv' and it is exactly what gets displayed over this field in 

the user interface. As you can see, this document is quite simple and carries no more 

informative  contents  except  these  presented  above.  However,  the  information 

encapsulated  in  this  mapping  file  is  a  fundamental  block  for  building  much  more 

interesting things, which are going to be discussed very soon.

2.2.2Defining a screen for XML-based form
The second step towards building a fully functional XML-based form is to define its 

screen  structure.  Defining  a  screen  structure  means  distributing  all  XML-document 

15



fields  between  the  form  tabs.  Current  implementation  of  user  interface  framework 

requires that  you assign each field a single tab it  should belong to.  This makes the 

overall organization of widgets more convenient for the end user. 

Another  aspect  of  XML-based  form is  that  by  default  an  ordinary  input  widget  is 

assumed behind each field. Additionally,  if  a simple input field is not enough,  it  is 

possible  to  write  custom widgets  of  custom behavior.  For  example,  the  need  for  a 

special widget may occur, which would embrace several fields and contain a button for 

validating the content. In this case a separate widget class is being written and applied 

in the screen structure definition file. The following figure will illustrate the concept:

(tabs
     (common "Üldandmed")
     (goods "Kaubad"))

(values
     (80A common)
     (80B common)
     (50A common)
     ((50B 50C 50D 50E 50F 50G) common 
            ComplexPartyCodeField "501B-G Valdaja")
     (50H common)
     (50I common)
     (80C goods)
     (80D goods)
     (80E goods)
     (80F goods)
     (80G goods)
     (31A goods TextAreaWidget))
Figure 6: An example of screen structure for XML-based form

The tabs syntactical element defines what tabs are going to be on the form. In this case, 

there are only two of them and their titles are "Üldandmed" and "Kaubad". The values 

element defines the mapping between names of the fields and what form they should 

belong to.  Please note  that  two custom widgets  are  used here,  TextAreaWidget  and 

ComplexPartyCodeField,  where the latter  is  a multi-field  widget  and groups several 

fields together.

This is basically all magic that should be taken care of when writing a fully functional 

XML-based form screen definitions. However, when digging deeper, it becomes clear, 

that something else is needed. Consider a scenario, where there are two different users 

that have different security roles. Each user should see the XML-based form of the same 

structure, containing the same dataset. But what if only one of them should be able to 

16



modify the data? It means that there should be some additional concept which could 

assist in controlling the accessibility of widgets on form. Some generic mechanism is 

necessary, which could make widgets read-only, hidden or event filter out unnecessary 

elements and remove entire widgets from form. The user interface framework of CuE 

platform features such concept, which is called profiles.

Profiles  are  a  tremendously flexible  way for  regulating  accessibility of  XML-based 

forms.  Each profile  defines,  which fields will  be accessible for modification,  which 

must be hidden and which should be removed from XML-based form. Essentially, the 

profile is a mapping file, that maps each field name to its accessibility modifier. A usual 

profile looks something like this:

(set-fields
  (required "19" "31C" "44A")
  (read-only "1C" "7" "32" "81F")
  (hidden "80AE"))
Figure 7: A usual profile for XML-based form

The profile presented above means that fields 19, 31C, 44A are marked as required, 1C, 

7, 32, 81F as read-only and a single field, 80AE will be hidden. Before a XML-based 

form will be rendered, this profile is run and its configuration is applied. As a result, the 

user must necessarily fill the fields 19, 31C, 44A, will not be able to modify fields 1C, 

7, 32, 81F and will not even see 80AE.

As you see, XML-based forms expect screen structure to be defined and heavily relies 

on it. But there is still something important left – something that makes the concept of 

XML-based  forms  work.   This  is  a  concept  of  XML-handler  and  it  is  going  to  be 

covered in the following chapter.

2.2.3Writing a XML-handler
XML-handler is a third concept of XML-based forms technology that CuE platform 

provides.  XML-handler  is  a  simple  Java  class,  which  purpose  is  to  assist  in  the 

processes  that  concern  XML-based  forms  behavior  (e.g.  running  special  profiles  or 

persisting  a  XML-document,  which  was  modified  by  user).  The  main  reason,  why 

XML-handler concept exists is because there must be some way of customizing  form 

behavior depending on the outer context or state of the environment (in other words, the 

means  of  configuration).  So  what  is  that  mystical  “outer  context”?  Well,  this  is 

something, that represents non-constant information, which may change at runtime and 

17



what  must  be  taken into consideration when working with  XML-based forms.  This 

basically means that if, for example, there are several profiles prepared, depending on 

some  outer  condition  only  one  of  them  is  run  at  form  rendering  time.  The  outer 

condition may be a  button identifier  a user had a  chance to  push.  If  a  user  pushes 

another button, a XML-handler detects that and appropriately adjusts the XML-based 

form behavior. Thus, XML-handlers are an important and inseparable configurable part 

of the XML-based forms technology.

Within the CuE project, the implementation of XML-handlers have varied over time, 

but  the concept  remained the same.  The original  implementations of  XML-handlers 

were  quite  simple.  They  featured  a  specific  environment  variable  (a  plain  integer 

number) as a mode identifier. Depending on the mode a XML-handler could select a 

specific  behavior  and  preform  specific  actions  on  the  underlying  XML-document. 

Basically, there are several aspects that usually need to be customized:

 the profile to be run before the form rendering

 the title of the form

 the process of validating user changes of XML-document

 the process of persisting the underlying XML-document

 other call-back procedures, required by the framework

As  was  discussed  above,  a  screen  may  have  different  profiles.  XML-handlers  are 

designed so, that they help choose the profile depending on the situation. In the original 

implementations of XML-handlers, the profiles were defined as constants, that could be 

chosen depending on the mode number. Consider the following code snippet:    

private static final Object[][] PROFILES = {        
profile(PARTIAL_EXPORT, new PartialProfile()),
profile(CONTROL_RESULTS, new ControlResultsProfile()),
profile(REGISTER_EXIT, new ManualExitProfile())

};
Figure 8: The definition of profiles in XML-handlers (the original 

implementation).

The  above  illustrates,  how profiles  were  defined  in  the  original  implementation  of 

XML-handlers. This was a quite convenient way, because in order to get appropriate 

profile a mode integer number could be used as an array index.

18



The next, the title of the form, may also depend on the mode. However, the original 

implementation  was  very  simple,  as  the  method  featured  a  standard  conditional 

statements, which checked the mode and decided what title to return.

The process of validating user changes of XML-document is  usually quite  complex 

logic in XML-handlers. It involves different checks for consistency with XML-schema, 

running  some  business  rules,  that  verify  the  content  of  the  XML-elements  and, 

sometimes, other specific manipulations with the document.

When  dealing  with  document  persistence  it  is  often  crucial  to  know,  whether  a 

completely  new  document  is  being  created  or  an  existing  one  is  being  changed. 

Therefore, it is necessary to perform some checks and query a database. Additionally, 

depending on the mode number it  is  possible  to  set  some fields  and store  into  the 

database some specific additional information.

There  are  many  more  other  call-back  methods  that  XML-based  form  technology 

requires a  handler to  implement.  Among them are,  methods that tell  the framework 

when the document should be modifiable (this is in addition to profiles, but affects the 

whole document) or what screen description should be used in the current mode. It 

means  that  the initial  implementation of XML-handlers relied heavily on this  mode 

integer number and the logic within handlers depended on it. This may seem as not an 

elegant solution, but, nevertheless, it worked for some time and worked quite well.

2.2.4A brief technical overview of the concept

The following diagram introduces a brief overview of the XML-based forms concept. It 

illustrates the organization of basic classes, which are the fundamental building blocks 

of this technology.

19



XMLHandler  interface  and  XMLForm  class  belong  to  the  CuE  platform. 

XMLHandlerImpl  is  a  specific  implementation  of  XML-handler,  which  is  normally 

located  in  the  module  of  some  information  system,  built  on  top  of  CuE.  Finally, 

ScreenDescription, XMLDocument and Profile objects have to be provided to XML-

handler, which are used internally by XMLForm. Therefore, a basic XML-based form 

may be implemented with these several classes. But how this technology is connected 

with the rest of the user interface framework of CuE will be covered in the following 

chapter.

2.3Putting it all together
Now that, what the main components and concepts of the user interface framework of 

the CuE platform have been covered, it  is time to see, how all these concepts work 

together.

Imagine a situation, where there is 

a. an ordinary screen, written in a user interface definition language

b. a button on this screen that performs an action

c. a XML-based form that is being invoked by the button mentioned above

As it was discussed earlier, each button defined in user interface definition language has 

associated action (or event) with it. Upon each button click, this action is being invoked 

20

Figure 9: The basic classes used for implementing XML-based forms



and this allows to create a logical link between XML-based forms and screens made in 

user interface definition language. But what is the starting point of executing XML-

based form? In other words, what method of what class must be invoked in order to 

give control to XML-based form? 

