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"Perhaps having the courage to find a better path is
having the courage to risk making new mistakes."

– Robin Hobb, Golden Fool



ABSTRACT

Secure multiparty computation is a method for computing on private inputs with-
out disclosing anything but the computation outcome. There exist various pro-
tocols for such computations such as homomorphic encryption, secret sharing or
garbled circuits as well as methods specialised for a specific computation task
like information retrieval. This thesis focuses on programmable secure multiparty
computation where any algorithms can be executed. Furthermore, some outputs
may be published and used to choose the following computations. For example, a
result may be published and used as a condition to determine the next step.

In such a case, it is critical to precisely define the security of computations.
Sometimes secure programs executing some algorithm publish more values than
one would usually consider as the output of such algorithm. In this case, it is
important to analyse that the protocol does not reveal more information about the
private inputs by publishing these values. This thesis focuses on simplifying such
proofs for two separate cases.

First is the case where the protocol outputs do not reveal information about
the inputs. If this happens, the commonly used security definitions are stronger
than necessary. Instead, the thesis defines an input privacy property sufficient for
such protocols. However, in many cases, input-private protocols can be extended
to secure protocols.

The second is the case where new complex algorithms are implemented us-
ing existing smaller secure computation functionalities as building blocks. For
example, basic arithmetic operations are already defined and then used to imple-
ment some statistic tests. In existing formal frameworks, to prove the security of
such algorithms, the prover has to work with many different details. This thesis
derives an abstract execution model for secure multiparty computation protocols
that can be used instead. In the abstract model, the prover can focus on the public
values and the basic flow of the protocol execution. Under some natural restric-
tions about the secure computation framework and the protocol, the proof in the
abstract model implies that security holds also in the standard model.
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1. INTRODUCTION

1.1. Proving Security

Security and privacy are properties that many consider to be of utmost importance
to various aspects of their lives. For example, internet banking, voting, our homes,
our income, or our cars all need some level of security. We simply need these
things to be secure to reliably use them in our day-to-day lives. There is so much
variety in what one can consider secure so it is pretty evident that no one clearly
defined notion of security covers all these needs. Wherever the term is used, it is
in some specific context. This context limits it to some degree, but even then, its
actual meaning and details may differ for different people.

In the world of computer science, information security is one of the aspects of
security that is often desired. Broadly, information security ensures that sensitive
information is protected from unauthorized accesses, modification or deletion.
For example, one’s medical records should only be available for that person and
their doctors. However, the correct level of access some person should have or
the strength of the security mechanisms can vary a lot. For example, maybe no
one should be authorized to delete the medical records or maybe they should not
be stored at all after the data subject has passed away. Often, technology offers
means to achieve some level of security but it is up to the application to define
which flavour of security is needed.

Secure multiparty computation (MPC) is a tool that enables multiple parties to
jointly compute on their inputs while only disclosing the output of the computa-
tion. This thesis is focused on the security of MPC, which already narrows the
meaning of security to something quite specific but still leaves a lot of freedom to
refine the notion. Many years of research into cryptography and secure multiparty
computation have developed a common set of parameters and an understanding
of different security properties and their relations. There are common frameworks
for security proofs, vocabulary to define commonly used settings for these proofs,
and known means to achieve some desirable security properties. However, in se-
cure multiparty computation, one cannot separate the functionality from security.
After all, it is often the most secure option not to compute anything and not to
share any private information. So the common security definition for a secure
multiparty computation protocol is an ideal functionality that specifies what the
computation should do and which kinds of interactions are allowed. Anything that
cannot be done with this functionality should also not be possible with a secure
computation protocol. Such functionalities follow a common pattern where all
parties give their inputs, the functionality computes the defined output and gives
it to parties expecting the result.

While this approach gives an excellent common ground to define security, it
does not take away the personal look at security. The protocol designer is at liberty
to define the ideal functionality precisely as they see fit. The ideal functionality
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for a complicated protocol such as voting may differ for different protocol design-
ers. Hence, rather than considering the ideal functionality as something perfect, it
should be viewed as a specification of both the strengths and flaws of the proto-
col. Then all that remains is to show that the real protocol is as secure as the one
defined as ideal and that the ideal functionality is suitable for where the protocol
should be used. A protocol is said to be secure if anything that can be learned
from it could be learned from the ideal specification.

There are standard tools to prove that a protocol is as secure as an ideal spec-
ification. Commonly, these proofs are done in some framework that enables the
prover to consider all possible contexts where the protocol might execute. The
formal frameworks like universal composability or reactive simulatability that de-
fine these approaches are built so that the rest of the world is abstracted away
from the concrete protocol. However, the available proof techniques ensure that
the protocol remains secure in all contexts where the protocol can be used.

The overall idea of proofs that enable security under composition may be sim-
ple. Still, the existing frameworks for doing these proofs properly are complicated
and filled with details that are often overlooked. Designing a protocol is fun, and
the author already has an intuition about why the protocol is secure during the
design. This intuition is usually enough to convince others, but it only constitutes
a small factor of the overall formal proof. Hence, there is a significant decision
either to go with an informal proof and summarise the intuition or to do the whole
formal proof. The former is dangerous because it is still easy to overlook some
details that may break the protocol. The latter however may not give any addi-
tional insights into the protocol, is often complicated and time-consuming to both
write and verify, so the proofs are often overlooked in the publications.

Secure multiparty computation has reached a state where the computation
frameworks are good enough to solve various real-life problems and more and
more complex algorithms are built on top of the frameworks. In addition, there
are many concrete protocols for secure multiparty computation and more will def-
initely emerge in the future. It would be beneficial if the algorithms could be de-
fined in a general way, using some intermediate representation rather than the real
frameworks as this would allow for more general adoption of these algorithms and
easier upgrade of the underlying secure computation frameworks.

The goal of this work is to meet the protocol designer halfway. Firstly, this the-
sis specifies a natural structure for ideal functionalities that is suitable for many
secure multiparty computation protocols. These functionalities can then be used
to define the properties of secure multiparty computation frameworks and new al-
gorithms. Secondly, a property called input privacy is introduced and formalised.
A protocol is input-private if its execution does not leak any information about
its inputs. Unlike a traditional secure protocol, the input-private protocol cannot
give an output that provides information about the protocol inputs. Input privacy
is sometimes achieved by simpler protocols than fully secure protocols with sim-
ilar functionality. In addition, input privacy can be easier to prove. However, as
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proven in this thesis, it is also easy to transform input-private protocols to secure
ones in many cases.

Thirdly, an abstract protocol execution environment is derived from the formal
specification of secure computation frameworks. This abstract execution environ-
ment is close to the world where the proofs based on intuition are described and
the focus is on the public values seen throughout the protocol execution. The spec-
ification of the abstract execution environment also defines a series of properties
that must be satisfied by the protocol or the computation framework. These prop-
erties ensure that a mostly intuition-based proof in the abstract world constitutes
a formal proof with respect to the detailed specification of the secure computation
framework. Hence, in many cases, intuition is sufficient, and there is no need
to meddle with all the details of the proof of composable security. The abstract
model also allows to decouple the real framework descriptions and security proofs
from the proofs of the security of a new algorithm. Ideally, it can be used to build
libraries of algorithms that use the security definitions for the ideal functionalities
and data storage to define their requirements. Then any framework that meets
these requirements can be used to implement the algorithms.

As a result of this thesis, many security proofs can be simplified and shortened.
Therefore, privacy-preserving algorithm development can be faster and more en-
joyable for the algorithm designer. In addition, the results of this thesis enable
more efficient protocols for cases where input privacy is sufficient or where it is
possible to use input-private components inside a composite protocol. The modu-
lar formalisation of secure computation and the abstract execution description also
make it easier to give more general proofs of security for new algorithms. Rather
than proving security for a specific secure computation framework, it is possible
to specify the necessary properties of the underlying framework and prove that
the new algorithm is suitable for all real frameworks that satisfy the specification.
Hence, the main goal of the thesis is to enable the efficient development of new
algorithms for secure multiparty computation while maintaining rigorous secu-
rity. The results of this thesis bridge the gap between security intuition and proper
formal proof. A more technical summary of the results is in Section 1.3.

1.2. Claims Proven in the Thesis

Claim 1: It is possible to formalise a notion of input-private cryptographic pro-
tocols that is composable and can be used as a building block to design
secure multiparty computation protocols that have composable security.

Claim 2: Using input-private protocol components instead of secure can often
give rise to more efficient protocols for secure computation. Further-
more, the security of the protocols can be derived from the composabil-
ity results about input-private and secure protocols.

Claim 3: There exists an abstract execution environment that is equivalent to the
more commonly used hybrid execution environment under reasonable
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assumptions about secure multiparty computation protocols. The secu-
rity proofs in the abstract execution environment can be translated to
full formal proofs in the hybrid execution environment.

1.3. Summary of the Thesis

This work follows a long line of different formalisations of secure multiparty com-
putation. The main goal is to build a theoretical framework that allows to do more
modular and simpler security proofs while maintaining rigour. Especially, the
focus is on the security proofs of algorithms designed for some secure compu-
tation framework with known security properties. Firstly, this thesis discusses
input privacy and how input-private protocols can be extended to passively secure
protocols. Secondly, this thesis considers how to extend a small set of protocols
(trusted core) into a full-fledged secure multiparty computation framework with
concise proofs. For example, to analyse the usual case where complex algorithms
are built using a small core of basic arithmetic operations. This part defines an
abstract execution model as a simplification of the secure computation framework
formalisation.

The results of this thesis use the reactive simulatability framework (RSIM)
as a basis for the formalisation. In the overall intuition, this framework and the
commonly used universal composability (UC) framework are very similar. For
universal composability, the framework is more flexible and there is also a re-
stricted version intended for secure multiparty computation proofs. However, for
the results here, RSIM provides more flexibility in discussing the components of
a protocol execution than the secure computation version of UC while it avoids
some more complex aspects of the full UC framework. More justifications for
this choice can be found in Chapter 2. The definitions consider static and adap-
tive corruption models with both active and passive adversaries. The proactive
model with a mobile adversary is not considered but some indications where the
definitions need to be enhanced are noted in the text.

Secure multiparty computation formalisation. This thesis defines a modular
formalisation of secure multiparty computation in Chapter 3. In modular execu-
tion, each operation, such as addition or multiplication, is a separate ideal func-
tionality. These functionalities expect inputs in some secure data representation,
for example, secret shares. Any such data protection scheme has to define func-
tionalities to generate this representation from the input value and to reconstruct
the value from the representation. The main privacy property of the storage is
called hiding, meaning that it hides the value from any unqualified set of parties.
The integrity property is called modification awareness to capture all cases from
robust secret sharing to schemes without integrity protection. For example, ad-
ditive secret sharing where all shares are summed to learn the secret value hides
the secret from any group of parties less than the whole set. However, each party
could modify the outcome by simply modifying its own share. However, additive
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sharing can be enhanced with integrity checks to disallow modifications. Mod-
elling these different properties and working with shared values is non-trivial, as
the respective protocol functionalities must capture all modifications to the data.

Two different kinds of functionalities define interactive and local computa-
tions. Interactive ideal functionalities follow a pattern where they reconstruct
all inputs, compute the desired functionality in plain and then apply the neces-
sary protection mechanisms to all outputs. For example, the ideal multiplication
functionality for shared values collects two secret shared inputs, reconstructs the
values, multiplies the values, secret shares the result, and, finally, gives the shares
back to the parties. Various interactions with the adversary can be added to this
blueprint to accommodate different corruption models. Local functionalities rep-
resent the computations where a party or a set of parties do something with their
representation of the data that has a meaningful effect on the value. For example,
if all parties sum their shares of values that are additively shared then this is a local
protocol for the addition of the values. It is local because there is no communica-
tion with other parties. Differently from the interactive functionalities, the output
of the party depends on its inputs. If one would define an interactive functionality
for addition, then all outputs would be random shares of the addition result. The
secure computation framework is modelled as a collection of functionalities that
work with a common setup and the same secure data representation.

Different data representations like encryption or secret sharing define storage
domains. The intuition is that for each domain there is a protection functionality
such as sharing or encryption that takes a public value into the domain. Inside
the domain, each party has some representation of the data and there is an output
functionality like reconstruction or decryption to return the protected value to the
public domain. The ideal functionalities define which storage domains can be
used to give inputs and where the outputs are. The computation functionalities
and the respective storage domains together form protection domains. Data can be
inserted into the storage domains, computed with using the functionalities and the
results can be returned. Hence, a protection domain is a formalisation of a secure
computation framework. The concrete protection domain also contains setup that
in a way initializes the protection domain for a given execution. A representation
of a value that is hidden only has a meaning within the instance of the protection
domain where it has been created and can be operated with using the respective
functionalities and help of other parties participating in the computations in that
domain. For example, the setup with fixed parties and additive secret sharing with
a set of protocols is a protection domain. A share created in its execution can
meaningfully be used only in the further executions of this domain.

Input privacy. A computation protocol takes some input values from its partic-
ipants, does some computations producing intermediate values and fixes some of
the computed values as outputs. In secure multiparty computation, each party may
have private inputs and it may receive private outputs that no other participant in
the protocol knows. For example, a simple protocol executes some function f ()
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where the inputs xi of the parties encode the input x = ∑xi as additive shares.
Conceptually, the output of such protocol is y = f (x) but each party i only learns
yi of the result y=∑yi so that yi alone does not reveal y. In the rest of this section,
xi denotes the inputs of the protocol and yi denotes the outputs.

As described above, for an interactive ideal functionality there is dependency
between x and y, but not between xi and yi. However, for a local protocol, there
is a dependency between xi and yi. On the other hand, local functionalities, by
definition, do not give their participants any new information about the values that
other participants have. However, many interactive functionalities also ensure this
property that we call input privacy. In different secure computation frameworks, it
is noted that the computation until the publishing of the output does not reveal any
information and the publishing is a special step for doing all verifications to ensure
correctness and then reveal the output. Essentially, privacy until an explicit output
is given is what one expects from a secure computation protocol. This thesis
defines a version of input privacy that enhances this intuition with the idea that
the intermediate secure representations that always remain private may, in a sense,
be less secure than the ones used in the publishing step. For example, one may
consider a framework that during the computation phase just stores all operations
that need to be computed. The intermediate representation in this case is the code
that is executed together with the private inputs. A publishing step may be the one
that is responsible for first evaluating the result and then giving the numeric output
back as expected. However, revealing the intermediate representation would leak
all the private information stored as inputs to the operations.

Input privacy detailed in Chapter 4 is a unique security notion that applies
to protocols where outputs and intermediate values, as seen by some protocol
participants or the adversary, do not reveal any information about the inputs. For
example, if all protocol outputs are secret shared, then the output that each party
sees is just their share which, for the additive sharing example, is just a random
value. Similarly, any tolerated adversary can see only a set of shares that does
not define the value of the secret. The main idea is to consider protocols where
each party knows its input initially, and after the protocol execution, it has not
gained any insight into the private inputs or outputs of other parties. Hence, such
protocols preserve the privacy of the private inputs. This thesis approaches this
question in the specific setting of hiding output domains, meaning the cases where
each party gets some representation of the output but does not learn the output.

A common security definition considers a case where an environment gives
some inputs to the protocol, learns the output of the execution and tries to distin-
guish real and ideal executions. At the same time, the environment communicates
with an adversary that can affect the protocol execution. The definition of input
privacy is similar but assumes that the environment never learns the outputs from
the protocol. This formalises the intuition that the steps before the output do not
reveal information that is not revealed by the ideal private protocol. As a con-
sequence, if the outputs of all parties of an input-private protocol are revealed,
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then this full output of the input-private protocol may leak information about the
inputs. For example, a protocol where each party adds 1 to their additive share
is input-private as there is no communication. Still, if a party later reveals this
output to another party, it also reveals its exact input. Note that in such protocol
it is expected that pooling the individual outputs yi reveal the value y but in this
case, they also reveal the exact values of xi. On the other hand, a secure protocol
adding the number of participants to a secret value would only reveal the output y
and the secret input x but not the values xi held by each of the participants in the
beginning of the protocol.

According to the definition of interactive ideal functionalities, such correspon-
dence between inputs xi and outputs yi should not occur in a secure protocol.
However, input-private protocols can be finished with a secure protocol to ob-
tain a passively secure composed protocol. The thesis defines a notion of ordered
composition used to define what it means to end one protocol with another. Es-
sentially, it is the case where the second protocol can take the outputs of the first
as its inputs and the execution of the first is not affected by the execution of the
second protocol. For example, if addition results are later multiplied with some
secret value using the multiplication functionality. The input privacy property
is also composable itself, meaning that input-private components can be used as
sub-protocols in larger algorithms so that the final protocol for the algorithm is
still input-private for passive adversaries. Hence, many input-private components
can be combined into more extensive input-private protocols and then transformed
into passively secure protocols.

The input privacy definition ensures that the view of the parties that cannot
reconstruct the value y does not leak information but does not ensure that the
actual encoded output given to the parties is y. As such, this definition does not
capture correctness in the sense that the protocol may give a different output than
the ideal protocol that was used to prove input privacy. Hence, to define the actual
functionality of the protocol or any composed protocols, the correctness has to
be established in addition to input privacy. In Chapter 4 on input privacy, the
correctness requirement is generalised to the predictable output requirement. The
idea is that it is possible to predict the output of the composed protocol simply
from the inputs of the input private component. This showcases that the second
protocol does not reveal the values it receives from the first component and the
predictor defines the expected functionality.

The benefit of using input-private components instead of secure ones is that
they may be more efficient than secure protocols, and input privacy can be simpler
to prove. Hence, both the development and the final protocols could be more
efficient. In particular, if some input-private component is more efficient than the
respective ideal functionality then one can use the input-private components until
the actual output of the protocol is reached and then turn the representation in the
storage domain to the secure representation before publishing. It is future work to
generalise the input privacy results to the case of active adversaries.
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Algorithm security and the abstract model. The security of complex crypto-
graphic protocols is often discussed in the hybrid execution model, where the real
protocol components have been substituted with their respective ideal functionali-
ties. For a protocol for a dot product, the natural components are functionalities to
multiply and then add the multiplication results. In a hybrid model, the inputs are
secret shared, then given to the multiplication functionalities and the shared results
are given to the addition functionalities. Possibly, the protocol might start with
secret sharing some plain values and finish with reconstructing the result. When
considering possible adversarial interactions with such protocol, the adversary can
usually control the timing of all message exchanges and modify the messages sent
by the corrupted parties and interact with the functionalities. The abstract execu-
tion model proposed in this work simplifies the hybrid execution model for cases
where new algorithms are implemented using existing secure multiparty compu-
tation protocols. The ideal functionalities considered in this thesis may take both
values and secure representations of data as inputs and give the same as outputs.
Hence, a hybrid execution also has to specify the data representation and it can
be modified between the ideal functionality calls. This differs from a more com-
mon model of secure computation known as the arithmetic black-box where the
intermediate values are not modifiable but adds flexibility to consider lightweight
ideal functionalities. The abstract model removes the need to consider concrete
representations of secure data and limits the possible actions of the adversary by
specifying properties that the data representation and ideal functionalities have to
fulfil. For example, the abstract model version of the dot product specifies that the
data representation is hiding and does not allow the adversary to modify it with-
out detection. Otherwise, the structure of the protocol remains the same as in the
hybrid model. Hence, a protocol considered in the abstract model can be realized
by various concrete schemes that satisfy the properties of the storage domain and
implement the desired ideal functionalities for these storage domains.

In the abstract model, the secret values are stored in a memory that is split into
different storage domains with varying measures of protection and adversarial ac-
cess. A value is untouchable if the underlying secret sharing is hiding and robust.
At the same time, the adversary can destroy values protected by some verifica-
tion scheme and introduce controllable changes in secret values without integrity
protection. The ideal functionalities that usually are defined for a concrete data
representation can in the abstract model be defined based on the properties of the
storage domains. For example, an ideal functionality can be defined for a verifi-
able storage domain for integers modulo p and then have to be able to work with
destroyed values where the verification does not succeed. In the abstract model,
the adversary sees all published values – both the intermediate values made public
in the algorithm to optimise the program flow as well as any final public outputs.
Furthermore, the adversary sees all values available to the corrupted parties. For
protocols with dynamic scheduling, the adversary can stall some operations and
control the timing of parallel functionalities. The final security analysis of the pro-
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tocol in the abstract model focuses on the limited modifications the adversary can
make, the public values it sees throughout the execution, and the timing controls.
For example, in the dot product protocol, the adversary can affect if the proto-
col proceeds or stalls at some operation and the adversary may abort the protocol
execution. However, if no values are published then it does not have access to
any values. All actions that the real adversary can do by modifying the messages
of the corrupted parties are carried out as operations on the values in the storage
domain. Specifically, they can either modify, destroy or not change these values
at all depending on the properties of the storage.

The thesis proves that the abstract model is equivalent to the hybrid execution
model under some natural restrictions for secure multiparty computation proto-
cols. These restrictions appear when considering the transformation from the
hybrid to the abstract model as done throughout Chapter 5. The discovered re-
strictions make various natural assumptions about secure multiparty computation
protocols explicit. For example, the assumption that all participants are executing
the same algorithm, branching is done based on public variables, or the function-
alities are defined for all sorts of corrupted inputs. As such, the equivalence result
is interesting from a theoretical viewpoint. It also paves the way for simple and
intuitive formal proofs of security of the protocols executing complex algorithms
composed of small building blocks. A security proof in the abstract model can be
translated into a full proof in the hybrid execution model. In addition, the equiv-
alence result opens a way to characterise the properties of single operations and
storage domains needed to ensure the security of new algorithms. However, there
is future work to make the results applicable to more general classes of function-
alities and study the implications of some of the restrictions.

1.4. Thesis Outline and Contributions of the Author

Chapter 2 introduces the main properties and methods of secure multiparty com-
putation and serves as the background for the main results. It also introduces
the underlying formalisation called reactive simulatability and the visual notation
proposed for and used throughout the thesis. In addition, the chosen formalism of
reactive simulatability is compared with the more commonly used universal com-
posability to stress why this choice is a natural one for the requirements of the
following chapters. This chapter is partially based on the comparison of secure
computation methods from [5].

Chapter 3 introduces the formalisation of programmable secure multiparty
computation frameworks. This chapter is based on the formalisation used in the
papers [30,96] that are part of this thesis and serves as a common basis for Chap-
ters 4 and 5 that are the main contributions of this thesis. Chapter 3 introduces
secure storage domains, the specification of functionalities used in secure multi-
party computation protocols and how small functionalities are combined to form
secure computation frameworks. This chapter also compares the given formalisa-
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tion and other formalisations of secure multiparty computation.
Chapter 4 defines input privacy, and demonstrates the composability of this

notion. The main body of this chapter is based on [30] and shows Claim 1. Sec-
tion 4.8.2 is based on [125] and demonstrates an application of the composition
of input-private and secure protocol. Overall, Section 4.8 shows Claim 2.

Chapter 5 derives the abstract execution environment from the commonly used
hybrid execution model. The derivation also proves the equivalence of the abstract
and hybrid models under specific assumptions about the executed protocol and the
secure computation framework. This chapter is based on [96] and shows Claim 3.

Chapter 6 concludes the thesis and provides ideas for future work.
The contributions of the author of the thesis in each of the publications are as

follows.
[30] Dan Bogdanov, Peeter Laud, Sven Laur, and Pille Pullonen. From Input

Private to Universally Composable Secure Multi-party Computation Primi-
tives. In IEEE 27th Computer Security Foundations Symposium, CSF 2014,
Vienna, Austria, 19-22 July, 2014, pages 184–198. IEEE Computer Society,
2014
The author wrote the initial version of the proof of security of the com-
position of private and secure functionalities. The original proof was sig-
nificantly refactored in collaboration with the co-authors to arrive at the
modular proof found in the paper and Chapter 4.

[125] Pille Pullonen and Sander Siim. Combining Secret Sharing and Garbled
Circuits for Efficient Private IEEE 754 Floating-Point Computations. In
Michael Brenner, Nicolas Christin, Benjamin Johnson, and Kurt Rohloff,
editors, Financial Cryptography and Data Security - FC 2015 International
Workshops, BITCOIN, WAHC, and Wearable, San Juan, Puerto Rico, Jan-
uary 30, 2015, Revised Selected Papers, volume 8976 of Lecture Notes in
Computer Science, pages 172–183. Springer, 2015
The author designed the proposed hybrid protocol together with the co-
author Sander Siim. Sander was then responsible for implementing the pro-
posed protocol, and the author of the thesis was responsible for the security
proof. The generalised version of this algorithm and a proof of security for
the new algorithm that follows the same ideas as the original proof appear
in Section 4.8.2 of the thesis.

[5] David W. Archer, Dan Bogdanov, Benny Pinkas, and Pille Pullonen. Matu-
rity and Performance of Programmable Secure Computation. IEEE Security
& Privacy, 14(5):48–56, 2016
The author of the thesis was responsible for coordinating the paper writ-
ing and finalising the paper. The main findings of the paper, such as the
efficiency evaluations, were carried out by the co-authors but were system-
atised for the paper by the author in close collaboration with Dan Bogdanov.
The author of the thesis participated in the DARPA PROCEED program and
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European Union PRACTICE program, which served as the source material
for the paper. This paper is reflected in Chapter 2 of this thesis, and the
overall understanding of programmable secure computation has strongly
affected the formalisation in Chapter 3.

[96] Sven Laur and Pille Pullonen-Raudvere. Foundations of Programmable
Secure Computation. Cryptography, 5(3):22, 2021
The author of this thesis worked in close collaboration with her co-author
and thesis supervisor, Sven Laur, to derive the results and definitions of this
formalisation of secure computation and the transformation to the abstract
execution model. The author of the thesis was responsible for putting to-
gether the final version of the publication. The main formalisation presented
in this paper appears in Chapter 3. Chapter 5 extends the equivalence result
between the hybrid and abstract execution in more detail than the original
publication.
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2. PRELIMINARIES

This chapter introduces the main concepts required by the rest of this thesis. How-
ever, it is possible to skip this chapter or sections of it initially and read them when
they are referenced by the other chapters. Firstly, Section 2.1 introduces secure
multiparty computation. It considers both the desired properties as well as differ-
ent technologies for achieving secure multiparty computation. This introduction
serves as a basis for the formal approach to describing secure computation pro-
tocols in Chapter 3. This section helps to give context to the contributions of the
thesis.

Secondly, in Section 2.2 this chapter introduces the overall idea of simulation-
based proofs and universal composability. Section 2.2 introduces and compares
the commonly used universal composability framework [42] and the reactive sim-
ulatability framework [9,122]. The latter is the formalism used throughout the rest
of the thesis. Section 2.2.2 introduces the new visual notation used to illustrate
and define the protocol details in the rest of the thesis. The reactive simulatability
framework in Section 2.2.5 and its visualisation in Section 2.2.2 are the basis of
the formalisations of this thesis as introduced in Chapter 3, other frameworks are
included for comparison.

2.1. Secure Multiparty Computation

This section introduces secure multiparty computation schemes and properties. It
gives context to the formalisation in Chapter 3 and various details of schemes and
properties will be referenced by concrete examples in the following parts of the
thesis. Note that many properties are mainly described for general background
and in order to illustrate why the formalisation in Chapter 3 needs to allow for
various details.

In secure multiparty computation, a set of n mutually distrusting partiesP1, . . . ,
Pn wish to compute some joint outcome on their private inputs. The overall secu-
rity intuition is that nothing other than the output of the computations should be
revealed to the parties and the output of the computations should be correct. These
make up the privacy and correctness requirements. In addition to privacy and cor-
rectness, there are different properties one might expect from a protocol for secure
multiparty computation. The most common security properties are discussed in
Section 2.1.1. There are also many different methods that secure computation can
be based on. The major technologies are linear secret sharing (Section 2.1.4),
garbled circuits (Section 2.1.5), and homomorphic encryption (Section 2.1.6).
The different methods can be combined as discussed in Section 2.1.7. There are
also additional technologies and goals for secure computation, such as oblivious
RAM [74] or function secret sharing [36] that are not discussed in this thesis. In
addition, there are different schemes that implement specific functionalities, such
as private set intersection or private information retrieval. However, the focus of
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this thesis is on computation techniques that can be programmed to compute any
algorithm, and hence, the special purpose protocols are out of scope.

Programmable secure computation means that the computation method defines
ways to compute a wide range of functions and algorithms. Commonly these
algorithms are specified as boolean or arithmetic circuits. The algorithms can
give either public outputs known to all parties or private outputs to some parties. In
addition, the computation can either focus on a function with one round of outputs
or be reactive. For example, evaluation of arithmetic circuits means that there can
be arbitrary computation, but the output wires give the computation output at the
end of the execution. Reactive computations are such that there can be many
rounds of computation that share the state, and any input can affect the outputs of
all the following rounds. In addition, the parties can use intermediate results to
decide which computations to do next. The latter setting is the most interesting
when considering developing new algorithms. Overall, reactive functionalities
still evaluate circuits, but the outputs of the circuit are still protected and can
be opened with a special publishing round, whereas the outputs can be used as
inputs to further computations. However, the most common way to define such
reactive computation is the specification of an arithmetic black-box discussed in
Section 2.1.8. In practice, the computations can either be defined as circuits or
also as programs. For any program, the main difficulty is handling conditional
statements, which can either be computed by evaluating all cases and obliviously
choosing the right outcome or by only allowing branching on public values. Either
the computation evaluating all branches or the computation outside of branching
can then be described as circuits.

The participants P1, . . . ,Pn of secure multiparty computation protocols can
have different roles. There are computing parties that participate in the main com-
putations of the secure multiparty computation protocols. Input parties are the
ones giving their private data as input to the computations, and result parties are
the ones receiving the computation output. In the simplest case, each party has
all three roles. Most of the theory about secure computation either focuses on this
case or simply only considers the computing parties. However, in many practical
use cases like the ones discussed in [4], these roles will be carried out by dif-
ferent participants. For example, input parties are the ones that hold the original
data, computing parties are participants with a suitable infrastructure to set up and
execute the protocols, and result parties are data analysts.

2.1.1. Adversary Models and Flavours of Security

This section summarizes the different aspects of security of secure multiparty
computation protocols and serves as background for the rest of the thesis. In
secure computation, security is defined with respect to an adversary. The adver-
sary is a single party that tries to interfere with the protocol and its participants.
Most notably, the adversary usually controls some parts of the network communi-
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cation and can corrupt parties. The corrupted parties are under the control of the
adversary and the adversary can see all their view of the protocol and may be able
to change their actions. Hence, this adversary can cover both external observers
as well as collusion attacks where several participants of the protocol are working
together to undo the security properties of the protocol. It can also be considered
as an abstraction of the case of many independent bad participants and the model
with a single entity controlling them is stronger. More formal security definitions
are given in Section 2.2.

In terms of adversary actions, one can consider either passive (also known
as semi-honest or honest-but-curious) or active (also known as malicious) adver-
saries. The former follows the protocol description but tries to derive new knowl-
edge from its view in the protocol. The latter, on the other hand, actively tries
to break the protocol and learn the secrets of the other parties. In order to stop
an active adversary, the protocol has to have some mechanisms to find all actions
that may cause leaks or faults in the protocol. In the information-theoretic setting,
there is no limit to the actions of an active adversary, and in the computational
setting, the adversary is required to work in polynomial time. Other than this tim-
ing limit, the active adversary is allowed to do arbitrary actions. Sometimes also
a covert adversary [6, 7] is considered that also might arbitrarily deviate from the
protocol but is worried about getting caught cheating. Hence, in order to stop a
covert adversary, it is sufficient to have a reasonably big probability of noticing
any cheating behaviour.

The adversary can corrupt parties of the computation and play their roles. The
allowed corruption models can either be static or adaptive. For static corruption,
the adversary chooses the parties to corrupt before the execution of the proto-
col. For adaptive corruption, it can choose parties to corrupt during the execution.
Furthermore, it is possible to also consider mobile corruption [114], where the
adversary may corrupt a party and later drop its control over the corrupted party.
Mobile adversary is used to model cases where adversary is discovered and the
system is cleaned. However, the mobile corruption model is not commonly con-
sidered for secure multiparty computation. Dealing with mobile corruption would
add extra complexity to the protocols. It would also complicate analysis because it
is not easy to distinguish between an external attacker that can be kicked out from
the system and a party that is corrupted itself and should then be fully dropped
from the computations. A common approach to dealing with such an adversary
is to periodically refresh the representation of the private data so that the data the
adversary has seen beforehand becomes unusable. This thesis focuses on static or
adaptive adversaries.

There are many different commonly used properties that a secure protocol may
or may not have. For the protocol outputs, it is necessary to consider who and un-
der what conditions learns the outputs, as thoroughly discussed in [51]. A proto-
col is said to be fair if all result parties either get the output or none of them does.
However, if a protocol has guaranteed output delivery, then all output parties al-
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ways get the needed output. On the contrary, a protocol has security with abort if
the adversary can decide if the protocol gives an output at all or may simply finish
with abort. In addition, for security with abort, the adversary sometimes gets to
see the output before it can decide to abort the protocol, and, at other times, the
decision has to be made blindly. Regarding the protocol inputs, the protocols of-
ten ensure the independence of inputs, meaning that it should not be possible for
an input party in a real protocol to give an input that depends on the input of some
other input party. For example, it should not be possible for a party to always set
its input to be equal to the input of another party using the information that it sees
about the other input during the protocol execution.

A secure protocol does not have to be secure against all possible attacks and
adversaries. Rather, the protocol specifies the properties that it satisfies and the
type of adversaries it tolerates. In addition, the protocols limit how many parties
the adversary is allowed to corrupt before the security properties are broken. In
one case, the protocols either expect an honest majority meaning that more than
half of the parties are honest or tolerate a dishonest majority, where the expectation
is that security is achieved as long as one party remains honest. In the more
general case, the protocol can specify exactly which subsets of parties can be
corrupted together. These sets form an adversary structure A. All reasonable
adversary structures are such that if a set P of parties is in the structure, then any
set R such that R⊆ P must also be in the adversary structure. Meaning that if the
adversary can corrupt the set P, then it can also corrupt any subset of this set. The
most common adversary structures are threshold structures where the adversary
can corrupt any set of t or fewer computing parties.

Security definitions of the protocols also include different assumptions regard-
ing the setup of the world where the protocol is executed. For example, for net-
working, it is common to assume secure point-to-point network channels or the
existence of secure broadcast or multicast. In practice, this means that these prop-
erties have to be achieved using some specific protocols. It is also common to ex-
pect other functionalities to exist, for example, public key infrastructure or some
common source of randomness. In the computational security case, the underlying
hardness assumption also constitutes an important security detail. For example, if
some mathematical problem is broken, then the protocol is not secure any more.
On the other hand, protocols with statistical or perfect information theoretic se-
curity do not depend on any such assumptions, but there is some fixed parameter
defining the success of the adversary.

2.1.2. Feasibility of MPC

There are various results concerning which settings or setup models are suitable
for which MPC protocol. This section summarizes the main results known about
possible MPC protocols and serves as a general background for the thesis. Over-
all, it is possible to achieve secure computation with different security models and
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adversary structures. Hence, the formalisation appearing in Chapter 3 has to be
generic enough to be able to consider all these different settings.

In the information-theoretic model with secure point-to-point channels, perfect
security can be achieved for any functionality with guaranteed output delivery if
and only if the adaptive adversary corrupts less than half of the parties for the
passive security (honest majority setting) and less than a third for active secu-
rity [24, 25, 50]. However, in the statistical security and assuming a broadcast
channel, active security can be achieved for honest majority [127]. It is impossi-
ble to achieve information-theoretic security in the dishonest majority setting [24].
In the computational security model with trapdoor one-way permutations, active
security can be achieved for the honest majority for both static [75, 76] and adap-
tive [45] corruption model. Moreover, computationally secure computation with-
out guaranteed output delivery or fairness is also possible with a dishonest major-
ity assuming the broadcast channel and existence of trapdoor permutations, e.g.
using the GMW construction [75]. In particular, two-party computation is only
possible in the computational setting.

The threshold results can be generalised to an adversary corrupting sets in
an adversary structure as done in [82, 83]. They consider conditions Q2 and
Q3 where, respectively, no two or three sets in the adversary structure cover the
set of all parties. In this case, any functionality can be securely computed with
information-theoretic security if and only if the adversary is in Q2 for the passive
security case and Q3 for the active security case. In the computational setting, Q2
still allows secure computation with guaranteed output delivery [53].

2.1.3. Private Protocols

In some cases, the security of secure multiparty computation protocols can be
divided into two parts. The first is the correctness of the protocol independently of
the adversarial actions, and the second is the privacy of the protocol. A notion of
privacy called input privacy is a focus of this thesis in Chapter 4, where it is shown
how to transform private protocols to those secure against passive adversaries.
However, there are other treatments and definitions of privacy and its connection
to security in the literature. This section gives an overview of definitions related
to input privacy.

Intuitively, the protocol is private if it does not leak too much information.
Or, in a more common case, everything that can be deduced from a corrupted
view can be deduced from the input and output of the corrupted party. Some
secure multiparty computation protocols can be seen as containing two phases:
first evaluation and then verification and publication of the result. In such cases,
it is often interesting to consider privacy for the first part. Such privacy, in the
case where there are no public outputs yet, is known as input privacy [30] (as in
Chapter 4), active privacy [118] or active security with weak privacy [70]. These
approaches give different concrete definitions and uses for this property but cap-
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ture the same overall idea. The assumption is that the intermediate values do not
leak anything about the inputs other than what is known purely from the inputs of
the corrupted parties. This property, in turn, is closely related to security against
additive attacks [70], which states that an active adversary can change the output
of the computation by a known modifier but cannot learn other information. Us-
ing a protocol that is weakly private for an active adversary with a circuit that is
resilient against additive attacks gives a secure protocol [70].

The privacy property can be defined for common classes of adversaries, such
as passive or active adversaries. An interesting case between these is the definition
of defensible privacy [78] where the adversary may modify the protocol messages
but, in the end, can produce a valid input and initial randomness (also known as the
defence) that would also produce the same messages honestly. Such proof guar-
antees that the actions appear to be honest and that nothing other than the defined
output is leaked because otherwise, it would also leak to that passive adversary.
Defensible privacy can be easily extended to security against covert adversaries if
the knowledge of defence can be proven without revealing the inputs.

Privacy, especially against active adversaries, is an interesting building block
when designing protocols that are secure against active corruption. Essentially,
it is possible to combine an actively private protocol with another protocol that
checks the correctness of the private part. This idea has been used by [64, 80] to
define ways to compile passively secure protocols with active privacy or defensi-
ble privacy to actively secure protocols.

2.1.4. Secret Sharing

This section introduces secure computation that is based on secret sharing. It is
mostly background for the secure computation formalisation but some of the fol-
lowing examples use concrete protocols based on additive secret sharing. Secret
sharing was proposed independently by [27,129] and, starting with [24,50], it has
been used in numerous ways to achieve secure multiparty computation. In secret
sharing, a secret value is split into several shares, and each share is given to one
participant. For a (t,n)-threshold scheme, the secret is split into n parts, and t of
them are necessary to reconstruct the secret. Hence, the secret sharing scheme
consists of two algorithms – sharing and reconstruction.

A secret sharing scheme is perfectly hiding if having less than t shares reveals
nothing about the secret value. A secret sharing scheme is linear if the sharing
and reconstruction operations are linear transformations. All linear secret sharing
schemes allow participants to compute their shares for the linear combinations
of shared elements without interaction. A linear secret sharing scheme is called
multiplicative if each party can take its shares of a and b and compute ci such
that the multiplication result ab can be computed as a linear combination of ci

[53]. A multiplicative linear secret sharing scheme is a good basis for secure
multiparty computation because the multiplicative property can be extended to a
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proper multiplication protocol using other properties of the linear secret sharing
scheme. The general multiplication protocol, sometimes also called the Maurer’s
multiplication protocol, is defined in [53] as follows. First, the parties compute ci,
where

∑
i

rici = c

is the multiplication result. Then each party Pi secret shares their ci to shares ci j

and gives ci j to party P j. Then the multiplication result is combined to properly
secret-shared form by each party P j separately computing their part of the linear
combination as

c j = ∑rici j .

Note that Maurer’s protocol is a generalisation of the Gennaro-Rabin-Rabin mul-
tiplication protocol [71] for Shamir’s secret sharing [129].

If a secret sharing scheme is not multiplicative, then it may still be used for
secure computation, but dedicated protocols must be designed for multiplication
and other necessary operations. A recent ongoing overview of secure computation
using secret sharing can be found in [67].

Current schemes for secure multiparty computation often use additive secret
sharing. In additive secret sharing, a secret x is shared to xi such that

x = ∑xi

and each party Pi has xi. Additive secret sharing is mostly considered in finite
fields or rings, but there are also variations of it over integers [58]. Additive secret
sharing is not multiplicative. Hence, each scheme has to define a suitable multi-
plication protocol. It is most common to use precomputation-based multiplication
protocol using Beaver triples [17].

A formal definition of secret sharing algorithms and properties for secret shar-
ing are given in [22]. The focus of [22] is on computational robust secret sharing,
but the framework also considers both computational and information-theoretic
secret sharing with and without robustness. Intuitively, a secret sharing scheme
is robust if honest parties can always reconstruct the secret. Overall, there are
two properties to be considered – privacy and recoverability. The necessary pro-
cedures to define these properties are in Figure 1 and 2 respectively for secret
sharing defined by two algorithms Share and Rec for sharing and reconstruction.
In such game-based definitions, the adversary A interacts with the defined compo-
nents and tries to achieve some goal that breaks the desired property of the used
scheme.

The overview of the privacy game is in Algorithm 1. The game starts with
an initialisation step that creates an empty set of corrupted parties T . Then the
adversary can secret share some values and is given access to the CORRUPT func-
tionality to corrupt some parties and see their view. In the end, the adversary
makes its final guess about which secret was shared. This determines if A wins
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Algorithm 1: Privacy game

T ← /0
(S0,S1)← A(1k)

b $←− {0,1}
S← Share(1k,Sb)
b′← A CORRUPT()
return b == b′

Algorithm 2: CORRUPT(i)

T ← T ∪{i}
return S[i]

Figure 1: Functions used in the secret sharing privacy game.

or loses the game. The adversary wins the game and breaks the security if the
game returns True. The games use a security parameter k. This can be omitted for
cases of information-theoretic security, and often for secret sharing, the security
parameter is the same as the size of the set of possible secret values. Note that, in
both privacy and recoverability, it is only interesting to consider adversaries that
are limited to corrupting only a subset of parties. The variable S contains the state
of the game, and the set T contains the indices of corrupted parties. The corrup-
tion call adds the party i to the set of corrupted parties as the union T ∪{i} of the
previously corrupted parties T and the set {i}. The success of the adversary is
measured as twice the probability of winning minus one, specified as

2Pr[Privacy game returns True & T is less than the bound]−1 .

For a threshold scheme, the bound is |T |< t, but for schemes with more complex
access structure, the bound is defined so that the set of the shares seen by the
adversary is less than required to reconstruct the secret. The exact bound depends
on the scheme that is considered. Secret sharing scheme has perfect privacy, if the
success of the adversary is 0. For a computational secret sharing, the probability
has to be negligible for any efficient adversary.

Algorithm 3: Recoverability game

T ← /0
S← A(1k)
S← Share(1k,S)
S′← ACORRUPT()
j←⊥ or index of some trusted party
return Rec(1k,S′[T ]∪S[T ], j) ̸= S

Algorithm 4: CORRUPT(i)

T ← T ∪{i}
return S[i]

Figure 2: Functions used in the secret sharing recoverability game.

In the recoverability game in Figure 2, the adversary can choose the value S
that is shared and can learn the shares of corrupted parties using the CORRUPT

functionality. Finally, the adversary can choose new shares S′[T ] for the corrupted
parties T and the reconstruction operation Rec is executed using the honest shares
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in S and the corrupted shares from S′. The adversary wins if it can make the
reconstruction algorithm output something else than the initially shared value S.
The value j ∈ T points to an honest share and is used in cases where some share
can be trusted to be correct. The value j can also be left unspecified. The use
of j helps to characterise both reconstruction by an external party that cannot
trust any shares and reconstruction by some party that has one share and knows
that its share is correct. The corrupted shares S′ can also contain missing values.
The success of the adversary is measured as the probability that the recoverability
game returns True, or as

Pr[Recoverability returns True & T is less than the bound] .

Concrete variants of secret sharing are defined by specifying a limit on this suc-
cess. A scheme has perfect robustness, if the success is 0. On the other hand for
statistical robustness, there can be some small probability of success.

Such definitions consider secret sharing in isolation, just focusing on the shar-
ing and reconstruction algorithms. For the cases of secure computation using
secret sharing, it is important to also consider shares that are obtained through
computation protocols and not directly from the sharing algorithm. In addition,
sharing schemes used for secure computation often have some setup and param-
eters that are shared between the shares of different values. Chapter 3 defines
hiding and modification awareness properties as the extensions of the privacy and
robustness properties for the case where there can be computation, some setup, or
the shares may be generated incorrectly. In many cases, the hiding and modifica-
tion awareness properties can be derived from privacy and recoverability.

The previous definitions from [22] do not cover verifiable secret sharing or
cheating detection. There are two variations of verifiability depending on whether
the share or the value is verifiable. A share in a secret sharing scheme is said to
be verifiable if each party can verify the correctness of the share that it receives.
The important difference in definitions of the secret sharing scheme is that, for
verifiable secret sharing, the dealer who creates the shares is assumed to be the
adversary who may not always create correct shares. On the one hand, such a
view is possibly better suited for considering secure computation than assuming
an honest dealer. On the other hand, current secure computation schemes often
consider the case where individual shares are not verifiable, but the value encoded
in the shares is. For example, the combination of additive shares and message
authentication used by the SPDZ framework [59] allows one to verify the secret
but not individual shares. For use cases in secure computation, where verification
of the output is crucial, the previous definition of privacy still holds. For recov-
erability, it would be reasonable to define the winning condition as a successful
reconstruction of a value other than the initially chosen value. However, mak-
ing the reconstruction output a failure is not considered a successful attack. Both
variations of verifiability can be considered as part of the modification awareness
definition in Chapter 3.

34



2.1.5. Garbled Circuits

This section introduces garbled circuits as they are one of the computing methods
that has to be covered by the formalisation in Chapter 3. Garbled circuits are
also used in Section 4.8.2 for an example of using input private components in a
composed protocol. The core of the garbled circuit idea [21, 101, 137] is the two-
party scheme between a garbler and an evaluator. The garbler creates the garbled
version of the circuit that they want to evaluate and sends it to the evaluator. It also
sends the encodings of its inputs to the evaluator, and the evaluator uses oblivious
transfer to learn the encodings of its inputs. Oblivious transfer is a special two-
party protocol where one party has two messages, and the other receives one of
them. The receiver does not learn any information about the other message and
the sender does not learn which message was transferred. The evaluator then uses
the encodings and the description of the garbled circuit to arrive at either the plain
or encoded output of the circuit. Both participants are in the role of the computing
party and – usually – both are also input and result parties. However, the basic
idea can be extended and combined with other techniques to allow for more input
and result parties. For example, it is easy to only give the output to the evaluator.
It is also possible for the evaluator not to learn the real output if the circuit outputs
a ciphertext that can only be decrypted by the real result party. The main privacy
and security guarantees of the garbled circuits protocol require a secure garbling
scheme and an input encoding that hides the inputs. The security of the oblivious
transfer protocol ensures that only the desired output can be decoded.

Note that there are also various approaches to obtain secure computation against
active adversaries with garbled circuits, for example [79, 100, 102, 110, 111]. In
these cases, the following security properties are still relevant, but there are added
properties that are needed to ensure that the garbling has been carried out correctly.
This thesis only requires formal garbled circuit security definitions for passive se-
curity as they are needed in Chapter 4. However, the formalisation of the secure
data representation for MPC in Chapter 3 generalises the ideas and would also
applicable to garbling schemes when the focus is in the mapping between wire
labels and actual values.

The main body of the garbled circuit approach is the garbling scheme Gb used
to encode some function f . The garbling algorithm gives out the garbled circuit
F , the rules for encoding the input e and for decoding the output d. A plain
input x is translated to the garbled input X using the rules in e, then the garbled
circuit F is evaluated on X to learn the garbled output Y that can be translated
to plain output y using d. In a correct scheme, y = f (x). The circuit f can be
defined in various ways, but it has several important parameters independently
of the concrete definition. Consider the specification from [21], where each gate
has two inputs. The circuit has n inputs, m outputs, and q gates. For each gate,
function A defines its first input wire and B defines the second input wire. Finally,
function G determines the functionality of each gate. This specification and the
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following security definitions will be especially relevant later in Section 4.8.2.
However, they are important to generalise the properties of data protection used
in MPC to the properties considered in Chapter 3.

The following summarises some of the security definitions of garbled circuits
from [21]. The privacy property defines that running the garbled circuit protocol
does not reveal more information than just seeing the output of the computation.
The privacy property is a version of the main security property idea of MPC pro-
tocols. Obliviousness characterises the case when the output of the protocol hides
the actual output value, and the protocol does not reveal any new information to
the participants. The obliviousness property resembles the property that will be
defined as input privacy of secure computation protocols in Chapter 4. In addition
to these properties, the definitional framework of [21] also considers authenticity
that is required for verifiable computation, but this property is not addressed in
this work.

The idea of the privacy property is that any party obtaining the garbled circuit
F , the garbled input X , and the output decoding information d should not learn
anything other than what is revealed by just knowing the final output y. However,
in many cases, there could be something more revealed by the functionality. This
is considered to be the side information Φ( f ) of the functionality f . For example,
the side information can be used to capture flavours where the circuit f is either
known or hidden.

Both privacy and obliviousness are defined in two ways in [21] – once based on
indistinguishability and once based on simulatability. These notions are shown to
be equivalent for some common side information functions Φ. Components of the
simulatability-based definitions (prv.sim and obv.sim respectively for privacy
and obliviousness) are summarised in Figure 3 as these are considered to be the
stronger ones in case the two flavours do not coincide. In addition to the main def-
initions of the garbled circuit components, the games use a security parameter k,
encoding function E and a simulator Sim. Each game starts with the initialisation
phase that fixes b and finishes with checking if the adversary guessed correctly as
shown in Algorithm 5. The actual garbling operation is different for the privacy
and obliviousness games, and these are shown in Algorithm 6 and 7, respectively.
The adversary is successful at breaking either privacy or obliviousness of the gar-
bling scheme if it correctly identifies the challenge bit in the respective game. In
both of these games, the success is measured as twice the probability of the game
returning True minus one,

2Pr[Garbling game returns True]−1 .

A garbling scheme has prv.sim or obv.sim security for a side information func-
tion Φ, security parameter k and simulator Sim if the success in the respective
game is negligible.

In the case of privacy, the adversary indeed obtains all the information about
the garbled circuit - the circuit F , the input X and the decoding information d. The

36



Algorithm 5: Garbled circuits security game structure

b $←− {0,1}
( f ,x)← A(1k)
b′← A(GARBLE( f ,x))
return b == b′

Algorithm 6: GARBLE( f ,x) for
prv.sim game

if x /∈ {0,1} f .n then
return ⊥

if b = 1 then
(F,e,d)← Gb(1k, f )
X ← E(e,x)

else
(F,X ,d)← Sim(1k, f (x),Φ( f ))

return (F,X ,d)

Algorithm 7: GARBLE( f ,x)
for obv.sim game

if x /∈ {0,1} f .n then
return ⊥

if b = 1 then
(F,e,d)← Gb(1k, f )
X ← E(e,x)

else
(F,X)← Sim(1k,Φ( f ))

return (F,X)

Figure 3: Components of the games for defining prv.sim and obv.sim security
of a garbling scheme with garbling algorithm Gb, encoding algorithm E, simula-
tor Sim, security parameter k, length of input f .n and side information function
Φ.

only difference in the obliviousness case is that the decoding information is with-
held from the adversary. Note that the simulator of the obliviousness game does
not necessarily know the circuit, and hence, the encoded circuits and the outputs
of the functions may differ. Thus, if the decoding information was made available
to the adversary, then distinguishing the simulated and real circuits in the obliv-
iousness game could be very simple. On the other hand, oblivious circuits also
give no guarantees about what else the adversary may learn when it can decode
the output. Notably, many use cases of garbled circuits are such that the output
of the circuit is indeed public and the function d is trivial. Such schemes are not
oblivious, but they can be private, as nothing is broken in the privacy game by also
adding d, even if it is trivial. The obliviousness property is closely related to the
input privacy property of secure computation that is developed in Chapter 4 and
Section 4.8.2 explores the connection between the two properties.

Many garbling schemes hide at least some parts of the function that is evalu-
ated even though it is not always required or necessary. Likewise, the topology
of the functionality is usually revealed to allow for efficiency. Common opti-
misations also reveal other information. For example, the technique known as
free-XOR [91], which makes it easier to garble XOR gates, reveals which gates
of the circuit are indeed XOR gates. The analysis in [19] shows that side in-
formation functions Φ leaking either the topology or the location of XOR gates

37



are efficiently invertible and therefore [21] establishes that, for such schemes, the
simulatability- and indistinguishability-based definitions coincide.

2.1.6. Homomorphic Encryption

This section introduces the main idea of using encryption as a basis for secure
computation as this is one method that is covered by the formalisation in Chap-
ter 3. Homomorphic encryption is an encryption scheme that allows computations
on encrypted values. For example, there exists an operation that can be done with
the ciphertexts such that the result is a ciphertext containing the encryption of
the sum of the plaintexts inside the initial ciphertexts. Some homomorphic en-
cryption schemes that are sometimes also called partially homomorphic or semi-
homomorphic, support one such operation. For example, additively homomorphic
encryption like Paillier encryption [115] allows only to compute addition with the
ciphertexts. Fully homomorphic encryption [72,73] allows both addition and mul-
tiplication and can therefore be used to compute any arithmetic circuit. Somewhat
homomorphic schemes like [35] allow doing both addition and multiplication but
only a limited number of one of these operations.

There are many ways how homomorphic encryption can be used to achieve
secure multiparty computation. The most straightforward is the two-party case
of computation outsourcing, where an input party sends the ciphertexts to the
computing party that uses the homomorphic properties to compute and return an
encrypted result. However, both fully homomorphic and additively homomorphic
encryption can be used in settings where all parties are computing parties and
input parties. Some fully homomorphic encryption schemes, such as [37] also
support distributed decryption [59], which makes them easy to use for multiparty
computation. The idea is then that no party knows the secret key, and hence, all
ciphertexts can be public and computations on them can be done publicly. Any
ciphertext can be decrypted only if enough parties participate in the distributed
decryption process.

An encryption scheme is specified by three algorithms – KeyGen for generat-
ing the keys, Encrypt for encrypting and Decrypt for decryption. The components
needed to define the security of the encryption scheme are given in Figure 4 as de-
fined in [72]. For semantic security (or chosen plaintext attacks (CPA)), the game
generates a new keypair and gives the public key to the adversary. Then, the adver-
sary can choose two messages m0 and m1 and the game that chooses and encrypts
one of them. Finally, the adversary wins if it manages to correctly guess which of
the two messages was encrypted. The success is measured as

2Pr[CPA game returns True]−1

and the scheme has CPA security if this success is negligible.
A homomorphic encryption scheme also has an algorithm Evaluate that takes

as input the public key, input ciphertexts and the computation specification and
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produces the ciphertext of the computation result. The encryption scheme is
correct if Decrypt(sk,Encrypt(pk,m)) = m for any keypair (pk,sk) generated by
KeyGen. The homomorphic evaluation is correct if the output of the evaluation
can be decrypted to the same result as the evaluation would give on the plain-
texts. A homomorphic encryption scheme is circuit-private if the distribution of
the evaluation output is the same as the output of Encrypt on the circuit output
value. This is formalised through the circuit privacy where the adversary specifies
a computation C and a vector of input ciphertexts c and has to afterwards guess if
the result it gets was generated through evaluation or encryption. Note that circuit
privacy is achievable only if the evaluation also randomises the result somehow
and the evaluation is not a deterministic function on the input ciphertexts or if the
encryption scheme itself is deterministic. Circuit privacy enables secure compu-
tation where the computing party hides the algorithm used to compute the output.
The success of the adversary in a circuit privacy game is measured as

2Pr[Circuit privacy game returns True]−1

and the scheme has circuit privacy if this success is negligible.

Algorithm 8: CPA game

(pk,sk)← KeyGen(1k)
(m0,m1)← A(pk)

b $←− {0,1}
r← Encrypt(pk,mb)
b← A(r)
return b == b′

Algorithm 9: CCA1 game

(pk,sk)← KeyGen(1k)
(m0,m1)← ADecrypt(sk,·)(pk)

b $←− {0,1}
r← Encrypt(pk,mb)
b← A(r)
return b == b′

Algorithm 10: Circuit privacy
game

(pk,sk)← KeyGen(1k)
(C,c)← A(pk)

b $←− {0,1}
if b = 1 then

r← Evaluate(pk,C,c)
else

r←
Encrypt(pk,C(Decrypt(sk,c)))

b← A(r)
return b == b′

Figure 4: Security games of homomorphic encryption with security parameter k.

Chosen ciphertext (CCA) security can also be defined for homomorphic en-
cryption, but it is difficult to achieve. The chosen ciphertext security game extends
the semantic security game with the Decrypt query that allows the adversary to
decrypt any ciphertext of its choosing. In the CCA1 security definition, these
queries are only allowed before receiving the challenge ciphertext and in CCA2
security, they are always allowed with the exception that the challenge r cannot be
decrypted using DECRYPT. However, CCA2 security is not achievable for homo-
morphic encryption in general since it is easy to derive a new ciphertext from the
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challenge that can be decrypted using DECRYPT. For example, the new ciphertext
could be just a re-randomised version of the challenge or a simple function com-
puted from the challenge ciphertext. The latter is especially true if the scheme has
circuit privacy and it is not possible to distinguish the fresh ciphertext from the
computation result.

2.1.7. Combining Secure Computation Techniques

Previous three sections introduced concrete computation schemes. It is com-
mon for practical implementations of secure computation frameworks to com-
bine several different computation techniques. For example, this has been done
by TASTY [81, 90] and ABY [60, 117] frameworks and extensions [49, 109] of
the ABY idea. In this thesis, an example of such a combination is presented
in Section 4.8.2 that combines garbled circuits and additive secret sharing. This
combination is motivated by the possibility to easily extend the set of protocols
available to the user using automated tools to generate circuits for the garbled
circuit method. Another driving force for combining different techniques is ef-
ficiency since different operations are efficient for the different techniques, and
also, the computation technique of choice might depend on the actual deployment
based on the available network and computational power of the participants. For
example, these tradeoffs between protocol properties are discussed in [5].

The combination of different computation techniques is also very well sup-
ported by the popular online-offline paradigm first introduced in [57]. It is com-
mon that the online phase uses quite lightweight computations, for example, using
secret sharing and could run with several different offline phases. This is well il-
lustrated by the SPDZ protocol [59] that uses additive secret sharing in the online
phase but, over its evolution summarised in [113], has had offline phases using
somewhat homomorphic encryption [59], oblivious transfer [88], and additively
homomorphic encryption [26].

The main component required for any combination of secure computation
methods is a way to transform data representation from one technique to another.
For example, to derive shares from ciphertexts or generate a ciphertext of the
value from shares. For garbled circuits, the secure representation is less explicit.
However, it is easy to define a circuit that outputs a ciphertext or takes either ci-
phertext or shares as input. Shares can also easily be given as output if the circuit
supports private outputs to different parties. However, also the wire labels used in
the garbled circuit can be considered to be a secure representation that could be
directly translated into other representations. The conversion becomes more com-
plicated in the active security model, where the data representation contains some
authentication mechanism. However, conversions are still possible, as discussed
in [128].
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2.1.8. Arithmetic Black-Box

This section describes an arithmetic black-box view of formalising secure compu-
tation as it is needed for comparison with the formalisation of this thesis as given
in Chapter 3. The arithmetic black-box (ABB) is a way of describing a secure
computation functionality first proposed in [55]. It specifies secure computations
like a secure general-purpose computer, where every party can send its inputs pri-
vately, and all parties (or a set of parties large enough to always contain at least
one honest party) together can issue commands. In addition, only the command
that outputs values can be used to return anything from the internal state of the
ABB. No values other than explicitly published outputs are leaked from the ABB
during the execution.

The internal state of ABB is a mapping from public handles to private values.
Each party learns the handle corresponding to its input when it inputs the value
and all corresponding computation commands are given using the handles. If a
suitable set of parties specify the same operation with the same handles, then the
functionality performs the operation on the values mapped to these handles and
stores the output with a new handle. A command is only valid if the functionality
has a value associated with the given handle. The publishing operation returns
the value mapped to the handle used in the publishing command. An ABB can
be invoked many times and it keeps its internal storage between the invocations.
Hence, it is a stateful reactive functionality.

In general, the main ideal functionality of ABB for secure computation (FABB)
is commonly described as follows.

• On input (input, id, i) from honest parties wait for input (input, id, x) from
party Pi and store x in memory with handle id.

• On input (linear combination, c, id, ido) where id = (id1, . . . , idk) and
c = (c0,c1, . . . ,ck) from the honest parties, retrieve values xi corresponding
to idi from memory and compute z = c0 +∑cixi. Store z with handle ido.

• On input (multiplication, id1, id2, id3) from the honest parties retrieve
x1,x2 corresponding to id1, and id2 from memory and compute x3 = x1 · x2.
Store x3 with handle id3.

• On input (output, id) from honest parties retrieve x corresponding to id
from memory and send x to all parties.

Depending on the adversarial model, FABB is accompanied by additional capabil-
ities. Commonly, each input is also reported to the adversary so that the adversary
has some knowledge about the used handles and the computed operations. In the
case of security with abort, the functionality allows the adversary to give the abort
signal at any time and the signal is sent to all parties. As such, ABB is well suited
to describe reactive functionalities and is clearly programmable. All conditional
choices are made outside of the ABB based on the output values.

ABB defines a monolithic ideal functionality FABB for secure computations
where the inputs and outputs are public values. There are no explicit shares for
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parties and every interaction uses the handles of the values. Everything that is not
explicitly public remains in the secure internal state of the functionality FABB. By
now, this approach is a common way to define the ideal functionalities of secure
computation applications and engines. For example, it is used in [26, 59, 64, 103,
132].

2.2. Simulation Based Security

The security definitions of protocols commonly compare the protocol description
to a so-called ideal functionality or the specification of the protocol. The proof
is then carried out in a simulation paradigm, meaning that the proof proposes a
simulator that translates a real-world adversary into an adversary against the ideal
specification. This approach to security proofs originates from [75] but has been
refined to several different frameworks that consider various details of the proto-
cols. The overall idea of these proofs, as well as two concrete frameworks that
apply this style to achieve universal composition, are introduced in this section.

Sections 2.2.2 and 2.2.5 introduce the visualisations used in the thesis and the
core framework of the definitions. These are needed to follow the contributions of
the thesis, the other sections as a general introduction to the topic. Section 2.2.1
and 2.2.3 give a more general overview before the concrete formalisations. Uni-
versal composability in Section 2.2.4 is given for comparison as this is the more
commonly used formalisation. Finally, section 2.2.6 compares some aspects of
the concrete formalisations and their applicability to this thesis.

2.2.1. Protocol Composition

The simulation-based proof can either prove security in a standalone or some com-
position setting. A standalone setting is one where only one instance of a single
protocol is executed at a time. Hence, the adversary has no arbitrary information to
use and has to work only with the information in the execution of the given proto-
col. It is more realistic to consider protocols in a composition setting where other
protocols may be running either sequentially [40,112] or concurrently [11,40,116]
with the protocol at hand and the adversary may play a part in some of those ex-
ecutions. Overall, if a protocol Π realises some functionality F with composable
security, then Π will be indistinguishable from F in any context where it is run.
This thesis considers the universal composition setting with no limit on the order
or the existence of protocols outside the protocol of interest. There are different
formalisations of such composition.

The main difference between universal and concurrent or sequential composi-
tion is the role of an environment that represents the world outside of the concrete
protocol and its participants. The environment interacts with the protocol and
chooses the inputs as well as receives all outputs.

The most commonly used formalisation is the universal composability frame-
work by Canetti [41,42] introduced in Section 2.2.4. However, this work relies on
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the reactive simulatability framework [9, 122] introduced in Section 2.2.5. Other
frameworks for composable security include [10,34,39,84,94,95,106–108]. The
concurrent general composition is equivalent with a version of universal compos-
ability as shown in [98], and there are cases where standalone security proofs also
imply security under composition [61, 93].

