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Abstract
This research report gives a high-level technical overview of avenues that can be used to attack
applications that use Software Guard Extensions or Trust Domain Extensions as a privacy en-
hancing technology. We cover multiple attack vectors and give overview of techniques to make
these attack vectors more challenging to exploit. The reader of this report–likely a software ar-
chitect, or security engineer, etc.–is expected to be somewhat familiar with Intel Software Guard
Extensions and Trust Domain Extensions.
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Changes
• Version 1.4 (28. February 2025)

– Add information about Intel TDX
– Reference HECKLER vulnerability.
– Reference SIGY vulnerability as a representative for attacks using malicious signals.
– Reference TDXdown vulnerability.
– Reference PowSpectre attack.
– Expand the reference to PLATYPUS as a representative into a new section for power side

channels.
• Version 1.3 (21. January 2024)

– Reference Downfall attacks.
– Reference AVX-TSCHA vulnerability.
– Reference PMFault vulnerability.
– Reference AEX-Notify feature.
– Add information about enclave cloning and state rollback attacks.

• Version 1.2 (12. January 2023)
– Reference SGX.Fail attacks.
– Reference ÆPIC Leak vulnerability.
– Reference SmashEx vulnerability.
– Recommend simultaneous multithreading to be disabled.

• Version 1.1 (30. December 2021)
– Reference FPVI and LVI vulnerabilities.
– Reference a survey of SGX vulnerabilities and countermeasures.
– Update recommendations involving subnormal floating-point numbers.
– Add two obfuscation and randomization techniques to consider.
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1 Technical Background
Intel Software Guard Extensions (SGX) is an extension of the instruction set of Intel proces-
sors which enables developing secure applications when even the host operating system is not
trusted. SGX relies on three concepts to protect data: enclaves, attestation and data sealing.

SGX is a set of CPU instructions for creating and operating with memory partitions called enclaves.
When an application creates an enclave, it provides a protected memory area with confidentiality
and integrity guarantees. These guarantees hold even if privileged malware is present in the
system, meaning that the enclave is protected even from the operating system that is running the
enclave. With enclaves, it is possible to significantly reduce the attack surface of an application.

Remote attestation is used to prove to an external party that the expected enclave was created on a
remote machine. During remote attestation, the enclave generates a report that can be remotely
verified with the help of the Intel Attestation Service. Using remote attestation, an application
can verify that a server is running trusted software before private information is uploaded.

Data sealing allows enclaves to store data outside of the enclave without compromising confi-
dentiality and integrity of the data. The sealing is achieved by encrypting the data before it exits
the enclave. The encryption key is derived in a way that only the specific enclave on that platform
can later decrypt it.

SGX can be used to greatly enhance security of applications but it is important to highlight that
organizational and human aspects of security are nearly always more important than technical
aspects. Information may leak due to a human error without any malicious parties involved.
For example, due to coding mistakes, lack of knowledge, or high-level decisions to not commit
sufficient resources to security. Furthermore, no mitigation is helpful when the platform (SGX
SDK and firmware) in not kept up to date. SGX requires some rather advanced techniques to
be attacked successfully but automated tools that exploit such vulnerabilities (such as transient
execution) are already out there in the wild [1]. In SGX many of such vulnerabilities have been
mitigated by microcode updates.

Intel Trust Domain Extensions (TDX) is a newer extension of the instruction set of Intel processors.
Like SGX, TDX is a Trust Execution Environment (TEE) technology, but it works rather differently.
Whereas SGX protects only a part of an application, TDX protects a whole virtual machine (VM).
Remote attestation is still a key component of TDX, but data sealing is no longer provided by TDX.
Overall, secure application development is significantly changed when targeting TDX compared
to SGX. However, most of the attack vectors and mitigations which applied in the context of SGX
are still relevant in the context of TDX. We added notes to existing sections when some informa-
tion does not apply to TDX at all, or when some attacks and mitigations are exclusive to TDX.