The user interface framework provides such entry point, which must be given a XML-

handler and a screen description objects of the XML-based form as input. This entry 

point is a static method of a specific framework class. It means, that there is no need to 

instantiate any object to execute that method and the only thing that needs to be done is 

binding XML-based form to ordinary screen and calling that  entry point  code from 

appropriate place. Eventually, the appropriate place for this code is no other than an 

event of a particular button.

However, there is still need to instantiate XML-handler and a screen description objects 

in order to make it all work. How can this be done? Is there enough information for 

instantiating XML-handler? Yes, there is. In the case of the screen description object it 

is extremely simple. The screen descriptions are defined in a specific language and at 

compile  time  the  corresponding  classes  are  being  generated.  We are  totally  free  to 

instantiate the generated screen description class and use it were needed. Moreover, the 

generated screen description class already has a static field containing the instance of 

itself, so there is even no need to bother about instantiating anything. It is sufficient to 

just use the instance from that field. Instantiation of XML-handler, however, requires 

the mode number and XML-document to be provided. The mode number is usually 

given as a constant integer. This is because each button is responsible for a single mode, 

which basically selects a specific behavior for XML-based form. Now where does the 

XML-document  may be  found?  This  user  interface  framework  does  not  apply  any 

restrictions  on  where  to  get  XML-document,  so  the  most  common  source  is  the 

database. Usually, when a button is being clicked and an action is invoked, a database 

query is run, which fetches the XML that is immediately utilized by the XML-handler 

construction process.

21



To sum up, the core of the CuE platform user interface framework has been covered. 

The reader of this thesis should now be fully prepared for the following discussion of 

the  problem.  By  now  it  might  already  be  clear,  that  the  framework  itself  has  its 

limitations,  which,  when exceeded, lead to  different  problems of both technical  and 

conceptual aspect. In the following chapter the problems of the framework are going to 

be considered and reasons, why they emerged are going to be discussed.

22



3The problem
The original implementation of the CuE platform user interface framework, which was 

discussed above, has been used for some time in several successful projects. However, 

when business demands became challenging and the complexity of systems being built 

on top of CuE platform increased, immediate measures should have been undertaken. 

Many  problems of different aspects have arisen and needed to be solved as soon as 

possible.

The general problem was extremely simple, though. The user interface framework has 

met its limitations, what expressed in high code entropy. It means that the flow of logic 

became  unclear  and  obscure  for  programmers  and  made  any  member  of  the 

development team apply much more effort in maintaining the code. In any way, it is 

very important to have clear and readable code as far as it is maintained by humans.

While the design and the overall organization of packages and modules still stood in 

place, huge and clumsy classes smelled as if it was just the right time for refactoring to 

come. However, the pure mechanical distribution of the large code into smaller pieces 

was not sufficient to make the entropy go away. It was necessary to change the way 

things worked conceptually, which meant changing the vision and understanding of the 

idea.

Thus,  this  chapter  is  going  to  discuss  the  problems  that  were  met  during  the 

development of relatively complex systems using the user interface framework of CuE 

platform. At the same time, we will take a closer look at the root of each problem that 

has arisen, also concerning the scope of the changes that the solutions required. In the 

next sub-chapter we start discussing the first problem – the problem of readability.

3.1Readability
During the software development process it is quite usual for a programmer to face the 

problem of code readability. Same problem was met during the development of larger 

and  more  complex  systems  based  on  CuE  platform,  especially  its  user  interface 

framework. Now lets take a little closer look at what exactly does the code readability 

mean.

The  lifetime  of  code  tend  to  be  very  complex.  Often  it  involves  all  sorts  of 

modifications  and  refactoring  to  implement   necessary  features.  As  a  result  some 

23



readability problems may occur such as inconsistent variable, procedure or any other 

object naming and overall naming conventions, copy-pasted pieces of code, abstraction 

leaks,  redundant  complexity  of  algorithm implementations  or  (what  is  even  worse) 

reimplementation of existing standard library routines. The usage of white spaces and 

overall code formatting style in general are also the properties of readability and may 

dramatically impede the understanding of code. Lets look at these properties separately 

and emphasize the ones we faced when building relatively complex systems based on 

the user interface framework of CuE platform.

The consistency of naming objects is essential  in programming. Consistency means, 

that  a name of an object reflects  the purpose of the object.  For example,  a method 

should do what its name says it is intended to do. So, it is not quite intuitive, when you 

see a setter or a getter method,  that does some additional magic besides just setting and 

retrieving a value. The case with variables is a little simpler and may say that a good 

name for a variable is a name that reflects its contents. However, today we quite often 

deal with object oriented programming, which means we have to consider classes also. 

But the naming of classes is a little more trickier than naming methods and variables. 

This is because a class encapsulates a number of methods and a number of fields, so 

that  we  should  reflect  the  whole  conceptual  idea  of  the  class  when  naming  it. 

Sometimes this may be not a trivial task. Naming is important, as only the names can 

give you quick enough and brief enough overview of what is really going on inside 

some method, what is the point of variable or a class. Good names contribute to better 

understanding of code and, as a result, better readability. 

When the user interface framework of CuE was being adapted to some more complex 

systems, some naming problems took place. Take as an example earlier discussed XML-

handler that essentially is a way for XML-document behavior customization. As we 

needed  additional  functionality  the  XML-handler  should  had  provided,  additional 

methods had been added to the handler. Often, methods functionality did not correspond 

to the handler concept and they had to be refactored out to helper classes. Sometimes 

method names were not quite right and that made a higher level refactoring even worse. 

However, if we take a look at other properties of readability, all this was not that bad.

Copy pasted code is a quite common problem, especially in large projects. This usually 

occurs  when a  developer  is  unaware  that  the  same piece  of  code  has  already been 

written by someone else. Even if you feel that with high probability the functionality 

24



you are  about  to  implement  should already exist,  the  finding  of  necessary class  or 

method may become a challenging task. All this leads to a copy-paste problem. But is it 

really a problem anyway?  Well, consider a simple scenario of fixing a bug. Bugs occur 

quite often and may require a significant effort of finding and fixing it. When fixing a 

bug in copy-pasted code the effort increases multiple times, which also takes significant 

time. Avoiding copy-pasting of code is a good style as you are essentially not copying 

bugs. 

Some copy-paste  problems also  occurred  in  the  scope  of  CuE platform based  user 

interfaces, though not often. Because of the fact, that the user interface framework of 

CuE  is  exploited  in  several  systems,  we  sometimes  observed  that  same  logic  was 

present in totally different systems. Also, because different developers work on different 

systems (even if the systems are based on the same platform), they are seldom aware of 

what is going on in the other system. Moreover,  very few thought they were brave 

enough to refactor and extend the user interface framework. Although, it is quite hard to 

make such investments  of  time and strengths  in  extending  the  framework,  they are 

obviously justified when done properly.

The next problem is abstraction leaks [6]. In general it means, that it is not enough only 

to  be able  to  use  abstractions  -  often,  it  is  also  important  to  be  aware  of  how the 

abstraction  layers  are  implemented.  Consider  the  user  interface  definition  language, 

screen descriptions and XML-field mappings, which are defined using abstract Lisp [5] 

alike syntax. However, they are not totally abstract, because in order to bind some of 

them  together  with  XML handler  or  some  other  code  in  Java  we  need  to  know 

something  about  their  implementation.  Also,  the  user  interface  definition  language 

provides us a way of inserting Java code practically everywhere we like. But combined 

with many lines  of  such Java code  insertions  the user  interface  definition language 

looses its elegance and becomes hardly readable. Take for example a situation, where 

we need to use different buttons depending on some specific condition, for example the 

state  of  the  document.  The  original  implementation  of  the  user  interface  definition 

language did not allow to define buttons conditionally.  It meant that we had to find 

some way of getting the buttons from plain Java method, where we had no restrictions 

imposed by the framework. As a result a helper class was created and tons of code 

concerning buttons was written. It was clear that very soon the user interface framework 

needed to be extended and appropriate measures applied. Despite the fact, such button 

25



selectivity approach worked for a couple of projects, that was based on CuE platform.

The last properties of readability we concern in this chapter are redundant algorithm 

complexity  and  reimplementation  of  existing  library  routines.  The  algorithmic 

complexity may often be identified as a mess of nested cycles and conditionals having 

tens of lines of code. This is by no means the kind of code we would like to read (and 

probably to reverse engineer) every day. Actually, such code illustrates the mechanical 

thinking of a programmer, who did not think about the problem abstractly enough, at the 

same time totally ignoring means of abstraction [10] and decomposition the language 

provides. This leads to clumsy and unreadable chunks of code that are extremely hard to 

maintain and fix bugs.  There were not so many examples of such code in  the user 

interface framework of CuE, but there were some and they had to be dealt with.

The reimplementation of a library routines was an extremely seldom phenomenon, but 

we cannot pass it by. The reimplementation means that unaware developer writes the 

same logic, which already exists in the the standard library. Sometimes the reason for 

that is an algorithmic complexity, which hides the fact that some standard method does 

the same and, as a result, impedes reading and understanding the code as a whole.