2.2.2. Visual Representation of Protocol Structure

This thesis uses the following new visual representation of the protocol compo-
nents. The protocols are formalized in the reactive simulatability framework, the
components outlined here are specified in Section 2.2.5. The main elements of the
visualization are summarised in Figure 5. The protocols are considered to consist
of machines and network buffers. The concrete formalisation used in the thesis
is the reactive simulatability framework introduced in Section 2.2.5. This sec-
tion introduces the visual notation that can be used more generally for different
formalisations of protocols. The machines can represent participants as well as
functionalities. In the visual representation, machines are denoted by boxes with
rounded corners (�� ��), and buffers are denoted by bullets and arrows. All comput-
ing nodes communicate with the outside world through ports denoted as square
boxes at the border of machines. Input ports at the border of a simple machine
are white (□) and output ports are grey (■□). Ports are omitted if their direction
is clear from the direction of the arrow denoting the connected buffers. Network
communication is controlled by some participant through a clocking port. The
clock signal is the signal given to the machine that is currently active and can be
passed from one machine to the other to start the other machine. Ports for sending
out clocking signals are denoted by bullets to visually separate communication
and clocking ports. The master scheduler, who gets the control whenever no other
machine is active, also has a special master clock in port, but it is not denoted
explicitly.

Basic buffers leak nothing about transferred messages and have three ports: an
input, output and clocking port. These stand for confidential and authentic net-
work communication. These ports are not explicitly drawn since they are always
connected to respective ports on some machine. An arrow with a bullet ( )
denotes buffers that transport data in the direction of the arrow. The undirected
component is used to denote the party that clocks the buffer. Dedicated notation
is used for buffers clocked by a sender or a receiver, as illustrated in Figure 5. A
grey box with a white circle ( ) symbolises that the sender has full control over
the clocking of the given buffer. A white box with a white circle on the receiver
side ( ) shows that the receiver has full control. An arrow without a buffer
clocking symbol can be used to show buffers with undefined clocking in generic
figures. If a buffer does not have an explicit clocker marked in the picture, then
it is clocked by the master scheduler. In some cases, it is important for one ma-
chine to give control to another without any meaningful message. In this case, the
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clocking connection •◦ ◦ can be used between two machines with the grey bullet
on the side of the clocker. A leaky buffer can be used to denote networking that
leaks some information to the clocking party. A message in a leaky buffer has two
components, a leaking tag t and a secret message m. A leaky buffer is denoted
by and its idea is that it is clocked twice by the clocking party. First, the
party can ask to receive the part of the message that is leaked and then it can clock
the message to the recipient. If there are many messages then the clocking party
chooses which to clock. The formal construction is discussed in Section 2.2.5.

B1 B2

sender-clocked-buffer

C-clocked-buffer

receiver-clocked-buffer

C-clocked-leaky-buffer

C

Figure 5: Notation for differently clocked buffers for sending data from machine
B1 to machine B2 where some buffers are clocked by C.

Machines, their ports, and buffers can be labelled with names if needed. Very
often, it is reasonable to depict a part of a collection and not a complete collection.
In this case, a dashed rectangle is drawn around the collection and the ports from
machines outside of the collection that are used to connect to this collection are
drawn to the border of the rectangle.

2.2.3. Protocol Equivalence

This section discusses some of the core ideas of simulation based proofs and pro-
tocol composition, for a more thorough introduction see [99]. The goal of this
section is to have a general representation of the ideas and common aspects of
the concrete frameworks of UC and RSIM introduced later. The notation used
for protocol composition is specific to this thesis but represents general existing
ideas. Independently of the concrete formalisation of the security proof, the over-
all goal of either standalone or composable simulation-based proof is to prove the
indistinguishability of the real protocol and the ideal specification. For that, the
interfaces of the real and ideal protocol have to match. However, this is usually
not the case, as the real protocol commonly expects several rounds of interac-
tions with a party, and the ideal functionality requires only the inputs of the party.
Hence, commonly it is shown that there exists a simulator that interfaces with
the adversary against the real protocol and the ideal functionality. The real, ideal
and simulated executions are illustrated in Figure 6. The role of the simulator is
to act as the protocol for the adversary and extract the inputs that the corrupted
party has to the ideal functionality. In this case, it is actually shown that the real
protocol is indistinguishable from the ideal protocol combined with the simulator.
On the other hand, the real adversary and the simulator can be considered to be
a new adversary against the ideal protocol. However, in the more general case, it
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is possible to show the indistinguishability of any two protocols, not just the real
and ideal ones.

Env

AΠΠ

(a) Real execution.

Env

AFF

(b) Ideal execution.

AF

Env

AΠF Sim

(c) Simulation.

Figure 6: Execution of protocol Π, ideal functionality F with environment Env,
adversary AΠ against the real protocol and AF against the ideal functionality, and
a simulator Sim.

A protocol in real life is defined by a set of parties interacting with each other.
In a formal representation, each party or other building block of the protocol is
some kind of a computing machine and they are connected using network buffers.
A collection of machines in a finite set of such machines and buffers connected
to these machines. Each machine defines an interface that it uses to communicate
with others. Each desired connection is defined as a port. Buffers shown in Fig-
ure 5 connect the input port of one machine to the output port of another machine.
In order to compose protocols, they have to have matching interfaces where some
ports of one machine can be connected to ports of another machine. A composi-
tion is well-defined if the respective ports of the two protocols are connected and
there are no conflicts in the names of the port (e.g. machines are not allowed to
have an output port with the same name). A composition of two protocols Π1
and Π2 is denoted as Π1⟨Π2⟩. Note that the resulting collection is equivalent to
Π2⟨Π1⟩ and the notation is symmetric. However, in some cases, it is beneficial to
give extra focus to the outer collection. It is also possible to shorten Π1⟨Π2⟨Π3⟩⟩
to Π1⟨Π2,Π3⟩.

In the very general approach to security definitions, there exists a distinguisher
D that interacts with two protocols Π1 and Π2 that have identical interfaces. The
goal of D is to output the guess about which protocol it is interacting with. Let
D⟨Πi⟩ denote the distinguisher running the Πi. Such a combination is meaningful
if the interfaces are compatible and the composition is well-defined. More for-
mal details of what compatibility means are given in the reactive simulatability
description in Section 2.2.5. In the best possible case, Π1 and Π2 are perfectly
equivalent and

Pr[D⟨Π1⟩= 1] = Pr[D⟨Π2⟩= 1]

for any distinguisher that matches the interfaces of Πi. However, in a crypto-
graphic proof, this is commonly unattainable and even unnecessary as the proto-
cols are reasonably secure only in some specific contexts or with specific param-

45



eters. Moreover, it is sufficient if the probabilities are almost the same rather than
exactly equal. Hence, indistinguishability can be defined as follows.
Definition 1 (Indistinguishability). Two protocols Π1 and Π2 are indistinguish-
able if for any distinguisher D there exists a negligible function µ(·) such that for
every protocol input and security parameter k ∈ N

|Pr[D⟨Π1⟩= 1]−Pr[D⟨Π2⟩= 1]| ≤ µ(k) .

This is denoted as D⟨Π1⟩ ≡ D⟨Π2⟩.
The definition can be refined for a class of distinguishers rather than all pos-

sible. For computational indistinguishability, the protocols and the distinguisher
are limited to be polynomial time in the security parameter. In the following,
protocols that are indistinguishable are sometimes also called equivalent.

For simulation based proofs, the distinguisher is usually made up of two com-
ponents - the environment Env and the adversary A as the protocol context in
Figure 6a and Figure 6b. A protocol Π1 is said to be as secure as Π2 if there exists
a construction ρ : A1→ A2 such that

∀A1 ∈ A1,∀Env ∈ E : Env⟨Π1,A1⟩ ≡ Env⟨Π2,ρ(A1)⟩

where A1 and A2 are the classes of adversaries and E is the class of allowed en-
vironments. For black-box simulation, the construction ρ is the simulator. A1
and A2 can be specified to consider the exact corruption model, such as passive
or active adversaries and static or active corruption. Also, other restrictions, such
as polynomial runtime, can be set on A1 and ρ . E defines the context in which
the protocol is running and in which security is evaluated. Env acts as the distin-
guisher in Definition 1 and can similarly be restricted consider different flavours of
security. The following alternates between this definition and the definition where
the adversary construction is less implicit and simply denotes ρ(A1) as A2. The
choice is made based on which is more natural in a given situation. The following
sections discuss this setup and the following security definition and composition
theorem with the concrete details of universal composability and reactive simu-
latability frameworks.
Definition 2 (Security). Let Π1 and Π2 be collections with an identical interface
for Env, and let E be the set of compatible environments. Let A1,A2 be the set
of compatible adversaries. Then Π1 is as secure as Π2 (denoted as Π1 ≥ Π2), if
there exists a construction ρ : A1→ A2 such that

Env⟨Π1,A1⟩ ≡ Env⟨Π2,ρ(A1)⟩

for all A1 ∈ A1,Env ∈ E.
Protocols are often built from subprotocols, and especially this work mainly

considers the composition of various protocols. Hence, it is crucial to be able to
define and prove the security of a composition. The following is a version of the
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composability theorem stated in the terms used in this thesis. Concrete versions
of this theorem are discussed for the UC and RSIM framework in the following
sections.
Theorem 1 (Secure two-protocol composition). Let Πe, Π1, Π2 be three col-
lections such that collections Πe⟨Π1⟩ and Πe⟨Π2⟩ are well-defined and have an
identical interface for Env. Let E be the subset of compatible environments and
let ψ : E→ E∗ be a natural construction ψ(Env) = Env⟨Πe⟩. If there is a con-
struction φ : A1 → A2 that proves Π1 ≥ Π2 for the set of environments E∗ then
this construction is also a proof for Πe⟨Π1⟩ ≥Πe⟨Π2⟩ for the set of environments
E.

The idea of ψ is simply to form a new environment from the initial environ-
ment Env and the protocol Πe. The following sections consider more details of the
security definition as well as the composability results in the universal compos-
ability and reactive simulatability frameworks in Section 2.2.4 and Section 2.2.5,
respectively.

2.2.4. Universal Composability

This section introduces the universal composability framework for comparison
with reactive simulatability and the MPC formalisation of this thesis. The uni-
versal composability (UC) [41, 42] framework provides a formal framework for
describing cryptographic protocols and analysing their security. The strength of
the framework is the composition theorem stating that any protocol proven secure
in this framework remains secure when run in composition with arbitrary proto-
cols. As common in simulation-based proofs, the security is defined with respect
to an ideal functionality, and the proof requires defining a simulator that trans-
lates a real-world adversary to the ideal-world adversary. Overall, the simulator
has two tasks: managing the timing of the protocol and translating the messages
between the two interactions. In more detail, the setup consists of an environment
(Env), the protocol Π and an adversary A. The environment represents everything
that can happen in the world outside of the concrete protocol execution. Specifi-
cally, it provides inputs to the protocol, collects the outputs and interacts with the
protocol during the execution. It also interacts with the adversary in an arbitrary
way. A protocol Π is said to UC-securely implement a functionality F , if, for any
adversary A against Π, there exists an ideal adversary S against F such that no
environment Env can distinguish between interacting with S and F or A and Π.

Informally, the composition theorem, which is the concrete formalisation of
Theorem 1 for the UC framework, states the following. Consider a protocol
Πe⟨F⟩ that operates in a hybrid model where parties can communicate as usual
and also have access to some ideal functionalityF . Let Π be the protocol that UC-
securely implements F . Then Πe⟨Π⟩ is the composed protocol where Π is used
instead of F . According to the UC theorem, in these cases, Πe⟨F⟩ and Πe⟨Π⟩ are
indistinguishable. As a special case if Πe⟨F⟩ UC -securely implements a func-
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tionality G in the F-hybrid model then Πe⟨Π⟩ UC-securely implements G. Note
that Πe can run many instances of Π.

The main composition results hold for the cases where the internal states of
composed protocol instances are independent of each other, at least for the honest
parties. However, it is common to share some state, for example, using the same
cryptographic keys in different instances. In such cases, if any information about
the keys leaks in one protocol instance, it can easily be used to attack other in-
stances. Hence, analysing one instance independently from others with the shared
state requires extra care to account for the possibility of the joint state being re-
vealed somewhere else. A shared state can be considered if the set of instances
sharing the state is considered as one big protocol. However, this could defeat the
purpose of the modular approach allowed by the composition theorem, as one can
no longer simply work with a simple representation of the protocol. The version
of universal composability with the joint state was introduced in [47] to handle
some joint state and shared randomness. The modular formalism of this thesis
explicitly considers setup as one part of the secure computation formalism and
considers composing protocols in this specific context rather than a more general
shared setup. Hence, shared state composition results are not explicitly needed.

The main UC framework is very generic to capture various possible details of
different cryptographic protocols. In addition, it has significantly changed over
time to both fix bugs (e.g. definition of polynomial time) and add more express-
ibility. A simpler variant of universal composability (SUC) for secure multiparty
computation was defined in [44]. The main simplification compared to the generic
UC is that the MPC version assumes that all participants are fixed ahead of time.
In addition, all communication channels are authenticated while still leaving the
adversary in control of the timing. On the formal side, these restrictions sim-
plify defining polynomial-time execution. A similar simplification also appeared
in [136].

On the networking side, SUC defines all machines in a star network with a
router machine in the centre and all other machines connected only to the router.
The adversary controls the message timing via the router machine. Note that the
adversary sees all the messages, but they are authenticated. Hence, the adversary
cannot change the messages in the router. To model private messages, the mes-
sages can have two parts: a public header and private content. In such a case,
the adversary sees only the header that has to contain all the information expected
to be available to the adversary, for example, the length or type of the message.
The MPC formalisation in Chapter 3 also uses a similar approach to network mes-
sages.

As usual, the adversary is allowed to corrupt parties and control their actions
(either semi-honestly or maliciously). Similarly to UC, SUC also defines the en-
vironment Env as an interactive distinguisher for the executions. The composition
is defined as replacing the program code sending the message to the ideal func-
tionality with the code for the real functionality. Hence, in SUC, the subroutines

48



are executed internally, whereas, in UC, they are executed as separate interactive
Turing machines. The set of machines running in the SUC framework is always
fixed beforehand. Hence, the polynomial-time execution is guaranteed if each
separate machine runs in polynomial time.

SUC also limits the adversary’s capabilities. Each party is either fully cor-
rupted or not corrupted. A corrupted party is under the control of the adversary
(either actively or semi-honestly). The simplifications do restrict the types of pro-
tocols that can be expressed in SUC compared to UC. However, SUC suffices for
secure function evaluation as well as secure reactive computations. In addition,
the simplifications only affect the types of protocols that can be considered. It is
shown in [44] that any protocol proven secure in the SUC model can be automat-
ically transformed into a protocol secure in the UC model.

2.2.5. Reactive Simulatability

This section describes the reactive simulatability framework that is the basis of
the formal definitions in this thesis. Reactive simulatability [9,122] (RSIM) is an-
other way of defining the conditions that need to hold for one protocol to securely
implement another protocol or functionality. Note that there are slight variations
in different versions of RSIM [8, 9, 120–122], and the versions used here [9, 122]
consider the composition of a fixed number of parties and protocol instances with
asynchronous communication. In the overall intuition, there are many similarities
with the universal composability framework. However, there are differences in the
formal details. Still, in many cases, also this formalisation is called by the name
universal composability. Overall, the RSIM idea stems from definitions of one
system implementing another in the distributed systems world and adds a confi-
dentiality layer to these. Reactive means that the environment and the system can
interact multiple times, and asynchronous means that the adversary may control
delays in the message delivery.

In RSIM, the protocol interacts with the honest users represented by Env and
the adversary A that are essentially only distinguished by the purpose of the com-
munication. Honest users and the adversary can interact arbitrarily. A protocol
is secure with respect to universal reactive simulatability if, for every adversary
against a protocol Π, there exists an adversary S against the specification F such
that, for all honest users Env, the view of the honest user is indistinguishable in
the two settings. Notably, similarly to the UC definition, the following introduc-
tion focuses on the case where the adversary against the ideal functionality does
not depend on the honest users and is derived only from the adversary against the
real system which is called the universal reactive simulatability. It is also possible
to define general reactive simulatability where the derived adversary can depend
on both the initial adversary and the honest user but this is not used here. In ad-
dition, if the ideal adversary uses the real adversary without knowing its internals
as in Figure 6c then this is called black-box reactive simulatability. This section
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introduces the RSIM framework in its original form and connects it to the notions
and notations used in Section 2.2.3 as this thesis uses both variations depending
on the level of detail that is needed.

Specification and Notation. A participant or functionality in the RSIM frame-
work is modelled as a simple machine specified by tuple (Name,Ports, States,
σ , Ini,Fin). It is a probabilistic state transition machine with the name Name.
Ports is a sequence of ports of that machine used to connect to other machines via
buffers. States is a set of states and σ is a probabilistic state transition function.
Ini and Fin are the sets of initial and final states. When a machine starts, it reads
inputs on its input ports and takes the next transition producing the new state and
the messages to the output ports. In addition, the length of the input that it reads
is bounded by the state, and the longer parts of the input will be ignored.

Data transfer from one machine to another goes through a buffer that connects
an output port p! of the first machine with an input port p? of the second machine.
A buffer is a dedicated machine that has exactly three ports: clock-in port, buffer
in-port and buffer out-port. Messages written by other machines are written in
the buffer and then clocked out from there to deliver them to the recipients. The
shorthand pc (complement of p) denotes a port that is connected to p via a buffer.
For a set S of ports, Sc can be used similarly.

Commonly a protocol is made up of several machines interacting with each
other as well as the honest user Env and the adversary A. As an illustrative ex-
ample, consider the most common setting in the RSIM framework depicted in
Figure 7. In this configuration, a collection M, composed of several subsystems
and parties, is under the influence of an adversary A and an environment Env,
which uses the collection to obtain an output. In addition, there is a buffer de-
noted by an arrow. The collection can have any number of machines. Figure 7
considers two machines M1 and M2 explicitly, but for any other machines Mi, the
connections are similar. Finally, the adversary A schedules all buffers in Figure 7.

The execution of the machines is controlled by clocking and inputs. Exactly
one machine is active at any time. The execution goes according to the following
rules.

• A machine is clocked when it receives an input, and then it performs its
next state transition and may write messages to its output buffers.

• Any machine can clock at most one of the output buffers by sending an
input to a clock-in port of the buffer.

• Upon a clocking input, the buffer releases the value indicated by the clock-
ing party and the recipient of the value is clocked.

• If no machine is scheduled, then the control goes to a machine dedicated as
the master scheduler.

The execution ends when the master scheduler reaches a final state. In other
words, the execution continues as long as the master scheduler clocks the next
steps. The master scheduler cannot do anything useful with other machines if
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Figure 7: Canonical interface between adversary A, honest user Env and system
consisting of the collection M of machines Mi with the dedicated ports S and
adversary ports S. A also has a master clock-in port clk that is omitted from most
figures.

they have reached their final state. However, the master scheduler can finish the
execution when other machines are not yet in the final state.

A finite set of machines is called a collection M. Each machine in a collection
must have a unique name and unique ports. The connections between machines
can be derived from the port names. Writing ports(M) stresses that the ports
belong to the collection M of machines. The set ports(M) can be further split
into the ports that connect machines in the collection M and the set of free ports
free(M) that can be accessed from outside, for example by A or Env. A collection
is closed if only master clock-in port is free. The master clock-in port is an input
port that is used to activate the collection. Commonly, a collection only contains
simple machines. If the set of machines also includes all the buffers connected to
the ports (other than the master clock-in port), then it is called a completion [M].
The set of buffers that connect machines inside the collection with each other is
defined by the ports of the machines. Similarly, the set of buffers that connect the
machine in a collection to the machines outside of the collection is clearly defined.
Hence, a collection uniquely defines a completion and vice versa.

A structure (M,S) is collection of simple machines M together with a set of
ports S ⊆ free(M). Let S = free(M)\S. Ports in S are for communicating with
the environment Env, and ports in S are for communicating with the adversary
A as shown in Figure 7. To avoid confusion with communication, Env cannot
have ports belonging to S or ports used to send messages between machines in M.
These forbidden ports are denoted by forb(M,S).

A system Sys is defined as a set of structures. These structures commonly
correspond to different sets of statically corrupted parties. However, this thesis
focuses on the more generic case of adaptive corruption that can be modelled
by systems with exactly one structure. The downside is that the machines are
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more complicated and accept corruption requests during their work. Essentially,
each machine can then either work in the honest or corrupted mode. In such a
setting, static corruption can be modelled by limiting the class of adversaries to
the ones that only corrupt parties before any other action has happened in the
protocol. Hence, for current purposes, Sys = {(M,S)} and the following RSIM
overview refers only to this case. In this work, the adversary has full control over
the protocol and message scheduling but does not see the messages of uncorrupted
parties. The interface S specifies which messages the adversary can affect and
which machines it can corrupt.

A configuration of a system is a tuple (M,S,Env,A) where Env is a simple ma-
chine without forbidden ports forb(M,S) and the completion [M∪{Env,A}] is
closed with A being the master scheduler. A shorthand Conf (Sys) denotes the set
of all valid configurations for a system Sys. Note that, as for most collections, the
structure is implicitly clear from the description and in such cases, the set of con-
figurations is derived from the set of all compatible adversaries and environments
as in Definition 2.

Security definitions. Security in the RSIM framework is defined by contrasting
two systems Sys1 and Sys2, where Sys2 is the system that is known to be secure,
and Sys1 is the designed system. Both systems must have the same interface
S towards the environment Env, and there must exist a way to convert a valid
adversary A1 against (M1,S) ∈ Sys1 to a comparable adversary against (M2,S) ∈
Sys2.

A run of a closed collection is a sequence of steps of the machines where
machine N received input vin from an input port cin?, went to state s writing vi

to output port ci! and possibly clocking the channel cclk. Denote the steps of a
run as (N,cin,vin,s,((c1,v1), . . . ,(cn,vn)),cclk) A view of a set of parties M0 ⊆M
is a subset of a run that corresponds to the steps relating to machines in M0 as
is denoted by view(M0). Note that the view does not contain port names, and
therefore, it is allowed to rename ports and buffers when composing systems.
Definition 3 (Simulatability). Let systems Sys1 and Sys2 with identical sets of
free ports be given. Sys1 is perfectly as secure as Sys2 if, for every configura-
tion con f1 = (M1,S,Env,A1) ∈ Conf (Sys1) where ports(Env)∩ forb(M2,S) = /0,
there exists a configuration con f2 = (M2,S,Env,A2) ∈ Conf (Sys2) such that the
environments have coinciding views

viewcon f1(Env) = viewcon f2(Env) .

If A2 does not depend on Env, then this property is called universal simulatability.
Perfect security is denoted as Sys1 ≥per f

sec Sys2.
Definitions for computational and statistical security can be obtained similarly

by restricting the set of plausible configurations and by varying the requirements
on the views. Computational security Sys1 ≥poly

sec Sys2 requires computational in-
distinguishability of views created by all polynomial configurations Conf (Sys1).
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For statistical security Sys1 ≥stat
sec Sys2, statistical indistinguishability of views for

all configurations Conf (Sys1) is required. The running-time of A2 must be poly-
nomial in the running-time of A1. Universal simulatability is in line with the
security definition in Definition 2, where the adversary A2 depends only on A1.

Black-box simulatability means that A2 = Sim∪A1 must be the combination
of a simulator machine Sim and the adversary A1. The original machines and the
buffers between them can be thought of as the submachines of the combination.
For black-box simulatability, the simulator Sim depends only on M and the set
of ports S. It uses A1 without knowing its internals. As the master scheduler A1
is in the combination, then the combined machine A2 becomes the new master
scheduler. Some of the internal buffers are clocked by A1, others by Sim that also
uses the clock signals by A1. Another way to consider black-box simulatability is
to consider the simulator as part of the system so that the original system and the
second one with the simulator are equivalent.

The definition can also be restricted to some classes of adversaries. For exam-
ple, in terms of Definition 2, the set of all compatible adversaries could be limited
to compatible adversaries with some known properties.
Definition 4 (Simulatability for a class of adversaries). Given systems Sys1 and
Sys2, Sys1 is perfectly as secure as Sys2 for a class A of adversaries if, for every
configuration con f1 = (M1,S,Env,A1) ∈ Conf (Sys1) where A1 ∈ A and Env has
no forbidden ports (ports(Env)∩ forb(M2,S) = /0), there exists a configuration
con f2 = (M2,S,Env,A2) ∈ Conf (Sys2) with A2 ∈ A such that

viewcon f1(Env) = viewcon f2(Env) .

This is denoted as Sys1 ≥per f ,A
sec Sys2.

Security of compositions. The main result of the RSIM framework assures that
if one system is proven to be as secure as the other, then it can be used to replace
the other one in any composition without compromising the security of the com-
position. A composition of systems in the adaptive adversary case used in this
thesis means that the structures in the systems are connected through their com-
plementing ports, and each system has one structure.
Definition 5 (Composability and composition). Structures (M1,S1), . . . ,(Mn,Sn)
are composable if they have compatible port layouts:

∀i ̸= j : ports(Mi)∩ forb(M j,S j) = /0 ,

∀i ̸= j : Si∩ free([M j])
c = Sc

j ∩ free([Mi]) .

Their composition (M1,S1)|| . . . ||(Mn,Sn) is a structure consisting of all ma-
chines M = M1 ∪ . . .∪Mn that has the interface (S1 ∪ . . .∪ Sn)∩ free([M]) for
communicating with the environment.

For any systems Sys1 and Sys2, let Sys1 ◦ Sys2 denote the system of all valid
compositions (M1,S1)||(M2,S2) for (M1,S1) ∈ Sys1 and (M2,S2) ∈ Sys2. Struc-
ture (M2,S2) ∈ Sys2 is composable with Sys1 if there exists (M1,S1) ∈ Sys1 such
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that (M1,S1)||(M2,S2) ∈ Sys1 ◦ Sys2. Hence, when composing systems, only
composable structures of the systems are composed. The system composition
leads to the following theorem regarding the security of the composed system,
where it is assumed that the corresponding structures in the two systems are iden-
tified by the set of ports intended for the environment. For the cases where each
system is represented by one structure and the sets of dedicated ports is implicit,
the composition can also be denoted as M1⟨M2⟩ or M2⟨M1⟩. In addition, the
rules regarding matching ports in composable structures can be simplified to say
that the composition is well-defined, as was done in Theorem 1.
Theorem 2 (Secure two-system composition). Assume that there are three sys-
tems Sys1, Sys′1, Sys2 such that Sys1 ≥sec Sys′1. If, for every structure (M2,S2) ∈
Sys2 that is composable with (M1,S1) ∈ Sys1 and for every structure (M′

1,S1) ∈
Sys′1 the composition (M′

1,S1)||(M2,S2) exists and satisfies ports(M′
1)∩ Sc

2 =
ports(M1)∩Sc

2, then Sys1 ◦Sys2 ≥sec Sys′1 ◦Sys2.
Note that the theorem holds for various restricted cases of simulatability such

as statistical, perfect and (for polynomial-time Sys2) computational security as
well as universal and black-box simulatability and different restricted classes of
adversaries.

Time Complexity. One of the complicated details of such formalisations is the
definitions of the running times of the machines needed for computational secu-
rity. It is important to establish which machines and collections or compositions
run in polynomial time. Each machine can be thought of as a Turing machine with
work tape keeping the state of the machine, communication tapes, output tape and
other special tapes if needed.

A machine is said to be polynomial time if its number of steps is polynomial
in the security parameter (represented as the initial content of the work tape).
The notion where the time can also depend on the content of the input tapes is
called weakly polynomial. However, a combination of weakly-polynomial ma-
chines may have a running time that is exponential in the security parameter. As
a result of this definition, a collection runs in polynomial time if all its machines
are polynomial time, and a view of a polynomial-time collection is polynomially
bounded. A system is polynomial time if the machine collections in all its struc-
tures are polynomial time. A configuration is polynomial time if the structure,
honest user, and adversary are all polynomial time.

Note that transparent machines like a corrupted party simply forwarding its
communication to and from an adversary is not polynomial and is only weakly
polynomial. This is because a corrupted party may read an unbounded number of
input bits, especially those coming from an adversary. However, if the rest of the
system ensures that the size of the inputs is bounded by the expected inputs in the
uncorrupted case, then the collection will still run in polynomial time. The fol-
lowing formalisation of secure computation in Chapter 3 satisfies this as it will be
shown that the adversary has only limited meaningful interactions with each cor-
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rupted party, and therefore the systems will be polynomial time. In addition, the
RSIM model allows to include bounds on the input that the machine reads which
can also be used to ensure that corrupted machines can not exceed polynomial
time.

Leaky Buffers. The following formalisation of secure multiparty computation
frameworks extends the RSIM buffers with a leaky buffer. Such buffers are used
to consider communication that is mostly secure but where the adversary may
learn some metadata about the communication. Each message in such a buffer is
a tuple (m, t) where m is the protected message and t is the message tag that can
be seen by the adversary. This achieves a similar effect as the metadata that leaks
from the router in the SUC model.

Leaky buffers can be constructed from the standard buffers and a simple ma-
chine in the RSIM framework. The construction in Figure 8 has a message tagging
machine T and three buffers for input, output and leakage, respectively. The ma-
chine T accepts only pairs of strings (m, t) as inputs from b1 buffer. When clk1
is clocked then T receives (m, t) from the buffer b1. The pair (m, t) is written to
an output buffer b2, and the annotation t is written to the sender-clocked buffer b3
and clocked. There are two ports for clocking the leaky buffer, but the assumption
is that all ports clk1, clk2 and type belong to the same machine. The first port clk1
determines when the annotation arrives at T and, therefore, to b2 and b3. The sec-
ond port clk2 controls when and in which order message pairs (m, t) are written to
the port out and is analogous to the clocking of the regular RSIM buffer.

clk1 clk2type

in outT
b1 b2

b3

Figure 8: Construction of a leaky buffer from a simple machine and regular
buffers.

Leaky buffers are used for buffers that are under some amount of adversarial
control. Note that all regular buffers could be replaced with leaky buffers by
giving both clock signals and the leak port to the party clocking the message and
using a dummy tag t in order not to leak additional data. However, the following
chapters of the thesis use all types of buffers to make it explicit where the leaking
tags are needed. The graphical notation for the leaky buffers adds a dot to the
regular buffer notation as shown in Figure 5 for a leaky buffer clocked by C. They
are clocked by the adversary or the simulator unless explicitly denoted otherwise.

2.2.6. Comparison of Simplified UC and RSIM

In the very general view, both universal composability and reactive simulatabiity
frameworks define their own detailed version of the security Definition 2 and the
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security of composition as generalised in Theorem 1. It is hard to compare the
two frameworks in detail because both have different versions of concrete defi-
nitions and have evolved over time. A summary of the comparison of universal
composability, simplified universal composability, reactive simulatability, and the
formalisation of MPC that appears in Chapter 3 is given in Table 1. The follow-
ing of this section focuses on RSIM and SUC. Some more comparisons with the
formalisation of this thesis can be found in Section 3.7.

In the big picture, SUC and the adaptive adversary version of universal RSIM
are quite similar to each other. In all cases the security definition (version of Def-
inition 2) can be adapted to use different security models like computational and
information-theoretic. Notably, the composition theorems (version of Theorem 1)
also give similar guarantees. However, for SUC and UC, the composability theo-
rem is only stated for polynomial-time adversaries and environments. For RSIM
the composition theorem explicitly considers all versions of computational, statis-
tical and perfect security where these parties are not restricted. In the UC model
and RSIM the machines can define different corruption rules, for example, is UC
a party can be partially corrupted or become uncorrupted. In SUC and the model
of this thesis if a party is corrupted then all its control is given to the adversary.

First of all, both SUC and RSIM formalisms divide the protocol to essentially
the environment (or honest user), the adversary, and then the protocol at hand.
Both models work with a fixed number of parties and give the adversary control
over the timing of the execution. Both SUC and RSIM disallow the dynamic
generation of new machines during the protocol execution. However, for SUC, the
communication with the environment differs from the rest of the communication
model and its timing is not under the control of the adversary (or passing through
the router). This control is not relevant for corrupted parties as the adversary
controls their timing. However, for honest parties the environment can read the
output as soon as an honest party has computed it which is more in line with the
general UC setup.

In the SUC model, there is the restriction that two copies of the same protocol
in the hybrid model call different copies of their ideal sub-protocol. This is en-
sured by using suitable session identifiers and it assures that the two copies of the
protocol do not share the state through the ideal functionality that they use. The
formalism in Chapter 3 is built to support the same idea that the ideal functionali-
ties can be separated for the different protocol runs.

One notable difference is the approach to networking management. The SUC
model uses a star network with a router that is under adversarial control, and
RSIM gives similar capabilities with the clocking control over the buffers. The
public metadata that the adversary can read in the router can also be added to
RSIM buffers, as done in Section 2.2.5. Note that, despite of the central router,
the adversary in SUC cannot forward the messages to other parties than the in-
tended recipient. Hence a router could be thought of as an interface to a collection
of independent buffers. Note that the authenticity of the network channels with
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Table 1: Comparison of the properties of different protocol formalisations.

Property UC SUC RSIM This thesis
Security
model

Computational,
information-
theoretic

Computational,
information-
theoretic

Computational,
information-
theoretic

Computational,
information-
theoretic

Parties,
function-
alities

Can be added
dynamically

Fixed before
execution

Fixed before
execution

Fixed before
execution

Network
configura-
tion

Point-to-point
communica-
tion channels

Star network
with an
adversary-
controlled
router

Point-to-point
buffers with a
known party
clocking them

Point-to-point
buffers with a
known party
clocking them

Network
security

Insecure,
authentic and
confidential
all possible

Authentic
and confi-
dential with
well-defined
leaks

Insecure,
authentic and
confidential
all possible

Authentic
and confi-
dential with
well-defined
leaks

Composing Separate func-
tionality is
called

Separate
ideal func-
tionality is
called, for a
real protocol
the code of
the protocol
is inlined to
the calling
party

Separate func-
tionality is
called

Separate func-
tionality is
called

Corruption Possible to
define corrup-
tion rules

Party is cor-
rupted fully

Each machine
can define cor-
ruption rules

Party is cor-
rupted fully
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potential confidentiality has been defined as part of SUC, whereas RSIM can also
cover insecure network channels. However, the MPC formalisation given in Chap-
ter 3 of this thesis focuses on the case of RSIM with authenticated and (partially)
confidential channels.

In RSIM and UC, the subroutine that is composed is a separate machine (or
a collection of machines). The SUC model defines it by inlining the code of this
machine to the calling machine. Note that in RSIM, either the calling machine
or the master scheduler may be responsible for starting the subroutine. Hence a
similar effect to inlining in SUC can be achieved by giving the calling machine
control over the clocking of the buffer to the subroutine. In SUC, all channels
between machines are controlled by the adversary.

From the computational perspective, both formalisms define machines as prob-
abilistic interactive Turing machines with small differences in the details of the
machine setup. In SUC, the polynomial-time machine is defined as polynomial
in its input from the environment and the security parameter. In RSIM, the inputs
from the environment are not differentiated from the inputs on other ports and
polynomial time is defined only based on the security parameter with the addition
that a machine reads only an expected length of the inputs (the length is a function
of the state of the machine). In both cases, since the number of machines is fixed,
then also the running time of a system is polynomial if all machines are.

SUC was defined for formalising secure multiparty computation and also de-
fined some things that one needs to specify separately in RSIM. For example, all
calls to ideal functionalities begin with a session identifier. Respectively, the func-
tionality runs several copies of its code, one for each received session identifier.
Chapter 3 will define similar behaviour for ideal functionalities later. Similarly,
the formalisation of this thesis assumes that each party is either corrupted or hon-
est. Especially if a party is represented by multiple machines, then one must
assume that either all of these machines are corrupted or none are. Hence, parts of
Chapter 3 that sets up the formalism of secure multiparty computation can be seen
as defining a specialised RSIM framework similar to the relationship between UC
and SUC.

This thesis uses the RSIM framework over SUC because of the flexibility and
the clear structure of keeping the separate machines in composition. In addition,
in comparison to UC, it is acceptable to choose RSIM because its restrictions,
compared to the expressibility of UC, match with the ones that are reasonable for
secure computation anyway. Hence, choosing RSIM will not limit the formalisa-
tion in Chapter 3 compared to an analogous formalisation that could be established
using UC as the underlying definitional framework.
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3. FORMALISATION OF MPC

This chapter proposes a new formalisation of secure multiparty computation that
can be used independently and is the basis for the main results of this thesis. An
MPC framework is represented in this formalisation as a protection domain con-
sisting of setup, data storage and computation functionalities. The formalism is
based on the RSIM framework and certain assumptions that are generally made
towards reasonable data protection schemes and secure computation functionali-
ties. Section 3.1 gives a high level overview of the core ideas and references the
following sections that formalise these ideas.

3.1. Protection Domain Formalisation Overview

An MPC framework has some means of secure data storage and some computation
protocols. Parties can interact with the framework to execute some computations
on their private inputs and to get outputs from the system. The protection domain
look at MPC is intended to keep this modular view. A protection domain contains
all necessary operations, such as setup, inputs, outputs, and computations. Parties
interacting with the protection domain each know their inputs and they hold their
view of the intermediate data. For example, each party knows its share of secret
shared values.

The protection domain (formalised in Section 3.6) formalisation uses storage
domains (Section 3.3) to generalise different means of secure data representa-
tions. Generally, a storage domain defines methods to protect and reveal data so
that information is not disclosed to the participants before the storage domain ex-
plicitly does so. The following calls these operations sharing and reconstruction,
but the same approach applies to other data protection means, such as encryption.
The general properties required from the data protection schemes are discussed in
Section 3.3. In short, the storage domain is hiding if it ensures the confidentiality
of its contents. In secure computation, the stored values are used to derive new
stored values, and there are places where the data representation may become cor-
rupted or where it could be adversarially modified. Such properties are formalised
through modification awareness and limited control. The modification awareness
specifies that if the adversary modifies the representation of data held by the cor-
rupted party, it knows how it will affect the stored value. Limited control is the
reverse property that any allowed value modification can be achieved by changing
only the corrupted view of the representation.

A protection domain often contains a setup functionality used for both com-
putation protocols and the storage domain. The properties that a proper setup
has to obey are discussed in Section 3.2. The overall assumptions are that the
setup cannot be corrupted and always gives consistent setup data to all parts of the
protection domain.

The security of secure computation is defined through ideal functionalities that
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can be generic. A protection domain itself can be seen as a specific ideal func-
tionality. However, it is more interesting to consider its components as separate
functionalities to achieve a modular approach. Computation functionalities that
are reasonable and intuitive have some simple properties. The overall structure is
that they reconstruct the secret value, compute the desired operation in plain and
then share the result. Such functionalities are fully specified in Section 3.4. This
definition of ideal functionalities excludes the class of computations done without
interaction. Such protocols cannot leak new information to the participants, but
there has to be a way to consider them as building blocks of composed protocols.
These functionalities are called local and their details are given in Section 3.5.

The protection domain is built from the previously listed components as dis-
cussed in Section 3.6. Overall, the idea is that a protection domain is a simple
collection of the computation functionalities. The functionalities themselves con-
tain the pieces of the storage domains to reconstruct and share secrets. The parties
have an ongoing interaction with the protection domain to compute something.
They get intermediate outputs from the functionalities and give these as inputs to
the following functionalities.

Section 3.7 summarises this chapter and compares the MPC formalisation us-
ing protection domains defined in this thesis with other approaches of formalising
secure computation frameworks.

3.2. Trusted Setup

Secure multiparty computation often uses some form of setup. In fact, achieving
universal composability can be impossible without it [43, 123]. Even if it is not
necessary from the theoretical perspective, a setup phase can help achieve more
efficient protocols. For example, it is common to have setup to establish secure
channels or distribute cryptographic keys. Depending on the needs of the proto-
col, the setup phase can give both public and private parameters to parties. For
schemes that can run on various algebraic structures or different number of par-
ties, the setup could specify the number of parties, the used data structures and the
threshold of the protection scheme. These parameters are available to all partici-
pants. On the other hand, private parameters are intended only for one or some of
the participants and include mostly private keys.

In the following formalisation, the setup is considered a separate functionality
expected to give coherent parameters to all functionalities requiring them. The
trusted setup or the ideal functionality of the setup phase is denoted as F△. In
practice, this is realised by some protocol Π△. The setup distribution is expected
to be the first step in the protocol execution, and all parties that require setup re-
ceive it during the first activation of F△. For any protocol, running setup is a
one-time occurrence in a protocol. Also, all machines get the same public param-
eters, and all machines requiring the same private parameters get the same private
parameters. In addition, public and private parameters match each other. For ex-
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ample, if a public key is in the public parameters and the corresponding private
key is in the private parameters of some party. No machine that requires setup
information carries out other operations before receiving the setup.
Definition 6 (Trusted setup, F△). During the first activation, F△ internally gen-
erates all necessary setup parameters. If some machine M1 expects setup, then
F△ has a sender-clocked port pair with this machine M1. F△ writes the setup
parameters to the buffer forM1 and clocks this buffer. M1 stores this data and
immediately clocks a default response to F△. Then F△ can continue the same in-
teractions with all machinesM1, . . .Mℓ until all of them have received and stored
the setup data. Later, F△ can be queried by the adversary to learn the private pa-
rameters of the corrupted parties. The setup is said to be consistent if all machines
expecting the same setup information get the same information.

Note that the setup could also be defined as a machine that is polled by Mi

whenever they need setup. The setup distribution in Definition 6 means that some
corrupted machineMi can stop the protocol by not giving the control back to F△.
However, the following description for secure multiparty computation also leaves
many other such places where execution can be stalled. The strength of the current
description is that the setup distribution can be executed once in the beginning and
it is not necessary to consider it in the rest of the protocol description.

In a real protocol, the adversary would learn the setup information from the
parties that it corrupts. For the purpose of this thesis, we only consider security
models where the parties do not forget their parameters and these are not updated.
Hence, the same effect can be achieved if the adversary gets these parameters
from the setup functionality. This is convenient for cases where the protocol de-
scription is simplified to limit the party interaction with the adversary as used in
Chapter 5. Note that the setup itself is not corruptible and always functions as
expected. Some security models, such as the common reference string that is ma-
liciously chosen [18] or where the choice is at least limited by the adversary [46]
would also need a corruptible setup that is not discussed here. In addition, setup
may need to be repeated to adapt this formalism to consider the proactive security
model.

In Chapter 5, the set of machines changes as the proofs transform the hybrid
execution model into the abstract execution model. The transformation formally
also changes the machine F△ since it needs to interact with different machines.
However, it always operates according to the rules in Definition 6. As no machine
does any other steps before all others have also received their setup, the exact
order in which setup is distributed is irrelevant and the changes to F△ to adapt to
a changing set of machines are not discussed in the proofs.

In many cases, the setup functionality F△ has two modes of operation – it
either gives a genuine or fake setup. The latter is used to provide trapdoors for
simulation. The real setup is used when interacting with the real protocol, and
the fake one is used when interacting with the ideal adversary. This change is
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not explicitly considered, as this thesis focuses on the ideal functionalities and the
hybrid model. Still, it should be kept in mind that if, for some protocol, the fake
setup is required, then this is the mode where the F△ operates.

3.3. Security of Data Storage

A common component of secure computation frameworks is some representation
of the securely held data that comes with methods to both protect the inputs of the
user and publish the desired outputs. The secure storage can be based on secret
sharing, encryption or the encoding functions of the garbled circuit. Frameworks
that combine computation methods often also combine storage methods. The fol-
lowing defines a secure storage domain δ based on secret sharing terminology
where the private data is first shared through a functionality Sδ and can be recon-
structed through a functionality Rδ . Storage domains can also use secure setup
F△, in which case both Sδ andRδ receive the setup parameters. The functionality
Sδ distributes the input to shares received by all or a subset of the parties involved
in the protection domain. The reconstruction functionalityRδ receives shares and
outputs either the value or a special failure symbol⊥ if the reconstruction fails for
any reason. A storage domain is correct if the reconstruction of shares given by
Sδ always gives the same value as the input of Sδ . To illustrate, for homomorphic
encryption, encryption is formalised as sharing and decryption as reconstruction.
The setup is used to generate the necessary keys. For garbled circuits, the corre-
spondence is less obvious and is defined based on the correspondence of wire la-
bels and bit values. Sharing matches the bits to labels and reconstruction matches
the outcome label back to bits. Note that the garbling scheme usually only gives
reconstruction information for the wires designated as outputs.

The sharing and reconstruction functionalities Sδ andRδ are defined as state-
less in terms of their shared or reconstructed inputs. However, they store the setup
that they receive before any other activations. Statelessness is suitable for many
schemes, but there can be some, where the state is necessary or one needs to care-
fully consider how to define the functionalities. For example, in garbled circuits,
the encoding depends on the concrete wire where the value is on. Hence, the
input to the encoding functionality should be the wire and the value. Similarly,
the decoding should take the wire and the encoding and can only be used to de-
code the outputs of the garbled circuit. There are also stateful encryption schemes
where, similarly to the garbled circuits, the state or some necessary part of it can
be considered as part of the input and output of Sδ and input of Rδ . Treating the
information regarding the state as an extra input means that these functionalities
remain stateless.

To define the security properties of the storage domain, it is essential to re-
member that all such properties hold for certain adversaries or sets of corrupted
parties. Let Aδ be the adversary structure defining which sets of parties can be
corrupted without losing the security properties of the storage domain. Aδ is a

62



set of sets of parties, and each of these sets can be safely corrupted together. The
following definitions are akin to secret sharing security definitions in [22]. The
hiding property in Section 3.3.1 is a fairly straightforward extension of privacy.
However, the integrity property called modification awareness in Section 3.3.2 in
a generalisation of recoverability that is necessary to consider malicious actions
in secure multiparty computation. The correspondence is discussed more in Sec-
tion 3.3.3.

The definitions of hiding and modification awareness are given as indistin-
guishability games defined using collections of machines in the RSIM notation
since this allows to use these results directly in the context of secure multiparty
computation protocols that are also defined in RSIM here. In addition, the defini-
tions are drawn up with the knowledge that it is necessary to simulate the shares of
corrupted parties within security proofs of secure multiparty computation. Often,
it is necessary for the simulator first to simulate the shares blindly and then adapt
the shares not yet seen by the adversary so that they could be reconstructed to the
desired value. This process has been called patching in [56].

3.3.1. Hiding

Intuitively, a storage domain δ is hiding if, as long as the adversary corrupts only
a set of parties allowed byAδ , it learns no information about the secret input. This
is captured by Definition 8. In addition, the definition considers what happens if
more parties become corrupted. Furthermore, it limits other unwanted behaviours
of Rδ and Sδ that may leak something other than the private value, for example,
the setup parameters or some previous values.

L L∗

Sδ

Ssimδ

Rδ

P1

P2

F4 F4 F4

A A

P1 P2

A

Figure 9: Configuration defining the hiding property of a storage domain with
secret sharing functionality Sδ , share simulator Ssim

δ
, reconstruction functionality

Rδ , adversary A, value memoryL, and share memoryL∗. Adversary andL∗ ports
are drawn for the two-party case. The grey labels show that duplicated buffers are
intended for parties P1 and P2.

The collection in Figure 9 defines the hiding games. The functionality Sδ is the
secret sharing functionality, and Rδ is the reconstruction functionality. A is the
adversary and F△ is the secure setup. The memory machines L and L∗ store the
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values and their shared representations, respectively. The ports for the adversary
and L∗ are drawn for the two-party case. Each party would be a separate machine
and have its own connection to Sδ , Ssim

δ
and Rδ as well as the adversary. The

machine L∗ is an abstraction of the parties that keeps the shares of all parties in
one machine. If there are more than two parties, there are also more buffer pairs
for each currently duplicated communication channel. L stores a one-dimensional
array s where the adversary can write inputs it wants to have shared. L∗ has a
multidimensional array s∗ for the shares, s◦ for the temporary shares, and a one-
dimensional array b to define if the shares are generated by Sδ or Ssim

δ
. The share

simulator Ssim
δ

is an efficient machine that has to generate shares to s∗ but can
only query the respective value in s once the adversary has corrupted a subset of
parties not inAδ so that it breaks the hiding property. The existence of Ssim

δ
needs

to be shown to prove that the storage domain is hiding.
The hiding definition uses the structure considered in Figure 9 in two different

manners. Game B0 represents honest behaviour where all shares are generated
by the real sharing functionality Sδ . In game B1, the adversary can force share of
the value in location ℓ to be generated by Ssim

δ
by setting the value b[ℓ] = 1. It is

the goal of the adversary to distinguish simulated shares from the real shares.
Note that the description has separate buffers for parties but no explicit repre-

sentation of the party that could be corrupted. In a protocol these buffers would be
connected to machines representing a party and the adversary could only use them
if a party is corrupted. For the current exposition, a party is considered corrupted
in this collection if the adversary uses the buffer pair for the said party. L∗ stores
the set of corrupted parties.
Definition 7 (Hiding games, B0 and B1). As the first step, F△ distributes setup
according to Definition 6. The adversary A can interact with the configuration in
Figure 9 in the following ways. There are no interactions or steps carried out other
than the ones described in the following as only A can activate the execution.

• A can send value x and location ℓi to L. L stores s[ℓi] = x. L sends ℓi to L∗
that stores this.

Note Each location ℓi can be set once.

• A can send commands to write a value b to b[ℓ] = b to L∗ using the buffer
pair for Pik before reading s∗[ℓ, i j] for any Pi j .

– Party Pik is marked as corrupted by L∗.
– If the adversary is playing in game B1 then the value b[ℓ] is set so that
b[ℓ] = b.

• A can send commands to L∗ to read s∗[ℓ, ik] using the buffer pair for Pik if
it has written s[ℓ] to L.

– Party Pik is marked as corrupted by L∗.
– If L∗ has not received location ℓ from L then L∗ does not do anything.
– If the shares are not yet present in L∗ (s∗[ℓ, ik] is empty), then one of
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the following happens.

* If b[ℓ] = 0 then L∗ asks L to share the value in s[ℓ].
L does that by sending the value to Sδ . Sδ generates the shares
and sends them to L∗. L∗ stores the share of party Pi j to s∗[ℓ, i j].

* If b[ℓ] = 1 then the query is sent to Ssim
δ

using the buffer pair for
Pik . L∗ also sends the set of indices of corrupted parties. If the
adversary has corrupted more parties than allowed by Aδ then
Ssim

δ
can query L to learn the value s[ℓ] and use it. Ssim

δ
delta

generates the necessary share and sends it to L∗. L∗ writes this to
s∗[ℓ, ik].

– Finally, L∗ responds with the value s∗[ℓ, ik].
Note In B0, the value of b[ℓ] is always 0, and the real sharing functionality

is always used even if the adversary tries to modify this value.
Note In B1, the value of b[ℓ] is set by the adversary when it asks for the

first share for a location ℓ. It cannot be overwritten with subsequent
queries for the location ℓ.

Note Ssim
δ

can use the public setup parameters and the private parameters
of the corrupted parties to simulate the shares of the corrupted parties.

• A can askRδ to reconstruct the value in location ℓ if it has stored a value in
location ℓ in L.

– Rδ requests the shares in s∗[ℓ] from L∗.
* If b[ℓ] = 0 then L∗ sends the shares in s∗[ℓ, ik] toRδ .

* If b[ℓ] = 1 then the shares in s∗[ℓ] cannot be used.
If s◦[ℓ] is empty then then L∗ first requests L to share s[ℓ] using
their direct communication channel. Sδ shares the value and L∗
stores these shares to s◦[ℓ].
L∗ gives s◦[ℓ, ik] toRδ .

Note If b[ℓ] = 1 then the shares in s∗[ℓ] are simulated and not corre-
sponding to the real value. Hence, the reconstruction must use
new shares generated from the correct value.

– Rδ reconstructs the value and returns this to A.

Definition 8 (Hiding storage). A storage domain δ is perfectly hiding if no ad-
versary can distinguish configurations B0 and B1. A storage domain δ is hiding
for a class of adversaries A if the advantage is negligible for any A ∈ A.

Many secret sharing schemes do not use private setup parameters. This means
that different outputs of Sδ are not correlated by any secret information and are
independent because of the stateless nature of Sδ . In this case, the existence of
Ssim

δ
for a single sharing is sufficient to prove the hiding property. This is in line

with the usual security definitions for secret sharing.
If secret parameters are used, it is important to consider the case where many

sharings are generated. In addition, adversary A is also expected to know the setup
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parameters of the corrupted parties and any other information that Ssim
δ

can have
from the setup functionality. Suppose the shares leak more information about the
setup or previously shared values than is already known by the corrupted parties.
In that case, it is not likely that the hiding property can be satisfied.

If the storage domain considers static corruption, then Ssim
δ

can also know
the set of corrupted parties beforehand and use this to generate shares for the
corrupted parties using the setup parameters of the corrupted party. In case of
adaptive corruption, the simulator Sδ must carry out a procedure called patching
in [56] to continuously create new shares as more parties become corrupted and
make sure the shares correspond to the correct value. Dealing with mobile cor-
ruption requires updating the definition to consider the stages where the sets of
corrupted parties can change and needs to add steps to suitably update the shares.

Note that this definition is in line with the perfect privacy of secret sharing
schemes. Hence, it does not consider the case where some partial information
about the secret may leak if enough parties become corrupted. On the other hand,
this definition does not limit any leakage once too many parties are corrupted. A
secure computation framework often contains several storage domains with dif-
ferent adversary structures. For example, there are public values known to all
parties, values that are shared and values that are known to some fixed party. As
soon as the adversary corrupts Pi, it learns that party’s public and local values, as
it has corrupted more parties than allowed by the adversary structure of these stor-
age domains. On the other hand, it does not get access to shared values unless Pi

was the last party to be corrupted to go over the adversary structure of the shared
values.

3.3.2. Modification Awareness and Limited Control

Modification awareness is an extension of the integrity property of secret sharing.
In robust secret sharing, the situation is black and white. Either the share can
contain the desired value, or the reconstruction fails. However, in some other
schemes, it may be possible to also change the underlying value, at least to some
extent. Modification awareness covers both of these properties and defines an
extractor Eδ that has to take the adversarial modifications and understand if they
result in a change in the shared value, corrupt the value, or simply change the
shares and keep the same value. Modification awareness is necessary because an
active adversary may always change its shares. However, it has been observed
that, in many cases, the adversary also knows how its changes affect the shared
value. For example, [70] discusses that for typical schemes, adversarial actions
result in additive changes to the final output.

A storage domain δ defines a modification function ⊕δ . Let [[x]] = (x1, . . . ,xn)
be the secure data representation given by Sδ so that Pi knows xi. Let A be the
set of indices of corrupted parties. Let [[x̂]] = (x̂1, . . . , x̂n) be the adversarial mod-
ification of this where xi = x̂i if Pi is not corrupted. The extractor Eδ gets the
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values (xi)i∈A,(x̂i)i∈A for the set of corrupted parties in A and it also gets the setup
parameters known by these parties. The goal of Eδ is to output a modification ∆

to the value that is such thatRδ ([[x]])⊕δ ∆ =Rδ ([[x̂]]). If the modification invali-
dates the secure representation of data and reconstruction is not supposed to work,
then the modifier ∆ =⊥. The modification function can be any function with the
additional constraint that a⊕δ ⊥ = ⊥ and ⊥⊕δ a = ⊥ for any a that is a valid
input to Sδ .

L L∗

Sδ

Eδ

Rδ

P1

P2

F4 F4 F4

A A

P1 P2

A

Figure 10: Configuration defining the modification awareness and limited control
properties of a storage domain with secret sharing functionality Sδ , extractor Eδ ,
reconstruction functionalityRδ , adversary A, value memoryL, and share memory
L∗. Adversary and L∗ ports are drawn for the two-party case and the parties are
noted as the buffer labels.

To prove modification awareness, the prover must show that there is an effi-
cient extractor Eδ for the configuration shown in Figure 10 and the game defined
in Definition 9. As before, Rδ and Sδ are the reconstruction and sharing func-
tionalities. The memory machines L and L∗ are slightly modified from the hiding
property description. In particular, s∗ is the entire state of L∗ and L∗ allows A
to write s∗[ℓ, ik]. Similarly, as before, a party Pik is considered corrupted if the
adversary reads or writes s∗[ℓ, ik].
Definition 9 (Modification awareness game, B2). The games start by F△ dis-
tributing the setup according to Definition 6. The adversary A can interact with
the modification awareness game in Figure 10 and cause the following actions.
There are no other execution steps.

• A writes values to s[ℓ] by sending the value x and location ℓ to L.
– L sets s[ℓ] = x.

Note Each value can be set once.
• A reads values in L∗ through Eδ by requesting a location (ℓ, ik) if it has set

location ℓ in L.
– Party Pik is marked as corrupted by L∗ meaning that it adds ik to A.
– If adversary reads an uninitialized s∗[ℓ, ik] then L∗ notifies L that

shares the value in s[ℓ] using Sδ .
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– L∗ sends s∗[ℓ, ik] to Eδ that sends it to A.

• A can modify each location ℓ by sending Eδ the new values x̂ik for locations
s∗[ℓ, ik] for ik ∈ A.

– Each party Pik is considered corrupted, each ik is added to A.
– Eδ uses the existing shares s∗[ℓ, ik] for ik ∈ A in L∗ and the modified

values x̂ik received from A to compute ∆.
– Eδ updates the respective locations in L∗ with the values x̂ik received

from the adversary and sends the pair (ℓ,∆) to L.
– L sets s[ℓ] = s[ℓ]⊕δ ∆.

Note Each location ℓ can be modified once.

• The adversary can orderRδ to reconstruct the value in s∗[ℓ].

– Rδ forwards this request to L∗ that responds with s∗[ℓ] that is used as
a reconstruction input byRδ .

– The reconstructed value is given to A.
Note The adversary wins the game if the location ℓ is initialized, the re-

ceived value is different from s[ℓ], and the set of corrupted parties is
in Aδ .

Definition 10 (Modification aware storage domain). The adversary A wins the
modification game B2 (Definition 9) if the set of corrupted parties is in Aδ , lo-
cation ℓ is initialized, the adversary orders Rδ to reconstruct the shared value in
s∗[ℓ] and the reconstructed value is different from the value in s[ℓ] in L. A storage
domain δ is modification aware against a class of adversaries A if the probability
of winning B2 is negligible for any A ∈ A.

In practice, the adversary may change the shares many times. However, the
game definition limits the changes to one modification that affects all corrupted
shares simultaneously. The same effect could be achieved if Eδ stores the initial
valid shares and all the modifications and the difference ∆ is computed only when
the reconstruction order is received. The current definition is more straightforward
since Eδ is stateless.

For a stateless Eδ , continuously computing the modifier and discarding the
previous state might not be possible as A may keep track of all of the state. For
example, A could first invalidate the shares and then restore the shares to their
previous value. The invalidation causes a situation where s[ℓ] = ⊥ and, by def-
inition of ⊕δ , no later modification ∆ could restore the initial value in s[ℓ]. In
addition, the current definition simplifies Eδ since it can always assume that the
initial shares are valid shares of some value.

Similarly to the definition of the hiding property, it suffices to show extraction
for a single shared value if no private setup parameters are involved. For cases
with private parameters, these parameters and a possible connection between dif-
ferent shares must be taken into account.
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Note that modification awareness covers basic integrity for cases where the
only possible outcome of the modifier ∆ is either ⊥ or the identity element for
⊕δ . This definition also covers correctness, meaning that the new output of Sδ is
always reconstructed to the same value as the input. If the storage domain is not
correct, then the adversary could win in the modification awareness game even if
it does not do any modifications.

If the secret sharing scheme is robust, then the only possible output for Eδ is
the identity element of ⊕δ . If the scheme is verifiable, then the possible outputs
are the identity element and ⊥. However, note that the adversary may still change
the shares in s∗ even if the output is the identity element for the change in s.
For example, an adversary might switch shares between parties. As before, the
modification awareness definition does not give any guarantees when the adver-
sary corrupts more parties than allowed by Aδ and, in this case, any modification
might be valid. For example, if an adversary corrupts a party, it can modify its
local values. If it corrupts all parties, it learns all setup parameters and can easily
create valid shares for any value.

Modification awareness considers finding a value modification based on the
modification of the shares. Sometimes, it is also necessary to consider if the re-
verse is possible. For example, can the adversary or a reverse extractor find valid
share modifications to change the value by ∆. This is defined as the adversary hav-
ing limited control over the storage domain since it is natural to expect that, for
each specific domain δ , the acceptable set of values ∆ is limited. If the extractor
Eδ is a two-way extractor, then limited control and modification awareness can be
considered in the same configuration in Figure 10.

The limited control game in Definition 11 follows the pattern of B2 (Defini-
tion 9) with the difference that the adversary can send a modifier ∆ for L through
the extended extractor Eδ . L still sets s[ℓ] = s[ℓ]⊕δ ∆. However, the extended
extractor Eδ uses (xi)i∈A from s∗[ℓ, i] and computes new shares (x̂i)i∈A that result
in modification ∆.
Definition 11 (Limited control game, B3). The game starts with the setup distri-
bution as in Definition 6. The adversary A can interact with the limited control
game in Figure 10 and cause the following actions. There are no other executions.

• A writes values to s[ℓ] by sending the value x and location ℓ to L.

– L sets s[ℓ] = x.
Note Each value can be set once.

• A reads values with location (ℓ, ik) in L∗ through Eδ .

– Party Pik is considered to be corrupted meaning that ik is added to A.
– If adversary reads an uninitialized s∗[ℓ, ik] then L∗ notifies L that

shares the value in s[ℓ] using Sδ .

• A can modify each location ℓ by sending Eδ the modifier ∆ for location s[ℓ].

– Eδ uses the existing shares s∗[ℓ, ik] for ik ∈ A in L∗ and the modifier ∆
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received from A to compute new shares x̂ik .
– Eδ updates the respective locations in L∗ with the values x̂ik received

from the adversary and sends the pair (ℓ,∆) to L.
– L sets s[ℓ] = s[ℓ]⊕δ ∆.

Note Each location ℓ can be modified once.

• The adversary can orderRδ to reconstruct the value in s∗[ℓ].

– Rδ forwards this request to L∗ that responds with s∗[ℓ] that is used as
a reconstruction input byRδ .

– The reconstructed value is given to A.
Note The adversary wins the game if the extractor fails, meaning that the

outcome ofRδ for location ℓ differs from s[ℓ] and the set of corrupted
parties A is in Aδ .

Definition 12 (Limited control). The adversary A wins the game B3 (Defini-
tion 11) if the extractor fails, meaning that the outcome of Rδ for location ℓ
queried by the adversary differs from s[ℓ] and the set of corrupted parties A is
in Aδ . A class of adversaries A has limited control over a storage domain δ if the
probability that the adversary wins B3 is negligible for any adversary A ∈ A.

Note that a storage domain can only have limited control if there is a straight-
forward way for the extractor Eδ to define shares of ⊥. Current versions of both
modification awareness and limited control are studied for cases where there is a
way for Sδ also to define shares of ⊥ so that ⊥ is a valid input that the adversary
can write toL if there is any way for the shares to become invalid. If invalid shares
are possible, then Eδ may write ⊥ to L anyway. In such case, the reconstruction
functionality Rδ has to be able to output ⊥. It is not required in these definitions
for Sδ to accept ⊥ as an input. However, in most cases, the storage needs to be
both hiding and modification aware and in these cases, it is most straightforward
if ⊥ is a valid input to Sδ .

3.3.3. Connections to Previous Definitions

The hiding property corresponds well with the semantic security (CPA security)
of encryption schemes and the secret sharing privacy defined in Chapter 2. The
main difference from the secret sharing privacy definition is that the definition
of hiding explicitly considers the case where many values are shared. A simi-
lar effect of hiding many values is achieved in the definition of semantic security
with public key encryption, as the adversary can encrypt any value as it knows
the public key. The definition of the hiding property looks quite different from
the semantic security but aims to achieve a similar effect without giving the ad-
versary the setup information that is the generalisation of the public key in the
semantic security case. The hiding definition either gives an encryption (or share
or otherwise protected version) of a known value or simulates that value. In the
semantic security game in Section 2.1.6, the adversary has to distinguish two val-

70



ues. For an encryption scheme, a natural simulation usually gives an encryption of
some other value. Such simulation implies that the adversary should not be able
to distinguish ciphertexts derived from two different values as in the definition in
Section 2.1.6. Hence, if an encryption scheme has semantic security then there
should also exist a suitable simulator Ssim

δ
that proves that the encryption scheme

is hiding as in Definition 8. There is no clear correspondence between the given
definitions and chosen ciphertext attacks against encryption schemes. In the given
definitions, the sharing functionality is part of the game. There is no straightfor-
ward way in the hiding game for the adversary to generate sharings and ask for
their reconstruction.