In Section 1.1 we give a short overview of Intel SGX and TDX technologies. The overview is rather
brief and the reader unfamiliar with the technology is welcome to consult introductory mate-
rials such as the Intel SGX developer guide [2], or Intel TDX Demystified [3]. In Section 1.2 we
classify protected resources into categories: cryptographic keys, user data, and statistics/meta-
data. Each type of resource could be protected with different mitigations. In Chapter 2 we go
over the following attack vectors that can be used to target applications protected by Intel SGX:
cryptographic primitives and protocols (Section 2.1), enclave surface (Section 2.2), side channels
(Section 2.4), speculative execution (Section 2.5), and output inference (Section 2.6). For each
attack vector we cover some proof of concept attacks and give some guidelines for mitigations.
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1.1 Protection mechanisms of Intel SGX and TDX
When talking about protections mechanisms provided by SGX and TDX the overarching assump-
tion is that Intel is a trusted third party. Currently we have to assume that the hardware has no
back doors and that Intel is an honest and uncompromised participant during remote attesta-
tion.

The internals of Intel CPU dies are nearly completely opaque and best guesses on how they inter-
nally function are via official Intel documentation and patent applications. Luckily, great strides
have been recently made by security researchers by revealing security weaknesses and flaws in
CPU design. While discovered flaws affect Intel the most (due to promised guarantees of SGX
and TDX) they are not limited to Intel. Some of the timing side channels are inherent to (mod-
ern) microcontrollers and thus affect all modern CPUs (see Nemesis: Studying Microarchitectural
Timing Leaks in Rudimentary CPU Interrupt Logic [4]).

But, unfortunately, without fully transparent view and access to documentation of internals it is
impossible to prove lack of security vulnerabilities. Even with full transparency building a formal
specification, model and proving security of such complex architecture would be a monumental
undertaking.

1.1.1 Privacy, integrity and isolation of data
SGX enclaves are isolated memory regions of code and data residing in main memory (RAM).
Privacy, integrity and isolation of data between enclaves is achieved via authenticated encryption
with the help of trusted hardware on the CPU-die [5]. Unencrypted plain-text values only reside
on the CPU-die in registers and various caches.

Enclave may store values in RAM region that is protected by encryption and any attempts to
modify the values will be detected when the tampered region is read. When integrity (encrypted
value is modified) or freshness (encrypted value is replayed) violation is detected the system will
hang and will need to be re-booted (so-called drop-and-lock policy). An outside observer is not
able to distinguish if encrypted values in the enclave memory refer to equal plaintext values or
not. Additionally, an outside observer will not be able to tell if subsequent writes to the same
(or different) memory address store the same plaintext values or not. While SGX protects the
contents of memory cryptographically it does not hide the locations where memory stores and
loads refer to. Many attacks exploit exactly that limitation in combination with transient execu-
tion behaviour of modern processors.

1.1.2 Remote attestation and integrity of code
The Intel SGX and TDX feature remote attestation [6, 7, 8] allowing for clients to remotely establish
trust of secure enclaves. Remote attestation is a cryptographic protocol that in the end estab-
lishes a secure communication channel between a secure enclave and a client. While the remote
attestation building blocks offer more flexibility, in this work we assume that remote attestation
involves the following three parties:

• a server hosting a secure application with its enclave,
• a client that is mistrustful of the server but wants to establish trust of the enclave, and
• an Attestation Service (Intel Trust Authority, or a client local library for verification) that verifies

the enclave and provides the client the assurance of enclaves’ authenticity.
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If the client trusts the TEE technology, and trusts Intel to not collude with the server (and not
behave maliciously in other ways) then the client can assume that remote attestation establishes
the following:

• Identity (cryptographic hash of code and data) of the protected application.
• The TEE and the protected software have not been tampered with.
• Version of the hardware platform.
• The security patch level of the hardware.
• Version of relevant software components, like Intel SGX SDK (software library provided by

Intel for developing SGX applications).