Although,  extending  the  user  interface  framework  leaded  to  some  complications 

described above, there were practically no problems with code formatting style and, in 

particular,  white  spaces.  These  are  pure  mechanical  properties  and  integrated 

development  environments  do their  job well.  However,  these  properties  affect  code 

readability as much as the others described above and should never be underestimated.

3.2Extendability
During  the  development  of  larger  systems  based  on  the  CuE  platform  one  more 

significant problem emerged. The user interface framework of CuE began exceeding its 

limits. The problem of size and continuous growth of code had to be dealt with, which 

was the basic reason for the readability and maintainability problems. But what exactly 

grew so  much  that  it  was  necessary to  think  about  deep  refactoring  and,  possibly, 

inventing a new concept  of a user interface framework? Basically,  there were three 

things: 

 the screens described in user interface definition language 

 the helper logic, encapsulated into a single helper class

26



 the XML-handler that was built upon the concept of modes 

Take  the  first  one.  Because  of  the  fact  that  it  is  extremely  hard  (or  may be  even 

impossible) to completely hide the details of the abstraction layer implementation, the 

user interface definition language in this case, we often had to write custom Java code 

within that layer.  As the systems grew, their  definitions of user interfaces also grew 

resulting into hundreds of lines of screen definition code plus additional supplementary 

Java code. Sometimes, due to the constraints imposed by the framework, different hacks 

took place, as the features implemented that way were not directly supported by means 

of the user interface definition language.

The  problem of  supplementary  code  has  been  solved  to  some  degree  though.  The 

majority of the supplementary code was refactored out of the user interface definition 

layer  and  put  into  separate  base  classes.  These  base  classes  were  extended  by  the 

interface screen definition files, what made the design of user interfaces a little more 

extensible  and  somewhat  reduced  maintainability  headaches.  However,  the 

functionality hacks still stayed in place and they were the important signs, indicated that 

some concepts of the framework needed to be rebuilt soon.

The second problematic link was the helper class. It is exactly the same class we were 

talking  about  in  the  chapter  above,  which  purpose was to  construct  button  widgets 

selectively, depending on some external condition. Why was that a problem with larger 

and  complex  systems  being  built?  Well,  to  some  extent  such  approach  was  quite 

tolerable.  However,  the  implementation  of  this  approach  was  relatively  complex, 

because in order to add a new button onto the screen, a programmer a) actually needs to 

add a button into the helper class and b) had to be aware of the things that are not of his 

interest,  as  helper  class  contained  much  more  other  helper  functions,  which  were 

utilized both by user interface screen definition layer and XML-handler. 

Consider situation a) – this is not quite good when building large and complex systems. 

As we know, abstraction layers assist us in handling complexity. In this case we deal 

with abstraction leak – the developer should be aware of the implementation. If we had 

several places in code, where such approach needed to be applied, the developer would 

have to know the specifics of the underlying button getter function or a specific helper 

class. Thus, this is certainly not the way we make the life of developers easier.

In situation b) the developer needs to deal with the code he or she is not supposed to 

care about. This is the major disadvantage of helper and utility classes, because their 

27



scope is relatively wide. It also means that our helper class is of quite low cohesion 

because it lacks a single concrete purpose and responsibility. So, if the helper class is 

large enough, the programmer should deal with more unrelated code, what, in general, 

is not very convenient.

Finally, we came to  the problem of XML-handler. As you already know, the original 

implementation of XML-handler had a concept of modes – a mode number came into 

the  XML-handler  from the  outer  environment  and,  according  to  the  mode  number, 

specific logic was run. The real problem here is that the mode switching was spread 

throughout entire XML-handler class and virtually every method had such selectivity 

logic. It was quite tolerable, when we had two or three possible modes XML-handler 

could be run with. But when systems required XML-handlers with more complex logic, 

more mode numbers, it was clear that existing approach could not work well. The basic 

reason was that the entire XML-handler grew very large and clumsy, at the same time 

making modifications and augmenting additional logic a painful process. This was due 

to  the  distributed  logic  for  a  single  specific  mode  number  throughout  the  multiple 

methods of the XML-handler class. For example, if you were to create a new mode 

number, you would have to create additional case into the method, responsible for the 

title of the form, as well as others like the method responsible for document persistence 

or document validation. Therefore, you may usually have some trouble when making 

this kind of modifications, because you have to make sure they do hot brake anything 

else. In the original approach of implementing XML-handlers there were no sufficient 

conceptual and technical isolation that could have secured the situation.

3.3The tight knot
Thus,  we have denoted the basic  problems of the user  interface framework of CuE 

platform.  All  these  issues  were  met  while  the  development  process  and  were  the 

obvious  signs  of  the  need  to  refactor  existing  framework.  The  readability  and 

extendability issues discussed above were a serious obstacles in a way of developers 

and needed to be solved soon. But what was the core of the problem – the thing that 

influenced the most on the decision to launch the process of rebuilding the framework? 

The condition of the XML-handler was the strongest argument here. Due to the reasons 

presented in the above chapter, it was almost totally unsuitable for further extensions 

and  additional  implementations  of  features.  The  helper  classes  also  stimulated  the 

decision, although they were still relatively usable and might stay extensible for some 

28



time.  Also,  the  fact  that  the  helper  classes  and  XML-handler  were  tightly  coupled 

showed that in no doubt the current approach did not promote good design practices [3] 

and could be difficult to modify in future. 

Some  problems,  concerning  the  user  interface  screen  definitions  also  occurred. 

However, they were a little less critical, because they allowed quite high extendability 

even though some pieces of code could be implemented another and a more convenient 

way. At the same time, the user interface screen definitions exploited some methods of a 

helper class and XML-handler, consequently lacking a unified approach to the overall 

design. 

Thus,  the  basic  problems of  the  user  interface  framework have  been  identified  and 

analyzed. In particular, interface screens, helper classes and XML-handler were coupled 

tight into single problem that someday necessarily needed to be solved. The following 

chapter is going to cover the solution that was worked out and what brought some light 

into the obscurity of the former design approach.

29



4Solving the problem
The above reasons were sufficient in order to start the augmenting and rebuilding the 

user interface framework of CuE. However, when we think more thoroughly, we see 

that the problems described above are not standalone problems – they are more the 

consequences of a design approach. This is the reason, why we are not going to do just 

the mechanical refactoring and decoupling of the helper and XML-handler classes in 

order to achieve some structural regularity or behavioral uniformity. If we do not think 

abstractly  enough,  with  such  modifications  it  would  not  be  easy  to  achieve  the 

necessary results, where the primary results are a) to create a conceptually different way 

of defining the XML-form behavior and b) to get rid of the extra helper functionality, 

making much of it regular and conforming to the new concept.

The first result we would like to achieve essentially means that we refactor the concept 

of modes in XML-handler. By this we would like to get something that would totally 

isolate the logic for each specific mode. Technically it means to get rid of the switch-

case statements and to organize the logic into different classes. That would promote 

easier extendability and maintainability.

The second, extra helper functionality, should not be treated as such. In other words, 

extra helper functionality should become regular in terms of the new conceptual design 

approach. Of course, it is very hard to totally escape the helper functionality, but we 

must try to take it to the minimum. This could also contribute to easier and clearer 

organization of code and its further maintainability.

Now lets take a look at the problem from another angle and a little higher level of 

abstraction. If we try to conceptually unify the problems discussed above and the results 

we would like to achieve, we may see something really important. What we really need 

to achieve is very likely to be the design of homogeneous behavior and aggregating 

heterogeneous data.

Homogeneous  behavior  means  that  we  need  to  treat  the  behavior  of  XML-handler 

uniformly throughout the whole user interface implementation. Due to code entropy and 

the limitations of the framework we sometimes had to deal with hacks, quick fixes or 

situations,  where  some  way was  the  only  way possible  to  implement  a  feature.  It 

resulted in some amount of specific conditional situations that did not conform to the 

original design and were just plain ugly.

30



Heterogeneous data aggregation is essential, because we are going to deal with different 

aspects  of  XML-form:  the  title,  the  profiles  to  be  applied,  the  properties  of  form 

validation  and  some  more  things  we  may  probably  need  in  the  future.  Basically 

heterogeneous data aggregation means the data, that came from different sources. It is 

easy to understand if we think that in one case we could need the XML-document data 

form a database, profiles from their definition list and the title as a constant. All this 

data  has  different  source  it  comes  from  -   that  is  why  we  chose  to  call  it  as 

heterogeneous.

All in all, in order to make things really convenient for developers, all that could be 

maintainable from the single place. This means, we could have something where to put 

behavioral and declarative (the data) logic together. Such approach isolates the XML-

form logic definitions, gives the developer more confidence when making changes, at 

the same time freeing him or her from reading and worry about the condition of the 

unrelated code. These were the things we were trying to achieve during the process of 

rebuilding and augmenting the user interface framework and in the next sub-chapter we 

will see in detail what all that nice theory turned out to be in practice.