The definitions of modification awareness and limited control are more com-
plicated. Modification awareness extends the recoverability property of secret
sharing schemes. For robust schemes, the definitions are essentially the same,
with the exception that modification awareness also explicitly considers sharing
multiple values. For homomorphic encryption, there is no explicit definition of a
similar property. If the key and ciphertext are known, the ciphertext can always
be modified. However, at least simple modifications, such as adding a known
value to the encrypted value, are covered by the modification awareness defini-
tion. There could be modifications where the modification function is not easy
to define. However, in reasonable use cases, either the adversary is passive and
does not do modifications, or the authenticity of encryption or ciphertext contents
should be somehow verified. Such verification would then limit the allowed mod-
ifications.

Connecting the definitions with those of the security of garbled circuits is more
complicated as these definitions are not directly about the secure representation.
The obliviousness property of garbled circuits implies that the output of the gar-
bled circuit has to be hiding, as the simulator does not learn the expected output of
the circuit. In addition, the privacy and obliviousness properties imply that other
wire encodings have to be at least somewhat hiding if the whole circuit informa-
tion is not given to the simulator. In both games, the adversary only learns the
wire encodings corresponding to its inputs. However, if the intermediate wire la-
bels would leak the actual value on the wire, then it would be easy to distinguish
the simulation and the real garbling for the cases where the simulation generates
a wrong value to some wire due to using a wrong gate. Hence, at least the values
must be hidden. There is no equivalent of modification awareness in the pure case
of garbled circuits since the definitions expect passive adversaries that do not try
to do any modifications.

3.4. Ideal Functionalities

The ideal functionality is essentially the protocol specification and, overall, does
not have to obey any explicit rules. It is a definition rather than anything concrete
and could, in fact, define any desired properties and functionalities. However,
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there is also a common intuition about the shape of the secure multiparty compu-
tation protocol and what it means for it to be secure. This section defines ideal
functionalities based on this common understanding, and, as such, these could be
considered the standard lightweight ideal functionalities.

Overall, there are two main variations on how to define an ideal functional-
ity for an MPC protocol. In the first, the ideal functionality considers the whole
computation and its inputs and outputs are plain values that are either public or
belong to some party. In the second, the ideal functionality corresponds to some
specific operations done during the computations and the whole computation is a
composition of many functionalities. We call the latter lightweight ideal function-
alities as they often correspond to lightweight operations such as basic arithmetic
as opposes to more complex programs. The arithmetic black-box (ABB) defined
in Section 2.1.8 fits into the first category as it defines the whole functionality
from public inputs to public outputs. However, individual commands inside the
ABB can be easily mapped as lightweight ideal functionalities. The second is
often used in research papers considering passive security and designing new al-
gorithms assuming some existing primitives. However, it is more complicated
for cases where the representation of the secret information contains some private
setup and the inputs or outputs may be corrupted. In this thesis, the ideal func-
tionality F is considered to be the lightweight functionality. The overall secure
computation consisting of these lightweight functionalities is called the protection
domain (specified in Section 3.6). Comparison of the protection domain approach
and ABB appears in Section 3.7.

Each lightweight ideal functionality follows a common work pattern. It re-
ceives all inputs, reconstructs the encoded values, computes the desired function-
ality with the plain values, shares the output, and sends each participant their
part of the output. Note that public inputs and outputs are a special case where the
reconstruction or sharing is an identity function. By definition, such an ideal func-
tionality produces a fresh output encoding that depends only on the value of the
output and not on the input encodings. This property is similar to the circuit hiding
property of homomorphic encryption introduced in Section 2.1.6 and ensures that
the outputs do not reveal information about the computation. In addition, for func-
tionalities that output many values, the sharings of these values are not correlated.
This structure means, for example, that an output of a functionality cannot contain
all input shares or the output of some deterministic computation with these shares.
Also, no protocol input can be copied to the output of the functionality.

An ideal functionality may be queried many times throughout the execution
of the protocol. In such cases, it is important to distinguish protocol instances.
Protocol instance tags t are used to communicate which instance an input or an
output belongs to. We assume that the functionalities are used within one protec-
tion domain (described in Section 3.6 meaning that it is in one secure computation
protocol and uses the same setup for all its instances. In principle, this can be ex-
tended to allow the setup to be instance specific but this is not considered here.
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Aforementioned intuition about the ideal functionality is sufficient in many
cases throughout this document. The following considers the detailed construc-
tion of the functionality and the different interactions that it can have with the
adversary.

3.4.1. Canonical Ideal Functionalities

The structure of a lightweight ideal functionalityFp is depicted in Figure 11. This
section specifies some more properties of these components that together form a
canonical ideal functionality. The machines R and S combine the Rδ and Sδ

functionalities of each storage domain used by this ideal functionality. Note that
this includes domains for public values. The machines TR and TS manage the
timing of the execution of R and S, respectively. The functionality F◦p computes
the desired function using the values.

Fp

TR

TS

R

F◦p

S

P1 P2

P1 P2

F4 F4F4

A A

Figure 11: Structure of the ideal functionality Fp with connections for two par-
ties and setup F△. The ideal functionality contains a reconstruction timer TR,
reconstruction machine R, the computation functionality F◦p , sharing timer TS
and sharing functionality S .

The machine TR collects all inputs from parties Pi. When receiving an input,
it always stores the input and checks if it has sufficient inputs to run R. If it has
all inputs, then R is activated. If there are not sufficient inputs, then TR stops.
R always reconstructs the value using the necessary Rδ and returns the result
to TR immediately. Upon receiving the value, TR writes the information about
the protocol instance to the buffer to TS if necessary and writes and clocks the
received value to F◦p . F◦p computes the desired functionality and gives the result
to TS . F◦p also specifies the storage domain δ for each output. TS forwards
the storage domain and value to S that uses a suitable Sδ to produce the shared
representation of the value. TS then clocks the input channel from TR to get the
instance tag and uses the tag to write the outputs to the buffers for relevant parties
Pi. Adversary controls the timing of the output buffers.
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Often, the ideal functionalities Fp are simple one-round machines that collect
inputs and compute the output of the desired function. For example, this is the
case for all ideal functionalities implementing arithmetic functions. However, in
general, the ideal functionality may have many rounds of communication with
the parties and then F◦p may also be stateful. In addition, a functionality can be
executed many times with different instances. Hence, an instance tag is necessary
to keep track of the execution. Instance tags t are included by the parties Pi when
they send their inputs, used by TR to group the right shares and then used by TS
when the outputs are sent out so that the result parties know which instance was
computed. The instance tag t is communicated from TR to TS through their direct
buffer. The tags are necessary since the timing of the execution is under the control
of the adversary that clocks the inputs and outputs of Fp, and the execution timing
depends on when all parties have sent their inputs. Hence, the timing cannot be
used to distinguish protocol instances from each other.

The concrete corruption model for the ideal functionality depends on the al-
lowed interactions with A. However, a reasonable common restriction is that cor-
ruption must only directly affect the inputs and outputs of the corrupted parties.
This is considered in Definition 13. Further details of possible corruption are
discussed in Section 3.4.2.
Definition 13 (Standard corruption mode). An ideal functionality Fp has a stan-
dard corruption mode if

1. all output values given to Pi are generated by S from the output of F◦p and
distributed by TS

2. and the adversary cannot learn anything about the shares of the honest par-
ties other than revealed by the outputs to the corrupted parties.

Definition 14 (Canonical ideal functionality). Functionality Fp is in canonical
form if

1. it is a collection of TR,R,F◦p , TS and S with the internal structure specified
previously and illustrated in Figure 11,

2. has a standard corruption mode (Definition 13),
3. always outputs ⊥ if any input reconstructed byR is ⊥,
4. and only gives outputs to parties that have submitted any input.
Note that the condition that the adversary cannot learn anything other than the

public outputs about the honest shares is there to ensure some common sense in
the functionality while not restricting adversarial communication too much. In
usual cases the adversary either does not learn anything or can lean the inputs or
outputs of the corrupted parties from the functionality and these are allowed by
the standard corruption mode. However, in some cases the functionality might re-
veal more information, such as some leaked conditions. In these cases, extra care
is needed to verity that such a functionality is indeed with standard corruption or
otherwise extra analysis of the protocol is needed to ensure that this functional-
ity is a suitable candidate. The abstract model for protocol analysis derived in
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Chapter 5 only considers canonical ideal functionalities.
Note that it is possible to define ideal functionalities that go from one storage

domain to another and also give outputs to parties that are not giving input data.
However, the definition of canonical ideal functionality expects that these parties
have sent some message as input. This could be some constant message in their
local protection domain and could be ignored by F◦p , but it is necessary because it
ensures that the party is not surprised by messages sent from Fp. Any ideal func-
tionality that does not have this property could be modified to the one that has as
long as the local domains can be considered. For example, an ideal functionality
for sharing an input would collect a public input value from one party and a token
from other parties. Then the public value would be passed throughR and returned
as the same value, F◦p would be the identity function and finally, S would execute
the functionality Sδ for the storage domain δ that is required for the output.

The machines S and R may require the setup parameters to execute their op-
erations, including both the public and private parameters of all parties. TR only
requires public setup parameters, for example, to know the number of parties in
the computation or the modulus of the computation. If any such information is
necessary for F◦p , TR includes it when sending the inputs to F◦p .

The assumption is that if any input reconstruction fails and F◦p gets ⊥ as an
input, it always outputs⊥. This means that S must have a defined way to generate
shares for⊥ if the ideal functionality fails silently. For example, if the secret value
is authenticated like in the SPDZ [59], then no single party notices that the output
is actually undefined. If the failure is checked, then the failure notification can be
sent publicly.

3.4.2. Corruption Modes

The previous section defined standard corruption mode in Definition 13 as the
case where the outputs of the functionality do not reveal direct information about
the input shares and the adversary can see the corrupted shares. There are still var-
ious ways to interact with the adversary that fall within this limitation. Note that
for canonical ideal functionalities, only TR and TS could communicate with the
adversary. Depending on the adversarial model, the adversary could communicate
with either of those or both.

In the case of passive corruption, there are two possible ways to define the
ideal functionality and adversary communication. First, it is possible to consider
the case where the ideal functionality reveals the corrupted input shares to the
adversary through TR and outputs through TS . Secondly, it is possible that the
ideal functionality has no connection to the adversary. This depends on whether
it is more convenient to assume that the adversary sees the inputs in some other
manner before they are given to the protocol. For example, the adversary may
interact with the corrupted party that gives all its view to the adversary. However,
sometimes it may be more convenient not to consider the parties at all and as-
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sume that the ideal functionality knows which parties are corrupted and gives the
corrupted inputs and outputs to the adversary itself. This thesis uses the variation
with direct communication in Chapter 4 and the model with the communication
with the parties in Chapter 5.

The same two patterns with regards to the inputs can be considered for the
active adversary. However, an active adversary might also want to change the
corrupted inputs and could therefore send updates to TR. In the definition of a
protection domain in Section 3.6, the assumption is that all modifications of the
input are done before the inputs arrive at the ideal functionality. Throughout this
thesis, the assumption is that the active adversary communicates with the parties
to modify the inputs.

In most cases, the output behaviour of ideal functionalities with active adver-
sary requires some communication between TS and the adversary. The follow-
ing explains how some common definitions can be mapped to the canonical ideal
functionalities. If the ideal functionality is robust, meaning that the adversary can-
not affect its execution, then it has no communication with the adversary. How-
ever, if the functionality has security with abort, then the adversary can instruct TS
to send abort notifications to all parties instead of the shares. If the computation
is fair, then the adversary can abort without seeing the outputs of corrupted par-
ties. Hence, TS does not give it access to shares. In case of unfair protocols, the
adversary can learn the corrupted shares from TS . Similarly to the failure in the
input reconstruction, the abort can be either silent or announced to all parties. In
the former case, the TS must generate new shares of ⊥ that stand for the silently
failed protocol. If the protocol has a selective failure possibility, then the adver-
sary could choose this as an option, and the functionality would fail if the failure
conditions were met. In the covert security model, there is some possibility that
the adversary can successfully cheat. In this case, the adversary can signal the
ideal functionality that it wants to cheat and the functionality has to decide if it
succeeds. If cheating fails, then the ideal functionality sends the abort message to
all parties and also indicates the corrupted parties or the cheating party, as in this
case, the honest parties detect cheating. Suppose cheating succeeds, then in the
worst case, the functionality breaks and leaks its data to the adversary similarly to
the case of corrupting more parties than allowed for the hiding property. It also
allows the adversary to define the outputs of the honest parties. However, it is
also possible to limit the effect the adversary can have in case of successful cheat-
ing and only allow these actions and data leaks. Note that addressing the case
of corruptible ideal functionalities where the adversary can choose the outputs of
the corrupted party means that the functionality that shares the output should be
enhanced to allow for generating valid shares for the honest parties based on the
value and the corrupted shares.

Each ideal functionality defines how many corrupted parties are allowed be-
fore its security breaks. In more general, ideal functionalities define their own
adversary structures. These always depend on the structures of the used storage
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domains but can be more restricting. In case the adversary corrupts more parties
than allowed by the functionality, TR and TS can be used to learn the input and
output values of the protocol. TR notifies the TS in case the corruption bounds
have been broken since TS does not have the setup information and may not be
able to decide it without the setup. If the ideal functionality does not have direct
communication channels with the adversary, then the fact that it is broken can
mean that TS sends all outputs to all parties. On the other hand, if the adversarial
structure is the same as the hiding property of the storage domain, then simply
giving all outputs as usual means that the corrupted parties can restore the input
and output values from their interactions with the functionality. Note that the lat-
ter is the only formalisation where the ideal functionality does not need to know
that the corruption bound has been reached.

If the ideal functionality has communication with the adversary, then the pre-
vious description assumes that the ideal functionality has knowledge of which
parties are corrupted. In the case of static corruption, this can be considered as
part of the setup or each party can start their interaction by declaring themselves
as corrupted. In adaptive corruption, the functionality is notified when new par-
ties become corrupted. Overall, a party is definitely corrupted if the adversary
requests its information from TR or TS . However, in such cases, different func-
tionalities may consider different parties to be corrupted, and usually, this would
overcomplicate keeping track of the corrupted parties. In the following, the dis-
cussion about the adversary in Section 3.6.4 resolves this by defining a coherent
adversary that always corrupts all instances of a party at once. In this case, it is
best to assume that the adversary would also send the corruption messages to all
ideal functionalities that the party participates in. Adapting this ideal functionality
definition to the mobile adversary would need to define the behaviour of the func-
tionality in case the sets of corrupted parties reduces. However, proactive security
is not explored in this thesis.

Note that the detailed structure of the ideal functionality also forces a restric-
tion on the allowed adversary. Firstly, a party is considered corrupted when its
information is asked from either TS or TR. Secondly, the adversary is expected
to know the inner structure or the ideal functionality. It is easy to also hide the
structure with an additional multiplexing machine that mediates the adversary and
the functionality communication to hide the TS and TR. Hence, depending on the
concrete level of detail that is needed for the discussion, the ideal functionality is
depicted as having either one or two buffer pairs with the adversary.

3.4.3. Two Ways to Use an Ideal Functionality

A real protocol is carried out by parties that are sending messages from one to an-
other. The ideal functionality either replaces the parties and all their interactions,
or it can be seen as parties executing one call to the ideal functionality instead
of communicating with each other. These two possibilities are illustrated in Fig-
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Figure 12: Two alternatives for using a two-party ideal functionality F .

ure 12 for the case of a two-party protocol. The parties Pi are simple machines
that receive their inputs and use them as inputs to F . The results that they receive
from F are given back to Env. The ideal functionalities F are executed in a usual
security context where the inputs come from an environment Env and protocol
execution may be affected by an adversary A. In addition, parties Pi and the func-
tionality F may receive some setup information from F△. There are leaky buffers
to and from the environment. In the second case, there are also leaky buffers be-
tween the parties and the functionality. These buffers are clocked by the adversary
and may leak some metadata about the communication to the adversary.

These two ways are mostly equivalent but may suit different settings. In this
work, Chapter 4 focuses more on the direct use in collection D in Figure 12a and
Chapter 5 on the setup with explicit parties as collection I in Figure 12b. Chap-
ter 4 focuses on merging protocols that correspond to some ideal functionalities
to new protocols corresponding to some new ideal functionality and the role of
the parties is not necessary for this discussion. On the other hand, Chapter 5 con-
siders the ways how the parties use the ideal functionalities to execute different
algorithms. Hence, it is straightforward to consider the parties and their code and
the several ideal functionalities that may be used by the parties explicitly. In fact,
Chapter 5 also proves one case where these two collections D and collection I are
equivalent (Lemma 25).

3.5. Local Functionalities

The definition of ideal functionalities that always requires freshly shared outputs
ignores an important class of computations that can take place and are commonly
considered secure. These are functionalities where each party computes some-
thing on their shares without adding fresh randomness. For example, for linear
secret sharing schemes, all linear combinations can be computed in this manner.
These operations are local in the sense that no network communication is neces-
sary to compute them. A storage domain usually defines which local computations
also have a meaningful interpretation on the shared values.
Definition 15 (Meaningful local operation). A local operation Gq implements a
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function gq if for any input x1, . . . ,xs we have (y1, . . . ,yt) = gq(x1, . . . ,xs) where
x1, . . . ,xs are the values reconstructed from the input shares of Gq and y1, . . . ,yt

are the values reconstructed form the output shares of Gq. A local functionality
implementing some function is said to be meaningful and its meaning is gq.

In practice, each participant carries out some part of the local functionality Gq.
Hence, Gq is a collection of machines

{
Gq, j

}
j∈Jq

where Gq, j is the actual func-
tionality used by party P j and Jq is the set of parties that need to execute this
functionality in order to get the meaningful result. In addition, the components
Gq, j may differ for different parties, and the results of the local functionality be-
come meaningful when all relevant parties in Jq have executed their component.
Gq is completed if all relevant parties have executed their part. Similarly to the
ideal functionalities, instance tags can be used to keep track of multiple queries to
the local functionality. Especially, for local functionalities the instance tag helps
to track which calls to Gq, j make up one execution of Gq as we can assume all
parties in Jq performing the same computation use the same tag.

Note that another important difference between local and ideal functionalities
is that local functionalities are asynchronous, whereas, by definition, ideal func-
tionalities need inputs from multiple parties before any party gets an output and
therefore they synchronize the execution of the parties. In fact, local computations
stand for the internal computations of a participant and therefore are not under the
direct control of the adversary. Depending on the context, the functionality can
either be inlined to the description of the party, or it can be considered as an exter-
nal functionality where partyP j clocks the input to Gq, j and the local functionality
immediately performs the computation and clocks the response message back to
P j. Note that in RSIM the party can clock this message and in effect the receiving
machine is activated so Gq, j can perform the computation and give control back to
the party.

It is possible for the local functionality to implement a randomized function.
In principle, allowing a randomized gq means that any local operation could be
meaningful. Note that in practice it is only reasonable to discuss local function-
alities where the function gq is known and useful. For some functionalities, it is
possible that all Gq, j are deterministic but gq is still randomised and the random-
ness in the output of Gq depends on the distribution of the inputs. Such cases need
careful analysis in the context where they are used. If the same local functional-
ity is executed again with the same inputs, then it always gives the same output,
as its randomness depends on the distribution of the input shares, which has not
changed. However, the intuition about implementing a random function gq indi-
cates that the same input may give different outputs. Hence, any such functional-
ities can be used under the assumption that there are no executions with the same
inputs. In most cases where the function is non-deterministic, it is reasonable to
expect that at least some of the functionalities Gq, j are also non-deterministic. The
following expects mostly deterministic local functionalities.

Note that there exist protocols that correspond neither to ideal nor local func-
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tionalities. For example, a combination where some outputs are computed by an
ideal functionality, and others are computed by a local computation from some
inputs does not belong to either class. In addition, there are functionalities where
the outputs are computed using local operations, and some ideal functionalities
are used before, but all their outputs are published and used in the local compu-
tations to derive the outputs. For example, a functionality that takes [[x]] and [[y]],
publishes y and then outputs [[xy]] computed using local operations. In such cases,
the output shares are not independent of the input shares as needed for the ideal
functionality, and neither is the functionality local, as communication is needed
to publish a value. However, in most cases, the protocol can be structured to be
either one or the other or a simple combination of the two types of functionalities.
The following description of secure multiparty computation uses these two types
of functionalities.

3.6. Protection Domains

A protection domain is a collection of storage domains and computation proto-
cols Π1, . . . ,Πk operating with data in these storage domains. In other words, the
storage domain is the name of the secure computation framework. It defines its
parameters through the parameters of the storage domains, and the computation
capabilities are defined based on the set of protocols.

Overall, the protection domain can be thought of as a single functionality Fpd.
In a modular case, each protocol (e.g. a command that can be given to Fpd) Πp

implements some ideal functionality Fp. The ideal functionality, in turn, contains
the sharing and reconstruction functionalities for its input and output storage do-
mains. A functionality may accept inputs and give outputs in several different
storage domains.

The overall function of the protection domain is meaningful only when the dif-
ferent functionalities operating with the same storage domain have the same setup.
This restricts the F△ to give matching parameters for several functionalities that
work with the same domains. Hence, for a given storage domain δ , the machines
Sδ and Rδ in all Fp that use them must receive the same setup parameters. For
brevity, such a collection with the ideal functionalities receiving consistent setup
is denoted asFpd (the ideal protection domain) and is implemented by Πpd, which
is an analogous collection of protocols with consistent setup. It can be said that
the concrete setup defines the instance of the protection domain.

This thesis focuses on considering the properties of modular protection do-
mains while staying as abstract as possible regarding the exact functionality or
programs that are executed. The main restriction is that the protection domain
consists of several canonical ideal functionalities. For algorithm design as well
as the purposes of this work, it is most natural to focus on the hybrid execution
where the concrete protocols are represented by the ideal functionalities. The idea
is that if some new functionality is proven secure in the hybrid execution model,
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then thanks to the composition theorems, the ideal functionalities can be replaced
by the concrete protocols that implement these functionalities in order to achieve
real composed protocols. Hence, most of the discussion focuses on the parties
interacting with the ideal functionalities Fp that satisfy the properties described
in Section 3.4.

The storage domain usually contains functionalities to give inputs and recon-
struct stored values to plain outputs. A party can send inputs to the input protocol
and all necessary parties get their representation of the secure data. The function-
alities in a protection domain are called with inputs in suitable storage domains.
In this formalisation, the representation of the secure data moves in and out of
the protection domain. Parties Pi execute some computation and interact with the
protection domain to do so. The parties each hold their own view of the stored
value. Hence, the context is that there is an outer environment Envpd (more de-
tails in Section 3.6.2) that interacts with the parties and the parties then call out
specific functionalities of the protection domain with their inputs and receive the
outcomes. The adversary can corrupt the parties and interact directly with the
ideal functionalities (more details in Section 3.6.4 and Section 3.4.2). This setup
is illustrated in Figure 13 for modular protection domains (Definition 16) where
Fpd is marked with the grey box.

The setup F△ can be thought of as part of the protection domain. However,
for most uses, the setup functionality has to remain the same even if the details of
the protection domain are changed. Hence, it is often more convenient to consider
the setup as a separate functionality that is used by the protection domain. In
such cases, the setup can be seen as a fixed part of the environment in which the
protection domain executes.

3.6.1. Modular Protection Domains

It is usually more convenient to think of the computation framework as the sum
of its components rather than the full functionality Fpd. This is only correct if the
protection domain is modular, as illustrated in Figure 13.
Definition 16. A protection domain Fpd has modular representation with light-
weight ideal functionalitiesF1, . . . ,Fk if collectionsF△⟨Fpd⟩ andF△⟨F1, . . . ,Fk⟩
are indistinguishable for any party interacting with them.

A modular protection domain can therefore be thought of as the collection
F△⟨F1, . . . ,Fk⟩ that uses canonical ideal functionalities F1, . . . ,Fk. There is one
functionality for each operation that the protection domain can execute, each of
the functionalities can be called many times using tags to separate different in-
stances. In many cases, it is reasonable to decompose these functionalities as
shown in Figure 14. The universal sharing machine Su is a collection of all Sδ

functionalities from inside the S machine in Fp. Su has k port pairs, one for each
Fp. A query to p-th pair is sent internally to the respective Sδ . Such a machine
is straightforward to construct for stateless Sδ as their use from different func-
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Figure 13: Usage of the modular two-party protection domain Fpd with function-
alities F1 and F2.

tionalities Fp does not interfere with other calls from other functionalities. The
universal reconstruction machine Ru is a similar collection of all reconstruction
functionalities Rδ for the ideal functionalities. As a simplification, Ru and Su

both have a single port pair connecting them to F△, and they distribute the setup
among internal machines themselves.

F̂p
TR

TS

F◦p

Ru

Su

Fq

Fq

F4

P1P2

P1P2

F4 F4

A A

Figure 14: Canonical ideal functionality Fp split into functionality F̂p and sepa-
rate machine Ru for universal reconstruction and Su for sharing. Su and Ru are
shared with other canonical ideal functionalities Fq.

The functionality Fpd of the modular protection domain can therefore be also
thought of as the collection F̂1, . . . , F̂k,Ru,Su. The collection F̂p represents the
collection of TR,TS andF◦p . For modular ideal functionalities, it is easy to see that
the collection F1, . . . ,Fk is indistinguishable from F̂1, . . . , F̂k,Ru,Su. If the setup
is consistent and sends the same parameters to all functionalities and the machines
R and S are stateless after the setup parameters have been fixed, then it is easy
to see that the functionalities are modular. As such setup is reasonable, then the
following mostly assumes that the protection domain is indeed modular and can
be described as a collection of F1, . . . ,Fk or as a collection of F̂1, . . . , F̂k,Ru,Su
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depending on which is more convenient for the given discussion.
Note that this description did not explicitly consider the local functionalities.

For the purpose of this description, each local functionality Gq, j is inside P j. Later
in Section 5.5.3 the local functionalities are made more explicit and separated
from the parties as in that discussion using Gq instead of the collection of Gq, j

becomes more relevant. For the general description of the protection domain here,
it is sufficient to note that the parties can also carry out operations on their shares.

3.6.2. Suitable Environments

Security in the RSIM framework is defined with respect to an environment that
tries to distinguish the two versions of the protocol. Overall, the environment is
a very generic machine that does not have many reasonable restrictions. This is
the case with the environment Env against the protection domain. Note that, for
modular protection domains, some contents of the protection domain could also
be considered as part of the environment when just analysing the security of some
component Fp. The following uses Envpd to specifically denote the environment
that interacts with the whole protection domain. It gives inputs to the parties and
receives their outputs. The inputs can also affect which computations the parties
are running with the protection domain. In case the focus is on some functionality
Fp inside the modular protection domain, then the rest of the protection domain
and the parties interacting with Fp form Πe. The full environment for the func-
tionality is the combination Envpd⟨Πe⟩.

The main restriction on Envpd is that the setup functionality F△ gives con-
sistent setup data to all components that require it. However, if the protection
domain leaks too much information to the environment Envpd, then it is usually
impossible to prove the security of the protection domain or any specific proto-
col. For the specific protocol Πe, it is as secure as an ideal functionality F , if
F△⟨Πe⟨Π1, . . . ,Πk⟩⟩ ≥ F△⟨F⟩. However, if Πe leaks the joint state like the setup
parameters or share representation to Envpd, then this is against the intuition of
the protection domain meaning. The intuition is that Envpd uses the protection
domain as a secure computation functionality and does not need to know its in-
ternals, only to give public inputs and receive outputs. Moreover, the generalized
form of a security proof like derived in Chapter 5 would become impossible as the
secure storage could not be abstracted away if the ideal functionality of the whole
computation should still contain setup, which is usually not the case. For the pur-
pose of this thesis, Envpd represents the world outside of the protection domain
and the common interface between the protection domain, and Envpd considers
plain values that are either public or belong to some specific party. In particular,
shares or private setup parameters should not be given to Envpd.

These restrictions are sometimes enforced by the structure of the protection
domain. Specifically, the protection domain could include a protocol Πio for in-
put and output behaviour that only communicates plain values to input and result
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Figure 15: Usage of a protection domain with an input-output functionality Fio
and the rest of the computation illustrated by Fcomp.

parties that are the only ones to communicate with Envpd. Such structure is illus-
trated in Figure 15. The respective ideal functionality Fio can be thought of as a
suitable collection ofRδ and Sδ functionalities for the storage domains δ used in
the protection domain.

Depending on the use-case, the environment can also have a choice in the
code that is executed. In the simpler case, the protocol can be fully specified in
the Πe and Envpd only sends the inputs. For example, if a certain application
is considered as Πe. In the more general case, the Πe specifies a computation
interface and Envpd sends both inputs and concrete commands. In that case, Πe is
defined as expecting new instructions from Envpd at certain points in its execution.
For example, if the protection domain is a tool for secure statistical analysis that
repeatedly gives query results to Envpd.

When considering a specific protocol Πp inside the protection domain, then
the environment for this specific protocol is made up of the outer environment
Envpd and the other protocol execution Πe that is happening inside the protec-
tion domain that calls the protocol Πp. Hence, for a specific protocol Πp, the
set of environments is made up of the setup and the combined environment as
{F△}×Epd×P. Here F△ is the setup, P is the set of protocols running in the pro-
tection domain and Epd is the set of environments allowed for the set of protocols.
The protocol Πe ∈ P encapsulates all other computations done in the protection
domain and it calls Πp. Envpd is the environment considered in the following
protection domain security definition (Definition 17). For reasonable execution,
Envpd⟨F△⟨Πe⟨Π1, . . . ,Πk⟩⟩,A⟩ is a well-defined closed collection. In the follow-
ing, Env compatible with Πp means Envpd⟨Πe⟩ or Envpd⟨F△⟨Πe⟩⟩ that is the full
environment against the protocol Πp. This can be seen as always keeping the
full context where the protocol is executing. However, the main goal is to define
some properties of the interaction of the protocol Πp (of Fp) and the environment
Envpd⟨Πe⟩ so that the proofs are such that any suitable Πe can be later used to call
the designed protocol.

84



3.6.3. Security of a Protection Domain

The security of protection domains is considered in the usual real and ideal world
paradigm. The ideal functionality of the protection domain is denoted as Fpd. It
is common for the protection domain to be modular, as discussed in Section 3.6.1.
The functionality is implemented by a series of one or more protocols Π1, . . . ,Πk
that implement parts of the functionality. Hence, in the most general case, the
security of the protection domain should be done with respect to a series of proto-
cols, as done in the following.
Definition 17. A list of protocols Π1, . . . ,Πk with a shared setup F△ is a secure
protection domain for a class of protocols P and class of environments Epd if
F△⟨Πe⟨Π1, . . . ,Πk⟩⟩≥F△⟨Πe⟨Fpd⟩⟩ for any Πe ∈P and any environment in class
Epd.

A protection domain specifies the class of protocols P that can be computed
securely. The security itself is parametrised by the class of environments Epd

and also adversaries A as in the security definitions in Definition 2 and Defini-
tion 3. Since the protocols Π1, . . . ,Πk in the protection domain are described by
their ideal functionalities F1, . . . ,Fk then the signature of the protection domain
becomes (E,P,F1, . . . ,Fk). The used functionalities define the storage domains δ

and the number of parties as well as some of the adversarial capabilities. The stor-
age domains provide some limit on the adversary structure A but the definitions
of the functionalities may limit it further. It is often the case that the adversary
structure of the protection domain is defined based on all the restrictions of the
storage and individual functionalities. The class of adversaries A is defined by the
adversary structure and the expected behaviour of the adversary. Some more con-
crete details about the adversary behaviour in composed protocols are discussed
in Section 3.6.4.

3.6.4. Adversaries Against Composed Protocols

In the real functionality, there is a machine for each party and these machines
communicate with each other according to the protocol. For example, each party
Pi could be a machine Mi in Figure 7. This communication goes over the leaky
buffers meaning that the main message is transferred confidentially and cannot be
changed in the buffer, but each message may have some public metadata that is
seen by the adversary. In addition, the adversary is in charge of the timing of these
channels. Each party Pi can receive a corruption message that makes it corrupted.
For passive corruption, the party starts transferring all of its protocol view to the
adversary. Actively corrupted machines fall under the control of the adversary and
become transparent. This setup allows modelling adaptive corruption as well as
static corruption. However, for static corruption, we can treat them as the class of
adaptive adversaries that send the corruption messages before any other action is
taken by the system and do not send new corruption messages afterwards.

Composing several MPC protocols means getting a machine for each party in
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each of the sub-protocols. Formally, the adversary can corrupt machines indepen-
dently, which clashes with the intuition that physical parties become corrupted.
For example, in practice, one expects the adversary to either corrupt a physical
entity, such as a piece of hardware that runs all the code for that party, or a person,
such as an administrator managing the execution of one party. Hence, either all
machines representing that party are corrupted, or none are. The following defini-
tion specifies that such behaviour is expected by coherent adversaries in the case
where secure multiparty computation protocols are composed of several compo-
nents.
Definition 18 (Generic adversary). A class of adversaries A is generic if the only
restriction on the adversary is the port compatibility with the protocol and envi-
ronment.
Definition 19 (Coherent corruption). We say that an adversary corrupts parties
coherently if it always corrupts the machines corresponding to party Pi simulta-
neously in all systems in the composition. Such an adversary is called coherent.
This class of adversaries is denoted as Ac.

The coherence property can be combined with other restrictions. For exam-
ple, to consider either semi-honest or malicious coherent adversaries separately.
Trivially, all static adversaries have coherent corruption and similarly, adaptive
adversaries can follow coherent corruption. This work focuses on coherent cor-
ruption. This definition does not consider mobile corruption where the definition
should be extended with the possibility to uncorrupt parties. However, a natural
extension of the definition where uncorrupting means removing corruption from
all machines representing the party could be considered. However, considering
proactive security of the protection domain would also mean the need to extend
the definition of the functionalities and storage to account for the removal of cor-
ruption.
Lemma 1 (Coherent corruption). The composed protocol Πe⟨Π⟩ is as secure for
the general class of adversaries A as it is for adversaries Ac assuming that the
protocols Πe and Π have matching adversary structures and a party is considered
corrupted as soon as any machine representing that party becomes corrupted.

Proof sketch. Note that a party is considered corrupted if any machine represent-
ing that party in a composition becomes corrupted. Hence, corrupting a party in
one protocol would also imply that the same party is corrupted in the other even
if the adversary does not modify its execution actively. However, if the adversary
breaks the adversary structure then both protocols are broken.

For any general adversary, we can create a corruption filtering machine that
does two things:

• If the adversary corrupts any machine, then the filter corrupts all machines
corresponding to the same machine (it gets control back from the machine
after corrupting, so it can do it as one step before giving control back to the
adversary).
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• It maintains the list of machines that the general adversary has corrupted
and allows the adversary to control these machines/see their views as ex-
pected. For the other machines, it blocks their inputs from the general ad-
versary and commands them to act according to the protocol (e.g. semi-
honestly).

Such a filter changes the general adversary to the coherent one while maintaining
the same view as before for the generic adversary. Note that, as the protocols have
matching adversary structures, then both can tolerate the same set of corrupted
parties without breaking. Hence, any generic adversary can be turned into an
equivalent coherent adversary.

3.7. Comparison with other formalisations

The definition of the protection domain covers the MPC deployment model [4]
that specifies that there can be separate input, result and computing parties. All of
these parties are considered to be part of the parties interacting with the protection
domain. They operate with values in different storage domains. The computing
parties are using the storage domains where the private data is stored and com-
puted with. The input parties get the plain inputs from Envpd and distribute them
using the sharing functionalities for the desired secure storage domain. The result
parties can either receive individual results or public results through specialised
reconstruction functionalities for the storage domains. As the initial inputs are
received from Envpd and also the final reconstructed results are sent back, then
also Envpd is in the roles of the input and result parties.

3.7.1. Arithmetic Black-Box

The protection domain formalisation defined in this chapter can be seen as a
more detailed look at the construction of the Arithmetic Black-Box model [55]
described in Section 2.1.8. The protection domain and the parties interacting with
it are indeed very similar to the ABB. In the big picture, in both cases, the envi-
ronment interacting with the functionality can give inputs and can order specific
computations in either ABB or the protection domain.

The protection domain formalism is very modular and targeted towards isolat-
ing parts of the formalisation as lightweight ideal functionalities and working with
intermediate computations independently. ABB, on the other hand, is a single unit
describing a secure computation functionality from inputs to public outputs. Note
that ABB can also be seen as a specific lightweight ideal functionality taking pub-
lic inputs and giving public outputs. Hence, a protection domain with just the
ABB as an ideal functionality is a description of the same secure computation
capability as the initial ABB.

It is easy to use an ABB as a formalism to define full executions of secure
computation that start from inputs and finish with public outputs. However, there
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is no straightforward mechanism to expand the set of commands inside the ABB
description. Essentially, for an ABB, there is no explicit representation of secure
data other than the handles used to interact with the values inside the ABB. Hence,
there is no good way to discuss the representation of secure data or its movement
between parties or protocols. Data is explicit only in the input and output op-
erations of the ABB. In addition, the security of the framework is defined with
respect to the full ABB description. Hence, if the framework is extended with a
new operation, then the security of all of its components should be proven again
with respect to the new ABB that contains the new operation. If the original secu-
rity proof does not make any specific assumptions about the intermediate values
in the computation, then the proof of most components may carry over very easily.
However, if, for example, the proof uses some assumptions about the intermedi-
ate representation of data that is kept by all previous operations but not by the
added protocol, then also the security proofs of the previous components have to
be repeated to lift this assumption.

An important part of any security proof is ensuring that the simulation can
take the outputs of the ideal functionality and adjust the simulated protocol so
that it gives the same outputs. The protection domain approach with canonical
ideal functionalities gives strict rules that protocol outputs are generated from
the output value using the secret sharing functionality. This enables adding new
functionalities to the protection domain as assumptions can be made about the
protocol inputs but may complicate security proofs. For example, in order to prove
that some protocol is as secure as a canonical ideal functionality, the proof has to
be able to use the outputs of the ideal functionality as the outputs of the protocol.
These values are in some secure storage domain and may be difficult to align.
Whereas for an ABB only public values are outputs and a common simulation
strategy assumes that any adjustments between the values in the ABB and in the
simulation of the protocol have to occur when public outputs are given. The secure
data representation is not exposed outside the ABB and there is no need to align
this. The proof in the ABB still has to take into account all the possible operations
that may produce the outputs in order to be able to show that their publishing can
be simulated correctly. In a sense this is simpler for the protection domain case if
we assume all functionalities give outputs with the same distribution as the secret
sharing functionality. However, in both cases it is often the local functionalities
that introduce different distributions and should be addressed separately. This
is often overlooked in ABB based proofs when claiming that all shares can be
simulated as random values and the difficulty is made explicit in the protection
domain view.

The fact that a secure computation framework is as secure as an ABB does not
immediately say that any algorithm description implemented using this is secure.
If the algorithm does not publish any values, then its security can be derived di-
rectly. However, if there are any intermediate values published by the algorithm
that are not considered to be the outputs of the algorithm, then the security has
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to be evaluated independently. The same is true when using protection domains.
Chapter 5 works on simplifying the protection domain formalism to show that, in
many cases, it allows for quite simple modular security proofs of new algorithms
for MPC frameworks.

3.7.2. Simplified Universal Composability

Simplified universal composability (SUC) is introduced in Section 2.2.4. Some of
the similarities and differences between SUC and protection domain approaches
are outlined in Section 2.2.6 as the restrictions posed by RSIM carry over to the
protection domain approach. This section summarises the main aspects with a
focus on the protection domain description.

The main property of SUC defined in [44] is that there is a fixed number of par-
ties. The same restriction is there for the protection domain formalisation here.
In addition, SUC considers only authenticated network channels. The buffers in
the RSIM framework are not modifiable and any communication that is through
a buffer or the leaky buffer constructed in Section 2.2.5 is also authentic. Protec-
tion domains also expect the communication channels to be secure, except for the
metadata leaked by the leaky buffers. In both cases, the timing of the protocols is
under the control of the adversary. For the protection domain, the communication
between the domain and the environment is also under the control of the adver-
sary, which is not the case for SUC. For the purpose of the security definitions,
the exact model of the communication between the MPC formalism and the envi-
ronment is not that relevant. For example, the adversary in SUC can get a similar
control via direct communication with the environment, or the adversary against a
protection domain formalisation can clock the communication to and from the en-
vironment so that it achieves the same timing as in SUC. Hence, if the interaction
between the environment and the adversary is not restricted, then either model can
be considered a special case of the other in this regard.

In SUC, there are separate copies for ideal functionalities if the same func-
tionality is required multiple times. The same idea is carried by the definition of
canonical ideal functionalities that do not share state over the executions of sev-
eral instances. In SUC, all new operations that the party can do will be inlined to
the party code. In the protection domain, one can consider new protocols either as
part of the party in Πe or the machine representing the party Pi can be split into
several functionalities as will be useful in Chapter 5. Similarly, protection domain
formalisation allows separating local functionalities from the party so that their
timing is not under the control of the adversary. Hence, this formalisation allows
more flexibility to play around with the representation of the computation. How-
ever, this means that the protection domain version is more complicated and needs
the definition of the coherent adversary. Similarly to SUC, the protection domain
formalism does not allow to uncorrupt a party or corrupting it only for some proto-
col instance. Hence, mobile adversaries (also known as proactive security) cannot
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be considered in either of the frameworks.
The hybrid execution defined in SUC is, therefore, quite like the protection

domain where the parties run some code and call ideal functionalities. Their for-
malism specifies a protocol calling one ideal functionality. However, it can be a
complex functionality that internally runs all the functionalities used to specify
the operations of the protection domain. Treating everything as one functionality
also means that the properties that the current formalism requires from the setup
are not necessary. The ideal execution in SUC is defined by the variation of par-
ties running an ideal model protocol. This is in line with the variation considered
here, where the parties run a code that simply calls the ideal functionality and
returns the result. Note that similarly to our case, the local operations cannot be
considered as separate ideal functionalities in the SUC model because the timing
of ideal functionalities is under the control of the adversary.
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4. FROM INPUT-PRIVATE TO UNIVERSALLY
COMPOSABLE PROTOCOLS

Protocols for secure multiparty computation often end with publishing some value
that is considered to be the output of the protocol. In practice, the protocol also
has some representation of the intermediate values. To preserve security, the in-
termediate representation should not reveal information about the values in the
protocol. In secure computation frameworks, many protocols do not have a pub-
lished output at all. Instead, the output is only existing in some hiding storage
domain. In such cases, the security of the protocol is directly linked to the hiding
property when it comes to the outputs. However, to ensure that the protocol does
not reveal anything about the inputs, it is still important to consider the intermedi-
ate computations and all sent messages. This chapter considers the input privacy
property that is suitable for managing these cases. Some related work is discussed
in Section 2.1.3.

This chapter defines the input privacy property and respective ideal functional-
ities. These ideal functionalities are like the canonical ideal functionalities (Defi-
nition 14), but the input-private protocols do not have to satisfy the restrictions that
the canonical ideal functionality puts on the outputs of the protocols. As for the
more common security property, a protocol can be proven to be as input-private
as the defined ideal functionality. Secondly, this chapter defines a new flavour
of protocol composition called ordered composition. The ordered composition
is focused on the data dependency rather than the execution timing between the
protocols. The two main results of this section are the results that say that the com-
position of two private protocols is a private protocol, and an ordered composition
of input-private and secure protocols is secure if they have a jointly predictable
outcome. These results hold for the case of black-box simulation, where the new
simulator can only interact with the adversary and not replace it fully. While this
is the common way how simulators are designed, it still remains a special case of
the security definition that just requires the existence of an equivalent adversary.
Theorem 3 (Security of a composition of secure and private functionality, in-
formal). The fully ordered composition of black-box input-private and black-box
secure protocols with the jointly predictable outcome is black-box secure.
Theorem 4 (Privacy composition, informal). The ordered composition of black-
box input-private protocols is black-box input-private.

These theorems are formalised for the passive security case as Theorem 6 and
Theorem 5, respectively. Sections 4.1 to 4.6 build the definitions and results nec-
essary to prove these theorems. Section 4.8 demonstrates how these results help
to build more efficient practical protocols. The main observation is that there are
protocols that are input-private and not secure but are more efficient than the fully
secure protocol with the same functionality. Then, this protocol could be com-
posed with a secure protocol to get a secure protocol that is more efficient than
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the protocol from composing two secure protocols. Finally, Section 4.10 discusses
how this approach might be extended to the case of active security.

Note that some of the definitions in this chapter are applicable in a more gen-
eral case than that of the protection domains for secure multiparty computation
described in Chapter 3. Hence, this section uses more of the notation of the
RSIM framework (Section 2.2.5), especially that of the systems specifying dif-
ferent structures and service interfaces and considering the view of the machine
in a special configuration. Specific remarks are made to show how the definitions
used here differ from the MPC formalism in Chapter 3 and how they can still be
mapped to the MPC formalism.

4.1. Input Privacy

Intuitively, a protocol preserves the privacy of its inputs if the protocol execution
does not leak any information about private inputs of the parties. Input privacy is
a useful notion for protocols where the output privacy is guaranteed by some other
means. For example, the outputs are in some hiding storage domains. However,
the real protocol may send many messages that are somehow leaking information
about the protocol inputs. Hence, the definition of input privacy should explicitly
show that the outputs of the protocol are not considered, but the rest of the protocol
interactions are.

For the input privacy definition, consider an environment that does not use
the values it gets back from the computation. It only distinguishes configurations
based on the adversary’s view of the protocol and its knowledge of the inputs
given to the protocol. Formally, this is represented by separating the environ-
ment into two distinct parts and limiting their communication with each other
and partially with the adversary. Hence, Env is modelled as a composition of
two machines Env = Env′∪Env⊥. Here, Env′ gives the inputs to the system and
communicates with A while only Env⊥ learns the outputs of the system. Env⊥
is not allowed to give any information to the adversary or to Env. Especially,
it has no buffers to send messages to these machines. Other than that, the en-
vironments have to be compatible with the system. This privacy configuration
con f = (M,S,Env′ ∪Env⊥,A) can be seen in Figure 16 where M could be ex-
panded similarly to Figure 7. The crucial component of this setup is that Env⊥
does not send messages to Env′ or A directly. Note that if any machine, for ex-
ample, Env′ finishes execution without clocking another machine then the control
goes to the master scheduler, in this case A.

The privacy configuration gives rise to the following input privacy definition
that is analogous to the security definition.
Definition 20 (Input privacy). System Sys1 =(M1,S) is perfectly at least as input-
private as Sys2 = (M2,S) (denoted as Sys1 ≥per f

priv Sys2) if, for every privacy con-
figuration

con f1 = (M1,S,Env′∪Env⊥,A1) ∈ Conf (Sys1)
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Env′

Env⊥
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Figure 16: Privacy configuration with two distinct parts of the environment Env=
Env′∪Env⊥.

where ports(Env)∩ forb(M2,S) = /0, there exists a privacy configuration

con f2 = (M2,S,Env′∪Env⊥,A2) ∈ Conf (Sys2)

with the same Env = Env′ ∪Env⊥, such that the environment views restricted to
Env′ coincide

viewcon f1(Env
′) = viewcon f2(Env

′) .

The above definition can be extended to computational and statistical input
privacy in the traditional way. Statistical input privacy requires statistical indistin-
guishability of the views. For the computational case, it is necessary to consider
only polynomial-time configurations and the computational indistinguishability
of the respective views. Furthermore, different restrictions on the adversary can
be applied to consider some special security models. Black-box privacy, where
A2 = Sim∪A1 and the simulator Sim only depends on the system and A1, and
not on the environment, can also be defined. Theorem 5 will also show a specific
sense in which input privacy is composable.

For a simple example, a composition of two independent input-private systems
that do not communicate with each other is input-private. To prove this, either
system can be considered as running in the context where the other system is
included in the output part Env⊥ of the environment. This is a suitable privacy
configuration for the remaining system.

Note that not explicitly considering the outputs is the main thing distinguishing
input privacy from the security property. Discarding the view of Env⊥ means that
systems Sys1 and Sys2 where Sys1 ≥priv Sys2 may give different outputs. Hence,
the correctness of Sys1 with respect to Sys2 should be evaluated separately. Instead
of considering correctness directly as part of this definition, it will be addressed as
the predictability of the output of either system. However, discarding the output
is also part of the strength of the definition. In security proofs, it is the job of
the simulator to make it so that the outputs the adversary sees in the simulation
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match that of the functionality, but this is not required in the input privacy proof.
Rather, to prove input privacy, the simulator must be able to simulate the view
of the protocol without knowing the inputs of the honest parties. Hence, if this
simulation and the real view are indistinguishable, then the protocol keeps the
privacy of the inputs of the honest parties.

An ideal private functionality is such that it does not give the adversary any-
thing except the corrupted parties’ inputs. Hence, any protocol that is as input-
private as that ideal functionality is such that the (corrupted) outputs of the proto-
col do not reveal significant information about the honest parties’ inputs. For the
black-box case, the simulator then has to simulate the whole view of the protocol,
including the outputs of corrupted parties, based on the corrupted inputs, hence
stressing that the outputs or trace of the protocol does not reveal anything extra
about the inputs. Note that this significantly limits the values that an input-private
protocol can publish during its execution.

4.1.1. Input Privacy and the General Security Definition

The input privacy definition is a special case of the general form of the security
definitions Definition 51 in Section 2.2.3. In secure multiparty computation, the
initial systems represent some real protocols. A system consists of a collection of
machines and a defined interface. Hence, Sys = (Π,S) in the notation Π used for
the collection in Section 2.2.3. In these terms, the input privacy can be defined as
follows.
Definition 21 (Input privacy). Let Π1 and Π2 be collections with an identical in-
terface for Env′∪Env⊥. Let the class Epriv of environments consist of polynomial
time environments Env= Env′∪Env⊥ such that the data can only flow from Env′

to Env⊥ as illustrated in Figure 16. Let A1 and A2 be the set of adversaries com-
patible with Π1 and Π2 respectively. Then Π1 is as input private as as Π2 (denoted
as Π1 ≥priv Π2), if there exists a construction ρ : A1→ A2 such that

Env′⟨Π1,A1⟩ ≡ Env′⟨Π2,ρ(A1)⟩

for all A1 ∈ A1,Env
′∪Env⊥ ∈ Epriv.

The classes of adversaries can be restricted to achieve different versions of in-
put privacy. For perfect input privacy, the runtime of the adversary is not bounded.
For computational input privacy, the adversary has to run in polynomial time. For
the following theorems, we assume that the construction ρ defines a simulator that
acts as an interface between Π2 and A1. The simulator has to be efficient and has
to produce the messages for A1 according to the specification of Π1. The simula-
tor has access to A as a separate machine in the configuration, but it does not have
access to the code of the adversary.

The following of this chapter uses the notation with Sys as some of the follow-
ing definitions benefit from the exact notation of the ports and specified interfaces
which is more explicit in this notation.
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4.2. Ordered Composition

Composability properties usually consider the timing of protocol execution. For
the universal composability case, the timing is arbitrary. The sequential com-
position model can be used if one wishes to simplify the understanding of the
execution timing to only consider that other actions may happen before or after
the protocol and not during it. However, in addition to timing, other details of the
protocol composition can be considered. In the following, rather than restricting
timing, the data dependencies between the composed protocols are restricted to
only go in one direction. For example, protocol Π1 can send its outputs to Π2
only if it does not expect anything from Π2 itself.

In the case of arithmetic circuits, the gates of the circuit can always be sorted
using topological sort to arrive at an ordering where, for any gate, the operations
on the input wires to that gate have a smaller index than the given gate. Hence,
based on the topological order, any gate may only get inputs from previous gates
and give outputs to the later gates. Hence, a protocol can be built for this circuit
from the protocols for the gates such that each separate protocol only has one-way
communication. Note that full topological order is not necessary to compose an
arithmetic circuit in an ordered manner, but the existence of the topological order
shows that it can always be done.

Recall that forb(M,S) is the collection of ports belonging to the machines in
M used to either connect these machines to each other or for the ports in S and S
to connect to the other parts of the system and the adversary respectively. Each
port p connects to its complement pc. The ports in free(M) are the ones that other
machines outside M can connect to.
Definition 22 (Ordered composition). The ordered composition of two structures
Sys1 = {(M1,S1)} and Sys2 = {(M2,S2)} is defined if the structures are compos-
able, meaning that the port structures are compatible

ports(M1)∩ forb(M2,S2) = /0 ,

ports(M2)∩ forb(M1,S1) = /0 ,

and input-output ports match

S1∩ free([M2])
c = Sc

2∩ free([M1]) .

The composition is ordered from Sys1 to Sys2 when the data flow is limited to
passing from M1 to M2, especially all ports S1 ∩ free([M2])

c are output ports
and all ports S2∩ free([M1])

c are input ports to only allow unidirectional message
flow from M1 to M2. The ordered composition with data flow from Sys1 to Sys2
is denoted as Sys1→ Sys2.
Definition 23 (Fully ordered composition). The ordered composition Sys1→ Sys2
is fully ordered if all the outputs of M1 go to M2, i.e., all output ports in S1 belong
to free([M2])

c.
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Note that there is no limitation of the timing of the execution or the buffer
clocking, just the direction of data flow is limited. Note that the topological order
of the arithmetic circuit gives us an ordered but not fully ordered composition.
However, if needed, then each gate can be enhanced with added copying gates
to pass through the unneeded inputs from previous systems and make it to a fully
ordered composition. On the other hand, machines that are not communicating are
trivially in ordered composition, but they cannot be in fully ordered composition.
An illustration of the two modes of ordered composition is given in Figure 17.

S̄2

S̄1SEnv
2 SEnv

1

SSys21

Env

Sys2

A

Sys1

(a) Ordered composition.

Env

Sys2

A

Sys1

(b) Fully ordered composition.

Figure 17: Ordered and fully ordered composition Sys1→ Sys2 where S1 = SEnv1 ∪
SSys2

1 and S2 = SEnv2 ∪SSys1
2 meaning that SSys2

1 = (SSys1
2 )c.

This definition is a complement to the more common composition definitions
and can be used in combination with them. Note that while the definition fo-
cuses on the data flow, it is clear that a functionality that needs an input from a
previous functionality in ordered composition cannot execute before the previous
functionality has given it its input. Hence, it does propose some timing con-
straints. However, when considering reactive functionalities, it is possible for the
two functionalities to still run in parallel and have ordered composition as well.

Ordered composition is necessary to further discuss the idea that only inter-
mediate values in the protocol are allowed to be less secure than required by the
traditional UC security definitions. Hence, the following focuses on studying or-
dered compositions where the first protocol is only input-private and the final
protocol has universally composable security.

The ordered composition Π1→ Π2, in general, means a composition with no
data flow from Π2 to Π1. Π1 gets all inputs from Env and sends all outputs to Env
or to Π2. It also has specific ports for communicating with the adversary. The
composition is fully ordered if all outputs of Π1 are given as inputs to Π2.

Note that fully ordered composition can be further simplified to cases where
all inputs are given to Sys1 as shown in Figure 18. To be more precise, Sys1 can
always be extended to Sys′1 so that it contains a machine to copy all inputs that
should be directly given to Sys2 and the machine Sys1. Note that for a secure
copy and Sys1 functionalities, the system Sys1 is secure. It will also be proven in
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Figure 18: Simple fully ordered composition.

Section 4.6 that if both components are input private, then so is Sys2. Furthermore,
a copying functionality that simply has an output port for each of its input ports
and on each input, it copies the input to the respective output port and clocks the
output can be a local functionality and is, therefore, input private. Much of the
following assumes this simplified case as it makes the composition structurally
simpler but does not lessen the generality of the protocol or the results.
Definition 24 (Simple fully ordered composition). The ordered composition of
two systems Sys1 → Sys2 simple fully ordered composition if all the outputs of
M1 go to M2 and all inputs of M2 come from M1.

4.3. Corruptible Ideal Functionalities for Secure Protocols

Overall, the ideal functionalities for MPC behave as specified before in Sec-
tion 3.4. This section defines some details of the ideal functionality slightly differ-
ently. Some of this is due to the fact that this section does not use leaky channels,
and instead, more ports are used to distinguish the roles of the inputs and outputs.
Secondly, this specification is focused on the semi-honest security model where
the adversary cannot affect the functionality.
Definition 25 (Semi-honestly corruptible ideal functionality). A structure {(M,S)}
is an ideal semi-honestly corruptible functionality for n parties if it meets the fol-
lowing conditions.

1. M contains only one machine F .
2. The ports in S are partitioned to S1 ∪ . . .∪ Sn where Si contains the ports

connecting to party Pi.
3. F has all the ports in S and ports inF? and outF ! for communicating with

the adversary.
4. It has no additional ports and no buffers from F to F .

Note This means that all the ports specified before are connected through
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buffers to other machines like Pi and A.

5. It writes at most once to each output port per protocol instance.
6. F expects at most one input for a protocol instance from each input port.

Note There can be multiple inputs from each party (or outputs to that party),
but a separate buffer is used for each input (or output). This could be
replaced by using one leaky buffer to give the adversary the informa-
tion about which protocol messages are available in the buffers.

7. Each output is produced when all inputs necessary for computing it have
been received. There can be multiple outputs computed at different times.

Note For the functionalities in the canonical form (Definition 14), each out-
put is computed if the input can be reconstructed byR, the output can
be computed and distributed by S and TS .

8. The commands from inF? do not affect the input-output behaviour of F for
ports in S.

Note The adversary cannot change the behaviour of F for anything other
than the messages received by the adversary specified in point 9.

9. On input (corrupt, i) from inF? the behaviour diverges for private and se-
cure functionalities as follows. In both cases, F clocks the buffer connected
to outF whenever it writes there.

• An input-private functionality will write all inputs received from Si to
outF and clock that buffer. In the future, it will forward all new inputs
received from Si in the same manner.

• A secure functionality forwards all inputs received from Si as well as
outputs sent to Si in the same manner.

• In both cases, the input and output are sent together with an indi-
cator about which buffer was used to send it. The format used is
(out put, ℓx,x, i) and (input, ℓx,x, i) for message x for party Pi. The
label ℓx can contain the information about the buffer as well as any
other metadata about this message.

Note The corruption does not modify the behaviour of F in any other
way. This is reasonable for the passive security model, where the
adversary cannot change the protocol execution.

Note The buffer is indicated to specify the role of the output, as all
output buffers are used once per protocol instance.

10. F does not react to any other commands from inF or write anything else to
outF .

Note that the main difference from canonical ideal functionalities is that in
Definition 25, each port is written to only once per protocol instance since it will
make the structural compositions easier. This allows separating between ports
connecting to machines in the composition or to Env. In addition, thanks to fo-
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cusing on the semi-honest case, F does not expect any adversarial commands
and always executes the desired functionality. The adversary can simply receive
values from F . The restriction on ports could be easily lifted to allow multiple
messages from one port that use tags to distinguish the role of the message in the
protocol using leaky buffers. Hence, this can be simply seen as a special descrip-
tion of the canonical ideal functionality with semi-honest corruption mode. The
original description of the canonical ideal functionalities assumes that there are
parties that give their inputs and outputs to the adversary. For the semi-honest
case, the version where also the ideal functionality shares them is equivalent since
the adversary could not modify these values anyway.

Note that since the Definition 25 diverges for ideal secure and input-private
functionalities, one can draw no direct conclusions about whether or not a func-
tionality that is secure is also private. By intuition, not all secure protocols are
private. For example, a secure protocol may give a public output which is also
seen in protocol messages. By intuition, security is defined as leaking nothing
other than the output, while privacy is more restricting and allows no leakage
about the inputs. Hence, a public output that is computed from the private in-
puts is usually violating input privacy. However, a secure functionality that gives
protected outputs in a hiding storage domain is usually input-private as then the
outputs of a protocol could be simulated using a simulator from the hiding def-
inition (Definition 8) instead of the real value. Hence, any secure protocol with
sufficiently protected outputs is also input-private.

Note that an input-private ideal functionality version of Definition 25 does not
give outputs to the adversary hence justifying the name privacy. The intuition is
that, in such a protocol, all that the adversary sees are the inputs of the corrupted
party. The adversary could see some outputs in a real protocol implementing
this functionality. However, if the real protocol is as input-private as this ideal
functionality, then it is guaranteed that the output of the protocol does not reveal
information about the honest parties’ inputs. Another way to say it is that for
input-private protocols, the adversary has the same view distribution of different
protocol runs as long as the inputs of the corrupted parties remain the same. For
example, such values could be either random values generated in the protocol or
protected values that do not reveal any real insight about the protocol, even if they
are seen by the adversary.

4.3.1. Real Protocol Structure

Overall, the goal is to not overly restrict which real protocols can be considered.
However, this chapter does make some assumptions regarding the communication
with the adversary and the clocking of the system Sys.

Firstly, each party Pi has dedicated communication channels for the adversary.
These can be used for sending corruption requests and sending any messages that
the adversary should be aware of. Without loss of generality, each party in the
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system could be corrupted and therefore needs some connection to the adversary.
We assume that each party P has ports outi,Sys! and ini,Sys?. These are used to
respectively send messages to A or get the commands from A. As we are consid-
ering a passive security model where the party keeps following the protocol, then
it suffices to assume that the only message received from A is the corruption re-
quest. After that, each action of the party is reported to outi,Sys!. The adversary is
responsible for clocking the buffers outi,Sys and ini,Sys. Note that, in case of active
corruption, the party does not send any messages on its own. Hence, the formal-
ism of MPC in Section 3 is more geared towards each party clocking the buffers to
the adversary. However, in this chapter, considering the case, where a party does
not clock this message, leaves the structure of possible allowed Sys to be more
open as then the party could be decomposed to several machines that clock inputs
to each other. Note that the case where each party clocks their message to A is
equivalent for adversaries that always give control back to the party.

The real protocol contains several parties that communicate with each other.
In general, we assume that such party-to-party communication is clocked by the
adversary. For each such network communication buffer net j, the adversary has
the control of clocking it. For simplicity, we assume that each party reports all
inputs that it receives and any outputs that it computes in a specific format. More-
over, to make the timing of the protocol more explicit, we assume that even the
honest parties notify the adversary about which kinds of outputs were computed
(for example, to which ports these outputs were written). The messages to the
adversary are (input, ℓx,x) and (out put, ℓy,y) if the party is corrupted and reports
the message content x and y. For honest parties, just some metadata stored in ℓx

is reported as (input, ℓx) and (out put, ℓy). These messages are written when the
outputs are written to the output buffer and are clocked by the adversary. Note that
such behaviour of honest parties is there for just simplifying the discussion about
the protocol execution. The adversary controls the network buffers and, therefore,
knows which inputs it has delivered and which actions can be taken. Hence, this
convenience here is an alternative to the leaky buffers used elsewhere in this thesis
as using separate messages makes the following discussion about simulators more
straightforward.

Note that the clocking of the communication between the real system and the
ideal system differs. The real system assumes passive communication with the
adversary where the party writes the information intended for the adversary to
the buffer but does not clock this. Such behaviour allows for a more general
description of the real system, as the party could then clock some other machine in
the system. However, it is only reasonable for a passive adversary as the adversary
does not modify the actions of the party and only needs knowledge about what is
happening. The communication to the adversary is clocked by the adversary itself.
If the party does not clock any buffers, then the adversary always gets the control
after the party finishes and can immediately clock these channels. This would
have the same effect as the party clocking them itself. On the other hand, the
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ideal functionality is defined to clock its messages to the adversary. This is for
simplicity, as the ideal functionality has no other buffers to clock. With such an
ideal functionality, it is clear that the adversary has immediate knowledge about
all information that is available to it in the execution. Note that the difference in
clocking does not significantly complicate the security proofs. The simulator has
to anyway hide the internal structure of the real system as well as it has to translate
the interfaces (set of buffers) that either version has for the adversary.

4.3.2. Composition of Ideal Functionalities

In this thesis, an ideal functionality is always a single machine with well-defined
ports and interfaces. Hence, a straightforward composition of two or more ideal
functionalities is not an ideal functionality by this definition. This section shows
how a composition of ideal functionalities can be modified to arrive at the spec-
ification of the ideal composed functionality that is also an ideal functionality
according to Definition 25.

The ideal functionality composition of F1 and F2 that gives a new ideal func-
tionality is denoted as F1|F2. The shorthand idea is that this composition behaves
mostly like regular composition, but the values computed byF1 that are processed
byF2 are not revealed to the adversary, and the adversary has no control over their
timing.
Definition 26 (Ordered ideal composition of ideal functionalities). Let Sys1 =
{({F1},S1)} and Sys2 = {({F2},S2)} be two ideal functionalities for n parties
such that the ordered composition Sys1 → Sys2 is defined. Let inF j ? and outF j !
be the ports that the adversary uses to communicate with F j. Partition the input
and output ports of F j as S j = S j,in∪S j,out. The ordered ideal composition is the
following ideal functionality Sys = ({F},S) where

• S = S1,in∪ (S2,in \Sc
1,out)∪S2,out∪ (S1,out \Sc

2,in);
• ports in S are divided among the parties according to S1 and S2. For Pi the

ports are Si = (Si
1∪Si

2)∩S;
• In addition to ports in S, the machine F has ports inF? and outF ! for com-

municating with the adversary;
• Machine F executes by executing F1 and F2 respectively based on the

received inputs;
• On input (corrupt, i) from inF? the machine will behave as defined in Def-

inition 25 for the party Pi ports Si.

