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Kokkuvõte (Summary in Estonian) 141

Curriculum Vitae 144

8

30



LIST OF PUBLICATIONS

1. Freudenthal, M.: Domain-Specific Languages in a Customs Informa-
tion System. IEEE Software 27(2), 65–71 (Mar 2010).

2. Freudenthal, M.: Using DSLs for developing enterprise systems. In:
Proceedings of the Tenth Workshop on Language Descriptions, Tools
and Applications. pp. 11:1–11:7. LDTA ’10, ACM, New York, NY,
USA (2010).

3. Freudenthal, M., Pugal, D.: Simpl: a Toolkit for Rapid DSL Imple-
mentation. In: Proceedings of the 12th Symposium on Programming
Languages and Software Tools - SPLST’11. Institute of Cybernetics
(October 2011).
This paper describes the Simpl DSL toolkit and two experiments that
were performed to evaluate the toolkit. The author contributed de-
scription of Simpl and one of the evaluations (the controlled usability
study).

4. Freudenthal, M.: Implementing Oberon0 Language with Simpl DSL
Tool. Tech. Rep. T-4-18, Cybernetica AS (2013), available online at
http://research.cyber.ee/.

9

3

http://research.cyber.ee/


ABSTRACT

Domain specific languages (DSLs) are languages designed with the spe-
cific purpose of developing or configuring part of a software system using
concepts that are close to those of the system’s application domain. Docu-
mented benefits of DSLs include increased development productivity, flex-
ibility and maintainability, as well as separation of business and technical
aspects allowing in some cases non-technical stakeholders to closely partake
in the software development process. DSLs however comes at a potentially
non-negligible cost, that of creating and maintaining DSL implementations.
These costs can be reduced by means of specialized tools that support the
creation of parsers, analyzers, code generators, pretty-printers, and other
functions associated with a DSL.

This thesis deals with the problem of enabling cost-effective DSL-based de-
velopment in the context of Enterprise Information Systems (EIS). EISs are
generally built using application frameworks and middleware. Accordingly,
it must be possible to package the DSL implementation as a module that
can be called from either the build system or from the enterprise system
itself. Additionally, the DSL tool should be accessible to enterprise system
developers with little or no expertise in development of programming lan-
guages and supporting tools, such as Integrated Development Environments
(IDEs).

The central contribution of the thesis is Simpl, a DSL toolkit designed to
fulfill a number of DSL tool requirements identified in the context of EISs.
Simpl builds up on top of existing tools and programming languages, and
introduces the following features: a grammar description language that sup-
ports the generation of both the parser and the data types for representing
abstract syntax trees; support for lexer states that add context-sensitivity
to lexer in a controlled manner; a pretty-printing library; an IDE frame-
work; and an integration layer that combines all components into a single
whole and minimizes the need for boilerplate code.
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Simpl has been evaluated in a multi-pronged manner via a controlled exper-
iment and by comparing DSL implementations in Simpl against implemen-
tations of the same DSLs using alternative tools. The evaluation demon-
strates that Simpl is suitable for EIS development and offers usability that
is comparable and in some cases superior to other DSL tools.
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CHAPTER 1

INTRODUCTION

1.1 Problem Area

Van Deursen et al. define a Domain-specific language (DSL) as“a program-
ming language or an executable specification language that offers, through
appropriate notations and abstractions, expressive power focused on, and
usually restricted to, a particular problem domain” [13]. The key character-
istic of DSLs according to this definition is their focused expressive power.
In other words, DSLs trade off broad applicability to gain power of expres-
sion in particular domain. Classical examples of DSLs are Unix Makefiles
(build scripts), regular expressions (specifying text patterns), HTML (de-
scribing text layout) GraphViz (describing graphs).

The benefits of using DSLs have been widely studied in the literature.
They include development productivity, flexibility, maintainability (includ-
ing program comprehension), and separation of business and technical as-
pects. The following list provides some examples of research related to
benefits of DSLs.

• Batory et al. [3] provide an experience report on the use of DSLs in
conjunction with Software Product Line Engineering, to implement
a command-and-control simulator. The case study demonstrated the
benefits of DSLs in terms of added development productivity and
flexibility with respect to an implementation in Java.

• Van Deursen et al. [88] report an experience in using a DSL in the
financial engineering domain with an emphasis on the added main-
tainability.
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• Chandra et al. [7] and Thibault et al. [87] discuss case studies where
DSLs were used to implement video-device drivers and distributed
cache coherence protocols respectively, demonstrating the benefits of
separation of concerns between technical aspects and business logic.

• Kosar et al. [52, 51] report on series of experiments that compared
program understanding of DSLs with GPL libraries. They measured
three aspects of program understanding: learning the notation and
meaning of programs, perceiving the meaning of a program or a lan-
guage construct, and evolving and extending existing programs. The
studies showed DSLs to be superior to application libraries in all the
three aspects.

• Kärnä et al. [42] compared GPL programming with use of a graph-
ical DSL tool (Metacase DSM tool) and found that the use of DSL
improved developer productivity by an order of magnitude.

The main reason behind the above observed benefits is the high level of
abstraction of DSL programs and closeness of mapping between DSL con-
cepts and domain concepts. However, the benefits of using a DSL must be
balanced with the costs (see [88, 60, 42] for discussion of costs associated
with using DSLs). One source of costs is the creating and maintaining the
DSL and its implementation. Another source of costs is integrating the part
of the application developed using the DSL with the other parts developed
by means of other general-purpose programming languages. The decision
to use a DSL depends on the domain and the size of the application. Sprin-
kle et al. [82] describe characteristics of problems that can be effectively
solved with DSLs. In this respect tool support for DSL creation plays a
critical role as it can reduce the implementation cost and therefore make
the DSL-oriented approach usable in a wider range of projects.

This thesis investigates practical issues connected to using DSLs and DSL
tools for developing enterprise information systems. In order to be more
concrete, we must first define what is an “enterprise information system”
(EIS). Finding the authoritative definition for this term is quite difficult (if
not impossible), but there seems to be a rough consensus that the EIS is
a system for integrating and coordinating business processes of a (usually
large) organization. From the technical point of view, the enterprise systems
can be characterized by the following properties.

• They are usually implemented using object-oriented programming
languages such as Java, C#, a 4GL, or a database language

13
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(PL/SQL). In other words, the tools used do not represent cutting
edge of the programming language research and are typically not con-
sidered suitable for DSL-oriented programming. The enterprise sys-
tems also make extensive use of frameworks (such as JEE and .NET)
and middleware (application servers, enterprise service buses etc.).

• They may consist of a set of interconnected modules that are built
upon a common architecture or on top of a packaged enterprise system
such as an Enterprise Resource Planning (ERP) system.

• They tend to be shallow but wide. Although the enterprise systems
are technically quite complex, involving persistence, transactions,
messaging, remote procedure calls, and other architectural mecha-
nisms, this complexity is implemented in libraries, frameworks and
middleware. Thus, the application code does not contain significant
amount of technical details and instead is focused on implementing
the concepts, rules and processes of the organization.

The frameworks and middleware that are used to build the EIS usually
contain different graphical or XML-based DSLs for configuring the com-
ponents. These DSLs are often called horizontal or technical DSLs. Ad-
ditionally, there are vertical or business DSLs that are concentrated on
encoding business logic for a specific business domain such as accounting,
banking, or medical domains. Taking advantage of the vertical DSLs is usu-
ally technically more complex because there may not exist a suitable DSL
(with suitable implementation) for this particular application, and the EIS
developer herself must create the necessary DSLs. This thesis focuses on
the second, more business-oriented type of DSL where the DSL and the
DSL-supporting components are developed together with the rest of the
EIS.

Language-oriented programming is a general method that can be realized
by means of DSLs embedded in a general-purpose programming language
(internal DSL). In this way, the various DSLs can be integrated by means
of the host programming language. However, mainstream general-purpose
programming languages commonly used for developing enterprise systems
do not offer features needed for creating high-quality internal DSLs (e.g.
unobtrusive syntax, ability to define new control structures). In addition,
internal DSLs are often difficult to use for non-programmers because the
details of the host language often interfere with the DSL (for example, in the
case of error messages). Therefore, this thesis focuses on external DSLs that
are implemented using especially crafted parser and that can offer syntax

14



and semantics that does not depend on the host language. When building
an external DSL, one can use either textual or graphical syntax. Both
have different strengths and weaknesses and choosing between them can be
a matter of taste and availability of tools, competence, etc. However, the
tools for developing textual DSLs have different characteristics compared to
those for developing graphical DSLs. This makes detailed technical analysis
and comparison of tools a difficult task because a wide range of variations
must be taken into account. In order to be able to delve into the technical
details of DSL tooling, this thesis focuses on one type of DSLs, namely
textual DSLs. Textual DSLs are better researched, are more popular, have
better tool support, and, in the author’s opinion, scale better for expressing
complex relationships and behavior.

If one adopts the DSL-based development process, the costs of developing
and maintaining a DSL must be low. If the cost of DSL implementation
does not offset the savings gained by using the DSL, it is more economical
to code the business logic in a general-purpose programming language. The
DSL development can be made more efficient by taking advantage of good
tool support. There exists a reasonable body of tools to assist in various
aspects of creating DSLs. Examples of these tools are parser generators,
code generators, transformation systems, and IDE generators. The level
of sophistication varies widely, starting from simple parser generators or
template engines and ending with tools that provide ability to describe
type systems in a declarative manner, or to merge grammars of two (sub)
languages to produce a (non-ambiguous) grammar for the composite lan-
guage. However, many of otherwise functional and useful tools are not
suitable for all aspects of enterprise software development because they are
heavyweight and/or they impose restrictions on the development process
of the overall EIS. In EIS development one cannot assume that the overall
system is built around a DSL or a DSL tool. Instead, there is a need facil-
itate the integration between the part of the system implemented using a
DSL with the part of the system developed using other means. Therefore,
the DSL implementation must conform to the requirements set by the EIS
and the surrounding development process instead of the other way around.
In summary, it is important that a DSL tool and DSL implementations
produced with the tool are lightweight and that they place no additional
requirements on either the technical infrastructure and to the development
process.

15



1.2 Problem Statement

Our overall goal is to make DSL-oriented software development in the EIS
sector economically feasible. To achieve this, we aim to provide tool support
for implementing DSLs in the enterprise setting. The ideal tool would be

• lightweight so that it does not interfere with the overall system;

• embeddable so that the DSL implementations and DSL programs can
be integrated with the rest of the system; and

• easy to use so that both the DSL tool and DSL implementations are
accessible to enterprise developers.

Introducing an additional tool to an existing project or team can often
encounter difficulties. The transition can be made easier if the added tool
does not introduce additional concerns into the development. The concerns
can be both technical (such as need to change architecture of the overall
system) or related to organization (such as changes to development process,
need to retrain the developers). It is important that both the DSL tool and
the DSL programs are able to seamlessly integrate with the other parts of
the system and interact with the frameworks and libraries used. Ideally, the
tool itself can be embedded into the bigger enterprise system. Finally, in
order to be useful, the DSL tool must be usable by the enterprise developers
who are generally not specialists in programming language tools. The tool
should be easy to learn and allow convenient creation of both simple, one-off
code generators and complex, full-featured DSLs.

1.3 Contributions

A prevalent theme of this work is that the use of DSLs in enterprise soft-
ware development imposes specific requirements for the tools. We argue
that most of the popular DSL tools do not satisfy these requirements. On
the other hand, we demonstrate that it is possible to build a DSL toolkit
that is suitable for enterprise software development and offers ease of use
comparable to existing DSL tools. In particular, the contributions of this
thesis are:

1. analysis of the requirements that DSL tools should satisfy so that
they fit well into the overall development process;

16



2. analysis of state of the art of DSL tools with respect to these require-
ments;

3. description of Simpl: a DSL toolkit that satisfies these requirements;
and

4. evaluation of the Simpl DSL tool, measuring both its suitability for
the intended purpose, and its usability.

The thesis is partly based on previous publications. Contribution 1 and
part of Contribution 2 are reported in reference [21]. An initial overview of
the Simpl tool (Contribution 3) is given in reference [23]. This reference,
co-authored with David Pugal from Cybernetica AS1, also contains parts
of contribution 4. The other parts of contribution 4 are previously unpub-
lished. Finally, Contribution 1 is partly inspired by a case study on the
application of DSLs that was published in reference [20]. This latter article
is the basis for Chapter 2.

1.4 Structure of this Thesis

Chapter two reports on a case study in which DSLs were used as the back-
bone to develop a suite of customs information systems. It provides an
overview of the role of DSLs in the development of this solution and quan-
tifies some of the benefits derived from the use of DSLs, both during the
initial development and during the ongoing maintenance phase. The chap-
ter also describes a scenario that motivated this research.

Chapter three analyzes this motivating example and develops and spells
out a set of requirements for DSL tools.

Chapter four presents overview of the state of art with regards to the pre-
viously formulated requirements.

Chapter five describes Simpl DSL tool that is targeted at enterprise software
development. Simpl creates DSL implementations that can be embedded
in a bigger enterprise system and offers good usability for professional de-
velopers.

Chapter six presents four studies that evaluate the usability of Simpl DSL
tool and its suitability for enterprise software development. First, we reim-
plement two DSLs from the customs system described in chapter one. Sec-

1However, the author of this thesis was the main author of the paper.
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ond, we implement compiler to Oberon0 programming language and com-
pare the result with implementations created with other language tools.
Third, we measure code metrics of different implementations of a fairly
complex DSL. Fourth, we perform a controlled usability study where sub-
jects implement a DSL using either Simpl or a baseline DSL tool. We
measure time spent and user satisfaction.

Finally, we present our conclusions and give directions for further research.

18



CHAPTER 2

A CASE STUDY

2.1 Customs Engine

Since 2005, Cybernetica AS is engaged with the Estonian Tax and Customs
Board in building Customs Engine (CuE) – a suite of systems for processing
customs documents (customs declarations, manifests, warehousing notices
etc.). Each type of document reflects a movement of goods (e.g. between
a ship and a customs warehouse) and is associated with its own set of
rules, regulations and procedures that need to be carried out. Given the
document-centricity of the domain, we decided to decompose CuE into
subsystems, such that each subsystem is responsible for processing one
type of document.

CuE is developed using Java Enterprise Edition and can operate on stan-
dard Java EE application servers. Each CuE subsystem is an indepen-
dent application that can be deployed and used separately. In addition to
providing user interface for manipulating a particular type of document,
the CuE subsystems communicate with other CuE subsystems and their
counterpart systems in the European Union (EU). CuE follows principles
of service-oriented architecture (SOA). The subsystems send notification
messages and implement services that can be called by other applications.
This principle can be illustrated with an example.

The Export Control System (ECS) manages export reports (information
about exported goods that cross the EU border). In a common scenario
an export declaration is lodged in Estonia, but the goods exit the EU
via Latvia. The declaration is submitted to the subsystem for processing
customs declarations (SAD). After completing the necessary formalities,

19



the SAD releases goods and notifies the ECS. The Estonian ECS subsystem
creates new export report and sends it to the Latvian ECS system. When
goods cross the border in Latvia, the Latvian ECS sends notification back
to the Estonian ECS.

The subsystems have functional and technical similarities. In order to take
advantage of these similarities, we have adopted a software product line
engineering approach [62] by developing a generic platform for building
customs information systems. The platform contained two types of items.
First, it contained components that encapsulated certain functionality, such
as risk analysis or interacting with the other EU member countries. Some-
times these components could be reused as is, other times it was necessary
to configure or customize the components for each of the CuE subsystem.
Second, the platform contained frameworks that encapsulated the architec-
ture and control flow of a certain part of the system, such as document
editor or document state machine.

The development of the Customs Engine relied on several DSLs. The use
of DSLs was driven by the following concerns.

• Because there is significant variability between CuE subsystems, the
components in the platform must be highly flexible and configurable.

• CuE implements sizable and complex legislation and working proce-
dures that change over time. Therefore, it is important that process-
ing rules are implemented in a way that provides a clear overview
of what the system does and facilitates rule evolution. Preferably,
updating the rules should not require additional programming effort
nor rebuilding or restarting the system.

These concerns match quite well with the advantages gained from using the
DSL approach as discussed in the introduction.

The author of this thesis was a software architect at the team who imple-
mented the customs engine. When started designing the first subsystems,
we anticipated that business logic for verifying correctness of the submitted
customs documents (together with checks to external registries and calcu-
lation of some fields, such as taxes) will be complex and volatile. The
complexity stems from the fact that customs is very heavily regulated in
the European Union and there are extensive standards and regulations con-
cerning each type of document. Volatility comes from two sources. First,
the EU requirements were new both to us and to domain specialists in Es-
tonian Customs1. This implied iterative development of the business logic

1We started building CuE shortly after Estonia’s accession to the EU.
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with continuous feedback from the users to ensure that the functionality of
the system corresponds to the actual working procedures of the customs.
Second, both legislation and customs working procedures change over time.
This implies that histories of verification rules needed to be maintained –
older documents had to be verified using rules that were in effect at the
time the document was first submitted.

Our solution was to encapsulate the document verification logic into a sep-
arate component. This component receives the document to be checked
(in XML format) and returns list of verification results (errors, warnings or
tasks for the customs officer). The verification rules are not hard-coded in
the component, instead they are programmed in a DSL and the verification
component contains an implementation of the document verification DSL.
Although it could have been possible to implement this component using
an off-the-shelf rule engine (such as Drools2), we decided to implement a
custom document verification language. This was driven by the following
considerations.

• We predicted that the amount of verification rules will be very large
(each subsystem will have its own set of verification rules). There-
fore, improvements in usability of the rules can offset the costs of
developing a custom verification rule language.

• Upon analyzing the rules, we discovered that most of them follow one
among a few recurring patterns. We therefore decided to implement
direct support for these patterns so that for simple rules, the “right
thing” is done automatically.

• We wanted to have tight integration between the user interface for
document creation, the verification module and the other verifica-
tion steps (such as simply checking presence of mandatory fields or
whether field contains the correct classificator value). This tight in-
tegration allowed the user interface to provide precise visual feedback
about fields that contained verification errors or warnings.

The design of the document verification language is detailed in Section 2.2.1.

Building on this experience, we started structuring most of our main com-
ponents into two layers. The higher layer contains a formal specification of
what the component does, written in a high-level DSL. The lower layer is
the implementation of this DSL. Our aim was to make the executable spec-
ifications in the higher layer concise, human-readable and non-technical.

2http://www.jboss.org/drools/
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• Concise – the specification is short enough so that it is possible to
read and understand it in its entirety.

• Human-readable – readable by non-technical persons, such as analysts
or domain specialists.

• Non-technical – free of technical details, such as specific Java language
patterns.

When trying to create comprehensive DSLs, we usually encountered some
cases that were quite complicated. In general, implemented these cases
required a language that had similar power to a typical GPL. Sometimes
it was also necessary to access the internals of the system. Implementing
these use cases would have lost most of the benefits gained by focusing on
a specific domain (conciseness, readability, non-technical nature) and made
the language similar to a general programming language.

Instead of trying to express all the details using a DSL, we followed a 80-
20 approach and focused on brevity and clarity. We used the DSL for
giving overview of the component’s behavior (describing the “essence” of
the component) and solved the complicated corner cases by implementing
them in Java and calling the Java code from the DSL. This kept our DSLs
simple and readable and enabled us to separate the “what” (the high-level
logic/structure of the program) from “how” (low-level technical details).
For the DSL user, the calls to Java functions were opaque building blocks
that were composed using the DSL.

2.2 Domain-Specific Languages in the Customs
Engine

The Customs Engine relies on a DSL for expressing document verification
rules in the customs domain (namely Burula) and a number of configuration
DSLs. These DSLs are outlined below.

2.2.1 Burula

Burula illustrates our approach to implementing large chunks of business
logic using DSLs. Burula is the language that is used in the verification
component to specify rules for verifying correctness of the documents sub-
mitted to the system. Each of the CuE subsystems contains different set
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of verification rules, specific to this type of document. The input to ver-
ification process is the document in XML format and the output is a list
of verification errors. Each verification error contains human-readable de-
scription of the error and location of the erroneous value.

Burula is the result of several years of iterative development. The initial
versions of the document verification language were designed in ad hoc man-
ner, without much advance information about the verification rules. Burula
was developed based on our experiences with the previous verification lan-
guages and analysis of the rules written using the previous languages. This
allowed us to optimize for the most common case.

The most common type of correctness check concerns dependencies between
fields3, following the pattern “if field X contains value ’Foo’, field Y must
contain value ’Bar”’ (where ’Foo’ and ’Bar’ can be sets of possible values or
simply presence/absence of a value). About 80-90% of all checks fall into
this group. The rest of the verification involves comparing the submitted
document with other data – previous versions of the same document, li-
censes, permits, various reference data, etc. This other data usually resides
in other systems and must be queried via various interfaces.

When designing Burula, our intention was that analysts and domain spe-
cialists at the customs board would write and/or modify the verification
rules. From this goal, we derived the following main requirements for the
verification rules language.

• The rules must be structurally similar to the rules expressed in a
natural language.

• The rules must contain a minimal amount of technical information.
For example, referring to document fields must be possible without
spelling out the exact location of fields (e.g. user should be able to use
“packages” instead of “declaration.goodsItem.packages”). Addition-
ally, iteration over repeated elements should happen transparently.

• The language must have strong static type checking.

• The rule language must enforce a good style. In particular, it should
discourage writing long, complex rules with complicated boolean ex-
pressions, containing unexplained “magic” values4.

3Simple“field X is required/forbidden”checks are performed in other verification steps.
4For examples of such rules, consider the examples in figures 2.1 and 2.2 with all the

predicates in-lined into the main rule. When one adds additional conditions and nested
AND or OR operations, determining conditions under which the rule applies becomes
difficult.
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predicate is-unpacked-goods
kindOfPackages is (’NE’, ’NF’, ’NG’)

packages must have numberOfPieces
when is-unpacked-goods

error "When goods are unpacked, number
of pieces must be present"

Figure 2.1: Example of a simple verification rule

• Because the verification rules change more frequently than the core
business logic, it must be possible to change the rules without restart-
ing the system. Additionally, rules must be versioned and old doc-
uments must be verified using rules that were in effect at the time
when the document was submitted.

Figure 2.1 contains an example of a business rule written in Burula. In a
natural language, this rule can be expressed as follows:

If the goods are unpacked (indicated by using classificator codes
“NE – unpacked”, “NF – unpacked, 1 item” or “NG – unpacked,
several items”), then the “number of pieces” field must be filled
in5.

Remark: this check applies to all the package descriptions in all
the goods items of the declaration.

This rule takes advantage of the implicit iteration in Burula. The Burula
implementation automatically iterates over all the goods items and all the
package descriptions inside the goods items. It also applies the predicate is-
unpacked-goods only to the package description that is currently examined
by the rule. This example also shows how Burula tries to enforce good
writing style by restricting the complexity of the rule. The condition on
kindOfPackages field cannot be used directly as part of the rule and must
instead be written as a separate predicate, ensuring that it will be named
(and thus giving information about its purpose).

Figure 2.2 shows a more complicated rule. It checks whether the itinerary
for the export movement contains more than one country. XmlEcs is the
name of the root element of the XML document representing an export re-
port. It indicates that scope of this rule is the whole document (as opposed

5For packed goods, the “number of packages” field is used instead.
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predicate is-ship-supplies
specificCircumstanceIndicator = ’A’

predicate is-postal-consignment
specificCircumstanceIndicator = ’B’

XmlEcs lengthOf itinerary > 1
unless is-ship-supplies

or is-postal-consignment
error "If the declaration does not contain

ship supplies or postal consignment, the
itinerary must contain at least
two countries."

Figure 2.2: Example of a more complicated Burula rule

to example in Figure 2.1 where the scope is one package description). The
scope of the rule affects how the Burula implementation iterates over fields
with multiple values (e.g. goods items). Additionally, it is used to deter-
mine which field should be used as location of the verification error (all the
generated verification errors contain pointers to the field that contains the
error).