Further details of remote attestation scheme is beyond the scope of this work.

1.1.3 Attack surface minimization
Major protection mechanism of Intel SGX is attack surface minimization1.

When a remote attacker is targeting a security critical application in classically hosted (personal
server, cloud) environment often the initial point of entry is not the security application itself but
some other application running (in user mode) on the same host. The other application acts as
a gateway to deploy an exploit against operating system that, in turn, compromises all other
applications on that host. This means that the attack surface may encompass many millions of
lines of code. Such a large code base is infeasible to protect or audit.

SGX enclaves run in user mode and are protected from a potentially hostile operating system. By
eliminating the direct threat of the operating system we reduce the attack surface by an order of
magnitude against remote attackers and offer protection against attackers with privileged and
even physical access.

Applications that use SGX are divided into two parts. A trusted component (a set of enclaves) and
an untrusted component. The untrusted component is regular application code that interacts
with enclave(s) in some way. From the enclave standpoint both the operating system and the
rest of the application are to be viewed as untrusted.

To some degree most SGX enclaves need to communicate with the operating system (to man-
age files, to perform I/O, etc.) or non-enclaved part of the security application. This interaction
between barriers of trust can not be achieved via regular function calls. Instead, there are two
special calls: ECALLs and OCALLs. ECALL is a (trusted) function call that enters an SGX enclave
and OCALL is an (untrusted) function call that leaves an enclave. ECALLs are referred to as trusted
calls in the sense that they invoke trusted (enclaved) code, and similarly OCALLs are referred to
as untrusted calls in the sense that they execute code that the host of the server is able modify
without the client being made aware of it. Other function calls made in enclave can not leave
that same enclave. Using Intel SGX SDK the set of allowed OCALLs and ECALLs for each enclave
is strictly specified using enclave definition language (or EDL) and this set of calls defines the direct
attack surface of the enclave.

TDX protects the contained VM from a malicious host operating system or hypervisor as well, but
its Trusted Computing Base (TCB) is significantly larger than that of SGX. Whereas SGX is designed
to allow for the least possible amount of code within the enclave, TDX simply protects a whole

1https://software.intel.com/en-us/articles/intel-software-guard-extensions-tutorial-
part-1-foundation
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VM. A VM can be built up in a very minimal way, but the more likely situation is that a VM for use
with TDX is created mostly similar to a regular VM. It will contain the Linux kernel, many regular
user space applications, and the actual protected application will use many dependencies from
third parties. One can spin up any kind of services which listen on incoming connections or send
data to external services. There is no standardised file like the EDL from the Intel SGX SDK which
would provide a definitive overview of all messages which can be exchanged with the outside
world. Thus the attack surface of TDX applications is usually larger and harder to audit than that
of SGX applications.

1.2 Protected resources
We consider three types of resources in the order of sensitivity: cryptographic keys, user data,
and statistics/metadata.

1.2.1 Cryptographic keys
In order to protect user data enclaved applications have to generally manage some sort of cryp-
tographic key material. For example, during remote attestation client and enclave could establish
a symmetric session key that is used to encrypt further communication between the client and
the enclave. If this session key is compromised the trusted channel is broken and any participant
with appropriate access can play either the role of the client or the enclave or simply passively
collect all client data. Side-channel vulnerabilities are particularly dangerous against algorithms
that handle keys as even partially leaked information about a key can lead to a total compromise.

Cryptographic keys are the most sensitive resource to protect. When keys are compromised it
is likely that user data can be decrypted and, in some extreme cases, all security guarantees of
SGX enclave can be broken (see ZombieLoad [9], ) if SGX internal keys are compromised. Using
compromised cryptographic keys an attacker can forge messages and manipulate data in unde-
tectable ways. Hence, most aggressive mitigations should be applied to protecting cryptographic
keys and procedures should be developed to lessen the impact of compromised keys.