Lemma 2. For all ideal machines F1 and F2 the machine F = F1|F2 can be
obtained from F1 and F2 and a filtering machine Filter as in Figure 19 where
Filter is uniquely determined by the F1 and F2.

Proof. In Definition 26, the behaviour of F1|F2 is defined based on the ports in
S intended for communication with Env. Notably, the communication with the
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Figure 19: Decomposition of a composed ideal functionality.

adversary on ports inF and outF is defined based on the connections between the
two machines. The filtering machine Filter is specified as follows.

• It has the inF? and outF ! ports free to connect to A.
• It connects to inF1?, outF1!, inF2?, and outF2!.
• It has no other ports.
• For all messages from A on inF?, it forwards (writes and clocks) the mes-

sage to respective inF j ?. Note that if it needs to be sent to both, then it can
do so by waiting for the response from the first machine and then sending it
to the second.

Note According to Definition 25 the ideal functionality does not do other
actions than collecting the internal values that are needed and sending
them to A.

• Upon receiving the message from outF j ! the Filter has to really filter the
messages. First, it unpacks the message to learn all ports and roles (inputs or
outputs) of all messages. If there are output messages for ports not in S, then
the Filter goes to collection mode if not already in this mode. Collection
mode is used to put together the message m for A. All ports not in S with
output messages are added to P.

– All messages sent or received by F j from port p ∈ S are collected to
message m.

– Then Filter removes the next port p from P and clocks the correspond-
ing outgoing buffer connected to port p. Fi receives this message.

– If P is empty, then the collection mode is finished and the collected
message m is sent and clocked to A using outF !. The Filter can format
this message as needed.

Note Each message contains information about the buffer. The Filter
only forwards the messages to and from Env in the interface S
and not the messages sent between F1 and F2.

Note Filter always gets control back from Fi when clocking the buffer
from F j to Fi as Fi reports the inputs that it received and the
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Figure 20: Decomposition of a composed ideal functionality for the ordered com-
position of the private and secure protocol.

outputs that it computed.

• Filter always clocks the buffer to where it writes a message to.

Note At each activation, it writes at most one message to its outgoing buffers.

Also, note that the interface to Env remains the same as ideal functionalities must
have unique ports for all inputs and outputs.

By definition, the ideal functionalities F1 and F2 do not clock their messages
to Env or to each other. Hence, the Filter has to clock these in order to manage
the timing of the resulting composed functionality. The previous description of
the Filter is fairly straightforward for everything other than the collection mode.
There can be a long exchange of messages between F1 and F2. The collection
mode clocks each of the messages sent between these parties as this is part of the
internal computation ofF . All the inputs received from Env as well as any outputs
written to Env, are sent after the internal computations are done. This is in line
with the ideal functionality specification that fixes that all outputs are computed
as soon as the inputs are available.

Corollary 1. For all private ideal functionalities F1 and ideal functionalities F2
in the fully ordered composition F1 → F2, the machine F = F1|F2 is uniquely
determined by the initial machines, a filter machine Filter affecting only the com-
munication between F2 and A and a communication multiplexer Mux.

Proof. Without loss of generality, we can assume the simplified fully ordered
composition where all inputs are received by F1. From Lemma 2, it is known that
the construction can be obtained with a filter between both ideal functionalities
and A. However, note that private ideal functionality only communicates its inputs
to A and these are forwarded by Filter. On the other hand, 1F never sends the
outputs it gives to F2 to the adversary. Hence, it suffices to filter the messages
from F2 only.
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Figure 21: Decomposition of a composed ideal functionality for the ordered com-
position of two input-private protocols.

However, note that a multiplexer Mux is needed to join the messages from
Filter and from F1 into the outF and to distribute the messages from inF . Mux
sends all messages fromF1 and Filter directly to the adversary A. For all messages
from A, it behaves like Filter in Lemma 2. The resulting configuration is shown
in Figure 20.

Lemma 3. For all private ideal functionalities F1 and F2 in the simple fully or-
dered composition F1 →F2 and added Sink, the functionality F ′ with the open
clocking port as shown in Figure 21 is as input-private as the private ideal func-
tionality F = F1|F2.

Proof. The construction of F ′ is shown in Figure 21. The sink simply collects
everything F2 intends to send to the adversary and does not do anything else. The
control of the execution goes to the master scheduler after Sink finishes.

From Lemma 2, it is known that the composition F can be obtained with a
Filter that only gives out the inputs received from the Env and the outputs sent to
Env. In the simplified fully ordered composition, all inputs are received by F1.
Hence, F1 also sends all input notifications to A as required. It does not send
information about outputs as it is a private functionality. In the plain composition,
F2 receives all the values from F1 and sends them to A as its inputs. Hence,
Sink machine that simply receives these inputs from F2 and does nothing can be
introduced. This is in line with the definition of the private ideal functionality as
the adversary learns all the inputs and nothing else from F and it has the desired
functionality.

Hence, the only difference between the functionalitiesF andF ′ is the clocking
of the buffers from F1 to F2. In F , there is no such clocking port for A. In order
to show that the construction F ′ is as secure as F , the adversary A against F ′
needs to be transformed to an equivalent adversary against F . Note that the only
observable effect of A clocking the buffers from F1 to F2 is the timing when F2
produces outputs. The simulator needs to simulate the buffers out from F so that
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they would only get outputs of F2 once the inputs have been clocked to F2. As
each input buffer to F1 has a distinct role, it is straightforward to keep track of
when F1 would give outputs to F2. The simulator also simulates these buffers and
allows the adversary against F ′ to clock them. The real outputs of F are clocked
when the adversary against F ′ has clocked all inputs to produce it to F2 and then
clocks the output buffer.

As a consequence of Lemma 3 in order to show input privacy of ordered com-
position of Sys1 → Sys2 with respect to F = F1|F2, it suffices to show that the
composition is as input-private as the construction F ′ in Figure 3. By transitivity,
it is also then as input-private as F .

4.4. Output Predictability

As said before, input privacy is a very specific security notion that does not guar-
antee the correctness and where the outputs of the protocol may reveal unwanted
information about the inputs. For example, a protocol where each party adds 1 to
their share is input-private if each party computes it locally. However, if any party
sees the output share, then it also knows what the input share for that party was.

Hence, using an input-private protocol in a composition can lead to unwanted
leakages unless the structure of the composition and the other system are carefully
chosen. The following focuses on an ordered composition Sys1→ Sys2 where Sys1
is an input-private protocol. Such composition can be insecure if Sys2 somehow
reveals its protected inputs to some party. Clearly, in the general case, such pro-
tocols and also the respective ideal functionalities F2 that reveal all inputs to the
same party exist. Security of the ordered composition of an input-private and a
secure system can only be achieved when we limit the ideal functionalities that
define the properties of the secure system. Intuitively, we have to ensure that the
ideal functionalities do not use the inputs from Sys1 too explicitly. Such limita-
tions of the ideal functionalities for MPC are described already in Section 3.4.
The canonical ideal functionalities were restricted to compute fresh output shares
of their output. The following property, called output predictability, gives a more
general condition that has to be satisfied by the composition in order to ensure that
it does not leak too much about the inputs. This enables to use the results regard-
ing input privacy with more general secure functionalities than those described in
Section 3.4.

Figure 22 depicts the configurations that define output predictability (Defini-
tion 27) for simplified fully ordered composition. Note that without loss of gen-
erality, Sys2 gets all its inputs from Sys1. It is always possible to enhance Sys1
so that it simply forwards the extra inputs needed by Sys2. Also, note that each
buffer drawn in the configurations may be multiple buffers in the given direc-
tion. Hence, the limitation is that Sys1 is in fully ordered composition with Sys2
as Sys1 → Sys2. Both systems may have several input and output ports to com-
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municate. Note that system Sys2 is as secure as some functionality F2. Hence
definitions focus on F2. The configurations with Sys1 and F1 are drawn side by
side to highlight the similarities. Both versions are needed to define joint output
predictability in Definition 28.

Env

F2

A1

Sys1

(a) con f1

Env

F2

A2

F1

(b) con f2

Env

Fpred Mux

A1

Split

Sys1

(c) con f3

Env

Fpred Mux

A2

Split

F1

(d) con f4

Figure 22: Configurations for defining joint output predictability for a simplified
fully ordered composition F1→F2 or Sys1→ Sys2.

In Figure 22, the configuration con f1 shows the simplified fully ordered com-
position setup for Sys1 → F2 with adversary A1. Configuration con f2 is almost
the same but Sys1 is replaced with the respective ideal functionality F1, and hence
there is a new adversary A2 that interacts withF1. Configurations con f3 and con f4
create a very different context where Sys1 or F1 is executed. In these configura-
tions, the outputs are generated by an output predictor Fpred instead of F2. In
addition, Fpred only sees the inputs of Sys1 (or F1) and does not see the outputs
of Sys1 (or F1) that are inputs to F2 in con f1 and con f2. Split is a machine that
gives all its inputs to both machines getting inputs from it. The multiplexer Mux,
on the other hand, joins its inputs to unified outputs for A. The machines Split and
Mux are included to ensure correct timing and views for the respective adversary
so that it is not possible to distinguish con f3 from con f1 (or con f2 from con f4).
These machines operate as defined in the following.

First, note that each input buffer that Sys1 had is now input to Split, and re-
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spectively, it has analogous buffers to pass the values to Fpred and Sys1 (or F1).
The machine Split copies each of its input from Env to the respective buffers to
both Fpred and Sys1 (or F1). It clocks the buffer to Fpred. The output predictor
returns control to Split using the respective clocking buffer. On the signal from
Fpred, Split clocks the relevant output buffer to Sys1 (or F1). Hence, overall Split
simultaneously passes its input to both of the receiving machines with the help
of getting control back from Fpred. All these steps happen outside of adversarial
control. The adversary has control either before or during clocking the inputs to
Split and will next regain control when Sys1→F2 (or F1→F2) yields it. Note
that the configurations con f4 and con f3 have to make sure to yield the control at
an equivalent time.

The machine Mux has two main goals: to pass the outputs of Fpred to A with
the right timing according to the execution of Sys1 →F2 (or F1 →F2) and en-
suring that Fpred does not learn the outputs of Sys1 (or F1). The multiplexer Mux
keeps a list of corrupted parties C and a list E of messages m received from Fpred

or Sys1 (F1) that it needs to send to A. Concretely, Mux works as follows.
• On input (out put, ℓx,x) on behalf ofPi from Sys1 orF1 it sends (out put, ℓx, i)

to Fpred and clocks the buffer. Immediately after that, Fpred gives control
back to Mux. Mux sends the message m = (input, ℓx,x, i) to A if Pi is cor-
rupted (i ∈C) or otherwise stores m in E.

• On input (corrupt, i) from A Mux adds i to C. It sends the corruption re-
quest to Fpred that answers with the messages (out put, ℓx,x, i). It writes all
entries (input, ℓx,x, i) ∈ E and (out put, ℓx,x, i) to the buffer to A. It clocks
the buffer to A.

• On input (out put, ℓx,x, i) from Fpred it writes these values to the buffer for
A and clocks the buffer.

• On input (input, ℓx,x, i) from Fpred the machine Mux does nothing.

Note Fpred needs to be defined based on the concrete functionalities. As
an ideal functionality, it is most straightforward to assume that it pro-
duces both input and output notifications, but the input notification
can also be discarded as it is not necessary for the definition of output
predictability.

Note that the definition does not specify exactly how Fpred works, but it has to
support the clocking of the whole system. Rather, Fpred is the machine that needs
to be defined to prove output predictability. Furthermore, the output predictor can
use the input signals from Split and Mux and its knowledge about F2 to provide
outputs to Env at the same time that Env would receive them from F2 in con f1 or
con f2. In general, Fpred depends on Sys1 as well as F2.
Definition 27 (Predictable outcome). Ordered composition Sys1→F2 has a pre-
dictable outcome if there exists a predictor machine Fpred such that for the con-
figurations in Figure 22 viewcon f1(Env) = viewcon f3(Env).
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Definition 28 (Jointly predictable outcome). The ordered compositions Sys1 →
F2 andF1→F2 have a jointly predictable outcome if there exits a common output
predictor Fpred such that for the configurations in Figure 22

viewcon f1(Env) = viewcon f3(Env) and

viewcon f2(Env) = viewcon f4(Env) .

While the definitions of output predictability are uncommon, the property
holds for many cases without the need to prove it separately. As said before,
it is mostly designed to ensure that Sys1 is correct with respect to F1 or the com-
position is such that the correctness does not affect the outputs of F2. Notably,
the outputs of F2 for a canonical ideal functionality are independent of the ran-
domness provided by the storage domain for the inputs of F2. Hence, it only
cares about the value that is returned by Sys1. Also, joint predictability is very
simple if F2 ignores all inputs that it gets from Sys1 or at least ignores the ones
that are used or computed by Sys1. Furthermore, for correct implementations that
return the same outputs value (the value protected inside the storage domain) as
the respective ideal functionalities, the two predictability properties are, in fact,
equivalent. Note that the protection mechanism may be such that the ideal func-
tionality, by definition, returns a fresh output, whereas the distribution given by
the protocol may be different but can still be reconstructed to the same value. If
the functionality is randomized then this can be generalized to the distribution of
the shared values.
Lemma 4. If Sys1 is a correct implementation of the functionality F1 (meaning
it returns the same protected output value), then Sys1 → F2 has a predictable
outcome if and only if Sys1→F2 andF1→F2 have a jointly predictable outcome.

Proof. Let Fpred be the output predictor for Sys1 → F2. Assume, by contradic-
tion, that it is not a suitable output predictor for F1→F2. Hence, if this machine
is put into the respective configurations, then, by definition, viewcon f2(Env) ̸=
viewcon f4(Env) for at least some A2 and Env. An adversary A1 can then be con-
structed against the same environment where A1 internally runs A2 and passes all
the messages from Sys1 that F1 would generate to A2. Since Sys1 is a correct
implementation of F1, the correct messages are used as inputs to A2. In addi-
tion, A1 can also input the respective messages from either Mux or F2 to A2. It
also sends everything A2 sends to the Env and nothing else. The resulting con-
figurations con f1 and con f3 are equivalent to the previous configurations con f2
and con f4, respectively. Consequently, viewcon f1(Env) ̸= viewcon f3(Env) which
is a contradiction with the assumption that Fpred is the output predictor for the
ordered composition Sys1→F2.

Often, a protocol is computing a deterministic functionality where the output
is uniquely determined by the inputs, and the only randomisation is in the protec-
tion applied to the protocol outputs. If the function computed by Sys1 and F1 is
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deterministic, then the correctness of Sys1 with respect to F2 is sufficient for joint
output predictability. In this case, Fpred gets the same inputs and can compute the
same output value. If F2 does not use the randomness applied by Sys1 to protect
the output and only uses the output value, then it is easy to predict the outputs
of F2. In the following, the joint output predictability is a strong property that
is required to prove the security or input privacy of the ordered composition of
the protocols. Note that output predictability covers correctness, but it is more
general.

Output predictability may restrict some protocols that are randomised even if
they are correct. For example, consider a protocol where party P1 generates a
random bit and sends it to P2. P1 outputs this bit and P2 does not output any-
thing. This protocol is a correct protocol for generating a random bit for P1. It
is also trivially input-private since there are no inputs. However, it is not a se-
cure protocol for randomness generation as the bit is leaked to P2. Hence, if such
input-private protocol is composed with a protocol secure protocol F2 that ran-
domises the output of P1, then it is important to consider output predictability.
This protocol is not predictable since the adversary learns the correct output bit
if it corrupts P2, but the predictor does not learn this bit. Hence, the values that
the environment gets from Fpred may not represent the same bit, as Fpred does not
know which bit was generated by Sys1 as Fpred only learns the inputs. It would
learn the output of corrupted P2, but this party has no output. To generalise, if
the functionality is randomised, then input privacy does not guarantee output pre-
dictability if the randomness is leaked to the adversary. For random protocols,
also the randomised outputs must remain private or be public for everyone. If the
outputs remain private, then it is a further task for the Fpred to be able to simulate
the same random distribution as produced by the outputs of Sys1 if F2 uses the
values it gets. Hence, while output predictability is simple for most cases, it is an
important property to consider for non-deterministic protocols.

4.5. Black-Box Simulators

The main theorems for privacy composition work with black-box security and pri-
vacy definitions. The core idea is that such a security proof defines a simulator
that acts as a mediator between the protocol and the adversary without interfering
with the internal state of either system. This section specifies more details regard-
ing simulators in the black-box proofs of privacy to later use these properties of
the simulators in the composition theorems.

The goal is to first describe the idea of the simulator and then to define an
extended simulator that can be used as a building block when proving security
of a composition. As the ideal functionalities are defined as a single system in
Section 4.3 then a proof strategy in the following also extends a simulator of a
single system to a part of the simulator of a composed protocol. For that it is
important to define inputs and outputs of simulators to be able to connect them.
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4.5.1. Privacy Simulator

Let Sys = (M,S) be the real structure and Id = (F ,S) be the corresponding ideal
privacy structure Id. The respective simulator SimId,Sys has ports inF ! and outF?
for connecting to Id and a set of ports S from Sys to connect to the adversary
running against Sys. This SimId,Sys has the necessary ports of a black-box privacy
simulator as it is between a real-world adversary and an ideal private functionality
F . The simulator is illustrated in Figure 23. The neti,Sys denote all the connections
to the buffers inside Sys that the adversary clocks. The buffers ini,Sys and outi,Sys

denote the buffers that the adversary has to machine Mi in Sys.

Env′

Env⊥

F SimId,Sys

A

inF

outF

ini,Sys

outi,Sys

neti,Sys

Figure 23: Simulator SimId,Sys for the functionality F and the adversary A in the
privacy configuration.

The buffer inF is clocked by the simulator and outF is clocked by F as usual.
The set of adversary ports in the real system contains outi,Sys! for each machine
Mi in the system Sys. Generally, these buffers outi,Sys are clocked by the adversary
and are used by the system to give the adversary the information that it is supposed
to see. Moreover, the adversary completely controls the execution timing of Sys,
including the communication between Mi. Hence, one input clock signal to Sys
affects only one machine Mi and, therefore, only outi,Sys among the buffers to the
adversary can be changed at a time. Therefore, the following assumes that, during
each invocation of the simulator, SimId,Sys writes to at most one outi,Sys buffer at
a time.

Note that because of the definition of an input-private ideal functionality, the
simulator does not have the outputs of the computations. It only leans the inputs
of the corrupted party from the ideal functionality. However, SimId,Sys has to
simulate the outputs as they are generated by Sys. The outputs include any public
outputs of the protocol as well as any outputs made only to corrupted parties and
the corrupted view of the secret outputs. Input privacy is only achievable if the
outputs are either in some hiding storage domain or are computed so that the
adversary knows the value. For example, the adversary knows the output value
if the output is either a local computation from the inputs of the corrupted party
or if the hiding property has been broken. If the hiding property is broken for
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the inputs of the ideal functionality, then the adversary can learn the true protocol
inputs from the inputs it gets from F , and both the adversary and the simulator
can compute the true output. The simulator always has to simulate the protocol
outputs. The simulated outputs are correct if either the adversary view has the
right distribution if the values are still private in some hiding storage domain, or
if the adversary view contains the same value (or distribution) as computed by F
if the output is not private any more. If the outputs are not correct, then it is easy
for the adversary to distinguish the real interaction from the simulation. Hence,
the privacy simulator has to also be able to simulate correct outputs.

A privacy definition considers configurations con f1 = (M,S,Env′ ∪Env⊥,A)
and con f2 = (F ,S,Env′ ∪ Env⊥,SimId,Sys ∪ A). A simulator SimId,Sys provides
perfect privacy if viewcon f1(Env

′) = viewcon f2(Env
′). The following will only con-

sider simulators that provide perfect privacy as privacy simulators. However, in
principle, the definition can be extended to simulators providing statistical or com-
putational privacy using traditional variations of indistinguishability of the views.

4.5.2. Extended Privacy Simulator

The security of a composition can be proven in different ways, but the most
straightforward is to base it on the security or input privacy of the components.
A black-box security or input privacy proof defines a simulator like in the pre-
vious section. However, the privacy simulator in the previous section is defined
as a stand-alone system, whereas the composition proofs need to combine sev-
eral simulators into the simulator of the composed system. Hence, an extension
of a privacy simulator is needed. Especially this extension must be able to pro-
duce the simulated outputs of the first system so that the simulator of the second
component can use them as its input. Concretely, an extended privacy simulator
is a simulator that, in addition to the main work of the simulator, also gives out
the outputs computed for the corrupted parties. The privacy simulator has to ex-
ist for any input-private protocol. This section describes how a privacy simulator
can be turned into a suitable extended simulator knowing the fact that the privacy
simulator has to be able to simulate correct outputs.

When composing real systems Sys1 and Sys2, there can be several buffers be-
tween the two systems. These systems correspond to ideal functionalities F1 and
F2 such that the composed real system is as secure as (or as private as) the com-
posed ideal systems. However, by ideal functionality composition definition (Def-
inition 26), instead of the straightforward composition of ideal functionalities, the
composition ofF1 andF2 is a single machineF . Hence, there are no equivalences
to the buffers between the two real systems in the ideal composed system. Instead,
these buffers have to be part of the simulation of the composed system when trans-
forming a real adversary into the ideal adversary. These simulated buffers will be
the ones used to carry the outputs of the simulation of Sys1 to the simulator for
Sys2. In the following, these simulated buffers are denoted as outputi. For a static

111



adversary, this is all that is needed. For an adaptive adversary, these need to be
enhanced by fast output buffers foutputi, one for each party Pi. The fast outputs
are needed because the second component may need outputs from Sys1 that have
been computed and clocked before the corruption call. For example, if Pi be-
comes corrupted in the real world, then the first system reports all its inputs and
outputs and the second system also reports all its inputs. As some of the inputs of
the second system are the outputs of the first that, in the case of an ideal system,
are generated by the simulator, then the composed simulators need to share this
information. The buffers outputi are used to simulate messages that are sent in
the real system, and the buffers foutput j are used purely to enable the simulators
to exchange information about previously computed outputs if needed. The ex-
act details of their use are given in the following definition. Figure 24 gives the
overall structure of the simulator.

Env′

Env⊥

F ExtSim

A

inF

outF

ini,Sys

outi,Sys

neti,Sys

fou
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i
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Figure 24: Extended privacy simulator ExtSimId,Sys for the functionality F and
the adversary A in the privacy configuration so that ports foutputi? and outputi?
are open.

Definition 29 (Extended privacy simulator). An extended privacy simulator (de-
noted ExtSimId,Sys) for n-party ideal structure Id = (F ,S) and a real structure
Sys = (M,S) is a machine with the following properties.

• It has the ports APSys that the adversary expects in Sys as well as the ideal
adversary ports inF ! and outF? and the sets of ports {output1!, . . . ,outputk!
and foutput1!, . . . , foutputn!} where outputi is for sending regular outputs,
one port for every one of the k connections between Sys1 and Sys2 and
foutputi is for outputs of Pi that need to be fast-forwarded due to late cor-
ruption for the case of an adaptive adversary.

• In case of a corruption request to corrupt party Pi coming from ini,Sys?
comes after some (out put, ℓx) has been sent on outi,Sys then ExtSimId,Sys

forwards the corruption request to F and receives the input of i-th party
from F . Upon learning the input, ExtSimId,Sys computes all the previously
ready outputs x and immediately makes an output (out put, ℓx,x) for each
message where the notification ℓx was sent. These outputs are written on
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foutputi and this buffer is clocked. This is the only time when anything is
written to foutputi.

Note Note that at most one party gets corrupted per a corruption request,
and therefore, there are new messages in at most one foutputi so that
it can be clocked by the extended simulator.

• It is a privacy simulator when foutputi and outputi buffers are ignored.
More concretely, consider configurations con f1 = (M,S,Env′∪Env⊥,A∪
Sink′) and con f2 = (F ,S,Env′ ∪ Env⊥,ExtSimId,Sys ∪A∪ Sink) with the
coinciding environment views viewcon f1(Env

′) = viewcon f2(Env
′) where:

– Sink is a machine with ports output1?, foutput1? that does not act on
any input.

– Sink′ has both outputi! and outputi? ports and does nothing. It simply
exists to enable the outputi buffers.

• It correctly computes outputs Ocon f1 = O′con f2
for the same con f1, con f2,

Env and A as defined for the privacy property. The outputs of the protocol
are defined as follows.

– Let τ be the trace of one concrete protocol execution recording which
messages were sent by parties on which buffers and in which order.
Then define O(τ) to be the list of protocol outputs observed by the
adversary A in the real system. If there was a corruption request for
Pi, then the output contains all messages written to outi. If the party
was not corrupted, then there are no messages corresponding to that
party in O(τ).

– Let O′(τ) be the list of outputs generated by ExtSimId,Sys and written
to outputi or foutputi for corrupted Pi.

– Let Ocon f and O′con f respectively be the distributions of O(τ) and
O′(τ) over all possible runs of the configuration.

The machine Sink can be removed from the extended simulator during compo-
sition, and instead, these ports will be connected to a multiplexer that gives inputs
to the next simulator. The multiplexer can then merge inputs from the previous
simulators and the ideal functionalities as necessary.

Similarly to Sink, Sink′ is also a dummy machine used to introduce the outputi
buffers to the real system to allow the adversary to clock them. Note that the initial
real-world adversary does not have access to this buffer. However, the adversaries
created in the composition may need to clock these buffers. Later these are used
in constructions where output is clocked synchronously with the outputs of F .
Lemma 5. If there exists a perfect privacy simulator SimId,Sys for an ideal struc-
ture Id and real structure Sys, then there also exists an extended simulator ExtSimId,Sys

for the same structures.

Proof. This proof constructs an extended simulator from the simulator and some
additional simple machines, as shown in Figure 25. The buffers neti,Sys and neti,out
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Figure 25: The construction of ExtSim from privacy simulator Sim connected to
the ideal functionality F , the adversary A and Sink.

denote the usual buffers that the real adversary A can clock inside the real system
or as outputs of the system. The respective ports belong to the set APSys of ports
that the extended simulator has.

First, let SimId,Sys
∗ be a version of Sim with ports outi,Sys! renamed to outi,sim!

and added functionality to make outi,sim self-clocked. The outi,sim is clocked
whenever a message is written to the buffer. Note that since at most one party
is making the transition in the real system, then also the simulator needs to write
at most one outi,sim in response to one adversary action.

In order to to have the right structure with the right output buffers, the extractor
machines Extri with ports outi,sim?, extri! and outi,Sys! are needed. Hence, the
machine mediates between the Sim and A and has the additional port to forward
the outputs as necessary. Whenever Extri receives something from outi,sim? it
copies the message to outi,Sys!. In addition, if the message is labelled as output in
format (out put, . . .), then this message is also copied to extri! and then Extri also
clocks extri.

OutFilteri is a machine that filters outputs that the simulator gives in time and
separates them from the messages that the simulator has already computed but
needs to send after a new corruption request. Messages from buffer extri are re-
ceived by OutFilteri. In addition to port extri? this machine also has ports outputi!
and foutputi! that are the output ports of the extended simulator. OutFilteri may
receive two types of output messages. If the party i is honest, then it just receives
(out put, ℓx) where ℓx is the label of the output. However, for corrupted parties, it
receives (out put, ℓx,x) where x is the value of the actual output. The goal of the
output filter is to distinguish if something is a new output or an output that has to
be released when a party is corrupted after the output has been computed. Toward
that goal, the machine keeps a list Li,out of all the labels it has seen and upon all
inputs, it adds ℓx to Li,out . Messages (out put, ℓx) are always written to outputi!.
Messages (out put, ℓx,x) from corrupted parties are processed depending whether
ℓx is in Li,out .

• If ℓx ∈ Li,out then (out put, ℓx,x) is written to foutputi! and the buffer is
clocked.

Note Note that the real protocol sends notifications to the adversary about
all the outputs. In this case, there has been a message (out put, ℓx)
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before to denote that this output has been computed. The new mes-
sage appears if the party is newly corrupted and needs to send some
previously computed outputs. It is needed to deliver the content x.

• If ℓx /∈ Li,out then (out put, ℓx,x) is written to outputi!.
The extended simulator ExtSim is a composition of the described machines

as illustrated in Figure 25. It satisfies the structural properties of an extended
simulator on the ports and clocking buffers. The extended simulator provides
privacy as it forwards all the same values as the perfect privacy simulator and the
added values on the outputi and foutputi buffers do not affect the view of the
Env′ or A. The outputs to outputi and foutputi are computed correctly as the Sim
simulates them correctly.

The behaviour and distinction between outputi and foutputi is also kept as
required by the extended simulator definition. All outputs that have not yet ap-
peared are written to outputi and outputs that have appeared as honest parties
labels are written to foutputi when they are sent again by Extri. Note that the im-
mediate return is ensured by the properties of the functionality and the simulator
Sim. When a corruption request is clocked to Sim, it is clocked to F , and the
input values of the corrupted party are returned and clocked by F . The simulator
also has to then create the view of the newly corrupted party and send it out so
that it is received by Extr that can then extract the output and write it to extri!.
Since the output was already computed, then OutFilteri has received (out put, ℓx)
and therefore, the newly received value is immediately clocked out of foutputi.
In the current configuration, the Sink then absorbs the message and the control is
handed back to the master scheduler. Hence, from the scheduler’s viewpoint, the
return of the suitable values is immediate and only the required values are ever
written to foutputi.

4.6. Privacy of the Composition of Private Protocols

This section studies the ordered composition of input-private protocols and estab-
lishes that the notion of input privacy is composable for the black-box version of
the definition. It is sufficient to consider only fully ordered or simple fully ordered
composition when discussing the ordered composition of input-private systems.
Lemma 6. The ordered composition of input-private protocols is input-private if
simplified fully ordered composition of input-private protocols is input-private.

Proof. Firstly, note that the composition of two input-private systems that do not
communicate with each other is always input-private. In terms of the input privacy
definition, one system can be merged into the environment, and then the other is
in the simple input privacy configuration.

Secondly, note that a simple functionality of a communication channel that
does no modifications to the inputs is always input-private. This functionality
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simply receives the inputs and forwards them to the recipients. It has no com-
putations and the adversary can only see the corrupted inputs, which ensures the
hiding property. This can be seen as a local identity or copying functionality,
where the adversary can only see the corrupted party’s view and no new infor-
mation is revealed in this protocol. Hence, one can first find a topological order
for all systems in an ordered composition. Then, all systems can be extended to
copy all outputs of the previous functionalities as their outputs. The composition
of extended functionalities is a simplified fully ordered composition.

Theorem 5 (Theorem 4 formally). Let Sys1 ≥model
priv F1 and Sys2 ≥model

priv F2, both
with black-box privacy. The model may be perfect, statistical or computational
as needed. Then, for ordered composition Sys1 → Sys2 with a coherent adver-
sary, Sys1 → Sys2 ≥model,Ac

priv F with black-box simulation, where F is the ideal
composition of F1 and F2 as in Definition 26.

Proof. Firstly, based on the observation in Lemma 6 regarding the privacy of non-
communicating systems, the statement can be proved only for the simple fully
ordered case. For the general case, Sys1 can always be extended with the private
channels to forward the inputs of Sys2 and Sys2 can forward the inputs from Sys1
as outputs.

This proof is illustrated by Figure 26, where a simulator is derived for the real
fully ordered composition for the ideal composed system F . Figure 26a pictures
the original composition of the two real systems Sys1 → Sys2 (con f0) with Sys2
in grey as well as the version where Sys2 has been substituted with the equivalent
combination of the F2 and the simulator Sim2 from the black-box privacy defini-
tion (con f1). This step is allowed, as Sys1 is defined as part of the Env′ for the
Sys2 privacy configuration. Since the simulator has to exist for all Env and A, then
such Sim2 exists since the protocol has black-box privacy. Note that, in con f1,
Sys1 is not in a privacy configuration as its outputs are leaked to the adversary as
inputs of Sys2, and hence analogous substitution cannot be done with Sys1.

In order to prove input privacy, the real system must be indistinguishable from
the respective ideal functionality F . However, applying Lemma 3 specifies an-
other functionality likes F denoted as F ′ but the adversary clocks the buffers
from F1 to F2. It suffices to prove input privacy with respect to that functionality
to derive that the real system is as input private as F . Figure 26b demonstrates
the functionality F ′ in the privacy configuration with the adversary AF ′ in gray as
con f ′0. The goal of the input privacy proof is to show that there exists SimF ′ such
that AF ′ = SimF ′ ∪A for any real adversary A. In order to simplify the following
construction of the simulator, define con f ′1 based on the construction for the com-
posed ideal functionality with an extra clocking port from Lemma 3. Note that,
in fact, F1 is now in a privacy configuration as F2 does not communicate with
anyone except Sink and Env⊥ so these can be merged to Env∗⊥.

Finally, Figure 26c proposes the simulator construction for SimF using ExtSim
(Definition 29) constructed from the privacy simulator Sim1 for the first system. It
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remains to argue that the view of A in con f ′2 and con f1 is the same. In both cases,
one part of the interaction is with Sim2, however, Sim2 gets its inputs from differ-
ent sources. Note that ExtSim contains Sim1 and forwards the outputs generated
in the simulation in Sim1 as inputs to Sim2 and Sim2 does not expect any other
inputs. By definition, Sim1 produces a view that is indistinguishable from Sys1
running. Hence, the adversary cannot distinguish this part from Sys1. However,
this also means that the outputs extracted from the outputs of Sim1 are equivalent
to those generated by Sys1 and, therefore, Sim2 gets equivalent outputs in the two
worlds.

Sys2

Env′

Env⊥

F2 Sim2

A

Sys1

(a) Two ordered systems in privacy
configuration, con f0 (with Sys2 in
gray) and con f1.

F ′ AF ′

Env′

Env⊥

F2

A

F1

Sink

SimF ′

(b) Composed ideal functionality in the privacy
configuration, con f ′0 (with F and AF in gray)
and con f ′1.

Env∗⊥

Env′

A

ExtSim1F1

Sim2

Env⊥

F2 Sink

(c) Simulator construction for the deconstructed ideal
functionality, con f ′2.

Figure 26: Configurations to build the simulator for the fully ordered composition
of two real input-private systems.

Corollary 2 (Composition of input privacy for general adversaries). Let Sys1≥model
priv

F1 and Sys2 ≥model
priv F2 both with black-box security. The model may be perfect,

statistical or computational as needed. Let the ordered compositions Sys1→F2
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and F1→F2 have a jointly predictable outcome. Then, for fully ordered compo-
sition Sys1→ Sys2, Sys1→ Sys2 ≥model

priv F with black-box simulation where F is
the ideal composition of F1 and F2 as in Definition 26.

Proof. A direct result from Theorem 5 and Lemma 1.

Structural induction can be used to extend Corollary 2 to the ordered compo-
sition of two or more systems. Joining this result with that of Corollary 3 allows
us to conclude that any number of input-private systems can be composed with a
secure system to obtain a secure protocol.

Often, the simplest secure functionality is that of rerandomising the secure
outputs of the private system. For example, refreshing the encryption or sharing
randomness. However, most of the computation protocols can be composed of
input-private systems and the secure functionality can be pushed to the end of the
computation. In the context of arithmetic circuits, where there often are many
intermediate values and a small number of outputs, this is especially valuable
since most of the components can be input-private protocols that can be more
efficient than secure protocols. The more expensive secure computations are only
needed for the potentially small number of outputs. A concrete example of this is
discussed in Section 4.8.1.

4.7. Security of Ordered Composition of Private and Secure
Protocols

This section formalises the main security theorem for composing private and se-
cure protocols. Since the proof is quite detailed, it is separated into several inde-
pendent lemmas. This section uses the class of coherent adversaries Ac (Defini-
tion 19) that always corrupt all machines representing the same party simultane-
ously. The class of coherent adversaries is equivalent to the generic adversaries
as shown in Lemma 1. In principle, the coherent adversary corrupts all machines
representing one party together, but in practice, independent corruption requests
still have to reach each machine. Without loss of generality, we assume that for
ordered composition Sys1→ Sys2, the party in Sys1 is corrupted first, as this sim-
plifies the following proofs.
Theorem 6 (Theorem 3 formally). Let Sys1 ≥model

priv F1 and Sys2 ≥model
sec F2, both

with black-box security against coherent adversaries. The model may be perfect,
statistical or computational as needed. Let the ordered compositions Sys1→F2
and F1→F2 have a jointly predictable outcome. Then, for a fully ordered com-
position Sys1 → Sys2 with a coherent adversary, Sys1 → Sys2 ≥model,Ac

sec F with
black-box simulation where F is the ideal composition of F1 and F2 (as in Defi-
nition 26).

Proof. Similarly to Theorem 5, it is suitable to only consider simple fully ordered
composition. In the latter, all inputs of Sys2 must come from Sys1 and Sys1 is an
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Env

Sys2

A

Sys1

(a) Fully ordered composition of two sys-
tems, con f0.

Env

F2 Sim2

A

Sys1

(b) Ordered composition of a real and ideal
system, con f1.

Env∗
Env

Fpred Mux Sim2

A

Split

Sys1

(c) Using output predictability and regroup-
ing the machines, con f2 and con f3.

A∗∗

Env′∗

Env∗⊥ Sim2∗

A∗Sys1

(d) Splitting Mux and redefining the adver-
sary, con f4 and con f5.

Figure 27: Configurations to simplify the ordered composition of two real sys-
tems.

input-private system. Hence, analogous to the logic in Lemma 6, it is possible to
extend any input-private system with a copying functionality that copies all inputs
that are given from Env to Sys2. This simplifies the structure of the following
proof, and therefore, it is beneficial to consider simple fully ordered composition.

This proof firstly transforms the real ordered composition as in Figure 27. Sec-
ondly, the proof shows a candidate simulator construction in Figure 28 and trans-
forms it using the properties of its components. The final goal is to show that the
real system in Figure 27a and the ideal system in Figure 28a are equivalent to their
respective transformations and that it is easy to see that Figure 27d and Figure 28e
are equivalent.

Transformation of the real system. Figure 27a illustrates the ordered compo-
sition of the two original systems. We’ll define this as con f0. The black-box
security of Sys2 allows to use the RSIM composition result in Theorem 2 to
replace Sys2 with the ideal functionality F2 and a simulator Sim2 to be con f1
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such that viewcon f0(Env) ≈ viewcon f1(Env). In the perfect case, viewcon f0(Env) =
viewcon f1(Env). The resulting configuration con f1 is given in Figure 27b. Note
that A is always the master scheduler, and, in the simulated case, Sim2 becomes
the scheduler. Therefore, without loss of generality, we can consider that Sim2
clocks the buffer to F2.

As a second step, the output predictability (Definition 28 and Figure 22) of
Sys1→F2 is applied to separate Sys1 and Sys2. For that, consider Sim2 in con f1
as part of the adversary in the predictability definition and obtain con f2 as in
Figure 27c. Predictability tells that viewcon f1(Env) = viewcon f2(Env). In addition,
joint output predictability defines that the same predictor Fpred can be used to
predict the outcome of the composition of the ideal functionalities F1→F2.

Define a new machine Env∗ as Env∗ = Env∪Fpred ∪Split and define the re-
sulting simplified configuration as con f3. This serves as the new environment that
gives inputs to Sys1 and Mux. Such transformation is allowed as the environment
and its communication with the adversary A is not limited. Configuration con f3
is depicted of Figure 27c with Env∗ in gray. Note that, in the following, whenever
the view is indistinguishable for Env∗, it is also indistinguishable for Env, which
is a sub-machine of the new environment and does not get any extra information
from elsewhere.

Details of Mux are defined in Definition 28, its main role is to pass the out-
puts of Fpred to A and to let it know when Sys1 has computed an output. As
the next step, the Mux is split into two as it serves two purposes in the current
configuration. This split gives a new configuration con f4 in Figure 27d with
viewcon f3(Env∗) = viewcon f4(Env∗). The machine Mux is broken into two parts,
the part that ignores outputs of Sys1 becomes Env∗⊥. In con f4, all outputs of Sys1
are sent to Env∗⊥. The remaining part only communicates with A (through Sim2)
and Fpred. The new adversary A∗ is like a joint version of A and Mux that only
sees the corrupted outputs. The simulator Sim2∗ is like Sim2 just connected to the
part of the Mux that is now internal to A∗. The full details for this split and A∗ in
case of an adaptive adversary will be shown in Lemma 7.

Similarly to redefining the environment, A∗ is redefined to merge Sim∗2 to ob-
tain configuration con f5 as in Figure 27d. As the view of A inside A∗ or A∗∗ re-
mains the same and the rest of the configuration affecting Env∗ does not change,
it is straightforward that viewcon f4(Env∗) = viewcon f5(Env∗). ]

Transformation of the ideal system and proposed simulator. With the previous
transformations, the composition Sys1→ Sys2 is in a simplified form and it is time
to look at F . The main claim of this theorem is that the combination of ExtSim1

for F1, a multiplexer MuxSim and a simulator Sim2 for F2 form a suitable simu-
lator to turn any real-world adversary A to an equivalent adversary against F as
shown in Figure 28b. Note that the simulator construction contains a demulti-
plexer that splits the buffers joined by Mux in con f ′1.

The ideal world transformation is shown in Figure 28. Let the original con-
figuration with F be con f ′0 as in Figure 28a. The adversary can send corruption
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requests, and the ideal functionality F sends messages as specified in Defini-
tion 25. Applying Corollary 1 gives a possibility to decompose F as F1, F2 and
Filter. Let this be con f ′1 in Figure 28a. In the ordered ideal composition of ideal
functionalities, the Filter is defined in Lemma 2 and the Mux is added in Corol-
lary 1. The Filter only gives out the outputs of F2 to A and stops the inputs. The
Filter also clocks the channel from F1 to F2 when it learns that F1 has written
an output. The multiplexer forwards the inputs for F1 and the outputs of F2 to
the adversary. It also lets Filter know if F1 has produced an output. Mux also
forwards the corruption requests sent by A to the functionalities F1 and F2. Note
that in such case, the functionality sends a response to the corruption request and
Mux always gets the control back.

Next, the ideal adversary AF is replaced with the combination of the proposed
simulator SimF and a real adversary A. The proposed construction for SimF ap-
pears in con f ′2 in Figure 28b. In essence, there is a demultiplexer in the simulator
construction that takes the messages from Mux and separates these into messages
from F1 and Filter. In con f ′2, the multiplexer Mux and demultiplexer are can-
celled out and replaced by simply keeping the respective buffers. ExtSim is built
as in Lemma 5 from Sim1. Note that, from the preconditions of the theorem, it
is known that there exists a black-box perfect privacy simulator Sim1 for F1 and
a black-box security simulator Sim2 for F2. The multiplexer MuxSim is akin to
the multiplexer used in the predictable outcome definition (Definition 28). Here
MuxSim works as follows:

• On input (out put, ℓx,x) from ExtSim (on either outputi or foutputi) it sends
it to Filter and clocks the buffer. The Filter clocks the respective buffer
between F1 and F2 if the message was from output, it gets control back
from F2 and then gives the control back to MuxSim. Finally, MuxSim sends
the message (input, ℓx,x) to the buffer to Sim2 if the party Pi is corrupted.

• On input (corrupt, i) from Sim2 who forwards the message from A, MuxSim

adds i to the list of corrupted parties C. It then writes the corruption request
to Filter and clocks the buffer, and gets control back with the response mes-
sage (out put, ℓx,x, i) if any outputs have been computed. It then sends all
entries (input, ℓx,x, i) and (out put, ℓx,x, i) to Sim2 as one message in re-
sponse to the corruption request. Note that the adversary is coherent and
has corrupted Sys1 before Sys2. Hence ExtSim has already processed the
corruption request and the inputs are available.

• On input (out put, ℓx,x, i) from Filter it sends these to Sim2 unaltered.

Note Input (input, ℓx,x, i) is never received from Filter as the purpose of the
filter in the construction of F is to only send out the outputs of F2 and
to filter out and never send the inputs.

• Any unspecified message is ignored.
Hence, compared to the multiplexer in the predictability definition, Filter has the
same role as Fpred, ExtSim is in the role of Sys1 (of F1) and Sim2 is in the role of
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the adversary.
Most of the buffers in the simulator construction are sender clocked. However,

the outputi buffers from ExtSim to MuxSim is a new buffer clocked by A. The
adversary A is the real-world adversary that treats these buffers as it would the
buffers from Sys1 to Sys2. If the adversary clocks this buffer, then the Filter re-
ceives an input and can clock the buffer from F1 to F2. This clocking capability
of A was not obvious in con f ′1, but it is a buffer that A expects to use to control
the timing of the execution.

Next, consider A, ExtSim, MuxSim, Filter and Sim2 as an adversary in the
output predictability definition to obtain a configuration con f ′3 in Figure 28c that
is analogous to previous con f2. This configuration introduces Fpred, Mux and
Split machines from Definition 28. The timing of the execution is also specified
in the output predictability definition Definition 28.

Next, configuration con f ′4 is derived by a similar simplification as before where
Fpred and Split are pushed to Env to obtain Env∗. This collection is shown in
Figure 28c together with con f ′3.

In order to derive the next configuration con f ′5, the different flows that may
occur in the given configuration need to be analysed. The details of this substi-
tution are discussed in Lemma 8. The end result is a configuration where the
Mux, MuxSim and Filter are reconfigured together with separating the environ-
ment Env∗ = Env′∗∪Env∗⊥ as in Figure 28d. This configuration is similar to that
of con f3 on Figure 27c where Mux from con f3 is represented as Mux∗ and Env∗⊥.
Mux∗ is working mostly as MuxSim with the addition that it notifies Fpred in Env′∗
when outputs are received from ExtSim.

Next, note that the extended simulator has been built from Sim1 according to
Lemma 5. Hence, it can be decomposed to its parts Sim1, OutFilter and Extr as
configuration con f ′6. Further, consider a new adversary A∗∗ created by merging
A with Extr, OutFilter, Sim2 and Mux∗ to arrive to the final configuration con f ′7
depicted in Figure 28e together with con f ′6.

All these changes have preserved the view of the environment, hence for the
initial and final configuration, viewcon f ′0

(Env) ≈ viewcon f ′7
(Env) as Env is a sub-

machine of Env′∗.
Now, putting together the simplifications of the real and ideal composition

leaves us with con f5 and con f ′7 where the Env∗ is, in fact, the same, if both trans-
formations start from the same Env. In both cases, Env∗ contains Env, Split,
and Fpred where the added machines are the same based on the joint output pre-
dictability (Definition 28). Similarly, the adversaries A∗∗ are the same in the two
configurations. Note that con f ′7 simply also draws the clocking connection, but
the output of F1 is also clocked by A∗∗ in con f5. By definition, the machine Sim2
is the same in con f5 and con f2, and the multiplexers Mux and Mux∗ have the
same function. In addition, Lemma 7 shows that the step to con f4 can be done
with introducing Extr and OutFilter hence they were already in A∗ in con f4.

Hence, this proof has shown that the question of whether Sys1 → Sys2 is as
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secure as F reduces to the question of whether con f5 is indistinguishable from
con f ′7. Note that the final configurations depict the privacy definition configura-
tion where the outputs are not returned. By definition, Sys1 is as private as F1
in a black-box manner and Sim1 is the simulator that proves the input privacy.
Hence, by definition, for every adversary A∗∗, one can use the simulator Sim1 to
turn it into an equivalent adversary against the input privacy of the ideal function-
ality F1. Hence, viewcon f5(Env) ≈ viewcon f ′7

(Env) and the claim of the theorem
follows.

Lemma 7. For a coherent adversary A, viewcon f3(Env∗) = viewcon f4(Env∗).

Proof. This lemma specifies a transformation step not fully detailed in Theorem 6
and refers to configurations in Figure 27. The respective theorem needs the equiv-
alence of the views of the environment. However, this transformation is really
focused on the adversary. If the view of the adversary A remains the same and the
construction for A∗∗ is a valid adversary, then the resulting configuration con f4 is
equivalent to the con f3. The configurations in question are shown in Figure 29 in
detail and belong to Figure 27 in the bigger picture. The proof starts from con f3
with a coherent adversary A. A coherent adversary means that the party is either
corrupted in both or neither of the systems. Hence, the adversary A can see all
inputs of Sim2 in con f3 as the corrupted parties’ outputs from Sys1. Note that
Sim2 also learns only the shares of the corrupted parties.

The machine Mux is defined in the predictable output definition. In the current
configuration, Mux can be split based on the corruption. The part that works with
the values of the corrupted parties can be merged to A to form A∗∗. The part
ignoring the other outputs forms Env∗⊥.

The construction to split Mux could be achieved by simple rewiring for static
corruption. For adaptive corruption, the values seen by Sim2 must change if the
set of corrupted parties changes. However, this can still be managed by the new
adversary A∗∗, who is in charge of the corruption. The idea of the following
construction is to get the corrupted outputs of Sys1 from the buffer where they are
sent to A and rewire the rest so that the simulator Sim2 uses these instead of the
values from Mux.

In con f4, all outputs of Sys1 are sent to Env∗⊥. A∗∗ is built from an extractor
Extr and OutFilter as in Figure 29b. Here, Extri is on the ports for the i-th party
and used to split the (out put, ℓx,x) messages similarly to the construction of the
extended simulator. Note that there are separate buffers between each partyPi and
the adversary, so the machines Extri are each using a set of buffers not affected by
the extractors for other parties. Also, OutFilteri behaves similarly and has the two
ports output and foutput for either transporting the regular or fast outputs. The
fast outputs are those that the system has computed before corruption and need to
be distributed correctly after a corruption request. Mux∗ behaves like Mux but is
connected to the new output and foutput ports instead of the outputs of Sys1. The
communication with Env∗ remains as it was for Mux.
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chines to A, con f ′6 and con f ′7.

Figure 28: Configurations to simplify the ordered composition of two ideal sys-
tems.
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(b) Building A∗∗ from con f3.

Figure 29: Constructing con f4 from con f3.

The overall clocking also needs to be adjusted. In Figure 29b, this is marked
by the self-clocked port added to Sys1. Note that this notation is a simplification
of the clocking behaviour rather than the true behaviour of Sys1. If each party in
Sys1 is represented by one machine and never clocks any other machines, then
each machine in Sys1 can simply be modified to add this clocking. In the more
general case, an effect similar to Sys1 clocking any of its messages to A can be
obtained by modifying the master scheduler (A∗∗). Either the master scheduler
always clocks all buffers from Sys1 after giving control to Sys1, or A∗∗ clocks the
respective buffer when A clocks the buffer from Sys1 to A to receive these inputs
or A clocks the outputs of Sys1 to Env∗⊥. Note that either of these ensures that
the right values reach Sim2 at the same time as in con f3. In addition, clocking
of outputi is done at the same time as clocking the respective output of Sys1 to
Env∗⊥ to maintain the timing needed by Fpred. Note that, in this case, Env∗⊥ may
do something, but it does not start any other machines. Hence, the new scheduler
can first clock the message to Env∗⊥ and then clock the same message in output.

The machines OutFilteri, Extri and Mux∗ are merged to A to obtain A∗∗. The
machine called Sim2∗ in con f4 in Figure 27d is the machine Sim2 simply rewired
so that both its connections to A and Mux∗ now come from A∗. Note that A∗ now
communicates with Env as well as Fpred inside Env′∗ although these connections
are not all explicitly drawn in con f4 in Figure 27d. Note that the constructions
have posed no restrictions to the communication of A and Env and drawing the
extra pair of sender-clocked buffers would only complicate the figure. The ma-
chine Env′∗ is the same as Env∗ simply with the updated notation to make the
privacy configuration explicit.

Lemma 8. viewcon f ′4
(Env∗) = viewcon f ′5

(Env∗).

Proof. The Filter in con f ′4 is used to filter out the inputs sent originally by F2.
However, MuxSim is defined as ignoring these messages even if it would receive
them. Hence Filter can be safely removed from con f ′4 without affecting any mes-
sages sent out to A or Env∗. However, some machine needs to take over the
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clocking role and clock the output buffers from F1.
The new machine Mux in con f ′4 is the multiplexer from the output predictabil-

ity definition (Definition 27). It is used to deliver the output timing of F1 to Fpred

and forward messages between Fpred and A. Especially it forwards the composi-
tion outputs learned from Fpred to A. As discussed before, the inputs of Fpred are
filtered out by Filter and would also be ignored by MuxSim. Hence Mux can be
split to form a part that ignores the value from F1 and call this Env∗⊥.

The second part of Mux is the one forwarding messages. Finally, merge the
forwarding part of Mux and MuxSim to form Mux∗ and rewire the timing notifica-
tion to Fpred. In addition, Mux∗ gets the clocking of the output of F1. Note that,
by definition, when F1 delivers its output to F2 (or Mux in con f ′4), then this tim-
ing is duplicated with the timing of clocking outputi buffer of the ExtSim. Here,
outputi is clocked by the adversary A and the control is given to Mux∗. Next,
Mux∗ can send the same signal to Fpred and by definition it gets the control back
from Fpred. Then it can write everything necessary to Sim2 and get the control
back. Finally, Mux∗ clocks the output of F1 to Env∗⊥.

Note that as an alternative, the outputs of F1 can simply remain in the buffer
to Env∗⊥ as, by definition, Env∗⊥ does not interact with other machines and hence
this would not change the adversary or Env′∗ view of the execution.

Corollary 3 (Security of private and secure composition for general adversaries).
Let Sys1 ≥model

priv F1 and Sys2 ≥model
sec F2 both with black-box security. The model

may be perfect, statistical or computational as needed. Let the ordered composi-
tions Sys1→F2 and F1→F2 have a jointly predictable outcome. Then, for fully
ordered composition Sys1→ Sys2, Sys1→ Sys2 ≥model

sec F with black-box simula-
tion where F is the ideal composition of F1 and F2 (as in Definition 26).

Proof. This is a direct result from Theorem 6 and Lemma 1, respectively, showing
the result for simultaneous corruption and the fact that simultaneous corruption is
generic.

The main restriction of the composed secure system (Corollary 3) is that all
outputs of the private system have to be used (hence, at least rerandomised) by the
secure functionality.

4.8. Application of the Composition Theorems

This section focuses on examples where the composition theorems are useful and
give rise to new efficient protocols. The intuition that input privacy combined with
secure protocol gives a secure protocol was known prior to the given formalisation
of the approach. This had been explicitly used by protocols in Sharemind as dis-
cussed in Section 4.8.1. A similar pattern has also been used by other multiplica-
tion protocols. Section 2.1.4 introduced Maurer’s and Gennaro-Rabin-Rabin mul-
tiplication protocols that first use the multiplicativity of the secret sharing scheme
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to compute the multiplication result and then share this result to get valid shares.
The first part of the computations is local and, therefore, also input-private. The
sharing operation is secure and the full protocol is, therefore, an ordered compo-
sition of input-private and secure protocol that is also secure. Hence, these well-
known protocols can be seen as following the same structure as now generalised
by the definition of input privacy and the composition theorem.

In addition, the proof framework was very explicitly used to prove the security
of a hybrid protocol combining garbled circuits and additive secret sharing. This
protocol, as well as the proof of security, are given in Section 4.8.2. In addition
to the work of the author, the proof framework has been used in different manners
by other authors, as discussed in Section 4.8.3.

4.8.1. Multiplication in Sharemind

Sharemind [28, 32, 33] is a framework for secure multiparty computation that can
support different protection domains. However, its most developed protection
domain is that of three parties using additive secret sharing and tolerating one
passively corrupted party. This framework also used input privacy and secure
protocol composition idea before it was thoroughly formalised. For example, the
informal version of the composition of input-private and secure protocol appears
as Theorem 5 in [28] and was already considered in [32] as perfect simulatability
in combination with resharing the output. The simplest example for using the
input-private and secure composition result is the multiplication protocol where
the secure protocol is Reshare in Algorithm 11.

The core of the protection domain is the storage domain with additive secret
sharing over rings Z2k . A shared value [[x]] = ([[x]]1, [[x]]2, [[x]]3) is such that x =
[[x]]1+[[x]]2+[[x]]3 mod 2k and each party Pi knows [[x]]i. Shares are generated so
that each share individually is uniformly random in Z2k . Additive secret sharing
is linear, meaning that addition and subtraction can be computed locally as

[[x+ y]] = [[x]]+ [[y]] = ([[x]]1 +[[y]]1, [[x]]2 +[[y]]2, [[x]]3 +[[y]]3) ,

where Pi computes [[x]]i+[[y]]i on its own. As all local protocols are, by definition,
input-private, then so are addition and subtraction. The resharing protocol is given
in Algorithm 11 and multiplication in Algorithm 12 based on their description
in [28, 33]. The protocols introduced here are also used in Section 4.8.2.

The ideal functionality FReshare for Reshare is defined basically as the input
and output definition in Algorithm 11. The ideal functionality reconstructs the
value of x and then shares it again to obtain fresh shares for the value x that is
denoted as [[y]]. Note that, by definition, there is no dependency between [[x]]i and
[[y]]i other than that [[x]] and [[y]] can be reconstructed to the same value. Perfect
security of resharing for one passively corrupted party is easy to see. Nothing in
the protocol execution reveals information about x, and, for a uniformly randomly
chosen ri, the value a+ ri mod 2k is uniformly random for all a. On the other
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Algorithm 11: Resharing protocol Reshare([[x]]) in Sharemind.

Input: [[x]], each party Pi inputs [[x]]i
Output: [[y]] such that y = x and [[y]]i is uniformly random

Pi creates ri+1
$←− Z2k

Pi sends ri+1 to Pi+1
Pi computes [[y]]i = [[xi]]+ ri+1− ri

return [[y]]

Algorithm 12: Multiplication protocol Mult or [[x]] · [[y]] in Sharemind.

Input: [[x]], [[y]]
Output: [[w]] where w = xy
[[u]] = Reshare([[x]])
[[v]] = Reshare([[y]])
Pi sends [[u]]i and [[v]]i to Pi+1
Pi computes [[r]]i = [[u]]i[[v]]i +[[u]]i[[v]]i−1 +[[u]]i−1[[v]]i
[[w]] = Reshare([[r]])
return [[w]]

hand, it is easy to simulate a value ri to get a desired output [[y]]i from a known
[[x]]i. Proper security analysis can be found in [28]. The protocol is also input-
private as the output is a secret shared value with uniform shares.

The ideal functionality for multiplication reconstructs x and y, computes w =
xy in public and then secret shares w. The multiplication protocol in Algorithm 12
is a composition of Reshare, local computations and distributing shares. Its se-
curity is proven in [33]. Intuitively, the part of Mult before the final Reshare
(denoted as Mult’) is input-private because the values [[u]]i and [[v]]i that are sent
are uniformly random and each party Pi only sees [[u]]i and [[v]]i and [[u]]i−1 and
[[v]]i−1 in the protocol which does not reveal x or y because [[u]]i+1 and [[v]]i+1 are
also uniformly random and hide the values. Hence, the input privacy simulator
can simulate the protocol by sending uniformly random values. However, without
the final Reshare, the multiplication protocol Mult’ is not secure.

A significant distinction between the input-private and secure protocols in
terms of how the properties are proven is that, for security, the proof has to en-
sure that the simulated output is the same as given out by the ideal functionality.
Without the reshare, the protocol would output [[r]] that is computed from [[u]]i,
[[u]]i−1, [[v]]i and [[v]]i−1. Hence, in the simulation, the values of [[u]]i, [[u]]i−1, [[v]]i
and [[v]]i−1 would need to be computed from the desired output [[r]]i and would
still need to have a uniform distribution in Z2k as they are outputs of Reshare.
However, there are correlations between these values. For example if [[u]]i = 0
and [[v]]i = 0, then it must be that [[r]]i = 0. In this case, it means that a valid-
looking protocol execution might be impossible to simulate. The common simu-
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(a) Protocol with full multiplication on each step.

Mult’ Mult’+ Mult’+ Mult’+

Reshare

(b) Protocol with private multiplication before summation and final resharing.

Figure 30: Two variations of computing an inner product of a vector of length 4.

lation strategy to choose three of these values as uniformly random and compute
the fourth from these choices and [[r]]i does not work since not all elements in a
ring Z2k have multiplicative inverses, and therefore, it is not possible to always
have a solution for x in ax = b, for a given b and a, especially if a does not have a
multiplicative inverse. A more complicated simulation strategy might try to gen-
erate several of these values so that they depend on each other, but, in this case,
the final distribution would not be the same as the one where each value is cho-
sen uniformly at random and independently of each other. Note that also the full
multiplication Mult is input-private. The simulator used to prove the security of
Mult can be transformed to prove input privacy simply by generating uniformly
random output share [[w]]i for the corrupted party Pi.

Note that, in the case of multiplication, it is useful to be able to consider the
secure and input-private versions of the protocol separately. For example, com-
puting the inner product of two secret-shared vectors of length ℓ with the secure
protocol, then the final resharing step is needed for each of the ℓ multiplications.
However, knowing the composition results for input privacy and security, it is
instead possible to propose a protocol that first computes the input-private inner
product and then, in the end, does one resharing of the result to get the secure in-
ner product protocol. Hence, this is one instance where considering input privacy
helps to achieve more efficient protocols. The structure of the two protocols is
illustrated in Figure 30.

4.8.2. Combining Garbled Circuits and Additive Secret Sharing

This subsection describes the protocol for combining garbled circuits with ad-
ditive secret sharing. This section generalises the approach originally proposed
in [125] for the concrete use case of floating-point operations. In the current de-
scription, the focus is on the construction of the protocol and the security proof
using the composition of input-private and secure components. This protocol is
tailored for the three-party additive secret sharing-based protocol in Sharemind
that tolerates one passively corrupted party.

Overall, the protocol is intended to integrate a garbled circuit evaluation into
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otherwise additive secret-sharing-based execution. Hence the inputs and outputs
are expected to be secret-shared. The overall idea is to start with the shares, then
execute some computation with input privacy using garbled circuits, and convert
the result back to secret sharing with a secure resharing protocol. This approach
enables to add new functionality to Sharemind efficiently as the garbled circuits
method can be used for any computation representable as a circuit and there are
various tools available for generating and optimising the underlying circuits [85,
92]. Originally, this approach was used to enhance Sharemind with the floating-
point operations that follow the full IEEE 754 floating-point standard [86] rather
than implementing some approximation of floating-point operations directly on
secret shares, for example, like in [87]. Hence, this is a version of combining
secure computation methods as is discussed in Section 2.1.7.

Protocol Description. The garbled circuits protocol is, by definition, asym-
metric, as the garbler and evaluator have distinct roles. Hence, the hybrid proto-
col resulting from combining the protocol with additive secret sharing for three
parties is also asymmetric, and the protocol needs to be described separately for
all parties. The input of the protocol is secret-shared among all three parties. Dur-
ing the protocol execution, they all take part in the oblivious transfer to transform
these shared inputs to the input encodings of the garbled circuit. In particular, the
protocol OT defined in Algorithm 13 is used. In addition, they all participate in the
final resharing protocol Reshare in Algorithm 11 to translate the outputs of the
garbled circuit back to additive shares.

The standard oblivious transfer is a two-party protocol where one party has two
inputs x0,x1 and another party has a bit b. As a result of the protocol, the second
party learns xb and nothing about the other element. The first party learns nothing
about b. The following three-party protocol requires a special flavour of assisted
oblivious transfer where the first party knows the inputs, the choice is secret shared
and the second party receives the output. A version of such an assisted oblivious
transfer protocol is given in Algorithm 13. Note that the local computations of
the algorithm are input-private and other computations are secure. Concretely, the
respective protocols (multiplication, addition and subtraction) of the Sharemind
framework can be used. The following security proof argues that this protocol
is a suitable component for the given passively secure hybrid protocol execution.
Note that the protocol until the computation of [[X ]] is often also known under the
name oblivious choice where the computations have already chosen the necessary
encodings. The last lines are publishing this choice to P2 to turn the protocol into
oblivious transfer.

Note that the bit-vector x is secret-shared in a ring that is suitably big to also
fit Xb

i as elements without overflow. Conversions to and from a more efficient
representation of a bit vector are possible, similarly to all kinds of transformations
between secure data representations but are not of interest to the discussion here.

Recall that the garbled circuits specified in Section 2.1.5 are defined by two
algorithms, Gb( f ) for garbling and Ev(F,X1, . . . ,Fn) for evaluation. The garbling
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Algorithm 13: Oblivious transfer of input tokens (OT).