Burula is implemented as a compiler that compiles the Burula source file to
Java bytecode (class files). This provides performance comparable to writ-
ing the rules in Java language. Additional benefit is improved integration
with rest of the system. It is easy to call Burula programs from Java code
and Java methods from Burula (for example, the lengthOf function in the
previous example is implemented in Java). The helper function calls are
performed in the same execution context as the rest of the system and the
Burula rule.

The Burula compiler is embedded into the CuE system. The user can
load the rules via user interface. The system then compiles the Burula
programs to Java bytecode (class files) and saves them into a database
from where they are loaded when the user runs the rules. Because of the
dynamic loading, the verification rules can be modified without restarting
the system.

The embedding of the Burula compiler into the system serves two purposes.
First, it allows designated end users to change the verification rules them-
selves without the help of systems administrators. Second, it functions
as a security measure. If the Burula programs were compiled off-line and
loaded to the system as class files, then it would be possible for a malicious
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(or simply careless) user to introduce arbitrary code into the system. In
our case, the compiler is embedded in the system and the loaded Burula
programs are restricted to a narrow set of tasks related to verification of
customs documents.

The business rules are created and managed offline, using standard text
editor and Subversion6 for version management. Initially, we experimented
with embedding the rule editing functionality into the CuE user interface,
but it soon turned out that our web-based tools were inconvenient for this
purpose and that version control was best performed using standard tools.

Burula toolset consists of the following items:

• Burula compiler and runner that is embedded into each CuE subsys-
tem;

• Standalone compiler that can be used for testing of the verification
rules. It takes as input rule file and XML input document and outputs
list of verification errors;

• Eclipse-based Burula IDE (see also Section 6.1.1) that can be used to
edit and manage Burula programs.

2.2.2 Configuration DSLs

The document verification part of the system contains a bulk of application-
dependent business logic. For these parts, creating a complex, special-
purpose DSL implementation can be justified, especially if the costs of
this implementation can be shared among several subsystems built on the
same platform. In addition to verification DSL we used several smaller
configuration DSLs for customizing the platform components for each of
the CuE subsystem. Compared to the document verification module, the
other platform components had some important differences.

• The configuration DSL programs are simpler and contain far less rules
than Burula programs.

• The configuration DSLs have a more technical nature. While the ver-
ification rules are almost entirely derived from external specifications
and user requirements, the configuration DSLs often express technical

6See http://subversion.tigris.org/
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concerns, e.g. configuration of a messaging component. Also, config-
uration DSL expressions are less likely to change during life of the
project.

• Configuration DSL expressions are mostly written by technical people
(programmers and architects) and therefore there is less emphasis on
friendly syntax.

Because there are many small configuration DSLs, the cost of each individ-
ual language has to remain low. We could not afford to implement custom
compilers for each of these languages. Therefore we decided to implement
these languages using a template engine to generate Java code and/or XML
configuration files from the DSL programs. This approach has several ben-
efits.

• We can reuse existing Java compilers and tools, thus lowering imple-
mentation cost.

• We inherit features from Java. For example, with clever use of Java
types in the generated code, it is possible to use Java type checker
for verifying the correctness of a DSL program. This is done by cre-
ating a separate Java class or interface for every concept in the DSL
language. These classes encapsulate the allowed operations and in-
teractions between different concepts. Thus, an invalid DSL program
will generate type-incorrect Java code that is detected by the Java
compiler.

• We can embed Java statements and expressions inside DSL code.
With this approach, the DSL can be relatively simple and support
the most important cases. For complex corner cases, we can use Java
directly.

• Input files to template engine share the same base syntax. This sim-
plifies learning the next configuration DSL.

We reused previously developed in-house template engine called Templater.
Templater’s main strengths are good performance, support for Java lan-
guage and good integration with our build system.

Figure 2.3 shows the working principle of Templater. The input file contains
a program in a DSL. The template matches elements in the input file and
generates parts of the output file using the data contained in the matched
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Figure 2.3: Use of Templater

input element. The input files have standard syntax that is based on S-
expressions used by the Lisp family of languages [59].

Figure 2.4 shows excerpt of configuration DSL expression that describes
layout of a document editing user interface. The document editor uses
tabbed, wizard-like user interface that displays document fields in a form.
All the document fields are assigned an alphanumeric code (such as 10, 23A)
to make it easy to refer to them in documentation. The excerpt on Figure
2.4 defines which tabs are displayed in the editor and which document fields
go to which tabs.

2.3 Our Experiences

2.3.1 General Experiences

Our overall experience in using DSLs, based on four years of developing
and maintaining CuE, is quite positive. CuE subsystems are quite small
in code size – typically between 5000 and 25000 lines of code (including
all the code written in DSLs). The platform itself is about 100000 lines of
code. We attribute the small code size to extensive reuse and raised level
of abstraction – parts of the system were coded in high-level DSLs.

From the software architecture standpoint, our extensive use of DSLs forced
us to separate the system into a “business” part and a “technical” part and
to define explicit interfaces between these parts. This has led to clear
separation of concerns and enables us to change one part of the system
without noticeably affecting the other part. Our experience from building
CuE shows that about half of the platform components could be reused
simply by instantiating platform classes and calling methods. However,
the other half of the components had to be parametrized with code. The
required code was often quite technical and consisted of several related
classes and methods. When using DSLs, this complicated code can be
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Figure 2.4: Document editing screen and its corresponding DSL code
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generated from concise and human-readable DSL program, making reuse
of the platform components much easier.

Besides its impact on the technical architecture, the use of DSLs has also
influenced the way we work. One notable change is that much of detailed
programming work has been transferred from the programmers to the an-
alysts. Instead of writing detailed documents about business rules or cre-
ating mock-up prototypes, the analysts often write the appropriate code
themselves, using DSLs. This has led to a quicker and more iterative de-
velopment cycle. The analysts can now directly try out rules and screen
descriptions, receiving immediate feedback to their work. Instead of requir-
ing detailed, up-front specifications, we can start with some initial specifi-
cation (often provided by the EU), implement it and then start iterating
with continuous feedback from the actual end users. An additional benefit
is that the analysts are required to specify requirements in a formal lan-
guage. This forces them to really think through the rules and procedures.
If the analysis results were written down as human-readable documents, the
errors, inconsistencies and lack of details would only be discovered during
programming or even in a later phase.

The shift to using DSLs has impacted the amount of documentation pro-
duced by analysts. Because the analysts implement some of the function-
ality themselves, they no longer write lengthy human-language documents.
This means that the programs written in DSL become (formal and exe-
cutable) documentation of the system’s behavior. On the positive side,
this is desirable, because this representation is more clear and precise. On
the negative side, the formal descriptions are not easily understood by client
representatives who usually do not have technical background. Also, formal
descriptions focus on the“what”or the“how”rather than the“why”. There-
fore, there is still a need for human-readable documentation that presents a
non-technical overview of the system’s functionality and a rationale of key
design decisions.

One (purported) advantage of using domain-specific languages is the ability
to involve domain experts in the design process of the system[88]. This was
also our initial intention when building CuE. For example, Burula was
specifically designed with non-technical end users in mind. Our initial plan
foresaw that our analysts create the initial set of rules and from there on,
the domain experts will take over the development of the rules. However,
when we held training sessions for writing the rules, it became clear that
this plan was not practical. The users struggled even with the very basic
concepts of computer programming (such as a need to express oneself in a
very formal, constrained language). It appears that even programming in
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a language crafted specifically for a given domain requires formal thinking
skills that the users without an IT background often do not possess7. We
found it more cost-effective to train our own business analysts (who have
more technical background than the end users) rather than training a larger
pool of domain experts who did not have any IT background. However,
after our own analysts had written the verification rules, the domain experts
were able to read and, sometimes, even to modify them.

One practical issue that we encountered was that of tool support for our
DSLs. The domain-specific languages are almost by definition not main-
stream languages and therefore lack high-end tools created for widespread
languages, such as Java. Because CuE contained several DSLs, we could
not spend much resources on creating specialized tools for each language.
In general, we added syntax highlighting support for a few common editors,
but did not create IDE-style tools with full support for auto-completion,
real-time syntax error detection, integrated debugging, etc. This frustrated
some programmers who felt that writing DSL programs using standard text
editors is not as convenient as writing the same functionality in Java, al-
though the latter may be longer and potentially less readable. In this case,
a DSL tool with good support for creating IDEs would have been very
useful to alleviate these concerns.

2.3.2 DSL-Related Workload

When using DSLs, one operates under the assumption that the costs of
creating the DSLs are paid back later during development and maintenance
of the software. This section presents some data about costs related to
maintaining the DSL programs and the DSLs themselves.

The most important DSL in CuE was Burula. The amount of effort spent
on developing Burula (creating specification, programming the compiler
and runtime, integrating Burula into CuE subsystems, creating toolset)
was about 4 man-months. This cost is shared between the 6 subsystems
of CuE. Note that Burula was built by hand without using any DSL tools.
With proper tool support, the effort would have been reduced significantly.

A moderately complex CuE subsystem has about 100-150 verification rules,
most of them derived from the EU specifications. For example, developing
the 131 verification rules for the ECS subsystem took about 2.5 man-weeks.

7As a side note, we discovered that domain specialists without IT education had also
difficulties when writing detailed and unambiguous natural-language specifications (such
as descriptions of the verification rules).
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This time was spent on learning Burula, reading and analyzing the data
model and specification on data constraints, writing and testing the rules.
The most complex CuE subsystem is SAD, responsible for managing import
and export declarations. SAD contains about 2000 verification rules. These
rules are derived from EU legislation, national regulations and working
procedures of the Estonian Customs.

The technical DSLs were considerably simpler to implement. Creating a
very simple DSL with code generator took about 2 man-hours.

32



CHAPTER 3

REQUIREMENTS

Starting from the experience reported in the previous chapter, this chapter
formulates requirements for a DSL toolkit for EIS. The chapter starts with
a formulation of desiderata (or goals) directly illustrated on the case study.
Next, we review the typical components provided by a DSL tool. Finally,
we analyze specific functional, integration and non-functional requirements
and their relation to specific DSL tool components.

3.1 Goals

In the case study (Chapter 2) we identified the need for tool support for
at least two kinds of DSLs. The first kind is used to generate technical,
“boilerplate” code that is needed to make use of a framework. In this case,
one needs to be able to implement simple parser and code generator. The
program checking can be done on generated code (as it was done in the
Customs Engine project). Basic IDE with syntax highlighting is needed to
edit the code. It must be possible to integrate the DSL implementation
with the build system so that the code generator can be called during the
system build. Because there can be many technical DSLs in the system,
there is need to make the cost of implementing a simple DSL-based code
generator low. Creating a new DSL should take only several hours of work
for a person with sufficient expertise.

The second kind is a complex DSL that is mostly aimed at non-technical
people. As such, it needs to have sophisticated tooling, such as full-featured
IDE and program checker. The code generator can also be nontrivial. If
the DSL programs are compiled at run time, it must be possible to embed
the code generator part of the DSL implementation into a bigger system.
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Next, we generalize these scenarios and derive a list of general goals that a
DSL toolkit should fill in order to fit well into enterprise software develop-
ment niche.

• First, the DSL implementations created with the DSL tool must be
able to function as part of a larger system. In other words, they
should be embeddable. At minimum, it must be possible to integrate
the DSL implementation into the build system of the EIS so that it
is used to process the DSL programs. Ideally, it should be possible
to embed the DSL implementation into the EIS itself, as this enables
additional development possibilities (in the Burula example, loading
the rules via the user interface). Section 3.3 provides more detailed
analysis of integration and embedding scenarios.

• Enterprise software development is generally done by professional
software developers who are not experts in programming language
implementation and, especially, the relevant research. In order to
gain acceptance of the developers, the DSL toolkit should lower the
barrier of entry by minimizing the number of changes that must be
made in the working environment and number of additional tools that
must be installed and learned. If possible, the DSL toolkit should be
based on existing tools and programming languages (learning a new
programming language is often a major undertaking and may be diffi-
cult to fit this into project schedule). Since the professional developers
are used to IDEs, the DSL tool should also provide an IDE.

• Following the Burula example, the DSL tool must allow implementing
complex DSLs. In particular, it must be possible to implement a com-
piler for a DSL that has the expressive power of a typical functional
or imperative language.

• Following the configuration DSL example, the DSL tool must allow
implementing simple DSLs with very little effort. There should be no
need to keep in sync descriptions of various aspects of the language
and no need to manually write boilerplate code.

• Since the developers are accustomed to IDEs, the DSL toolkit must
make implementing an IDE for the DSL simple. Especially, creating
a reasonable IDE for a simple DSL should be done with little or
no programming efforts. In addition, there must be a possibility to
implement a full-featured IDE for a more complex DSL.
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Based on these goals we derive requirements for enterprise DSL tools. Sec-
tion 3.2 describes functional requirements. Sections 3.3 and 3.4 develop a
list of non-functional requirements.

3.2 DSL Tool Components

Typically, a DSL implementation contains the following components, which
map one-to-one to the key functional requirements of a DSL tool. Other
models for decomposing the DSL implementation can be found in [96]
(structure, constraints, behaviour), [49] (the extract-analyze-synthesize
paradigm), [19, 94] (discussion of various DSL components), and [54] (fea-
ture model of DSL implementation).

• Parser is typically implemented via parser generator or parsing li-
brary. Parser generator takes as input grammar description for the
DSL and generates a parser, typically implemented in a GPL such as
Java. Parsing library provides functions and classes that simplify im-
plementing the parser in a GPL. Parser libraries are often combinator
libraries (such as parsec [56]).

• Program checker inspects the parsed program and detects errors,
such as name or type errors or constraint violations. This can be pro-
grammed in GPL with the help of various libraries. Alternatively, this
can be achieved by special-purpose program transformation language
or, e.g., by an attribute grammar system.

• Program transformation transforms the AST. The transformed
AST can be same language (e.g. for program simplification or opti-
mization) or it can be different language (such as for compilation).

• Code generator prints the (possibly transformed) AST as text.
This is useful for compilation (translating DSL to GPL or assembler)
or source-to-source transformation (e.g., pretty-printing or optimiza-
tion).

• Program editor allows editing of the DSL programs. The editor
can be a part of an IDE, such as Eclipse, or it can be a standalone
program.

In the simplest cases, some components can be either not present or be very
simple. For example, the program checker and program transformation
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components can be missing in very simple cases. Also, any text editor can
be used as the program editor.

Ideally, a practical DSL toolkit should be able to include support for imple-
menting all the necessary DSL components. Some authors [26] have argued
that beyond this minimal support, DSL tools should evolve towards pro-
viding support for development of debuggers, testing engines and profilers.
However, the challenges associated with making the development of such
tools cost-effective are still an open research area.

3.3 Integrating DSLs into EIS

In general, all the functionality of an enterprise information system cannot
be expressed by a single DSL program. The EIS contains several concerns
(persistence, distribution, business logic) that each are best handled using
a separate DSL. For example, the Java Enterprise platform includes several
XML-based technical DSLs. Additionally, different parts of business logic
(workflows, state machines, verification rules) are often best expressed using
different DSLs. Following that logic, a DSL-based EIS would typically
consist of components written in different DSLs and glued together by code
manually written in a general-purpose language, such as Java. Therefore,
one important question is how the DSL code can be called from the rest
of the EIS. This section lists different scenarios for integrating the DSL
implementation into the EIS.

The biggest factor influencing the options for integrating DSL code and
“glue” code is whether the DSL is interpreted or compiled. In this the-
sis, the line between interpretation and compilation is drawn according to
whether the DSL interpreter is part of the application code or part of the
environment (language runtime, hardware)1.

The integration options listed in this section mostly differ in the point of
time when the DSL program is packaged/compiled and loaded into the
system. From the DSL user’s point of view the main difference between the
options is the versioning model of the DSL program. For example, if the
DSL program is packaged with the rest of the source code of the system

1For example, an application can be written in the Python language and the DSL
program translated to Python (or Python bytecode), which is then loaded into Python
runtime. We consider this approach to be compilation, because the code is interpreted
by the environment (Python runtime). However, if the DSL program is translated to a
form that is interpreted by the Python code in the application itself, then we consider it
to be interpretation.
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Figure 3.1: Options for deploying compiled DLSs

then the DSL program should be versioned together with the rest of the
source code.

There are two principal ways of deploying DSL programs that use interpre-
tation.

I.1. DSL program can be packaged with the application source code as a
text resource. For example, this option is used in the Java Enterprise
platform for various configuration and manifest files. With this ap-
proach, the life-cycle (deployment schedule, versioning policy) of the
DSL program will match the life-cycle of the other application code.
Changing the DSL program involves redeploying of the whole appli-
cation. Therefore, this approach is mainly suitable for technical DSL
programs that change with the application code.

I.2. DSL program can be loaded at runtime and stored in a file or a
database. The program can either be in the source form, or it can be
compiled to some kind of bytecode. The application can also provide
environment for editing, testing and debugging the DSL programs.
Because changing the DSL program does not involve changing or re-
deploying the rest of the application code, this approach is suitable
for non-technical DSL programs that capture fast-changing business
requirements.

For deploying compiled DSLs, there are three options for packaging and
loading the DSL programs (see figure 3.1).

C.1. The DSL program can be compiled during the build process of the
system. The compiled DSL program is then packaged and deployed
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together with the rest of the system. Processes for changing and de-
ploying the DSL program are exactly the same as for changing and
deploying rest of the application code. The DSL program thus be-
comes integral component of the system that is integrated with other,
possibly hand-written components. This approach is suitable for tech-
nical DSLs (essentially programming at higher level of abstraction).

C.2. The DSL program can be compiled separately and loaded into the
system at run time (e.g. as a dynamically loaded plugin). The DSL
program can be managed separately from the application code and can
be used for describing business logic that changes more often than the
application code. This option requires creating a special tool or a
build system that is able to compile the DSL program and package it
for deployment.

C.3. The DSL program can be loaded into the running application and
compiled by the application code. The compiling can be done in sev-
eral steps, for example by first generating Java source code and then
invoking the Java compiler. The compiled DSL program is stored in a
file or a database and loaded at run time. Using this option requires
packaging the DSL compiler with the application software. As with
the previous option, the life-cycle of the DSL program is not tied to
the life-cycle of the application code.

The main difference between the last two options is the environment where
the DSL compiler is run. The option C.3 can be somewhat more compli-
cated to implement because the runtime environment must also contain
all the development tools and libraries needed for compiling the DSL pro-
grams. Also, invoking the DSL compiler from the application code can be
complicated and resource-consuming. However, embedding the DSL com-
piler into the application software can offer several benefits. First, it lowers
the requirements for the working environment of the business engineer2. If
the application software includes a web-based DSL editing tool, the busi-
ness engineer can create DSL programs using only a web browser. Second,
if the DSL program comes from untrusted sources (e.g., end users customiz-
ing their user experience) then it is possible to analyze the DSL program
before compiling to ensure it meets the requirements. If the DSL program
is compiled before loading into the system, then the analysis becomes more
difficult as it becomes necessary to reverse engineer the compiled code.

2Business engineer is the person who describes solutions to business problems with
DSL program. See [27] for a full taxonomy of the roles in DSL-oriented development.
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3.4 Non-Functional Requirements

This section formalizes non-functional requirements that should be fulfilled
by a DSL tool(kit) that aims to support most of the scenarios encountered
in enterprise software development. The requirements are based on goals
from Section 3.1 and integration scenarios described in Section 3.3. Each
requirement is given a short code that will be used to refer to it in later
text.

lang Writing program checking and program transformation code
should not require the developer to learn new non-mainstream
programming language. Fulfilling this requirement makes the
tool more accessible to industry developers.

small Implementing small and simple languages must be as simple as
possible. In particular, implementing a small language should
not require writing boilerplate code and repeating same infor-
mation (such as AST structure) in several places. Fulfilling this
requirement makes it possible to use the tool for implementing
simple, one-off code generators. (Note that this requirement
only measures the effort needed to implement a small DSL by
a developer who knows the tool. It is not tied to the time it
takes to learn the tool.)

sep wb If the DSL tool contains an IDE builder, then it is possible
to use the generated DSL IDE separately from the DSL tool.
The user of the DSL IDE cannot change the language defini-
tion. Fulfilling this requirement makes it possible to separate
the work of the language engineer/transformation specialist3

and the business engineer.

build It is possible to integrate the DSL compiler into the build pro-
cess of the system. In particular, this means that the DSL
compiler must be able to operate in non-interactive environ-
ments, e.g. when called by a build script or when used in an
automated build server. Fulfilling this requirement makes it
possible to implement scenario C.1.

system It is possible to integrate the DSL compiler into the system. In
particular, this means that the DSL compiler can be deployed

3The language engineer creates the language description and the transformation spe-
cialist creates the language implementation. See [27] for a more thorough discussion.
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as a library that can directly called from the application code.
This requirement is stricter than the requirement build. In
principle, if the tool can be invoked from the build system,
then it is possible to invoke it from the system as an external
program. However, the requirement system means that the
DSL compiler can be invoked without the overhead of creating
another process. Fulfilling this requirement makes it possible
to implement scenario C.2.

vcs The DSL tool supports version control of the DSL programs. If
the DSL uses human-readable textual syntax, this is very easy
because storing and merging text files is supported by all the
popular version control systems. However, if the DSL program
is stored in some internal format (e.g. serialized XML repre-
sentation), then the DSL tool must include explicit support for
version control. Fulfilling this requirement makes it possible to
implement scenarios I.1 and C.1.

custom The DSL tool supports creating customizable DSL implementa-
tions that contain basic functionality and offer extension points
where application-specific customizations can be applied. Ex-
amples of these customizations are set of objects that can be
manipulated by the language and operations that can be ap-
plied to the objects. Customization can also be achieved if it
is possible to divide the language implementation into smaller
modules or fragments and then reuse these fragments in differ-
ent combinations. Creating customizable DSLs and composing
a DSL from several language modules may be needed if the EIS
is built as a software product line.
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CHAPTER 4

STATE OF THE ART

4.1 Overview

This chapter presents the state of the art in DSL tools and evaluates them
with respect to the requirements discussed in the previous chapter. Because
this thesis focuses on tools for industrial software development, we restrict
our evaluation to tools that are reasonably mature, are supported by a
community or a company and are available to the public. These criteria
are elaborated below.

• Maturity. The tool should have a history of practical use for several
years. It should have a stable current release that can be used for
developing production-level code. There should be cases of using the
tool in several production systems (this requirement excludes pure
research tools that have been developed and used only once or twice).
The tool should be documented reasonably well and work without
crashing or malfunctioning.

• Support. The tool should currently be in active maintenance and new
releases (or bug fixes) should appear periodically, in reasonable time
intervals. There should be an active user community that supports
the tool via mailing lists or user forums. Alternatively, there should
be a company providing support for the users of the tool.

• Availability. The tool should be available to general public under a
reasonable license. Open source licenses are preferable because they
lower the risks caused by e.g. insufficient documentation or commu-
nity support.
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This evaluation only looks at tools that are directly aimed at creating lan-
guage (especially DSL) implementations. Thus, it does not include tools
like K [73, 76] or Maude [10, 11] that are mainly targeted at specifying and
analyzing language semantics. Also, the evaluation is not comparative,
meaning that we do not establish direct one-to-one parallels between pairs
of tools. Instead the evaluation is based on the requirements formulated in
Chapter 3.

Several detailed comparative evaluations of tools have been published in
prior work. Other comparisons and overviews of DSL tools can be found
in [66] (compares Microsoft DSL tools and Eclipse Modeling Framework),
[54] (compares MetaEdit+, Microsoft DSL tools, and XML-Mosaic), [69]
(compares openArchitectureWare, MPS, MontiCore, IMP, TCS, TEF, and
CodeWorker), [91] (ANTLR+StringTemplate, Ruby internal DSLs, Strat-
ego, and Converge), and [94] (parallel examples in Spoofax, Xtext and
MPS).