1.2.2 User data
The primary goal of SGX and TDX is to keep user data secure by protecting both privacy and
integrity at runtime. Hence, as the most basic security consideration user data must be kept
encrypted at rest using industry standard cryptographic primitives.

Recent CPUs re-use the Total Memory–Multi-Key (TME-MK) technology to encrypt the working
memory of SGX enclaves and TDX VMs. This provides confidentiality. Integrity is provided at least
against software attackers. Certain hardware attacks, like replay attacks, are out of scope for the
TME-MK technologies [10]. SGX further provides a convenient API for working with encrypted
files based on the data sealing capability. Since data sealing is missing from TDX, no such API exists
for easily working with encrypted files. Due to the far easier use of third party dependencies,
finding a suitable replacement should be possible.

SGX on older CPUs, prior to the introduction of the TME-MK technology, used the memory en-
cryption engine, a specialized on-chip hardware for encryption of the working memory [5]. This
offered data replay protection against physical attacks.

Many applications also use publicly available data while processing private information. When
this public data is tampered it affects results of (private) data processing. For this reason the
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integrity of publicly available data should be protected. Thanks to its low cost overhead of SGX
and TDX, it is often easy for public data to be protected by the same encryption and integrity
protection mechanisms as private data.

Data processing algorithms are frequently difficult to protect against side-channel attacks (see
Section 2.4). Attack mitigations can reduce performance significantly. For this reasons it is often
not feasible to handle processing of public and private data uniformly. For example, the same
functionality could be implemented in two distinct ways: one implementation to handle private
data in a side-channel protected manner, and the second implementation to handle public data
in a more performant (but non-side-channel-hardened) manner.

In conventional languages without a security type system [11] it is difficult to cleanly segregate
data with different security levels and, thus, it is easy to introduce accidental data leakage when
handling public and private data non-uniformly (e.g. calling algorithm that is not side-channel
hardened on private data). When the language offers sufficiently powerful type system the in-
formation flow security can be encoded at the library level [12, 13]. Great care must be taken
when handling data of different security levels.

1.2.3 Statistics/metadata
The result of processing private user data is usually some statistics intended for some partici-
pant. For example, distribution of salary information including minimum, maximum, average
and quantiles. Leakage of statistical information across large sets of data is occasionally not
problematic but statistical information is often gathered for many subsets of records (for each
age group, for each gender, etc). In general it is reasonable to assume that output statistics is
very sensitive information and should be handled as carefully as regular data. Only the intended
participants should have accesses to statistical results.

Side channels (see Section 2.4) usually do not directly leak input records or output statistics but
rather they indirectly reveal some (statistical) information such as the number of records, dis-
tribution of record values, or when and how often a particular data is accessed. Depending of
the structure of processed data this may also include sizes of individual records. We call this
indirectly revealed statistical information inferable as a malicious party does not directly learn it.
Instead, a malicious party must make some effort to deduce it via side channel analysis.

Inferable information is not immediately public to everyone. The amount of information leakage
depends on the involved participants, the amount of risk potential attackers are willing to take,
and resources they can afford to spend. For example:

• Honest (but curious) clients are only able to learn approximate timing of data processing
applications. However, this can be done with no risks involved or resources spent.

• An honest host is able to see input sizes and also learn decently accurate timing of the appli-
cation2.
Millisecond-level timings can often be directly learned from logs or by observing the process
table. We consider such coarse grained measurements to not be a security risk. A host that
wants to learn fine-grained timings to mount side channel or speculative execution attack
has to take higher risks and expand more resources.

• A remote client with malicious intent will need to spend a great deal more resources to break
into the application host, escalate privileges, and then mount a local attack against the se-

2This information is usually logged without any confidentiality or integrity protection.
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curity enclave.
• Furthermore, malicious third parties need even more resources to gain access to any infer-

able information and mostly likely need to take higher risks to doing so.

Without knowing the data processing algorithm implementation details and precise specification
of the CPU it is impossible to accurately characterize what data can be indirectly inferred. For this
reason indirectly inferable statistics can be the most difficult resource to protect.