Input: P1 holds the input tokens (X0
1 , . . . ,X

0
n ,X

1
1 , . . . ,X

1
n )

The input choice bit vector [[x]] = [[x1, . . . ,xn]] is shared between all parties
Output: P2 receives input tokens (Xx1

1 , . . . ,Xxn
n )

if Executed by P1 then
[[X0]]1 = (X0

1 , . . . ,X
0
n )

[[X1]]1 = (X1
1 , . . . ,X

1
n )

else if Executed by Pi where i ̸= 1 then
[[X0]]i = (0, . . . ,0)
[[X1]]i = (0, . . . ,0)

[[X]]← [[X0]] · ([[1]]− [[x]])+ [[X1]] · [[x]]
P1 and P3 send their shares of [[X]] to P2
P2 uses all shares of [[X]] to reconstruct (Xx1

1 , . . . ,Xxn
n )

return (Xx1
1 , . . . ,Xxn

n ) to P2

algorithm defines the garbled circuit F , the input encoding e and the output de-
coding d. The circuit is defined by a function f = (n,m,q,A,B,G), where n is the
number of inputs, m is the number of outputs, q is the number of gates and A, B
and G determine the wiring and functionality of each gate. During the garbled cir-
cuit phase of the protocol, P1 is in the role of the garbler. The full description of
P1 is given in Algorithm 14. During garbling, P1 generates encodings X1

i and X0
i

for each input bit xi. The evaluation of the garbled circuit is carried out by P2 ac-
cording to the protocol in Algorithm 15. For that, P2 receives the input encodings
Xxi

i for the shared input [[xi]] using OT. Party P3 does not participate in the garbled
circuit evaluation directly, but its shares are needed for the input encodings and it
receives an output that is again secret-shared between three parties. The protocol
for P3 is given in Algorithm 16. All parties participate in the final protocol step to
reshare [[y]]′ to [[y]]. The protocol descriptions show the call to Reshare with the
input that each party has.

As the protocol is generic, the description assumes that it takes an input vector
x of length n and gives an output vector of length m. It is assumed that all inputs
are one-bit elements. The core idea of the whole protocol is to take the function
f (x) that the parties want to evaluate and replace it with a function f (x)− y1
where y1 is randomly generated by P1. The parties together give P2 the encod-
ing for x so that P2 evaluates the circuit to learn the output y2 of the function.
Together, y1 and y2 are additive shares for the result of f (x). These can be inter-
preted as shares for three parties with y3 = 0. However, these need to be reshared
in order to get random shares of y for three parties.

Security Proof of the Yao and Secret Sharing Combination. This section de-
ploys the input privacy and security composition to show that the Yao-additive
protocol defined by Algorithms 14, 15 and 16 is secure against passive static ad-
versaries that corrupt at most one participant. The Yao-additive protocol can be
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Algorithm 14: Hybrid protocol algorithm for P1.

Input: [[x]]1 = [[(x1, . . . ,xn)]]1 and circuit f = (n,m,q,A,B,G)
Output: [[y]]1 = [[(y1, . . . ,ym)]]1 such that y = f (x)
y′1

$←− {0,1}m

(F,e,d)← Gb( f (x)−y′1)
Use e to derive all input encodings (X0

1 , . . . ,X
0
n ),(X

1
1 , . . . ,X

1
n )

OT ((X0
1 , . . . ,X

0
n ),(X

1
1 , . . . ,X

1
n ), [[x]]1) // As a sender with messages

(X0
1 , . . . ,X

0
n ),(X

1
1 , . . . ,X

1
n ) in Algorithm 13

Send F,d to P2
Set [[y]]′1 = y′1
[[y]]1← Reshare([[y]]′1)// Together the parties execute

[[y]] = Reshare([[y]]′)
return [[y]]1

Algorithm 15: Hybrid protocol algorithm for P2.

Input: [[x]]2 = [[(x1, . . . ,xn)]]2 and circuit f = (n,m,q,A,B,G)
Output: [[y]]2 = [[(y1, . . . ,ym)]]2 such that y = f (x)
(X1, . . . ,Xn)←− OT ([[x]]2) // Receiver for choice [[x]] in

Algorithm 13
Receive F,d from P1
Y = Ev(F,X1, . . . ,Xn)
Obtain [[y]]′2 by decoding Y using d
[[y]]2← Reshare([[y]]′2) // Together the parties execute

[[y]] = Reshare([[y]]′)
return [[y]]2

separated into two parts. The first part is everything in the algorithms before the
final line that runs Reshare. This part will be called Hybrid’ in the following.
The second part is just the Reshare protocol on its own. In this light, the full
protocol is a fully ordered composition of Hybrid’ followed by Reshare (Algo-
rithm 11). Hence, to use the composition results, this section needs to show input
privacy of Hybrid’ and that the composition is jointly output predictable. Note
that Reshare functionality is secure against a passive adversary.

The concrete version of the Yao-additive protocol implemented in [125] used
the GAXR garbling scheme from [19, 20]. However, the current exposition gen-
eralises the original protocol and the proof for any correct garbling scheme with
prv.sim security (defined in Section 2.1.5). The original security proof in [125]
relied on the concrete details of the encoding and decoding functions used in the
GAXR scheme. In the version presented in this thesis, this has been replaced by
the blinding of the actual circuit with the vector y′1. The current approach will
directly embed the discussion regarding the privacy of the garbling scheme into
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Algorithm 16: Hybrid protocol algorithm for P3.

Input: [[x]]3 = [[(x1, . . . ,xn)]]3
Output: [[y]]3 = [[(y1, . . . ,ym)]]3 such that y = f (x)
OT ([[x]]3) // Inputting part of the shared bit vector [[x]] in

Algorithm 13
[[y]]′3← 0m

[[y]]3← Reshare([[y]]′3) // Together the parties execute
[[y]] = Reshare([[y]]′)

return [[y]]3

the input privacy discussion for party P2 in Theorem 7. The blinding is needed
to ensure the privacy of the inputs as otherwise the evaluator P2 would learn the
output of the circuit. Such additive blinding is also convenient as the result is
transformed back to additive secret sharing.

The ideal functionality FReshare for Reshare takes the input as shares and
outputs a uniformly random sharing of the input value. The ideal input private
functionality for Hybrid’ takes the shares [[x]] and outputs the value y = f (x)
as shares [[y]] where [[y]]3 = (0, . . . ,0) but [[y]]1 and [[y]]2 are uniformly random
additive shares. The corresponding ideal functionality for the composed protocol
outputs uniformly random shares of f (x). Note that these functionalities fit the
intuition where the functionality could be computed by first reconstructing the
value, then computing the necessary function (identity function for Reshare and
f (·) for the composed functionality), and finally, sharing the output.

As noted before, output predictability is trivial for correct input-private func-
tionalities that are deterministic. The correctness of the private functionality does
not follow from privacy. However, it is necessary to ensure the correctness of the
composed protocol with respect to the composed ideal functionality. The correct-
ness of Hybrid’ is proven in Lemma 9.
Lemma 9. Hybrid’ protocol is correct if the garbling scheme and oblivious
transfer are correct.

Proof. In short, the correctness follows from the correctness of the sub-protocols
used in the OT part and the correctness of the garbling scheme. Hybrid’ is correct,
if [[y]]′ is such that y = f (x) for the shared input [[x]]. If the oblivious transfer
transfers the right keys, then the correctness of the garbling Gb and evaluation
Ev algorithms ensures the correct output for the garbling of the function [[y]]′2 =
f (x)− [[y]]′1. By definition [[y]]′3 = 0. Hence, [[y]]′1 + [[y]]′2 + [[y]]′3 = f (x) and the
output is correct.

The OT in Algorithm 13 is correct if the used subprotocols for arithmetic op-
erations are correct. If the shared secret input bit xi = 0 then [[Xi]] = [[X0

i ]] · (1−
0)+ [[X1

i ]] · 0 = [[X0
i ]]. On the other hand, if xi = 1, then [[Xi]] = [[X1

i ]]. In total,
[[Xi]] = [[Xxi

i ]] for all i and the OT protocol is correct.
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Corollary 4. The ordered composition of Hybrid’ and its corresponding ideal
functionality FHybrid’ with FReshare have a jointly predictable outcome.

Proof. Lemma 4 states that these ordered compositions Hybrid’→FReshare and
FHybrid’→FReshare have a jointly predictable outcome if and only if Hybrid’→
FReshare has a predictable outcome and Hybrid’ is a correct implementation of
FHybrid’. Hence, it is sufficient for joint output predictability to show an output
predictor for the ordered composition of Hybrid’ protocol and ideal Reshare, as
Lemma 9 shows that Hybrid’ is correct.

The output predictor Fpred for Hybrid’→ FReshare gets the input [[x]] and
must predict the output of [[y]]. The functionality Fpred also knows the function
f (x). Hence, the predictor can reconstruct the value x, compute y = f (x). Finally,
it secret shares y and gives these shares as its output.

Given that the output of Hybrid’ is correct and the functionality is determinis-
tic (the value of y′ is deterministic), the predictor computes the right output values.
In addition, the behaviour of FReshare depends only on the value y′ and not on the
shares [[y]]′i and, by definition, it outputs fresh shares of the input. Hence, the pre-
dictor gives the right output value with the right distribution of the shares and is
therefore correct.

In order to use the composition results for input-private and secure protocols, it
is necessary to show that Hybrid’ is indeed input-private. For that, a deeper look
must be taken into the additive secret sharing used for inputs and the OT protocol
and how it is combined with the garbling scheme. For input privacy of Hybrid’,
it is intuitively clear that the output obtained by the evaluator P2 should not leak
the actual output of f (x). The obv.sim property (Figure 3 in Section 2.1.5) of the
garbling scheme is quite similar to the input privacy property (Definition 20). In-
tuitively, the obv.sim property is such that the adversary sees the garbled circuit
and the input encoding but has no way of decoding the output. Everything that
the adversary sees is indistinguishable from the simulated circuit that is gener-
ated using the side information about the circuit. However, the following uses the
prv.sim (Figure 3 property of the garbling in combination with the blinding of
the output provided by the protocol to obtain an effect similar to that of obv.sim.
More concretely, the following theorem uses the simulator from the prv.sim def-
inition of garbled circuits to show the input privacy of Hybrid’. For simplicity,
the computation part of the OT protocol in Algorithm 13 is called the oblivious
choice to distinguish it from the final reconstruction part where the values of the
input tokens are opened for the evaluator P2.
Theorem 7. Protocol Hybrid’ is perfectly input-private for passively corrupted
P1 or P3 and computationally input-private against passively corrupted P2 for
any garbling scheme with prv.sim security.

Proof. The proof separately considers all parties and demonstrates an input pri-
vacy simulator that gets the inputs of the corrupted party and simulates the view
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of the corrupted party. The view contains all messages received by the party.
Party P1 or P3 is corrupted. The inputs of the parties are their shares of [[x]]

and the only received communication in Hybrid’ is in the OT protocol during
the computation of the oblivious choice. Hence, perfect input privacy for these
parties follows from the perfect input privacy of the addition, subtraction and
multiplication protocols used in OT and the composition result for input-private
protocols (Theorem 5).

Party P2 is corrupted. First, P2 is the evaluator so he is the adversary against
the garbling scheme and needs to be considered with respect to the prv.sim prop-
erty. The goal of the following is to define a simulator Sim for the input privacy
property for corrupted P2. By definition, the garbling scheme has prv.sim se-
curity, hence the simulator from the prv.sim game in Figure 3 must exist. The
following denotes this simulator from prv.sim definition as Simprv. The simu-
lator Sim can use the Simprv if it can give it the inputs of P2, the circuit that is
garbled, the expected output and the security parameter. The input privacy simu-
lator gets all the inputs of P2 from the ideal functionality so it knows the shares
[[x]]2. It knows the function f (x) that is computed, as well as the security param-
eter k defining the length of the encoding. Hence, the privacy simulator Sim can
run Simprv if it can also provide the desired output for f (x)− y′1. It can also use
the simulators for the components protocols.

The input privacy simulator Sim works as follows.
• It generates a uniformly random [[y]]′2 and uses these values as the output

of f (x)− y′1 for Simprv. It sends the result of the computation [[y]]′2, the
side information Φ( f (x)−y′1) about the computed circuit, and the security
parameter k to Simprv.

• It gets the garbled circuit F , the input encoding X and the output decoding
information d for the garbling of f (x−y′1) from Simprv.

• It simulates the oblivious choice protocol with output Xand input [[x]]2. For
that, it uses the input-privacy simulators for all protocols used to compute
X in Algorithm 13. This simulation gives the shares [[X]]2.

• Finally, it has to simulate publishing the value X in Algorithm 13. It uses
the shares [[X]]2 and the desired result X as input. For that it generates a uni-
formly random [[X]]1 and computes [[X]]3 such that [[X]]1+[[X]]2+[[X]]3 =X.

The analysis of the correctness of the proposed privacy simulator follows.
Firstly, consider the straightforward simulation of the OT protocol. The obliv-

ious choice part of this protocol is perfectly input-private because it is an ordered
composition of perfectly input-private protocols for addition, multiplication and
subtraction. Hence, there exists a privacy simulator Simchoice that can be used as a
building block of the privacy simulator for the whole protocol. This simulator ex-
pects only the shares [[x]]2 as inputs of the party P2 and the privacy simulator Sim
can give it these. The reconstruction step can be simulated thanks to the additional
details of the oblivious choice part. The multiplication protocol (Algorithm 12)
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used in OT is secure. Hence, output shares of the multiplication are uniformly
random. Hence, the final addition protocol in the oblivious choice adds to uni-
formly random shares and, therefore, the shares [[X]]i are uniformly random for
i ∈ {1,2,3}. Hence, the privacy simulator for the oblivious choice outputs a suit-
able [[X]]2, and the reconstruction is perfectly simulated by choosing uniformly
random [[X]]1 and computing [[X]]3 = X− [[X]]1− [[X]]2.

As a second part, consider how the prv.sim property of the garbling scheme
can be broken if the described simulator is not a valid privacy simulator. Assume,
by contradiction, that there exists some environment Env = Env′∪Env⊥ and ad-
versary A pair where the adversary corrupts P2 that can distinguish the real and
simulated protocol run for some function f (x). Consider an adversary B against
the prv.sim game that mostly operates as the protocol Hybrid’ and interacts
with A and Env as well as the prv.sim game. B needs to submit the functionality
f and the input x to the prv.sim game GARBLE function. As B is playing the
role of the protocol, it receives the shares [[x]] of the input from Env′. For most
of the protocol, it simulates the protocol for A as the privacy simulator but B uses
the output of GARBLE as the message that P1 sends to P2 with the garbling re-
sult. In the end, B outputs whether Env′ considered this to be the real or simulated
interaction.

The rest of the simulation, other than the (F,X ,d) generated by GARBLE, is
perfect. Hence, the only distinguishing factor can be if the GARBLE gave the real
or simulated output. In the case when GARBLE gives the real garbling output,
the view of A and Env′ is the same as in a real protocol execution. Therefore, B
wins against prv.sim exactly when Env′ can distinguish the real and simulated
protocol. This is a contradiction as the garbling scheme has prv.sim security.
Hence, as the secret sharing part of the privacy simulation is perfect, the privacy
simulator is correct as long as the garbling scheme has prv.sim security.

Note that the computational security for P2 results from the security defini-
tion of the garbled circuits that only considers polynomial-time adversaries, and
therefore, the simulated and real protocols are computationally indistinguishable.
Also, note that if A runs in polynomial time, then so does B as the protocol and
its simulation are polynomial time.

Corollary 5. A hybrid protocol algorithm combining Hybrid’ and Reshare is
perfectly secure against passively corrupted P1 and P3, and as secure against a
passively corrupted P2, as the used garbling scheme.

Proof. Corollary 4 says that the composition of Hybrid’ and Reshare is jointly
output predictable. Clearly, Hybrid’ and Reshare are in ordered composition
because all outputs of Hybrid’ are inputs to the secure Reshare protocol, and
there is no data dependency from Reshare to Hybrid’. Theorem 7 also showed
that Hybrid’ is input-private. From Section 4.8.1, it is known that Reshare is
secure for one passively corrupted party. Therefore, the composition result that
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ordered composition of input-private and secure protocols is secure if the compo-
sition has a predictable outcome (Theorem 6) can be applied. In conclusion, the
full protocol proposed in Algorithm 14, Algorithm 15 and Algorithm 16 with the
OT in Algorithm 13 is secure against one passively corrupted party.

4.8.3. Other Works using Input Privacy Based Security Proofs

Since the original publication of [30], the approach of combining input privacy
and security for MPC protocols has also been used in other papers.

New protocols for equality and comparison were proposed in [52]. They show
that their preprocessing for the equality test protocol is input-private and the online
phase of the protocol is secure. They also show that their composed protocol has
a predictable outcome. In addition, all outputs of the preprocessing are used in
the online phase meaning that the two protocols are in ordered composition and,
therefore, their composition into the full equality test protocol is secure.

A language-based security framework for passive security, where the main
security notion is similar to input privacy, is proposed in [3]. Hence, the com-
position results for input-private and secure protocols enable us to easily lift the
protocols that are secure in their framework to protocols that are also secure with
respect to the traditional universal composability-based security definition. They
consider the ideal execution similar to the definition used in this work, where the
ideal functionality always first reconstructs the input and then computes the out-
put. The simulator for the privacy definition learns the shares of the corrupted
parties and any leakage that the ideal functionality has based on the value that is
shared. The main difference between their definition and input privacy in Defini-
tion 20 is that correctness in terms of values is also included in their definition, as
the adversary can also see the output value computed using the desired function
and the reconstructed input. However, similar to input privacy, this value is not
available to the simulator.

4.9. Input Privacy and Statistical Disclosure Limitations

Statistical disclosure limitations are data processing techniques used to limit the
likelihood of identifying or disclosing private information from statistical datasets.
The goal is to either ensure that the results of queries do not reveal more than in-
tended or that some dataset can be published while ensuring the data is not iden-
tifiable. This approach covers various privacy enhancing technologies like differ-
ential privacy [63], de-identification [69] or k-anonymity [131]. These methods
are defined for a fundamentally different setting than the input privacy considered
here. In general, disclosure limitations are used in cases where the computation
gives some output that is useable and gives new information to the parties seeing
it, simply not information that is deemed private. For example, for differential pri-
vacy, the definition specifies that it should be hard to decide if data from a certain
participant was used to answer the query. For our version of input privacy, it is
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required that the output seen by any participant in the input-private protocol does
not reveal any new information to that party. Techniques providing statistical dis-
closure limitation are sometimes also referred to as tools providing output privacy
as they ensure the outputs maintain some desired level of privacy of the inputs.

On the other hand, as discussed, the definition of input privacy does not specify
what the outputs of input-private computations could reveal if distributed across
the participants of the computation. This chapter discussed how to ensure the
security of the protocol when using input-private components and this limits the
possible leaks from individual views. However, it is still possible that the recon-
structed outputs obtained from the secure computation reveal more information
than desired by the input parties. In this case, secure computation should be com-
bined with methods to limit the data disclosure. For example, the combination
of MPC and differential privacy has received a lot of attention starting with the
works [65,119]. Similarly, statistical analysis tools using MPC can easily include
k-anonymity principles and refuse queries that affect less than k data records as
done by Rmind [29]1.

4.10. Input Privacy for Active Adversary

Input privacy formalisation and composition theorems consider input privacy for
passive adversaries. It is likely that the notion and similar results can be ex-
tended to active security as well. The exact details of this extension require careful
thought, but the following describes some of the main aspects that need consider-
ation. Firstly, the proper extension requires the correct specification of the ideal
functionalities to capture the adversarial capabilities. At the very least, the func-
tionalities depend on the consistency of the inputs that they receive and, in many
cases, the adversary should be given the possibility to abort the protocol execu-
tion. A straightforward view of ideal functionalities can only consider the proto-
cols that either fail or successfully recover all of their inputs, like the canonical
functionalities described in Section 3.4.

The main definition of privacy forbids cases where there can be protocol faults
that depend on the inputs. This is in line with the intuition, as such faults leak some
information about the inputs. However, for many secure computation frameworks,
doing optimistic evaluation until some point in the execution (e.g. publishing of
the outputs), privacy could be applicable until there are no consistency checks
in the protocol and, therefore, no faults. Hence, the input privacy notion is likely
useful for protocols that distinguish between the evaluation and verification phase.
Possibly, only the verification needs to be secure.

However, to apply similar results, one also needs to consider an actively se-
cure variant of output predictability. For active security, the adversary defines the

1Documentation in https://docs.sharemind.cyber.ee/sharemind-mpc/2023.09/
installation/query-interfaces.html
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inputs that are used in the system, and the predictor learns of these changes to
the inputs from Env. Hence, the predictor and adversary need some communica-
tion, but it needs to be limited for the predictor to be strong enough. On the other
hand, it is also possible that in the active model, instead of the general output
predictability, it would be more beneficial to consider the correctness of the input-
private protocol and only work with outputs that are either correct or corrupted. In
addition, in the active model, care needs to be taken to make sure that the adver-
sary cannot affect the protocol execution to use completely wrong inputs. Some
similar issues are considered in Chapter 5 as tight scheduling and well-formed
protocols of secure computation.

Hence, it would be most straightforward to first consider the extension of the
current results to those protocols that are robust against an active adversary as, in
this case, there are no faults, and the values in the protocol cannot be modified by
the adversary.

A similar framework for actively secure sequential composition with mobile
corruption is considered in [66]. Concretely, they focus on secure multiparty
computation based on verifiable secret sharing based on commitments. The fo-
cus of the paper is on defining a framework for the proactive security model in
EasyCrypt 2 [14, 15], and overall they claim a similar structure to the input pri-
vacy approach where they prove that a composition of private protocols is private
and composing it with a secure protocol (random protocol in their definitions) is
secure. In addition, they show that composing a protocol with randomised outputs
with a proactively secure protocol gives a proactively secure protocol. Unfortu-
nately, the paper does not provide full details of their definitions and proofs, so
further similarities or differences from the approach of this thesis are difficult to
analyse.

An extension of input privacy to the case with an active adversary is consid-
ered in [118]. Their work considers information-theoretic privacy and focuses on
automated proofs of privacy based on the description of the protocol. Their notion
of privacy is defined through an ideal functionality that only gives out the inputs
of the corrupted parties, which serves the same purpose as the input privacy defi-
nition here, where the outputs are not given to the adversary. The outputs are only
used by the fragmented environment and are not used to distinguish the real and
ideal execution. Hence, the intuition for actively private protocols is similar to
input privacy – all that the adversary learns can be learned using only the inputs
of the corrupted parties. For active privacy, the latter holds even if the adversary
behaves unexpectedly and sends messages that are not following the protocol.
They also show that the property of the protocol that they prove is indeed com-
posable, and two actively private protocols can be composed into a new actively
private protocol. Their goal is that one should be able to show the privacy of the
protocol until the final reconstruction of the outputs or some verification of the

2http://www.easycrypt.info/
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protocol’s correctness. However, the final part has to be handled with extra care
to achieve security. Note that even if active security is not achieved, there is value
in a protocol that achieves passive security with active privacy since it guaran-
tees that even the misbehaving adversary cannot learn more information than the
output of the protocol. For example, the output may not leak all details about
its inputs. However, in such cases, there is no guarantee about the correctness of
the output. Especially the adversary may be able to compute the correct output,
but the output received by other parties is incorrect. It seems logical that if an
actively private protocol is finished with a consistency check and actively secure
opening, then one can also achieve security against an active adversary. While this
conclusion is likely, such a result in not proven in [118] nor elsewhere. Hence,
it remains an open issue to further study input privacy and its composability for
active adversaries.
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5. ALGORITHM SECURITY FOR MPC
FRAMEWORKS

The research on secure algorithms for MPC often assumes that there are some core
protocols, such as secure addition and multiplication, provided by some secure
computation framework that can be used to build more complex algorithms. This
chapter focuses exactly on these cases where the focus is on some new protocol
Π that is built on top of a secure protection domain. In addition to this protocol,
the protection domain can also carry out various other computations Πe. The idea
is to extend the current description of the protection domain (Section 3.6) with
the new protocol Π that is as secure as some ideal functionality F . It is the main
job of the protocol designer to prove that Π is as secure as F , and this chapter
defines an abstract execution environment that can be used to make such proofs
simpler and only focus on the protocol Π. This seems similar to the goals given by
frameworks for composable security. However, the following analysis takes into
account that Π and Πe often share some setup parameters for the storage domains.
In addition, Π expects inputs and outputs in some fixed storage domains whereas
Πe itself runs in a more generic context of an environment giving it plain inputs
and possibly directing its computations. In addition, this chapter discusses the
extendability of protection domains that is required to add the new functionality
F to the already existing protection domain. Section 5.1 gives a more in-depth
overview of the basis of the following results.

The core of this chapter focuses on defining the abstract execution model that
simplifies the protocol description as well as the environment that needs to be
considered in security proofs. Many low-level secure computation protocols are
always running in a bigger context of other protocols with the same storage do-
mains. For example, a sorting protocol often uses protocols for comparisons, and
therefore, it is reasonable to expect that the comparison functionality can be used
with the values in the same storage domain. This can make it very difficult to con-
sider only one protocol in isolation, as its inputs may come from a big set of other
existing functionalities in the protection domain. However, for many protection
domains, the distribution of the values in the storage domains can be simulated
in a manner specified later. If the secure computation framework is simulatable,
then it is sufficient to only consider the protocol in an environment that gives pub-
lic inputs and receives the outputs of the protocol also in public. This significantly
simplifies analysing the protocol, as the other functionalities in the protection do-
main can be forgotten for the analysis. Such an isolated execution is called the
abstract execution. The abstract execution itself also does not need to explicitly
use the protected versions of the data. Instead, the abstract execution only consid-
ers the protocol that is executed and the storage domains for each variable in the
program. The adversary can see the values if it has broken the hiding property of
the given storage domain, and it can modify the values based on the limited con-
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trol property of the storage domain. Hence, the focus of the security proof is on
simulating the values that are made public to the adversary. All the rest is covered
by the properties of the functionalities and storage domains used to compute the
protocol.

Overall, the motivation for the abstract model definition is close to that of
the simplified universal composability [44] defined for MPC protocols. The pa-
per [44] also observes that proofs usually do not concern themselves with the full
details of the UC framework. However, the abstract model aims to do further
simplifications based on reasonable properties of the protocols and functionalities
involved in secure multiparty computation. The following states the main result
of this chapter.
Theorem 8 (Security in the abstract model is equivalent to security in the hybrid
model, informal). If the used storage domains are hiding and modification aware
and the protocol is reasonably built from meaningful local operations and canoni-
cal ideal functionalities then security in the abstract execution model is necessary
and sufficient for security in the hybrid model.

5.1. Overview of the Approach

The following sections start from the hybrid execution model and transform it
into the abstract execution model. The transformation is split into several bigger
steps and sections. Section 5.3 starts with considering generic adversaries against
secure multiparty computation and observes that the structure of such protocols
limits which actions of the adversary are meaningful. Since the separate protocols
of secure computation are only evaluated if also the honest parties have given their
inputs, then it is possible to consider a lazy adversary that does not send excessive
messages to ideal functionalities. Section 5.4 studies the protocol structure and
splits the execution of the protocol to separate machines for storing the state and
for controlling the execution. It also merges the memory machines holding the
states into one memory machine that is connected to all participants. Section 5.5
continues with simplifying the memory and protocol structure. It observes that
honest execution only needs the values and not the protection mechanism and
proceeds to make it so that only the adversary uses the protected data represen-
tations. It concludes that one only needs to consider an adversary that has some
limited control over the memory. The final protocol description relies only on the
values and the knowledge about the storage domains that hold these values. By
this step, the protocol description is already quite abstract. The final transforma-
tions in Section 5.6 simplify the environment and arrive at the abstract execution
model.

Section 5.1.1 establishes the conditions that the protocol transformations have
to satisfy for the security proofs in the abstract world to also mean that the proto-
col before transformations is secure. Section 5.1.2 establishes the concrete view
of the party using the protection domain to execute the protocol of interest. Sec-

142



tion 5.2 establishes why a specific protocol in a protection domain can be some-
what isolated from the rest of the protection domain. Thanks to the results there,
the description of a protocol can use functionalities that only connect to this pro-
tocol and not to the rest of the protection domain. Section 5.2.2 discusses what
it means for a secure computation framework to be simulatable so that it can be
abstracted away and the analysis can focus on the protocol at hand.

5.1.1. Soundness and Completeness Theorems

As stated before, this chapter builds an abstract execution model. This section
shows how and why the abstract model is indeed useful. Namely, if there is a se-
curity proof in the abstract model, then there also is a security proof in the initial
model, and if there is an attack in the abstract model, then there is an equiva-
lent attack in the real model. In shorter terms, the abstract model can be sound
and complete if certain equivalence results specified in this section hold. The
following of this section will build up the details of these equivalence results for
the concrete case of real and abstract execution of secure multiparty computation
protocols. This section is given in very general terms and holds for any type of
protocol and environment.

Commonly, the discussion is about a protocol and its ideal implementation, but
in the general case, the security proofs consider two protocols Π1 and Π2. Let Π

∗
1

and Π
∗
2 be the same protocol described in an abstract execution model, E and E∗ be

the sets of original and abstract environments and A1,A2, A∗1,A∗2 be the respective
adversaries. The proofs needed to show that the abstract model is sound and
complete need to show how one representation of the protocol, environment and
adversary can be transformed into the other representation. The proof Π

∗
1 ≥ Π

∗
2

can be done in the abstract model and the result also holds in the original model.
The transformations are denoted as

ψ : E → E∗

ψ
∗ : E∗→ E

φ1 : A1→ A∗1
φ
∗
1 : A∗1→ A1

φ2 : A2→ A∗2
φ
∗
2 : A∗2→ A2

, (5.1)

where the star denotes a semi-inverse of the transformation with the same symbol.
To be meaningful, these transformations have to satisfy several equivalences

∀Env ∈ E :

∀Env∗ ∈ E∗ :

∀A1 ∈ A1 :

∀A∗1 ∈ A∗1 :

Env⟨Π1,A1⟩ ≡ ψ(Env)⟨Π∗1,φ1(A1)⟩
Env∗⟨Π∗1,A∗1⟩ ≡ ψ

∗(Env∗)⟨Π1,φ
∗
1 (A

∗
1)⟩

(5.2)

∀Env ∈ E :

∀Env∗ ∈ E∗ :

∀A2 ∈ A2 :

∀A∗2 ∈ A∗2 :

Env⟨Π2,A2⟩ ≡ ψ(Env)⟨Π∗2,φ2(A2)⟩
Env∗⟨Π∗2,A∗2⟩ ≡ ψ

∗(Env∗)⟨Π2,φ
∗
2 (A

∗
2)⟩

(5.3)

∀Env ∈ E :

∀Env∗ ∈ E∗ :

∀A2 ∈ A2 :

∀A∗2 ∈ A∗2 :

Env⟨Π2,A2⟩ ≡ ψ
∗(ψ(Env))⟨Π2,A2⟩

Env∗⟨Π∗2,A∗2⟩ ≡ ψ(ψ∗(Env∗))⟨Π∗2,A∗2⟩ .
(5.4)

Equivalences (5.2) and (5.3) define relations between the real and abstract
models for the two protocols. Equivalence (5.4) defines that the transformations
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ψ
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φ
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ψ
∗
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φ
∗ 2

(a) Relations between protocol environ-
ments and adversaries.

Env〈Π1,A1〉 Env〈Π2,A2〉

Env∗〈Π∗
1,A

∗
1〉 Env∗〈Π∗

2,A
∗
2〉

≡

≡

≡≡
≡

≡≡
≡

(b) Resulting equivalent protocol execu-
tions.

Figure 31: Equivalence guarantees and their relations to ρ and ρ
∗.

on the environments are inverses in the sense of the capabilities of the respective
environments distinguishing the real and abstract execution of Π2.

Let ρ be the transformation ρ : A1→A2 and, respectively, ρ
∗ : A∗1→A∗2 is its

counterpart in the abstract world. This is the transformation defined in the security
proof to transform any adversary against Π1 to an equivalent adversary against Π2,
showing Π1 ≥ Π2. The previous constructions from (5.1) with the construction
ρ define an equivalence square illustrated in Figure 31 if the relations (5.2)–(5.4)
hold. Figure 31a shows how the transformation works and the arrows show the
direction of the transformation. The relation 1E is the identity transformation, as
the security proofs do not change the environment, but the adversary is usually
changed by defining the simulator. If the up and down relations hold, then the
existence of ρ implies the existence of ρ

∗ and vice versa. Note that all the results
in Figure 31b are indeed equivalences. The vertical equivalences come from the
necessary properties and the horizontal ones come from the security proof, as
the respective environment must be unable to distinguish the protocol running
with an equivalent adversary where A2 = ρ(A1) and A∗2 = ρ

∗(A∗1). Often, the
security proofs consider some restricted adversary, for example, a polynomial-
time adversary. Restricted versions of the equivalences can also be considered
if ρ is suitable and φ

∗
2 ◦ ρ

∗ ◦ φ1 and φ2 ◦ ρ ◦ φ
∗
1 preserve these restrictions. The

following theorem proves the equivalence results illustrated by Figure 31.
Theorem 9. Let ψ :E→E∗, φ1 :A1→A∗1 and φ2 :A2→A∗2 be constructions with
semi-inverses ψ

∗,φ ∗1 ,φ
∗
2 that satisfy the equivalence relations (5.2)–(5.4). Then,

Π1 ≥Π2 for environments E if and only if, Π
∗
1 ≥Π

∗
2 for environments E∗.

Proof. This proof is essentially an analysis that establishes that the equivalences
in Figure 31 hold.

SOUNDNESS. For soundness, the assumption is that Π
∗
1 ≥ Π

∗
2. Hence, there

exists ρ
∗ : A∗1→ A∗2 defined by the security proof such that

Env∗⟨Π∗1,A∗1⟩ ≡ Env∗⟨Π∗2,ρ∗(A∗1)⟩ (5.5)

for all A∗1 ∈ A∗1 and Env∗ ∈ E∗. The goal of the proof is to define a suitable ρ .
Hence, the starting point is the collection Env⟨Π1,A1⟩ which has to be equivalent
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to Env⟨Π2,ρ(A1)⟩. This can be derived using first the first equivalence of (5.2),
then (5.5), then the second equivalence of (5.3) and finally the first equivalence of
equivalence (5.4) as

Env⟨Π1,A1⟩ ≡ ψ(Env)⟨Π∗1,φ1(A1)⟩
ψ(Env)⟨Π∗1,φ1(A1)⟩ ≡ ψ(Env)⟨Π∗2,ρ∗(φ1(A1))⟩

ψ(Env)⟨Π∗2,ρ∗(φ1(A1))⟩ ≡ ψ
∗(ψ(Env))⟨Π2,φ

∗
2 (ρ

∗(φ1(A1)))⟩
ψ
∗(ψ(Env))⟨Π2,φ

∗
2 (ρ

∗(φ1(A1)))⟩ ≡ Env⟨Π2,φ
∗
2 (ρ

∗(φ1(A1)))⟩ .

From this derivation, it is clear that ρ can be defined as ρ = φ
∗
2 ◦ρ

∗ ◦φ1 and it is
straightforward to see that Env⟨Π1,A1⟩ ≡ Env⟨Π2,ρ(A1)⟩.

COMPLETENESS For completeness, it is required that if the relation Π1 ≥ Π2
holds for the real case, then there exists ρ

∗ proving Π
∗
1 ≥ Π

∗
2. If Π1 ≥ Π2, then

there exists ρ : A1→ A2 such that

Env⟨Π1,A1⟩ ≡ Env⟨Π2,ρ(A1)⟩ , (5.6)

for all A1 ∈ A1 and Env ∈ E. Similarly to the previous half of the proof, the
required relations can be used to derive the result as

Env∗⟨Π∗1,A∗1⟩ ≡ ψ
∗(Env∗)⟨Π1,φ

∗
1 (A

∗
1)⟩

ψ
∗(Env∗)⟨Π1,φ

∗
1 (A

∗
1)⟩ ≡ ψ

∗(Env∗)⟨Π2,ρ(φ
∗
1 (A

∗
1))⟩

ψ
∗(Env∗)⟨Π2,ρ(φ

∗
1 (A

∗
1))⟩ ≡ ψ(ψ∗(Env∗))⟨Π∗2,φ2(ρ(φ

∗
1 (A

∗
1)))⟩

ψ(ψ∗(Env∗))⟨Π∗2,φ2(ρ(φ
∗
1 (A

∗
1)))⟩ ≡ Env∗⟨Π∗2,φ2(ρ(φ

∗
1 (A

∗
1)))⟩ .

This derivation is almost the same as the previous and uses the second equivalence
of (5.2), then (5.6), then the first equivalence of (5.3) and finally the second equiv-
alence of (5.4). As a result, a suitable relation ρ

∗ can be defined as ρ
∗= φ2◦ρ ◦φ

∗
1 ,

and it is clear from the derivations, that Env∗⟨Π∗1,A∗1⟩ ≡ Env∗⟨Π∗2,ρ∗(A∗1)⟩ as re-
quired.

This theorem forms the basis for the rest of this chapter of the thesis. The fol-
lowing sections define the transformations φ1, φ2 and ψ with their semi-inverses
and prove that the conditions in equivalences (5.2)–(5.4) hold. These transfor-
mations take the real protocol description to the abstract description and, from
Theorem 9, it is then clear that a security proof defining ρ

∗ in the abstract world
exists if and only if a security proof defining ρ exists in the real world. For spe-
cific purposes, Π1 is the real protocol and Π2 is the ideal version of it. Due to
the equivalences of different ways to specify the ideal functionalities discussed
in Section 3.4.3, the real and ideal world descriptions can have a very similar
structure. Due to that, φ1 and φ2 are also the same transformations.

The necessary transformations are defined in smaller steps throughout the chap-
ter. First, Section 5.3 limits the set of adversaries that should be considered and
defines the first part of φ1 and φ2. Relevant φ

∗
1 and φ

∗
2 are identity functions and the
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protocol description is not changed. The environment is not transformed in this
step. Hence, ψ and ψ

∗ are also identity functions. Hence, only the equivalences
concerning φ1 and φ2 need to be proven from (5.2) and (5.3).

Section 5.4 separates protocol state and execution and refines how the adver-
sary can modify the messages sent in the protocol. These changes affect the pro-
tocol description and adversary. The environment remains the same again. Hence,
this section explicitly defines φ1 and φ2 as well as φ

∗
1 and φ

∗
2 and proves the nec-

essary equivalence relations (5.2) and (5.3).
Section 5.5 further decomposes how secure data is stored in the protocol and

considers the properties of ideal functionalities to limit the adversary even more.
Again, this changes the protocol description and the adversary, hence further de-
tailing φ1 and φ2, as well as φ

∗
1 and φ

∗
2 , and requiring the same proofs as the

previous section.
Section 5.6 finally focuses on the environment to simplify the general environ-

ment of the protection domain to the simple case that only executes the desired
sub-protocol from the protection domain. Hence, this section focuses on defining
ψ and ψ

∗ and requires proving equivalence relations (5.4). However, modifi-
cations also affect the adversary’s communication with the environment and the
protocol. Hence, also relations (5.2)–(5.3) must be shown to hold.

5.1.2. Protocol Description

A protocol Π is executed by participants interacting with the protection domain.
The exact specification of the participant is developed throughout this chapter
and has to cover the specifics of the protocol execution as well as the adversarial
communication. This section introduces the basics used in the following.

A participant Pi is represented as a collection of two machines Ii for code
interpretation and Zi for corruption management as illustrated in Figure 32. Most
of the following does not use port numbering, but it is necessary to define the
interfaces of the machines that are involved. The interpreter Ii is responsible
for all computations taking part on the party side and for following the protocol
to send out calls to the next sub-protocols. For each input that Ii receives, it
may send out any number of follow-up messages, but it cannot start or compute
anything more before receiving the next input from Πe or some response from Fp

that it has called.
Port pairs 1, . . . ,k between Ii and Zi are for forwarding messages to and from

subprotocols F1, . . . ,Fk. The zeroth pair is for adversarial actions and the k+ 1
port pair is for communicating with Πe that is calling out the protocol executed
by Pi. All these ports are matched by the ports Zi used to communicate with the
protection domain or A. Hence, Zi acts like a switch. Port pair k + 2 in Ii is
intended for receiving the setup information.

If Zi is not corrupted, then it simply forwards the communication between the
matching ports, interaction on port 0 ≤ m ≤ k+ 1 for Ii is sent to m+ k+ 2 to
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Figure 32: The structure of parties in a two-party protocol interacting with func-
tionalities F1 and F2.

the outside of party Pi and vice versa. Every time Zi receives a message from
outside, it writes it to Ii and clocks the channel. When receiving a message from
Ii, Zi gives control back to Ii after writing the message to the respective outgoing
buffer. The control is given back using an empty message of the same port pair
as used by Ii. Ii includes an end token when it does not need to get the control
back. Zi gets the control and can then send inputs from Ii to A. If Zi is corrupted,
then A can order it to write any message to any of its output ports. All messages
arriving at Zi are written to A together with the port label. Messages from Ii are
grouped together for all messages between sending the input to Ii and Ii sending
the message with the end token. A can issue a REVEAL call to Ii through Zi. As
a response, A receives the internal state of Ii.

Each message sent between Pi and Fp is a triple (t1, t2,m). Here, t1 is the
instance of the protocol Π in Pi and t2 is the instance of Fp. As this protocol acts
analogously to Fp for the protocol Πe, then for a message between Pi and Πe, t2
specifies the instance of the protocol Π and t1 the instance of the super-protocol
Πe. The tags t1 and t2 are leaked by the leaky buffers, whereas m is kept private
and authentic. For simplicity, the leaky buffers can be denoted as shorthands
where b+i,p is outgoing from Pi and b−i,p is incoming to the party for functionality
Fp. From the viewpoint of Πe, the protocol Π is similar to the role of F inside
Π. Hence, the buffers between Πe and Pi are denoted differently, here b−i,e is the
reply to Πe and b+i,e is the input for Pi.

5.2. Security of Protection Domain Extensions

The protection domains were introduced in Section 3.6, and the security of the
protection domain was given as Definition 17. Adding an algorithm to a secure
protection domain means describing the ideal functionality corresponding to the
algorithm and then extending the set of ideal functionalities used by the domain.
For a modular protection domain (Definition 16), the new protocol is therefore
Π⟨Π1, . . . ,Πk⟩ where Π1, . . . ,Πk are the protocols available in the protection do-
main. The protocol designer proves that the new protocol is as secure as some
ideal functionality, establishing F△⟨Π⟨Π1, . . . ,Πk⟩⟩ ≥ F△⟨F⟩. The security def-
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inition of the protection domain establishes F△⟨Π⟨Π1, . . . ,Πk⟩⟩ ≥ F△⟨Π⟨Fpd⟩⟩,
for any protocol Π allowed by the protection domain. Hence, it is left to prove
that F△⟨Π⟨Fpd⟩⟩ ≥ F△⟨F⟩. Hence, the main proof is in the hybrid model, where
for the modular protection domain, Fpd is defined as a collection of F1, . . . ,Fk
and the protocol is therefore described as Π⟨F1, . . . ,Fk⟩.

Once it is proven that F△⟨Π⟨Π1, . . . ,Πk⟩⟩ ≥F△⟨F⟩, the next question is, if the
collection F ,F1, . . . ,Fk is a valid definition for Fpd. The proof that Π is as secure
as F is done in isolation from the rest of the computations that may happen in the
protection domain. Hence, the main question is to consider if a list of protocols
Π,Π1, . . . ,Πk is a secure protection domain for a class of protocols P if Π1, . . . ,Πk
was. In order to prove it, one must consider the compound protocols Π∗ ∈ P for
Π∗⟨Π⟨Π1, . . . ,Πk⟩,Π1, . . . ,Πk⟩. The protocols Π∗ and Π can be merged to form a
new protocol Π∗∗⟨Π1, . . . ,Πk,Π1, . . . ,Πk⟩. However, the new compound protocol
has access to two copies of each of the original protocols, and therefore, it is
not clear if it is as secure as Fpd. Firstly, define such property of the protection
domain as extendability (Definition 30). Under reasonable assumptions discussed
in Section 5.2.1, a secure protection domain is extendable.
Definition 30 (Extendable protection domain). A list of protocols Π1, . . . ,Πk with
a shared setup F△ is a securely extendable protection domain if the list of proto-
cols with duplicates Π1,Π1, . . . ,Πk,Πk with a shared setup F△ is also a secure
protection domain.

Note that a modular protection domain contains ideal functionalities as well
as the secure setup functionality. However, its main property is that it can be
considered mainly as the collection of its internal functionalities that are ideal
functionalities as specified in Definition 14. This may not be true for all possible
secure computation frameworks. However, this thesis and the following theorem
focus on only such cases.
Theorem 10. Let Π1, . . . ,Πk be a securely extendable modular protection domain
with a shared setup F△ for protocols P. Then Π⟨Π1, . . . ,Πk⟩,Π1, . . . ,Πk is a se-
cure protection domain for compound protocols P provided that Π⟨F1, . . . ,Fk⟩
is a secure protection domain with modular representation with one functional-
ity F for the set of compound protocols P∗ = {Πe⟨F1, . . . ,Fk⟩⟨·⟩ : Πe ∈ P} and
coherent adversaries.

Proof. The desired signature for the extended protection domain is (E,P,F ,F1,
F2, . . . ,Fk) and Πe⟨·⟩ ∈ P is one of the compound protocols for this protection
domain. Let A1 be the class of adversaries against the real implementation of
the extended protection domain Πe⟨Π⟨Π1, . . . ,Πk⟩,Π1, . . . ,Πk⟩. By definition,
Π1, . . . ,Πk can be extended to a protection domain that doubles all the protocols.
Any compound protocol Πe interacting with the extended protection domain can
be restructured to separate the protocol Π from the rest of Πe as in Figure 33a.
The protocol is executed by parties Pi. Let Pe

i be executing the rest of the Πe and
PΠ

i be the parties executing Π.
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(a) Ways to think of composed protocol Πe⟨Π⟨Π1,Π2⟩,Π1,Π2⟩.
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(b) Extended hybrid collection Πe⟨Π⟨F1,F2⟩,F1,F2⟩.

Figure 33: Two-party protection domain extension.

Separating the party into two components introduces a new leaky buffer that is
connectingPe

i to Π. For the case of honest parties, this introduces a new adversary
capability to control the inner timing of party Pi. Now the adversary can directly
control when the execution of Π starts. By definition of the protocol execution,
Π is started by a party Pi when it receives or computes the necessary inputs for
the protocol and reaches the relevant call in its program. Π sends the results back
when it finishes computing any output. However, the only effect of separately
clocking Π is equivalent to that of clocking the buffers to and from Fp that need
to finish before Π is called or before Π produces outputs. A coherent adversary
always corrupts both machines representing Pi at the same time and assumes total
control over that party. Hence, this leaky buffer is equivalent to the joint machine
in the case of corrupted parties.

The security definitions of the functionalities give Πp ≥ Fp. Hence, it is al-
lowed to replace each real protocol with the ideal implementation to define the
hybrid model. This is shown in Figure 33. The theorem assumption stated that
Π⟨F1, . . . ,Fk⟩ is a secure protection domain with one functionality F for the set
of outer protocols Πe. This allows us to do the steps in Figure 34 to replace Π

with F . It remains to show that these substitutions are valid and that the resulting
configuration is a valid protection domain for protocols Πe.

Denote by Epd the outer environments that are interacting with the whole pro-
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(b) Fpd containing F0,F1,F2.

Figure 34: Hybrid protocol and the respective ideal functionality F inserted into
the protection domain.

tection domains. In the hybrid model, it is then necessary to show that, for envi-
ronments Epd and adversaries A2, we have

F△⟨Πe⟨Π⟨F1, . . . ,Fk⟩,F1, . . . ,Fk⟩⟩ ≥ F△⟨Πe⟨F , . . . ,Fk⟩⟩ .

One copy of the functionalities F1, . . . ,Fk can be pushed into Πe to define
a new compound protocol Πe⟨F1, . . . ,Fk⟩⟨·⟩ ∈ P∗. Πe⟨F1, . . . ,Fk⟩ only calls
the sub-protocol Π⟨F1, . . . ,Fk⟩ (Figure 34a), as in Figure 33b. By the theorem
assumption, Πe⟨F1, . . . ,Fk⟩⟨·⟩ is a valid compound protocol for Π⟨F1, . . . ,Fk⟩
meaning that Π⟨F1, . . . ,Fk⟩ is as secure as F when used in this protocol. By the
definition of secure protection domain, we then have

F△⟨Πe⟨F1, . . . ,Fk⟩⟨Π⟨F1, . . . ,Fk⟩⟩⟩ ≥ F△⟨Πe⟨F1, . . . ,Fk⟩⟨F⟩⟩ .

Finally, the functionalities F1, . . . ,Fk can be again considered as simply being
outside of Πe and hence, the Πe⟨F1, . . . ,Fk⟩⟨F⟩ is equivalent to Πe⟨F ,F1, . . . ,Fk⟩
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as in Figure 34b, which proves the theorem. The environment in this figure is the
outer environment introduced in Section 3.6.2 as the environment against the pro-
tection domain.

This theorem essentially specifies that it is sufficient to prove the security of
Π⟨F1, . . . ,Fk⟩ in the context of compound protocols P∗ that the protection domain
that is extended can run. The protocols can use the functionalities F1, . . . ,Fk that
the protection domain contains. In practice, this means that the class of environ-
ment in which the security of this protocol must be proven is the combination of
the compound protocols P∗ and general environments Epd (Section 3.6.2) giving
inputs and receiving outputs from the parties running the protocols P∗.

5.2.1. Extendable Protection Domains

Definition 30 specified that a protection domain is extendable if the collection of
protocols, where each original protocol is duplicated, is also a secure protection
domain. This section considers the case when it is a secure protection domain for
functionally the same classes of protocols. It is most straightforward to consider
the case when the two collections are equivalent to each other.
Lemma 10. A secure modular protection domain with shared setup F△ for proto-
cols P is securely extendable to a secure modular protection domain with shared
setup F△ for protocols P∗ if the following conditions hold.

• F△ gives consistent setup information.
• One instance of a protocol Πp of the protection domain is independent both

in functionality and adversary capabilities of the other instances of the same
protocol (other than the shared setup information).

• The protocols P∗ are functionally the same as P, but each new instance of
a sub-protocol call chooses which copy of the sub-protocol to use and uses
disjoint sets of instance tags for the two copies of the same functionality.

Proof. Assume, by contradiction, that such a protection domain is not securely
extendable. Hence, there exists an environment Env and adversaries A and ρ(A)
such that that A running with Π1, . . . ,Πk,Π1, . . . ,Πk is distinguishable from ρ(A)
running with the protection domainFpd consisting ofF1, . . . ,Fk,F1, . . . ,Fk. Note
that the environment always communicates with the parties Pi running the proto-
col. Therefore the interface to the environment is unchanged by the extension.
Adversary A can then be turned into an adversary B against the initial protection
domain with protocols Π1, . . . ,Πk. The difference between the two collections is
that A has two copies of each functionality that it can interact with, and, there-
fore, it also has separate leaky buffers to clock to either copy. To use adversary
A against the initial protection domain without modifying its outcome, there must
be a simulator that can simulate the run of every single functionality Fp as two
copies of it. By the conditions in the theorem, this is straightforward to do. First,
the two sets of protocols allowed by the initial and extended protection domains
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are functionally the same. Hence, a protocol that runs a single copy can be simu-
lated as executing with two separate copies of functionalities. The simulator can
see all the leaks in the buffers to and from Fp and can distribute these to two
simulated buffers as the two buffers contain a disjoint set of tags. Since messages
with one instance tag always go to one copy of the functionality, it is also easy
to distribute the messages like they are in two different buffers and manage the
clocking of messages in these buffers. The adversary actions can safely be done
in a single copy of the functionality as they, by definition, only affect the given
protocol instance. Hence, the adversary A running with the simulated version of
the protection domain Π1, . . . ,Πk has the same view as when running with the
extended protection domain. Hence, the existence of such adversary A gives rise
to an adversary B against the original protection domain.

The adversary ρ(A) can undergo a similar simulation to be turned into an ad-
versary ρ(B) against the protection domain with F1, . . . ,Fk. By definition of A
and ρ(A) can distinguish the extended protection domains and, therefore, the exis-
tence of B and ρ(B) invalidates the assumption that the original protection domain
was a secure modular protection domain.

The conditions in Lemma 10 are simple to enforce for any protocol in P∗ de-
rived from P, and this document already assumes a consistent setup inside the
protection domain. Hence, the main restriction posed by this lemma for the rest
of this chapter is the natural requirement that the protocols Πp are such that they
do not share states other than the setup across instances.

5.2.2. Simulatable Protection Domains

Usually, the overall simulation strategy for a real implementation of a secure com-
putation framework specified as an ABB is very simple. The simulator runs a
simulated setup phase and then plays the roles of all parties in the protocol and in-
teracts with the adversary the same as the real protocol would. The simulator just
uses dummy inputs for all inputs from the honest parties and relies on the hiding
property of the used data storage. The tricky parts of such simulation are extract-
ing the inputs of the corrupted parties so that the simulator can give these to the
ABB as inputs and making sure that if the protocol succeeds, then the simulated
protocol gives the same output as the one the simulator receives from the ABB.
The decision of success or failure is made based on the success or abort of the
simulated protocol. If the protocol tolerates adaptive corruption, then extra care
must be taken so that the simulated view can always be modified to accommodate
the correct values for the newly corrupted parties as highlighted in [56].

The same simulation strategy is successful when the trusted setup and the full
protection domain are considered as the ideal functionality corresponding to some
real implementation. However, the strength of the formalisation in Chapter 3 is
its modularity and the possibility to only consider some sub-protocol inside the
protection domain and to extend the protection domain with this functionality. It
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is easier to consider the protocol Π in isolation from Πe if the Πe can be simulated.
In the following transformations, simulatability is required in two places. Firstly,

consider the protection domain inside the hiding game for the storage domain in
Section 5.5. Secondly, to simplify the execution environment and embed the Πe

into Envpd in Section 5.6. The main difficulty is that Π and Πe share the setup
parameters and that, in the general case, the values moving between Π and Πe

are in some hiding protection domain rather than the plain values output by the
ABB. Due to the shared setup, the straightforward simulation method of running
the setup phase and using these parameters for simulating the work of Π does not
work because, in many cases, the adversary can notice the difference in parame-
ters in Π and Πe. Hence, the following relies on the fact that the execution of Πe

is simulatable without specifying the simulation strategy.
Simulatability of protection domain execution is defined through the collec-

tions in Figure 35. The idea is that the simulator Sim has to play the part of Πe

in a setting where it knows all the plain inputs. Therefore, Sim can execute the
same program as Πe in public and compute the correct values that are given to Π

or Envpd. However, the simulator has to also be able to create a corrupted view of
the stored data. The simulator has the setup parameters that are public or known
to the corrupted parties, but it does not have the private parameters of the honest
parties. However, the protocol Π needs to get inputs that are correct with respect
to the real parameters. Hence, there must be a valid sharing functionality S to
generate the input representation for Π. Similarly, the outputs from Π come in
some protection domain and need to be reconstructed by R to be used inside the
simulator.

However, simply sharing and reconstructing is not sufficient to unify the rep-
resentation that the private data has for the values that appear both in Π and Πe.
For example, if the adversary knows that the corrupted party in Π outputs a secret
value x, then it expects the party in Πe to also receive x exactly. Hence, both S and
R functionalities are slightly enhanced to support the simulation and distribute the
shares of the corrupted parties.
SSime contains the sharing functionalities for all storage domains needed in

Π. More precisely, Sim can send a value to SSime that shares this value. Upon
receiving the value and label pair (ℓx,x) from Sim, SSime shares the value x and
sends the shares of the corrupted parties back to Sim. Sim also stores all shares and
labels. Sim can then send forwarding commands ( f orward, ℓx,Pi) upon which
Sim writes the share of Pi to the buffer to Pi in Π. Hence, Sim can learn corrupted
shares before they are sent to Π but is only allowed to query values that are really
intended to be sent to Π. If a new party Pi becomes corrupted, then Sim sends
this party identifier i to SSim. Sim responds with all the shares generated for this
party so far.

The functionality R is extended similarly to S . The functionality RSim
e also

receives the set of corrupted parties from Sim and stores all values it gets from Π.
If it collects all shares needed for reconstructing a value, then it sends the value to
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Sim. If it receives a share of a corrupted party from Π or learns that a new party
Pi is corrupted from Sim, then it sends the shares of Pi to Sim.

Most of the buffers drawn in Figure 35 represent a set of buffers. F△ has
buffers to each machine in Π and Πe that need setup data. In addition, all leaky
buffers are there for each participant in Π and Πe, and the adversary has connec-
tions to all parties and functionalities that it usually has inside Π and Πe. Sim has
the same interface for the adversary as Πe.
Definition 31 (Simulatable protection domain). A protection domain is simulat-
able if there exists a simulator Sim such that the collections in Figure 35 with SSime

andRSim
e specified above are indistinguishable.

The first occurrence where simulatability is needed is in Lemma 13. Note that
some of the following might be simplified if simulatability is taken as a require-
ment for the protection domain. However, simulatability is also a complex notion
and it is useful to derive more explicit constraints for protocols Π by not assuming
simulatability where it is not crucial.

Definition 50 in Section 5.6 defines a simpler version of simulatability called
embeddability. Embeddability is used in a setting where only the public outputs of
the computation are considered and the protocol Πe is part of Envpd that also has
all the plain inputs. Hence, the input-output simulation part is trivial. Any simu-
latable protection domain is also embeddable. In addition, the definition depends
on Π, but in the basic case, simulatability can be proven for a set of protocols
executed by Π if one assumes that all functionalities of the protection domain are
also used by Π.

The main difference between the simulation and the real execution is that the
simulator only knows the setup parameters known to the corrupted parties. The
question of simulatability, therefore mainly focuses on the question of being able
to simulate the computations without knowing the private setup parameters but in
a manner that is indistinguishable from the setting with real parameters. Hence,
if there are no private parameters, then the simulator can run a copy of the Πe

almost honestly because it can execute S and learn the shares of all parties. The
only difference from a full honest execution is that Sim has to be able to adapt
shares that are generated by SSime or received from RSim

e to use as the simulated
values of the corrupted parties in an execution that otherwise follows the honest
execution of Πe.

If there are private parameters, then the simplest case for simulation is the one
where the simulator still behaves as the honest protection domain but with sim-
ulated parameters. However, the simulated parameters must be generated so that
the real and simulated parameters of the corrupted parties are the same. In the
case of adaptive corruption, the parameters must be adjustable to recompute the
simulated parameters of the honest parties when new parameters of the corrupted
parties become available. This is similar to the patching defined in [56] needed for
the simulation of other values in the protocol in case of adaptive corruption. How-
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Figure 35: Simulatability of Πe. Drawn buffers represent a set of buffers between
parties and functionalities in protocols Π and Πe.
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ever, the definition does not restrict the simulator and other simulation techniques
could be used.

The basic observation of this definition is that the shares of the corrupted party
should not leak the private parameters of the honest party. Similarly, the values
sent to Env should not reveal the setup parameters.

5.3. Simplified Message Scheduling and Lazy Adversaries

This section shows that it is natural to restrict the adversary interactions with a
protocol Π if the latter satisfies some natural properties. In fact, all adversarial
actions can be accomplished by only modifying the state of the corrupted parties.
It is possible to allow the parties to behave honestly themselves and just modify
the messages that the parties send out in the protocol execution.

In more formal terms, this section defines a construction φlazy such that

∀Π ∈ Pbb : ∀Env ∈ EΠ : ∀A ∈ AΠ,Env : Env⟨Π,A⟩ ≡ Env⟨Π,φlazy(A)⟩ , (5.7)

where Pbb is the set of protocols that use the ideal functionalities F1, . . . ,Fk of the
protection domain in black-box manner and EΠ is the set of compatible environ-
ments. The protocols and environments also have to jointly satisfy the assump-
tions leading to Theorem 11 in this section. Only the adversary is changed, but
the new adversary φlazy(A) is also a generic adversary. Hence, the semi-inverse of
φlazy is an identity function.

5.3.1. Tight Message Scheduling

The protocol modelling in the given formalism of protection domains does not
guarantee that a message is delivered or in which order messages are delivered if
several of them are sent out on the same buffer. However, protocols Πp and their
respective ideal specifications Fp can limit how much the adversary can affect the
delivery of these messages. In addition, communication between Pi and Fp is
necessary for party Pi to know that Fp has received enough messages to proceed
with the execution. In theory, sending a stream of messages x1, . . . ,xℓ has no
benefit over sending them as one message because execution only proceeds if all
inputs are gathered. Hence, for simplicity, the following assumes that if there are
inputs that are sent together or if Fp sends many outputs out in one go to one
recipient, then they are delivered as one message. This is specified so that either
party only sends a new message in a protocol instance t if it has received a reply
from the receiver of the message. Hence, there is a clear time point when a sender
knows that its input to the protocol has been fixed and cannot be modified.

Secondly, the modelling of the protection domain does not limit the set of input
and output parties of a functionality Fp. Hence, a party may receive an output
from a functionality even if it did not send any inputs. In principle, this could
be a desired property, as the output may indeed be necessary to some party that
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does not have meaningful inputs to a protocol. However, it is easier to describe
the interpreter Ii of a party that does not receive unexpected messages and also,
in practical protocols, a party should have some knowledge about participating in
a protocol. Hence, it is reasonable to assume that all parties provide some input
to a protocol Fp before receiving any outputs. This input may be a dummy input
just showing the readiness for receiving outputs. As a side effect, all parties must
agree on the instance of the protocol Fp.

These ideas are formalised as the tight scheduling property of a protocol. Note
that it still allows many rounds of interactions with Fp and the next inputs may
depend on previously received outputs. Note that a round here applies to the
notion of communication between a party Pi and Fp. The rounds of interaction
may be different for different parties. If the input and output signatures of all
steps of the ideal functionality include all parties, as is common for secret-sharing-
based secure computation, then the rounds of different parties are also aligned. In
addition, a round from the perspective of Fp can send messages to one or more
parties.
Definition 32 (Tight message scheduling). An ideal functionality Fp has tight
message scheduling if it does not accept nor send two consecutive messages
from/toPi for the same protocol instance. Pi uses functionality with tight schedul-
ing if it does not try to send two consecutive messages to the same functionality.
Additionally, Pi must send the first message before receiving anything from Fp

and both Fp and Pi must know when the other stops sending messages for a given
protocol instance.

For canonical ideal functionalities, it is clear that they have to receive some
message before they can start. Tight scheduling restricts them to not send outputs
to parties that did not send any inputs. However, it is possible not to give outputs
to all parties that sent inputs. The need for a clear end of the protocol is necessary
for protocols where the number of rounds may vary. However, this can easily
be added to any protocol implementation as an explicit end message. The end is
clearly fixed if the number of rounds of interactions is known by the definition of
the functionality. Hence, this requirement is not limiting the set of protocols that
can be considered but gives some structure that can be used when discussing the
message exchanges in protocols.

5.3.2. Semi-Simplistic Adversaries

The previous section considered tight scheduling, which relates the stream of hon-
est messages and the behaviour of the functionalityFp. The generic adversary can
order the corrupted party to send any messages and can, therefore, also affect the
execution of Fp in various ways. In addition, for a corrupted party in general,
the interpreter Ii becomes irrelevant since the adversary can process all incoming
messages itself. However, it is more straightforward to think of the protocol exe-
cution when it can be followed using the protocol specification in Ii. This section
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defines a semi-simplistic adversary that always keeps the Ii running honestly and
in a timely manner, whereas it can still order the corruption moduleZi to send any
message and ignore the values from Ii.
Definition 33 (Semi-simplistic adversary). An adversary is semi-simplistic if it
fulfils the following conditions for all corrupted parties Pi.

(a) The adversary clocks any outgoing buffer b+u,p or b−u,e and any incoming
buffer b−j,p or b+j,e for honest P j only when all incoming buffers b−i,p or b+i,e
to corrupted parties Pi are empty.

(b) Upon receiving a message from Zi that comes from Πe,F1, . . . ,Fk, the ad-
versary immediately orders Zi to forward it to Ii on the port matching the
input port and without modifications.

(c) The adversary can fetch the state of Ii, using REVEAL instruction forwarded
to Ii by Zi.

(d) The adversary can send arbitrary messages to Πe,F1, . . . ,Fk, i.e., anything
can be written to output ports p ∈ {k+2, . . . ,2k+2} of Zi. The adversary
gives no other orders to Zi.