In order to make the overview more compact, different tools are grouped
according to their architecture and main purpose. In each group, one tool
is reviewed in depth while other tools are compared to it. Note that this
evaluation is based on the state of art in 2009-2010. In some cases, the
updated version of the evaluation is presented in Chapter 5.

Each tool is analyzed in terms of the functions of a language develop-
ment tool outlined in Section 3.2, namely parser, program checker, program
transformation module, code generator, and program editor. For every tool,
we only describe the components that are applicable to the tool. In addi-
tion, non-functional aspects are discussed for each tool or group of tools.

As stated in Section 1.1, this dissertation focuses on textual DSLs. Ac-
cordingly, the following review of the state of the art does not consider
Domain-Specific Visual Language (DSVL) tools such as Microsoft DSL
Tools, MetaEdit+ [45, 46], DEViL [74] or Pounamu [100].

Throughout this chapter we illustrate the tools with an example DSL for
describing JavaBeans reusable software components, also called Java beans.
The DSL specifies the name of the class and attributes together with their
types. The attribute types can be either regular Java types or references to
other beans. Java bean DSL programs can be used to generate Java code.
Figure 4.1 shows an example DSL program that describes two beans. First,
Author, contains only one attribute of type String. The second bean, Book,
contains two attributes: title, typed String, and author, a reference to the
other bean.
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bean Author {
name String

}

bean Book {
title String
author ref Author

}

Figure 4.1: Example program in the Java bean DSL

4.2 EMF-Based Tools

This group contains tools that are based on the Eclipse platform [15] and
in particular the Eclipse Modeling Framework (EMF) [84]. In particular,
they use the EMF models for expressing the AST of the DSL programs.
They have some similarities with language workbenches (see Section 4.3 for
discussion of language workbenches and comparison of the two categories),
but are covered here as a separate group.

Common feature in this category is that the DSL implementation is de-
ployed as an Eclipse plugin. This plugin can be distributed separately from
the DSL workbench (however, the plugin will depend on the core packages
of the DSL tool). Thus, the tools satisfy the sep wb requirement. All the
tools in this group store DSL programs as plain text files, thus fulfilling the
vcs requirement.

All the tools in this category use EMF models for expressing the AST. Thus,
all parts of the DSL implementation will be tightly coupled to the Eclipse
platform. Thus, they fail the system and build requirements. Although,
it is technically possible to build Eclipse-based tools from the command
line, it is quite difficult and involves extensive setup and specialized tools.

4.2.1 Xtext

Xtext [24, 98] is an EMF-based language development environment that
aims to be a complete language infrastructure covering all the aspects of
developing a programming or domain-specific language.

Parser Language development in Xtext starts with creating a grammar
description for the language. The grammar description will then be used to
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generate ANTLR [67] parser and Ecore metamodel [84] for expressing the
AST of the DSL programs. Grammar annotations can be used to direct
the generation of the metamodel. Figure 4.2 shows grammar description
for a simple DSL for generating Java beans. Lines 1-2 declare the name
of the grammar and include the standard grammar library Terminals that
contains common grammar rules, such as strings, identifiers (in example, it
is referred to as implicitly defined rule ID), and comments. Line 4 declares
name of the Ecore package that will contain the metamodel for the bean
language. The rest of the grammar consists of context-free rules starting
with symbol Model that represents collection of beans.

1grammar example.bean.BeanDsl
2with org.eclipse.xtext.common.Terminals
3
4generate beanDsl "http://www.bean.example/BeanDsl"
5
6Model: beans+=Bean*;
7
8Bean: "bean" name=ID "{"
9attrs+=Attr*
10"}";
11
12Attr: name=ID type=AttrType;
13
14AttrType: BeanRef | ID;
15
16BeanRef: "ref" target=[Bean];

Figure 4.2: Example of Xtext grammar description

Xtext creates one AST class for each grammar rule. The calls to sub-rules
become attributes. Calls to terminal rules (also called lexer rules) become
attributes that have primitive types (string, integer). Using annotations, it
is possible to change name of the attributes and return type of the rule. If
the developer wishes to have more control over the generated classes (for
example, to add an attribute for use in AST processing), it is possible to
write a script in model transformation language Xtend that processes the
automatically generated metamodel and adds the necessary attributes or
modifies the class hierarchy. However, developer must be careful because
Xtext does not check that the modified model is internally consistent and
type correct with respect to the parser.

Xtext also supports run-time customization of the AST building process.
Similar to ANTLR, it is possible to add actions to grammar rules. These
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actions operate on the AST node currently being built by the rule1.

Xtext supports grammar inclusion. This provides support for some cases of
language extension and customization. It is possible to create an extensible
DSL by splitting the grammar description into several smaller files and then
including the rules that are needed for a given DSL. Thus, Xtext partially
satisfies the requirement custom.

Xtext automatically generates AST class model from the grammar descrip-
tion and stubs for the editor services. Thus, implementing simple DSLs
with code generators does not require extra effort and thus Xtext satisfies
requirement small.

Program checking Xtext has built-in support for name resolving. In
grammar description, the developer can indicate that an identifier points
to an object of the given class. In the grammar example (figure 4.2), the
rule BeanRef contains attribute target that references objects of type Bean.
By default, the reference name must match value of the attribute name in
the target object, but this can be changed by the developer. When parsing
BeanRef rules, Xtext automatically checks that the program contains a
bean with the given name. If the bean is found, the referrer is then set to
directly point to the target (this is, the reference attribute is typed as the
target class and the attribute points to target object instead of the identifier
string). The language developer can control the link resolving process by
implementing a scope provider service that can constrain the set of objects
visible at given point of program. Apart from link resolving, Xtext requires
the developer to write Java code that verifies the AST of the DSL program.

Program transformation Xtext does not offer direct support for pro-
gram transformation. The DSL developer can either implement the trans-
formation in Java or he can use EMF-based transformation tools (such
as Eclipse M2M [58]) to transform the EMF models. Xtext satisfies the
requirement lang.

Code generation Xtext contains Xpand2 template engine that can be
used to generate code from parsed AST. Figure 4.3 shows example of Xpand

1However, the use of these actions seem to be undocumented and the examples imply
that they are mostly used for when parsing left-associative arithmetical expressions where
the used parsing algorithm does not support left-recursive grammars.

2See http://www.eclipse.org/modeling/m2t/?project=xpand for more informa-
tion
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template.

«IMPORT beanDsl»

«DEFINE Generator FOR Model»
«FOREACH beans AS bean»
«FILE bean.name + ".java"»
«EXPAND beanClass FOR bean»
«ENDFILE»
«ENDFOREACH»
«ENDDEFINE»

«DEFINE beanClass FOR Bean»
public class «name» {

«EXPAND attribute FOREACH attrs»
}
«ENDDEFINE»

«DEFINE attribute FOR Attr»
«type.metaType == BeanRef

? ((BeanRef) type).target.name
: this.toString()» «name»;

«ENDDEFINE»

Figure 4.3: Example of code generation using Xtend

Program editor Xtext provides full-featured Eclipse-based IDE for the
DSL. The developer can create IDE that supports code coloring, outline
view, code hyperlinking, code completion, and occurrence marking. Some
features (such as code coloring and code completion for keywords) is avail-
able immediately. For advanced features or non-standard behavior (e.g.
for coloring references differently depending on the referenced object), the
developer must implement various Java-based interfaces.

4.2.2 EMFText

EMFText [31, 16] is an EMF-based language toolkit, similar to Xtext. The
main difference is that when Xtext uses the grammar description to gen-
erate EMF metamodel, the EMFText starts with metamodel of the target
language and uses it to generate grammar description.

Parser The language developer starts by creating a metamodel for the
target language. Using this metamodel, EMFText generates initial version
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of the syntax description. The developer can then modify the syntax de-
scription to achieve the desired language syntax. Like Xtext, EMFText
uses ANTLR as backend parser generator.

EMFText has support for language evolution. It is possible to indepen-
dently evolve the language metamodel and the syntax description. The
system detects when the two become out of sync and raises error. However,
the developer must separately maintain the AST description and concrete
syntax description. For small language this introduces code duplication
and thus EMFText does not satisfy requirement small. EMFText can be
used to create modular and customizable DSLs, thus it satisfies requirement
custom.

Program checker EMFText implements automatic reference resolving
mechanism, similar to Xtext. For other validation tasks, the developer has
the option of using either EMF validation framework [84] or by registering
Java-based post-processors for the processing queue.

Program transformation EMFText does not have direct support for
program transformation. The developer can either use EMF transformation
tools or code the transformations in Java (satisfies the requirement lang).

Code generator EMFText does not directly include code generation
functionality. However, the developer can use other EMF-based code gen-
erators, such as JET3, Acceleo4 or Xpand (see Section 4.2.1). Additionally,
it is possible to use JaMoPP [32] that implements a meta-model for the
Java programming language and pretty-printer that transforms a program
from Java model to text. Thus, it is possible to generate Java code by
using model-to-model transformation to transform the DSL model into a
Java model and then use the pretty-printer to generate Java code.

Program editor EMFText produces an Eclipse-based IDE, similar to
Xtext.

3See http://www.eclipse.org/modeling/m2t/?project=jet for more information
4See http://www.eclipse.org/acceleo/ for more information
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4.3 Language Workbenches

Language workbench is a term created by Martin Fowler [17, 19] (although
the relevant tools existed before that time). Although the term does not
have precise definition, the general consensus is that language workbenches
are characterized by the following properties.

• They place significant amount of emphasis on defining an abstract
representation of the DSL program, called semantic model. Usually
the semantic model is defined before concrete syntax of the DSL.

• They use projectional editing. The programmer, instead of editing
textual DSL program that is later parsed to AST, directly manipu-
lates the semantic model of the DSL program [18]. The representation
of the semantic model can be text (structured text, to be precise) or
graphics. In some tools, it is possible to define custom editors (wid-
gets) for particular AST nodes.

• Semantics of the DSL is usually defined by implementation. Typically
there are means to build a code generator that walks over the AST
and generates either structured or unstructured code.

The difference between language workbenches and EMF-based tools (see
Section 4.2) is not very well defined. On the one hand, EMF-based tools also
pay great attention to AST and express it using modeling terms (classes,
attributes, etc.). Also, the model semantics is defined by code generation.
On the other hand, the EMF-based tools listed in Section 4.2) assume
that the DSL programs use textual syntax and thus implement parsers (as
opposed to language workbenches that generally do not define concrete
textual syntax for the DSLs and instead provide means to manipulate the
semantic model directly). Thus, this section only reviews tools that do not
have means to define concrete textual syntax and use projectional editing
instead.

When talking about implementation, all the reviewed language work-
benches have tightly integrated architecture. The semantic model is in-
tegrated with the graphical editor and often the same applies to the code
generator. This means that language workbenches do not fulfill the require-
ments sep wp and system. Also, since there is no authoritative textual
syntax for the DSL, the DSL program is saved as serialized semantic model,
often using XML format. Therefore the DSL programs are not saved as
human-readable (and mergeable) files and the vcs requirement is not ful-
filled.
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4.3.1 Meta Programming System (MPS)

Meta Programming System (MPS) [14, 93, 61] is an open source language
workbench developed by JetBrains Inc. MPS has been used to create several
commercial products, such as the YouTrack bug-tracking system5.

Parser and program editor MPS does not have parser in a conven-
tional sense, it uses projectional editing instead. In MPS, language devel-
opment starts with specifying semantic model that is equivalent to AST of
the text-based languages. Based on the model, it is possible to create a pro-
gram editor. By default, the MPS creates cell-based editor that allows the
developer to lay out the program elements either in rows or columns. The
cells can be nested, building up an hierarchical editor. Figure 4.4 shows
semantic the model and the corresponding editor for the Bean concept.
Figure 4.5 shows a screenshot of an editor created with MPS. In addition
to standard structured text editor, MPS allows the developer to create cus-
tomized editor widgets (programmed as Swing components) for some AST
nodes.

Because of the nature of the projectional editor, it is impossible to create
incorrectly structured DSL program. However, it is possible to create a
program that is incomplete (all the required nodes and attributes are not
filled in). One advantage of text-based editing is the wide range of editing
operations available. For example, while refactoring a program, the devel-
oper can move code snippets around without having to ensure that all the
intermediate steps result in syntactically correct programs. When using
MPS, this freedom is restricted and it is more difficult to change, for exam-
ple, for -statement to while-statement. However, MPS allows the language
developer to create support for some common refactoring operations. For
example, to replace identifier expression “x” with binary operator “x +  ”
(where the  represents empty input cell) without recreating the whole
branch of the AST.

Program checker MPS has explicit support for creating type systems.
The language developer writes type equations that can assign types to AST
nodes (for example, all integer literals are typed int), propagate the type
information along the AST, and check whether types of two AST nodes
are compatible. In addition to type checkers, the developer can attach
constraint checkers to AST nodes. The checkers are written in a language

5See http://www.jetbrains.com/youtrack/ for more information
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(a) (b)

Figure 4.4: Semantic model (a) and editor (b) for the Bean concept

called “base”. The base language is a Java-like language that has additional
language constructs targeted at AST processing (thus, it has partial support
for requirement lang).

Program transformation MPS contains a template engine that can
be used for model transformation. The projectional editing paradigm is
also used for templates, thus guaranteeing that the template (and also the
generated model) will be structurally correct. Figure 4.6 shows template
for converting Bean DSL model to Java model.

Code generator For simple code generation tasks, MPS uses TextGen,
an instance of the program transformation engine that can output text
instead of models. MPS also contains model of the Java programming
language. Therefore, if code generation target is Java, then it is possible to
first transform the DSL AST to Java AST and then use the built-in Java
code generator. This approach is preferable because it guarantees that the
generated Java code will be structurally correct.
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Figure 4.5: Editor created with the MPS language workbench

Figure 4.6: Model transformation with MPS

Non-functional requirements MPS is built on IntelliJ6 platform and
tightly integrated with it. The DSL implementation cannot be separated
from the IntelliJ IDE, even building the DSL implementation requires In-
telliJ and MPS. Therefore, MPS does not satisfy requirements build and
system. However, the DSL implementation created with MPS can be de-
ployed as separate IntelliJ plugin, thus satisfying requirement sep wb.

MPS stores the DSL programs in the model form. By default, XML files are
used for storage. However, the developer is able to implement custom per-
sistence mechanism to store the models e.g., in a database. MPS contains
tool to merge two model files. Therefore, it is possible to store MPS models
in traditional text-based version control system, such as Subversion or git.
The VCS just needs to be configured to use MPS-specific tool to merge
changes entered by different developers. The requirement vcs is satisfied.

MPS provides excellent support for creating modular and extensible DSLs.
It is possible to extend a DSL with new constructs or to combine several

6See http://www.jetbrains.com/idea/ for more information
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DSLs. The MPS therefore satisfies requirement custom. For simple DSLs,
the developer needs to define AST, create cell-based editor, and implement
a code generator. Thus, MPS satisfies requirement small.

4.3.2 Intentional Workbench

Intentional Workbench [78, 36] is a language workbench developed by the
Intentional Corporation. Although initial versions of the tool were demon-
strated in 2009 [9], there is very little publicly available information about
the product. From the available material, one can conclude that the In-
tentional Workbench operates in a manner similar to the MPS workbench
(see Section 4.3.1). The DSL program is stored in a tree form and pro-
jectional editing is used to access the tree. Intentional Workbench allows
the developer to define multiple projections for a single DSL. The program
can be edited via any projection. In addition to projections, the developer
can define read-only views that can display e.g., call graph of the DSL
program. Although there is little information about architecture of the In-
tentional Workbench, it seems that it is similar to the MPS as far as the
non-functional requirements are concerned.

4.3.3 OOMEGA

OOMEGA [65] is mainly a model-driven engineering (MDE) platform. It
puts strong focus on managing object persistence and relies on standard
MDE technologies, such as ATLAS transformation language (ATL) [40].

Parser and program editor As with other language workbenches, the
language development starts with specifying a metamodel (AST classes).
This is done via graphical editor or by using special-purpose language called
M2L. From the metamodel, it is possible to generate initial version of con-
crete syntax description (also expressed in M2L). The developer can then
modify the concrete syntax description to create the desired grammar.

The program editor’s user interface is designed to give a look and feel of
conventional text editor, but in practice it is a projectional editor that
directly changes the AST stored in the memory.

Program checker OOMEGA implements automatic link resolving, sim-
ilar Xtext and MPS. Additionally, the developer can include constraints
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in the metamodel description. The constraints are expressed in language
called Edge Algebra.

Program transformation OOMEGA itself does not include program
transformation components. Instead, the developer is expected to use
Eclipse ATL language for program transformation tasks.

Code generator OOMEGA includes code generator that is based on
JSP. In addition, the developer is free to use other Eclipse-based code gen-
erators, such as Xpand.

Non-functional requirements OOMEGA uses an object database as
its storage back-end. The database can be queried with object-oriented
query language. The store is accessed via an well-defined API, thus allow-
ing for different implementations. Currently the main implementations
are MemoryDB and relational database. MemoryDB is an in-memory
database, the model is maintained in data files that are only loaded into
memory for processing. The authors recommend using XML or other struc-
tured file format for storing models, as the OOMEGA parser is not opti-
mized for reading large files that use the DSL syntax. The alternative
storage back-end uses relational databases. This enables multiple users to
simultaneously access the models. In short, OOMEGA supports the use of
VCS-controlled files in principle, but is not optimized for them. Therefore,
it partially satisfies the requirement vcs.

The program editor for DSL created with OOMEGA is distributed as
Eclipse plugin that can be deployed separately from the main language
workbench. Therefore, OOMEGA satisfies requirement sep wb. The lan-
guage implementation itself is tightly integrated with Eclipse and cannot
be deployed or built separately from Eclipse IDE (requirements system
and build are not satisfied). OOMEGA can be used to develop modu-
lar DSLs that also interact with each other (for example, program in one
language can refer to objects defined using some other language). Require-
ment custom is satisfied. OOMEGA uses existing languages for program
transformation and thus satisfies the requirement lang. In OOMEGA , the
developer must separately describe the metamodel and abstract syntax and
ensure that they are synchronized. This additional work makes OOMEGA
unsuitable for implementing small DSLs (does not satisfy the requirement
small).
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4.4 Spoofax/IMP

Spoofax/IMP [43, 44, 81] is a language development environment that is
based on the components of the Stratego/XT toolkit.

Parser Spoofax/IMP uses the SDF [30] language for defining concrete
syntax of the languages. Unlike many popular parser generators, SDF does
not have a separate lexer and parser. Instead, all of the syntax is defined via
production rules. On the one hand, this makes the formalism more flexible
allowing it to concisely express grammars for wide range of languages. On
the other hand, the generality comes at a small price. For example, for
most languages the developer needs to explicitly list all the keywords to
ensure that they are not parsed as identifiers.

The grammar description is also used to generate data types for the AST
nodes. Spoofax/IMP uses ATerm [4] for storing the AST of the programs.

Program checking and transformation Spoofax/IMP uses Strat-
ego [92, 6] language for language processing. In Stratego, the transfor-
mations are expressed in terms of rewriting rules that can be controlled by
programmable strategies. Figure 4.7 shows how reference resolving in the
bean language can be implemented in Stratego. First, we define strategy
analyze that collects the list of all the beans in the program. It does that by
matching the input as Program AST node and calling the rule record-bean
on all the beans in the program. The rule record-bean matches the bean
and creates a dynamic rule GetBean for resolving the bean name. Next,
we define strategy resolve-links that walks through the AST using top-
down strategy, and invokes the rule resolve-bean-ref for every node. The
rule matches attribute definitions and replaces the “plain” type annotations
Type(typeName) with references to beans BeanRef(typeName), if the type-
Name matches name of a bean. To put all together, the combined strategies
can be invoked by using sequence combinator: analyze; resolve-links.

Code generator The idiomatic way to generate code in Spoofax/IMP
is be to transform the DSL AST into AST of the target language and
then pretty-print the target. Spoofax/IMP includes support for several
languages, including Java. It is possible to use concrete syntax inside trans-
formation rules (see Figure 4.8 shows rule generate-bean that generates Java
code for a bean. It makes use of concrete syntax feature of the Stratego
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strategies
analyze =

where(?Program(<map(record-bean)>))

resolve-links = topdown(try(resolve-bean-ref))

rules
record-bean:

Bean(name, attrs) -> Bean(name, attrs)
where

rules(
GetBean :+ name -> name

)

resolve-bean-ref:
Attr(name, Type(typeName)) -> Attr(name, BeanRef(typeName))
where

<GetBean> typeName

Figure 4.7: Stratego example: reference resolving

language: the code between “|[” and “]|” is parsed to Java AST internally.
There are “unquote” sequences, beginning with tilde (˜) that can be used
to insert other nodes into the generated AST.

generate-bean:
Bean(name, attrs) ->

compilation-unit |[public class ~x:name {
~*fields

}]|
where

fields := <map(generate-field)> attrs
generate-field:

Attr(name, Type(type)) ->
class-body-dec* |[private ~x:type ~x:name;]|

generate-field:
Attr(name, BeanRef(type)) ->

class-body-dec* |[private ~x:type ~x:name;]|

Figure 4.8: Example of code generation with Spoofax

Program editor Spoofax/IMP creates an Eclipse-based IDE that is im-
plemented using IMP IDE toolkit (see Section 4.5.1). The IDE is configured
with DSLs that can call strategies written in the Stratego language. The
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IDE provides all the usual features, such as syntax highlighting, outline
view and automatic completion. Unlike many other Eclipse-based tools,
Spoofax/IMP allows testing the language IDE without starting another
copy of Eclipse.

Non-functional requirements The program editor can be distributed
as separate Eclipse plugin (satisfies sep wb). Spoofax/IMP uses Java-
based implementations of Stratego and SDF, therefore it is possible to call
the DSL implementation either from command-line (requirement build)
or to embed the DSL implementation into a bigger system (requirement
system).

SDF has good support for creating modular and extensible languages. It
is possible to split the grammar description into several files and combine
the files to produce different languages. The language processing can also
be modularized (requirement custom). The DSL programs are stored as
text files that can be managed using standard VCS (requirement vcs).

For small projects, Spoofax/IMP does not introduce additional overhead,
therefore it satisfies the requirement small. However, it uses Stratego
language that has is quite dissimilar from typical programming languages,
thus incurring a steep learning curve7 (does not satisfy requirement lang).

4.5 Special-Purpose Tools

This section covers tools that are mostly target one particular aspect (e.g.,
parsing, program checking, IDE creation) of creating a DSL implementa-
tion. Since the tools are not comprehensive toolkits, this section will not
use the feature-by-feature overview format used in the previous sections.
Instead, we will only describe the focus area of the particular tool.

4.5.1 IMP

The IDE Meta-tooling Platform (IMP) [8, 35] is an IDE building framework.
It is based on the Eclipse platform and aims to hide the technical details of
creating an Eclipse-based IDE. The API provided by IMP focuses on AST of
the DSL program and the concept of language services. In order to provide

7In [91], Vasudevan and Tratt rank the Stratego implementation as having largest
number of aspects to learn.
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IDE features, the DSL developer must implement language services. For
example, hyperlinking and tooltip features use reference resolving service
that takes as input an AST node, determines whether it is a reference (such
as identifier), and returns the referenced AST node.

IMP can be used with any parser generator or hand-written parser. How-
ever, it comes bundled with LPG parser generator in order to help the devel-
oper to get quickly started. IMP does not impose restrictions on non-visual
part of the DSL implementation and thus satisfies all the non-functional
requirements. Because of its flexibility, IMP is used as a component in
DSL toolkits, such as Spoofax/IMP. IMP provides APIs that can be im-
plemented using any JVM-based language, thus it satisfies the requirement
lang.