4.1The concept of scenarios and steps
In this chapter we are going to discuss the first version of implemented solution - the 

concept of scenarios and steps. Here we explain the reason why we decided to use this 

name, at  the same time concerning technical aspect of implementation,  defining the 

advantages we get and the trade-offs we had to deal with.

4.1.1The idea
Lets start from the general idea of the concept. Having seen the problem from different 

angles we noticed that each separate piece of XML-handler logic, previously identified 

by mode number, would be sensible to give such name as scenario. Scenario as such is a 

sequence of activities that may take place during the processing of a XML-based form. 

It usually starts from invoking some actions before displaying the form, then displaying 

the form itself, again running some supplementary logic and viewing some other form. 

As you see, we get here a kind of a cycle. However, we are not sufficiently precise 

bringing such an example here. You may have already noticed, that between viewing the 

forms we have to brake to process in order to give a user a chance to preform necessary 

activities. The question is, how are we going to do that?

31



To answer  the  above  question  we have  to  specify what  the  building  blocks  of  our 

scenario concept are. Eventually, they are steps. Because scenario is usually a sequence 

of activities, running a scenario is a step-by-step process. This fact gave such name and 

we going to stick to it.

Now how are we going to break the sequential process of running a scenario and give 

the user a chance to make his own work done using the form on the screen? We may 

possibly solve this by assuming, that each scenario step is a finished process that begins 

with running some custom logic and ends with viewing the form on the screen. We 

should also mention, that such approach requires a scenario step to be a continuous and 

unbreakable process. However what does it technically mean? Imagine that we have a 

scenario that  consists  of several  steps,  what  is  basically intended to  display several 

forms. If we brake the process after displaying the first form, it means to continue the 

scenario we have to start with the second step, not the initial one. It becomes clear that 

scenarios must store information of what step should be executed the next time the 

scenario is continued. In other words scenarios should have state.

The  next  problem is,  how should  we  handle  the  state  of  each  scenario?  What  the 

solution would be look like technically? Well, we will try to be as simple as possible 

and to work out a simplest solution for that. 

Lets start from something we already know. We know that a scenario is a sequence of 

steps and we derived that a scenario should have a state. The state is intended to assist 

us in finding the right step that should be executed next, when earlier broken scenario 

processing continues. It may seem, that we may have to keep track of what steps have 

been processed and what have not been yet. This approach is simple enough and might 

eventually work an appropriate way. But still there is a simpler way. According to what 

we discussed  above,  our  goal  is  to  be  able  to  aggregate  all  necessary steps  into  a 

scenario. It means that scenario  a priori knows what steps are going to be processed. 

So, we do not need to keep track of steps – we do not have to store them in some 

container, because we already have them a priori stored. This leads us to an extremely 

simple solution of storing and the meaning of the state of scenario. The state might be 

represented by an index of a container, where all the steps are aggregated. Each scenario 

execution would increment that index by one, so that the following executions would 

use the step at the current index position. Technically each scenario might contain a 

collection or an array with aggregated steps, what may be indexed. This is the way, how 

32



steps were organized and processed within scenario during the refactoring of the user 

interface framework. But would such approach be sufficient?

In practice, we also needed some kind of steps of a little lower level of abstraction – 

those that could run arbitrary code and would not require to finish with displaying a 

form. This required separating levels of  steps abstraction, as we needed to run steps 

from  within  other  steps  –  the  composite  ones.  What  all  this  really  means  is  that 

composite steps should aggregate ordinary steps, which in their turn contain decoupled 

functionality.  So  that  composite  steps  are  only  for  aggregation  purposes  and  the 

composite  steps  are  the  ones  that  are  to  be  put  into  a  indexed  scenario  container. 

Therefore,  only composite  steps  should  break  scenario  into  parts  instead  of  just  an 

ordinary steps. At the same time, within a composite step, ordinary steps always run as a 

continuous and uninterruptible sequence.

Having talked about steps a little, its time to designate, what they essentially are. Steps 

as  such  have  to  be  defined  in  a  separate  classes,  but  that  does  not  mean  they  are 

conceptually classes. Although, in some conditions steps may have state, the general 

idea is to treat steps as actions or functions. This is because the single purpose of step is 

to be run and not accumulating the state. Steps should run the functionality coded into 

the  specific  method  and  this  is  the  primary  purpose  for  their  existence.  Each  step 

implements a common interface that allows to treat and use steps uniformly. We can 

observe this uniformity if we take both composite and ordinary steps. As both of them 

are steps, they implement the same interface.- the only difference is the type of code 

they run. Composite steps sequentially run all other steps aggregated into them, whereas 

aggregated steps run business logic itself. Using the same interface scenario interacts 

with its aggregated composite steps. So, as we now see steps are built with a functional 

concept in mind and in such way allow decomposing the logic of scenario into multiple 

smaller pieces.

Until  now we discussed the behavioral  side of scenarios.  However,  the idea behind 

scenarios  was  not  just  to  provide  convenient  means  for  configuring  behavior  (by 

combining  steps),  but  also  to  make  the  declaration  and  configuration  of  the  initial 

environment easy. Now it is time to take a look at a declarative side, the environmental 

data, that scenarios may aggregate.

What is the initial environment that we would like to aggregate in scenarios? The initial 

environment  is  basically  a  set  of  objects  that  are  going  to  be  used  by  the  steps 

33



aggregated in the same scenario. Among these objects may for example be:

 the title of the XML-form

 the XML-document

 list of profiles to be applied

 list of business rules to be run, when submitting the form into the database

 roles of the profile, which show whether or not the logged in user is authorized to 

run current scenario.

 different  flags  that  may  be  used  to  control  the  behavior  of  XML-handler  or 

individual steps

Such  environment  was  essentially  the  rebuilt  concept  of  modes  of  the  original 

implementation approach of  XML-handler. Instead of writing a bunch of switch-case 

statements in every method of a handler we set up the environment, what XML-handler 

uses. This means that we did not need modes at all – the handler became configurable in 

a much more object oriented way.

Now lets  see,  what  does  that  environment  look  like  technically?  Well,  in  technical 

sense, the environment represents a contextual configuration or a context for short. Each 

scenario has its own context with specific initial  configuration.  The context itself  is 

implemented using the JavaBean [7] convention. Essentially it means that we have a 

plain java object with fields of object state and accessor and mutator methods.  The 

fields of object state contain the contextual configuration, whereas accessor and mutator 

methods only provide the way of retrieving and modifying those fields, which conform 

to getSomeFieldOfState() and setSomeFieldOfState() naming pattern. Besides this, there 

is no more additional functionality in contexts, so that they act more like data transfer 

objects [8].

However, context is not the way to only provide the initial environmental configuration 

to XML-handler and steps of scenarios. The second important role of context is to allow 

steps to exchange information by means of context.

Usually  steps  just  read  the  configuration  provided  by  context  and  run  some  logic 

depending on this configuration. But sometimes it is useful to exchange information 

through context. Some step may change an object that resides at the moment in the 

context and the steps that are run later can use this modified object. Such object may for 

34



example be a XML-document that is usually present in the context. Quite often certain 

steps must generate some values and  fill appropriate fields of a  XML-document with 

them. At a later stage some step may check, whether a document had those fields set 

and, if necessary, run specific code. Moreover, some steps also may set necessary flags 

in a context, which are checked by the steps run later. 

As you see, the context may be used to exchange information between steps. But please 

note, that such exchange is always a one way process. This means, that one step cannot 

pass  some  information,  that  would  somehow  be  available  to  another  step  that  is 

positioned  in the execution sequence before. This just cannot happen, because there is 

only one pass through the execution sequence and each step is always run no more than 

once. By the way, it is also very hard to imagine why would we want to have this kind 

of behavior.

By now we already know what the context technically is. But we did not mention, how 

do we pass the context to XML-handler and steps. Further we are going explain this 

aspect too.

We discussed that a context is defined in terms of scenario. In other words, we write 

some context initialization code in scenario class, which uses earlier created context 

object. But where the context is being held in general? And in what way we get access 

to the current context? 

To answer these questions I would like to remind that our user interface framework is 

web-based and that it is possible to obtain access to such information as web-request, 

server response and session. Web-request is essentially a request from the client, who 

would like to view our web-page. The server response is the system's response to the 

client  request.  The  response  is  usually  a  web-page,  rendered  by  the  user  interface 

framework. The session is a logical communication channel that is usually established 

when you log into the site and closed when you log out. In our case, a session is crucial, 

because of some of its properties. The key property of session we should pay attention 

to is the ability to store information between page hops. In other words, session allows 

to store globals in some sense. This property has been exploited with scenarios. 

When scenario is being constructed, the context and step configuration are stored into 

the specific  scenario fields.  After,  the  scenario  registers  itself  with a  global  session 

variable, so that it could be accessed later on. It means that the context may be found 

only by asking it from the current scenario. So that if in some place we would like get 

35



some object from the context, we are supposed to be aware of the current scenario, the 

get context and get an object in the end.