(e) The adversary is coherent.
Note that condition (b) means that if A receives the given message then its

only action is that it sends the message to Zi to forward this message to Ii and
it clocks this message to Zi. Hence, Zi becomes the new active machine and
can indeed send the message to Ii. Conditions (a) and (b) formalise that the
interpreter Ii always receives all messages intended for Pi. In addition, corrupted
Ii receives messages written by Fp in one activation before the honest interpreters
receive the respective messages. In other words, the incoming buffers from Fp to
corrupted parties are kept empty. Conditions (c) and (d) reflect that the adversary
does not modify the state of Ii. Hence, Ii is running honestly. Condition (e)
mainly simplifies further discussions as any generic adversary can be replaced by
a coherent adversary, as shown in Lemma 1.
Lemma 11. For any adversary, there exists a semi-simplistic adversary achieving
the same goal with unbounded computational overhead.

Proof. Let A be the initial adversary and let A∗ be the semi-simplistic adversary
that internally runs A. The proof idea is illustrated in Figure 36. From Lemma 1,
we know that it is sufficient to only consider coherent A.

ADVERSARIAL BEHAVIOUR. If a party Pi is not corrupted, then A∗ just fol-
lows the clocking of A for all buffers connected to Pi. When A corrupts Pi, then
so does A∗. A∗ also immediately sends the REVEAL command to learn the internal
state of Ii and creates a simulated copy I∗i of Ii with the same state.

When Zi sends a message to A∗ that is received from Πe or Fp and, therefore,
intended for Ii, then A∗ orders Zi to send this to Ii without changes. If Ii sends
a new message, then Zi collects these until Ii finishes and gives the collected
messages to A∗ who ignores them.
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Figure 36: The construction of a semi-simplistic adversary A∗ using a generic co-
herent adversary A and a copy of the honest interpreter. Dashed lines illustrate the
movement of the messages, whereas A∗ manages the timing and actual appearance
of these messages for the buffers connected to A.

Then, A∗ can pass the original input to A as a message from Zi. Whenever
A orders Zi to send anything to Ii, A∗ redirects this to I∗i . A∗ passes all replies
from I∗i to A. If A orders Zi to send a message to Fp or Πe then A∗ forwards this
message to Zi.

As a result, all incoming messages reach Ii without changes and right after
being received by Zi, fulfilling condition (b) of semi-simplistic adversaries. A∗

orders Zi to send out exactly the same messages as A and therefore achieves the
same effect on the protocol as A. The adversary A∗ only forwards inputs of Zi

to Ii or sends REVEAL messages to Ii, hence fulfilling (c). By definition, the Zi

only receives commands to write messages so that the adversary communication
satisfies condition (d). In addition, it follows the same corruption pattern as A and,
for a coherent A, also A∗ is coherent.

MODIFIED CLOCKING. Another modification is necessary to guarantee that
A∗ can always empty a buffer b−i,p to corrupted Pi. The adversary A∗ always
clocks a leaky buffer b−i,p to corrupted Pi as soon as Fp writes to it. This fulfils the
condition (a) of the simplistic adversary. The timing of Ii execution changes, but
since all outputs of Ii are ignored by A∗, then this does not affect the following
protocol execution. However, A∗ must preserve the right clocking and timing of
I∗i for A. For that, A∗ internally simulates the buffers b−i,p for A using the real
messages it has received. A∗ delivers these messages to A when A clocks the
message out of the buffer. Note that this change does not invalidate any of the
semi-simplicity conditions achieved by the A∗ construction.

COMPLEXITY. The adversary A∗ has two big tasks – copying the state of Ii to
make I∗i and keeping Ii running. Copying can be done with polynomial overhead
if the state is of polynomial size. However, Ii may receive unexpected inputs since
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A can send arbitrary messages to Fp and, hence, the runtime of Ii is not bounded.
OUTSIDE VIEW. So far, the proof has shown that the adversary A∗ is semi-

simplistic. In addition, it was argued that the view of A inside the A∗ remains the
same as when running with the real protocol. It remains to argue that such A∗ has
the same effect on the environment Env where the protocol is running as A. Since
A has the same view, then also the messages passed between A to Env remain the
same. The messages to Πe or Fp are all defined by A in the construction of A∗.
Hence the view of all components outside of the Pi remains the same and the new
adversary A∗ achieves the same effect on the overall execution as A.

The main limitation of the previous theorem is that the interpreter Ii may
not terminate or its runtime may not be reasonably bounded if it receives un-
expected inputs. It is reasonable to assume that it is possible to guard against
such occurrences when designing the protocol. For example, Ii should ignore
unexpected messages. It should also know the length of the expected messages
and not process inputs longer than the maximal length. The remaining concern
is that expected and valid messages could also trigger expensive computations in
the interpreter. This is something the protocol designer should seek to avoid. The
following specifies a protocol that has such good implementation.
Definition 34 (Robustness against malformed inputs). A protocol is robust against
malformed inputs if the running time of all interpreter components Ii is polyno-
mial for all semi-simplistic adversaries.
Corollary 6. If a protocol is robust against malformed inputs, then classes of
semi-simplistic and generic adversaries are equivalent to each other.

Proof. The robustness guarantees that the construction introduced in Lemma 11
has a polynomial overhead. Each time A∗ invokes Ii, it is guaranteed to stop and
pass the control back to A∗. As the number of times A∗ invokes Ii is bounded
by the running time of A, the total running time of Ii can be only polynomial
times bigger than the running time of A. Hence, any adversary can be converted
to an equivalent semi-simplistic adversary. A semi-simplistic adversary is also a
generic adversary. Hence explicit reverse conversion is not necessary.

5.3.3. Security Against Rushed Messages And Lazy Adversaries

A semi-simplistic adversary may create messages that are dropped by recipients as
they are not ready to process them. However, in most cases, these are unnecessary,
and so the adversary can be modified not to send such messages.
Definition 35 (Input and output signature). Let the input signature for a particular
round π of computations inside a decomposed canonical Fp be the set of parties
that must provide inputs before TR can run R and forward the recovered inputs
to Fp and let the output signature be the set of parties that receive output shares
from TS .
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It is difficult to analyse the execution of the protocol when the adversary can
execute something too early or cause the execution of something not expected or
clearly meaningful in the protocol. If some functionality only expects inputs from
corrupted parties, then the adversary can execute this functionality whenever it
wishes. In such cases, the adversary also has the capability to reconstruct all se-
cure data used in this execution. It is also problematic if the adversary can mix up
inputs of different instances. This can cause an execution ofFp where it is unclear
which input was used and then this may derail the whole execution. For example,
consider a possible functionality for oblivious transfer that has already received
the inputs x1, . . . ,xℓ and expects an index i. Upon receiving i, the functionality
gives shares of xi to all parties. If an honest party should send i, but the adversary
can instead send i on behalf of some corrupted party, then the protocol may con-
tinue with shares of the wrong values. Hence, it is important to keep track of the
right input signature and to ensure that the adversary executes only functionalities
expected by the interpreter code.

The following definition formalises this requirement as rushing. It is rushing
where the adversary may execute something too early. Rushing may cause parties
to receive values from Fp sooner than they expect, and these messages may be
dropped or wrongly used in the following execution.
Definition 36 (Rushed computation). We say that a round π of computation is
rushed if the ideal functionality Fp executes the computation before some inter-
preter Ii in the input signature has computed its input to π . A protocol Π is secure
against rushed execution for the set of environments E if no semi-simplistic ad-
versary from the class of adversaries A can rush a round of computation.

Note that the definition of rushing in this format is meaningful only when con-
sidering semi-simplistic adversaries. In other cases, it is not reasonable to expect
the interpreter Ii of a corrupted party Pi to compute anything at all. Security
against rushing means that the adversary has no point in trying to send any mes-
sage earlier than the protocol execution has reached the place for this message.
The following defines such an adversary as a lazy adversary.
Definition 37 (Lazy adversary). A semi-simplistic adversary is lazy if it always
waits for Ii to write a message (t1, t2,m) toFp (or Πe) to clock a message (t1, t2,m′)
out of the buffer b+i,p (or b−i,e) and it always clocks at most one message with the
right tags per message from Ii.
Lemma 12. Assume that ideal functionalities F1, . . . ,Fk and protocol Π using
these functionalities have tight scheduling. If a protocol Π is secure against
rushed execution, then any semi-simplistic adversary against this protocol can
be converted to an equivalent lazy semi-simplistic adversary.

Proof. Let A∗ be the lazy adversary constructed from the semi-simplistic adver-
sary A. A∗ modifies which messages are written to the outgoing buffers of Pi and
when they are clocked. This allows A∗ to catch all events where A clocks a mes-
sage (t1, t2,m) out of a buffer b+i,p (or b−i,e) before the interpreter Ii has produced
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the respective message. In all these cases, A∗ delays the clocking signal until the
Ii has produced the relevant message. Due to tight scheduling, t1 and t2 uniquely
determine the role of the message for the functionality Fp. Hence, from the mes-
sage and port used by Ii, it is clear which message can be clocked to which Fp.
The overhead introduced by delaying the messages is bounded by the runtime of
A. The following proof calls this message generation by Ii the send event.

UNLIMITED BUFFERING. Assume that Fp has unlimited buffering for all in-
puts. If no other party sends an input after the send event, then A∗ has stopped
a rushing event. However, as by assumption, Π is secure against rushing, then
it must be that Fp is still waiting for some other inputs when A∗ finally clocks
(t1, t2,m). Hence, the overall execution does not change even though A∗ delayed
the message. As there is unlimited buffering, then Fp would have stored all the
necessary inputs if it had received them earlier and these inputs cannot be changed.
On the other hand, if the send event never occurs, then either this round is never
completed anyway because of security against rushing, or this party was not in the
input signature of this round and the Fp can proceed even though A∗ does not try
to clock this message.

GENERAL CASE. In the general case, Fp may drop some messages that it
receives. Therefore, a delay in a message delivery may change which other mes-
sages are available at the time of receiving this message or how this message is
processed (for example, in which round of Fp it is used). For example, Fp may
drop the message when it is delivered according to the clocking of A and keep
and use it when it is delivered according to A∗. Note that tight scheduling ensures
that no message can replace (t1, t2,m) in the execution of Fp when the delivery
is delayed because Pi can only have one message in the buffer for protocol in-
stance t2 of Fp. In addition, thanks to tight scheduling and leaky buffers, A∗ has
complete knowledge about which rounds of which instances of Fp are pending
and which are completed. If the buffering behaviour of Fp is known, then A∗

therefore also knows which instances have messages in the buffer and when these
will be dropped. Hence, if A∗ knows that the message (t1, t2,m) would have been
dropped if it was clocked according to A. For dropped messages, A∗ can simply
not clock them at all, even if it gets the signal from Ii. If the message is deliv-
ered, then a similar analysis as for the unlimited buffering applies to show that
this delay has no other effects on the execution.

Note that the communication between the protocol Π and Πe does not dif-
fer much from the communication between Pi and Fp. However, the roles are
switched and Πe behaves as the party P∗i . The adversary is coherent. Hence, it
can only create and try to rush messages between corrupted P∗i to Pi. Hence,
any delays introduced by the lazy adversary only affect the corrupted communi-
cation. Without lessening of generality, any action that the corrupted party would
have upon receiving the delayed message can be performed by A∗ also without
delivering this message at the time when A clocked it.
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Theorem 11. If a protocol is robust against malformed inputs (Definition 34)
and is secure against rushed execution (Definition 36), then lazy semi-simplistic
(Definition 37) and generic adversaries (Definition 18) are equivalent to each
other.

Proof. We know from Corollary 6 that generic adversaries are equivalent to semi-
simplistic adversaries. Lemma 12 proves that any semi-simplistic adversary can
be transformed into a lazy semi-simplistic adversary. Any lazy semi-simplistic
adversary is still a semi-simplistic adversary. Hence, the two classes are equiva-
lent.

If a protocol can be rushed, then the adversaries most likely cannot be con-
verted to lazy adversaries. However, for secure multiparty computation, it is rea-
sonable to expect that the protocols themselves are secure against rushing. Com-
monly, all parties need to give input to Fp, and then an honest party has some
timing control over all protocols in which it participates. In fact, it is reasonable
to consider cases where, for each interpreter Ii, the code is the same or almost
the same. If it is almost the same, then the main interest is when and in which
order the ideal functionalities Fp are executed. A protocol is symmetric for all
interpreters if, for all of them, the instructions to call Fp are the same, and they
are in the same dependency graph. For example, no interpreter callsF2 instance t2
before F1 instance t1 has given its outputs. For sequential program execution, all
the calls are also in the same order. For parallel execution, the dependency rules
must be the same, but the order, in which the calls that are not depending on each
other are made, may vary. A symmetric program implies that all parties are in the
input signature of all functionalities.

The following theorem considers a more general approach to characterise pro-
tocols that avoid rushing. The code interpreter Ii will be introduced in more detail
in Section 5.4.1. However, the theorem uses the fact that the functionality calls
out new protocols Fp when it has received the answers to previous calls to ideal
functionalities and has computed the necessary input for the new protocol.
Theorem 12 (Characterisation of rushing). A semi-simplistic adversary can rush
a round of computation π for a canonical ideal functionality with tight schedul-
ing only if, for some corrupted Pi in the input signature, one of the following
statements holds.

(a) The round π is not in the program code of the interpreter Ii.
(b) The interpreter Ii needs an input from Πe to submit an input to π .
(c) The interpreter Ii needs an output from a round of computation π

′ to submit
an input to π and π

′ is executed concurrently or after π .

Proof. For a rushing event to occur, there has to be some party Pi that is in the
input signature for the rushed round of computations π such that the computation
in Fp is completed before Ii has computed its input. Then b+i,p is the buffer where
Pi should write its input to Fp. If a party is in the input signature, then, by
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definition, the input collector TR of Fp does not proceed with the round before
receiving the input from b+i,p. If Pi is honest, then only Ii could have computed
this input. Hence, rushing is only possible if Pi is corrupted at the time when the
input was written to b+i,p and clocked to Fp.

There are two possible reasons why the interpreter of a corrupted party has not
yet computed the necessary input. The first reason is that the interpreter code does
not have an instruction to compute this input and call this instance of Fp. Second,
Ii has this instruction in its program but has not reached it yet because it waits
for some previous calls to complete. The only valid reason for not yet completing
a computation is if there is some input m from some Fq or Πe that is necessary,
and this input has to arrive on some buffer b−i,q. A semi-simplistic adversary would
always empty the buffer b−i,q before clocking b+i,p if there was anything in the buffer
b−i,q . Hence, this situation is only possible if the message m is computed by some
round of some Fq that has not yet written the output or if it should arrive from
Πe.

The conditions that characterise rushing can be managed to avoid rushing. For
example, Byzantine agreements could be used in protocol Π to ensure that no hon-
est party starts a round before all parties have their inputs from Πe. Alternatively,
in some cases, it might be reasonable to only consider Πe that gives inputs in one
go to all parties. This is similar to how Fp writes all outputs to the buffers at the
same time.

The previous theorem can be used to consider rushing in different execution
contexts. For example, if Π implements an ideal functionality F then it is neces-
sary to analyse rushing F in Env⟨F△⟨F ,F1, . . . ,Fk⟩⟩. If this is impossible, then
it is clear that Π cannot be rushed from the Πe in the context where it is used
and condition (b) is satisfied. It is then further necessary to consider the rushing
conditions (a) and (c) from Theorem 12 for the protocol Π.

Going back to the ideas of common protocols for secure multiparty computa-
tion, it is clear that each round is in the program of all interpreters if the program is
symmetric. For a symmetric program, all parties have the same dependency graph
for all their ideal functionality calls. Hence, condition (a) cannot occur. Also, all
ideal functionalities give outputs at the same time and a symmetric program has
the same data dependencies. Therefore, condition (c) is also not possible. Hence,
the only possibility to rush such protocols comes from the inputs given by Πe. In
the context of protection domains, the Πe stands for the other computations tak-
ing part inside the protection domain. Hence, Πe can be expected to behave quite
similarly to the actual protocol Π. Hence, we could also expect that it is running a
symmetric program and can deliver inputs promptly to Π. Hence, it is reasonable
to consider lazy semi-simplistic adversaries in the following discussion.
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5.4. Shared Memory and Simplistic Adversaries

Lazy semi-simplistic adversaries are restricted to clocking all messages to Fp ac-
cording to the protocol specification in the interpreters. However, the adversaries
can generate more messages to the buffers, which significantly complicates the
understanding of the protocol execution. This section specifies the interpreters
and defines a shared memory model with a simplistic adversary that does not gen-
erate unnecessary messages. Instead, the simplistic adversary can only modify the
memory locations of outgoing messages.

This section defines a ▷◁-operator that acts on protocols and their components
together with a universal construction φ▷◁ and its semi-inverse φ

∗
▷◁ that achieves

∀Π ∈ Pc : ∀Env ∈ EΠ : ∀A ∈ Alazy
Π,Env : Env⟨Π,A⟩ ≡ Env⟨Π▷◁,φ▷◁(A)⟩ (5.8)

∀Π ∈ Pc : ∀Env ∈ EΠ : ∀A ∈ A▷◁
Π,Env : Env⟨Π▷◁,A▷◁⟩ ≡ Env⟨Π,φ ∗▷◁(A

▷◁)⟩, (5.9)

where Pc is the set of protocols executing a well-formed programs (Definition 38)
with canonical specification (Definition 42) and black-box use of the functional-
ities Fp. EΠ is the set of environments compatible with the protocol. The first
bigger result is the equivalence of lazy semi-simplistic adversary (Definition 37)
and simplistic adversary (Definition 39) in Theorem 13 and 14 for the ⋄-operator.
The last transformation of this section simplifies the memory model and extends
the ⋄-operator to the ▷◁-operator in Theorem 15. The transformations also define
how Π

▷◁ is derived from Π.

5.4.1. Details of Code Interpretation and Well-Formed Programs

This section specifies the version of code interpretation used in this chapter of the
thesis. It is quite restricted and mostly focused on the places where the interpreter
sends out a message. In general, the interpreter has two actions, either perform-
ing local computations or sending messages. In more detail, interpreter Ii for
party Pi is a universal random-access machine with communication instructions
DMACALL and SEND. The first is for communication expecting a reply and the
latter is for one-directional communication. The interpreter executes code p and
can execute many instances of this protocol simultaneously. The instances are
identified by their tags t. The internal state of the interpreter is an array s[t,δ , ℓ]
where ℓ is the memory location and δ the storage domain where the value stored
in location ℓ for protocol instance t belongs to. Any protocol instance t can only
access its values in s[t, ·, ·]. The initial state of s is empty.

A new protocol instance is started when INIT(t1, t2,δ ,m) is received from Πe.
Upon receiving it, Ii starts the execution of instance t2 by storing the values m
with domains δ . The instance t1 is stored as the parent protocol instance and only
this instance can be used when responding to Πe from protocol instance t2.

An instruction DMACALL(t2, p,α,β ) is meant for port b+p to send the s[t2,δi, ℓi],
where α = ((δ1, ℓ1), . . . ,(δu, ℓu)). The vector β specifies where the responses are
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stored and the instruction is not complete before the answer is received. The party
does not send a new instruction with the same tags to the same Fp before the
instruction is complete. SEND(t2, p,α) behaves similarly but does not expect a
response. Outgoing messages to functionalities Fp are in format (t2, t3,m), where
t2 is the instance of Ii and t3 is the instance of Fp, and m is the message collected
from the memory locations specified in α . Messages to Πe are in the format
(t1, t2,m).

The computations that Ii performs locally are local memory manipulation and
program control flow. The conditional jumps in the program can only occur using
variables in public or local storage domains. In addition, the interpreter stores
its state and can forward it to the adversary when receiving a REVEAL call. It is
reasonable to expect the programs that the interpreters run to satisfy some struc-
tural properties for easier analysis. These conditions are defined as well-formed
programs.
Definition 38. A program p is well-formed if the following holds.

(a) Each memory location s[t,δ , ℓ] can be assigned only once.
(b) No instruction can read a memory location before it is assigned.
(c) A new message with tag (t1, t2) is never written to the output port k+ 1 to

Πe before reading a message with tag (t1, t2) from the input port k+1 from
Πe. A message with a tag (t2, t3) is newer written to the output port p for
Fp before receiving (t1, t2) from port k+1 from Πe.

(d) For instructions DMACALL(t, p,α,β ) and SEND(t, p,α) no other program
instruction can read memory locations in the vector α and write the memory
location β .

(e) The order in which the responses to DMACALL are received does not affect
how the received values are used.

The constraints on the memory access are necessary to modify the execution
so that the ideal functionalities Fp read the inputs from the same memory and
the adversary A can rewrite α part of the memory to change the inputs to the
functionalities. The adversary will be restricted so that only Fp or Πe can write
the location β that is in the DMACALL.

Such memory management is wasteful since the easiest way to guarantee (d)
is to copy each input to a new location before DMACALL or SEND, but it can be
achieved in polynomial time in the runtime of the interpreter. The property (c)
is there to ensure that all sub-protocols are executed as calls to Fp and messages
to Πe are responses to received initialisation messages. Especially, the program
p cannot call new instances of Πe. Overall, it is also reasonable to say that the
following considers programs that have a well-formed implementation, as any
program can be transformed to satisfy the rules of the definition. The property (e)
limits the effect that the adversary could have on programs that can send many
calls at once. It also disallows programs that, for example, only use the first
response that they receive and discard other responses. The adversary can change
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the order in which messages are received. Hence it is important to ensure that
each message is expected and has a fixed use. The adversary cannot mix inputs
simply by changing the clocking. Ensuring property (e) is especially relevant if
the value is in a storage domain where pieces are held by several parties, as the
execution has to align so that the parties continue the evaluation with the same
values.

5.4.2. Shared Memory Model

This section extracts the memory component from the interpreter specification and
replaces some of the message communication with communicating the message
locations and reading values from shared memory. This creates an adversary that
can only modify messages that are part of the protocol and not create fraudulent
messages or early messages. It will also allow the transformations to later merge
the memory components to discuss the values rather than each party’s view.

The interpreter Ii is replaced by a stateless interpreter I⋄i and a memoryM⋄
i

that keeps all the interpreter state. In addition, the input-output functionalities that
communicate with Πe are separated from all interpreters and collected to form a
new dedicated machine F⋄io. The ideal functionalities Fp are modified to F⋄p that
can read the values fromM⋄

1, . . . ,M⋄
k . This setup that forms Π

⋄ is illustrated in
Figure 37.

When F⋄io receives an input for I⋄i from Πe, then F⋄io writes it to M⋄
i and

clocks the notification about the memory location to I⋄i . Analogously, when F⋄io
receives an output from I⋄i to Πe, then it reads the value from memory and writes
and clocks the value to Πe with the right tags. The DMACALL and SEND con-
tain all information needed to compose the right message. Fio also forwards
INIT(t1, t2,δ ,m). I⋄i processes INIT(t1, t2,δ ,m) the same as Ii did before. I⋄i
reads all necessary values fromM⋄

i and writes all computed values toM⋄
i . M⋄

i
contains the state s that was previously stored in Ii.

The messages between I⋄i and F⋄p consider memory addresses rather than
the actual messages. The message (t1, t2,m) between Ii and Fp is replaced by
(t1, t2,α,β ) that is defined by the DMACALL. Similarly, (t1, t2,α) is used for
SEND. F⋄p reads the indicated memory location from M⋄

i to get the same mes-
sage m as Fp gets from Ii. F⋄i also stores the response to s[t1,β ′j, ℓ

′
j] and only

writes a default message with instances (t1, t2) to I⋄i . I⋄i knows which address in
M⋄

i contains the actual response value as the response location was indicated in
the DMACALL.

The corruption manager Zi is also modified to Z⋄i in Figure 37. The machine
Zi managed the access to the interpreter state that the adversary could have. Cur-
rently,Z⋄i does the same, but it does not have the power to write new messages that
Zi has. In a way, Z⋄i can still simulate the execution of Ii and Zi to the adversary
A. In order to do so, Z⋄i plays the missing role of Zi. Mainly, Z⋄i translates the
missing buffers b−i,p,b

+
i,p and their clocking to clocking c−i,p,c

+
i,p. The commands
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Figure 37: Separating the interpreter state toM⋄
i and input-output behaviour to

F⋄io to define Π
⋄ with interpreters I⋄i .

to send new messages to b+i,p are replaced with memory modifications. Z⋄i only
accessesM⋄

i if the party Pi is corrupted. For corrupted parties, Z⋄i can modify the
memory locations α of incomplete DMACALL(t, p,α,β ) and SEND(t, p,α) calls.
In the following, φ⋄(A) denotes the new adversary consisting of the A against the
previous protocol and the modules Z⋄i for all parties.
Theorem 13. Let Π be the protocol with a well-formed implementation (Defini-
tion 38) and let EΠ be the set of compatible environments. Then

∀Env ∈ EΠ : ∀A ∈ Alazy
Π,Env : Env⟨Π,A⟩ ≡ Env⟨Π⋄,φ⋄(A)⟩ ,

where and Alazy
Π,Env is the set of compatible lazy semi-simplistic adversaries (Defi-

nition 37).

Proof. INITIAL STATE. Initially, Fp and F⋄p are only storing the setup, Ii and I⋄i
have no active instances, and all buffers are empty. The two setups are equivalent
if no action of Env or A can diverge the execution to non-equivalent states. F⋄io
does not have a relevant state. It always forwards the inputs that it gets and simply
translates writing or reading message contents from the memory. In the following,
the discussion about b+i,p also applies to b−i,e (and b−i,p also applies to b+i,e), with the
additional translation of messages carried out by F⋄io.

STATE EQUIVALENCE. Collections Π and Π
⋄ with Z⋄i have a natural match-

ing between machines and their internal states. The states of the two protocol
versions are equivalent if the respective components have equivalent states. The
interpreters are at the same instructions and have received the same inputs. The
buffer b−i,p contains a message (t1, t2,m) and c−i,p contains OK for t1, t2, ℓ and
s[t1,δi, ℓi] = mi in M⋄

i . Note that the DMACALL(t2, p,α,β ) specifies the loca-
tions and storage domains of the sent messages in α and of the responses in β
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so the equivalence is based on the addresses in β . c−i,p may keep the message for
a longer time than b−i,p. Fp and F⋄p have received the messages with the same
instances, F⋄p may not have read the message content fromM⋄

i yet. There is no
simple equivalence between b+i,p and c+i,p. Instead, Z⋄i internally maintains simu-
lated b++

i,p for each functionality F⋄p that is equivalent to b+i,p.
Overall, the behaviour of Z⋄i is quite simple. First, it has a simulated buffer

b++
i,p for each b+i,p in Π. Every time A tries to write something to b+i,p, it is really

written to b++
i,p . When an adversary A clocks a message to Fp from a corrupted

party Pi, then Z⋄i takes the message (t1, t2,m) from the simulated b++
i,p . A message

with the same tags is also in c+i,p in the format (t1, t2,α,β ), as the adversary is
lazy semi-simplistic. Hence, Z⋄i sets the memory location s[t1,δi, ℓi] = mi with
addresses from α corresponding to the message in c+i,p. Then, Z⋄i clocks this
message out from c+i,p.

The corrupted Zi sends all inputs to A. In order to simulate this behaviour, Z⋄i
first receives the signal to clock b−i,p to a corrupted party Pi from A and knows that
the party will have an input. Z⋄i can clock the leak on ci

i,p to learn the protocol
instance t2 and there can be only one outstanding DMACALL with instance t2 to
functionality Fp. Z⋄i reads the relevant memory location β for this DMACALL

fromM⋄
i and gives the received input value to A. The message is clocked out of

c−i,p as a next step when A orders Zi to give this input value to Ii. By definition,
A orders Zi to clock the value to Ii immediately after clocking b−i,p and receiving
the input from Zi, as A is semi-simplistic. The adversary A clocking any b−i,p,
as well as b+i,p for honest Pi, can be directly forwarded to clock respective c−i,p or
c+i,p. Hence, Z⋄i simply forwards these clocking events. If the adversary corrupts a
party Pi, then Z⋄i can read the state of Pi fromM⋄

i and give it to A the same way
as Zi forwards it. The adversary A can separately clock leaky buffers to receive
leaks and forward messages. Leaks can be simulated by Z⋄i either using b++

i,p for
corrupted Pi or by using c+i,p and c−i,p for other cases similarly to clocking actions.

The Env gives the initial input, and property (c) of the well-formed program
ensures that the interpreters do not take any actions before such input and only
execute instances started by Env. A can corrupt parties, clock buffers, and write
messages to b+. It also orders Z⋄i to forward messages from Fp to Ii but does that
immediately after clocking the message from b−i,p to Zi.

The properties (a) and (d) of well-formed programs guarantee that Z⋄i can
rewrite the memory location for messages to Fp without altering the behaviour
of the interpreter. Furthermore, the change can be done once for each memory
location. Thanks to the fact that A is lazy, the memory location has already been
assigned by I⋄i and is not written over anymore by the interpreter. Hence, Fp and
F⋄p always have the same input values. This means they also send the same replies
to Ii or I⋄i . Hence, all actions of the adversary result in equivalent states for Ii

and I⋄i and, therefore, also the equivalent view of the protocol that either A or Env
can have.
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5.4.3. Simplistic Adversary

The adversary φ⋄(A), as defined before, is simpler than the lazy semi-simplistic
adversary A. Such adversaries are defined as simplistic adversaries.
Definition 39 (Simplistic adversary). An adversary is simplistic if it fulfils the
following conditions.

(a) The adversary clocks any outgoing buffer c+u,p or c−u,e to party Pu and any
incoming buffer c−j,p or c+j,e for honest P j only when all incoming buffers
c−i,p or c+i,e to corrupted parties Pi are empty.

(b) The adversary can modify the state of the corrupted party only in the lo-
cations α of pending DMACALL(t, p,α,β ) and SEND(t, p,α) instructions.
These changes are done before the corresponding tuple is clocked to F⋄p or
F⋄io, and each value is modified at most once.

(c) The adversary is coherent.
The simplistic adversary is coherent, similarly to a semi-simplistic adversary.

In addition, the clocking rules represent the same idea as the semi-simplistic ad-
versary. The main difference is in condition (b), which replaces the capabilities of
a semi-simplistic adversary communicating with Zi with the capabilities to mod-
ify the memory for outstanding DMACALL.
Corollary 7. For any lazy semi-simplistic adversary A and for any well-formed
implementation of Π, the construction φ⋄(A) is a simplistic adversary.

Proof. The clocking rules for simplistic φ⋄(A) are similar to those of the semi-
simplistic A. The difference is in the concrete buffers connecting the party and
F⋄p or Fp, respectively. As φ⋄(A) follows the same clocking as A, φ⋄(A) also
preserves the condition (a) of the simplistic adversary. The way Z⋄i in φ⋄(A)
alter memory just before clocking c+i,p in the proof of Theorem 13 guarantees
that the property (b) of the simplistic adversary is satisfied. The corruption calls
are unchanged by the transformation φ⋄ and, therefore, the resulting adversary is
coherent as the lazy semi-simplistic adversary A was coherent.

Let A⋄Π⋄,Env be the class of simplistic adversaries against Π
⋄. Based on the

construction of the adversary from the hybrid execution, it is sufficient to consider
only simplistic A⋄Π⋄,Env and to show the equivalence of the two execution models
when executing with the respective adversary classes. Hence, the following also
defines the semi-inverse of φ

⋄ as φ
∗
⋄ : A⋄Π⋄,Env→ Alazy

Π,Env with the right properties.
It remains to also show that it is possible to move back from the shared mem-

ory model with the simplistic adversary to the basic hybrid execution with the lazy
semi-simplistic adversary. Here, a semi-inverse of φ⋄ is needed. It is constructed
by reversing Z⋄i using machines Z∗i that go between Π and the simplistic adver-
sary A⋄. The simulator machines Z∗i translate memory rewrites by A⋄ to protocol
messages and enables the reading of the state of Ii similarly to I⋄i . Let φ

∗
⋄ (A

⋄) be
the collection consisting of A⋄,Z∗1 , . . .Z∗n .
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Theorem 14. Let Π be the protocol with a well-formed implementation and robust
against malformed inputs and let EΠ be the set of compatible environments. Then

∀Env ∈ EΠ : ∀A⋄ ∈ A⋄Π⋄,Env : Env⟨Π⋄,A⋄⟩ ≡ Env⟨Π,φ ∗⋄ (A
⋄)⟩ ,

where A⋄Π⋄,Env is the set of simplistic adversaries compatible with the protocol and
the environment. The resulting adversary φ

∗
⋄ (A

⋄) is lazy and semi-simplistic.

Proof. The equivalence between the states of the protocol is mostly the same as
used in the proof of Theorem 13. The machine Z∗i has translate adversary A⋄

memory accesses to interactions with Ii and Zi. In addition, Z∗i has to modify
adversary clocking c+i,p and c−i,p to clocking b+i,p and b+i,p.

The machines Z∗i contain a simulated memoryM∗
i . The buffer c+i,p has a mes-

sage when the interpreter I⋄i (or Ii as they are in the same state) has computed it,
but b+i,p for corrupted Pi only contains a similar message if the adversary has or-
dered it to be written. Z∗i holds a simulated copy c++

i,p of c+i,p to keep track of these
messages written by I⋄i but only writes to b+i,p when necessary. In addition, Z∗i
runs a simulated version of I⋄i in order to keep track of the state of the simulated
memoryM∗

i . This simulation can be done in polynomial time if the protocol is
robust against malformed inputs.

The equivalence of the two cases is easy if no party is corrupted. In such cases,
Z∗i can just forward all clocking signals. When a party Pi is corrupted by A⋄, then
Z∗i sends REVEAL message to Zi and forwards the response to A⋄ as the values in
M⋄

i . Then, Zi becomes corrupted and, each time it receives something from Fp,
it sends this to Z∗i that adds this value to the simulated memoryM∗

i and orders Zi

to give the input to Ii. Zi also gives the results computed by Ii to Z∗i . Z∗i stores
these values inM∗

i based on the timing of simulated I⋄i .
By definition, the simplistic adversary A⋄ only modifies the memory locations

of pending DMACALL or SEND calls. If the adversary modifies the memory to
contain a value m′, then Z∗i orders Z∗i to send a message with the same tags as the
pending call and content m′ to the same functionality Fp as the original pending
call. If the adversary clocks a channel c+i,p then the message with the same tags
is clocked to Fp from b+i,p. If there is no such message on the buffer b+i,p for a
corrupted party Pi yet, then Z∗i first writes the message using the current value
inM∗

i for the locations used in this message. The simplistic adversary modifies
each value at most once. Hence, Z∗i orders one message to be sent by Zi for each
message that is clocked.

The inputs to Fp and F⋄p are clocked at the same time and with the same
content. Hence, the ideal functionalities also give outputs at the same time and
with the same content. Hence, Z∗i can clock b−i,p for honest party at the same time
as A⋄ clocks c−i,p. The same goes for corrupted parties, as long as the adversary
clocks c−i,p early enough. For corrupted parties, the adversary may try to read the
response from F⋄p in M⋄

i before the reply is clocked from c−i,p to Pi. In such a

171



case, Z∗i does not have it inM∗
i . Instead, Z∗i clocks the respective message out

from b−i,p and receives it through Zi. For the new adversary to be semi-simplistic,
Z∗i also immediately orders Zi to give the value to Ii. If Ii computes any new
messages, then these are given to Z∗i by Zi. However, in this case, these are not
yet stored inM∗

i . These values will be stored when the adversary really clocks
c−i,p and simulated I⋄i computes these values.

The resulting adversary φ(A⋄) is lazy and semi-simplistic. The new adversary
obeys the clocking rules of the simplistic adversary, which cover the clocking rules
of the semi-simplistic adversary. In addition, the adversary fetches the state of Ii

but otherwise does not interact with Ii. The adversary is also lazy, as the clocking
is based on the simplistic adversary. The interpreter Ii has always computed the
messages that I⋄i has computed. In case of early clocking of c−i,p byZ⋄i to correctly
read the memory for a corrupted party Pi, the interpreter Ii may be ahead of I⋄i .
The simplistic adversary only clocks the message if it has been computed by I⋄i
and then it has also been computed by Ii, obeying the rules of the lazy adversary.
As the order in which messages are received by a well-formed program does not
affect which messages are sent, then any changes in the clocking do not affect the
next messages.

5.4.4. Canonical MPC Protocol

The model with separate machines for memories introduces the possibility of join-
ing the machines M⋄

i to one machine. Let the global state gs be the state of
such a machine where gs[t,δ , ℓ, i] = s[t,δ , ℓ] for party Pi. Let gs[t,δ , ℓ] denote
(gs[t,δ , ℓ,1], . . . ,gs[t,δ , ℓ,k]). This state is reasonable only when the same lo-
cations ℓ over s of different parties correspond to the same value in the storage
domain δ . Such a case is defined as memory alignment and is focused on the
instances where the ideal functionalities read the memory.
Definition 40 (Memory-alignment). A well-formed implementation of a protocol
uses an ideal functionality F⋄p in a memory-aligned manner if each individual
input of F⋄p is reconstructed from gs[t,δ , ℓ] and each output is shared to gs[t,δ , ℓ].

Again, memory alignment is more of an implementation detail of a protocol
than a property of the protocol itself. If the protocol only calls F⋄p and does not
perform any local computations or if all I⋄i in the protocol do the same local
computation, then it is easy to keep the memory aligned. If some parties carry
out local operations and others do not, then it is better to keep the local operation
outcomes in a separate memory region to ensure alignment for the inputs to F⋄p .

So far, the protocol description in Π
⋄ did not explicitly consider the local com-

putations and they were internal operations to I⋄i . Here, it is reasonable to bring
them to focus using the local functionality ideas in Section 3.5. By definition, a
local functionality G▷◁q is a collections of machines

{
G▷◁q, j

}
j∈Jq

implementing local
operations for party P j. These are now separated from I⋄i andM⋄

i so that these
machines become I▷◁i andM▷◁

i that communicate with G▷◁q,i as in Figure 38.
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Figure 38: Encapsulation of local computations involving two parties.

Every time I▷◁i has some local computation, it sends (t,α,β ) to G▷◁q . The
local operation G▷◁q,i performs the memory lookup for input addresses α in M▷◁

i ,
does the computation, writes the result to address β inM▷◁

i and gives the control
back to I▷◁i . The instance t can simply be the instance of the calling protocol.
The instance can also be unified by different parties like the instances used by
ideal functionalities Fp. In such case, the instance can be used to define Gq more
explicitly as this is the version used in the following. In any case, the instance
is not directly by G▷◁q,i. Local operations G▷◁q,i may use the setup parameters of the
party Pi. Hence, there are buffers between G▷◁q and F△.
Definition 41 (Local operations memory-alignment). A well-formed implemen-
tation of a protocol uses a local functionality G▷◁q in memory-aligned manner, if
each individual input of G▷◁q,i is coming from gs[t,δ1, ℓ1] inM▷◁

i and each output is
written to gs[t,δ2, ℓ2] inM▷◁

i .
Note that the local operations can have a different set of parties that carry

them out. Especially, achieving overall memory-alignment in case parties have
different local functionality calls means that each party must have a local copying
functionality to simply copy gs[t,δ1, ℓ1] to gs[t,δ1, ℓ2]. When local operations
are removed from the interpreter I▷◁i , it still has to perform conditional jumps
in the code and, therefore, may need to read the respective values from M▷◁

i .
However, explicitly considering local functionalities allows us to specify further
which protocols we want to consider for I▷◁i .
Definition 42 (Canonical protocol specification). LetF⋄1 , . . . ,F⋄k ,F⋄io, G▷◁1 , . . . ,G▷◁m
denote ideal and local functionalities used in a well-formed protocol specification.
A protocol specification is in a canonical form if the following holds.

(a) All conditional jumps in I▷◁i are based on values in the public storage do-
main or local storage domain for Pi.

(b) All local operations except conditional jumps are implemented with G▷◁1 , . . . ,
G▷◁m .

(c) All ideal functionalitiesFp and local functionalities Gq are used in a memory-
aligned manner.

These conditions must hold regardless of the adversarial behaviour.
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Note that any well-formed protocol can be represented in a canonical form
when considering a simplistic adversary. The simplistic adversary cannot mess
up memory accesses and computations of the interpreter. As discussed before,
memory alignment can be achieved by separating the memory regions for inputs
of ideal functionalities from the intermediate results of the local functionalities
and using a local copying functionality. Overall, the program of the interpreters is
public and the addressing scheme can be agreed upon and coded into the program.
The separation of local functionalities does not change the capabilities of the in-
terpreter I▷◁i in any way and they are clocked instantaneously. Therefore, it also
does not change the timing. Hence, condition (b) is also achievable. Condition (a)
was already specified before.

Note that the canonical protocol specification is defined for the protocol as
represented in Π

⋄. However, the conditions can be translated to requirements on
the initial protocol Π as the protocol execution has not changed. The components
of a protocol have simply become more explicit. Firstly, Ii and I▷◁i execute the
same code. Hence, condition (a) has to already hold for Ii. Secondly, condition
(b) is not restrictive for a protocol in Π as any computation carried out by Ii

can be represented as a local functionality for the party Pi. Thirdly, the memory
alignment condition (c) can be achieved in Π with the same approaches as in Π

⋄.
Note that, in the canonical protocol specification, the interpreter I▷◁i could be

isolated from the trusted setup F△. In such a case, the parameters from F△ are not
stored inM▷◁

i . Hence, the reason why F△ was defined (Definition 6) so that the
adversary could query the corrupted parties setup from F△ directly.

5.4.5. Joining the Memories of Several Parties

Canonical protocol specification defines protocols that also have aligned memory.
Hence, the whole protection domain F⋄pd operates so that each call to F⋄p uses the
same address ℓ for all parties. This means that the individual memory machines
M⋄

1, . . . ,M⋄
n can easily be combined to a single machineM▷◁ with internal state

gs. Instead of fetching the relevant address from all parties, a modified ideal func-
tionality F▷◁

p can simply access gs[t,δ , ℓ] to either read inputs or write outputs
as in Figure 39. From now on, it is, therefore, easier to focus on the decomposed
ideal functionalities where the machinesRu and Su, that are part of the ideal func-
tionality, are replaced by R▷◁

u and S▷◁u that communicate with the shared memory
M▷◁. Similarly, TR and TS components of the decomposed ideal functionality are
replaced by T ▷◁

R and T ▷◁
S that collect memory addresses instead of the messages.

The execution of F▷◁
p containing T ▷◁

R and T ▷◁
S and communicating with R▷◁

u
and S▷◁u is similar to the overall execution of the ideal functionalities. T ▷◁

R collects
incoming locations as (t1, t2,α). When all inputs for the given round of instance
t2 have arrived, then the input addresses are passed toR▷◁

u . R▷◁
u reads these values

from M▷◁ as gs[t,δi, ℓi] for all (δi, ℓi) ∈ α , reconstructs the underlying values
using Rδ and sends the values to T ▷◁

R . Then T ▷◁
R sends the output location β to
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Figure 39: Decomposed canonical ideal functionality F▷◁

p communicating with
the memoryM▷◁ through universal machines S▷◁u andR▷◁

u .

T ▷◁
S and gives the input value and instance to F◦p . The functionality F◦p computes

the output and gives it to T ▷◁
S . T ▷◁

S also clocks the β from T ▷◁
R . It then uses S▷◁u to

get the shares of the output. For every (δi, ℓi) ∈ β S▷◁u gets (t,δi, ℓi,y) and writes
the result of Sδ with input y to gs[t,δi, ℓi] inM▷◁. The control then goes to T ▷◁

S
that writes output messages to Ii.

The machines T ▷◁
R and T ▷◁

S see only the memory locations and the values.
Hence, if the adversary expects to see any shares from them, then the already de-
scribed machines cannot provide them and a special machine T p

M is needed. T p
M

is essentially a simulator to turn adversaries A against F⋄p to adversaries against
F▷◁

p . The main goal for T p
M is to enable the adversary to ask for the shares and

then instead read them fromM▷◁. F▷◁
p is the collection T ▷◁

R ,F◦p ,TS . T p
M and A⋄

against F⋄p are the new equivalent adversary A▷◁ against F▷◁
p . T p

M manages cases
where TR or TS give shares of corrupted parties to A, but T ▷◁

R or T ▷◁
S give the ad-

dresses to the corrupted parties memory. If T p
M receives a memory address from

F▷◁
p then T p

M fetches the values fromM▷◁ to give to A. In total, both adversaries
A⋄ and A▷◁ get the same access toM▷◁

i and see the same values when interacting
with the canonical ideal functionality. The ideal functionality limits which values
are revealed from the memory. T p

M is only allowed to read the memoryM▷◁ and
cannot write anything to memory directly. If T p

M receives any other communi-
cation from A⋄ or F▷◁

p , such as a corruption request or abort message, it simply
forwards it to F▷◁

p . A simplistic adversary A⋄ is still allowed to overwrite protocol
inputs inM▷◁, but this is done outside of the interactions with F▷◁

p .
The resulting adversary A▷◁ is still simplistic with the additional power to read
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the memoryM▷◁ for corrupted parties and for the addresses received from F▷◁
p .

Canonical ideal functionalities F▷◁
p only give the adversary reading access to the

memory of the corrupted parties. By definition, adversary A▷◁ can read the mem-
ory locations for corrupted parties. Hence, this interaction with canonical F▷◁

p
does not in any way invalidate the properties of the simplistic adversary. Note that
it is possible and, for reasonable corruption models and canonical F▷◁

p , meaning-
ful to define corruption in Π

▷◁ so that if the adversary accesses the memory for a
party, then this party is considered corrupted.

In order to define the full protection domain F▷◁
pd , the machine F⋄io is modified

to F▷◁
io that writes the values to M▷◁ and sends the location information to the

modified interpreter I▷◁ that interacts withM▷◁ instead ofM⋄
i . The machines G▷◁i

are also wired to M▷◁. Define Π
▷◁ as an extended collection consisting of ma-

chines I▷◁1 , . . . ,I▷◁n ,M▷◁,F▷◁
1 , . . . ,F▷◁

k , G▷◁1,1, . . . ,G▷◁g,n, F▷◁
io with all attached buffers.

Let φ▷◁(A
⋄) be the collection consisting of A⋄, and T 1

M, . . . ,T k
M. Let φ

∗
▷◁(A

▷◁) be
the semi-inverse of φ▷◁ as described in the following theorem. The protocol Π

▷◁ is
illustrated in Figure 40.
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Figure 40: Protocol representation Π
▷◁ with canonical ideal functionalities, F0.

Theorem 15. Let Π be a well-formed protocol specification that is in a canonical
form and let EΠ be the set of compatible environments. Let Π

⋄ and Π
▷◁ be the

respective modified collections of the protocol Π. Then

∀Env ∈ EΠ : ∀A⋄ ∈ A⋄Π⋄,Env : Env⟨Π⋄,A⋄⟩ ≡ Env⟨Π▷◁,φ▷◁(A
⋄)⟩

∀Env ∈ EΠ : ∀A▷◁ ∈ A▷◁
Π▷◁,Env : Env⟨Π▷◁,A▷◁⟩ ≡ Env⟨Π⋄,φ ∗▷◁(A▷◁)⟩ ,

where A⋄Π⋄,Env is the set of simplistic adversaries compatible with the protocol
Π
⋄ and the environment Env. The resulting adversary φ▷◁(A

⋄) is also simplistic.
A▷◁

Π▷◁,Env is the set of simplistic adversaries compatible with Π
▷◁ that only read the

corrupted parties values fromM▷◁.
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Proof. The buffers between I⋄j and I▷◁j and the adversary are the same in both
collections, and the adversary gets the same access to the state of the interpreters
in either M⋄

i or M▷◁. The difference is that M⋄
i are all joined to a single M▷◁

that has a state G▷◁i . Also, the local functionalities G▷◁i are separated from I⋄i . In
addition, the interface to F△ is changed to allow for G▷◁i to be separated. However,
this does not change the view of the adversary or the environment.

A well-formed protocol writes all memory addresses at most once. Therefore,
the outputs of G▷◁i in M▷◁ are never overwritten. The buffers connecting G▷◁i,q to
I▷◁i andM▷◁ are sender-clocked, hence separating G▷◁i,q from I⋄i is not introducing
new adversarial controls and is invisible to the adversary, if the states of I⋄i and
I▷◁i remain the same. Thanks to the self-clocked channels, the functionality G▷◁i,q is
executed in the same timeframe as the same computation internal to I⋄i .

ForF⋄p , the exact function was unspecified before other than inputs and outputs
are read from M⋄

i . For a canonical F⋄p , the decomposed look can always be
considered, and Su andRu can be replaced by S▷◁u andR▷◁

u .
The modifications of the adversary A⋄ to φ⋄→▷◁(A

⋄) only affect the interaction
with F⋄p and F▷◁

p respectively. The clocking rules and writing of M⋄
i or M▷◁

for the corrupted parties state satisfy the same rules in both cases, and hence, a
simplistic adversary A⋄ gives rise to a simplistic φ⋄→▷◁(A

⋄).
The reverse equivalence from Π

▷◁ to Π
⋄ and A▷◁ to equivalent A⋄ is straight-

forward for A▷◁ that only access the memoryM▷◁ for the values of the corrupted
parties. The transformation requires adding T p

M to F▷◁
p in the construction of Π

⋄

and pushing the local functionalities back to I⋄i . Note that if the adversary reads
a memory location before it has clocked the output of F▷◁

p that is written to that
location, then it has access to that memory through the ideal functionality. If it
has clocked the output, then the party has also received it, and the access can be
through interaction with the party.

The collection Π
▷◁ finishes the transformation of the protocol representation

to the model with shared memory. The machineM▷◁ is the shared memory used
by all parties to communicate or store the values of all protection domains in the
protocol.

5.5. Abstract Memory Model and Semi-Abstract Adversaries

The collection Π
▷◁ using protection domain F▷◁

pd contains a memory machineM▷◁

that can be accessed by most machines in the description to read and write nec-
essary values. This section continues with the simplistic adversary A▷◁ that is
restricted to only accessing the values belonging to corrupted parties inM▷◁. In
addition, the adversary controls the timing of the execution of Π

▷◁. A simplis-
tic adversary is restricted to only overwriting the M▷◁ in the locations of inputs
to some ideal functionality F▷◁

p . This section simplifies the adversary further to
semi-abstract adversaries that do not require read access to shares inM▷◁ but can
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still modify the values in the storage if allowed by the modification awareness
and limited control properties of the storage domain. To discuss this transforma-
tion, the memoryM▷◁ is split into two parts,M0 for storing the values andM∗

for storing the shares. Then, step-by-step, the need for M∗ is reduced until the
honest execution uses onlyM∗ and the adversary can simulateM∗.

Formally, this section defines a ∗-operator that acts on protocols and their com-
ponents together with a universal φ∗ :A▷◁→A∗ and its semi-inverse φ

∗
∗ :A∗→A▷◁

that achieves

∀Π ∈ Pc : ∀Env ∈ EΠ : ∀A▷◁ ∈ A▷◁ : Env⟨Π,A▷◁⟩ ≡ Env⟨Πsa,φ∗(A▷◁)⟩ (5.10)

∀Π ∈ Pc : ∀Env ∈ EΠ : ∀A∗ ∈ A∗ : Env⟨Πsa,A∗⟩ ≡ Env⟨Π,φ ∗∗ (A
∗)⟩, (5.11)

where Pc is the set of protocols in a canonical form specified in F▷◁
pd and EΠ is

the set of compatible environments. Π
sa is the semi-abstract protocol and A∗ is

the class of semi-abstract adversaries (Definition 46). The forward transformation
is covered step-by-step in the whole section, and the reverse is summarised in
Lemma 21.

5.5.1. Abstract Memory Model

This section introduces an abstract memoryM0 that keeps the values correspond-
ing to the storage domain representation inM▷◁. The memoryM▷◁ is modified
to M∗ that interacts with M0 to keep track of any changes. The state of M0
is s0[t,δ , ℓ] = m containing the values corresponding to gs[t,δ , ℓ] whenever the
memory is accessed. The modifications of machines R▷◁

u and S▷◁u called R∗u and
S∗u are placed betweenM0 andM∗ to allow for the synchronisation of the two
memory components. SinceF▷◁

p only requires the use of values and not the shares,
it is connected toM0 and does not explicitly communicate withR▷◁

u and S▷◁u any-
more. This setup is shown in Figure 41. The local variables and state of I▷◁i are
also stored in M0. By definition, M0 also contains the values that are in local
protection domains inM∗. I▷◁i is modified to I∗i that accesses its state fromM0.

The abstract memoryM0 is also connected to the adversary and allows it to
read the local variables of the corrupted parties. All memory modifications that
the adversary can do are carried out in M∗. The two memory machines work
together to keep their states synchronised if F▷◁

p or I∗i update M0 or G▷◁i,q, A or
F▷◁

io updateM∗. When A, G▷◁q or F▷◁
io queries a share from a location (t,δ , ℓ) and

gs[t,δ , ℓ] is empty or invalidM∗ writes SHARE(t,δ , ℓ) to the buffer toM0 and
clocks it. Then,M0 uses S∗u to share s0[t,δ , ℓ] and give control back toM∗.M∗

now has synchronized with s0 and can answer the query for (t,δ , ℓ).
When gs[t,δ , ℓ] is updated, thenM∗ writes UPDATE(t,δ , ℓ) to the synchroni-

sation buffer toM0. After receiving this,M0 usesR∗u to read the shares from gs
and update s0[t,δ , ℓ] to the new value. If I∗ or F▷◁

p update s0 in M0, then M0
writes INVALID(t,δ , ℓ) to the synchronisation buffer forM∗ so thatM∗ knows to
update the storage domains values when they are queried. T ▷◁

R can queryM0 with
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Figure 41: Separating memoryM▷◁ toM0 for values andM∗ for shares. Collec-
tion F1.

(t,δ , ℓ) to get the value s0[t,δ , ℓ] the same way it usually queries R▷◁
u . Similarly,

T ▷◁
S sends the value toM0 similarly as TS sent it to S▷◁u before.

Note that there are some steps when gs is not properly updated using the pre-
vious description. This is due to the fact that G▷◁q and F∗io consecutively update all
shares in the location (t,δ , ℓ) depending on how the inputs arrive to F▷◁

io or how
I∗i call out G▷◁i,q. At a single update, the reconstruction might fail if other shares
are still missing and, due to the failure, there is no value inM0. This incomplete-
ness ofM0 could be mitigated by changing the execution so thatM∗ sends the
update message when all shares have been written. However, this change does not
affect the rest of the execution. By definition, F▷◁

p can only query this value from
M0 if it has collected all necessary inputs to reconstruct the value. The inputs
are collected from parties Pi through interpreter I∗i and, therefore, either the G▷◁i,q
for this party Pi has executed or F▷◁

io has sent the input to party Pi. Hence, this
partial update toM0 will go unnoticed by the execution of other machines in the
collection as the value is only used when it can be reconstructed from gs inM∗.
The same logic applies to the adversary view. The adversary can see the local
variables of the corrupted party inM0 and they can always appear inM0 as soon
as they are inM∗.

Let F0 be an extended collection corresponding to Π
▷◁ from the previous sec-

tion in Figure 40 so that is consist of F▷◁
1 , . . . ,F▷◁

p ,R▷◁
u ,S▷◁u ,M▷◁,F▷◁

io . Let F1 be
an extended collection consisting of F▷◁

1 , . . . ,F▷◁
p ,R∗u,S∗u ,M0,M∗, F▷◁

io as shown
in Figure 41. Then, for the observer consisting of A, I▷◁i , Πe, G▷◁q and F△, these
two collections are equivalent.
Theorem 16. Collections F0 and F1 are indistinguishable, provided that they are
executing a well-formed protocol specification in a canonical form.
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Proof. This proof first states the basic equivalences of the two collections. These
hold in the beginning of the execution or refer to the structure of the collections.
The focus is then on the differences that might occur in the execution of the two
collections.

Communication with the machinesM0,M∗,R∗u and S∗u is sender-clocked and
does not add new clocking capabilities to the adversary. Machines S∗u and S▷◁u (R∗u
and R▷◁

u ) have identical interfaces with F△. Hence, communication with F△ re-
mains unchanged. Hence, it is sufficient to focus on the interaction of the memory
and the ideal functionalities. It is important that all machines read the same val-
ues from the memory and that all modifications of the memory are equivalent. A
significant difference between the collections is the separation of adversary con-
necting toM0 andM∗ instead of one connection toM▷◁ in F0. This difference
can be managed easily by merging or simulating the extra channels as necessary.

The state of the party, such as which DMACALL calls are outstanding and
where it has progressed with its execution, is kept in memory. If I▷◁i and I∗i are
in equivalent states, then the same state is stored in M▷◁ and M0, respectively.
Hence, also the adversary gets the same state when corrupting the party. However,
the shares of the party must be read fromM∗ in F1.

Hence, the rest of the proof needs to consider the views of the parties querying
gs[t,δ , ℓ] or s0[t,δ , ℓ] to verify that they get equivalent results. Initially, the mem-
ories are empty. Assume that so far, the states have been equivalent. Initially, all
memory locations are unassigned. The value inM0 can be queried by T ▷◁

R . By
construction of the synchronisation betweenM∗ andM0, if the value in s0[t,δ , ℓ]
or gs[t,δ , ℓ] is changed, then the other in invalidated and recomputed from the up-
dated value. Hence, the reply to s0[t,δ , ℓ] contains the reconstruction of gs[t,δ , ℓ]
and each query T ▷◁

R makes to R▷◁
u in F0 contains the same reconstructed result by

definition.
The state in gs can be queried and modified by G▷◁q , A and F▷◁

io . The reads are
always consistent thanks to the synchronisation process summarised in the pre-
vious paragraph. The writing to memory still needs to be discussed. If S▷◁u was
the last machine to update gs[t,δ , ℓ] in F0, then S∗u was also the last to update
gs[t,δ , ℓ] in F1. Hence, these values have the same distribution as they are com-
puted by Sδ and can have the same value if the randomness used by Sδ is aligned
in the two collections. In case G▷◁q was the last to update the gs[t,δ , ℓ], then it used
the same inputs from gs to compute this value and, if any randomness is used,
then it can be aligned again to get the same value in both collections. F▷◁

io only
writes the values received from Πe to gs and if the previous state of the collections
F1 and F2 has been the same, then, so far, everything written to Πe has been the
same, and we can expect the same state updates from F▷◁

io in both collections. All
updates to gs invalidate the value in the same location in s0 and it is recomputed
usingR∗u and always returns the same value as the one stored in gs.
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5.5.2. Applying Modification Awareness in MPC Protocols

The storage domains define modification awareness (Definition 10) property that
specifies that adversarial modifications of shares from Sδ should have predictable
consequences of the underlying value. In the current model, the adversary can
change the corrupted parties’ values inM∗ and this will cause the value to change
inM0. In order to reduce the importance ofM∗, it is necessary to consider the
conditions under which the adversary can updateM0 directly instead of allowing
R∗u to do the update after the adversary modifiesM∗. However, inside the protec-
tion domain, the storage domain is also affected by the local operations G▷◁q and,
therefore, the modification awareness definition cannot be applied without extra
considerations. The goal of this section is still to use the modification extractor E
from the modification awareness property to modify the values inM0 in a collec-
tion F2 (Figure 42). However, the success of E needs to be re-evaluated to account
for the added local operations.

M0 M?

R∗
u

S∗u

E

F4 F4 F4

A

F./1

F./2

F./io

G./1

G./2

I∗i I∗j

Figure 42: Adding a modification extractor E betweenM0 andM⋆ to transform
F1 to F2.

The behaviour ofM∗ is also changed in F2. Hence it is replaced byM⋆. The
execution of the new memory management only affects adversarial modifications
of gs. The extractor E forwards all messages from A to M⋆ and back. If the
adversary modifies values in gs, then E uses the current values inM⋆ and the new
values sent by A to extract the modification ∆. E sends ∆ and the memory location
to M0 that updates its value s0[t,δ , ℓ] to s0[t,δ , ℓ]⊕δ ∆ using the modification
function for the storage domain δ . M⋆ differs from M∗ only so that it does
not send the location invalidation to M0 when E overwrites some values in gs.
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M0 accepts these blind modifications made by E to values in the storage based
on the modification definition of the respective storage domain δ . The following
defines unexpected and, in a sense, incorrect or indirect adversarial modifications
as oblique.
Definition 43 (Oblique modification). An adversarial modification of gs[t,δ , ℓ] is
oblique if the extractor E fails to correctly update the value in s0[t,δ , ℓ].

Oblique modifications lead to inconsistencies in the states of M0 and M∗.
Hence, it is important to consider how likely they are in any given protocol.
Oblique modifications can easily occur for verifiable storage domains, especially
if the adversary can corrupt the party in Πe and give inconsistent shares as input
to the protocol. If the adversary also knows the valid shares from Πe, then it could
easily modify the shares in gs to the original shares. However, in this situation,
the value inM0 is ⊥ and by the modification definition, no value that the extrac-
tor E produces can change the ⊥ to the valid value, as long as only the allowed
set of parties is corrupted. This issue is similar to the condition of modification
awareness that each value is overwritten at most once. Note that the simplistic ad-
versary, by definition, does not modify values several times. Hence, a simplistic
adversary does not cause such basic oblique modifications.
Theorem 17. Collections F1 and F2 are indistinguishable, provided that the prob-
ability of oblique modifications is negligible.

Proof. F▷◁
p , F▷◁

io , S∗u andR∗u are the same in the two collections. The only change
is the communication between M∗ (M⋆) and M0. E forwards the communi-
cation between A and M⋆ without modification. The collections can become
distinguishable only if the values in M0 in F2 are inconsistent with the state in
M∗ in F2. This occurs only with negligible probability, as it only happens in the
case of oblique modifications.

By definition, oblique modifications cause the extractor to fail. If the storage
domain has modification awareness, then the probability of an oblique modifica-
tion on a fresh output from Sδ is negligible by definition. However, local op-
erations give shares that are not necessarily with the same distribution as shares
from Sδ and, therefore, their modifications may be more difficult to extract. How-
ever, the most common local operations, such as copying a value and performing
linear combinations, do not cause significant problems. This is because they are
transparent in the following sense.
Definition 44. A local operation G▷◁i is transparent if any modification of output
shares can be effectively converted to a modification of its inputs, and oblique
modification goes to oblique modification.

If the local operation has several inputs, then this definition does not specify
which input is the one where the modification is propagated. In principle, the
modification may be propagated to several inputs. In this case, we require that an
oblique modification of the output gives at least one oblique input modification.
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As mentioned, the modification could be oblique due to adversarial actions
or simply the behaviour of Πe. Hence, to reason about the probability of the
extractor failing, both the protocol description and the execution context need to
be considered. The following lemma considers the restricted case where the inputs
received from Πe are always generated by Sδ .
Lemma 13. Assume a protocol Π such that all local operations are meaningful
and transparent and ideal functionalities are in a canonical form. Assume that the
secret sharing functionality Sδ generates all protocol inputs for storage domain
δ and the inputs of Sδ are determined by the adversary. Assume that separate
storage domains have independent parameters. Then the probability of extrac-
tion failures in a well-founded program is negligible for simplistic adversaries,
provided that every storage domain is modification-aware.

Proof. Consider the simplistic adversary A that, with probability ε , manages to
do an oblique modification for a storage domain δ in protocol Π. The following
proof defines an adversary B against the modification awareness property of the
storage domain δ using A. B plays the role of Π and Sδ for A. B interacts with
the modification awareness game and has access to Sδ and Rδ in that collection
(Figure 10). B can run the trusted setup F△ for all other storage domains τ ̸= δ

in order to simulate them in the protocol Π as the setup parameters of separate
domains are independent. B receives the protocol inputs from A. Using Sδ in the
modification-awareness game, B can perfectly simulate the protocol inputs. Note
that B knows all the protocol inputs and can therefore compute the outputs for
all canonical ideal functionalities and all meaningful local functionalities. Hence,
it can simulate the execution of all canonical ideal functionalities by computing
the output value in plain and using the respective sharing functionalities Sδ or Sτ

to generate the outputs. It can also simulate the adversary and F▷◁
p interactions.

For storage domains τ , B can see all the shares of all parties. Hence, B can also
perform all the local computations in storage domains τ and can even run ideal
functionalities F▷◁

p honestly if domain δ is not used. For storage domain δ , B can
compute all local operations of corrupted parties. In addition, as B knows all input
values and the operations are meaningful, B can also compute the output values
of all local operations.

By definition, the simplistic adversary A modifies only the inputs to some ideal
functionality F▷◁

p . If this input was generated by Sδ , then B can try the same
modification in the modification awareness game. If this input was generated by
a local operation, then B can always back-propagate the modification to some of
the input of the local functionality. The backpropagation can be iterated until the
modified value is some value generated by Sδ (e.g. the input from Πe or output
of some ideal functionality).