4.5.2 Parser Generators

4.5.2.1 ANTLR

ANTLR [67, 2] is primarily a parser generator. It takes as input a descrip-
tion of a DSL’s syntax and produces a parser that recognizes the DSL. By
adding actions to the parser, it is possible to build a translator or an in-
terpreter. ANTLR offers limited support in the form of tree grammars, for
processing the AST. ANTLR can be used together with StringTemplate [68]
template engine to build a simple DSL implementation consisting of a parser
and a code generator (requirement small). ANTLR can generate parsers
in several languages, such as Java or C/C++. Thus, using ANTLR gen-
erally does not involve adding new languages to the project (requirement
lang).

ANTLR does not have any dependencies that prevent embedding it in a
larger system and therefore it satisfies most of the non-functional require-
ments. However, ANTLR’s support for customizable languages (require-
ment custom) is quite limited. There is a mechanism for grammar inheri-
tance, but this only supports some specific cases of reuse and parametriza-
tion.

4.5.3 Attribute Grammar Systems

Attribute grammars [50] are a way to define computations on the AST of
the program. Attribute grammar systems generally allow the developer to
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describe the calculation of the attributes in a declarative manner and encap-
sulate the technicalities of traversing the AST and invoking the calculations
in a correct and efficient manner.

This section lists attribute grammar systems that are mostly focused on pro-
gram checking and program transformation functionality. They are based
on Java and generate Java-based DSL implementations. Thus, DSL imple-
mentations created using these tools are embeddable and satisfy require-
ments build and system.

4.5.3.1 JastAdd

JastAdd [29, 28, 37] is a meta-compilation system that supports Rewritable
Circular Reference Attribute Grammars (ReCRAG). It aims to be easy
to learn for Java developers, therefore using object-oriented approach and
Java-like syntax (satisfies requirement lang).

In addition to the basic inherited and synthesized attributes, JastAdd also
supports attributes that reference other AST nodes. This allows performing
several tasks, such as name resolution and type checking in-place, without
creating a separate environment mapping names to their definitions. In
addition, JastAdd supports parameterized attributes, broadcasting, non-
terminal attributes, and AST rewriting. Figure 4.9 shows an example Jas-
tAdd grammar that checks the references to other beans. First, code in
Figure 4.9a defines the abstract syntax of the bean language. Next, code in
Figure 4.9b defines the attributes responsible for reference resolving. The
main entry point is the attribute refTarget, defined on Attr class, that re-
turns the bean object that is named in the attribute type (or null, if the
type does not contain name of a bean). The bulk of the work is done
by the inherited attribute lookup that is defined at the program level and
propagated down to the Attr class. At the bean level, the attribute lookup
uses the bean-level synthetic attribute localLookup that checks whether the
argument matches the name of the bean.

JastAdd supports both modular languages and modular implementations
(requirement custom). If JastAdd is integrated with parser generator so
that parser directly produces AST that is compatible with JastAdd, then
there is no repetition and thus JastAdd satisfies requirement small.
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Program ::= Bean*;
Bean ::= <Name:String> Attr*;
Attr ::= <Name:String> <Type:String>;

(a) Definition of abstract syntax

aspect RefTarget {
syn Bean Attr.refTarget() = lookup(getType());
inh Bean Bean.lookup(String name);
inh Bean Attr.lookup(String name);

eq Program.getBean(int i).lookup(String name) {
for (Bean b : getBeanList()) {

Bean match = b.localLookup(name);
if (match != null) {

return match;
}

}
return null;

}

syn Bean Bean.localLookup(String name) =
name.equals(getName()) ? this : null;

}

(b) Implementing attributes for name lookup

Figure 4.9: JastAdd example: resolving reference in the bean language

4.5.3.2 Kiama

Kiama [79, 80, 47] is a Scala library for language processing. It is imple-
mented as an embedded DSL. Kiama provides support for attribute gram-
mars, tree rewriting, abstract state machines, and pretty-printing. All the
tasks assume that the AST is expressed as Scala case classes. Kiama itself
does not have functionality for parsing the program text and building the
AST. For this purpose, the developer must use either a parser generator or
a parser library.

In Kiama, attributes are expressed as Scala functions. The framework is
responsible for maintaining dependencies between attributes and lazily eval-
uating and caching attribute values. Figure 4.10 shows reference resolving
example in the bean language. The first four lines define the case classes
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that represent the AST. Next, the attribute refTarget applies to Attr nodes
and returns reference to a bean referred to by attrType. The value of the
attribute can be accessed as refTarget(attrNode) where attrNode is a refer-
ence to bean attribute. In order to resolve the type name, refTarget calls
the parameterized attribute lookup. The attribute lookup finds the bean
with the given name and propagates this information down the tree.

abstract class Tree extends Attributable
case class Program(beans: List[Bean]) extends Tree
case class Bean(name: String, attrs: List[Attr]) extends Tree
case class Attr(name: String, attrType: String) extends Tree

val refTarget: Attr => Option[Bean] =
attr {

case node @ Attr(_, attrType) => lookup(attrType)(node)
}

def lookup(name: String): Tree => Option[Bean] =
attr {

case Program(beans) =>
beans.find(_.name == name)

case node =>
lookup(name)(node.parent.asInstanceOf[Tree])

}

Figure 4.10: Example: name resolution using Kiama attributes

Kiama’s tree rewriting library is influenced by Stratego language (see Sec-
tion 4.4). The rewriting rules are implemented as functions that take as
argument tree nodes and return modified tree nodes. The strategies are
also expressed as functions. Kiama contains combinator library that im-
plements most of the strategy combinators found in the Stratego language.

Kiama also contains library for implementing state machines (can be used
for prototyping languages by converting the program to a state machine)
and pretty-printing library based on Swierstra’s algorithm [86].

Since Scala is a JVM language, Kiama is easily embeddable in Java-based
systems (requirements build and system). Due to Scala’s flexibility, it
can also be used to create modular languages and modular implementa-
tions (requirement custom). Since Kiama is based on Scala, it satisfies
the requirement lang. Kiama itself does not require any code duplica-
tion (satisfies small). However, when using Kiama with Scala’s parser
combinator library, one must specify the AST classes separately from the
grammar (that also contains information about the AST).
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4.5.3.3 Silver

Silver [89, 77] is an attribute grammar language that aims to support mod-
ular language specifications. Besides the usual inherited and synthesized
attributes, Silver also supports other features. For example, forwarding can
be used to extend the language with new constructs that can be expressed
in terms of the original language. Higher-order attributes allow construct-
ing parts of the AST as attribute. Reference attributes can refer to other
AST nodes and can be used for name resolving.

Silver comes with Copper [90] parser generator. Like Silver, Copper
is suited for modular specifications (requirement custom). It produces
context-aware lexers that make it easier to create extensible languages (the
tokenization can depend on whether the parser is currently processing an ex-
tension or not). Copper can analyze several grammars to determine whether
composing them would result in conflict [75].

The program transformation logic usually operates on abstract syntax of
the DSL program. However in Silver there is no automatic transformation
from concrete syntax to abstract syntax. Instead, the language developer
must explicitly declare the algebraic data type for abstract syntax tree
and build the tree in concrete grammar specification (usually the abstract
syntax tree is higher order attribute of the concrete syntax tree). On the
one hand, this gives additional flexibility to the language developer, as he
can use different abstract syntax trees for different purposes. On the other
hand, this introduces additional work for the simpler cases (Silver fails the
requirement small).

4.6 Summary

This chapter provided a brief overview of DSL toolkits and some single-
purpose DSL tools. For single-purpose tools, we reviewed a (hopefully
representative) subset of all the existing tools because the tools in the same
class (e.g., parser generators) generally have similar properties. Table 4.1
provides summary of the functionality of the reviewed DSL toolkits. Al-
though the single-purpose tools were not evaluated for functional coverage,
they are included in the table to show where the tool fits in the functionality
scale.

The table shows whether the given tool has explicit support for the task.
“No” in a cell does not mean that the given task cannot be accomplished
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with the given tool – typically, the tools can be integrated with programs
or modules written in general-purpose programming languages that can
be used to provide the missing pieces. For example, Xtext scores “No” in
the “program transformation” feature meaning that Xtext does not have
explicit support for program transformation. However, the developer can
perform program transformation tasks by writing Java code or by using
EMF-based model transformation tools.

Table 4.1: DSL tools by functionality

Tool Parsing Checking Transfor-
mation

Gene-
ration

Editor

Language toolkits

Xtext Yes Partiala No Yes Yes

EMFText Yes Partiala No No Yes

MPS No Yes Yes Yes Yes

OOmega No Yes No Yes Yes

Spoofax/
IMP

Yes Yes Yes Yes Yes

Single-purpose tools

IMP No No No No Yes

ANTLR Yes No No Yes No

JastAdd No Yes Yes No No

Kiama No Yes Yes Yes No

Silver Yesb Yes Yes No No
a Built-in name resolution, otherwise requires writing Java code.
b Copper parser generator.

From the table, it can be seen that Spoofax/IMP and MPS aim to be com-
prehensive toolkits offering support for all the tasks required to create a full
DSL implementation. The other toolkits (Xtext, EMFText, OOmega) can
also be used for DSL creation. However, they have chosen to offer limited
support for program checking and program transformation tasks, assuming
instead that the developer will use a general-purpose programming lan-
guage for implementing these tasks. As expected, the single-purpose tools
are focused on one or two tasks.

Table 4.2 summarizes how well the reviewed tools satisfy the non-functional
requirements.

Comparing the tables 4.1 and 4.2, it can be seen that there exists an inverse
correlation between functionality and embeddability of DSL tools. While
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Table 4.2: DSL tools by non-functional requirements

Tool lang small sep wb build system vcs custom

Language toolkits

Xtext Yes Yes Yes Yes No Yes Partial

EMFText Yes No Yes No No Yes Yes

MPS Partiala Yes Yes No No Yes Yes

OOmega Yes No Yes No No Partialb Yes

Spoofax/

IMP

No Yes Yes Yes Partialc Yes Yes

Single-purpose tools

IMP Yes N/A Yes N/A N/A N/A N/A

ANTLR Yes Yes N/A Yes Yes Yes Partial

JastAdd Yes Yesd N/A Yes Yes Yes Yes

Kiama Yes Yes N/A Yes Yes Yes Yes

Silver No No N/A Yes Yes Yes Yes

a The MPS base language is based on the Java language, but many sub-languages

(e.g., for defining type equations) have only passing resemblance to Java.
b Managing DSL programs in VCS is possible, but it requires additional work

by the DSL developer.
c Java implementation of Stratego language has significantly lower performance

than the native implementation.
d This assumes that the parser produces AST in the format that can be directly

used by JastAdd.

DSL toolkits offer support for most of the DSL creation tasks, it can be
difficult to apply them in the enterprise software development. The toolkit
parts are highly integrated, in particular the non-visual parts (parser, code
generator, program checker) tend to be integrated with the IDE framework.
The exception here is Spoofax/IMP that is mostly built around non-visual
Stratego language, and thus not so tightly integrated8. On the one hand,
this approach makes the whole tool simpler and more powerful because the
DSL program is internally stored and processed in a format that is well-
suited for implementing the IDE services. Additionally, the EMF-based
tools Xtext and EMFText can be used in conjunction with other tools
that share the EMF infrastructure. On the other hand, this architectural

8However, the Spoofax/IMP fails the requirement lang, which means that it may
be difficult to employ in enterprise setting where the developers are not interested in
learning a new language in order to develop a DSL.
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style makes it difficult to use the toolkit in combination with other tools or
outside the original IDE environment.

The special-purpose DSL tools represent the other side of the coin. They
are specifically designed so that they can be used in combination with other
tools and that they produce DSL implementations with minimal amount
of dependencies. However, in order to build a complete DSL implemen-
tation, the developer must either create bulk of the implementation (the
part of the functionality that is not covered by the tool) by hand, or he
can integrate different tools, which again may require substantial amount
of manual coding.

Thus, the enterprise developer has the choice of using either a DSL toolkit
that is easy to use, but difficult to combine with other tools and to embed
into the system, or a single-purpose DSL tool that can be integrated into
the enterprise system. This is unfortunate because technically there are
no strong reasons why the two aspects cannot be combined. Ideally, the
enterprise developers would benefit from conveniently packaged end-to-end
solution that would cover all the aspects of DSL development and that
would also be sufficiently modular and flexible to allow integrating the
DSL tool and/or DSL implementations created with the tool into different
systems. This toolkit should lower the barrier of entry by taking advantage
of existing tools and programming languages to leverage the skills of the
developers. It is the opinion of the author that the use of toolkit matching
these goals would lower the cost of creating a DSL and make the DSL-
oriented software development more practical in the enterprise.
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CHAPTER 5

DESCRIPTION OF SIMPL

5.1 Introduction

This chapter introduces Simpl, a DSL toolkit aimed at creating embeddable
DSL implementations. It is based on practical experiences gained during
the Customs Engine project (see Chapter 2) and other projects. Simpl was
developed at Cybernetica AS, the author is the architect of the Simpl toolkit
and contributed to implementations of all of the components. Simpl aims
to fulfill the requirements described in Chapter 3) while offering simple and
usable tools for developers. Accordingly, in addition to the requirements
listed in Chapter 3, Simpl aims at fulfilling the following design goals.

• First and most importantly, the focus of Simpl is to provide ease of
use and a low learning curve. In particular, Simpl must be easy to
learn for developers who are not specialists in language development.

• Contemporary software development practices (both for DSL creators
and DSL users) involve intensive use of IDEs. Therefore, it must be
possible to provide reasonable IDE for a simple DSL with little or no
programming effort. Creating full-featured IDEs for a more complex
DSLs must also be possible.

• If reasonable, the language for writing program checking and program
transformation code should be an existing language. In practice, it
is very difficult to convince developers to use a new tool if it requires
learning a new programming language. Additionally, in order to com-
pete with existing languages, the new language would have to have
comparable level of tooling, such as IDEs, debuggers, etc.
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• It must be possible to create simple DSLs with very little effort. Thus,
Simpl must be usable for creating “configuration DSLs” described in
the case study (Section 2.2.2). Simpl aims to minimize the amount
of code that needs to be written for simple DSLs.

• The DSL processing language should be statically checked to ensure
that simple programming errors are detected early.

• It must be possible to create complex languages. In particular, it
must be possible to use Simpl for implementing compiler for a typical
functional or imperative language.

In order to better use the available development efforts, we have decided to
base Simpl on existing tools. Our contribution is a unified, integrated in-
terface to the whole tool chain and improvements targeted at usability and
productivity. In particular, Simpl is based on the ANTLR parser generator,
the Scala programming language, and the IMP IDE toolkit. Additionally,
Simpl can be used in conjunction with the Kiama language processing li-
brary that can be used for writing program checking or program transfor-
mation code.

Simpl builds on the aforementioned components and adds to them addi-
tional features that simplify the implementation of DSLs.

• Simpl automatically generates Scala classes for representing the ab-
stract syntax tree (AST) of the parsed DSL program. The class model
corresponds to the grammar of the DSL. The developer can influence
the generation process by adding annotations to the grammar de-
scription. Additionally, the developer can use return expressions (see
Section 5.3.4) to customize the AST nodes returned by the grammar
rules at runtime.

• Simpl parser generator adds support for lexer states: a way to add
context sensitivity to the lexical analysis process1. In some tools
(e.g., in ANTLR) the same effect can be achieved by using free-form
semantic predicates. Compared to semantic predicates, lexer states
in Simpl offer a more structured approach is simpler to use and to
analyze.

1Lexical analysis typically involves processing the source program using regular expres-
sions. Lexer states help the developer to guide the lexical analysis by using contextual
information. For example, this can be used decide whether a sequence of characters
should be tokenized either as a keyword or as an identifier.
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• Simpl includes pretty-printing library that can be used to reformat
existing DSL programs or to implement a code generator that outputs
well-formatted code.

• Simpl contains an IDE framework that provides API that focuses on
the language services and abstracts away the particulars of creating
an Eclipse plugin.

• Simpl contains an integration layer that ties the used components into
a seamless whole. It aims to minimize the amount of code that needs
to be written by offering high-level APIs, framework that handles
more technical aspects of implementing a code generator, and wizards
that simplify creating a new DSL project.

5.2 Overall Architecture

In the introduction we mentioned that Simpl is based on the existing tools.
Next, we describe these tools in more detail and evaluate their suitability
as building blocks of the Simpl tool.

An important design decision was selecting the language for writing pro-
gram transformations and IDE services. We chose the Scala programming
language based on the following main reasons.

• Scala has functional programming features and support for pattern
matching, thus making it very suitable for language processing tasks.
Implementing AST processing functionality in a popular enterprise
language such as Java is possible, but the result is cumbersome and
difficult to understand. The low abstraction level of Java and its lack
of support for first-class functions makes it difficult to encapsulate
repeating patterns of code into a reusable language library.

• Scala compiles to Java bytecode and interfaces well with Java-based
infrastructure and tools. Thus we get best of both worlds – broad
applicability of the JVM platform and high-level features of the Scala
programming language.

• Scala supports several programming styles (functional or object ori-
ented) and is applicable for wide variety of problem domains.
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• Scala has similarities to popular enterprise programming languages,
such as Java and C# and thus is easy to learn for enterprise devel-
opers. Additionally, Scala is reasonably popular2 and there is sizable
body of information available for it.

The main reasons for choosing ANTLR as the back-end to the Simpl parser
generator were its maturity and popularity meaning that it is relatively
bug-free and well-documented. Additionally, there is substantial body of
information on implementing parsers with ANTLR. Feature-wise, ANTLR
has good error recovery that is useful for implementing IDEs where user’s
editing actions often create syntactically incorrect programs. Additionally,
parsers implemented with ANTLR produce user-friendly error messages
when encountering syntax errors.

For the IDE platform, we chose Eclipse that is the most popular Java
IDE (see e.g., [99] for a report on popularity of Java IDEs) based on the
assumption that it has the best chances of seamlessly integrating into the
developers’ workspace. On top of Eclipse we use IMP that abstracts away
some of the complexity associated with building a language editor on top
of Eclipse. IMP offers an abstraction layer that does not assume the use of
any particular type of parser or AST representation.

Figure 5.1 shows the components of the Simpl toolkit and their connections
with the base tools (shown with the gray background). The arrows indicate
dependencies between the components. Simpl consists of a parser genera-
tor (see Section 5.3); parsing and AST library containing the base classes
and common functionality for invoking the parser and manipulating the
AST; a generator library that simplifies writing of simple code generators
(see Section 5.5); a pretty-printing library (see Section 5.5); and an IDE
framework (see Section 5.6).

In order to produce embeddable DSL implementations, Simpl keeps clear
separation between the“visual”and“non-visual”parts if the DSL implemen-
tation. The “non-visual” part contains the core of the DSL implementation:
parser, program checker, code generator, etc. that can be embedded into
a larger system. The other, “visual” part contains an IDE for editing and
managing DSL programs. The non-visual part does not make any assump-
tions on how the system is implemented. In particular, the non-visual part
does not have dependencies on the visual part and does not assume that

2For example, one study [64] found Scala to be 12th popular language among users
of Stack Overflow and GitHub web sites. Another study [99] found Scala to be third
popular language (after Java and Groovy) on the JVM platform.
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Figure 5.1: Overview of Simpl components

the DSL implementation is a top-level program or function in the system.
In addition, it does not use any global data or global caches, making sure
that the DSL implementation is thread safe.

Figure 5.2 shows the architecture of a typical DSL implementation created
with Simpl. The first part is the non-visual language implementation that
can be embedded into a bigger system. Development of a new DSL starts
with grammar description that specifies both the context-free grammar of
the DSL and the classes for representing the abstract syntax tree (AST) of
a DSL program. The Simpl parser generator takes the grammar descrip-
tion as input and produces a parser and the AST classes. The (optional)
program transformation component takes as input an AST and checks or
transforms it. The code generator converts the preprocessed AST to text.
The second part of the DSL implementation is the language IDE. It builds
on the Simpl IDE framework and the non-visual part of the language im-
plementation.

The visual part of the DSL implementation consists of an Eclipse plugin.
In principle, the IDE part is not freestanding and embeddable. Because
creating a full-featured IDE from scratch is not practical (and probably not
well-received by developers wishing to spend most of their time in single,
all-powerful IDE), we deploy the DSL IDE as Eclipse plugins that can be
added to an existing Eclipse installation.

The intended workflow for implementing a DSL with Simpl consists of the
following steps.

1. Creating a grammar description. This is used to create a parser that
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Figure 5.2: Architecture of a DSL implemented with Simpl. Components with
captions in italic are automatically generated.

can be run and tested against the sample DSL programs. Based on the
unannotated grammar description, Simpl also provides a functional
IDE that supports syntax highlighting and error marking.

2. Annotating the grammar description to achieve the desired structure
of the AST. The annotations can be used to name the attributes of
the AST classes and to modify the class hierarchy.

3. Creating the core of the language implementation. The core is usually
a code generator or interpreter, possibly containing a program checker
or program transformer.

4. Creating the IDE for the language. Typically, the IDE part is quite
thin as it uses the non-visual language implementation for tasks such
as program checking, name resolution and code generation.

The following sections describe the Simpl DSL toolkit in more detail.
Throughout the sections we will use an example language“SpamDetector”–
a DSL expressing spam detection rules, similar to DSL used by SpamAssas-
sin tool3. The SpamDetector DSL allows the user to specify conditions that
are matched against incoming e-mail messages. If the conditions match,
the “spamness” score of the message is incremented or decremented accord-
ingly. The SpamDetector DSL can be considered a typical representative
of a moderately complex DSL, containing arithmetic expressions and rudi-

3See http://spamassassin.apache.org/
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mentary user-defined functions (in this case, named conditions that can be
used in rules).

Figure 5.3 shows an example SpamDetector program containing two rules.
The first rule checks if Subject header of incoming message contains case-
insensitive string “viagra” and if it does, increases the message’s “spamness”
score by 2.0. The second rule uses named condition from mydomain. It
matches all the messages that contain (case-insensitive) string “business
proposal” in their subject line and is not sent from a “good” domain.

rule "Subject contains Viagra" 2.0:
Subject = /viagra/i

condition from_mydomain: From = /@mydomain.com/
rule "Business proposal" 1.5:

Subject = /business proposal/i
and not from_mydomain

Figure 5.3: Example rules in SpamDetector DSL.

5.3 Parsing

5.3.1 Basic Grammar Rules

Simpl’s grammar language is similar to EBNF notation that is used on
most parser generators. Figure 5.4 shows full grammar description for the
SpamDetector language. The first line names the package that will host
the classes generated for this language and the generated class that will
act as the front-end of the parser. The first rule (Program in this case)
will become start symbol of the grammar. Simpl grammar descriptions
can contain four kinds of rules. All the rules start with optional keyword,
followed by name of the rule, colon and a pattern that will be matched
against input. The names of the rules must be unique – each terminal or
non-terminal is completely specified in a single grammar rule.