As an example consider attempts to hide size information of tabular data. First of all, for every
data column all cells must be padded to the same length. Next, all algorithms that subsequently
process that data must not leak the real record sizes via timing or memory access patterns. To
be sure of that, a developer: must have a clear understanding what data in the application at any
point is sensitive, must be aware of how compilers transform high-level code to machine code,
and has to also be aware of what data processing steps are constant time. This kind of know-
how must reach down to low-level knowledge of some CPU internals in order to understand what
instructions are side-channel safe.

Inferable data can occasionally be either not as important to protect or is already public informa-
tion. For example, the number of patients suffering from a particular disease is not very sensitive
information if that information is taken from general population. However, if that information
can be sensitive if it applies to a small sub-group.

For an attacker to infer fine-grained sensitive statistical information it usually needs very high
access levels. This means that the attacker has to be hosting the secure enclave and/or has
significant resources to conduct a targeted attack remotely. For more details see Section 2.4.
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2 Attack vectors
In this chapter we cover four of the attack vectors that can target applications that use Intel SGX
(or Intel TDX): cryptographic primitives and protocols (Section 2.1), enclave surface (Section 2.2),
side channels (Section 2.4), speculative execution (Section 2.5), and output inference (Section 2.6).
Each section covering an attack vector is independent and gives a brief overview of the vector,
covers some proof of concept attacks, and give some guidelines for mitigation. Sections do cross
references each other as they are not completely independent. For example, speculative execu-
tion and side channel attacks are often closely related. The list of attack vectors that we cover
is by no means comprehensive and many common vectors (credential compromise, phishing,
denial of service, etc.) are beyond the scope of this document.

Furthermore, many of the attacks [14, 15] could be considered to directly exploit architectural or
microarchitectural bugs depending on the security model and the amount of effort required for
secret extraction. We classify these powerful attacks under side-channel vulnerabilities.

2.1 Cryptographic primitives and protocols
Attacks against cryptographic primitives and protocols are not specific to SGX. However, it is pos-
sible for SGX to make these vulnerabilities more difficult to find and exploit due to attack surface
minimization. With a classical approach to security an attacker that has gained total local access
would not need to attack cryptographic methods directly. SGX enabled applications may force
attacker to resort to exploiting cryptography.

2.1.1 Access requirements
Design or implementation flaws in cryptographic protocols (like TLS) may lead to remote vulner-
abilities [16]. Remote code execution and other similar attacks via buffer overflows are covered
in Section 2.2; these means of entry exploit the enclave surface and not cryptography directly.

An attacker with local access is able to retain enclave state and thus apply long-term attacks
on encrypted data. This includes brute-forcing encryption keys when weaknesses are eventu-
ally found in cryptographic primitives. Furthermore, local privileged attacker can also arbitrarily
invoke enclave in a sequential or parallel manner in order to exploit weaknesses in any crypto-
graphic protocols the enclave implements.

2.1.2 Countermeasures
Cryptographic primitives that SGX uses and recommends (AES128, SHA256, ECC P-256) have been
well researched and are widely considered to offer strong security. While it is impossible to fully
rule out the risk, a rapid advances in research that allows for these primitives to be easily broken
are unlikely to happen.

2.1.2.1 Misuse errors

Perhaps simplest to exploit enclave surface attacks target the misuse of otherwise secure cryp-
tographic primitives. This misuse can often stem from poorly designed API and bad library doc-
umentation [17]. For example misuse errors include:
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• misunderstandings of properties a specific cryptographic primitive offers,
• unsatisfied preconditions for secure use of a primitive,
• regular coding errors.

We make the following recommendations to combat misuse errors:

• When available use high-level cryptographic API.
– Prefer battle-tested and well-documented libraries (when available).
– Only use low-level API when necessary and always provide a reason why a low-level inter-

face is used.
– Strongly prefer libraries that have simple and hard-to-misuse interfaces. Functions should

have no combination of parameters that directly lead to vulnerabilities. Functions should
offer sensible and secure default parameters.