Practically very often  steps  need  to  get  a  lot  of  objects   from the  current  scenario 

context. The way of getting objects from the current scenario context presented above 

may seem complicated and not that convenient. That approach may seem a lot more 

inappropriate if we recall that steps as well as the context are created and configured in 

terms  of  scenario  construction  process.  Having  things  work  that  way  we  get  an 

outstanding  opportunity  to  pass  a  context  reference  to  all  the  steps  we  define  in 

scenario. This reduces the chaining of methods we would normally have to do in order 

to get to the context and the required object. Thus, the automatic context registration 

mechanism has been implemented, so that each step of the scenario is aware of and has 

a direct access to the current context.

When talking about automatic context registration, some sort of abstraction is meant by 

that.  The abstraction that has some implementation details, but which in general has 

little influence on the concept of scenarios and steps as such.  We also have similar 

abstractions  that  hide  implementations  of  running  composite  and  individual  steps, 

context construction process and registering it with current scenario. All these and many 

anther implementation details are intentionally hidden from and are shared between the 

concrete  scenario  definitions.  In  fact,  there  are  several  levels  of  such  abstractions. 

Because of the fact that the current user interface framework is used throughout several 

systems  the  lowest  level  abstracts  and provides  for  shared usage  their  the common 

functionality. This is the platform level of the framework. The second level encapsulates 

and shares the functionality between the concrete scenarios within a specific system. 

This may be called as an application level of the framework. Finally, the highest level 

are  the  concrete  scenario  definitions  themselves.  These  use  much  of  the  abstracted 

functionality promoting relatively efficient code reuse. 

Also, XML-handler has been refactored in a very similar way. The common system 

functionality has  been analyzed and refactored  out  into  the  separate  base class  that 

belongs to the platform level of the framework. At the same time, this base class at the 

platform level is extended by the application level of XML-handler classes, providing 

the support for scenarios and contexts.

Helper class refactoring has also taken place. If you remember, helper class contained a 

specific  method for  getting  buttons  for  the  interfaces  that  are  described in  the user 

36



interface definition language. This method has been refactored and, in particular, the 

implementations of buttons. Earlier,  upon the invocation the button created a XML-

handler, giving it a mode as a construction parameter. After refactoring, upon invocation 

of the button a concrete scenario is being constructed and its execution process is being 

launched. Thus, these buttons are essentially entry points to concrete scenarios and the 

helper class provides us the convenient way of retrieving them to the user interface 

definition layer. 

Thus, the idea of scenarios and steps has been presented, the basic concepts discussed 

and some implementation details revealed. This concept may seem as a quite nice and 

suitable solution for the problem stated. But as anything in the world this solution has 

its own pros and cons. Below, we are going to cover some advantages and trade-off of 

the current approach for scenarios and steps implementation..

4.1.2Advantages
Lets start from the major advantage that is clearly seen in this new concept of scenarios 

and steps. As was mentioned above, any scenario consists of sequence of steps, both 

composite and individual ones. Also, steps has functional essence – that is they are just 

the pieces of code needed to be run at appropriate time at appropriate place. Steps can 

implement  arbitrary  auxiliary  functionality,  but  basically  manipulate  objects  of  the 

current scenario context. What makes steps really special is the flexibility they allow. 

And the flexibility is achieved in a very simple way. If for example we would like to 

add some specific piece of code to the execution sequence of steps, we first have to 

write our custom step with necessary functionality and register that step in the execution 

sequence. That is all we have to do to set the custom logic up and running.

The second important advantage is also related to steps. Having such a flexible way of 

creating and using custom steps promotes easy code reuse. Steps allow to decompose 

the logic in such a way, so that it can be shared between different scenarios or even 

between scenarios of several completely different systems, built upon the  common CuE 

platform. This fact dramatically reduces the lines of code developers have to write and 

more promotes taking a component (a step in this case) from the ”shelf” and use it. 

Thus, writing a scenario tends to be a process more about configuration rather than 

plain programming.

In  general,  the  declarative  approach  of  describing  scenarios  may be  quite  a  strong 

37



advantage. Having such approach it does not really matter (and the developer does not 

bother) what the implementation of the declared steps is, unless, of course, something 

special is required. Context is declarative as well, as you essentially initialize it with the 

objects that are very often constants. Thus, such declarative paradigm and the approach 

to abstractions may seem to be almost a panacea that would solve the problems of the 

former, original design. However, nothing gets for free and even such a nice concept of 

scenarios and steps has its own downsides. The following chapter will cover the trade-

offs that were met when applying this concept in real development.

4.1.3The trade-offs
After the user interface framework has been refactored and started being used in the 

development of customs systems, some drawbacks have been noticed.

The first drawback noticed was the large amount of scenarios that had to be defined. 

Because of the fact that the developed systems had far non-trivial business logic, many 

different scenarios had to be created and put in use. From the developer's point of view 

it meant that the naming became a challenging task. The scenario naming is important 

here,  because  nobody normally wants  to  open  each  class  and scan  through several 

scenario implementations in order to find the necessary scenario and work with it. To 

prevent this some naming had to be worked out. But nevertheless, the names given were 

relatively long and it was not convenient to manipulate them in code. Although, names 

were descriptive enough to save a developer's time.

As the number of scenarios grew, there were some attempts to promote scenario reuse. 

Scenario reuse meant  that  when there are  several  scenarios  with very similar  logic, 

where some specific cases depend on some contextual flag or an external environment 

state, a single generic scenario has been created. In this generic scenario there were 

normally  no  default  constructor,  but  the  constructor  (or  several  constructors)  with 

parameters. Such parametrized scenarios were often used in many different places in 

code, emphasizing reusability. But what trade-offs this approach might have if it gives 

a nice code reuse capabilities? 

The problem is in uniformity. Scenarios would be easier to deal with if there were a 

single uniform contract on creating and using them. The part of such contract is dictated 

partially by the extended classes of the underlying levels of abstraction. However, the 

underlying abstraction levels cannot dictate, how the subclasses are to be constructed.

38



The uniformity problem rises, when it is necessary to keep track of XML-document 

drafts. In the customs systems that were developed on top of this framework very often 

we  had  to  deal  with  scenarios  that  modify  the  document  and  temporary  draft  was 

usually stored into the database. When the user wants to resume editing the draft,  a 

database should also contain the information about the scenario, which would later be 

reinitialized  and  launched.  Because  the  majority  of  scenarios  had  the  default 

constructor, there was no problem with constructing it. With generic scenarios, which 

have non-default constructors, it is very hard to know how to build them, what makes 

using them with XML-document drafts far more inconvenient and complex. This non-

uniformity illustrates,  that  there  are  cases,  when we can use one type  of  scenarios, 

whereas there are also cases, where only another type of scenarios (generic scenarios) 

suit. Therefore, logically there are two types of scenarios, even when technically all of 

them seemed to be unified. 

One more trade-off should be mentioned here. This trade-off is a global session variable 

that contains the scenario being currently processed. This is not a very good solution to 

use global session variable, because, as practice shows, some weird bugs may occur 

because of that. Such bug were related to the context and, namely, the XML-document 

object. The reason for these bugs was the fact, that sometimes XML-document object 

was created separately, not within a scenario execution process. This was real problem 

right after the framework has been refactored. Also, global session variables are not 

reliable enough. This is because they are shared and any code that uses it (steps for 

example) may break it,  causing much more insane bugs than in the example above. 

Therefore,  due  to  reasons  above,  global  session  variable  for  storing  scenario 

information is considered as a significant trade-off and is the aspect to work on.

To sum up, lets take a look at the full picture of the rebuilt concept. The following class 

diagram (Figure  10)  introduces  the  general  design of  scenarios  and steps  approach, 

which  was  widely applied  in  several  successful  systems,  developed  on  top  of  CuE 

platform.

39



The above diagram depicts the general organization of classes in the second generation 

of  the  user  interface  framework.  As  you  can  see,  the  model  is  quite  complex  and 

contains many relations between classes.  However,  despite such relative complexity, 

this  design  gave  a  conceptually  different  view  of  the  problem,  what  made  the 

development notably more efficient. 

All in all, the main trade-offs of the first rebuilt version of the user interface framework 

have been covered.  However, it is clear that the new refactored framework has its own 

problems  too,  although  not  so  significant  as  the  original  implementation  had.  The 

following chapter will tell, in what way this version of the framework was improved, 

what concepts were applied and what difficulties were dealt with.

4.2Further refactoring
Due to some trade-offs described above a further refactoring should have been initiated. 

To some extent, the above mentioned approach suited the needs of the customs systems 

built on top of CuE. But again, as the systems evolved, some complexities were met and 

a stronger conceptual reorganization and unification was needed in the nearest future. If 

we take a look at the previously described concept, it may seem relatively complex. For 

40

Figure 10: The second generation of the framework



example, the conceptual separation of composite and individual steps – was that really 

necessary? Well, at some point this made the development of user interfaces easier in 

current  domain.  The  developers  changed  their  way  of  thinking  about  what  user 

interfaces essentially consist of and looked at the problem under slightly different angle. 