Hence, each modification that A does in the protocol leads to some modifica-
tion that B can try in the modification awareness game. A can make such modi-
fications in all places where ideal functionality has input from storage domain δ .
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Let this number of inputs be m. Adversary B may not be able to check beforehand
if a modification is oblique or not. Hence in the worst case, it has to choose a ran-
dom modification to use as the modification in the modification awareness game.
Hence, the probability of success for B becomes ε/m. If the storage domain δ is
modification-aware, then ε/m is negligible, and so is ε , as m is bounded by the size
of the protocol.

If the protection domain does not use private setup, then it is easy to execute
any Sδ by just running it honestly. Hence, all computations that may happen in Πe

before the protocol could be simulated by B to extend the proof of Lemma 13. If
the storage domain δ uses private setup parameters, then it is less straightforward
to simulate Πe, but it could be done similarly to the simulation of the protocol by
using the Sδ functionality in the modification-awareness game. Simulatability of
the environment Πe (Definition 31) is discussed in Section 5.2.2. The following
corollary uses the simulatability of Πe to extend Lemma 13 to lift the restriction
that all inputs come from Sδ . Note that this is the first occurrence where the
simulatability of Πe is needed.

By definition, the protection domain Πe is simulatable if its execution is in-
distinguishable from an execution with Sim and specialised SSim and RSim. The
latter is used to give inputs and receive outputs from the protocol Π so that the
parameters from F△ are the same as used in Π. For the rest, Sim can only access
the parameters of the corrupted parties.
Corollary 8. Assume that all local operations are meaningful and transparent,
ideal functionalities are in a canonical form and the environment Πe is simu-
latable. Then the probability of extraction failures in a well-founded program
is negligible for simplistic adversaries, provided that every storage domain is
modification-aware.

Proof. The proof of Lemma 13 can be generalised to a class of environments
that can be simulated in the modification awareness game. The protocol Π in
Definition 31 is the subset of the protocol where the real modification awareness
game is accessed and the rest in Πe is simulated. B can interact with the real
Envpd to learn the true inputs that the given environment would give. Then B uses
Sim and SSim for storage domains τ or Sδ for storage domain δ to interact with
Π. Note that the Sδ in the modification awareness game allows B to learn the
corrupted parties’ shares the same as SSim would. Moreover, as B sill simulate Π,
B can simply pass the values from Π to Sim and skip RSim (or Rδ ). This way B
plays the part of Πe for A. For Π, the adversary B can proceed as in the proof of
Lemma 13 as it still knows all input and output values that Sim exchanges with
SSim andRSim and can similarly keep track of all the values in Π.

5.5.3. Separating Local Functionalities

In the current collection F2, the local operations are using the shares from memory
M⋆ and causeM⋆ to update the state ofM0. Meaningful local operations (Def-
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inition 15) are such that the state of theM0 could be updated using the function
that defines the local operation rather than reconstructing it from the shares.

Recall that a value s0[t,δ , ℓ] in M0 is read mostly by the ideal functionality
F▷◁

p . If it is in the local protection domain, then it can also be read by I∗i and.
In addition, the adversary can modify this value using the extractor E . If a local
operation updates gs, then this modification can occur in s0 as soon as the lo-
cal operation G▷◁q is finished, meaning that, for all participating parties Pi, local
functionality Gi,q has finished. If the value in s0 is used by the canonical ideal
functionality, then it does not read this value before the preceding operations are
finished. The same is true for an interpreter executing a well-formed program.

If the adversary had corrupted more parties than allowed by the hiding property
of the protection domain δ , then the value s0[t,δ , ℓ] inM0 can also be read by the
adversary. However, in such cases, the adversary also has knowledge about where
the corrupted parties have reached with their protocol execution and whether or
not this value is indeed already computed inM0 or if some preceding operations
need to be computed before it can be evaluated.

Note that the execution of the components G▷◁i,q of a local functionality G▷◁q is
not synchronised. Hence, it is possible that all corrupted parties have completed
this computation, but some honest party has not. This means that if the adversary
modifies the output of a local computation (when it is used as an input to some
ideal functionality), the extractor can compute the modification forM0. However,
the value may not yet be computed inM0. As argued before, the value inM0 is
not used before all parties complete G▷◁i,q and, thus, the modification can be delayed
until the value exist.

These observations allow us to define a new collection F3 (Figure 43) where a
new machine G0

q executes the meaningful local operation inM0. The new G0
q also

interacts with the modified interpreters I⋆i . The new version ofM0 that interacts
with G0

q is defined asM⋆
0. The behaviourM⋆ is changed to formM⊛ that does

not invalidate the location s0[t,δ , ℓ] in M⋆
0 when the functionality G▷◁q alters the

location gs[t,δ , ℓ] inM⊛.
The new interactions are defined as follows. I⋆i sends each DMACALL call

to G▷◁q also to G0
q right after it gets the control back from G▷◁q . G0

q checks if the
output is already computed inM⋆

0. If it is not computed, but all inputs are inM⋆
0,

then it computes and stores the output according to the function gq defining the
meaning of the functionality (Definition 15). G0

q gives control back to I⋆i . The
share memory M⊛ does not invalidate the location when G▷◁q operates. For all
other occasions, it behaves likeM⋆.
Theorem 18. Collection F2 with I∗i and G▷◁q and collection F3 with I⋆i are indis-
tinguishable provided that a well-formed protocol specification is in a canonical
form and all local operations are meaningful and implement some deterministic
functionality.

Proof. Modifications to create F3 from collection F2 only eliminate the interac-
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Figure 43: Protocol execution with the machines G0
q added for the meaningful

local functionalities. An extended look at F3.

tion between M⋆ and M0 and introduce G0
q . All modified buffers are sender-

clocked and always empty when the control goes to A or Πe. Hence, the col-
lections could be distinguished based on the states of M0 vs M⋆

0 and M⋆ vs
M⊛. The modifications do not change the timing or updates of gs inM⋆ orM⊛.
Hence, it is important to only considerM0 vsM⋆

0 in the places where the outputs
of local computations are written. These can be read by F▷◁

p , I⋆i or A.
Overall, it is important to consider when G▷◁q updates gs[t,δ , ℓ] as, otherwise,

both collections behave identically. In F2, the value is updated inM0 when R∗u
can reconstruct the value from M⋆. In F3, the value may be written earlier if
the input values are already inM⋆

0. This early appearance in s0 does not change
the behaviour of canonical F▷◁

p that is used by a canonical program. F▷◁
p only

fetches a value s0[t,δ , ℓ] if it has collected inputs from all interpreters needed for
the reconstruction of this value. In a well-formed program(Definition 38), the in-
terpreter does not send the command to F▷◁

p before it has computed the necessary
inputs0[t,δ , ℓ]. More specifically, by definition, a well-formed program does not
send out this memory location(t,δ , ℓ) before the input has been assigned. Hence,
all interpreters must have finished the execution of the local functionality by the
time the value is read and, by definition of G0

q , the value of the local operation
output is then in s0.

For the adversary, it cannot read the values in M⋆
0 unless it has broken the

hiding property for a given storage domain. In such a case, the early appearance
of a local functionality output can be hidden from the adversary by simulating the
appearance based on the gs. Note that the adversary then would also have access
to sufficient shares in gs to compute the value anyway.

The interpreter I⋆i running a well-formed program also cannot read this mem-
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ory location before it is assigned. Therefore, it does not try to read it before it
knows that the local operation has been finished. Since the interpreter can only
access values in local or public storage domains, then these values are always
accessible once it has finished its own local computations.

The previous lemma could be extended to some meaningful cases of non-
deterministic local functionalities. However, the exact details depend on the is-
sues discussed in Section 3.5 with regard to the meaning of non-deterministic
local functionalities. However, commonly, the meaningful local functionalities
are deterministic and the given result is not overly limiting.

5.5.4. Isolating Protocol Outputs

By definition, F▷◁
io interacts withM⊛ to get the outputs of the protocol indepen-

dently of the storage domain that is used. Some of these values could be in local
or public domains, others generated by local functionalities or generated by S∗u if
they were computed by ideal functionalities. This section modifies the collection
so that all outputs are always generated by Sδ for storage domain δ . Note that
Sδ may be executing a deterministic algorithm if the storage domain is public or
local. The goal of this modification is to gradually remove the need forM⊛.
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Figure 44: Memory model before output isolation, F3.

The initial collection is shown in Figure 44. F▷◁
io is replaced by R+ and S+

to manage protocol inputs and outputs, respectively. Machines I⋆i ,M⊛ andM⋆
0

are replaced by analogous I+i , M+ and M+
0 to reflect the changes required to

replace F▷◁
io . The resulting collection F4 is shown in Figure 45. The focus is on

the output isolation. R+ behaves quite like the input processing so far. IfR+ gets
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Figure 45: Memory model and behaviour of F▷◁
io , S∗u ,R∗u,R+ and S+ after mem-

ory isolation, F4.

an input share, then it writes it toM+ and forwards the notification to I+i . IfR+

has enough shares for one value to reliably reconstruct1 it, then it runs Rδ and
writes the value toM+

0 . Hence, R+ replaces the input behaviour of Fio and the
reconstruction previously done by R∗u. R+ writes the initial inputs to designated
memory regions and responses to DMACALL calls to the designated response
addresses. The new interpreter I+i must send the DMACALL to bothR+ and S+,
instead of sending one call to F▷◁

io as I⋆i did. It always first sends the command
to S+. S+ always shares the necessary value that it fetches fromM+

0 , writes it
to buffers for Πe and gives control back to I+i that called it. The machine S+
keeps a cache of the already computed shares. If I+i sends a location that has not
yet been shared, then it computes fresh shares for this value. If the value already
has shares, then it writes the previously generated share of party Pi to Πe. The
R+ needs to DMACALL call as it specifies the location and storage domain of the
expected reply from Πe. R+ stores this information and gives control back to I+i .
Note that for many protocols, this is irrelevant as the inputs expected from Πe are
fixed and so their memory locations can also be predetermined and I+i can simply
send SEND messages to Πe.

Note that S+ can only give an output if the value that needs to be shared is
inM+

0 . This is always the case if it is computed by some ideal functionality as
the value is inM+

0 before any I+i can use it. The case is similar if the value is

1Often, it requires all shares, but for some sharing schemes, less than everything might be suffi-
cient to know what the value is or to know that the reconstruction has to fail.
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output by local functionalities and the inputs of the local computations came from
ideal functionalities. However, this means that we cannot consider protocols that
consist completely of local computations. If we have a protocol with only local
operations, the computation in some I+i may finish before some other I+j even
gets its inputs. Hence, it is not possible to carry out the computations in M+

0
to derive the value, as R+ has not even produced the input values yet. This is
not overly limiting, as protocols that consist purely of local operations are local
themselves. Therefore, they should be considered as local functionalities Gi and it
is not necessary to try to prove that they are as secure as some ideal functionality.

On the other hand, similar issues to those with only local functionalities issue
can be caused if the protocol uses ideal functionalities as well but, for example,
the last operation that produces the output is a local operation using the result from
the protocol so far and some input that has not been used yet. However, often it
is more reasonable to assume that the interpreter only starts to execute its code
if all inputs are available. Then the issue is resolved, as the value used in local
operations is also in memory, as other parties have also started to execute the ideal
functionalities and, therefore, also have all inputs. In more general protocols, out-
put isolation is only achievable for protocols where no output is produced before
all parties have received their inputs needed to compute this output. This restric-
tion could be partially lifted by extending S+ so that it uses a share simulator for
the cases where the value is not known yet. In this case, it needs to simulate shares
until the value becomes known and then it needs to adjust the shares of the rest
of the parties so that the shares can be reconstructed to the specified value. Note
that for an adaptive adversary, this is what the share simulator Ssim

δ
does in the

definition of hiding storage domain in Definition 7. Note that, in many reasonable
cases, it is not necessary to extend S+ to consider cases where the value it needs
to share is not yet inM+

0 .
Definition 45. A protocol environment pair Env⟨Π⟩ is in an output-isolated con-
figuration for a class of adversaries A and resource consumption constraints if
there is a construction φoi, such that Env⟨F3,A⟩ ≡ Env⟨F4,φoi(A)⟩ for A ∈A, and
the construction φoi satisfies resource constraints. Protocol Π is described as the
protocol transformations represented by collections F3 or F4, respectively. A pro-
tocol Π is output-isolated if this property holds for any environment Env and is
output-isolated for a class of environments if the property holds for any environ-
ment from that class.

The machine S+ in F4 performs an explicit resharing of the protocol outputs.
A particular protocol for resharing, as well as the desired ideal functionality, were
discussed in Section 4.8.1. Adding this step to the end of the protocol can cause
easy distinction between the collections F4 and F3 as the shares in M⊛ do not
match with the shares received by Πe. If all outputs are returned by a deterministic
Sδ , then this is not an issue. If the outputs of the protocol are computed by the
ideal functionality, then the outputs given by the two collections are guaranteed
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to have the same distribution as long as the value in M⋆
0 and M+

0 is the same.
However, if F▷◁

p requires the adversary to read the output shares fromM+ orM⊛

or the adversary just reads and modifies the outputs (which is allowed, as outputs
are a DMACALL or SEND to Πe), then it could easily distinguish the collections
if it has access to the shares in Πe. Further, there is no time for the adversary to
modify the output in F4 as the output is sender-clocked by I+i . However, for a
coherent adversary, it is sufficient to assume that it can do the same modification
inside Πe.

Despite these differences, any protocol description can be modified so that it
becomes output-isolated by adding the explicit reshare functionality to the end of
the protocol. At least as long as the protection domain contains a functionality
Freshare. Explicit resharing can definitely be avoided if the outputs are generated
by some ideal functionality F▷◁

p that does not reveal anything about the shares to
the adversary. In this case, the outputs of the two collections are generated either
by S∗u or S+. The following lemma captures these simple cases, which also, in
practice, cover the most common protocols.
Lemma 14. A canonical well-formed protocol specification is output-isolated
for coherent adversaries, if all outputs are computed by some canonical ideal
functionalities with standard corruption mode that do not show corrupted parties
shares to the adversary, output shares are not used further in computations, and
they are immediately returned as outputs.

Proof. The protocol inputs are processed identically by F▷◁
io and R+ in F3 and

F4 respectively. Therefore, the proof must focus on the changes in the outputs
given by Fio or S+. In F3, output generation states when F▷◁

p writes the output
to s0[t,δ , ℓ] in M⋆

0. Then at some point, the adversary clocks the output of F▷◁
p

to some I⋆i that writes the DMACALL or SEND to F▷◁
io . When such an input is

clocked to F▷◁
io , then F▷◁

io fetches the right share from gs[t,δ , ℓ] inM⊛ and writes
it to Πe. The values in gs[t,δ , ℓ] are generated by S∗u using the value in s0[t,δ , ℓ].
The adversary A against F3 can modify the output share before it clocks the input
to F▷◁

io .
In F4, the output phase also starts with F▷◁

p writing the output to s0[t,δ , ℓ] in
M+

0 and the adversary clocking the response of F▷◁
p to some I+i . The interpreter

I+i then sends DMACALL or SEND message to S+ and clocks it. S+ either uses
the cached value if the location s0[t,δ , ℓ] has already been used by S+ or reads
s0[t,δ , ℓ] fromM+ and generates fresh shares using Sδ . S+ writes the output of
the Pi to the buffer for Πe.

The honest outputs reaching Πe have the same distribution as they are, in both
cases, generated from s0[t,δ , ℓ] using Sδ . By assumption, honest users do not
access the output shares inside Π, hence adding S+ change does not affect honest
parties. However, the adversary has different capabilities in the two collections
and could notice the difference. However, we can restrict the class of adversaries
such that the new class is as capable as the generic class of simplistic adversaries
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but do not need to use the features separating F3 and F4. A coherent adversary A
always corrupts the party Pi in the protocol together with the party P∗i in Πe and,
if it wishes, it can read the outputs of the protocol in Πe and rewrite the memory
M+ with the outputs as they were given by S+. Since these memory locations
are not used in the further execution of this protocol, then this change does not
affect the protocol execution. However, this modification is only meaningful if
it can be done in a timely manner before the adversary against F3 wants to read
the shares when communicating with F4 instead of F3. This can be achieved by
adding an early clocking to simulate the view. By the assumption that the ideal
functionalities do not give shares to the adversary, the adversary against F3 does
not read the shares before it considers them to be in the state of I⋆i . Hence, the
adversary has clocked them to I⋆i from the respective ideal functionality. In this
case, I+i has already received these as well and interacted with S+ so that the
output is written to the buffer for Πe. Hence, the simulator can clock the input
early to Πe and read it from P∗i but postpone any messages sent by P∗i in Πe until
the adversary actually clocks this message to Πe.

There are some protocols where we need to add explicit resharing to achieve
output isolation. For example, if the output is computed by a local functionality,
where the distribution also differs from the output of Sδ . Such protocols could not
be considered to be as secure as some canonical ideal functionality and may fall
under the input privacy discussion in Chapter 4 that fit well with explicit resharing
to achieve security. Such resharing also can serve as a copying functionality that
allows giving fresh outputs and using the same value with different shares in the
following steps of the protocol. However, there could be protocols that do not
satisfy all the conditions of Lemma 14, but are still output-isolated. For example,
if a protocol finished with a local resharing protocol that first uses some ideal
functionality to generate shares of zero and then uses local functionality to add
the shares of zero to the output. This is output-isolated but ends with a local
computation and, therefore, does not satisfy Lemma 14.

If an output is computed by an ideal functionality, but not returned immedi-
ately, then a protocol can be transformed to satisfy the conditions of Lemma 14 if
it is known during the ideal functionality execution that this value will be output.
In such a case, the return statement can be moved right after the ideal functionality
execution.

However, if the fact that something is an output becomes clear later, then there
is no straightforward translation. Overall, output isolation is easily achievable in a
context where either Πe does not use the output of the protocol or the adversaries
do not access the shares in the protocol. These results are shown in [96]. This
thesis does not consider more explicit conditions that ensure output isolation in
detail. Hence, there remain cases where output isolation must be explicitly proven.
The following Theorem 19 ensures that requiring output isolation is a natural
condition for any protocol that is as secure as a canonical ideal functionality.
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Theorem 19. Let F be a canonical ideal functionality that does not interact with
the adversary, and let Π be a protocol that is as secure asF for a class of environ-
ments E and adversaries A. Then Π is also output-isolated for the same classes
of adversaries and environments.

Proof. Let A ∈ A be an adversary against the original protocol and environment
pair Env⟨Π⟩ and let φ be the construction that proves the security of the protocol.
Then φ(A) is the adversary against F and, by definition, it defines the protocol
inputs for corrupted parties and receives protocol outputs for that party. According
to the assumption, F does not directly communicate with φ(A) and, therefore,
φ(A) does not interact with the protocol during execution. A may interact with
the protocol, but φ is the construction that turns it into an adversary that achieves
the same effect without interaction during the protocol execution.

Note that an adversary that does not interfere with Π can be directly used as an
adversary against F . A special adversary B against Π is such that it does not cor-
rupt any parties and, by definition, φ(B) also does not corrupt any parties. Hence,
honest execution of Π is equivalent to honest execution of F . Next, consider the
case when the ideal adversary φ(A) is interacting with Π instead of F . In general,
φ(A) can corrupt parties but, by definition, φ(A) can affect the protocol inputs
but does not interfere with the protocol execution or read the internal state of Π.
The adversary φ(A) only interacts with the parties before and after the protocol
execution. Some more discussion relating to considering parties with F or direct
communication between the environment and F is given in Section 3.4.3. In total,
Env⟨Π,A⟩ ≡ Env⟨Π,φ(A)⟩. The same construction φ can be used to show output
isolation as it does not read the state of the corrupted parties.

By definition, if Π is as secure as canonical F , then it has the same output
distribution. The identical distribution ensures output isolation if the protocol’s
internal state is not observed. The only way to distinguish the collections in the
output isolation definition is by noticing the disconnect between the outputs re-
turned to Πe and the outputs in the memory M+. The adversary φ(A) is not
observing the protocol state. Hence, Π is output-isolated.

The restriction on the interaction between the adversary and ideal functional-
ities also limits the adversary from aborting the protocol. Lemma 14 and The-
orem 19 do not directly apply to functionalities with abort. For functionalities
with outputs in some hiding protection domain, the possibility to abort is the only
reasonable communication the adversary can have with the ideal functionality.
Lemma 14 and Theorem 19 would remain unchanged for many cases, where the
communication to blindly abort the protocol is allowed, as only hiding the internal
state is critical for output isolation. The critical step in proving these results is that
the abort-or-not decision must be made before the shares of the output are fixed in
the protocol. The shares are fixed if they are later computed only using public val-
ues and local operations. However, it remains an open issue to fully formalise and
prove this case. An example, where output isolation is difficult to prove because of
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the adversarial interactions with the protocol, is the multiplication protocol using
Beaver triples discussed in Section 5.9.

Overall it is not possible to prove output isolation for protocols where the out-
put shares are computed deterministically from the inputs. Most such function-
alities would be local functionalities and it would not be necessary to consider
the property. However, a protocol that publishes some values and then does local
computations would contain the canonical ideal functionality to publish the value
but this functionality does not introduce randomness to the protocol outputs. This
type of a functionality is neither ideal nor local and cannot be considered in this
framework as one functionality. A protocol like this has to be considered as a
composition.

Another interesting side effect of the output isolation definition is that all ad-
versaries against F4 can be turned into equivalent adversaries that do not read or
modify the outputs inM+. Overall, it is not clear how the adversary might benefit
from reading the output memory location, especially if the value is not used fur-
ther in the protocol. Lemma 15 shows that, indeed, it is not restricting to assume
that the adversary does read the outputs. The adversary is still allowed to read
and modify these values in Πe and can modify any copies of these values used
as inputs to further computations in the protocol. The following sections assume
such an adversary.
Lemma 15. Any adversary against a well-formed protocol in output isolation
configuration F4 can be converted into an equivalent adversary that does not read
or modify the output locations inM+ for hiding storage domains.

Proof. By the definition of a well-formed program, the memory location used in
the output is not further used in the protocol execution as each memory location
can be used in one DMACALL or SEND instruction. Either the value is computed
purely to be an output or the same value can be used in the protocol, but it is
copied to another memory location. The value could also be either in a hiding
storage domain or a value available to the adversary. Note that, by definition of
F4, the shares appearing in Πe are generated by S+. Hence, the shares inM+ are
not expected to be the same as the ones seen in Πe.

If the same value is used further in the protocol, then the adversary has a copy
of it in another memory location and, therefore, can read it from there instead. If
it is computed and only used as an output, then the following cases hold.

If the value is in a public storage domain or a local domain of a corrupted party,
then it can be read fromM+

0 . If the value is in a storage domain, where the ad-
versary has broken the hiding property, then it can also read the underlying value
from M+

0 . However, the value adversary may also wish to read the share from
M+. In this case, the adversary knows the underlying value and can either use
the share simulator Ssim

δ
from the hiding game (Definition 8) with the real value

or can use the actual sharing functionality Sδ if there are no private parameters. If
the value is in a hiding storage domain where the hiding property still holds, then
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the share can be simulated using Ssim
δ

without specifying the value.

Output Isolation and Simulatable Environments. Note that the definition of
output isolation seems like a dual definition of the simulatable environment in
Definition 31. The simulatable environment specifies that any shared value from
Π would be reconstructed anyway. However, in fact, the machinesRSim

e and SSime

are specially defined to also propagate the shares of the corrupted parties between
Π and Sim. Hence, the simulatability of Πe does not straightforwardly imply that
any protocol Π is running in a configuration where output isolation is ensured.

Output Isolation and Input Privacy. Chapter 4 did not directly consider output
isolation. However, several concepts in that chapter are related to output isola-
tion. Firstly, the idea of output predictability in Definition 27 also specifies that
the distribution of the output shares of the functionality F2 is irrelevant in the
composition. If canonical F1 or Sys1 in output predictability definition is output-
isolated and outputs are in a hiding protection domain, then its composition with
a canonical ideal functionality F2 is always jointly predictable. The predictor can
simply run F1 and F2 functionalities without generating the shares. However, if
the outputs of F1 are public to the adversary and they are random, so that the
predictor may not compute the same randomness, then the composition can be
predictable only if F2 has hidden outputs or public outputs that do not reveal the
output of F1. Note that predictability restricts the functionalities somewhat simi-
larly to the definition of a canonical ideal functionality, as they are not allowed to
reveal too much about their state to the adversary.

Ideas similar to output isolation are also captured by the composed ideal func-
tionality in Definition 26 that completely hides the values that the composed ideal
functionalities exchange with each other. These values are outputs of the inde-
pendent functionality but not the outputs of the composed functionality. In this
chapter, we require output isolation since we want to consider the protocol Π as
corresponding to a specific ideal functionality F rather than considering the com-
posed functionality for Πe and Π. However, output isolation enables to create an
effect where the internal state of Π does not affect Πe.

Finally, the environment of the privacy configuration that contains two parts
Env′ and Env⊥ is such that a protocol is always output-private with respect to that
class of environments that essentially ignore the outputs. All outputs of a protocol
are given to Env⊥ and nothing about them is revealed to the adversary or to Env′.
By definition, only Env′ is used to distinguish protocols in a privacy configuration.

Overall, the whole idea of input privacy is that the outputs can be simulated
using only the corrupted inputs. In this chapter, the output isolation is a step
towards the possibility to simulate the shares rather than allowing the adversary
access to all corrupted shares.
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5.5.5. Limiting Adversarial Access to Share Memory

The collection F4 (see the full setup in Figure 46) with the adversary that does not
read the outputs from the memoryM+ means that the outputs fromM+ cannot
affect Πe. The actions of the adversary can still depend on gs and it is used by
G▷◁q . However, the values that reach Πe are computed only by F▷◁

p and G0
q using

values in M+
0 . Hence, in honest execution, M+ and its state gs have become

obsolete. This section removes the need for storing local computation outputs in
M+ altogether by showing how the adversary can simulate these values.

The memory M+ contains inputs from Πe (written by R+), outputs of F▷◁
p

(written by S∗u ), and outputs of G▷◁q . A coherent adversary can read the first from
Πe for all corrupted parties. Also, if an adversary can read the inputs to G▷◁q , then
it can simulate the outputs of G▷◁q and does not need to read these locations. Let
Ao be the class of adversaries that only read outputs of F▷◁

p fromM+.

F./1

F./2

G01

G02

M+
0

M+

R+

S+

S∗u

E

I+2I+1 F4F4 F4 F4 F4 I+1 I+2 F4 F4

I+1
I+2
I+1
I+2

I+1
I+2
I+1
I+2

A A A

Πe

Πe

G./1

G./2

I+1 I+2 F4

Figure 46: Full setup of protocol execution in collection F4.

Lemma 16. Let A be a coherent simplistic adversary against the output isolation
configuration that does not read protocol outputs from M+. For any A, let Ao

be a new adversary Ao ∈ Ao that runs A with simulated I+1 , . . . ,I+n to answer the
adversary’s queries about gs for local computations. Assume that we can rerun
all computations for any corrupted party. Then, for any protocol Π with well-
formed program, Env⟨F4,A⟩ ≡ Env⟨F4,Ao⟩ for any coherent simplistic adversary
A that does not read protocol outputs fromM+.

Proof. In more detail, Ao works as follows. Ao follows the clocking rules of A
and also corrupts the same parties. If a party becomes corrupted, then Ao clones
I+i and runs the clone in parallel with the real protocol to simulate the slice of
M+ representing the shares of Pi. Coherent Ao gets the inputs of Pi from P∗i in
Πe. If the interpreter expects an output from F▷◁

p , then Ao reads it from gs and
gives it.
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Note that, by definition of a well-formed program, the protocol memory is not
overwritten and, therefore, corrupting a party Pi gives enough information to read
all DMACALL call input and outputs and redo all local computations until the
current moment in the protocol. The local operations can be recomputed as all
local operations are computed from the protocol inputs, outputs of F▷◁

p or other
local computation outputs. Hence, all local computations can be recomputed from
the protocol inputs or outputs of F▷◁

p according to their execution in I+i .

When Env⟨F4,Ao⟩ is executed, then the view of the adversary and Env depends
onM+

0 , andM+ is only relevant for locations that represent outputs of F▷◁
p . All

these locations are written by S∗u based on the value in M+
0 . Hence, it is safe

to remove all other connections between M+ and M+
0 . This gives us a new

collection F5 (Figure 47) withM×,R×, I× derived fromM+,R+, I+. R× does
not updateM× and simply writes the reconstructed input toM+

0 . Interpreter I×i
only activates G0

q and G▷◁q are removed. The adversary can still do modifications in
M+

0 based on the limited control property (Definition 12). For that, E is rewired
to not to read shares fromM× but rather use the shares provided by A. In fact, Ao

and E are combined to form a new adversary AE
o ∈AE

o . AE
o is a class of adversaries

that submit coherent modifications toM+
0 andM×.
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Figure 47: Full setup of protocol execution in collection F5.

Lemma 17. For any Ao ∈Ao and a protocol Π using storage domains with limited
control, we have Env⟨F4,Ao⟩ ≡ Env⟨F5,A

E
o ⟩.

Proof. The transformation from F4 to F5 mainly removes G▷◁p and disconnects
M× from R×. Recall that Ao is the class of adversaries that only read the out-
puts of F▷◁

p fromM× and do not read protocol outputs at all. Outputs of F▷◁
p are

still written toM× the same way in F5 as they were written toM+ in F4. The
removed buffers and machines were all sender-clocked. Hence, removing them
does not change the capabilities of the adversary Ao. The removed machines only
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updated memory regions that Ao does not read from M+. Note that the mem-
ory locations where F▷◁

p writes its outputs are specified by I×i in the DMACALL.
Hence, independently of the removed local operations, the outputs of F▷◁

p are in
the same locations in the two collections. The extractor E is now connected to
the simulated memory in Ao and, as argued before in the proof of Lemma 16, this
memory has the same values for all inputs and local computation outputs as were
inM+. E works the same way in the two collections.

5.5.6. Complete Memory Isolation and Semi-Abstract Adversaries

The adversary AE
o has very limited access toM× and the goal of this section is to

define a semi-abstract adversary that does not require this access at all. Since all
values currently read fromM× are generated by S∗u , then they could be replaced
by values simulated by Ssim

δ
from the hiding property definition (Definition 8).

Let Asa be the adversary that does not accessM× and internally runs AE
o with the

simulated shares inM×. Let Asa be the class of semi-abstract adversaries that do
not interact withM×. A more detailed description of this class of adversaries is
given in Definition 46 later.
Lemma 18. Consider a protection domain Fpd that uses only hiding storage do-
mains δ without private parameters. Then Env⟨F5,A

E
o ⟩ ≡ Env⟨F5,Asa⟩, for any

adversary AE
o ∈ AE

o and Asa.

Proof. As there are no secret parameters that might be shared between storage
domains, then it suffices to consider only the case with one storage domain δ .
Otherwise, the proof can be done step-by-step to each time only start simulating
values in a specific storage domain until all storage domain values are simulated
instead of real values in M×. This is possible as the storage domains are inde-
pendent. Recall that Asa is internally using AE

o but using the simulated values for
all memory accesses that AE

o does toM×.
Consider an adversary B against the hiding property of the storage domain δ

(Definition 8). The following proof defines it so that the games in the definition
are equivalent to Env⟨F5,A

E
o ⟩ and Env⟨F5,Asa⟩ respectively. First, B needs to

internally simulate all computations with the storage domain in Πe that is part of
Env. As there are no private parameters, then this is easy as B can run Sτ andRτ

for any storage domain τ .
In F5, all communication that the protocol execution has withM× goes through

S∗u . Let this collection I×1 , . . . ,I×n , F▷◁
1 , . . . ,F▷◁

k , G0
1 , . . . ,G0

m,M+
0 ,S×,R× be K.

The adversary can clock some buffers inside K and may interact with F▷◁
p . If B

simulates Πe, then it produces the inputs to the protocol Π and can continue with
simulating all interactions in K.

B interacts with AE
o and corrupts parties the same as AE

o . For all ideal function-
ality outputs in Π, the adversary B interacts with the hiding game. As B knows
all the input values inside the protocol Π, then it can always compute the output
value for each ideal functionality. Hence, if in the protocol F▷◁

p writes some value
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x to s0 and the shares are generated to gs[t,δ , ℓ], then B inputs x to the hiding
game and sets s0[κ] = x (in L in the hiding game) and b[κ] = 1. In the first game,
the value x is always simply shared but setting b[κ] = 1 means that if B is in the
second game, then it is simulated using Ssim

δ
. When AE

o queries corrupted shares
of gs[t,δ , ℓ], the adversary B fetches corresponding shares from L∗ in the hiding
game.

Hence, if B is playing against the first hiding game, then the situation for AE
o is

equivalent to that of Env⟨F5,A
E
o ⟩ and all shares inM× are generated using correct

values and Sδ . If B is in the second hiding game, then, by definition, B puts AE
o

in the same situation as Asa and hence, this is equivalent to Env⟨F5,Asa⟩. Hence,
either the storage domains are not hiding or the collections running with the two
adversaries are equivalent.

Lemma 18 can be generalised to the case with storage domains with private
setup parameters assuming that the environment is simulatable inside the hiding
games. Such simulatability of the environment, especially Πe, is discussed in
Section 5.2.2. The simulation is similar to that used in Corollary 8.

For the semi-abstract adversary, the memoryM× is useless. Hence, it is possi-
ble to define the semi-abstract execution model F6 (Figure 48) by removingM×

and S∗u from F5. This also modifiesM+
0 toM×

0 as the connections are removed.
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Figure 48: Semi-abstract execution model, F6.

Lemma 19. For any Asa ∈ Asa, Env⟨F5,Asa⟩ ≡ Env⟨F6,Asa⟩
Proof. By definition of Asa, this is trivial as Asa does not communicate with the
memoryM× or S∗u and the protocol execution does not requireM×.

Note that, in the semi-abstract execution, the intuition that the adversary does
coherent modifications to the memories is not relevant anymore, as there is only
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M×
0 . From now on, it is more meaningful to consider the adversary effect in terms

of the limited control property of the storage domain (Definition 12). Hence, the
adversary Asa can sendM×

0 modifications that are allowed by the limited control
property of the storage domain where these values belong to. For example, if
there is integrity protection, then Asa can invalidate the value, but if there is no
protection, then it can modify it. For a value x inM×

0 , the adversary can send a
modification ∆. The memory verifies if the modification is allowed by the storage
domain δ and if it is, it replaces x with x⊕δ ∆, where ⊕δ is the modification
function for storage domain δ .

In addition, it is important to keep in mind that Asa is derived from the class
of adversaries that do not read the protocol outputs inM×. Previously, all modi-
fications were done inM× and propagated toM×

0 . Hence, by construction, Asa

also do not modify output locations inM×
0 . As before, any modifications to the

outputs can be done directly in Πe.
However, there is no restriction to readingM×

0 in locations where the hiding
property has been invalidated, such as the local protection domain of the corrupted
parties. Hence, the following is a valid description of the semi-abstract adversary
interacting with F6. All adversaries Asa derived from simplistic adversaries satisfy
the conditions of this definition.
Definition 46 (Semi-abstract adversary). A simplistic adversary is semi-abstract
if it fulfils the following conditions.

(a) The adversary clocks any outgoing buffer c+j,p and incoming buffers c−j,p to
an honest party only when all incoming buffers c−i,p and c+i,e to corrupted
parties are empty.

(b) The adversary can modify the state ofM×
0 only in locations α of pending

DMACALL(t, p,α,β ) and SEND(t, p,α) instructions to sub-protocols F▷◁
p

(but not the ones sent to S+). Only modifications in accordance with the
limited control property of the storage domain are allowed byM×

0 . These
changes are done before the corresponding tuple is clocked to F▷◁

p and each
value is modified at most once.

(c) The adversary can read the memory locations ofM×
0 for storage domains

δ where it has broken the hiding property of the storage domain.
(d) The adversary is coherent.

Lemma 20. For any simplistic adversary A, the construction of Asa is a semi-
abstract adversary.

Proof. By definition, Asa is constructed by simulating the memoryM× with sim-
ulated shares or recomputed shares and satisfying the clocking rules of the un-
derlying A. Hence, Asa follows the simplistic clocking rules and also those of
the semi-abstract adversary. Also, the simplistic adversary is coherent and the
adversary Asa corrupts the same parties. Thus, it is also coherent.
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By construction, the modifications toM×
0 result from the modifications com-

puted by E and, therefore, there were equivalent modifications to shares inM×.
If E is a strong modification extractor, then it could also compute these. Hence,
the rules about modifying M×

0 are satisfied. The rules about reading M×
0 stem

from the initial definition ofM0 and have not changed in the transformations to
M×

0 . Hence, this hiding behaviour could either be considered the property of the
value memory or the adversary.

5.5.7. Equivalence of the Semi-Abstract Execution Model and Hybrid
Execution Model

Most of Section 5.5 has transformed the shared memory model into the abstract
memory model. The following corollary summarises these transformations and
adds the previous results regarding the shared memory model. In total, it shows
that the hybrid execution model with Fp can be transformed to the semi-abstract
execution in F6. Secondly, this section shows the transformation from the semi-
abstract execution to the hybrid model. Hence, under the conditions of Corol-
lary 10 and Corollary 9, the semi-abstract and hybrid execution models with re-
spective adversaries are equivalent to each other.
Corollary 9. Any adversary against the hybrid model can be transformed to
an equivalent coherent semi-abstract adversary against the same protocol in F6
for hiding and modification-aware storage domains with negligible probability of
oblique modifications and for well-formed protocols that are robust against rush-
ing, in a canonical form, use meaningful transparent local operations and use
canonical ideal functionalities with tight scheduling.

Proof. The proof results from a series of results shown in this chapter so far.
• It is sufficient to only consider a coherent adversary against the hybrid pro-

tocol (Lemma 1).
• If the protocol is robust against malformed inputs (Definition 34), then it is

sufficient to consider only semi-simplistic adversary (Lemma 11 and Corol-
lary 6).

• If all ideal functionalities have tight scheduling (Definition 32) and the pro-
tocol is secure against rushing (Definition 36), then it is sufficient to con-
sider only lazy semi-simplistic adversaries (Lemma 12).

• For well-formed programs (Definition 38), it is sufficient to only consider
simplistic adversaries (Theorem 13 and Corollary 7).

• Value and share memories can be separated for well-formed protocols (Def-
inition 38) in a canonical form (Definition 42) with meaningful (Defini-
tion 15) and transparent ((Definition 44)) deterministic local functionalities
(Theorem 15, 16).

• The interaction between value and share memories can be removed for hid-
ing storage domains (Definition 8) and output-isolated protocols (Defini-
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tion 45) if the probability of oblique modifications (Definition 43) is negli-
gible (Theorem 17, Theorem 18, Lemma 16, Lemma 17, Lemma 18).

• The share memory can be completely removed for a semi-abstract adversary
to achieve semi-abstract execution (Lemma 19, Lemma 20).

The previous corollary specifies that the hybrid execution model with a generic
adversary can be turned into an equivalent semi-abstract execution with the semi-
abstract adversary. The following lemma also shows that the semi-abstract exe-
cution can be transformed into the hybrid execution model under similar assump-
tions. Note that while Corollary 9 requires modification awareness, the following
lemma requires its reverse notion called limited control.
Lemma 21. Let all storage domains in a protection domain be hiding and have
limited control and negligible probability of oblique modifications. Let protocol
Π running in the protection domain be in a canonical form, have well-formed
specifications and use meaningful local operations implementing a deterministic
functionality. Then any coherent semi-abstract adversary against this protocol Π

in F6 running this protection domain can be transformed to an equivalent coherent
simplistic adversary against the same protocol Π in F0.

Proof. First, Theorem 15 shows the equivalence of F0 and F1 for any well-formed
protocol in a canonical form. Second, Theorem 17 shows the equivalence of
F1 and F2 for storage domains with negligible chance of oblique modifications.
Thirdly, Theorem 18 shows equivalence of F2 and F3 for meaningful deterministic
local functionalities. Hence, it remains to consider transforming F6 to F3 and any
semi-abstract adversary against F6 to simplistic adversary (Definition 39). The
setup in F3 is shown in Figure 43. The adversary in F3 can interact with the ex-
tractor E to do modifications to shares inM⊛. The adversary clocking capabilities
are the same as for the Asa.

Consider the simulator Sim that connects the semi-abstract adversary to F3.
The adversary Asa only communicates withM×

0 ,F▷◁
p and clocks the leaky buffers.

By assumption, the storage domains in Fpd have limited control. Hence, all mod-
ifications ofM×

0 can be translated to modifications of shares inM⊛ in F3. The
new adversary against F3 combining Sim and Asa only reads and modifies the
memory locations fromM⊛, if Asa modifies the same address inM×

0 . Internally,
Sim runs the strong extractor for the storage domain defined by the limited control
in Definition 12. If the storage domain has limited control, then, by definition, the
strong extractor successfully computes the required modification and, hence, Sim
can successfully compute the share modification for the shares inM⊛ to match
the value change Asa writes toM×

0 . Hence, the values inM⊛
0 andM×

0 are the
same in the two collections after one adversarial change. A similar argument can
be extended to cover all adversarial modifications done by Asa, which is the only
difference in the adversarial behaviour in F3 and 6.

201



Corollary 10. For all semi-abstract adversaries Asa against the protocol Π
sa de-

scribed in the semi-abstract model F6 (in Figure 48), there exists an equivalent
generic adversary φ

∗(Asa) against the hybrid protocol Π such that Env⟨Πsa,Asa⟩≡
Env⟨Π,φ ∗(Asa)⟩ if the protocols are secure against rushing and malformed in-
puts, have a well-formed specification, are in a canonical form, use meaningful
local operations for deterministic functionalities, use storage domains with lim-
ited access and negligible extraction failure.

Proof. This corollary is the result of a series of previously proven results.
• The semi-abstract model can be transformed into the joint memory model

(Lemma 21).
• The memory machines in the joint memory model can be split into individ-

ual machines for each interpreter so that Mi are memory aligned. These
machines and local operations can be merged into the interpreters (Theo-
rem 15).

• Any simplistic adversary against the joined memory model can be turned
into the lazy semi-simplistic adversary against the hybrid model (Theo-
rem 14).

• Lazy semi-simplistic adversary is a valid generic adversary (Theorem 11,
Corollary 6).

5.6. Abstract Execution Model and Abstract Adversaries

The previous section defined the semi-abstract execution depicted in Figure 49
together with the environment where it is executed. This section further simplifies
the execution setting to the abstract execution working with an abstract adver-
sary and abstract environment. The abstract environment removes the protection
domain component Πe and considers the execution of the protocol in isolation
from the rest of the computations that can happen in the protection domain. The
abstraction removes the need for the secret data representation and purely uses
values in memory with access rights defined by the security properties of the stor-
age domains. In a way, the abstraction also modifies the protocol as the S+ and
R× machines are removed.

So far, this section has defined all equivalences with respect to Env. As high-
lighted in the protection domain and its environments description in Section 3.6.2,
the environment against the protocol Π is actually Envpd⟨Πe⟩. Here, Envpd is
the generic environment that gives plain inputs to parties inside Πe and receives
plain outputs. The protection domain is represented by Πpd for the basic case
and Πe⟨Π⟩ for the case where the protocol Π is separated from the rest of the
computations Πe.

Formally, this section defines a abs-operator that acts on protocols and their
components together with φabs :Asa→Aabs and its semi-inverse φ

∗
abs :Aabs→Asa
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Figure 49: Semi-abstract protocol and the environment, F6 with Envpd⟨Πe⟩.

and ψabs : E→ Eabs and its semi-inverse ψ
∗
abs : Eabs→ E that achieve

∀Π ∈ Psa : ∀Env ∈ EΠ : ∀Asa ∈ Asa :

Env⟨Π,Asa⟩ ≡ ψabs(Env)⟨Πabs,φabs(Asa)⟩
(5.12)

∀Π ∈ Psa : ∀Envabs ∈ Eabs,Π : ∀Aabs ∈ Aabs :

Envabs⟨Πabs,Aabs⟩ ≡ ψ
∗
abs(Envabs)⟨Π,φ ∗abs(Aabs)⟩

(5.13)

∀Π ∈ Psa : ∀Env ∈ EΠ : ∀Asa ∈ Asa :

Env⟨Π,Asa⟩ ≡ ψ
∗
abs(ψabs(Env))⟨Π,Asa⟩

(5.14)

∀Π ∈ Pabs : ∀Envabs ∈ Eabs,Π : ∀Aabs ∈ Aabs :

Envabs⟨Πabs,Aabs⟩ ≡ ψabs(ψ
∗
abs(Envabs))⟨Πabs,Aabs⟩ ,

(5.15)

where Psa is the set of protocols in a canonical form and semi-abstract specifica-
tion, Asa is the set of semi-abstract adversaries and EΠ is the set of compatible
environments. Protocol Π

abs is running in the abstract execution model (Defini-
tion 48), Eabs,Π is the set of compatible abstract environments (Definition 47) and
Aabs is the set of abstract adversaries (Definition 49).

Lemma 22 proves the first two equivalences for a special case. The full re-
quired result holds for embeddable environments (Definition 50), which defines
one of the equivalences. The rest are proven in Lemma 23 and Lemma 24. The
summary of all the equivalences between the hybrid and abstract world is given
in Theorem 20.

5.6.1. Abstract Execution Model

Before describing the abstract model, consider a restricted class of environments
Er against the semi-abstract protocol. Environment Envr ∈ Er consists of Πe and
Envpd as in Figure 49. Environment Envr is restricted in a sense that the inner
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environment Πe is trivial – parties just forward inputs and outputs between Envpd
and Π

sa and convert them between storage domains and public values as needed.
More than that, each instance of Πe runs exactly one instance of Π

sa, and the
only communication inside Πe occurs as Πio protocol for handling inputs and
outputs. The ideal implementationFio of Πio consists ofRδ and Sδ for all storage
domains δ supported by Πe. Hence, the restricted environment Envr is depicted
in Figure 50 with the machines S and R representing the collections of Sδ and
Rδ respectively. All inputs of Π

sa are given by Envpd and S is used to transform
the public values to the suitable storage domain for Π

sa. For outputs, the machine
R collects all outputs in the output storage domain and returns the public value to
Envpd.

Envr

F./1

F./2

G01

G02
M×

0
Envpd

R×

S+

R

S

F4 F4 F4 F4 I×1 I×2 I×1 I×2 F4 F4 F4

I×1
I×2

I×1
I×2
I×1
I×2

I×1
I×2

A A A I×1 I×2 F4 A

Figure 50: Semi-abstract protocol Π
sa with a restricted environment Envr, F6 with

Envr.

Considering the execution of the semi-abstract protocol Π
sa with the restricted

environment Envr reveals that the input-output behaviour in Π
sa and this restricted

Πe kind of cancel each other out. The output given by S+ from Π
sa is recon-

structed by R (a machine collecting all the Rδ ). Similarly, all inputs arriving to
Π

sa come from S and are reconstructed by R×. So far, the details of the com-
munication between Envpd and Πe have not been considered. It is reasonable to
expect that there are protocol instances used by Πe to separate the protocols and
the roles of the results given to Envpd. It is also natural to require tight scheduling
between Envpd and Πe as well as between Envr and Π

sa.
For restricted adversaries that do not read the state of the corrupted parties in

Πe, it is easy to simplify the general environment in Figure 49 to the restricted
environment in Figure 50. As the adversary does not use Πe, then it is sufficient
to assume that Envpd can run the operations computed by Πe internally to derive
the real values. For more general adversaries, it is then necessary to consider the
cases when the operations in Πe can be simulated for the adversary. The following
defined this case as the abstract execution model as the Πe is abstracted away
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from the protection domain description. The restricted environment Envr and
Π

sa running with Envr can be simplified to the abstract model with the abstract
protocol description Π

abs (Figure 51). The equivalence is proven in Lemma 22.

F./1

F./2

G01

G02
M×

0
Envpd

Oin
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F4 F4 F4 F4 Io1 Io2 Io1 Io2

Io1
Io2

Io1
Io2
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Io2
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A A A Io1 Io2 A

F4

F4

Figure 51: Abstract execution model for two-party protocols, F7.

The abstract model explicitly cancels out the input-output machines in the re-
stricted Πe and Π

sa. Instead, it considers machines Oin and Oout that write inputs
and read outputs fromM×

0 . This also slightly changes the interpreter from I×i to
I⋊i . The sender-clocked buffer pair between Oin and Oout allows instant sharing
of their states to manage correct memory locations. Both machines also connect to
I⋊i ,M×

0 , F△ and Envpd. Most buffer pairs for both of these machines are sender-
clocked. The exceptions are the buffers with I⋊i and Envpd that are leaky and
clocked by the adversary. I⋊i behaves like I×i with the difference in the clocking
of the outputs. The sender-clocked buffer from I×i to S+ is replaced by the leaky
buffer to Oout . Previously, I×i expected to get the control back from S+. Instead
of that, I⋊i can just do all the actions that I×i would do after getting the signal
back.

In Π
sa (running in F6), I×i sends anything to S+ only for DMACALL and

SEND instructions that go to Πe. In the restricted environment Envr, there is only
one instance of Π

sa. Hence, the instance information can be simplified. The
interpreter I⋊i omits the instance of Π

sa from the messages and sends (te,•, ℓ)
to Oout where te is the instance of Πe calling it and ℓ is the message location.
I×i expects an input from R× to either launch a new instance or get a reply to
DMACALL previously sent to Πe. Both of these inputs are handled byOin for I⋊i .
Upon receiving the input m from Envo, the machine Oin writes m to location ℓ in
M×

0 and sends INIT(te,•,δ , ℓ) or (te,•,ε) simultaneously to all buffers to all I⋊i .
If a DMACALL call is sent to Oout , then Oout gives the result location to Oin

so that Oin knows which location to use with the respective input from Envpd.
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The control goes back to Oout . After getting the control back, Oout simulates
the behaviour of S+ and R. If R has enough inputs from interpreters to reliably
reconstruct the value for Envpd, then Oout fetches the value fromM×

0 and writes
it to Envpd.

In a way,Oin andOout simulate the execution of Πe with instant clocking. The
timing can be adjusted to fit that of the actual Πe by clocking the buffers with
I⋊i or Envpd at a suitable time. The adversary is in control of the timing of these
buffers. Therefore it can still control the execution timing as it did in F6. Let the
collection with Oin, Oout and I⋊i be F7.
Lemma 22. Let Ar

sa be the class of restricted semi-abstract adversaries against
the collection F6 running with the restricted environment Envr. Let Π

sa be the
protocol in F6 and Π

abs be the same protocol in F7. Let Aabs be the class of
adversaries against F7. Then, there exist transformations φabs and φ

∗
abs such that

∀Envr ∈ Er : ∀A ∈ Ar
sa : Envr⟨Πsa,A⟩ ≡ Envabs⟨Πabs,φabs(A)⟩

∀Envabs ∈ Eabs : ∀Aabs ∈ Aabs : Envabs⟨Πabs,Aabs⟩ ≡ Envr⟨Πsa,φ ∗abs(Aabs)⟩,

where Envr is the restricted environment as in Figure 50 and Envabs is the corre-
sponding environment in F7 containing the same Envpd and Oin and Oout instead
of S,R, S× andR×.

Proof. First, consider converting a restricted semi-abstract adversary A against
F6 to adversary B against F7. B clocks buffers from I⋊i to Oout instead of buffers
from S+ to Πe and buffers formOin to I⋊i instead of buffers from Πe toR+. The
timing of the buffers connected to Envpd remains the same for the two adversaries.
Hence, when A clocks the input toR×, then it has already clocked this input to S,
and, therefore, B has clocked into Oin and Oin already has written it toM×

0 and
to buffers to all parties. Hence, B can clock the input to respective I⋊i . Note that
values appear inM×

0 earlier in F7 than in F6, but the protocol is not started earlier
and, therefore, they are not used earlier than in F6. Since the appearance of the
values is controlled by how the inputs are clocked, then it is straightforward for
the adversary to know when the value would be in the memory in F6.

With outputs, A expects to clock the output shares to R from S+. S+ gets
them from the interpreters with sender-clocked buffers. R would collect enough
shares and then produce an output for Envpd. The same effect is achieved by B
in F7 by clocking the I⋊i input to Oout at the same time as A clocks the input to
R. By definition, Oout needs the same set of inputs to reconstruct and write the
value to Envpd as R. Hence, R and Oout produce outputs for Envpd at the same
time. This also implies that A and B can clock the outputs to Envpd with the same
timing. note that I⋊i can write many outputs during one activation and so could
I×i as it got control back from S+.

Note that a semi-abstract A does not read the protocol inputs and outputs in
M×

0 . In this case, it is easy to reverse the transformation to also get an equivalent
A from any B. A generic adversary B against F7 may still read the inputs inM×

0
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earlier than possible in F6. If this is the case, then the inputs can be made to appear
in memory early by adding some fast clocking to F6 and postponing the clocking
of the interpreter commands. For such clocking, when an input is clocked to Oin

in F7, it can be clocked first to S and then to R× in F6. Later, the clocking of the
inputs ofR× must be simulated, as well as the state of the interpreters. However,
without lessening of generality, we can assume that the adversary does not need to
read the input early. Note that if the storage domain is hiding, then the adversaries
cannot read the values in M×

0 at all. Honest execution uses them to evaluate
ideal functionalities only when all interpreters have given the command and the
adversary has clocked the inputs to the ideal functionality. Hence, this timing
would remain the same in the two collections. The local functionalities that are
evaluated on inputs would be computed earlier together with the early clocking,
but they can be simulated as part of the state of the interpreter to look like they are
not yet evaluated.

Corollary 11. Let Ar
sa be the class of restricted semi-abstract adversaries against

the collection F6 that do not communicate with Πe. Let Π
sa be the protocol in F6

and Π
abs be the same protocol in F7. Let Aabs be the class of adversaries against

F7. Then, there exist transformations φabs and φ
∗
abs such that

∀Env ∈ Er : ∀A ∈ Ar
sa : Env⟨Πsa,A⟩ ≡ Envabs⟨Πabs,φabs(A)⟩

∀Envabs ∈ Eabs : ∀Aabs ∈ Aabs : Envabs⟨Πabs,Aabs⟩ ≡ Env⟨Πsa,φ ∗abs(Aabs)⟩,

where Env is the environment Envpd⟨Πe⟩ and Envabs is the corresponding abstract
environment in F7 containing the same Envpd and Oin and Oout instead of Πe.

Proof. For the adversaries that do not interact with Πe, any environment Envpd⟨Πe⟩
is equivalent to the respective restricted environment Envr. Hence, this is a direct
result of Lemma 22.

For most practical protocols, it is reasonable to also expect that some secure
computation application is such that it only runs this protocol. For example, this
is the case of comparison for the traditional millionaires’ problem. Hence, it is
natural that the set of all possible environments contains the environment with the
restricted Πe. This also means from Lemma 22, that for most protocols, the ab-
stract environment as defined in F7 is at least one environment among all that need
to be considered as part of the security definition for all or a class of environments.
Definition 47. An abstract execution model for a protocol is defined as the col-
lection F7. The abstract protocol Π

abs is described in terms ofM×
0 , G0

q , F▷◁
p and

I⋊i . The set of all abstract environments Envabs containing Envabs
pd ∈ Epd, Oin and

Oout with the respective buffers is called Eabs. The notion can also be considered
for restricted environment classes, such as all polynomial time environments.

Note that the previous definition specifies that the environment component in-
side the abstract environment is from the class Epd. The added notation Envabs

pd
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is used to distinguish it from the hybrid environment Envpd⟨Πe⟩. The following
specifies the transformation ψ : E→ Eabs, where ψ(Envpd⟨Πe⟩) would introduce
Envabs

pd that is different from Envpd.
Definition 48 (Abstract execution model details). At the beginning of the execu-
tion, the setup is distributed by F△. F△ sends the public setup information to F▷◁

p ,
G0

q , Oin and Oout . Note that no private setup information is required. The adver-
sary A can learn the setup information of corrupted parties, including the private
parameters, directly from F△. Note that private parameters are not used in the
honest execution.

The protocol execution starts with the INIT message from Envpd. The adver-
sary A is in control of all leaky buffers in F7. The INIT message is also sent
through a leaky buffer. At some point, INIT is clocked to Oin that writes input
values to M×

0 , gets control back and writes the INIT message to buffers for all
I⋊i . When A clocks the input to I⋊i , the interpreter executes the next program
instructions and writes the respective DMACALL or SEND instructions or writes
a message to G0

q and clocks it. If a local operation is used, then G0
q performs the

operation in M×
0 if all inputs are present and output is not yet computed. The

local functionality G0
q always gives control back to I⋊i that called it. I⋊i continues

execution. During each activation, I⋊i can have one input from either F▷◁
p , G0

q or
Oin. Each time it reads the input and executes the next relevant part in its program.

If the adversary clocks the input to F▷◁
p and T ▷◁

R has collected enough input
messages, then F▷◁

p fetches the value from M×
0 and computes the output. The

output is written toM×
0 , and the output message is written to buffers for all I⋊i

in the output signature. If the ideal functionality has any interactions with the
adversary before giving the output, then a message is sent to A before sending the
output notifications. In such case, A will send a notification to proceed with giving
the outputs. The machine Oout behaves similarly for the outputs of the protocol
Π

abs. IfOout has enough inputs to reconstruct the value, then it means that enough
I⋊i have sent the output command. In such case, Oout reads the output fromM×

0
and writes the value to the buffer for Envpd.

The adversary against this execution can access the corrupted parties state in
M+

0 . It can also read all values where the hiding property of the respective stor-
age domain is broken. It can also modify all values based on the limited control
property. The adversary is still simplistic. Hence, only inputs to F▷◁

p are modified.
The abstract adversary is properly defined in Definition 49.
Definition 49 (Abstract adversary). An adversary is abstract if it fulfils the fol-
lowing conditions.

(a) The adversary clocks any outgoing buffer c+u,p or c−u,Envabs and any incoming
buffer c−j,p or c+j,Envabs for honest P j only when all incoming buffers c−i,p or
c+i,Envabs to corrupted parties Pi are empty.

(b) The adversary can modify the state ofM×
0 only in the locations α of pend-

ing DMACALL(t, p,α,β ) and SEND(t, p,α) instructions to sub-protocols
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F▷◁
p . The modifications are allowed if A has some control over the value

using the limited control property of the protection domain. These changes
are done before the corresponding tuple is clocked to F▷◁

p and each value is
modified at most once.

(c) The adversary can read the memory locations ofM×
0 for storage domains

δ where it has broken the hiding property of the storage domain.
The abstract execution model abstracts away the part of the protection domain

that is not the protocol at hand. In order to do so for the generic Πe, it must be
possible to instead do similar actions inside the new environment. The following
definition specifies which generic environments can be turned into abstract envi-
ronments. This property is needed to be able to apply the abstract model to prove
the security of the protocol as detailed in Section 5.6.3.
Definition 50. An environment class E is embeddable into the abstract model for
the class of adversaries Asa, if there exist transformations φabs : Asa→ Aabs and
ψabs : E→ Eabs, such that

∀Env ∈ E : ∀A ∈ Asa : Env⟨Πsa,A⟩ ≡ ψabs(Env)⟨Πabs,φabs(A)⟩ ,

for all protocols Π that can be transformed to their representation Π
abs ∈ Pabs in

the abstract model and Π
sa ∈ Psa in the semi-abstract model.

Note that we have denoted Envabs = Envabs
pd ⟨Oin,Oout⟩ and Env= Envpd⟨Πe⟩.

Especially, ψabs(Envpd⟨Πe⟩)=Envabs
pd ⟨Oin,Oout⟩where Envpd ∈Epd and Envabs

pd ∈
Epd but Envpd and Envabs

pd are not the same environment.
Further, note that embeddability is closely related to the simulatability (Def-

inition 31) of the environment that was required in the hiding and modification
games in Section 5.5 and is discussed in Section 5.2.2. For embedding, all inter-
actions between A and Πe must be part of Envpd and adversary interactions. If
all parameters by F△ are public, then it is straightforward for Envpd to run any-
thing that may happen in Πe. In such a case, Envpd can simply learn the public
parameters and honestly run all operations inside Πe instead of interacting with
the separate Πe functionality. It can also reconstruct all values that Envpd would
give to Π

abs. The adversary must be rewired to interact with the copy of Πe inside
Envpd instead of the external functionality.

With a private setup, the embeddability is similar to the simulatability with
the simplification that the desired environment always gives out plain values for
the abstract protocol. Hence, the emulated protocol does not need to be able to
generate the right shares with the right private parameters as was done by SSime in
the simulatability definition. Hence, the view modification between the simulation
and the protocol run is simpler. The reverse is also true, as the abstract protocol
gives out plain values and the embedded version can generate shares internally.

In more detail, if the adversary Asa running with an environment Envpd wishes
to communicate with Πe then in the embedded version φabs(A) in fact com-
municates with ψabs(Envpd⟨Πe⟩). Here φabs : Asa → Aabs (as used already in
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Lemma 22) and ψabs : E→ Eabs. The abstract environment ψabs(Env) internally
runs the part of Πe without communicating with F△, gives the desired result
to φabs(A) that can internally deliver it to A. The semi-inverse transformation
φ
∗
abs : Aabs → Asa is defined analogously by instead wiring the adversary to the

separate copy of Πe.
There is also a semi-inverse ψ

∗
abs :Eabs→E that turns the abstract environment

into the general outer environment and reintroduces Πe. Note that for any abstract
environment and adversary pair, it is very simple to create the respective restricted
environment that can give inputs to Π

sa, essentially Er
∼= Eabs. The abstract en-

vironment itself can be used as the Envpd in the restricted environment definition.
Such a restricted environment is a valid environment against any version of the
protocol from the hybrid to the semi-abstract version. Hence, simply introduc-
ing S and R like in the restricted environment is a possible definition of ψ

∗
abs for

generic Envabs. However, without lessening of generality, for ψabs(Envpd⟨Πe⟩)
assume that the resulting abstract environment specifies the distinction between
Πe and Envpd internally. In such case, ψ

∗
abs(ψabs(Envpd⟨Πe⟩)) can use this dis-

tinction and separate Πe again.
The following lemma specifies that the transformations to and from the abstract

environment satisfy the equalities 5.15 and 5.14 as required.
Lemma 23. For ψabs and ψ

∗
abs described above,

∀Πabs ∈ Pabs : ∀Envabs ∈ Eabs,Π : ∀Aabs ∈ Aabs :

Envabs⟨Πabs,Aabs⟩ ≡ ψabs(ψ
∗
abs(Envabs))⟨Πabs,Aabs⟩

and

∀Πsa ∈ Psa : ∀Env ∈ EΠ : ∀Asa ∈ Asa :

Env⟨Πsa,Asa⟩ ≡ ψ
∗
abs(ψabs(Env))⟨Πsa,Asa⟩ .

Proof. By definition, ψabs(Envpd⟨Πe⟩) specifies the internal border between Envpd
and Πe. Hence, ψ

∗
abs(ψabs(Envpd⟨Πe⟩)) = Envpd⟨Πe⟩ which satisfies the second

equivalence.
First, ψ

∗
abs(Envabs) for general Envabs = Envabs

pd ⟨Oin,Oout⟩ gives the restricted
environment with S and R and keeping Envabs

pd in the role of the Envpd inside
Envr. The transformation ψabs(ψ

∗
abs(Envabs) would give the same abstract en-

vironment Envabs. For the case where Envabs = ψabs(Envpd⟨Πe⟩), the analysis
of the previous equality gives ψ

∗
abs(ψabs(Envpd⟨Πe⟩)) = Envpd⟨Πe⟩ and, hence

ψabs(ψ
∗
abs(ψabs(Envpd⟨Πe⟩))) = ψabs(Envpd⟨Πe⟩). Hence, the first equivalence is

satisfied for both cases.

Lemma 24. For ψ
∗
abs defined above, there exists φ

∗
abs : Aabs→ Asa such that

∀Π ∈ Psa : ∀Envabs ∈ Eabs,Π : ∀Aabs ∈ Aabs :

Envabs⟨Πabs,Aabs⟩ ≡ ψ
∗
abs(Envabs)⟨Π,φ ∗abs(Aabs)⟩ ,
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where Π
abs is the abstraction of the semi-abstract protocol Π.

Proof. For the case where Envabs = ψabs(Envpd⟨Πe⟩), the φ
∗
abs(Aabs) has to be

such that again communicates with Πe that is separated. Note that Aabs communi-
cates with the emulated Πe, hence, the only transformation in φ

∗
abs is the rewiring

from the emulated to real Πe.
For the case where Πe cannot be separated, Envabs = Envabs

pd ⟨Oin,Oout⟩ and
ψ
∗
abs(Envabs) = Envpd⟨S,R⟩ as in the restricted environment. For such a case,

Corollary 11 applies as, by definition, Πe does not exist, and therefore the adver-
sary does not communicate with it.