Terminal (lexer) rules start with keyword terminal. The pattern of
the rule is a regular expression. Terminal rules produce tokens that are
analyzed by context-free rules. Terminal rules can be hidden (indicated
by keyword hidden) meaning that they are ignored by the context-free
rules. In the example grammar, hidden terminal WS matches white space
and comments so that they do not interfere with the other grammar rules.
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grammar ee.cyber.simplicitas.spamdetector.SD;

Program: Item+;

option Item: Rule | Condition;

Rule: "rule" Name Score ":" Expression;

Condition: "condition" Id ":" Expression;

option Primitive:
Contains

| NotContains
| Count
| ConditionCall
| ParenExpression
| NotExpression;

Expression: AndExpression ("or" AndExpression)*;
AndExpression: Primitive ("and" Primitive)*;

ParenExpression: "(" Expression ")";
NotExpression: "not" Primitive;

Contains: Id "=" Regexp;
NotContains: Id "!=" Regexp;
Count: "count" "(" ExprList ")" "=" Num;
ExprList: Expression ("," ExprList)?;
ConditionCall: Id;

terminal Regexp: "/" (~"/")* "/" "i"?;
terminal Score: "-"? Digit+ "." Digit*;
terminal Num: Digit+;
terminal Name: ’"’ (~’"’)* ’"’;
fragment Digit: ’0’..’9’;

terminal Id: IdStart IdNext*;
fragment IdStart: ’a’..’z’|’A’..’Z’|’_’;
fragment IdNext: IdStart|’0’..’9’|’-’;

fragment MlComment: ’/*’ (~’*’ | ’*’ ~’/’)* ’*/’;
fragment SlComment: ’//’ ~(’\n’|’\r’)*;
hidden terminal WS: (’ ’|’\t’|’\r’|’\n’|SlComment|MlComment)+;

Figure 5.4: Grammar description for the example language
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Terminal rules can be structured using fragment rules (keyword frag-
ment). Fragment rules use the same regular expression syntax as terminal
rules. The main difference is that the fragment rules do not create tokens
when applied (and therefore cannot be called by the context-free rules).
Also, AST classes will not be generated for fragment rules and thus the
fragments are not explicitly reflected in the AST. Thus, the main purpose
of fragment rules is to split a complicated terminal rule into several named
parts.

Non-terminal rules are written without any preceding keyword and de-
scribe the context-free syntax of the language. Non-terminal rules can con-
tain literals (in single or double quotes) and calls to other rules. Patterns
can be grouped with parentheses. Alternatives are separated by vertical
bar. Patterns can be suffixed by symbols to indicate arity: “?” means
optional, “* ” means zero or more, and “+” means one or more.

Option rules start with keyword option and consist of alternatives where
each alternative is call to another rule. The difference between option and
regular non-terminal rules lies in AST generation. See Section 5.3.3 for
details.

5.3.2 Advanced Grammar Definition Features

5.3.2.1 Grammar Modularity

Simpl offers basic support for modular grammars. The import directive
can be used to import all the rules from other grammar into the current
one. The rules in the current grammar override the rules from the imported
grammar with the same name. Similar logic applies when importing mul-
tiple grammars. For example, if grammar Foo imports grammars Bar and
Baz, then rules from Baz override rules from Bar and rules from Foo over-
ride both Bar and Baz.

Figure 5.5 shows an example of grammar extension. The SDExtended
grammar extends the SpamDetector language and adds a new type of ex-
pression. Expression “random n” (where 0 ≤ n ≤ 100) evaluates to true if
newly generated random number from 0 to 100 is less or equal than n (in
other words, marks message as a spam n% of the time). This is accom-
plished via the following steps. First, we use the import keyword to import
all the rules from the basic SpamDetector grammar. Next we override the
rule Primitive to add new option Random to list of alternatives. Since
the rules are replaced as a whole, it is necessary to repeat all the options
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grammar ee.cyber.simplicitas.spamdetector.SDExtended;

import "SD.spl";

Program: Item+;

option Primitive:
Contains

| NotContains
| Count
| ConditionCall
| ParenExpression
| NotExpression
| Random;

Random: "random" Num;

Figure 5.5: Example grammar that extends the SpamDetector grammar to add
new primitive expression

from previous version of the rule. Finally, since Simpl uses the first rule of
the grammar as the start symbol, we have to repeat the rule Program as
the first rule. Otherwise Primitive would become the start symbol since
the rules from imported grammars are assumed to come after the rules of
importing grammar. Naturally, import statements in grammar definitions
should not create cyclic dependencies.

5.3.2.2 Lexer States

Simpl has support for lexer states. They can be used to make the lexer
more context-sensitive. In general, the lexer analyzes the input based on
regular expressions. Lexer states makes the lexer (terminal and fragment)
rules stateful and allows parsing of more complex languages.

Figure 5.6 shows an example grammar that makes use of lexer states. This
example extends the basic SpamDetector grammar (cf. Figure 5.4) with
include directive that imports the rules from another SpamDetector file.
The need for lexer states comes from the additional terminal Filename used
for representing file names. The terminal Filename shadows the terminal Id
and adds additional characters used in file names, such as “/” and “.”. Our
goal is to restrict use of the Filename terminal to the include statement so
that it does not shadow the terminal Id in the body of the program.

The lexer state machine is organized in a stack. Each enter-state directive

74



1grammar ee.cyber.simplicitas.spamdetector.LexerStates;
2
3// Import the base grammar
4import "SD.spl";
5
6// Declare the lexer state
7lexer-states (filenameAllowed)
8
9// Add call to Include rule
10Program: Include* Item+;
11
12Include: IncludeStart Filename;
13
14// Keyword ’include’ triggers state filenameAllowed
15terminal IncludeStart
16enter-state(filenameAllowed)
17: ’include’;
18
19// Filename is only applicable in state fileNameAllowed and
20// also it exits this state
21terminal Filename
22check-any(filenameAllowed)
23exit-state(filenameAllowed)
24: (’a’..’z’|’A’..’Z’|’0’..’9’|’_’|’-’|’/’|’.’)+;
25
26// Identifiers must have lower priority than "include" keyword
27terminal Id: IdStart IdNext*;

Figure 5.6: Example of using lexer states to resolve conflict between terminals
Filename and Id
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takes as argument any number of states and pushes them all to the top of
the stack. The corresponding exit-state directive pops items from the top
of the stack until it encounters the state given as an argument. Thus, if the
stack contains states S1 , S2, S3 , S4 , then after processing directive exit-
state(S3 ), the stack will contain S1 , S2 . Two directives serve as guards that
control whether a rule is enabled or not. Directive check-any(S1 , . . . , Sn)
enables the rule if the stack contains any of the states S1 , . . . , Sn . Directive
check-all(S1 , . . . , Sn) enables the rule if the stack contains all of the states
S1 , . . . , Sn in any order. Directive check-none(S1 , . . . , Sn) works as an
opposite to check-all – it enables the rule if stack contains none of the states
S1 , . . . , Sn .

In the example program, we use state filenameAllowed to indicate that the
terminal Filename should be enabled. First, we need to declare the used
states with lexer-states keyword (line 7). When the lexer encounters the
terminal IncludeStart, the enter-state directive (line 16) pushes the state
filenameAllowed to the stack. This enables the Filename terminal rule. In
the Filename rule (lines 21-24) we use check-any to restrict the rule for
a particular state. After processing the Filename, the exit-state directive
pops the filenameAllowed state from the stack and disables the Filename
rule (until next occurrence of the include keyword or until the end of the
input file). As a technical detail, the Id rule must be repeated in the
extending grammar so that it comes after the IncludeStart rule and will
not shadow it.

5.3.3 AST Generation

The grammar generator will automatically generate a Scala case class for
every rule in the grammar. The exceptions to this are fragment rules since
they do not generate tokens and thus are not reflected in the AST. The
generated class will have the same name as the corresponding rule. Each
AST class has attributes corresponding to rule references from this rule. If
the references are not explicitly named (see later in this section), the name
of the attribute will be derived from the type. Figure 5.7a shows example
grammar rules and Figure 5.7b classes that are generated for these rules.

The class attributes are generated as modifiable (using the var keyword)
to make it easier to modify the tree in the later processing steps. If the
grammar rule contains several instances of the same sub-rule, the attribute
will be typed as list. In the example rules Rule2 and Rule3, the attribute
id is typed as List[Id]. It is possible to override the default attribute names
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Rule1: Id Str;

Rule2: Id Str Id;

Rule3: Id+ Str;

Rule4: myId=Id myStr=Str;

(a)

case class Rule1(
var id: Id,
var str: Str)

case class Rule2(
var id: List[Id],
var str: Str)

case class Rule3(
var id: List[Id],
var str: Str)

case class Rule4(
var myId: Id,
var myStr: Str)

(b)

Figure 5.7: Example grammar rules (a) and the generated AST classes (b)

by specifying them explicitly in grammar. This is demonstrated by the
example Rule4.

Code generation for option rules is different than for regular non-terminal
rules. The body of the option rule can only contain list of alternatives
where each alternative is call to another rule. For each option rule Simpl
generates Scala trait4 named after the rule and makes all the rules called
by the option rule inherit from this trait. Figure 5.8 shows example rule
from the SpamDetector grammar and the corresponding Scala classes. It
is also possible to use artificial option rules to create common base classes
for several AST classes. For this purpose, one can create option rules that
are not called by any other grammar rules. However, these rules still take
part of AST generation.

5.3.4 Shaping the Generated AST

Figure 5.9 shows the full SpamDetector grammar with annotations related
to the AST generation (highlighted in bold). Some annotations (naming
class attributes) were covered in the previous section. This section walks
through the rest of the AST shaping features.

All the rules can include code blocks that will be placed inside generated
classes. Typically, these code blocks are used to add attributes and methods

4In Scala, trait is an abstract class that can be combined with other classes using
mixins [63].
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option Item: Rule | Condition;

(a)

trait Item
case class Rule(...)

extends Item
case class Condition(...)

extends Item

(b)

Figure 5.8: Example option rule (a) and the corresponding classes (b)

that are later called from language processing code. Line 42 of the example
grammar adds a new attribute to the Id class.

The developer can specify the return type of the rule using returns key-
word, followed by identifier. For example, in line 11 of the grammar, return
type of the rule Primitive is set to be Expression. This has the following
effects.

1. The generated class Primitive is generated as before and will extend
class Expression.

2. If the grammar does not contain rule named Expression, then a new
trait is created with that name.

3. All the grammar rules that call the rule Primitive will be modified
so that the corresponding attribute will be typed Expression. For
example, the rule NotExpression will generate the following class:

case class NotExpression(expr: Expression) extends Expression

The return type can be used for making the rule return a more general
type. An attempt to change the return type of a rule to an incompatible
type will result in compilation error.

In addition to changing the return type of the rule, it is also possible to
modify the AST node returned by the rule using return code blocks (return
expressions). Return expression is a Scala expression that returns an
object of the class corresponding to the AST node. The expression must
be surrounded with curly brackets (“{}”). The type of the returned object
must match the return type of the grammar rule. If the return type is
not explicitly specified for the given rule, then the return expression must
return the case class generated for this rule.
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1grammar ee.cyber.simplicitas.spamdetector.SD;
2
3Program: Item+;
4
5option Item: Rule | Condition;
6
7Rule: "rule" Name score=Score ":" expr=OrExpression;
8
9Condition: "condition" name=Id ":" expr=OrExpression;
10
11option Primitive returns Expression:
12Contains
13| NotContains
14| Count
15| ConditionCall
16| ParenExpression
17| NotExpression;
18
19OrExpression returns Expression
20{if (items.length == 1) items.head else _self}
21: items=AndExpression ("or" items=AndExpression)*;
22AndExpression returns Expression{if (items.length == 1) items.head else _self}
23: items=Primitive ("and" items=Primitive)*;
24
25ParenExpression returns Expression {expr}
26: "(" expr=OrExpression ")";
27NotExpression: "not" expr=Primitive;
28
29Contains: field=Id "=" Regexp;
30NotContains: field=Id "!=" Regexp;
31Count: "count" "(" items=ExprList ")" "=" count=Num;
32ExprList: items=OrExpression ("," items=OrExpression)*;
33ConditionCall: cond=Id;
34
35terminal Regexp: "/" (~"/")* "/" "i"?;
36terminal Score: "-"? Digit+ "." Digit*;
37terminal Num: Digit+;
38terminal Name: ’"’ (~’"’)* ’"’;
39fragment Digit: ’0’..’9’;
40
41terminal Id {var ref: Id = null}: IdStart IdNext*;
42fragment IdStart: ’a’..’z’|’A’..’Z’|’_’;
43fragment IdNext: IdStart|’0’..’9’|’-’;
44
45fragment MlComment: ’/*’ (~’*’ | ’*’ ~’/’)* ’*/’;
46fragment SlComment: ’//’ ~(’\n’|’\r’)*;
47hidden terminal WS: (’ ’|’\t’|’\r’|’\n’|SlComment|MlComment)+;

Figure 5.9: SpamDetector grammar (cf. Figure 5.4) extended with annotations
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Figure 5.10: Inheritance hierarchy of SpamDetector AST classes

The return expression is executed in a scope that contains all the parameters
of the rule. The AST node corresponding to the rule itself is also accessible
via the identifier self. For example, the rule ParenExpression on line 26
returns the expression inside parentheses. This results in a cleaner AST.
Without the return expression, string “(foo)” would generate AST node
ParenExpression(Id("foo")). With the return expression, the result is simply
Id("foo"). Because the rule ParenExpression now returns objects of type
Expression (the type of attribute expr), we must also change the return
type of the ParenExpression.

A more complicated example can be found in rules OrExpression and An-
dExpression (lines 19 and 22). The return expression checks whether the
OrExpression represents a degenerate case (call to AndExpression without
using the or keyword) and, if so, returns the single node. In this case, the
list of child nodes can be accessed via name items, whereas the whole Or-
Expression node is named self. This use of return expressions avoids layers
of wrapping that would be generated with the default code generation. For
example, the string “foo or bar” will be parsed as follows:

OrExpression(List(Id("foo"), Id("bar")))

instead of

OrExpression(List(
AndExpression(List(Id("foo"))),
AndExpression(List(Id("bar")))))

Long and complicated return expressions can make the grammar descrip-
tion long and obscure the structure of the language. In these cases it is
recommended to put the longer code in a separate Scala file and only use
function calls as return expressions.

Figure 5.10 shows the inheritance hierarchy of the SpamDetector grammar.
For clarity, we have omitted classes that do not have inheritance relation-
ship with the other classes.
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Objects returned by the return expressions are not limited to AST classes
generated from the grammar. It is possible to manually define new AST
classes and use them from the return expressions. When doing this, the
new classes must extend the return type of the grammar rule returning the
AST node. If the types do not match, compilation fails with a type error.
Besides the requirement to extend the return type of the rule, the synthetic
AST class does not need to correlate with the rule (for example, it makes
no difference whether the rule is an option rule or a non-terminal rule).

To illustrate the use of synthetic classes, we show how to use an synthetic
class BinOp to offer a uniform representation of the binary arithmetic op-
erators. Using this class, the expression a and b or c is represented by the
following AST node:

BinOp("or", BinOp("and", List(Id("a"), Id("b"))), "c")

Using a single class for representing all the different arithmetic operators
can simplify processing code because only one kind of AST node needs to
be matched when processing different types of expressions5.

Figure 5.11a shows the definition of the BinOp class. The AndExpres-
sion and OrExpression nodes can be converted to BinOp nodes using
the makeBinary method defined in Figure 5.11b. The first parameter
to the method is the operator (“and” or “or”) and the second parameter
is the list of arguments given to the operator. In the grammar descrip-
tion, the conversion function can be called by return expression, such as
{makeBinary("or", items)}. When constructing the BinOp nodes, setStart
and setEnd methods are called to set source location of the node. The
start location is copied from the left operand and the end location is copied
from the right operand. Setting the source locations is important if the
AST nodes are used to report errors (e.g., type errors). Similar to compli-
cated return expressions, the synthetic AST classes should be defined in a
separate file.

5.3.5 Implementation

Currently the Simpl parsing subsystem is implemented as a front-end to the
ANTLR parser generator. The Simpl parser generator parses the grammar
description and generates two artifacts. The first artifact is a Scala file
that contains definitions for the case classes that are used to represent

5However, for SpamDetector the effect is not very strong because the language only
contains two arithmetic operators.
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case class BinOp(
var op: String, // The operation, such as "and" or "or"
var left: Expression, // Left operand
var right: Expression) // Right operand
extends Expression

(a)

def makeBinary(op: String, args: List[Expression]): Expression =
args match {

case single :: Nil => single
case left :: right :: rest =>

makeBinary(
BinOp(left, right).setStart(left).setEnd(right) ::
rest)

}

(b)

Figure 5.11: Definition of the BinOp synthetic AST class (a) and a method to
convert the original AST node to use the BinOp class

the AST. It also contains a class that acts as a front-end to the parsing
functionality (parsing the file, retrieving token stream, retrieving AST) and
that allows easy integration of the parser with the other Simpl APIs. The
second artifact is an ANTLR grammar that parses the input and builds
the AST via grammar actions. The generated ANTLR grammar is then
processed with ANTLR to produce the parser that will be linked into the
main program.

Because Simpl uses the ANTLR parser generator, it also inherits limitations
of ANTLR. In particular, ANTLR uses the LL(k) parsing algorithm that
limits the set of grammars that can be expressed. The most important re-
striction is that Simpl does not currently support left-recursive grammars.
This can make expressing arithmetic operators cumbersome and can pro-
duce inefficient ASTs. In Simpl, this limitation can be worked around by
using return expressions (see Section 5.3.4).
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5.4 Language Processing

Simpl relies on the Scala programming language for expressing program
transformations. Scala is a high-level programming language that sup-
ports both functional and object-oriented programming styles. For ex-
ample, the AST classes can be processed either via pattern matching or
by using object-oriented attribute access. The high abstraction level of
Scala language makes it possible to express transformations in a declar-
ative manner and to combine elementary transformations into compound
transformations.

Figure 5.12 shows implementation of reference resolving for the SpamDe-
tector language. The resolving process makes use of two instance variables.
Variable conditions stores mapping from condition names to Id nodes. Vari-
able errors stores list of error messages created during the analysis. The
process consists of two steps. First, the method collectConditions iterates
over all the named conditions and adds them to mapping. If a condition has
duplicate name, this is logged as an error. Second, the method doResolve
walks over all the AST nodes using the walkTree method that calls given
function for each AST node. We use block syntax to create a function that
matches ConditionCall nodes and checks whether they reference existing
conditions. If not, we log an error.

Simpl contains a base class that simplifies implementation of main program
for simple code generators or program checkers. Figure 5.13 shows how the
MainBase is used to implement the SpamDetector main function. First,
the call to parseOptions parses the command-line options that specify the
destination directory and source files (the base options are determined by
Simpl, the concrete tool can add additional options). The list of source files
is used in line 5. In lines 7 and 11, we use the error reporting functionality
that checks presence of errors. If any errors were found, they are displayed
to the user and the process exits. Section 5.5 shows how the code genera-
tor is instantiated with the destination directory determined by the Simpl
framework.

In addition to writing Scala code, Simpl ASTs can be processed with the
Kiama language processing library. It is possible to use both Kiama’s
rewriting library and attribute grammars. Figure 5.14 shows an exam-
ple that calculates call graph for conditions in the SpamDetector language.
The call graph is represented as mapping from condition name to set of
condition names that are directly called by the given condition. The ex-
ample defines two attributes. The attribute callSet computes call set for
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class ResolverScala {
val errors = ArrayBuffer[SourceMessage]()
val conditions = Map[String, Id]()

def resolveReferences(program: Program) {
errors.clear()
conditions.clear()

collectConditions(program)
doResolve(program)

}

private def collectConditions(program: Program) {
program.items foreach {

case Condition(id @ Id(name), _) =>
if (conditions contains name) {

errors += error("Duplicate condition name: " +
name, id)

} else {
conditions += name -> id

}
case _ => () // Do nothing

}
}

private def doResolve(program: Program) {
program walkTree {

case ConditionCall(id @ Id(name)) =>
if (conditions contains name) {

id.ref = conditions(name)
} else {

errors += error("Condition not found: " + name, id)
}

case _ => ()
}

}
}

Figure 5.12: Resolving name references in SpamDetector language using Scala
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1object SDMain extends MainBase {
2def main(argv: Array[String]) {
3parseOptions(argv)
4val grammar = new SDGrammar()
5for (arg <- sources) {
6grammar.parseFile(arg)
7checkErrors(grammar.errors)
8
9val resolver = new ResolverScala
10resolver.resolveReferences(grammar.tree)
11checkErrors(resolver.errors)
12
13// Invoke code generator and save
14// results to destDir
15}
16}
17}

Figure 5.13: Main program that calls the parser and program checker

a given expression. The attribute is defined on type CommonNode that is
the base class for all the generated AST classes in Simpl (the attribute is
also evaluated on nodes that are not expressions). For nodes that represent
condition calls (ConditionCall grammar rule), the call set consists of the
name of the condition. For other nodes, we calculate call sets for all of the
child nodes and take the union of the results. The attribute callGraph is
applicable for program items (conditions or rules) and returns a call graph
for the given program item. For conditions, the call graph consists of one
item and for rules it is an empty map. The method callGraph(Program)
creates a single graph that unifies the call graphs of all the items.

Figure 5.15 shows method checkCycles that uses the call graph attributes
to detect loops in condition calls. For each entry in the call graph, it
recursively follows the calls while building a list representing the call stack
(“blacklist”). If the checked condition calls any conditions in the blacklist,
then the checker outputs an error.

5.5 Code Generation

Simpl supports two means for code generation and pretty-printing. For
simple code generation tasks, the developer can use the bundled StringTem-
plate [68] template engine. For cases that require better control over the
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def callGraph(program: Program): Map[String, Set[String]] =
program.items.map(callGraph).flatten.toMap

val callGraph: Item => Map[String, Set[String]] =
attr {

case Condition(Id(name), expr) =>
Map(name -> callSet(expr))

case Rule(_, _, _) =>
Map.empty

}

val callSet: CommonNode => Set[String] =
attr {

case ConditionCall(Id(name)) => Set(name)
case node =>

node.children.map(callSet).flatten.toSet
}

Figure 5.14: Calculating the call graph of condition calls using Kiama attribute
library

private def checkCycles(program: Program) {
val callGraph = callGraph(program)

def check(condToCheck: String, blacklist: Set[String]) {
val called = callGraph(condToCheck)
val intersect = called & blacklist
if (intersect.isEmpty) {

called foreach(check(_, blacklist + condToCheck))
} else {

errors += error(
"Condition " + condToCheck + " creates endless loop",
conditions(condToCheck))

}
}
callGraph.keys foreach (cond => check(cond, Set(cond)))

}

Figure 5.15: Cycle detection that uses call graph example
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generated output and high-quality formatting, Simpl includes a pretty-
printing combinator library, based on Philip Wadler’s Haskell library [95].

For StringTemplate template engine, Simpl provides a glue that allows ac-
cessing AST nodes from the templates. Additionally, Simpl contains helper
classes that simplify loading and invoking templates that are packaged with
the DSL implementation.

Figure 5.16 shows a StringTemplate template that generates Java code
from SpamDetector DSL. In order to run the template, Simpl converts the
program AST to a Java map so that it can be accessed from the template
with the attribute access syntax. The top-level template program (line
3) receives as an implicit argument the AST node corresponding to the
Program AST class. The main work is done in the detectorClass template
(line 5) that generates a Java class for a given SpamDetector program.

In order to implement polymorphism (generation of different code for differ-
ent types of the AST nodes), the template takes advantage of the implicit
field nType that contains the name of the given AST class. This field is
automatically generated by Simpl and the name of the field can be changed
so that it does not collide with any existing attribute in the AST. The
nType field is used in two places to invoke different template depending on
the type of the AST node.

The first use is in template detectorClass to differentiate between rules and
conditions. The code <items:{itm | <(defName())(itm)>}> on line 7 iterates
over all the items in the program and, for each item executes template whose
name is derived from the item type (the derivation is done by defName(),
defined on line 15). Thus for Condition nodes it will execute the Condi-
tionDefinition template and for Rule nodes the RuleDefinition template.
Since there are no definitions to be generated for rules, the RuleDefinition
template will generate an empty string.

The second use in template expression (line 34) uses similar mechanism.
The nType attribute is used to determine the name of template that will
be used to generate code for a given type of expression.

Figure 5.17 shows the generator output for the example program from Fig-
ure 5.3.