But nevertheless, it saved some development effort and the general feedback received 

was positive. 

At the same time, the created framework was not quite that, what it was meant to be. It 

was very close and almost that concept everybody in the team were looking for. Some 

structural complexity and non-uniformity was present and created some inconveniences. 

Therefore,  the  work  on  the  new  implementation  began  and  its  purpose  was  the 

improved concept that would promote uniformity, more conceptual simplicity and code 

reuse.

4.2.1The new implementation
The  new  implementation  of  the  user  interface  framework  pursued  the  following 

objectives:

 avoid global session variables

 build a functional concept

 achieve uniformity, where everything is a scenario

 buttons should be an inseparable parts of a scenario

 improve scenario initialization and construction processes

These and some other objectives are going to be discussed here. At the same time, the 

implementation details will also be concerned and explained where necessary.

4.2.1.1Avoid global session variables
Lets start from the problem of global session variables. A global session variable for 

storing  current  executing  scenario  was  extremely  important  in  the  former 

implementation of the user interface framework.  This is because it  allowed a single 

access point,  which was a quite convenient approach.  At the same time, there were 

some drawbacks,  that  were presented above,  which made the implementation of the 

concept less reliable and more error-prone. 

The  basis  of  avoiding  global  session  variables  was  built  on  top  of  context  passing 

41



functionality. The context is the basic data carrier and according to the new idea was 

meant to be copied each time the next processing step was executed. It means, that the 

context was no longer shared between steps. Instead, each step had its own individual 

copy of the context and did not depend on anything global. This solution isolated the 

environments of steps and made developers feel more confident while writing scenarios, 

because  they did  not  have  to  affect  the  global  environment.  Also,  this  could  make 

developers feel that, because of such isolation their code in their scenario can hardly 

break anything.  However,  this  assumption is  not right.  The reason is  that  the steps, 

which  are  run  later  can  be  affected,  because  they  inherit  the  state  of  the  context, 

possibly modified by the previous step.

All in all, a natural question may rise here – how, nevertheless, all of that is related to 

the problem of locating scenarios in a global session variable? The relation is relatively 

simple. Because of the fact that very often a context was a single reason why a scenario 

was accessed, it was necessary to change the way of passing context around.

However, changing the way of passing a context was not sufficient in order to get rid of 

the global session variable. It was also very important to change the way we pass the 

current state of the scenario.

4.2.1.2A stateless functional concept

The  other  reason,  why  a  scenario  needed  to  be  accessed  is  to  make  it  execute  a 

following step. Of course, there are no arguments about that – steps are aggregated into 

scenario and, therefore, to execute the proper step, we have to know what scenario we 

deal with and, in particular, what is the state of the current scenario.

A scenario state is something that should survive multiple web-requests. It would be 

natural to use a session variable and store the state there. But is there other way of 

storing  or  passing  a  state?   Well,  in  the  new implementation  of  the  user  interface 

framework  a  stateless  concept  was  invented.  The  idea  of  the  concept  is  relatively 

simple, though quite elegant: each screen that is being rendered by the user interface 

framework contains buttons to perform some actions, where each button already knows 

some information about the step it should run if being invoked. Upon request, many 

different widgets (including buttons) are being rendered and at exactly this moment a 

necessary information about the next processing step is bound to the buttons on the 

screen. This allows to avoid storing the state, as each button already knows its own 

42



piece of code it has to execute. Therefore, there is no more need to locate and determine 

the current scenario and, thus, it is possible to avoid using scenario state at all.

However, there was one more reason for storing scenario in a global session variable. 

Sometimes it  was  necessary to  find  out,  what  scenario  class  is  being  dealt  with.  It 

usually  found  its  use  with  XML-document  drafts  mentioned  in  one  of  the  above 

chapters. In order to store a document draft, it was necessary to know, what scenario 

was running. In order to properly restore the environment later, a scenario class name 

had to be stored into the database, together with the XML-document draft. Then, the 

class name had to be read from the current scenario, which was located in the global 

session variable. In order to avoid such global variable at all, it should be possible to 

work out another way of determining a class of a scenario. In the new implementation, a 

scenario class name was stored into the context, which was quite an obvious solution 

for that. Later, when the class name is required for storage with XML-document draft, it 

is supposed to just be taken from the context.

Therefore,  it  was  totally  possible  to  develop  a  stateless  concept  for  the  new 

implementation of the user interface framework. Also, having no state gives the concept 

a different look and more reliable functional development approach.

4.2.1.3Laziness
At this point functional properties of the new implementation approach are clearly seen, 

where the basic property of concept is the absence of scenario state. However, there is 

one more important property that should be considered here – the laziness.

The concept of lazy objects is an extremely important and is well known as a separate 

design pattern. Some programming languages also directly support this pattern. Scheme 

has a concept of promises which may be forced and executed later. Smalltalk has blocks 

that are a part of a language and are the technical means for concept of lazy object. 

Despite the fact that there are different names, the idea is the same. 

So why is  the idea of lazy objects  so popular  and why do developers  often find it 

useful? Lazy approach is sometimes necessary, when large object graphs are concerned. 

In other words, when the object structure is relatively big, it is usually not a very good 

idea to hold everything in memory. It is more appropriate to load only these objects 

what are needed at any particular time. Of course, this approach does not suit to some 

specific intense object tree walking algorithms and this is actually beyond the scope of 

43



the problem (as the new implementation of the user interface framework does not do 

such  intense  operations  and does  not  parse  any object  trees).  But  nevertheless,  the 

pattern of lazy objects was vastly applied throughout the design.

If you look at the stateless approach at a little different angle, it will become clear how 

the laziness concept fits the design. The general idea was to make the rendering of the 

user interface screens as lightweight and as fast as possible. It meant, that at rendering 

time each button had to be bound with minimal amount of information, so that it would 

also be able to run appropriate code based on that bound information. Now the most 

important aspect here is that only the binding is relevant – no object constructions or 

other code executions could take place at page rendering time. In other words, at page 

rendering time each button should be only aware of what is going to be run when it is 

clicked,  whereas  the  construction  and  execution  of  this  “what”  should  always  be 

initiated within the button invocation process. This approach avoids creating tons of 

useless objects at page rendering time, thus making this process relatively lightweight. 

Moreover, there is really no need for these objects to be created before the button was 

clicked.  It  would  be  waste  of  memory,  if  for  each  button  significant  amount  of 

initialization code had to be run building many objects that may possibly be used. But 

user does not necessarily needs to click all the buttons within his web-session, so much 

of  previous  initializations  and  preparations  would  be  just  useless.  Therefore,  it  is 

obvious that lazy approach of the new implementation of the user interface framework 

brings efficiency and significant memory savings.

4.2.1.4Everything is a scenario
Up to this moment it was told, that each button of the user interface screen is aware of 

some piece of code that is to be run upon each button click. Also, in one of the above 

chapters  it  was  mentioned  that  the  code  button  runs  is  conceptually  a  step  of  the 

scenario.  However,  when  the  stateless  scenario  concept   was  invented  in  the  new 

implementation  of  the  framework,  the  attempt  for  scenario  unification  and 

generalization was made. 

The scenario unification and generalization meant that there would be no more scenario 

steps (neither composite nor individual ones). Instead, scenarios were designed so that 

they would aggregate other scenarios, which would execute code just like steps in the 

former design approach. Such concept is a potentially strong means of abstraction. This 

allows to build three and more abstraction layers of scenarios, what could allow better 

44



and finer code reuse, though having some overhead because of large number of scenario 

classes developers would need to define. Basically it means, that there are two logical 

types of scenarios – aggregate-scenarios and the lowest level scenarios, that actually 

encapsulate and run custom code. But thanks to uniformity achieved, these two scenario 

types are handled the same way and technically there is no difference in implementing 

them.

4.2.1.5The implementation details
As the technical aspect has been concerned, it would be useful to describe, how the new 

implementation of the framework is built.

The new implementation consists basically of two types of objects -  scenario and a 

context and no composite or individual steps exist in this new approach. Each scenario 

basically consists of three methods:

 a method for context initialization

 a method for button definitions

 a method that runs custom code

A method for context initialization already has available context variable. The code in 

this  method  should  appropriately  initialize  the  provided  context  and  set  up  all  the 

environment that will be available to the code later. A context object itself is an ordinary 

map. But having a map, a set of keys is necessary. Moreover, context keys should be 

consistent throughout all scenario implementations, so that it would be possible to read 

some object  from the  context  at  a  later  stage.  To protect  developers  from typos,  a 

common  interface  was  created,  where  all  keys  for  the  contextual  environment  are 

defined.  Each  scenario  simply  implements  that  interface  and  all  constants  become 

available straight away. Using these inherited constants, any developer can easily write 

context initialization code and be sure no typos and inconsistencies ever occur.

But was that the best  way of implementing and working with the scenario context? 