5.6.2. Equivalence of the Two Ideal Functionality Descriptions

The following discussion in Section 5.6.3 about the meaning of security in the
abstract model requires another look at the functionality F that is implemented
by the protocol Π

abs. The goal is to show that a protocol is as secure as the ideal
functionality. This subsection works in the hybrid model, where shares are passed
between parties and the functionality.

Section 3.4.3 introduced two ways for considering an ideal functionality. One,
where the functionality is used directly by the environment, and the other, where it
is used by a partyPi that only executes this functionality. The latter is better suited
for the considerations of this chapter since, if this functionality F is canonical,
then this setup could be transformed to the abstract execution mode,l if the rest of
the conditions are met. However, the following lemma specifies that, for coherent
adversaries, the two approaches are always equivalent.
Lemma 25. For coherent adversaries and canonical ideal functionalities, the col-
lections D and I in Figure 12 are equivalent.

Proof. Let A1 be the adversary against D where the ideal functionality F is used
directly and let A2 be the adversary against I. The collection I is such that the
ideal functionality F is used by parties Pi executing only the command to call
F and return the result. In both collections, F gets exactly the same inputs, in-
cluding tags, and the adversary controls when F receives its inputs. However, the
adversary has two leaky buffers to control in I for each party and only one in D.

Adapting A1 to work against I simply means that the new adversary AI
1 clocks

the buffers betweenPi andF , as soon as there are messages and clocks the buffers
between Pi and Env at the same time as A1 clocks the buffer under its control.

The extra channel must be simulated when turning A2 to work against D. The
more difficult part is the fact that, in D, there is no Pi that could be corrupted by
AD

2 . For a coherent adversary A2, corrupting a party Pi means that also P∗i in Πe

that is part of the Env is corrupted. Hence, to construct AD
2 all modifications that

A2 does in Pi must be done in P∗i for D. Hence, the clocking of inputs of Env to
Pi is simulated, as are the interactions with Pi. If the adversary A2 modifies the
value that Pi gives to F , then AD

2 does this modification in Env, writes the new
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message and clocks this to F when A2 clocks the input to F . For the outputs, AD
2

clocks the outputs to Env when A2 clocks the outputs of F to P2. The AD
2 then

stops P∗i from proceeding and first simulates the interactions between A2 and Pi.
If A2 modifies the value sent to Env then AD

2 modifies this value in P∗i . It allows
P∗i to proceed with execution according to commands from A2 once A2 clocks the
message from Pi to P∗i .

5.6.3. Security in the Abstract Model

The abstract execution model is the final execution model considered in this the-
sis. It remains to argue that it is meaningful to consider this model. Firstly, it is
necessary to consider what it means for a protocol to be as secure as another in
the abstract model. Secondly, security in the abstract model is only reasonable to
use if it is correlated with the security in the hybrid model. The first open issue
is solved by the following definition, which is a variation of the basic security
definition (Definition 2).
Definition 51 (Abstract security). Let Π1 and Π2 be protocols and Π

abs
1 and Π

abs
2

their abstractions. Let A∗1 and A∗2 be the abstractions of classes of adversaries A1
and A2 against the original protocols. Then Π1, is as secure as Π2 in the abstract
model if there exists a construction ρ∗ : A∗1 → A∗2 such that Envabs⟨Πabs

1 ,A∗1⟩ ≡
Envabs⟨Πabs

2 ,ρ∗(A∗1)⟩, for all A ∈ A∗1 and Envabs ∈ Eabs that are compatible with
the protocols.

In the common case, the proof goal is to show that some protocol is as secure
as an ideal functionality. As considered in Lemma 25, the ideal functionality can
be executed by explicit parties. Such ideal functionality usage is a special case of
general protocol execution considered for the protocol Π throughout this chapter.
The parties apply a protocol Π0 that only calls the ideal functionality F0 once and
then returns the result to Πe. Hence, the usage of an ideal functionality Π0⟨F0⟩
can be simplified from the hybrid model to the abstract execution model as long as
the conditions for the transformation are satisfied. The result of the simplifications
is the abstract protocol Π

abs
0 where all interpreters call F▷◁

0 that uses the values in
M×

0 .
The definition of abstract security is the final link to complete the steps high-

lighted in Section 5.1.1. Figure 31a defined the relationships needed to achieve
security. The following theorem lists all the requirements for the transformations
between the hybrid and abstract model that are required to satisfy the equivalences
needed for Theorem 9 to hold in this case.
Theorem 20 (Soundness of abstract security, Theorem 8 formally). Let F0 be an
ideal functionality and let Π be a protocol constructed on top of a hybrid protec-
tion domain containing functionalities F1, . . . ,Fk with canonical (Definition 14)
Fp with tight scheduling (Definition 32), meaningful (Definition 15) and trans-
parent (Definition 44) local functionalities. The storage domains in the protection
domain are hiding (Definition 8), modification-aware (Definition 10) and have
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limited control (Definition 12). If the protocol Π satisfies all abstraction assump-
tions:

• it is well-formed (Definition 38) and in a canonical form (Definition 42),
• it is robust against malformed inputs (Definition 34),
• it is secure against rushing (Definition 36) ,
• it is output-isolated (Definition 45),

and the environment class E is embeddable (Definition 50) into Eabs for protocols
Π and F0 and the class of adversaries A and Envabs ∈ E then security (Π is as
secure as F0) in the abstract model (Definition 51) is necessary and sufficient for
security in the hybrid model.

Proof. IDEAL FUNCTIONALITY. First of all, note that Π0⟨F0⟩ is equivalent to F0
for the trivial protocol Π0 that only calls F0, as shown in Lemma 25. The trivial
protocol can be made so that it easily satisfies all the abstraction assumptions for
the protocols. Thus, Π≥F0 if and only if Π≥Π0⟨F0⟩.

Note that the trivial protocol Π0 running just F0 is output-isolated since it
always returns the output of the ideal functionality right after it is computed
(Lemma 14). It can also be easily written so that it is well-formed and in a canon-
ical form. Especially, it is easy to achieve memory alignment as the only values
are the ones that are inputs or outputs of F0. Since the interpreter does not do
any local computations and can easily be written to limit the size of the inputs,
then it is also robust against malformed inputs. Similarly, the protocol is secure
against rushing since the protocols of all interpreters are symmetric and through-
out the simplifications, we assume that Πe is such that it does not help to rush the
protocol it is using.

From the previous results, Corollary 9 and Corollary 10 specified that under the
conditions of this theorem, the hybrid model and the semi-abstract execution are
equivalent. For the adversaries that do not interact with Πe, Corollary 11 specifies
that the abstract execution is equivalent to the semi-abstract execution. Hence, for
such adversaries, abstract security is sound for security in the hybrid model.

By definition of embeddability in Definition 50, any environment-adversary
pair can be turned to an abstract environment and adversary that achieve the same
effect against the abstract version of the protocol. Lemmas 23 and Lemma 24
specify that the abstract model and the semi-abstract model are equivalent. Hence,
the protocol and the respective ideal functionality can both be transformed into
their respective abstract versions, and it is possible to consider their abstract se-
curity. Hence, this theorem is a special case of Theorem 9 for the transformations
φ1 = φ2 as outlined throughout this chapter and ψ as defined in this section.

The hybrid (or real) execution is defined by the general environments E and
classes of adversaries A1 and A2 for the hybrid and ideal world, respectively. The
work so far has shown the definitions of φ and ψ , whereas φ1 = φ2, as well as
their semi-inverses. Note that as shown in Lemma 25, the ideal functionality can
be considered as a very special protection domain. Hence, the transformations
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to turn it to the abstract model are the same as done for the general protocol and
the transformations φ2 and φ

∗ are the same as the transformations done for the
adversary throughout this chapter. The abstract environments are E∗ in the context
of Theorem 9 and abstract adversaries are in classes A∗1 and A∗2. If abstract security
is proven, then this proof provides ρ

∗. Hence, this implies that there exists ρ that
proves security in the hybrid model. The transformations so far have shown that
they satisfy a series of equivalences highlighted in Section 5.1.1. Hence, the fact
that abstract security implies security in the hybrid model is a direct consequence
of Theorem 9.

Note that it is also intuitive that abstract security is at least a necessary property
for the security of the protocol. For the necessity of the security in the abstract
model, it is important to observe that Eabs is commonly a valid class of environ-
ments against any protocol. Envabs ∈ E since a trivial Πe that just forwards the
inputs and outputs has to be a valid protocol. The security definition specifies that
the security has to be maintained for all compatible environments. This means
that the protocol must preserve security when running with Envabs ∈ Eabs ⊆ E.
Hence, security in the abstract environment is a necessity for all protocols that
consider the trivial Πe as a valid environment.

SUFFICIENCY. The security in the abstract model is sufficient for security in
the hybrid model if any attack that is possible in the hybrid model has an equiva-
lent attack in the abstract model. In this case, the lack of any such attacks, which
is implied by the security in the abstract model also means that there cannot be
any valid attacks in the hybrid model. The fact that all adversaries in the hybrid
model have equivalent adversaries in the abstract model is shown by Lemma 22
for the semi-abstract and abstract model equivalence and Corollary 9 for the trans-
formation from hybrid to semi-abstract model.

5.6.4. Simplified Clocking and the Combined Interpreter

The abstract execution model leaves the adversary the power to clock each in-
dividual input to ideal functionalities. However, it is well-defined that the ideal
functionalities only operate when they have sufficient inputs for the given round.
Similarly, all outputs of ideal functionalities are written together. Hence, in many
cases, it would be sufficient for the adversary to have just one clocking channel,
where it can tell the ideal functionality to execute the next round. This is espe-
cially reasonable if the interpreters execute sequential code and there are no paral-
lel DMACALL calls to several ideal functionalities. If the execution is sequential,
then both input and output buffers for F▷◁

p can be simplified. If the execution
is not sequential, then the order in which versions of I⋊i receive responses from
F▷◁

p may affect which computation is performed next and the separate clocking
channels are needed to deliver the outputs to I⋊i .

All interpreters can be trivially joined to a master interpreter I simply by defin-
ing I as the collection of all interpreters. Let this be collection C0 in Figure 52.
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Figure 52: Trivial joining of the interpreters, C0.

Let c+i,p and c−i,p be leaky buffers from I⋊i to F▷◁
p and from F▷◁

p to I⋊i . The canon-
ical F▷◁

p contains T ▷◁
R and T ▷◁

S machines that manage the collection of the inputs
and distribution of the output signals as well as interactions with the adversary.
The machines Cp and Dp are extracted from these machines to combine or dis-
tribute the messages as necessary. The interaction with the adversary still remains
with T ▷◁

R and T ▷◁
S . Separating these machines defines C1 in Figure 53 and C2 in

Figure 54. Note that F▷◁
p is extended to F▶◁

p and to F▶◀
p as its input buffers and

the behaviour of T ▷◁
R and T ▷◁

S changes. In C1, there is a single leaky buffer d+
p

replacing c+1,p, . . . ,c
+
n,p for each functionality F▶◁

p . In C2, buffers c−1,p, . . . ,c
−
n,p are

replaced by d−p .
The execution of C1 works as follows. When I⋊i sends a DMACALL call to

Cp then Cp processes this call. If Cp has collected enough messages to activate
the functionality, then it writes the DMACALL to d+

p . If not, then it simply gives
control back to I⋊i . I⋊i can continue the execution from the DMACALL call like
it did when it did not have to clock the respective buffer itself in C0. Hence, the
execution of I⋊i is slightly modified to account for the new clocking behaviour.

It is reasonable to expect that the interpreter code is public and that the adver-
sary can always know which lines of code are executed next. In addition, it is also
reasonable to assume that it is known which parties participate in any round of
computations and the adversary can use this information. A protocol specification
has a predictable subprotocol invocation pattern if an adversary can always pre-
dict which buffers with which tags any interpreter I⋊i is going to write activated.
A functionality F▷◁

p has predictable input signatures if the adversary can always
predict the input signature for the current round of computation.
Lemma 26. If a protocol specification has a predictable subprotocol invocation
pattern and all ideal functionalities have predictable input signatures, then the
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Figure 53: Combining interpreters and buffers to F▶◁
p , C1.
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Figure 54: Combining interpreters and buffers to and from F▶◀
p , C2.

collections C0 and C1 are equivalent.

Proof. Let A0 be the original adversary against C0 with the trivial joined inter-
preter and all buffers and A1 be the adversary against C1. If adversary A0 or A1
clocks some input to I⋊i then, by the predictable subprotocol invocation, the ad-
versary knows which buffers b+i,p will get new messages from I⋊i and what is the
tag that is leaked by the buffer.

In order to show equivalence, both adversaries A0 and A1 must be able to
execute all their actions against the other version of the protocol. When using A0
with C1 instead of C0, the missing buffers to F▷◁

p can be perfectly simulated. If A0
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clocks b+i,p then, by the predictable input signature assumption, it is known if this
clocking causes F▷◁

p to execute or T ▷◁
R is still collecting inputs and not executing

yet. Equivalent A1 would clock the buffer d+
p to F▶◁

p when F▷◁
p would be ready

to execute based on the clocking of A0. All other actions of A0 can be carried out
against C1 without modifications.

The clocking of d+
p by A1 can be simulated in C0 by clocking the respective

buffers b+i,p for all parties. If A1 clocks this buffer, then the equivalent adversary
against 0 would clock all b+i,p in the fixed order. After each clocking, it gets the
control back as the master scheduler and, therefore, can finish clocking all in-
dependent buffers the same way as Cp clocks them. The leakage on any of the
separate buffers can be simulated using the predictability of the execution pat-
tern.

In C2 in Figure 54, whenever I⋊i receives a message from Dp it runs as usual.
When it finishes its usual execution, it gives control back to Dp. Dp can then
send the message to the next I⋊j until all interpreters have received the message
corresponding to the input of Dp. The equivalence to C2 can only be achieved
for sequential scheduling where the order of the messages arriving does not affect
which line of code is executed next. Concretely, a protocol run by an interpreter
has sequential scheduling if at most one sub-protocol is active at any time and new
inputs from Πe are also not processed before the sub-protocol is complete.
Lemma 27. If a protocol specification with sequential scheduling has a pre-
dictable subprotocol invocation pattern and all ideal functionalities have pre-
dictable input and output signatures, then the protocol the collections C0 and C2
are equivalent.

Proof. Equivalence of C0 and C1 was shown in Lemma 26. Let A1 be the adver-
sary against C1 and A2 be the adversary against C2. The following proof considers
the equivalence of C1 and C2.

Thanks to sequential scheduling, there is at most one buffer d+
p and d−p per

protocol instance t that has any message in C2. If A1 gives input to F▷◁
p in C1, then

F▶◁
p writes messages to c−i,p for parties in the output signature. In C2, the output of
F▶◀

p is immediately delivered to all I⋊i in the output signature and a new message
is computed to d+

p or the protocol returns an output. In C1, the clocking of theF▶◁
p

output is not immediate, instead A1 can clock the buffers to parties separately and
A1 may clock inputs fromOin to I⋊i for the same protocol instance. However, due
to sequential scheduling, inputs from Oin are not processed before the message
from c−i,p is received. Hence, the early clocking of the messages to I⋊i in C2 does
not change the steps in the execution of I⋊i . In C1, the interpreter I⋊i will give the
same next messages and, therefore, the same value will appear in d+

p .
Based on the previous description, In order to convert A1 to work against C2,

the buffers c−i,p must be simulated and d+
p must be simulated as empty until A1

has clocked all the messages out from c−i,p. To convert A2 to work against C1, the
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buffers c−i,p must be clocked right after clocking d+
p .

Note that the abstract adversary only alters memory locations of outgoing
DMACALL calls. The return values are written to the memory by F▶◁

p or F▶◀
p

and they appear in the memory at the same time. However, the interpreters are
executing with different timing and compute their DMACALL calls at different
times. However, neither adversary has a reason to want to modify the memory be-
fore all interpreters in I have written their output. The modification can be done
when interpreters have already produced the message to d+

p .

5.7. Abstract Model and Arithmetic Black-Box

Table 2 summarises the derivation of the abstract model and the assumptions
needed to reach any step from the hybrid execution to the abstract model. Note
that each assumption is marked for the steps in the transformations where the
property was used. However, the transformations themselves are in order and es-
sentially, to arrive at the abstract model from the hybrid model, all assumptions
have to be met.

The hybrid execution model is the initial protection domain. Each party sends
its inputs to the respective ideal functionalities and gets the results. The adver-
sary can completely control the execution timing and the actions of the corrupted
parties. The model with simplified scheduling is derived in Section 5.3. This
introduces an adversary that only modifies messages that the party would com-
pute and does not send arbitrary messages. The shared memory model derived
in Section 5.4 separates the memory from the parties and specifies the details of
the protocol execution. The abstract memory is introduced in Section 5.5 to hold
the values represented by the values in storage domains. Firstly, the memory is
separated into two machines that are synchronised. Next, the memory holding the
private values of the storage domains is gradually removed to arrive at the pro-
tocol execution with only abstract memory. Finally, in Section 5.6, the protocol
execution model is simplified to the abstract model.

The arithmetic black-box (ABB) was introduced in Section 2.1.8 and com-
pared with the formalisation of protection domains in Section 3.7. The abstract
model is in many ways closer to the ABB formalisation than the hybrid model
was. For example, ABB allows accessing secret data through handles which have
the same role as the memory locations used in the abstract model. The operations
inside ABB are like the canonical ideal functionalities or the local functionalities
G0

q . They expect the command from all or a sufficient number of parties to use the
secret value and then perform the computations and store the result in a handle.
The results are stored in an internal memory like M0 in the abstract model. In
both cases, the functionalities can also have direct interactions with the adversary.
The interpreters are not part of the ABB description. The abstract model is de-
rived with the intention of considering a specific protocol that is executed by the
interpreter. However, a possible protocol is such that expects public commands
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Table 2: Summary of the transformations to the abstract model and the assump-
tions made about the protocol Π and protection domain in Πe.
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Tight scheduling +
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Secure against rushing +
Well-formed protocol + +
Canonical protocol + +
Meaningful local operations +
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Hiding storage +
Modification-aware storage +
Limited-control storage +
Negligible oblique modifications +
Output-isolated +
Simulatable protection domain +
Embeddable protection domain +
Predictable subprotocol invocation +
Sequential scheduling +
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from Πe. In the abstract world, such protocol gets these inputs from Envpd that
represents all parties. In this case, the abstract model with such a protocol is like
the ABB. The main difference is that Envpd can directly write inputs to the mem-
ory through Oin and read the outputs from Oout . ABB has only the capability to
receive public inputs belonging to some party and to give public outputs.

The capability to consider only a sub-protocol represented by Π and leave the
rest of the computations to Πe is the strength of the modular secure computation
formalisation. In addition, the strength of the abstract model is that it is sufficient
for security proofs of sub-protocols. Hence, the existence of the interpreters and
the ability to have private inputs to Π is a crucial factor separating the abstract
model from the ABB formalisation. However, even when considering them both,
the whole formalisation looks like an ABB for Envpd. The results that a proof in
the abstract model is sufficient for security in the hybrid model gives a simple way
to define new protocols Π that are as secure as some canonical ideal functionalities
F so that the set of the protocols in Fpd can be extended by F . As a benefit, the
abstract model derivation has specified several conditions that are reasonable but
must be met in order to analyse the security of the protocol in this model.

5.8. Abstract Model and Formal Verification

One of the initial motivations for developing the abstract model was to develop a
system to formally verify relatively generic algorithms that can be executed using
various MPC frameworks. Achieving this goal requires two tasks. Firstly, to ver-
ify the derivation of the abstract execution model itself in order to further establish
its correctness and soundness for security proofs. Secondly, to define an environ-
ment where the abstract security can be proven. Both of these tasks are likely
complicated undertakings but would significantly increase the assurance that the
proposed protocols are secure. The hope is that abstract execution simplifies the
protocol description and removes the concrete storage domains and, therefore, re-
duces the complexity of the protocol in a manner that may be easier for the formal
tools to address. For example, to rely on the definitions of hiding and modifica-
tion awareness rather than the properties of the algebraic structures of the storage
domains. Of course, it is possible to prove the results from algebraic assumptions
alone but the resulting formal proofs would be much longer, which is a real con-
cern given the typical length of current formal proofs. That is, one can view the
abstract execution model as try to modularise and simplify proofs before formal
verification. A proof in the abstract model would have to focus on the order in
which the public values are created and which inputs are used and the simulation
of the public values. Focusing on the values in the memory enables us to better
describe the protocol as one unit and not a collection of parties also removing the
complexity that comes from considering all possible orders of scheduling.

A significant difficulty of using proof assistants to derive and verify formal
proofs for MPC is that they are designed for game-based proofs and well suited
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for security notions that are game-based themselves, but it has been difficult to
achieve simulation-based security, especially with composition. A good overview
of computer-aided cryptography is available in [12]. The difficulties with simulation-
based proofs would also affect any proofs in the abstract model. Note that while
there is no established common method to formally prove security of secure com-
putation, there are approaches to formally verify some concrete secure computa-
tion protocols as well as to describe composability frameworks.

Isabelle/HOL2 was extended in [38] to allow simulation-based proofs for pas-
sive security and such proofs were demonstrated for the two-party multiplication
using Beaver’s triples and oblivious transfer protocols. There are also verified im-
plementations of passively secure garbled circuits [1] and [2] that also needed to
define simulation-based proof techniques for EasyCrypt 3 [14, 15]. Passive secu-
rity of an information-theoretically secure three-party count retrieval protocol is
addressed in [130]. They also use simulation but use it as part of the proofs rather
than extending EasyCrypt. The first formal proof for an MPC protocol that has
active security was done using EasyCrypt in [77]. These proofs required defining
a new set of security definitions that are better suited for EasyCrypt but imply
simulation-based security. The mobile adversary model was considered in [66].

A more general look at proofs of universal composability in EasyCrypt was
taken in [48]. This work considers specifying the ideal and real functionalities,
defining the simulators and demonstrating the validity of the simulator, allowing
to combine proofs to a proof of the composed protocol. They define EasyCrypt
modules to express these executions with any adversary and environment and ex-
press the statement that real and ideal executions are indistinguishable. Their
formalisation does not cover the full capabilities of the universal composabil-
ity framework but should be a suitable basis for the case required to formalise
MPC as done in this thesis. EasyCrypt has been enhanced to also consider ad-
versarial computational complexity [13] to include statements about adversaries’
success in relation to their computation resources. This enables them to propose
another formalisation of UC in EasyCrypt. Another line of work formalizes the
interactive Turing machines used in UC through new interactive lambda calculus
to support tools for UC proofs [97]. Constructive cryptography [105] is also a
variant of defining secure protocols through composition of possibly less secure
components, it has been modelled in HOL [16, 104]. The question of formaliz-
ing verification of observational equivalence is addressed in [68] with the goal of
proving equivalence without explicit use of bisimulation. However, all these can
be seen mostly as early work still in need of further tool development rather than
solutions ready to use. It would be interesting to combine these formalisations
with the formalisation of MPC from Chapter 3 and the abstract model derived in
this chapter.

2https://isabelle.in.tum.de/
3http://www.easycrypt.info/
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5.9. Application of the Abstract Model

This section gives some examples of how existing secure computation frameworks
fit into the formalism of this thesis and what changes when the security of some
protocols is proven in the abstract model instead of the real model.

Overall, the conditions that the framework and protocol have to satisfy in order
to allow the transformations from the real to the abstract model and back are as
follows.

1. All ideal functionalities are canonical (Definition 14).
2. All ideal functionalities have tight scheduling (Definition 32).
3. All used local functionalities are meaningful (Definition 15) and transparent

(Definition 44).
4. Used storage domains are hiding (Definition 8), modification-aware (Defi-

nition 10) and have the limited control property (Definition 12).
5. The protocol description is well-formed (Definition 38) and in a canonical

form (Definition 42).
6. The protocol is robust against malformed inputs (Definition 34) and secure

against rushing (Definition 36).
7. The protocol is output-isolated (Definition 45).
8. The environment (the protection domain Πe) has to be embeddable (Defi-

nition 50) and simulatable (Definition 31).
Items 1, 2, 3, and 4 characterise the protection domain itself. For any existing

protection domain, these could be proven once and then used for different kinds
of protocols. The condition in item 8 is actually also mainly the requirement for
the protection domain, as the part of the environment that it applies to, is the
part that is executed in the protection domain as Πe. The protocol can be quite
easily written to satisfy conditions in item 5, as well as to manage malformed
inputs as required in item 6. Security against rushing that is part of item 6 can be
achieved for secure multiparty computation protocols as discussed in connection
with Theorem 12. The main protocol property that must be carefully considered
is the output isolation in item 7. However, it is common for many protocols to
return their outputs right after the outputs are computed and, therefore, according
to Lemma 14, output isolation is also trivially achieved.

5.9.1. Passive Security with Secret Sharing

Many honest majority protocols that are based on secret sharing and are secure
against a passive adversary can be achieved without a private setup. Such pro-
tocols are based on the linear properties of the sharing scheme. The storage do-
main and the allowed corruption for it are defined by the sharing scheme. Lin-
ear combinations are local functionalities where the meaning is defined by the
linear combinations, and multiplication and other computations are represented
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as ideal functionalities operating on the shares. The canonical ideal functionali-
ties for the passively secure case are very simple. They do not leak anything to
the adversary, and they always succeed in reconstructing the inputs and, there-
fore, also always give valid outputs. In addition, the adversary is not allowed to
do any modifications in the case of passive corruption and therefore, the modi-
fication awareness and limited control over the storage domain are trivial for a
passive adversary. Simulatability and embeddability of such protection domains
are again trivial since there is no private setup information. Note that the pas-
sive adversary does not perform any modifications. Therefore the transparency
of local functionalities is irrelevant since there can also be no modifications that
need to be propagated through the functionalities. In addition, security against
malformed inputs is trivial since the adversary cannot modify the computations
and planned computations should not result in malformed inputs. For the fol-
lowing examples, security against rushing is achieved thanks to using symmetric
programs (discussed in Section 5.3.3), where all parties need to give input to all
ideal functionalities.

5.9.2. Sharemind Protection Domain

The Sharemind computation framework with a protection domain using three par-
ties and additive secret sharing as described in Section 4.8.1 is a suitable example
for the passive security case. The storage domain uses additive secret sharing
over rings Z2ℓ for three parties. Hence, [[x]] = ([[x]]1, [[x]]2, [[x]]3) where x ∈ Z2ℓ

and [[x]]i ∈ Z2ℓ . This is hiding as long as at least one party remains honest. The
protection domain using additive secret sharing and three parties is secure as long
as at most one party is corrupted due to the properties of the computation algo-
rithms. The sharing functionality S generates two random values [[x]]1, [[x]]2 and
computes [[x]]3 = x− [[x]]1− [[x]]2. The reconstruction functionalityR simply sums
[[x]]1, [[x]]2, [[x]]3 to learn x.

The core computation functionalities are linear combinations that are local
functionalities and the multiplication protocol. The linear operations defined by
local functionalities are meaningful by definition. The multiplication protocol is
given in Section 4.8.1 as Algorithm 12. However, many more functionalities have
been proposed for the Sharemind protection domain, for example, equality checks
and division in [33], sorting in [31] or floating-point arithmetic in [87]. The ap-
proach taken by the protocol design for Sharemind naturally defines the ideal
protocols as canonical ideal functionalities, making it easy to consider Sharemind
in the current formalisation. The functionalities can also be easily considered as
having tight scheduling.

Greater Than Comparison. A simple protocol to compare signed ℓ-bit values
in Sharemind from [28] is given in Algorithm 17. Note that it assumes that the
most significant bit of the inputs is used to denote the sign of the integer and
that there is no overflow for the subtraction. It uses a bit shift protocol to ex-
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tract the bit. The most significant bit is one if the number is negative and this bit
is extracted with the right shift protocol. Hence, x ∈ {2ℓ−1, . . . ,2ℓ− 1} in inter-
preted as a negative number. This protocol returns a fresh output right after it is
computed. Therefore, it is output-isolated, according to Lemma 14. It also uses
only a meaningful local operation to compute the subtraction and uses canonical
ideal functionalities otherwise. It can be implemented so that it is well-formed
and canonical. Memory alignment can be ensured by agreeing on the memory
locations beforehand. A security proof in the abstract model has to manage an
adversary that does not see any values but can schedule the protocol. It has to
show that it is clear when the protocol produces outputs so that the outputs of the
real and ideal case can be clocked synchronously.

Algorithm 17: Sharemind GreaterThan([[x]], [[y]]) protocol.

Input: [[x]],[[y]] for x,y ∈ Z2ℓ

Output: [[w]] where w = 1 if x > y and w = 0 otherwise
[[d]] = [[y]]− [[x]]
[[v]] = ShiftRight([[d]], ℓ−1)
[[w]] = Reshare([[v]])
return [[w]]

Finding the Minimum. Different comparison-based sorting algorithms can be
implemented in Sharemind as proposed in [31]. A simplification of sorting is a
protocol to take a minimum of two items in Algorithm 18. It uses a protocol
Shuffle that gets two inputs and gives out fresh shares for them in a random
order.

Algorithm 18: Sharemind Min([[x]], [[y]]) protocol.

Input: [[x]],[[y]]
Output: [[w]] where w = min(x,y)
[[a]], [[b]] = Shuffle([[x]], [[y]])
[[w]] = GreaterThan([[a]], [[b]]))
w = Publish([[w]])
if w = 1 then

return [[b]]
else

return [[a]]

The problem with this algorithm is that it is computing the values [[a]], [[b]]
before it becomes known which of them is the output. Hence, it is not falling
under Lemma 14 because the output is not returned right after it is computed.
In the case of Sharemind, it is very easy to make this protocol fall under the
conditions of Lemma 14 by adding a Reshare protocol after the output is chosen
and before it is returned. However, it makes the protocol more complex. The
other possibility is to prove output isolation separately. In this case, the proof is
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relatively simple as the passive adversary cannot modify the values in the protocol
and the scheduling of a well-formed protocol like this does not change what is
computed. Hence, it is possible to define some default scheduling and simply
clock through the protocol to learn the value w and the output S+ gives in F4 and
simulate the protocol timing for the adversary who is interacting with F3.

The final security proof of the protocol simply has to show that it can simulate
the value w that is published. The exact distribution of w depends on the knowl-
edge that there is for the distribution where x and y come from and how likely it
is that they are equal. On the other hand, if you use a version of GreaterThan
that outputs 1 with probability 1/2 when x = y, then the protocol is unconditionally
secure.

5.9.3. Active Security with Private Setup

Compared to the passive security model, the protocols in the active security model
have to consider the actions of an active adversary in the protocol and to consider
storage domains that offer some security for modifications as well as hiding prop-
erty. In addition, these protocols require some setup information.

SPDZ Protection Domain. The SPDZ computation framework [59] is achiev-
ing active security with a storage domain that contains additive secret sharing in
a field and an authentication code for the shared value. SPDZ operates in the
precomputation model, where shares of random values and random multiplica-
tion triples are prepared before the online phase. The core of the online phase
has remained the same as originally proposed in [59] with the changes in how the
reconstruction verifies the shared result. The up-to-date verification is described
in [54]. However, for the precomputation phase, there have been several different
approaches [54,59,88,89]. The following description focuses on the online phase
and assumes that there is some secure precomputation phase available.

The storage domain is based on additive secret sharing in a field F. A secret
x ∈ F is shared as [x] = {([[x]]1, [[αx]]1), . . . ,([[x]]n, [[αx]]n)} where party Pi has
[x]i = ([[x]]i, [[αx]]i) and [[x]] denotes the additive shares of x and [[x]]i ∈ F. [[αx]]
denotes the additive shares of α · x and α is the private key of the authentication
mechanism. The private key is also additively shared and party Pi only has [[α]]i.
It is the role of the setup F△ to distribute [[α]]. The sharing functionality takes the
input x and [[α]] to produce authenticated shares [x]. Internally, it computes α and
α · x and then uses additive secret sharing to produce fresh shares for both x and
αx. This storage domain is hiding as long as at least one party remains honest.
The reconstruction functionalityR reconstructs x, αx and α internally and verifies
αx = x ·α . The security analysis of the authentication mechanism shows that the
adversary can only find a suitable modification of the corrupted shares of [[x]] and
[[αx]] if it could also guess the key α . Hence, if the key space is big enough, then
the storage domain is modification-aware and the only allowed modification is to
invalidate the shared value. Any value that is public or in the local storage of the
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corrupted party can be freely modified as it does not have any integrity protection.
For hidden values that are authenticated, the adversary can only modify them to
⊥ and a random non-zero modification of the corrupted party’s share achieves the
same effect. Therefore, the storage domain also has limited control property. If
the adversary has broken the hiding property, then it also can reconstruct the key
α and trivially modify all values.

The ideal functionality for the online phase of SPDZ is commonly described
as an ABB and not the modular description required here. However, the basic
functionalities inside the ABB can also be formalised as canonical ideal func-
tionalities or local functionalities. The building blocks of the linear combina-
tion are local functionalities. These are either to add or subtract shared values
or multiply the shared value with a public value. All these are clearly mean-
ingful. They are also transparent, for example, if the adversary modifies output
shares ([[y]]i, [[αy]]i) to be ([[y]]i, [[αy]]i) and the operation was addition x + z or
subtraction x− z, then the modification that changes the input ([[x]]i, [[αx]]i) to
([[x]]i +[[y]]i− [[y]]i, [[αx]]i +[[αy]]i− [[αy]]i) achieves the same effect. For a multi-
plication c[[x]] with a public value c, the modification on the input is ([[x]]i+([[y]]i−
[[y]]i) ·c−1, [[αx]]i+([[αy]]i− [[αy]]i) ·c−1). In both cases, if the adversary manages
an oblique modification that the extractor does not catch, then the input modifica-
tion is also oblique. For SPDZ, oblique modification means that the modification
was successful at changing the value so that the reconstruction succeeds and its
probability is equivalent to guessing the key.

In the basic case of protocols, the multiplication protocol is the only one that
has to be corresponding to a canonical ideal functionality. The corresponding
canonical ideal functionality collects both inputs, reconstructs them, computes
multiplication and gives fresh shares of the output to all parties. The ideal func-
tionality knows α from the F△ so that it can verify the opening and generate valid
shares. The key α is only used by the reconstruction and sharing components in
the modular ideal functionality. The real multiplication protocol of SPDZ is us-
ing precomputed triples using the idea from [17]. However, these triples are not
considered as inputs to the multiplication functionality. Rather, the real multipli-
cation protocol itself is in a hybrid model, where it could be thought of as first
computing the triple and then performing the rest of the multiplication protocol
like in Algorithm 19. Thanks to the fact that Beaver triples are random and with
uniformly random shares then, so are the outputs of the multiplication protocol. If
the random triple generation can also fail, then the ideal multiplication function-
ality has to allow the adversary to fail the protocol execution even if the inputs
can be reconstructed correctly. Each party is expected to send their inputs as one
message and then they expect the output of the functionality, which means that it
has tight scheduling.

The SPDZ protection domain is simulatable thanks to the relatively simple
setup that only produces [[α]] where [[α]]i is the private parameter of party Pi

and that no party knows α . The simulator can use the corrupted parties [[α]]i
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Algorithm 19: Multiplication Mult([x], [y]) using Beaver triples.

Input: [x],[y]
Output: [w] such that w = xy
[a], [b], [c] = ComputeBeaverTriple() // where c = ab
[e] = [x]− [a]
[d] = [y]− [b]
e = Publish([e])
d = Publish([d])
[w] = [c]+ e · [b]+d · [a]+ ed
return [w]

and generates random simulated [[α]]sim
j to have a simulated α

sim. Thanks to the
perfect hiding property of additive secret sharing, the shares of [[αx]] and [[αsimx]]
are uniformly random and the difference is only clear when all parties become
corrupted. However, in case all parties become corrupted, then the simulator also
learns the right α since it has all individual [[α]]i values and can adjust the view to
use this value instead. In case of adaptive corruption, each time when a new party
becomes corrupted, the remaining set of [[α]]sim

j for honest parties P j has to be
adjusted by the simulator to keep the original value of the simulated key that can
be used to verify if reconstruction succeeds in any specific point in the protocol
simulation. However, this is trivial for additive shares. If the last party becomes
corrupted and the simulator needs to reveal all shares of this party, then these need
to be recomputed to adjust the simulated key to the real key. However, this can
also be done as it is the common step required in SPDZ simulation of publishing
outputs and is also considered as patching in [56].

Multiplication as a Composed Protocol. Multiplication using Beaver triples is
shown in Algorithm 19 and it can be seen as a functionality that is composed of
precomputation, publishing and linear combinations. It can be proven secure in
the abstract model. In the abstract model, the first step uses a canonical ideal pre-
computation functionality to compute the triple. The triple is written to memory
M×

0 and the adversary can only invalidate the triple if it wishes, but it remains
private. Then, local functionalities are used to compute the values e and d toM×

0 .
These values are also published to the public storage domains for all parties. Note
that this differs from the local protection domain for each party. For a local value,
the adversary can modify them. However, the local functionalities expect the in-
put to be in the public protection domain - all parties should send the same e to the
functionality in order for it to be meaningful. Hence, a suitable public domain is
such that it ensures consistency of the value and does not allow modifications. As
a final step, all the local computations are performed to compute w. Hence, in this
case, the abstract world allows the adversary to control the timing of the publish-
ing ideal functionalities and the precomputation and to see the values of e and d
inM×

0 . This protocol can be implemented so that it is well-formed. There are no
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conditional jumps and all local computations are done with local functionalities
for the linear combination. The ideal precomputation functionality can be called
so that it writes its outputs in a memory-aligned manner. Hence, this protocol can
be specified in a canonical form. All inputs are expected to be in the field and
therefore have a known length. The arithmetic of the protocol is secure against
malformed inputs under reasonable assumptions.

Ideal Functionality for Multiplication. The desired ideal functionality corre-
sponding to the multiplication can behave differently based on the actual be-
haviour of the precomputation and publishing functionalities. If these can abort,
then also the multiplication functionality must have an explicit abort. However,
if these functionalities only fail silently, then also the multiplication would only
fail silently. For example, using the partial opening [59] instead of full publish-
ing is a common optimisation of this protocol that could open e or d to a random
value of the adversary’s choosing. However, if this happens, then the result w is
inconsistent and cannot be properly reconstructed, but the abort is not explicit in
this protocol. Note that the adversary does not see the values of any shares in the
abstract execution of the composed protocol or the corresponding abstract model
with only the ideal functionality of multiplication.

Simulation of Multiplication. In order to prove security in the abstract model,
the simulator has to translate all actions of the adversary in the abstract model of
the multiplication protocol to actions against the ideal functionality in the abstract
model. The simulator has two main goals. Firstly, the simulator has to generate
the view that the adversary has in the abstract model version of the composed
protocol. Secondly, the simulator has to decide if the adversary actions result in
aborting the functionality (and whether it is silent or known to all parties). The
view of the adversary consists of the values e and d that are published and it sees
them even if it decides to force the publication to use some other value e′ or d′.
The simulation can use random values to simulate e and d as these values have
a uniformly random distribution in the real protocol. Note that differently from
the hybrid model, the simulator does not have to simulate the shares of the pre-
computation output since these are not present in the abstract model. In addition,
the outputs of the protocol are not available to the adversary because they are in
a hiding protection domain. Hence, there are no simulated outputs. Assume that
the protocol execution is sequential. In this case, the simulation of the progress of
the composed protocol is straightforward. The simulator internally simulates all
buffers to track the protocol execution of the composed protocol. This simulation
reveals when the composed protocol has computed its outputs or when e and d are
computed. When the adversary clocks the output of the composed protocol, then
the simulator clocks the output of the ideal functionality. Hence, in this case, the
simulation description is focused on the main intuition about the security, which
is that uniformly random values are suitable to simulate the published values.

Multiplication and Output Isolation. The difficulty of applying the transfor-
mation from hybrid to abstract model to the multiplication algorithm is in the
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output isolation requirement. The outputs are computed using local operations
as [w] = [c] + e · [b] + d · [a] + ed. Therefore, the basic result in Lemma 14 does
not apply and output isolation must be proven separately. For this case, the proof
has to rely on the randomness introduced by the precomputation functionality that
gives [a], [b] and [c]. In both collections defined by the output isolation (Defini-
tion 45), the adversary sees the values e and d. In order to prove output isolation,
the output shares of the precomputation in F4 must be simulated by computing
them from the outputs generated by S+ and reversing the local computations that
lead to these outputs. Note that the shares of each party are independent. Hence,
once e and d are fixed, and [w] shares are available from S+. The simulator can
fix uniformly random shares for [a]i and [b]i and compute the share [c]i for party
Pi to simulate the precomputation results.

The previous idea holds if the adversary cannot abort the protocol during pub-
lishing e and d as is the case when all openings are verified as a batch later. If the
adversary can abort the protocol during publishing, then the simulation is com-
plicated, as the construction φoi has to learn the output shares and the values of e
and d to simulate suitable values for the precomputation outputs inM+. Hence,
in orderd to allow this the adversary has to be able to also abort the protocol after
learning its output shares, hence, after S+ has generated the outputs.

The fact that the simulator needs to know the final output in order to simu-
late the precomputed values is also problematic if the adversary can modify the
published values e and d. If the adversary chooses to modify these values then it
means that the final output for [w]i would also not be the same as the one given by
the ideal functionality. Hence, the multiplication protocol is such that the output-
isolation requirement is truly complicated to prove.

Note that while this means that the abstract model is not convenient to prove
the security of the multiplication protocol it does not invalidate the security of the
multiplication. If the multiplication step is proven secure in the ABB model, then
there are no output shares that need to match as there are no shares received from
ABB. However, the assumption that the outputs of honest parties are uniformly
random shares appears when the final outputs of the ABB are published and the
shares of the honest parties are simulated so that the reconstruction can publish
the same value.

Secure Integer Division with a Private Divisor. The integer division protocols
from [135] are good examples of algorithms that are written so that their descrip-
tion is independent of the exact details of the protection domain. The algorithms
expect data and operations to be in some finite field and the required ideal and
local functionalities are explicit in the algorithm write-up. In principle, any pro-
tection domain supporting these could be used to implement the algorithm. In
fact, the security proofs of these algorithms follow the same ideas as the abstract
model using hiding of the shares and focusing on the values public to corrupted
parties. The ideal functionality that they propose is a canonical ideal functionality
where all parties send their inputs and it gives fresh shares of the output. The
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adversary can abort the protocol. The following points to some possible issues in
the security proofs from that paper. However, the protocol itself is, most likely,
secure and simply needs a more refined security argument.

However, the need to consider shares is one step away from the full abstract
model and complicates the proof. For example, the proof of Theorem 2 in [135]
states that the view that the adversary can have of the shares is identically dis-
tributed to random shares. This is indeed true for the SPDZ protection domain,
but some other protection domains could be such where some part of the shares
is not fully random, for example, if it contains some part of the setup. In such
cases, shares should be simulated using Ssim

δ
from the hiding property. In addi-

tion, the observation that they could be simulated using random shares is slightly
incorrect because some of these values are indeed derived from others using lo-
cal computations and, therefore, some shares should have dependencies based on
these operations4. When lifting these results further to the abstract model, the
shares could be removed from consideration as the fact that intermediate shares in
hiding storage domains can be simulated is already included in the transformation
to the abstract model. Then, the focus would be fully on the values that are public
to all or some parties.

The second problem with the security claims in [135] is that they prove privacy
and do not discuss how the protocol can be simulated to give the same outputs as
the ideal functionality. If another algorithm would want to use this protocol as
a building block (to say that it is in a hybrid model with oracle access to this
division functionality), then its security proof assumes that it gets output shares
with the same distribution as the fresh shares, but currently, this is not proven.
The framework proposed here addresses this issue when the output isolation of
the protocol is proven.

5.9.4. Active Security with Honest Majority

The problem with the previous example was that the multiplication protocol did
not fit our framework for MPC. This example considers the case of multiplica-
tive linear secret sharing (introduced in Section 2.1.4) with linearly homomorphic
commitments based on [53]. The aim is to show a case where protocols with ac-
tive security and private setup fit the MPC framework set up in this chapter. The
following first introduces the components of this scheme and then summarizes the
storage domain and functionalities. This assumes that there is a broadcast channel
that can be represented as an ideal functionality in our framework.

Shamir’s Secret Sharing. In Shamir’s (t,n)-threshold secret sharing scheme [129]
a secret value v ∈ F is in some field F and shared as evaluations of a polynomial

q(x) = v+
t−1

∑
i=1

aixi

4A similar problem is solved in Theorem 3 in [135] that considers the second protocol.
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where party Pi learns q(ei) for some publicly known ei such that ei ̸= e j and
ei ̸= 0. This defines a scheme for n parties with a threshold t. The secret can
be reconstructed using at least t shares and interpolation. Note that this means
that the reconstruction is a linear combination of the shares and some public con-
stants. This sharing is linear and a share of the addition can be computed by each
party summing their shares of the inputs locally. The multiplication for Shamir’s
scheme was defined in [71] and it is a special case of the Maurer’s protocol con-
sidered in [53]. The idea is that all parties multiply their shares locally and then
get shares of the multiplication result but these are shared with a polynomial with
degree 2(t−1). If 2(t−1)< n then the multiplication result can be reconstructed
using 2t−1≤ n shares. In such case, the multiplication protocol can also be con-
cluded with a step where each party shares its locally computed multiplication
result and the parties together compute the reconstruction operation on the new
shares to reduce the degree of the polynomial sharing the output back to t − 1.
Hence, for these cases, Shamir’s scheme is also multiplicative.

Commitments. In general commitment schemes consists of two algorithms
Commit(x) = (c,d) and Open(c,d) = x. The idea is that a party can create a
commitment c and release it, later it can release a decommitment string d that can
be used to open the commitment. A commitment is hiding, if seeing c without d
does not reveal information about x and binding, if a commitment c can only be
opened to the value x that was used to compute the commitment. In the follow-
ing, a series of commitments is needed. By ⌈x⌋i the following denotes a hiding
commitment that is computed by party Pi that also holds the information needed
to open the commitment. A commitment is linearly homomorphic if ⌈x⌋i and ⌈y⌋i
can be used to compute ⌈x+ y⌋i which is a valid commitment to x+y and party Pi

can compute the decommitment message needed to open ⌈x+ y⌋i. In the follow-
ing, it is important that a commitment ⌈x⌋i can be transformed to a commitment
⌈x⌋ j. Moreover, the homomorphic property also has to hold for commitments by
different parties, such that one can compute ⌈x⌋i + ⌈y⌋ j. Note that the description
of the protocol in [53] also considers how to build suitable linear commitments
from the linear secret sharing scheme, but the following description uses just the
abstract definition of the commitments. These commitments are binding and hid-
ing assuming the set of parties that can reconstruct the sharing scheme remain
honest.

Protection Domain. Together, the idea of the commitments and Shamir’s shar-
ing result in a storage domain where each value is shared by the Shamir’s scheme
and each share is committed to using the homomorphic commitment. The com-
mitments are known to all parties. In this section, shared value x is denoted as
⟨x⟩ where ⟨x⟩= {x1, . . .xn,⌈x1⌋1, . . . ,⌈xn⌋n} where each party Pi knows xi and all
commitments ⌈x1⌋1, . . . ,⌈xn⌋n and the decommitment for ⌈xi⌋i. This storage is
hiding for a collection of up to t− 1 parties if the commitments are hiding. This
is also modification aware if the commitments are binding. As all parties have
the means to verify all shares then any modification by an adversary will be no-
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ticed by the honest parties. Furthermore, as there is an honest majority there are
always at least t honest shares and the sharing scheme is robust. Hence, in this
case, the adversary can not modify nor invalidate the values in the storage domain.
This means that the scheme is modification aware according to our definition, just
that no modifications are possible. This is a verifiable secret sharing scheme that
enables each party to verify each share that they see.

The operations needed to build a basic protection domain are sharing, recon-
struction, addition and multiplication. Addition operation for ⟨x⟩ is computed by
each party locally. Each party sums their shares and the needed commitments.
This is clearly meaningful and results in the addition of the shared values. Recon-
struction verifies the commitments and performs the interpolation. Multiplication
(in Algorithm 23) and sharing algorithms need some sub-protocols to manage
the commitments. These sub-protocols are the commitment transfer protocol CTP
in Algorithm 20, commitment sharing protocol CSP in Algorithm 21 and com-
mitment multiplication protocol CMP in Algorithm 22. For brevity, all algorithm
descriptions omit the fact that if the opening of any commitments fails or is not
opened to the expected value (e.g. 0) then the protocol also needs to abort as it
indicates that the party opening the commitment is corrupted. In this case, all
parties can exchange this information and as there is an honest majority they can
always agree if the complaint is genuine or fake. A possible way to deal with
any failure is to open the inputs of the corrupted party and restart the computation
without them. However, for the purpose here we can assume that the protocols
can simply abort.

A commitment transfer CTP is a functionality that takes as input a commitment
⌈x⌋i and outputs a fresh commitment ⌈x⌋ j such that all parties can verify that the
value in the commitment stays the same. In the protocol in Algorithm 20 each
party locally computes a commitment that the party P j has to be able to open to
0. If the opening succeeds then all parties can verify that the new commitment
contains the same value as the input commitment.

Algorithm 20: Commitment transfer protocol CTP(⌈v⌋i)
Input: ⌈v⌋i know to all parties
Output: ⌈v⌋ j known to all parties
Pi opens ⌈v⌋i to party P j

P j computes ⌈v⌋k and sends it to all parties
All parties locally compute ⌈v− v⌋ j = ⌈v⌋i−⌈v⌋ j

P j opens the commitment ⌈v− v⌋ j to 0
Return⌈v⌋ j

A commitment sharing protocol CSP is used to generate commitments to the
Shamir’s shares of the initial value. For input ⌈x⌋i it returns ⌈x1⌋1, . . . ,⌈xn⌋n. The
commitments are again fresh and each party can verify the correctness of this pro-
tocol. Committing to the coefficients of the polynomial in Algorithm 21 ensures
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that the resulting shares are shared with the polynomial with the right degree.
Local computations and CTP ensure that the output commitments are to the right
values and fresh commitments. Note that as a result each party P j also knows
v j. Obtaining a secret sharing algorithm Share to get ⟨x⟩ is a simple extension
of CSP. At first, the input party Pi commits to its input value v and shares ⌈v⌋i
and then parties execute CSP(⌈v⌋i). Note that during CTP each party P j learns its
output share v j and CSP ensures that everyone knows the needed commitments
⌈x1⌋1, . . . ,⌈xn⌋n. Note that the party generating the share has control over the out-
puts that the other parties get as they choose the polynomial coefficients a j. In
order to ensure that the results are random shares there is a need to reshare these
values. For example, we can repeat the sharing protocol so that each party shares
the share that they receive and they then compute the reconstruction on the shared
values.

Algorithm 21: Commitment sharing protocol CSP(⌈v⌋i)
Input: ⌈v⌋i, party Pi knows v
Output: ⌈v1⌋1, . . . ,⌈vn⌋n where x1, . . . ,xn are shares of x

Pi chooses random a j ∈ F for q(x) = v+
t−1

∑
j=1

a jx j where vk = q(ek)

Pi commits to a j for j ∈ {1, . . . , t−1} as ⌈a j⌋i
All parties locally compute ⌈vk⌋i = ⌈v⌋i +

t−1

∑
j=1
⌈a j⌋ie j

k

Pi runs CTP(⌈vk⌋i) for each Pk to get ⌈vk⌋k
return ⌈v1⌋1, . . . ,⌈vn⌋n

A commitment multiplication protocol CMP is a functionality to produce a com-
mitment to the multiplication result of the inputs and prove that the commitment
is to the right value. The protocol in Algorithm 22 first computes a new com-
mitment and then all parties verify that the commitment is right. Note that the
common randomness can be chosen, for example, by each party choosing a ran-
dom value and then all parties summing the values. This protocol fails if any of
the opening fails or the value r2 is not 0 which indicates that party Pi is cheating.

The protocol for multiplication is in Algorithm 23 and makes use of CMP and
the fact that there is a public linear combination that can be used to represent the
interpolation needed to reconstruct a value. A double subscript mi j means that
the value mi has been shared and it is the j-th share. The linear combination is

represented by the values r j such that w =
n

∑
j=1

r jw j. This functionality fails if CMP

or CSP fails, after that it is local computation and all parties have means to later
verify the outcome. Note that the execution of the CSP can be aligned so that
first all parties commit to their polynomial and then they open to ensure that no
party chooses their share based on the values of other shares. The respective ideal
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Algorithm 22: Commitment multiplication protocol CMP(⌈v⌋i,⌈y⌋i)
Input: ⌈v⌋i, ⌈y⌋i
Output: ⌈w⌋i where w = v · y
Pi computes w = v · y and commits ⌈w⌋i
Pi chooses a random β ∈ F and publishes ⌈β⌋i and ⌈βy⌋i
Other parties collectively choose random r ̸= 0
All parties locally compute ⌈r1⌋= r⌈v⌋i + ⌈β⌋i
Pi reveals r1
All parties locally compute ⌈r2⌋= r1⌈y⌋i−⌈βy⌋i− r⌈w⌋i
Pi opens ⌈r2⌋ to 0
return ⌈w⌋i

functionality for the multiplication can fail but if it succeeds then it outputs fresh
shares of the multiplication results to all parties.

Algorithm 23: Multiplication protocol Mult(⟨v⟩,⟨y⟩)
Input: ⟨v⟩, ⟨y⟩, public reconstruction parameters r1, . . . ,rn

Output: ⟨w⟩ where w = v · y
Each party Pi runs CMP(vi,yi) giving ⌈mi⌋i
Each party Pi runs CSP(⌈mi⌋i) giving ⌈mi1⌋1, . . . ,⌈min⌋n
Pi computes wi =

n

∑
j=1

r jm ji

All parties locally compute ⌈wi⌋i =
n

∑
j=1

r j⌈m ji⌋i for all i ∈ {1, . . . ,n}

return ⟨w⟩

These protocols with ⟨x⟩ sharing with commitments give an example of an ac-
tively secure protocol that follows the pattern of secure computation outlined in
Chapter 3. The addition protocol is local and sharing and multiplication give out
fresh shares of the result. Hence, this can also be used as a basis to develop further
algorithms using the abstract model developed in this chapter. The simulatability
of this protection domain depends on the concrete instance of the commitments.
For the case of the commitments built from the sharing scheme in [53] simulata-
bility is straightforward as there are no secret parameters. Otherwise, the simu-
latability depends on the private setup and how it is used, especially in case of an
adaptive adversary corrupting more parties during the protocol.
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6. CONCLUSION

This thesis puts forth two approaches for simplifying security proofs for secure
multiparty computation algorithms. Both are intended to make protocol design
more efficient without sacrificing rigorous security proofs. In addition, they can
enable more efficient protocols or more general descriptions of algorithms. Both
approaches encourage a more modular analysis of secure multiparty computation
frameworks and applications. The overall goal is the enable a standard library
of secure multiparty computation algorithms and functionalities, ensuring that al-
gorithms can be defined using their building blocks and later used in all secure
computation frameworks that satisfy the preconditions of the algorithm. In or-
der to achieve these goals, the thesis defines a new modular way to formalise the
secure computation frameworks.

The first contribution is the possibility to consider input privacy as a sufficient
security level for many protocols included in complex applications. Input privacy
can be easier to prove than full security and can yield more efficient protocols. As
shown in Chapter 4, it is often easy to extend an input-private protocol to a secure
protocol, and input-private protocols can be combined to achieve composed pro-
tocols that are still input-private. An algorithm designer simply must show input
privacy of their new protocol. If the protocol is deterministic and correct, then out-
put predictability is achieved trivially. Otherwise, the security result also requires
showing output predictability. Input-private components of a secure composed
protocol can often give more efficient protocols as the notion is less restrictive
than security. The main restriction and avenue for future work regarding input
privacy is generalising the notion and composition results to the active security
model.

The second contribution is the ability to use the modular description of secure
computation and simplify it to the abstract execution model considered in Chap-
ter 5. There are clear conditions that need to be satisfied by protection domains
and protocols to do the security proofs in the abstract model. These conditions
are separate for the protection domain and the protocol, enabling us to consider
these independently when using the framework. For example, protection domains
can be shown to fit the modular formalisation of MPC with canonical ideal func-
tionalities as was done for Sharemind and SPDZ in Section 5.9. The designers of
the protection domain can do this part. The protection domains are often used by
others who will use them to implement their algorithms. People designing new
protocols can define the necessary functionalities and show that the protocol sat-
isfies the conditions set by the transformations. For protocols that achieve output
isolation trivially, it is not required to consider which protection domain or storage
domains are used to implement the protocol. Any protection domain that has the
necessary functionalities can be used to execute the algorithm securely. Proving
output isolation may require making some assumptions regarding the used stor-
age domains. In addition, any such protocol can be safely considered to extend
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the protection domain with the new functionality, and it is explicitly clear what
the new functionality and protection domain look like. The main complication of
using this approach to prove the security of algorithms lies in showing output iso-
lation. It would be beneficial to derive more results like Lemma 14 characterising
the structure of the output-isolated protocols.

The approaches formalised and analysed in this thesis are intuitively simple.
However, the detailed analysis discovered some underlying conditions that, while
often natural for secure multiparty computation protocols, should still be explic-
itly considered. For example, these are the output-isolation or output predictabil-
ity properties. As an extension of this work, it would be beneficial to go over
these results in some proof assistant. Further verification would help to either be
confident that all crucial details were noticed in the proofs and definitions of this
thesis or to find and fix any such missing details. It would be especially valuable
if the formalisation of the abstract model and the protection domain was available
in some proof assistant that would allow to prove the security of new algorithms
in the abstract model or to prove input privacy and output predictability. In ad-
dition, it would be interesting to extend the formalisation of the modular MPC
framework, for example for the case of mobile adversary and corruptible ideal
functionalities, and explore if the results of this thesis can be extended to these
additions.
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SISUKOKKUVÕTE

Turvalise ühisarvutuse kiire ja turvalise algoritmiarenduse
alused

Turvaline ühisarvutus on meetod, kuidas kasutada erinevate osapoolte privaatseid
andmeid nii, et neist sisendite privaatsust säilitades saada ühiseid tulemusi. Intui-
tiivselt tagab turvalisus seda, et sisendite kohta ei leki muud kui planeeritud ar-
vutuse tulemus ning arvutamise meetod on alati korrektne. Turvalise ühisarvutuse
jaoks on olemas erinevaid krüptograafilisi protokolle, mis võimaldavad kas konk-
reetseid arvutusi teha või defineerivad meetodi kuidas arvutada kõikvõimalikke
algoritme. See doktoritöö keskendub just sellele viimasele juhule, mida me võime
nimetada ka programmeeritavaks turvaliseks ühisarvutuseks. Erinevad osapooled
saavad anda oma privaatseid sisendeid ja ühiselt defineerida algoritmi, mida siis
nende sisendite peal rakendatakse. On võimalik ka, et järgmised arvutussammud
sõltuvad vahepeal saadud tulemustest.

Kui teoreetiliselt on võimalik teha kõiki arvutusi, on kriitiline õigesti mõtesta-
da, mida turvalisus selles kontekstis tähendab. Alati on vaja läbi mõelda, kas see
väljund, mis arvutustest tuleb, on ikkagi see, mida soovitakse ja mis on lubatud.
Samuti on vaja tagada, et arvutuse protsessi käigus ei lekiks rohkem informatsioo-
ni kui see väljund annab. Just teine küsimus algoritmi leketest on käesoleva töö
fookuses.

Klassikaline meetod algoritmi turvalisuse tõestamisel põhineb sellel, et algo-
ritmi tööd on võimalik simuleerida teades vaid korrumpeeritud osapooltele kätte-
saadavaid sisendeid ja väljundeid. Loogika on, et kui algoritmi käiku saab sedasi
jäljendada, siis ei saa need osapooled saada algoritmi jooksutamise ajal rohkem
informatsiooni kui neile niikuinii on arvutuse käigus ette nähtud. Formaalselt de-
fineeritakse ideaalne funktsionaalsus, mis kujutab endast algoritmi turvadefinit-
siooni. Käesolev töö defineerib turvalise ühisarvutuse jaoks kanoonilise ideaal-
se funktsionaalsuse, mis kogub kokku kõik sisendid, arvutab soovitud funktsioo-
ni ning tagastab väljundi vastavatele osapooltele. Nii sisend- kui väljundandmed
võivad olla kuidagi salastatud. Sellisel juhul ideaalne funktsionaalsus kõigepealt
eemaldab privaatsuskaitse ning seejärel arvutab tulemuse ning rakendab väljundi-
le ettenähtud privaatsuskaitset. Programmeeritav turvalise ühisarvutuse raamistik
koosneb paljudest protokollidest ning erinevatest andmete turvaliselt hoiustamise
viisidest. Näiteks võivad andmed olla ühissalastatud või krüpteeritud, neil võib,
aga ei pruugi olla terviklikkuse kaitset. Käesolev töö defineerib erinevad omadu-
sed, mis turvalise arvutuse raamistikul võivad olla ning seejärel kasutab üldistatud
formalisatsiooni, et arutleda algoritmide omaduste üle.

Turvalise arvutamise raamistik ise defineerib üldiselt palju olulisi alusproto-
kolle, näiteks liitmise ja korrutamise, millest omakorda saab ehitada keerukaid
algoritme. Paljud algoritmid on lihtsad ja opereerivad ainult salastatud andmetega
ning garanteerivad, et nende käigus midagi ei leki. Teisalt paljud teised algorit-
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mid kas annavad avalikke väljundeid või avalikustavad töö käigus vahetulemusi
ning seetõttu vajab nende turvalisus detailset analüüsi ka siis kui algoritm ise ka-
sutab turvalisi komponente, et arvutusi teha. See töö vaatleb eraldi kahte algoritmi
disainil ettetulevat juhtu. Esiteks seda, et vahel on võimalik suuremas algoritmis
kasutada komponente, mis tagavad küll sisendite privaatsuse ent pole turvalised.
Teiseks seda, kuidas tõestada algoritmi turvalisust nii, et saaks keskenduda huvi-
tavamatele osadele ning palju formaalseid detaile oleks automaatselt tagatud.

Kanoonilise ideaalse funktsionaalsuse definitsiooni järgi saavad turvalised olla
ainult protokollid, mis tagavad selle, et väljund on värskelt salastatud. Samas on
tegelikkuses võimalik defineerida protokolle, millel seda omadust ei ole, kuid mis
samas oma sisendite kohta midagi ei leki. Käesolev töö nimetab selliseid proto-
kolle sisendi privaatsust säilitavateks protokollideks. Sisendi privaatsust säilitava
protokolli väljundid on alati kas privaatsed või ei sõltu protokolli sisenditest. Kui
kõik sisendi privaatsust säilitava protokolli väljundid on omakorda sisendid mõne
turvalise protokolli jaoks ning komponeeritud protokolli väljundid tulevad kõik
turvalisest protokollist, siis on ka komponeeritud protokoll turvaline. Lisaks on
mitmest sisendi privaatsust säilitavast protokollist komponeeritud protokoll oma-
korda ka sisendi privaatsust säilitav. Seetõttu on võimalik sisendi privaatsust säili-
tavaid protokolle algoritmide arenduses kasutada. See aga on kasulik, sest sellised
protokollid võivad olla nii lihtsamad disainida kui ka efektiivsemad kasutada.

Turvalisuse korrektne formaalne tõestamine on üldiselt keerukas ning nõuab
paljude detailide läbimõtlemist. Teisalt on paljude algoritmide puhul üsna lihtne
sõnastada intuitiivset põhjust, miks nad on turvalised. Näiteks eelnevast kirjel-
dusest juba läbi käinud idee, et algoritm kasutab ainult salastatud andmeid ilma
midagi avalikustamata ning kõik arvutused tehakse protokollidega, mille turvali-
sus on juba eelnevast teada. Teine suurem osa käesolevast doktoritööst tegelebki
sellega, et defineerida abstraktne mudel, milles on võimalik teha intuitsioonile
hästi vastavaid tõestusi. Need tõestused keskenduvad just sellele, milliseid avali-
kustatud andmeid protokolli käigus näha võib olla. Abstraktne mudel ja detailne
formaalne mudel protokolli jooksutamisest on samaväärsed paljude turvalise ühis-
arvutuse raamistike jaoks. Töö defineerib erinevaid omadusi, mis peavad kas raa-
mistiku või protokolli jaoks kehtima, et samaväärsus kehtiks. Seeläbi kaardistab
töö ka eeldusi, mis turvalisest ühisarvutusest rääkides sageli implitsiitselt tehakse.
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