Figure 5.18 shows code for invoking the code generation template. This
makes use of the GeneratorBase class from the Simpl library. The Gener-
atorBase class simplifies common tasks: loading the StringTemplate tem-
plates that are bundled into a jar file together with the code; invoking the
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1group SDGenerator;
2
3program() ::= "<detectorClass(...)>"
4
5detectorClass() ::= <<
6class Detector extends DetectorBase {
7<items:{itm | <(defName())(itm)>}>
8
9public void run() {
10<items:{itm | <(runName())(itm)>}>
11}
12}
13>>
14
15defName() ::= "<itm.nType>Definition"
16
17ConditionDefinition(cond) ::= <<
18private boolean <cond.name.text>() {
19return <expression(cond.expr)>;
20}
21>>
22RuleDefinition(rule) ::= ""
23
24runName() ::= "<itm.nType>Run"
25
26RuleRun(rule) ::=
27<<if (<expression(rule.expr)>) {
28addMatch(<rule.name.text>, <rule.score.text>);
29}
30
31>>
32ConditionRun(def) ::= ""
33
34expression(expr) ::= "<(expr.nType)(expr)>"
35
36OrExpression(expr) ::=
37"<expr.items:expression(); separator=\" || \">"
38Contains(expr) ::=
39<<fieldContains("<expr.field.text>", "<expr.regexp.text>")>>
40
41...

Figure 5.16: Code generation with StringTemplate
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class Detector extends DetectorBase {
private boolean from_mydomain() {

return fieldContains(From, /@mydomain.com/);
}

public void run() {
if (fieldContains(Subject, /viagra/i)) {

addMatch("Subject contains Viagra", 2.0);
}
if (fieldContains(Subject, /business proposal/i) &&

!(from_mydomain())) {
addMatch("Business proposal", 1.5);

}
}

}

Figure 5.17: Code generated from the example program

1class SDGenerator(destDir: String)
2extends GeneratorBase(destDir) {
3val templates = getTemplates("SD.stg")
4
5def generate(program: Program) {
6val args = program.toJavaMap("nType")
7writeFile("GeneratedProgram.java",
8templates.getInstanceOf("program", args))
9}
10}

Figure 5.18: Invoking the StringTemplate engine

template and passing the AST as parameters; and saving the generated file
to a given destination directory.

On line 3, the call to getTemplates method loads the bundled template
file. Line 6 converts the program AST to Java map that is accessible to
the StringTemplate library. The parameter to toJavaMap method names
the attribute that will contain the name of the AST class (“nType” in this
case). If there is no need for type-based dispatch, this parameter can be
omitted. On line 7, the call to writeFile method invokes the template and
writes the result to a file. The file is placed into directory specified in the
destDir constructor parameter.

StringTemplate is suitable for creating code generators for simple DSLs
where formatting of the output is not very important. For cases that re-
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quire better control over the generated output and high-quality format-
ting, Simpl includes a pretty-printing combinator library, based on Philip
Wadler’s Haskell library [95]. The pretty-printing library is useful for gen-
erating quality code from complex, highly structured ASTs, and for imple-
menting code formatting tools.

Figure 5.19 implements the example SpamDetector code generator with
the pretty-printing library (code generation of expressions is omitted for
clarity). The entry point function first transforms the AST to a structured
document (datatype Doc) and then formats the document for required line
length (75 in this example). This example demonstrates the use of basic
concatenation operators: “::”, “:+:”, “:#:”, and “:|:”. The first three simply
concatenate two documents separating them, respectively, with nothing,
space, and newline. The last operator concatenates two documents with
optional line break between them. If there is enough room, the documents
will be separated by space, otherwise, there will be a line break between the
two documents. Additionally, the example uses modifiers indent and hang
to control how the broken lines are formatted. The expression indent(n,
x) indents document x by additional n spaces. The expression hang(n, x)
specifies that if document x is wrapped on formatting, then the continuing
line will start at indent n.

The pretty-printing library provides the developer a fine control over in-
denting and line wrapping. To illustrate this, Figure 5.20 shows excerpt of
code generated from the example rule, formatted using a very short line
length.

5.6 IDE

Simpl contains an IDE framework that is based on Eclipse IMP. IMP is an
eclipse-based framework for creating language IDEs that contain the pro-
gram editor and other typical features such as code navigation and outline
view. IMP requires the language developer to implement set of language
services that are called by the IMP framework to direct the behavior of the
IDE features. Examples of the language services are the outlining service
that builds the contents of the outlining view and the content-proposer ser-
vice that returns the list of completion options that are displayed when the
user activates the auto-complete feature in the code editor. IMP language
service API is quite abstract and does not require the use of any particular
parsing technology or AST representation.
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object CodegenPP {
def prettyPrint(program: Program, writer: Writer) {

val doc = prettyPrint(program)
show(doc, 0.8, 75, writer)

}

private def prettyPrint(program: Program): Doc =
"class Detector extends DetectorBase {" :#:

indent(
hcat(program.items map itemDef) :#:
"public void run() {" :#:

indent(hcat(program.items map itemCall)) :#:
text("}")) :#:

text("}")

private def itemDef(item: Item) = item match {
case Condition(Id(name), expr) =>

"private boolean" :+: name :: "() {" :#:
indent(hang(4, "return" :+: prettyPrint(expr) ::

";")) :#:
"}" :: line

case _ => empty
}

private def itemCall(item: Item) = item match {
case Rule(Name(name), Score(score), expr) =>

hang(4, "if" :+: parens(prettyPrint(expr)) :+: "{") :#:
indent(hang(4, "addMatch(" :: name ::"," :|:

score :: ");")) :#:
"}" :: line

case _ => empty
}

private def prettyPrint(expr: Expression): Doc = expr match {
...

}

private val indent: Doc => Doc = Doc.indent(4, _)
}

Figure 5.19: Code generation using pretty-printing library
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if (fieldContains(
Subject,
/viagra/i)) {

addMatch("Subject contains Viagra",
2.0);

}
if (fieldContains(

Subject,
/business proposal/i) &&

!(from_mydomain())) {
addMatch("Business proposal",

1.5);
}

Figure 5.20: Pretty-printed output with short line length

Simpl builds on top of IMP APIs to provide a IDE framework for languages
implemented with the Simpl DSL toolkit. It integrates the IMP with Simpl
parser generator and AST representation. The Simpl IDE framework aims
to abstract away some of the technical details in present in the IMP APIs
and offer intuitive and high-level interfaces for the DSL developer. In ad-
dition, the IDE services can be programmed without writing any XML
configuration files and without using any Eclipse APIs.

The Simpl IDE framework supports the following IDE features:

• syntax highlighting in the code editor;

• marking the errors in the code. The parsing errors are highlighted
automatically, the developer can also add errors encountered during
program checking;

• outline view that displays the structure of the DSL program;

• code folding that allows the user to hide and show code blocks (such
as classes, functions);

• navigating to the place of definition of an identifier (hyper-linking);

• highlighting all the occurrences of an identifier;

• automatic code completion that offers completion choices based on
the text under cursor;

• documentation tooltips that are displayed when the user hovers mouse
over an identifier; and
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Figure 5.21: Screenshot of SpamDetector IDE

• running code generator for the current file.

Figure 5.21 shows a screenshot of IDE for the SpamDetector language,
created with the Simpl IDE framework.

In order to make it easy to develop IDEs for simple languages with mini-
mal amount of effort, Simpl defines default behaviors for some of the IDE
services. The syntax coloring service automatically colors keywords and
comments using information in the grammar description. The code com-
pletion service automatically offers keywords for the completion. The code
folding service offers folding for all the code blocks that are present in the
outline view. The occurrence marking service uses information provided
by the hyper-linking service to find all the instances of a given identifier.
Using the Simpl IDE framework, the DSL developer can create a working
language IDE without writing any code at all. For the simple cases, the
developer can implement DSL parser and code generator and get the DSL
IDE for free.

However, the IDE services not mentioned in the previous paragraph (such as
the outline view) require the developer to write code to provide information
necessary for functioning of the service. In addition, the developer can
customize the services provided by Simpl to gain better control over the
IDE behavior.

Figure 5.22 shows an implementation of a basic IDE for the SpamDetector
language. The parsing service is called when a file is loaded into the editor
or changed. The simplest implementation of the parse method (lines 3-9)
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1class SDConfig extends APluginConfig {
2/** Parses the input using the correct grammar. */
3def parse(ctx: ParseCtx) {
4val grammar = new SDGrammar
5ctx parse grammar
6val resolver = new ResolverScala
7resolver resolveReferences grammar.tree
8ctx reportErrors resolver.errors
9}
10
11/** There is nothing to show in the outline view. */
12def treeLabel(node: CommonNode) = node match {
13case Condition(Id(name), _) => "C " + name
14case Rule(Name(name), _, _) => "R " + name
15case _ => null
16}
17
18override def referenceTarget(node: CommonNode) = node match {
19case id: Id => id.ref
20case _ => null
21}
22
23override def runGenerator(dir: String, file: String) {
24SDMain.main(Array("--dest", dir, dir + file))
25}
26
27override def getTokenColor(token: GenericToken): Symbol = {
28val myToken = token.asInstanceOf[CommonToken[SDKind.Kind]]
29
30myToken.kind match {
31case SDKind.Name => ’ruleName
32case SDKind.Score => ’score
33case SDKind.Regexp => ’regexp
34case _ => null
35}
36}
37}

Figure 5.22: IDE services for the SpamDetector example
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is “ctx parse new SDGrammar” that simply parses the program text using the
SpamDetector grammar. In the example, we also run the reference resolver
and report the errors found (lines 6-8). The outlining service consists of
two methods: treeLabel (lines 12-16) and treeIcon (not implemented in
the example). These methods should return, respectively, a label and an
icon that is displayed for a given AST node in the outline view, or null,
if the node is not part of the outline. The reference resolving service is
implemented via the referenceTarget method (lines 18-21). It uses the links
established by the reference resolver to return the AST node that is pointed
by the given identifier (the pointers were filled in by the call to reference
resolver on line 7). The referenceTarget method is also used by the Simpl
framework for marking the occurrences of a given identifier. The generation
service is called when the DSL user selects “Generate” from the DSL file
context menu. In the simplest case, the runGenerator method (lines 23-25)
calls the main function of the non-visual code generator.

Finally, the token coloring service returns highlighting information for a
given token. Instead of assigning specific colors to different tokens (key-
words, identifiers, etc.), the coloring service operates on abstract token
codes (ruleName, score, and regexp in the example). Simpl manages the
concrete colors and font attributes (such as bold and italic) associated with
each token code. The default values are provided by the DSL developer,
but they can be configured by the DSL user. Figure 5.23 shows the syntax
highlighting configuration screen provided by Simpl to configure the syntax
highlighting for the SpamDetector language.

Lines 27-36 of the IDE code contain the getTokenColor method that takes
as an argument a program token and returns a color code that is used
to display this token. The example code does not alter the behavior for
Simpl’s built-in token types: keywords, comments and operators. If the
developer wishes to e.g., color some keywords differently than the others,
he can override the default behavior by defining an additional color code
and adding a case to the match statement in the getTokenColor method
that checks for the particular keyword and returns the newly defined color
code.

5.7 Comparison with Parallel Research

Simpl was developed in 2009-2010. During that time period, there was
also parallel research performed by other research groups that resulted in
creation of new DSL toolkits or improvement of existing tools. This section
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Figure 5.23: Screenshot of SpamDetector IDE configuration

reviews two toolkits developed in parallel with Simpl (namely Spoofax and
Rascal) and compares them with the Simpl DSL toolkit.

Note that these two parallel tools received more development effort (larger
development teams) and thus at the current time they can be somewhat
more mature and have features not present in Simpl.

5.7.1 Spoofax

At the time of writing this thesis, the Spoofax/IMP workbench (see Sec-
tion 4.4) has incorporated the previously separately distributed Stratego
language processing tool into a unified language toolkit named Spoofax.
The Stratego compiler and runtime have been converted to Java. With
this modification, Spoofax produces DSL implementations that can be em-
bedded in Java-based enterprise systems (the requirement system is now
fulfilled by Spoofax). Therefore, Spoofax can be used in the same way as
Simpl. However, the two systems have different architecture and offer dif-
ferent user experiences. The remainder of this section compares the two
tools.

Spoofax uses SDF for describing grammar of the target language. SDF
produces scannerless parsers that do not have some of Simpl’s limitations.
Current implementation of Simpl uses LL(k) parsing algorithm and thus
cannot parse left-recursive grammars. Also, the separation between lexer
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and parser makes it difficult to parse languages such as PL/I where key-
words can also be used as identifiers. On the other hand, in this generality
comes at a price. For example, when using SDF, the DSL developer must
create a separate list of all the keywords in a grammar description to en-
sure that they are not parsed as identifiers. In Simpl this is not necessary
because all the keywords in grammar description have higher priority than
other lexer rules (such as rules for recognizing identifiers).

SDF offers better support for creating modular and extensible parsers. It
is possible to split the grammar description into several files and combine
the files to produce different languages. It is easy to extend a language by
adding additional production rule. Simpl does have support for modular
and extensible grammars (see Section 5.3.2.1), but it is more constrained
and handles fewer different modularity use cases.

For language processing (program checking and program transformation)
Simpl and Spoofax take different approaches. Spoofax is based on the
Stratego program transformation language. Stratego offers facilities for ex-
pressing rewrite rules and controlling the application of the rewrite rules
via programmable strategies. While these features can allow expressing the
program transformations very succinctly, they can also lead to code that is
difficult to understand. Unlike typical programming languages, the strate-
gies usually do not explicitly refer to data and instead focus on combining
the transformation rules and strategies into higher-level strategies. This
and the use of backtracking can make it more difficult to reason about the
program and the programming paradigm is likely unfamiliar to a typical
“mainstream” software developer.

On the other hand, Simpl targets professional software developers who are
not specialists in language tools research. Simpl is based on general-purpose
Scala programming language that offers good language-processing facilities
while being reasonably popular and easy to learn for developers who come
from Java or C++ background. One of the goals of Simpl is to lower the
entry barrier and make the tool more accessible for mainstream developers.

Both Simpl and Spoofax use the IMP toolkit for creating Eclipse-based
IDEs. Thus, they implement similar features with similar look and feel.
The Spoofax has an advantage in that it is possible to preview and test the
DSL IDE without restarting the Eclipse. Simpl, like most other Eclipse-
based language toolkits, requires the developer to launch another Eclipse
instance to test the language IDE.
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5.7.2 Rascal MPL

Rascal MPL (Meta Programming Language) [49, 71] is a domain specific
language and a toolset for source code analysis and manipulation. Ras-
cal was developed in parallel with Simpl and, at the time of writing this
thesis, is at alpha stage. However, it is actively developed and provides
functionality that is comparable to Simpl. Note that because the Rascal
documentation is occasionally incomplete, this review may contain errors
in description of some details.

Parser Similarly to Spoofax, Rascal uses the SDF language for describ-
ing concrete syntax of the DSLs (see Section 5.7.1 for comparison of SDF
and Simpl). Like Spoofax, Rascal makes available for the developer both
the concrete syntax tree and the abstract syntax tree of the DSL program.
The former corresponds directly to the source program and the produc-
tion rules (the concrete syntax tree contains complete information about
the source, including the white space). The latter is more abstract and
is generally used for program manipulation. For a single DSL, the devel-
oper can define several abstract syntaxes for different purposes (analysis,
transformation, etc.). The conversion from the concrete to the abstract
syntax tree can be either manual or automatic. When using automatic
conversion, the developer annotates the grammar rules with names of ab-
stract syntax tree nodes and the built-in function implode automatically
converts the parse tree. If the developer requires more flexibility he can
write a conversion function from the concrete to the abstract syntax tree
using Rascal’s pattern-matching capabilities. In both the automatic and
the manual case, the developer must explicitly create the definitions for the
AST data types. This may make it inconvenient to quickly develop small
DSLs because the developer needs to create and keep synchronized multi-
ple copies of the language structure (Rascal fails requirement small). Like
Spoofax, Rascal can be used to develop modular and extensible languages
(satisfies custom).

Program checking and transformation For language processing
tasks, Rascal takes a similar approach to Spoofax – it is based on a domain-
specific language. The Rascal language has support for comprehensions,
pattern matching and rewrite rules. In addition, the Rascal language has
support for common language processing tasks, such as tree walking (visit-
ing) and constraint solving.
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data Program = program(list[Bean] beans);
data Bean = bean(str name, list[Attr] attrs);
data Attr = attr(str name, AttrType attrType);
data AttrType = idRef(str id) | beanRef(Bean ref);

public Program resolve(Program prog) {
map[str, Bean] beans = beansMap(prog);
return visit(prog) {

case idRef(refName) => replaceRef(refName, beans)
}

}

private map[str, Bean] beansMap(Program prog) =
(b.name: b | b <- prog.beans);

private AttrType replaceRef(str refName,
map[str, Bean] beans) {

return if (refName in beans) beanRef(beans[refName]);
else idRef(refName);

}

Figure 5.24: Example Rascal code that implements name resolving for the bean
language

Figure 5.24 shows the name resolution example introduced in Chapter 4,
in Rascal. The first four lines describe the abstract syntax for the bean
language. The entry point is the function resolve that takes as input the
program AST and returns the transformed AST. In the transformed AST
the occurrences of idRef (reference to an arbitrary identifier) are replaced
with beanRef (direct reference to a bean) where appropriate. First, the
function constructs a map of beans, indexed by the bean name. This is
done by the helper function beansMap that uses list comprehension to build
a map. In the second step, the function resolve walks the whole AST using
the visit keyword. When visiting encounters a node of type idRef, the node
is replaced with the return value of the function replaceRef. The replaceRef
simply checks whether a bean with the referred name exists, and if so,
returns beanRef node. If the identifier does not refer to a bean, it returns
the unchanged input node.

While the Rascal language aims to have more conventional program struc-
ture and control flow than Spoofax, it is still quite different from typical
“business” languages and therefore the same considerations as with Spoofax
apply (Rascal fails requirement lang, see Section 5.7.1 for more discussion).
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Code generation For simple code generation tasks, it is convenient to
use Rascal string building facilities. In Rascal, strings can contain templates
that function in a manner similar to the PHP language. The templates can
be nested. Rascal also supports Box language [38, 39] for pretty-printing
trees. In addition to support for generating code, Rascal has support for
program visualization (generating graphs from the program). For example,
the visualization feature can be used to generate a call graph of the DSL
program.

Program editor Rascal comes with an Eclipse-based IDE library that
is based on the IMP framework. This allows creating language IDEs with
all the typical features (syntax highlighting, error marking, outlining, code
folding, hyperlinking, code completion, etc.).

Non-functional requirements DSL implementations created with Ras-
cal can be built from the command line (satisfies build) and embedded into
a bigger system (satisfies system). The program editor can be distributed
as a separate Eclipse plugin (satisfies sep wb).

5.8 Evaluation Against Requirements

This section evaluates the Simpl DSL toolkit with respect to the require-
ments described in Chapter 3 and used in Chapter 4 to evaluate state of
the art. First, we overview the functional requirements.

Parser Simpl uses a grammar description to generate both the parser and
the Scala case classes that will be used to represent the AST of the parsed
program. The developer can annotate the grammar description to direct
the generation of an AST. In addition to simple transformations, such as
renaming attributes or changing return types of the grammar rules, the
developer can also use return expressions that calculate the AST node that
is returned by the grammar rule. Simpl supports lexer states – a structured
way to make lexical syntax context-sensitive.

Simpl parser generator currently uses ANTLR as the backend and is thus
constrained with the LL(k) parsing algorithm. This makes it inconvenient
for expressing some grammars because the grammar description must be
refactored to eliminate left recursion.
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Program Checking and Program Transformation For language
processing tasks, Simpl relies on the Scala programming language. Scala’s
high level of abstraction and support for pattern matching make it very
suitable for this purpose. In addition, Simpl supports the use of Kiama
language processing library.

Code Generation Simpl supports two methods for code generation. For
simple tasks, Simpl has bindings for the StringTemplate template engine.
For more complex tasks, Simpl contains a pretty-printing library that can
be used to produce high-quality output.

Program Editor Simpl contains IDE framework that is based on the
Eclipse IMP. The editor API is high-level, abstracting away the specifics of
Eclipse. Also, Simpl aims to reduce the boilerplate code. Simpl provides
default implementations to most basic IDE services and therefore a basic
language IDE can be obtained without writing any lines of code.

Non-Functional Requirements Simpl is based on the Scala program-
ming language that is popular and easy to learn for a developer with Java
or C++ background. Therefore Simpl satisfies the requirement lang. Ad-
ditionally, Simpl parser and APIs can, in principle, be used from Java code
(the program transformation code can be written in Java).

Simpl aims to aid in creating language implementations that are small and
simple. In particular, we try to minimize the amount of boilerplate code
that needs to be written. Automatic AST generation means that once the
language developer has written the grammar description, he can already
start to implement program checker or code generation. Additionally, the
basic version of the IDE requires no coding effort and thus, for simple DSLs,
it comes for free. Thus Simpl satisfies the requirement small.

The language IDE created with Simpl is packaged as an Eclipse plugin that
can be installed separately from the language developer’s workbench. Thus,
Simpl satisfies the requirement sep wb.

Language implementations based on Simpl run on the Java Virtual Machine
and do not make assumptions on their environment. Therefore, they can
be embedded both into a build system or into an enterprise system itself
(satisfies requirements build and system).

Simpl stores the DSL programs in plain text files, thus satisfying require-
ment vcs.
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Simpl offers partial support for implementing customizable and modular
languages (requirement custom). The grammar inclusion feature can be
used to implement simple cases where the extension language adds addi-
tional language constructs to the base language or where one core set of
grammar rules is reused in several languages. See Section 6.2 for an ex-
ample of modular language implementation. From the language processing
side, the Scala language has excellent support for writing modular code.

102



CHAPTER 6

EVALUATION

This chapter presents results of usability evaluations of the Simpl DSL tool.
First, we describe our experiences of implementing the DSLs in the Customs
Engine (presented in Chapter 2) using Simpl. Second, we present results
of a tool challenge where different language tools were used to complete
the same task – implementing an Oberon0 compiler. Next, we describe
another experiment that compared implementation of a benchmark DSL
with implementations done using different DSL tools. Finally, we report
on an experiment that compared time spent on implementing a DSL using
Simpl and using a comparison tool.

6.1 Languages from the Customs Engine

In Chapter 2 we presented Customs Engine (CuE) as an example of an
enterprise system that relies extensively on DSLs. In particular, it used
two different kinds of DSLs. The first was Burula, a fairly complicated
DSL for expressing document verification rules. The second kind was a set
of configuration DSLs that were mainly used by programmers to generate
repetitive parts of the Java code and to rise the level of abstraction by
creating high-level descriptions of component structure or behaviour.

As the CuE was one of the main forces that inspired creation of the Simpl
DSL tool, we reimplemented representatives of both types of languages
present in CuE using Simpl in order to verify that Simpl is indeed suitable
for this domain. The next subsections describe our experiences during these
re-implementations.

103



6.1.1 Burula

We used Simpl to re-create the parser and the IDE for the Burula language.
A screenshot of the resulting IDE is shown on Figure 6.1. Because the
Burula code generator is quite complicated and there are no problems with
the current implementation, we decided not to replace the current code
generator but instead use Simpl to create convenient IDE. The Burula
IDE is currently being used by system analysts to create business rules for
different Customs Engine modules and the feedback has been positive. The
parser and the IDE was implemented by the author of this thesis and the
total time spent was about 10 hours.

Figure 6.1: Screenshot of Burula IDE created with Simpl

Burula makes extensive use of syntactic white space. In particular, it uses
indenting to determine when one language construct (such as rule, predicate
or group) ends and another begins. This makes the syntax more English-
like (it uses no semicolons, blocks or other interfering symbols), but more
difficult to parse. Because the original parser was hand-crafted, this did
not pose significant problems. However, Simpl, like most parser generators,
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does not have support for syntactic white space. Instead, in a typical parser,
white space is detected by the lexer and ignored by the context-free rules.