Alternative could be to  implement  a  simple bean or data  transfer  object  for  storing 

contextual information. This approach could give static type control as an advantageous 

property, so that developers would not need to do an insecure type-casting operations. 

On the other hand, in rapidly developing system a contextual structure is more likely to 

change, what makes it quite inconvenient to modify the context class. In this case it is 

45



required to add a field, write a getter and a setter. Compared to the ordinary map it is 

more work to do, because with map it is only sufficient to define a constant for a key. 

Thus, this may seem a kind of philosophical question about what is better here. But at 

the time of inventing and building the new implementation of  the framework, map-

based context was preferred due to easier modifiability.

Now lets see, what is a method for button definitions. As was mentioned above, a button 

is essentially an entry point to scenario. At the same time, arbitrary piece of code can be 

bound to a button. Putting this two things together it is obvious that a button can also 

execute  a  scenario.  Because  of  the  fact,  that  in  the  new implementation  a  scenario 

contains from other scenarios, defining buttons within one scenario is now a natural 

way to aggregate other scenarios. This approach assumes, that behind each button is a 

code, which, when the button is clicked, constructs a specific scenario and executes it. 

Therefore, within a single primary scenario it is possible to define buttons, which are 

entry points to other secondary scenarios.

Within a method for button definitions a developer basically constructs a button object 

and appends it  to  list.  The  construction of  a  button  is  intended to  be  a  transparent 

process, which requires a developer to only execute appropriate method, given it a title 

of a button and a scenario to be bound. It is also possible to construct buttons depending 

on some condition, where the condition may be controlled by a context variable. At 

buttons initialization time the initialized context is already available, so that sometimes 

it may be of  great use. All in all, there are no complicated activities required from a 

developer,  so  the  button  definitions  may  be  considered  as  an  easy  and  a  quite 

straightforward procedure.

Finally, a scenario method, which is intended to run custom code should be concerned. 

This method is also usually written by a developer and is one of the most flexible parts 

of scenarios. In this method many sorts of programming logic may be. There may be 

some auxiliary code for making different pre-processing actions, at the same time some 

secondary  scenario  may  run  or  a  user  interface  screen  rendering  process  may  be 

triggered.  Also, initialized context of the current scenario is  available,  which allows 

additional flexibility of code. In general, this method actually encapsulates something, 

what  scenario  should  do  when  run,  so  that  all  business  logic  must  belong  here. 

Moreover, the general purpose for scenario existence and the final step in its life cycle is 

running this method.

46



To sum up, each scenario of the new framework requires three methods to be written in 

order to operate properly. Also, there is additional supplementary functionality, which 

makes button definitions extremely easy. This supplementary functionality is organized 

into the class, which represents lower level of abstraction and is extended by scenarios. 

Thus, this abstract class makes all convenient helper methods always available from 

within any scenario, what makes scenario-based development significantly easier.

4.2.1.6Binding with the rest of the framework
In the previous chapter initialization of scenario context and definition of buttons was 

described.  The  concept  is  quite  clear,  how in  the  general  case  the  context  and  the 

buttons are intended to be used. However, the technical part is still not quite clear. How 

do the context and  the buttons are being exposed to the rest of the framework – that is 

to the user interface screens written in specific definition language, mentioned in the 

very beginning of the thesis? To answer this question, it is necessary to concern the 

mechanism of scenario invocation process.

In order to invoke a scenario, it is necessary to call a specific go() method. This method 

belongs to an abstract class, which is normally extended by other scenarios. Actually, 

the  go() method  is  a  common  interface  for  all  scenarios  of  the  new  framework 

implementation and  performs the following basic operations:

 launching context initialization code

 launching button definition code

 registering context with web-request

 registering buttons with web-request

 launching actual scenario business logic code

Launching context initialization code means that code written by developer of some 

specific scenario is run, which results in proper set-up of the context data. The same 

concept  applies  for  launching  button  definition  code,  where  buttons  are  being 

constructed  and aggregated into  the  list.  Registering  context  and buttons  with  web-

request is the most important moment here, because web-request is essentially a link 

with the rest of the framework. Now having registered the context and the buttons as 

the request attributes, it  is possible to get them at a later stage. It means, that when 

scenario runs user interface screen rendering code (where screen was previously written 

47



in the user interface definition language) it is possible to interfere into this process. In 

order  this  to  work,  the  user  interface  screen  must  have  some  modifications  also. 

Because  of  the  fact  that  the  user  interface  definition  language  allows  insertion  of 

arbitrary code at almost arbitrary point, this makes it possible at rendering time to get 

from the web-request  previously stored context  and buttons,  which may be used to 

customize the rendering process. Context may be retrieved and some specific widget 

rendering behavior may be possible. However, buttons are the crucial part here. From 

the web-request it is possible to get the buttons defined within a scenario, which, in 

their  turn,  are  then  capable  of  invoking  other  secondary  scenarios  or,  again,  some 

arbitrary functionality. Therefore, with this new conceptual approach great flexibility is 

achieved and enormous opportunities of the framework emerge.

4.2.1.7Still call it “scenario”?
Having  discussed  the  new  conceptual  approach  of  the  user  interface  framework,  a 

natural  question  may rise:  do  scenario  classes  of  this  new implementation  actually 

satisfy the definition of  “scenario”? In fact, this is a very difficult question. Indeed this 

current  approach  to  the  problem  differs  from  the  former  one.  In  general,  a  good 

definition for the user interface scenario could be something like a set of screens a user 

may navigate, where the order of navigation may be unimportant. The common contract 

of the new scenario concept is that each scenario class execution may run any code 

(including  running  other  scenarios)  and   view  some  screen.  Whereas  the  former 

implementation  dictated,  that  a  scenario  is  a  set  of  steps  that  are  run  sequentially. 

Therefore, it means that the current new implementation could have different and more 

suitable name, because the overall approach is more close to be based on steps rather 

than scenarios. 

4.2.2Benefits achieved
Knowing, how the new implementation work, it is time to analyze, what benefits this 

approach  actually  gives.  Lets  start  from the  general  viewpoint  of  developers  –  the 

primary users of the framework.

The first simplicity achieved, is that there are only two conceptual elements developers 

have to deal with: the context and scenarios. Compared to the former approach, there 

were actually four (the context, scenarios, composite steps and individual steps), what 

made  life  of  developers  slightly  more  difficult.  For  each  conceptual  element  any 

48



developer usually has to know what are their purpose and limitations, so that he or she 

could be able to use them properly.  It was also necessary to create many objects of 

different  classes  (scenarios  and  steps)  in  order  to  organize  the  code  and  handle  it 

correctly,  whereas in the current new implementation a developer only has to worry 

about scenarios. 

Now scenarios are the primary means of abstraction and organization of the execution 

flow.  It  means  that  with  the  current  new  approach  it  is  possible  to  build  layered 

scenarios separating the overall  logic  into the abstraction levels,  where the building 

blocks are always other scenarios. With the former approach this could also be possible, 

but would not be as elegant. It could be possible to build abstraction layers of individual 

steps, executing steps from within some other ones.  However,  the code in this  case 

would  not  be  readable  and  maintainable  enough,  because  of  the  relatively  low 

behavioral uniformity achieved. Low uniformity means that it could be technically hard 

to run scenarios,  composite  and individual  steps in  the same environment,  which is 

because the were just designed to run in different environments. Scenarios of the former 

design approach had to  be  executed  from within  the  presentation  layer  (at  the  user 

interface rendering time). Composite steps had to belong to scenarios and run within 

their environment, at the same time having individual steps to be executed at the lowest 

level. This means that the design statically defined three abstraction layers – scenario, 

composite step and individual step – where building additional abstraction layers would 

increase code complexity. Therefore, the benefit of the new approach is that there are no 

abstraction  layers  stated  a  priori by  the  design.  All  abstractions  are  achieved  by 

manipulating essentially the only type of building blocks – scenarios and organizing 

code within them.

One  more  advantageous  feature  of  the  new  design  is  the  ability  to  link  scenarios 

together. In other words, it is possible for scenarios to be aware of the previous “parent” 

scenario, which created them. Being aware of the parent scenario gives a convenient 

opportunity to make a backward operation. From the user point of view it means that on 

the screen there is a “Back”-button, which will lead to the previous screen. Thus, when 

user  clicks  the “Back”-button,  the parent  scenario  is  being  invoked,  which does  all 

required  context  preparations,  possibly  runs  some  additional  logic  and  renders  the 

previous screen.

The  “go-back”  mechanism is  common  for  all  scenarios.  This  mechanism does  not 

49



depend on specifics of the implemented scenario, so it was organized into the abstract 

class as a utility function. Each individual scenario written by developer, and which 

extends this abstract class automatically gets this means for building “Back”-buttons. 

Thus,  providing  the  “go-back”  functionality  for  the  user  interfaces  is  even  simpler 

process than making some other ordinary buttons with specific logic.

However, everything good comes at price. The next chapter is going to cover the trade-

offs of this new conceptual approach to building user interfaces.