When creating the Burula implementation in Simpl, a large part of the work
(6 hours) was spent on implementing support for syntactic white space. Be-
fore parsing, the Burula program was fed through a filter that analyzed the
indentation at the beginning of each line and inserted additional tokens
to signify end of statements and statement groups. We used characters
@ and # as terminators because they do not otherwise occur in the Bu-
rula language. The resulting program had explicit statement terminators
and was parsed with the parser created with Simpl. In addition to the
parser, the IDE also needed some reworking because the program text fed
to the parser was now different from the original program text and that
caused inconsistencies in the IDE. In order to fix that, the parsed program
was again processed and the previously inserted terminator tokens were
removed. Thus, the modified version of the language only existed during
the parsing phase.

In retrospect, the decision to use syntactic white space in Burula may not
have been the best course of action. From the technical point of view, this
feature also caused some problems in the hand-crafted parser. From a user-
experience point of view, syntactic white space provides for more “natural”
and less cluttered syntax, but careful application of line terminators and
blocks (e.g., {}) can visually separate or group program elements and give
clear visual indication what parts of the program belong together.

The implementation of the Burula IDE took about 1 hour and was spent
improving on the basic editor provided by Simpl. The necessary tasks
were the creation of outline view, syntax highlighting for additional tokens
(by default, Simpl only colors keywords and comments), and automatic
completion of identifiers. The auto-complete works by reading in a word
list that contains database fields and functions that are available in a given
CuE module. The word list can be generated from an XML schema that
describes the structure of the custom documents being processed by the
Burula programs.

In CuE, the compiler to Burula language is embedded in the system and
invoked at run time when the user uploads new set of rules. Simpl ful-
fills this requirement elegantly: the language implementation created with
Simpl can be packaged as a Java library that makes no assumptions about
its runtime environment and does not use globally shared data (thus be-
ing thread safe). It can be called directly from the CuE code without no
performance penalty.
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We decided not to reimplement the existing Burula compiler using Simpl
because the existing compiler is very stable and mature and there is a sub-
stantial body of DSL programs that may depend on its implementation de-
tails. However, the Burula IDE implemented with Simpl is currently being
used by systems analysts at Cybernetica AS to write document processing
rules.

6.1.2 Configuration DSLs

In the original implementation of CuE, an in-house templating tool Tem-
plater was used to create simple DSLs with code generators. These DSLs
were mostly used by programmers to generate boilerplate code. Thus, the
focus was not on comprehensive tooling but instead the ability to quickly
create a DSL with code generator. In order to test the suitability of Simpl
for this purpose, we re-implemented a representative configuration DSL
with Simpl.

We chose the DSL for describing the layout of the document editing user
interface that is also given as an example in Section 2.2.2. It is a represen-
tative of a typical CuE configuration DSL in that it mainly describes a data
structure and generates code that constructs this data structure. However,
the data structure is non-trivial and the generated code varies depending
on the input data.

DSLs created using Templater use S-expressions as basic syntax. In the
Simpl implementation we decided to omit the parentheses and instead
use keywords to structure the DSL program. Figure 6.2 shows example
screen description in both formats. The code generation was implemented
in StringTemplate and invoked using Simpl’s glue to the StringTemplate
library. The total amount of time spent on the implementation was 2 hours
with 0,5 hours spent on parser and 1.5h spent on code generator. We did
not spend any time on the IDE, but with very little effort it is possible to
improve on the basic IDE offered by Simpl to implement outline view and
code folding. Thus, Simpl is suitable for creating “quick and dirty” DSLs
for code generation. Simpl-based code generator integrates well with the
overall build system of the project.

When comparing the two tools, Simpl has several benefits over Templater.
First, Simpl provides cleaner and easier to read syntax for DSLs. For tech-
nical users, this is not so big issue, but if the DSLs are to be used by
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screendescription

(package ee.cyber.emcs.web)

(import
java.util.List)

(class EaadScreen)

(box-classificator EaadBox)

(tabs
(general "General")
(subject "Consignor/Consignee"))

(default-tab general)

(table xmlEaad.guarantor
12A
12B
(order-hint 10)
(size-limit 20))

(descriptions
(1D general)
(1A general ProfileClassificatorField
(GetValues DestinationTypeCode
(check-classif-date)))

((1B 1BA) general)
((6A 6B) subject TableEntryWidget
"6AB - Complement consignee"))

package ee.cyber.emcs.web

import
java.util.List

class EaadScreen

box-classificator EaadBox

tabs
general "General"
subject "Consignor/Consignee"

default-tab general

table xmlEaad.guarantor
12A
12B
order-hint 10
size-limit 20

descriptions
1D general
1A general
editor ProfileClassificatorField
get-values DestinationTypeCode
check-classif-date

(1B 1BA) general
(6A 6B) subject
editor TableEntryWidget
("6AB - Complement consignee")

(a) (b)

Figure 6.2: Example screen description using Templater syntax (a) and Simpl
syntax (b)

analysts, better syntax may help (or at least make the DSL more attrac-
tive). Second, using Simpl provides the DSL user better overview of the
DSL grammar. With Templater, there is no grammar definition as such and
the DSL user simply has to read the template and see which data structures
the input file is assumed to contain (this assumes that a typical quick DSL
would lack comprehensive documentation). When using Simpl, the DSL
grammar is clearly specified and it is possible to generate grammar docu-
mentation that can be used as a reference when writing DSL programs1.
Third, Simpl provides basic IDE for the language that can also be improved

1Simpl contains a tool that generates documentation from the grammar specifications.
It also supports Javadoc-style documentation comments.
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to offer additional features. The main benefit of Templater over Simpl is
better performance. Templater contains a manually optimized parser for
S-expressions that is used for both the input files and templates, and the
template engine also offers good performance.

6.2 Oberon-0

In this section, we discuss the validation of Simpl in the context of a DSL
tools challenge.

6.2.1 LDTA Tool Challenge

Simpl was used to create an entry in the 2011 LDTA tool challenge [55].
The goal of the challenge was to compare different language tools by im-
plementing the same set of tasks that was based on Oberon-0 – a simple
imperative language designed by Niklaus Wirth for his compiler construc-
tion book [97]. The challenge was structured around language levels (see
Table 6.1) and tasks (see Table 6.2). The language implementations were
created incrementally, starting from a simpler subset of the language and
subset of the tasks, and, through several tasks, moving up to full implemen-
tation of the Oberon-0 language. The challenge defined five implementation
artifacts (listed in Table 6.3) to guide the incremental implementation of
the language. Each artifact represented a combination of language levels
and tasks that were implemented for this language level. In the implemen-
tations, each artifact is implemented by a software module that is able to
run separately but can depend on the modules for lower-level artifacts.

Table 6.1: Language levels used in task description

Level Description

L1 Oberon0 with primitive types, simple expressions,
and assignment statements

L2 L1 with Pascal-style for loop and case statement

L3 L2 with support for procedures

L4 L3 with support for arrays and records

The Simpl implementation of the challenge is described in technical re-
port [22]. The source code can be found at https://github.com/
margusf/ldta-challenge. Simpl is not directly targeted at implement-
ing full-featured programming languages (instead, the focus is on DSLs
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Table 6.2: Functional tasks

Task Description

T1 Parsing and pretty-printing the Oberon0 program

T2 Name analysis – binding the name uses to their
declarations and reporting the errors

T3 Type analysis – checking type correctness of the
program and reporting the errors

T4 Source-to-source transformation – lifting the nested
procedures to top level and performing other
transformations, such as expressing complex
language constructs in terms of simpler ones

T5 C code generation – translating the Oberon0
program to ANSI C

Table 6.3: The challenge artifacts

Artifact Language Tasks Comments

A1 L2 T1-2 Core language with pretty-printing
and name analysis

A2a L3 T1-2 A1 with added support for
procedures

A2b L2 T1-3 A1 with type checking

A3 L3 T1-3 Composition of A2a and A2b

A4 L4 T1-5 A3 with support for arrays and
records, source-to-source
transformation, and code generation

and simple code generators). Therefore, Simpl only offers direct support
for a subset of all the tasks in the tool challenge – parsing, pretty-printing
and code generation. Rest of the challenge tasks were simply programmed
in Scala with some help from the Simpl libraries. Nevertheless, the tool
challenge was a useful experiment to verify that Simpl is also suitable for
implementing complex languages. The next subsections describe the Simpl
entry to the tool challenge and compares it with the other entries.

6.2.2 Implementation in Simpl

The Oberon0 parser was implemented using Simpl’s parser generator. Since
the challenge involved significant amount of AST manipulation, we used re-
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turn expressions to give the generated AST a better shape. In particular,
we created unified AST nodes for all the unary and binary operators so that
they could be treated in an uniform manner. We also added additional at-
tributes (referred node, type of the expression, etc.) to AST classes for use
in later processing phases. The challenge prescribed that the Oberon0 lan-
guage is implemented in several steps, starting with the base language and
incrementally adding additional language constructs. The Simpl implemen-
tation used the grammar import feature: the grammar for the more com-
plex language imported the grammar for the simpler language and added
production rules for the new language constructs. Thus, the modularity
features of Simpl were adequate for the task.

Language processing tasks were implemented in the Scala programming lan-
guage. During name analysis, the identifier nodes in AST were annotated
with the locations of their declaration (pointer to AST node containing
identifier declaration). Type analysis annotated the AST with type infor-
mation and checked whether the required types matched the actual types.
Source to source transformation walked through the program and lifted
(in-place) nested procedures to the top level. Overall, Scala proved to be a
very suitable language for these tasks.

Code generation and pretty-printing was implemented using Simpl’s pretty-
printing library. The implementation used Scala’s pattern matching fea-
tures combined with the pretty-printing combinators. This resulted in very
readable code that produced high-quality output.

In addition to the official challenge task, we implemented an IDE for the
Oberon0 language. This involved little effort because the IDE depended
on the functionality implemented in the Oberon0 compiler. Thus, most of
the IDE services were implemented in a few lines of code that called the
relevant functionality of the Oberon0 compiler.

Overall, we did not encounter any major difficulties in implementing the
Oberon0 compiler. The modularity features of Simpl proved adequate for
iterative development of language features. The code size of the Simpl
implementation was similar to that of the other implementations.

6.2.3 Comparison with Silver

Silver (see also Section 4.5.3.3) is an attribute grammar system. The parser
was implemented with the Copper parser generator that is based on the
LALR(1) parsing algorithm. Compared to Simpl, Copper uses more intu-
itive representation for expressing rules for arithmetic operations (that is,
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it supports left-recursive rules). However, Silver and Copper require that
the developer describes structure of the AST of the language separately
from the grammar and uses parser actions to manually build the AST.

The language processing tasks were implemented using attributes. Unlike
Simpl, name lookup did not create explicit symbol table but instead used
parameterized attributes to calculate list of identifiers visible by any given
AST node. Name lookup was implemented by defining a reference attribute
that pointed to the node referred to by the identifier. Silver implementation
used forwarding to implement language features that could be expressed in
terms of simpler features. For example, the for and case statements can be
expressed in terms of the while and if statements, respectively. Forwarding
allows to delegate the language processing to a simplified AST while e.g.,
error messages are still constructed based on the original program. Thus,
Silver has good support for implementing syntactic sugar in a convenient
and modular manner.

6.2.4 Comparison with JastAdd

JastAdd (see also Section 4.5.3.1) is an attribute grammar system that
builds on object-oriented concepts. As JastAdd has no direct support
for parsing, the challenge entry used the JFlex scanner generator and the
Beaver parser generator. Like Silver, the JastAdd implementation does not
construct explicit symbol table for name analysis and uses parameterized
attribute lookup(String) instead.

Procedure lifting is implemented by traversing the AST of the program and
generating a new AST where procedures, types and constants are moved
to the top level. In each node, the lifting procedure consults attributes
to determine the generated AST node. When generating code for the for
and case statements, the generating method first uses attribute to generate
the equivalent node using simpler constructs and then delegates the code
generation to the generated node.

6.2.5 Comparison with Rascal

Rascal (see also Section 5.7.2) is a DSL and a toolset for language pro-
cessing. The parser was implemented using Rascal’s parser generator. The
scannerless parser allowed for easy definition of modular grammar. Ad-
ditionally, there was no need to refactor the grammar definition to satisfy
needs of the parser and, instead, the grammar rules were defined to produce
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optimal AST. Grammar descriptions were annotated with AST construc-
tor names. This information was used later by the implode function to
construct the AST from the concrete syntax tree.

Name and type analysis used the ability to add annotations to AST nodes.
During name analysis, the uses of a name are annotated with references
to declarations of the name. The type analysis does not add annotations,
instead it uses the name info to determine the expected and actual types
of expressions and checking that they are compatible. Source to source
transformations were implemented using visiting statements that offer a
convenient way to express AST transformations (see Section 5.7.2 for an
example). In particular, the visiting creates new AST that is based on the
old one but that that contains specified changes. The developer does not
have to manually specify copying of the unchanged nodes.

Pretty-printing was implemented using the Box formatting language [38,
39]. The Box language mixes formatting directives (e.g., indenting or align-
ment) with Rascal expressions that output data to be formatted. C code
generation was implemented in a simpler way using string templates. In
Rascal, string templates can contain Rascal code and nested templates. Us-
ing explicit margin markers, they can produce reasonably well formatted
output.

Like Simpl, Rascal implementation also included an Eclipse-based IDE for
the Oberon0 language. The Rascal implementations was one of the smallest
in the challenge in terms of lines of code (about 1400 lines of code, compared
to 1800-2000 lines for the other implementations).

6.2.6 Comparison with OCaml

OCaml (Objective Caml) is a high-level functional language. The tool
challenge entry made extensive use of type-driven transformers. Scanning
and pretty-printing was implemented with combinator library Ostap. The
pretty-printer was implemented in a generic way, abstracting the concrete
syntax of the output into printing scheme. Thus, the same pretty-printer
was used for generating both Oberon0 and C code.

Both the name and type analysis convert the AST into a format that con-
tains, respectively, name and type annotations. The annotated trees have
different types than the unannotated trees. Source to source transforma-
tions operated on the name-annotated AST.

The OCaml implementation relies heavily on the OCaml type system. In
contrast, the Simpl implementation is simpler and relies less on advanced
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concepts. In the OCaml implementation, analysis tasks transform the AST
into an annotated form that has different type than the original AST. In the
Simpl implementation, the AST is mutable and the analysis tasks simply
modify the reference and type fields present in the AST. The combinator
library Ostap used by the Ocaml implementation allows implementing more
generic code generators than the Simpl library. For example, Ostap can be
parameterized with concrete syntax so that the same code can be used both
for pretty-printing Oberon0 code and for C code generation.

6.2.7 Comparison with Kiama

Kiama (see also Section 4.5.3.2) is a Scala library for language process-
ing. Like in Simpl implementation, the AST was represented as Scala case
classes. However, in the Kiama implementation the case classes were ex-
plicitly defined separately from the grammar description. The parser was
implemented using the Scala parser library.

The name and type analysis tasks are implemented using attributes. The
implementation details are similar to the Silver and JastAdd implementa-
tions. The source to source transformation is implemented with the term
rewriting library. The C code generation is implemented in the same man-
ner as with Simpl – first the Oberon0 AST is transformed to C AST, next
the C AST is pretty-printed using Kiama’s pretty-printing library. Despite
using different methods for parsing, program analysis and program trans-
formation the Simpl and Kiama implementations are very close in code size
(slightly less than 2000 lines of code).

6.3 Measuring Code Metrics

In this section we discuss an experiment in which an implementation of a
DSL with Simpl is compared with implementations of the same language
using other DSL tools, as reported in previous work by Klint et al. [48].

6.3.1 Description of Experiment

In order to measure the effectiveness of the Simpl DSL tool we performed
an experiment that compared code metrics of DSL implementations cre-
ated using different DSL tools. Because creating implementations of a
non-trivial DSL requires substantial amount of effort we decided to reuse
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the results of an existing study. Klint et al. have compared six different
implementations of a DSL named Waebric [48]. Three implementations –
so called “vanilla” – were developed from scratch in Java, JavaScript, and
C#. The other three implementations were written in the same languages
but with the help of respective DSL tools: ANTLR, OMeta, and “M”. By
using both quantitative and qualitative analysis, it was shown that the DSL
tools indeed do increase maintainability of DSL implementations. This was
especially noticeable in terms of code size reduction of the DSL implemen-
tations compared to the vanilla versions.

Waebric [85] is a DSL for generating XHTML web sites. Besides the con-
structs to generate markup, it also has control flow statements, iteration
statements, and user-defined functions with rudimentary ability to pass
code blocks to functions. Figure 6.3 shows a Waebric program that gen-
erates a simple “Hello World” web site. From an implementation point of
view, Waebric is a rather comprehensive language. It supports user-defined
functions and scoped variables. Functions can also be defined as local.
From a parsing point of view, Waebric represents a typical programming
language. One nuance in Waebric’s syntax is that the decision whether an
identifier such as title should be parsed as a markup or a variable depends on
the context and the surrounding tokens. Thus, a Waebric program cannot
be tokenized using only regular expressions. This somewhat inconveniences
parser generators that use separate lexing and parsing phase.

module homepage

site
index.html: home("Hello World!")

end

def home(msg)
html {
head title msg;
body echo msg;

}
end

Figure 6.3: Example Waebric program

It must be noted that the goal of the Klint et al. paper [48] is to mea-
sure effectiveness of the DSL tools versus implementing DSLs without tool
support. They do not draw any conclusions about the effectiveness of dif-
ferent tools in the comparison. However, we believe that comparing the
code metrics achieved with different tools can also offer some insight on the
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relative merits of the tools. Thus, we concentrated on the metrics of the
tool-assisted implementations and ignored the metrics from “vanilla” imple-
mentations (i.e. the implementation not using a DSL tool or framework)2.
One drawback of the study is that it only compares parser generators,
not full-featured DSL toolkits with program transformation features (e.g.,
Xtext, MPS, Spoofax/IMP, Rascal, JastAdd). Thus, the comparison did
not involve state of the art in language processing tools.

To compare Simpl with the DSL tools presented in [48], we implemented
the Waebric DSL using the Simpl DSL tool. In order to verify that the
Simpl implementation is correct, we applied the same 100-program test
suite that was also used to verify implementations in the original paper.
Therefore, the Simpl implementation was functionally equivalent to the
other implementations. In order to make the results more comparable, we
used Simpl to generate the parser and the AST classes and did not use
the Kiama library for program transformation tasks. The grammar was
implemented in the Simpl grammar description language (see Section 5.3)
and the code generator was implemented using Scala’s built-in XML library.

The program transformation code used Scala pattern matching facilities
to process the AST. In the following discussion, the grammar and genera-
tor implementations will be referred to as parse and eval components, re-
spectively. Quantitative analysis was based on a metrics suite proposed by
Kuipers and Visser [53]. The suite evaluates the maintainability of software
by measuring the volume, the structural complexity and the duplication3

of the code. The same set of metrics was used in the original study by Klint
et al.

The volume was measured in terms of non-comment lines of code (NCLOC)
and number of units in the parse and eval components. For grammar, a
non-terminal is considered to be one unit. For Scala code, unit is equated
to a method. Unlike the other implementations in the comparison, the
Simpl implementation does not separate code for checking the validity of
AST from the eval component (the eval component also contains program
checking functionality). Also, miscellaneous supporting code such as main
objects and constant value definitions are counted as part of the eval4.

2In any case, the “vanilla” implementations were bigger and more complex than their
tool-assisted counterparts and thus would not have added interesting information to the
comparison.

3Since the original study did not provide concrete figures for code duplication, we also
left out this metric.

4It is unclear from the original paper whether the main function and other supporting
code was included in the line count. Including the main program in the eval component
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The structural complexity of the code was measured by determining the
percentage of NCLOC in the units that have the cyclomatic complexity
(CC) higher than 6. CC of the parse component was calculated by counting
decision points of the non-terminal nodes as described in [70, 48]. Alterna-
tives (“|”), optionals (“?”), and iteration closure operators (“*”, “+”) count
as a decision point. Additionally, Scala code in return expressions adds to
the CC count, if it contains decision points. For calculating CC of the eval
component, we used the Cyvis5 tool on the compiled Scala code. Since this
tool operates on compiled bytecode, there is possibility of overestimating
the CC with respect to the original Scala source code (in cases where Scala
implicitly adds checks that are not present in the source file).

6.3.2 Results and Discussion

Table 6.4 presents the volume measurements of the implementations. Note
that the Simpl implementation does not have a separate check component.
Instead, the checking functionality is included in the eval component. It
can be seen that numbers for the Simpl implementation are smaller than
or similar to the best numbers of the other DSL implementations. Quan-
titatively, the Simpl implementation consists of 4 files, 142 units, and 563
NCLOC. The latter is especially remarkable as it is over 40% smaller than
that of ANTLR – the next implementation in terms of the smallest NCLOC.

When comparing the Simpl and ANTLR implementations, we can make
two observations. First, the Simpl implementation has significantly more
units. This can be explained by the fact that the Simpl implementation
makes extensive use of fragment rules (see Section 5.3), e.g., to give names
to various separators and symbols (this also increases the line count of the
grammar). Also, some non-terminal rules are split into two to produce
more convenient AST classes. Secondly, the ANTLR implementation has a
prelude that lists used tokens, Java imports and defines Java method that
acts as an entry point to parsing. Additionally, the grammar rules contain
code for building the AST. This boilerplate code is missing from the Simpl
implementation.

Table 6.5 shows the percentage of NCLOC in units with CC > 6. The parse
and eval components are shown separately. The parse component of the
Simpl implementation has similar complexity to “M”, lower than ANTLR

ensured that the Simpl implementation will not have an unfair advantage.
5http://cyvis.sourceforge.net/
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Table 6.4: Volume metrics: number of files (#F), number of units (#U), and
NCLOC (#N). The data for ANTLR, OMeta, and “M” is taken from [48]. The
smallest totals for each category are underlined.

Simpl ANTLR OMeta “M”

#F #U #N #F #U #N #F #U #N #F #U #N

Parse 1 94 137 1 52 151 4 72 195 3 84 382

AST - - - - - - 22 130 612 - - -

Check
3 48 426

2 73 294 8 37 333 9 26 430

Eval 1 29 377 - - - 7 91 1574

Misc 2 3 186 7 19 222 2 2 74

Total 4 142 563 6 157 1008 41 258 1362 21 203 2460

and OMeta. Although Simpl and ANTLR implementations had similar line
count in the parse components, the complexity of the Simpl component is
significantly lower. The main reason seems to be that the Simpl grammar
description is refactored into large number of small and simple rules (espe-
cially fragment rules). The rules with the high CC count tend to be option
rules that simply list the alternatives and thus take up small amount of
the code size. On the other hand, in the ANTLR grammar the rules with
high CC count also contain code for building up the AST, thus increasing
line count and overall complexity. The complexity of the eval component is
similar across the tools, although the Simpl implementation seems to have
somewhat lower complexity than the ANTLR and “M” implementations.

Table 6.5: Percentage of NCLOC in units with cyclomatic complexity greater than
6.

Simpl ANTLR OMeta “M”

parse 12 20 26 10

eval 25 29 - 33

Overall, compared to the other implementations, the Simpl implementation
of Waebric is comparable and in some aspects simpler and shorter. Part
of it can be attributed to the simple and compact grammar description
language of Simpl. The low volume and rather low complexity of the eval
component can be attributed to the automatically generated class model for
representing the AST and compactness of the Scala programming language.
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6.4 Usability Evaluation

In this section we present a controlled usability experiment of Simpl.

6.4.1 Description of Experiment

Overview

Empirical evaluation of the Simpl toolkit was based on a controlled usabil-
ity study that measured time that was required to implement a typical DSL
by test subjects. The subjects were split into the “control group” and the
“experimental group”. The control group used a baseline DSL tool, and the
experimental group used Simpl – the aim being to compare the added value
of Simpl with respect to the baseline. We chose ANTLR as the tool for the
control group because it most closely matches the non-functional require-
ments described in Chapter 3 and had a strong positive impact on code
size in the Waebric experiment (see Section 6.3). ANTLR has functionality
similar to Simpl – it includes a parser generator, a basic program trans-
formation engine (tree rewriting) and a code generator (StringTemplate).
The main difference is that ANTLR does not include an IDE generator.