4.2.3Something we must sacrifice
The primary trade-offs of the new design are related to the system resources, such as 

operational memory and response time. Actually, these are the characteristics that could 

be better, but for some reasons they are not.

Lets take the first trade-off – the operational memory required. The systems built on top 

of the CuE platform user interface framework could consume less memory if there were 

no  scenario  chaining  capabilities.  Chaining  is  the  ability  to  access  parent  scenarios 

discussed above.  This new concept requires more operational memory,  because it  is 

needed  to  store  the  entire  history  of  the  scenarios  a  user  walked  through.  This  is 

required in order to provide unified functionality for implementing “Back”-buttons. The 

problem is that a user may decide to move back to the very beginning and to the very 

first screen. It means, that very often scenarios have to store some information in order 

to make steps back possible, which is why additional memory is required.

Of course, a user does not usually feel extra memory consumption so much, as the most 

important properties for him or her are system reliability and response time. There are 

no problems with reliability of  the current  new approach.  However,  some issues  of 

system response time exist. Response time is the property the user may actually feel and 

with the higher response delays may experience some inconveniences.

System response time  is  critical,  especially when many users  are  working  with the 

system simultaneously. The obvious reason for that is the abstraction levels present in 

the user interface framework. Abstraction layers take their processing time for rendering 

screen or invoking lower abstraction layers. This extreme abstraction processing causes 

some delay that a user really feels. Luckily this delay is not so significant and is quite 

tolerable. However, it would be nice if the system response time characteristics could 

show better efficiency.

50



There is actually a third trade-off, which is still present since the former version of the 

user  interface  conceptual  design.  This  trade-off  is  in  dealing  with  large  number  of 

scenario classes.  Yet  unfortunately,   no way was found for  reducing the number of 

scenario classes. But anyway, the research is in progress and some day this issue will 

probably be solved as many others were.

To sum up, this new approach is considerably simpler than the former one. There are 

fewer  types  of  objects  developers  should  deal  with,  which  makes  its  technical 

implementation a lot easier. The following class diagram (Figure 11) represents the new 

design.

Despite being that simple, the new concept has its own advantages and trade-offs. At the 

same  time,  they  are  not  as  critical  as  in  the  former  implementation.  But  anyway, 

significant  improvements  over  the  previous  version  must  be  noticed  and  the  new 

implementation may be considered as a better conceptual solution.

51

Figure 11: The third generation of the framework



5The work to do
The implementation of the new conceptual approach cannot be considered the best one 

that is not needed to be augmented or improved in some way. With the changing world 

and business demands every piece of software eventually needs to be changed. But 

setting aside changing requirements, this new concept of the user interface framework 

still lacks something really important that would make a life of a developer many times 

easier.

5.1Describe navigational logic
The current concept for writing user interfaces allows easily distribute the navigational 

process  into  smaller  executional  elements  –  scenarios.  Many of  them usually make 

some preprocessing and end up with viewing some user interface screen. In general 

there is no problem with writing these separate scenarios and, by the way, this scenario 

programming became a lot easier. The basic problem here is at a little higher level – at 

the moment there is no way to get a higher level overview of the navigational logic.

Consider a situation, where a programmer is working on some specific scenario. The 

scenario actually may be linked with others in several ways: 

 by means of buttons, which means that scenario is invoked  when the button of the 

previous scenario is clicked

 by means of invoking the scenario directly as part of the logic of the other scenario

 by means of linking with the parent scenario and, therefore, having a back-link in 

the role of a “Back”-button. 

It becomes very hard for the programmer to establish all relations of scenario he or she 

is  working on with the rest  of the scenarios.  It  requires additional  activities,  which 

essentially end up with looking into each scenario class and analyze the code. Thus, it 

would in no doubt made a dramatical negative impact into the development process, 

especially the construction phases.

An elegant solution might seem the following approach to building scenario-oriented 

user interfaces. The approach might consist of two stages: writing executable entities 

(scenarios in this case) and binding them together. 

Writing executable entities is essentially achieved  by the existing concept. However, 

52



there is a little difference. With the current approach together with writing scenarios a 

developer writes bindings to other scenarios at the same time. It means that the two 

stages are messed up together in the current implementation. This might be useful to 

someday separate these two aspects.

After technically separating scenario writing and binding processes, a higher level of 

abstraction may emerge. This layer of abstraction would be responsible for the relations 

between scenarios such, that any developer could be able to see the entire picture of 

what is really going on with the navigation of the whole user interface. The navigational 

logic may be described in some kind of domain specific language, which could amplify 

the aspect of binding scenarios together. As a result, this would make the development 

of the user interface a lot more convenient and a fast process.

Therefore, describing navigational logic in one place is very important. Not only this 

would make the development easier, but also any possible further modifications would 

require less effort and become more reliable.

53



Conclusions
To sum up, the concept for the user interface development was introduced and its most 

important  aspects  were  analyzed.  Also,  the  whole  process  of  the  technological  and 

conceptual  evolution  was  concerned,  revealing  advantageous  ideas  and  technical 

difficulties, which were met during the development of the framework itself as well as 

specific  systems based on top of it.  As a result,  a convenient framework was born, 

which already found some use in the experimental project. 

The  present  implementation  provides  great  flexibility  and  reliability.  Of  course,  to 

achieve these qualities some trade-offs had to be dealt with, but actually they were not 

so serious at all. The most important value achieved by this research in the area of the 

new conceptual approach to user interfaces was primarily the efficiency of the user 

interface development process, at the same time providing technical solutions and the 

design that would be convenient for developers.

However,  the work is not over yet.  There is still  something to develop,  what could 

dramatically  improve  the  overall  construction  process  of  the  user  interfaces.  This 

research  gave  a  possible  direction  and  a  specific  point  of  view  on  building  user 

interfaces.  This approach should further be analyzed and tested with many different 

kinds of systems and only its practical application may show how good it really is. 

To sum up, the development of frameworks is often a very useful activity. Developing a 

technical  framework  for  some  conceptual  idea  is  also  a  hard  process  that  is  time 

consuming and requires a lot of effort. But when it is done, when the technical approach 

obtains the natural look of the conceptual idea, the framework rises in the form very 

close to how humans really think and see the problem. Thus, having this in mind may in 

fact make software engineering significantly easier, what was successfully demonstrated 

by the current thesis.

54



References

[1] C. Bauer, G. King, “Java Persistence with Hibernate”, Manning, 2007, 841 pages.

[2] Elliotte Rusty Harold, W. Scott Means, “XML in a nutshell”, 3rd edition, O' Reilly, 

September 2004, 712 pages.

[3] Nicolas Kassem and the Enterprise Team, “Designing Enterprise Applications with  

the Java 2 Platform, Enterprise Edition”, Sun Microsystems, October 3, 2000,  341 

pages.

[4]  R. Kent Dybvig,  “The Scheme Programming Language”, Third Edition, The MIT 

Press, 2003, 295 pages.

[5] Peter Seibel, “Practical Common Lisp”, Apress, 2005, 528 pages.

[6] Joel Spolsky, “The Law of Leaky Abstractions”,   November 11, 2002, URL=http://

www.joelonsoftware.com/articles/LeakyAbstractions.html

[7] Various authors “JavaBeans”, Sun Microsystems, August 8, 1997, 114 pages.

[8] Deepak Alur, John Crupi,  Dan Malks,  “Core J2EE Patterns Best Practices and  

Design Strategies”, Sun Microsystems, 419 pages.

[9] Brett McLaughlin, “Java and XML”, O'Reilly, 2001, 361 pages.

[10]  Harold  Abelson,  Gerald  Jay  Sussman,  Julie  Sussman,  “Structure  and 

Interpretation  of  Computer  Programs”,  second  edition,  The  MIT Press,  1996,  634 

pages

55

http://www.joelonsoftware.com/articles/LeakyAbstractions.html
http://www.joelonsoftware.com/articles/LeakyAbstractions.html

	Annotation
	Annotatsioon
	Introduction
	1The Customs Engine platform
	2The original design of the CuE user interface framework
	2.1User interface definition language
	2.2XML-based forms
	2.2.1Making a mapping of XML-fields
	2.2.2Defining a screen for XML-based form
	2.2.3Writing a XML-handler
	2.2.4A brief technical overview of the concept

	2.3Putting it all together

	3The problem
	3.1Readability
	3.2Extendability
	3.3The tight knot

	4Solving the problem
	4.1The concept of scenarios and steps
	4.1.1The idea
	4.1.2Advantages
	4.1.3The trade-offs

	4.2Further refactoring
	4.2.1The new implementation
	4.2.1.1Avoid global session variables
	4.2.1.2A stateless functional concept
	4.2.1.3Laziness
	4.2.1.4Everything is a scenario
	4.2.1.5The implementation details
	4.2.1.6Binding with the rest of the framework
	4.2.1.7Still call it “scenario”?

	4.2.2Benefits achieved
	4.2.3Something we must sacrifice


	5The work to do
	5.1Describe navigational logic

	Conclusions
	References