The subjects were given a task of implementing a realistic, non-trivial DSL.
We measured the time spent and compared the results of the experimental
group with the control group. In addition, after completing the task, the
subjects were asked to complete a questionnaire for evaluating usability of
the tools. In order to control for the experience of the subjects, we divided
the subjects into two categories based on the level of expertise: junior
developers and senior developers.

The Subjects

The subjects for this experiment were five professional programmers work-
ing at Cybernetica AS. Three subjects were junior programmers with Bach-
elor’s degree and some programming experience. Two subjects were se-
nior programmers with Master’s degree and experience in using language
tools and implementing programming languages. The level of programming
skill was roughly consistent between subjects in the same group6. The ju-
nior programmers had no previous experience in language processing tools.
None of the subjects had any previous experience with Simpl or Scala. The

6This is subjective evaluation by project manager of the subjects
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subjects did not receive training for use of the tools. Instead, they used
user manuals and other online materials7. There were three developers in
the experimental group and two developers in the control group.

Because the task was relatively labor-intensive, it could not be completed in
a controlled lab environment. Instead, we opted for a setting where the test
subjects completed the task unsupervised on their normal workplaces (i.e.,
using workstations they used for doing everyday work). The subjects were
responsible for logging the time spent on various subtasks. Although this
setting provides less accurate measurements than the controlled lab setting,
it is more realistic because real DSLs are not implemented over a couple of
hours in a specifically set up computer. The task included installing and
learning the appropriate tools (Simpl or ANTLR).

The Task

All the subjects performed the same task, namely, implementing the
SpamDetector example language described in Section 5.2. The subjects
were given SpamDetector grammar in BNF format and simple example
programs illustrating the language.

Since the goal was to compare DSL tools, the subjects needed to implement
only the DSL-related parts of the SpamDetector system. In particular, the
subjects were required to implement the following components:

• parser for the SpamDetector language;

• program checker that detects calls to undefined conditions;

• code generator that converts rule files to Java;

• basic program editor/IDE that supports syntax coloring, syntax
checking, outline view, and hyper-linking (navigating from reference
to definition of condition).

Regarding the code generator, the subjects were not required to imple-
ment the runtime code responsible for parsing E-mail messages, extracting
message header fields, normalizing space in strings, dealing with various
encodings etc. Instead, the subjects could make an assumption that there
exists some kind of message-processing API and generate Java code that

7In this matter, ANTLR has advantage over Simpl because of large body of online
tutorials and examples.
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calls this API. The subjects using ANTLR were free to choose means for
building the editor. In practice, they adapted an example program demon-
strating the creation of basic IDE for the Java programming language.

The Questionnaire

After completing the implementation task, the subjects were presented a
questionnaire that asked their opinions of the DSL tool they used. The
questionnaire for evaluating DSL tools was based on Technology Acceptance
Model (TAM). TAM was proposed by Davies et al. [12] to evaluate “how
users come to accept and use a given technology.” In particular, the focus is
on factors such as perceived usefulness and perceived ease of use. Since we
did not have enough subjects to develop and verify our own scales, we used
the questions and scales constructed by Recker [72] for assessing business
process modeling languages (... (the scales are based on TAM). The ques-
tions were reused almost verbatim, the phrase “business process modeling”
was replaced with “ANTLR/Simpl DSL tool”, depending on whether the
subject used ANTLR or Simpl for completing the assignment. Users rated
the questions on a scale of 1 to 5 where 1 designated “disagree completely”,
2 “somewhat disagree”, 3 “neutral”, 4 “somewhat agree”, and 5 “agree com-
pletely”. The questionnaire, shown in table 6.6, measured the following
aspects of usability:

• Perceived Usefulness (PU) – the degree to which a person believes that
using a particular tool would enhance his or her job performance;

• Perceived Ease of Use (PEOU) – the degree to which a person believes
that using a particular tool would be free of effort;

• Confirmation (Con) – the extent to which a person’s initial expecta-
tions were confirmed;

• Satisfaction (Sat) – the extent to which a person is satisfied after
adopting the particular tool; and

• Intention to Use (ItU) – the extent to which a person intends to use
or continue to use a particular tool.

6.4.2 Experiment Results

Table 6.7 shows the amount of time the subjects spent on implementing
various subtasks. The subtask “bug fixes” contains general activities not
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Table 6.6: The usability questionnaire.

Topic Question

PU Overall, I find Simpl/ANTLR useful for implementing
DSLs.
I find Simpl/ANTLR useful for achieving the purpose of
my DSL implementation.
I find Simpl/ANTLR useful for meeting my DSL
implementation objectives.

PEOU I find it easy to implement DSLs in the way I intended
using Simpl/ANTLR.
I find learning Simpl/ANTLR for DSL implementation is
easy.
I find implementing DSLs using Simpl/ANTLR is easy.

Con Compared to my initial expectations, the ability of
Simpl/ANTLR to help me implement DSLs was much
better than expected.
Compared to my initial expectations, the ability of
Simpl/ANTLR to help me achieve the purpose of my DSL
implementation was much better than expected.
Compared to my initial expectations, the ability of
Simpl/ANTLR to help me meet my DSL implementation
objectives was much better than expected.

Sat I feel extremely contented about my overall experience of
using Simpl/ANTLR for DSL implementation.
I feel extremely satisfied about my overall experience of
using Simpl/ANTLR for DSL implementation.
I feel extremely delighted about my overall experience of
using Simpl/ANTLR for DSL implementation.

ItU If I have access to Simpl/ANTLR I expect I will continue
to use it for implementing DSLs.
My intention is to continue to use Simpl/ANTLR for
implementing DSLs.
In the future, I would prefer to continue to use
Simpl/ANTLR instead of using another DSL tool for
implementing DSLs.

related to any specific subtask (such as final testing and fixing of the lan-
guage implementation).

It must be noted that the “set-up and learning” task does not accurately
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Table 6.7: Implementation times (in hours).

Junior developers Senior developers
J1 J2 J3 S1 S2

Simpl ANTLR Simpl Simpl ANTLR

Set-up and learning 4 7 3 8.5
Parser 16 21 6 4 10

Code generator 11 15 10 5 10.5
Editor # 45 7 4.5 56*

Bug fixes 5 2

Total 36 81 30 18.5 85

#Subject J1 did not record the time spent on the editor and parser separately.

* Subject S2 did not actually complete the editor because of insufficient time avail-

able. After spending 16 hours on editor, he estimated the remaining amount of

work to be 40 hours.

reflect the time spent on learning the tools. It rather indicates the time
spent on the installation and studying the existing examples before starting
the implementation. According to the feedback, most of the learning time
is included in the actual tasks – the subjects referred to user manual only
when they encountered some particular problem. Additionally, Simpl users
also spent some time learning the Scala programming language (none of
the subjects had previous experience with Scala).

We recognize that there were too few subjects in the study to draw any
definite conclusions, however, based on the numbers in Table 6.7, some
results should be highlighted. Firstly, the Simpl users were consistently
faster than the ANTLR users. For instance, the Simpl junior subjects were
able to implement the problem significantly faster than the senior ANTLR
user. Much of the success of Simpl can be attributed to the editor – building
an editor in Simpl is relatively easy task for a person with even beginner
level experience in Java or Scala. Secondly, Simpl also offers good usability
for creating the non-visual parts of a language implementation. Table 6.7
shows that the time spent on writing the parser and the code generator are
somewhat smaller for subjects who used Simpl.

Table 6.8 shows answers to questionnaire completed after finishing the
study. Notably, the average Simpl user rates all the aspects of using Simpl
equal or above 4.0 in the scale of 1 to 5 whereas the average ANTLR user
rates most aspects close to 3. Given the presented results, it is evident that
Simpl can be efficiently used to develop a full DSL, including a parser, a
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code generator, and an editor and it might have certain advantages over
ANTLR.

Table 6.8: Answers to the questionnaire.

Area Simpl ANTLR

Perceived Usefulness 4.7 4.0
Perceived Ease of Use 4.1 3.2

Confirmation 4.4 3.3
Satisfaction 4.0 3.3

Intention to Use 4.3 3.0

6.4.3 Experiment Validity

Next, we discuss threats to validity. The metrics experiment (Section 6.3)
is essentially a continuation of a previous study, we refer the reader to the
validity section of the respective paper [48]. This subsection focuses on
validity of the usability study (Section 6.4).

Construct validity determines whether the measured values really corre-
spond to usability and usefulness. For the SpamDetector DSL we measured
time spent on learning Simpl and implementing a realistic DSL. This cor-
relates well with tool’s usefulness in practical world as the point of using
a DSL tool is to save time (and hence money) when implementing DSLs.
As for questionnaire, the proposed questions are based on TAM model that
has been validated by numerous researchers (see [72] for literature review).

Internal validity determines whether our conclusion is valid with respect
to the measured data. Although the test subjects were chosen carefully,
their skill level was determined mainly based on number of years of experi-
ence. Thus, it is possible that some of the programmers in the group were
weaker in some aspects compared to the others. However, as noted earlier,
rather than trying to draw profound conclusions from the results we are
more interested in overall usability of Simpl compared to the other DSL
tool.

External validity determines whether it is possible to generalize the re-
sults to a larger population. The current study was conducted in a setting
very similar to commercial software development. The task was fairly long
(in the range of a man-week), the subjects implemented the task at their
normal work environment during the normal working hours, and the sub-
jects had freedom to make some of the design decisions (e.g. design the
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API for the message processing). Also, all the subjects were professional
programmers. The fact that they all worked for the same company, might
have somewhat influenced the results. On the other hand, the target group
of Simpl is mainly skilled programmers, thus the subjects fit within the
scope of the study.

In addition to the discussed validity threats, the small number of partici-
pants must be taken into account. This was mainly caused by the fact that
the requirements for the subjects’ skills were quite high. As the task was
time-consuming, it would have been too costly and difficult to find senior
(professional) developers who would be willing to learn Simpl and spend
non-negligible amount of time in this controlled study. At the same time,
research by Hwang and Salvendy [34] indicates that 5-10 participants is
enough to identify major usability issues.

We acknowledge that given the small number of subjects, the conclusions
of the study do not have statistical significance. However, the study has
provided us some valuable information about the relative strengths and
weaknesses of the tools. Furthermore, it gave an indication about the time
it takes for a programmer to learn the Simpl tool and develop a real DSL.

6.5 Discussion

This chapter presented several evaluations of the Simpl DSL tool. First,
we reimplemented two languages from the Customs Engine system using
Simpl. The first language was Burula – a fairly complex DSL with difficult
grammar. We created a parser and an IDE for the Burula language. The
main difficulty was implementing support for syntactic whitespace8. The
resulting implementation conforms to the original Burula language and the
IDE is currently being used by the developers of the Customs Engine sys-
tem. The second language was a technical DSL for describing document
editing screens. In this case we changed the syntax of the language by re-
moving the parentheses surrounding every expression, thus reducing visual
clutter. The time spent on implementing the parser and the code generator
the DSL showed that Simpl is suitable for creating simple code generators
to reduce the amount of boilerplate code in an enterprise system. From
the non-functional point of view, the implementations created with Simpl
can be embedded into build process and the system itself, similar to the
original hand-crafted implementations.

8However, this is difficult with majority of parser generators.
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Second, Simpl took part in a tool challenge where the Oberon0 language
was implemented using different language tools. At the time of the chal-
lenge Simpl did not have support for Kiama language processing library
and thus lacked direct support for program transformation tasks. However,
Simpl was able to fulfill the challenge task that required implementation
of the Oberon0 language in an incremental manner. The code size of the
Simpl implementation is similar to the other implementations (except Ras-
cal implementation that was somewhat smaller).

Third, we implemented a fairly complex DSL, Waebric, using Simpl and
compared the code metrics to previously published implementations that
used other DSL tools: ANTLR, OMeta and “M”. In this comparison, Simpl
yielded the lowest NCLOC measure and the code complexity (measured as
percentage of NCLOC in units with cyclomatic complexity greater than 6)
was slightly lower than the other tools.

The fourth evaluation was based on a controlled usability study that com-
pared Simpl to popular DSL tool ANTLR. The subjects were junior and
senior professional programmers who implemented a realistic, non-trivial
DSL. After completing the task, the subjects were presented with a ques-
tionnaire that evaluated the tool’s ease of use and the subject’s satisfaction
with the tool. The results showed that the Simpl users implemented the
task faster and rated the usability and satisfaction with the used tool higher
than the ANTLR users. From these tests we conclude that Simpl does offer
usability advantages over ANTLR.

Each of the above evaluations arguably has its own threats to validity. The
first evaluation involves re-implementation of parts of a real-life system.
It is a ”post-mortem” case study and has the usual pros and cons of such
studies. Also, the comparison here is against a “no DSL tool” baseline, and
merely shows the benefits of Simpl over little or no DSL tool support. The
second evaluation pitches Simpl against state-of-the-art tools. However,
this evaluation is not based on concrete measures, but is rather qualitative
given the nature of the tools challenge. The third evaluation is quantitative
(based on metrics) and involves state of the art tools, as of the beginning
of this study. However it suffers from known limitations of software size
metrics, which are not fully reliable in terms of capturing usefulness of a
development tool. The final evaluation is a controlled experiment with a
limited set of subjects. Like the first evaluation, it demonstrates the benefits
of Simpl over limited DSL tool support. Despite the limitations of each
study, we believe that overall the evaluations show that Simpl provides clear
benefits over limited DSL development support and comparable benefits to
state-of-the-art tools, when putting aside the number of person-months put
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CHAPTER 7

CONCLUSION

7.1 Contributions of this Thesis

The main contributions of this work are the following.

• We provided an analysis of the requirements that DSL tools should
satisfy so that they fit well into the overall development process. The
result was a concise list of requirements that can be applied to eval-
uate DSL tools for suitability for enterprise software development.

• We analyzed state of the art in DSL tools with respect to the re-
quirements. We reached the conclusion that although single-purpose
tools usually satisfy the non-functional requirements, full-featured
DSL toolkits tend to assume a particular architecture and are usually
not suited for creating DSL implementations that can be embedded
into a larger system.

• We designed and implemented Simpl DSL toolkit that is aimed at
enterprise software development and, in particular, creating DSL im-
plementations that have low footprint and can be embedded into a
larger system. Simpl is based on existing tools, such as ANTLR parser
generator, Eclipse IDE framework and Scala programming language.
On top of these tools we add a parser generator that automatically
generates classes for representing AST of the program, pretty-printing
library, lightweight IDE framework, and bindings for StringTemplate
template engine and Kiama language processing library. Simpl was
developed at Cybernetica AS. The author was architect of the system
and contributed to design and implementation of all the components.
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• We evaluated the usability of Simpl in a multi-pronged way. First, we
reimplemented some representative DSLs from an existing EIS. Simpl
was capable of implementing both a complex and a simple DSL. The
Simpl implementation is already used by systems analysts to write
document processing rules. Second, we took part of a tool challenge
that compared different implementations of Oberon0 programming
language. This challenge highlighted different approaches to the same
problem. Also, the Simpl implementation was comparable in code size
to other implementations. Third, we extended an existing research
that compared code metrics of different implementations of a fairly
complex DSL. The Simpl implementation had the smallest code size
and complexity measures. Fourth, we performed a controlled usability
study where subjects implemented the same DSL using either Simpl
or a reference DSL tool (ANTLR). The subjects using Simpl spent
less time on implementation and were more satisfied with the tool.

7.2 Future Work

The current implementation of Simpl is just a first step. The next step is
to use Simpl in implementing enterprise projects and act on the feedback.
Because Simpl is targeted at enterprise developers, the main validation
must come from enterprise developers and actual projects. We are looking
forward to using Simpl in the upcoming projects at Cybernetica AS and
hopefully in other companies.

An interesting future topic for Simpl is language modularity and language
embedding. Language modularity allows to reuse separately developed lan-
guage modules, such as support for arithmetic expressions or data queries.
Language embedding combines two languages in such a way that state-
ments or expressions of the embedded language can be used as statements
or sub-expressions in the embedding language. For example, a HTML doc-
ument can contain embedded CSS style sheets. Language embedding and
language modularity can be useful in a product line setting where the de-
veloper can create a “base” DSL and customize it in each single product.
The customization can be either adding new constructs or filling in holes
in the original language description. Many practical DSLs are extensible
by using low-level code snippets in the DSL programs. This allows the
developer to keep the DSL simple and to implement the seldom-occurring
but inevitable corner cases in the low-level programming language (such as
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Java) that has support for the necessary operations. Ideally, the low-level
code would also be checked (both syntactically and semantically) and the
errors reported based on the original DSL program. When editing such
DSL programs, the low-level code snippets should make use of full power
of modern IDEs, such as Eclipse. There has been considerable work in
language embedding (see [83, 101, 5, 33, 41] for some examples), but much
work still remains in order to consolidate results in this field and to vali-
date them in industrial settings. The other side of the embedding coin is
embedding of DSLs into mainstream languages. A good example of this
technique is Microsoft’s LINQ query language [57] that is embedded in the
C# language. However, extending the Java or C# compiler with custom
syntax is only available to the compiler developers because the compilers
do not support plugins for adding custom syntax. This means that regular
developers must use work-arounds such as encoding small DSL programs
in annotations or trying to process and/or type-check string literals [25, 1].
Extending and standardizing the compiler plugin mechanisms would open
up new areas of language innovation.

An interesting topic is the relationship between innovative language tools
and their adoption in industrial settings. When implementing the Customs
Engine system I experienced firsthand that there tends to be a resistance to
introducing new ideas to the workplace. For a more global example, func-
tional programming languages have been, for a long time, used by researches
and enthusiasts. However, only in the recent decade there have been a ris-
ing interest towards functional languages from the industry. Interestingly,
this interest is resolved not by adopting existing functional languages but
by incorporating functional features into existing mainstream programming
languages such as Java, C#, C++. Similar process seems to be happening
in the field of DSLs. Although DSLs, especially internal DSLs, are gaining
popularity, the most-used tools are the simple ones that do not take ad-
vantage of the current research results. In the same vein, Simpl aims for
simplicity and uses tools familiar (or at least not too foreign) to a typical de-
veloper. An interesting practical research area would be to investigate what
are the main barriers to adoption of new language processing paradigms in
industry and how to overcome these barriers by making DSL development
technologies more accessible to mainstream software developers.
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KOKKUVÕTE
(SUMMARY IN ESTONIAN)

SIMPL:
VALDKONNASPETSIIFILISTE

KEELTE LOOMISE TÖÖRIIST

ETTEVÕTTETARKVARA
ARENDAMISEKS

Valdkonnaspetsiifilised programmeerimiskeeled (domain specific language,
DSL) on keeled, mis on välja töötatud kasutamiseks mingis konkreetses
rakendusvaldkonnas. Spetsialiseerumine võimaldab DSLis kasutada konst-
ruktsioone, mis sobivad hästi antud valdkonna mõistete esitamiseks. DSLide
näited on Unixi make ehitusskriptid (Makefile), regulaaravaldised, HTML
ja GraphViz (graafide kirjeldamine). DSLide kasutamine annab võrreldes
üldotstarbeliste keeltega mitmeid eeliseid nagu näiteks kõrgem tarkvaraa-
renduse efektiivsus ning paindlikum ja hästi hooldatav lõpptulemus. Samuti
saavad DSLide abil tarkvaraarenduses osaleda ka isikud, kelle tehnilised os-
kused ei ole piisavad üldotstarbelistes keeltes programmeerimiseks, näiteks
süsteemianalüütikud, lõppkasutajad jne. Teisest küljest kaasnevad DSLi-
de kasutamisega ka kulutused DSLide välja töötamiseks ning haldamiseks.
DSL-põhist tarkvaraarendust saab muuta efektiivsemaks, kasutades DSLi-
de realiseerimiseks spetsiaalseid tööriistu.

Käesoleva väitekirja fookuses on kuluefektiivne DSLide kasutamisel põhi-
nev ettevõttetarkvara arendus. Ettevõtteinfosüsteemid (EIS) realiseeritakse
tüüpiliselt raamistike ja valmiskomponentide abil. Seega peab olema või-
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malik pakendada DSLi realisatsioon moodulina, mida on võimalik välja
kutsuda kas ehitussüsteemist või EISist endast. DSLi realiseerimise tööriist
peab sobima kasutamiseks ka tarkvaraarendajatele, kellel ei ole kogemusi
programmeerimiskeelte ja neid toetavate vahendite arendamiseks.

Töö olulisemad väited on järgmised. Esiteks, ettevõttetarkvara arendamisel
on oma spetsiifika, mis seab nõudeid DSLidele ning nende realiseerimiseks
kasutatavatele tööriistadele. Teiseks, enamik populaarseid tööriistu, eriti
integreeritud tööriistu, mis katavad ära kogu DSLi realiseerimiseks vajaliku
tegevuste spektri, ei rahulda vähemalt osaliselt neid nõudeid. Kolmandaks,
me demonstreerime, et on võimalik töötada välja DSL tööriist, mis on sobiv
EIS arendamiseks ning mis pakub olemasolevate tööriistadega võrreldavat
kasutusmugavust.

Väitekiri koosneb seitsmest peatükist. Esimene peatükk juhatab töö sisse,
andes ülevaate DSLidest ning tutvustades töö ülesehitust.

Teine peatükk kirjeldab juhtumianalüüsi, kus väitekirja autori osalusel
kasutati tollideklaratsioonide töötlemise infosüsteemi loomisel DSL-põhist
tarkvaraarendust. Peatükk annab ülevaate DSLide rollist süsteemi arenda-
misel ning kirjeldab DSLide kasutamisel saadud kasust nii süsteemi välja
töötamisel kui ka hilisemal hooldamisel. Peatükk kirjeldab ka edasise töö
aluseks olevat arendusstsenaariumit.

Kolmas peatükk analüüsib arendusstsenaariumit ning töötab välja komp-
lekti nõudeid, millele peaksid vastama EIS arendamiseks kasutatavad DSL
tööriistad.

Neljas peatükk annab ülevaate olemasolevatest DSL tööriistadest ning eval-
veerib nende vastavust eelmises peatükis toodud nõuetele.

Viies peatükk kirjeldab DSL tööriista Simpl, mis sobib hästi EIS aren-
duseks. Simpl võimaldab luua DSL realisatsioone, mida on hea integree-
rida suurema EIS koosseisu ning mis on sobiv kasutamiseks tarkvaraaren-
dajatele, kes ei ole programmeerimiskeelte spetsialistid. Simpl töötati välja
ettevõttes Cybernetica AS. Väitekirja autor oli arhitekti rollis ning osales
kõigi komponentide projekteerimises ja programmeerimises.

Kuues peatükk kirjeldab nelja eksperimenti, millega evalveeriti tööriista
Simpl kasutusmugavust ning sobivust EIS arenduseks. Esimeses eksperi-
mendis realiseeriti Simpli abil teises peatükis kirjeldatud tolliinfosüstee-
mis kasutatud DSLe. Teises eksperimendis realiseeriti Simpl abil program-
meerimiskeele Oberon0 kompilaator ning võrreldakse tulemust sama keele
kompilaatoritega, mis on loodud teiste tööriistade abil. Kolmandas eksperi-
mendis võrreldi erinevate tööriistadega loodud sama DSLi realisatsioonide
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lähtekoodi meetrikaid. Neljanda eksperimendina viidi läbi kasutusmugavu-
se test, kus katsealused realiseerisid sama DSLi, kasutades kas tööriista
Simpl või võrdlusalust tööriista. Mõlemal juhul mõõdeti kulunud aega ning
kasutajate rahulolu kasutatud tööriistaga.

Seitsmendas peatükis esitatakse töö kokkvõte ning kirjeldatakse edasisi
uurimissuundi.
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