• Use as simple as possible protocols for a given task. Large protocol suits have correspond-
ingly larger attack surface.

• Do not implement custom cryptographic primitives and avoid using existing cryptographic
primitives in non-standard ways.

• Establish a code review process.
• Train developers on secure programming and cryptography fundamentals.

2.1.2.2 Long term attacks

A potential attack scenario directly against cryptographic primitives is one where slow progress
over years eventually reveals weaknesses that over time lead to practical attacks long (after the
primitive has been phased out of use). For example, SHA1 hash has not been considered safe to
use since an attack published in 2005 [18] showed fundamental weaknesses in design1. The first
publicly known collision was announced over a decade later in 2017 [19]. At the time the attack
required considerable computing power (6500 years CPU-time and 110 years GPU-time).

To exploit this vector an attacker has to retain encrypted data for a long time (years or even
decades) waiting for advances in security research and/or for computing power to become more
accessible and cheaper. This kind of long-term approach is available to state-level attackers.

Attacks of this type are one of the least probable and most costly. Most likely there are easier
ways for an attacker to achieve the same results. Regardless, to make long term attacks more
resource costly to conduct we make the following recommendations:

• Use well-researched cryptographic primitives and protocols and follow up-to-date recom-
mendations [20].

• Use perfect forward secrecy where applicable.
• Limit the amount of data encrypted using the same key.

In general limit the use of each key. In particular avoid using the same key for different purposes.
For example, in most cases it is a good idea to never use the same asymmetric key for both en-
cryption and authentication.

• Do not retain keys unless absolutely necessary.
1Despite recommendations to prefer replacements since 2010, web browsers only stopped accepting SHA-1 SSL

certificates in 2017.
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For example, when intermediate data processing results need to be stored on disk do not persist
the encryption key. Either re-derive key when data is needed again or keep the key temporarily in
memory.

• When secrets need to remain protected for long periods of time (say, decades) quantum
resistant security becomes relevant.
Intel SGX alone without other strong security protection is difficult to recommend as a solution
for applications that require protection against state-level attackers and need for data to remain
protected long periods of time.

2.2 Enclave surface
Enclave surface is the most probable attack avenue against enclaved applications. Attacking
enclave via local access is similar to attacking web applications via remote access. In both cases
there is a defined and rather limited interface that an attacker can work with. In both cases the
goal is to exploit this interface to move an application into an unintended state and by doing so
either learn some information or tamper with existing data.

Attack surface of an enclave developed using Intel SGX SDK is defined in three parts:

1. The set of ECALLs and OCALLs specified in EDL files (either switchless or not).
Attacker with privileged local access is able to arbitrarily use the ECALL/OCALL mechanism. At-
tacker can replace OCALL implementations as they reside in untrusted part of the application.
Attacker can also arbitrarily perform ECALLs to enclave. Using those means attacks can attempt
to move enclave into some unintended state.

2. Reads and writes to shared public memory.
Enclaves have the freedom to read and write non-encrypted (public) memory regions subject to
OS restrictions. An attacker with privileged local access is able to arbitrarily manipulate public
memory.

3. The CPU architecture and behaviour. Including instruction timings, memory access patterns
and other side-channels.
SGX is very complex and interacts with parts of the CPU in ways that are difficult to intuitively
understand. While parts of Intel CPUs, like the instruction set, are very well documented the im-
plementation details are often not specified. Some operations performed in an enclave will affect
the CPU state in a way that is visible to a non-enclaved observer.

Notes for TDX: Deep within its implementation details, TDX facilitates communication between the
VM and the host system via SEAMCALLs and shared memory pages, which is the pendant to SGX
ECALLs and OCALLs. In practice it is more relevant that protected applications will use standard
channels to communicate with the outside world, e.g. ssh for direct access, or a web server as
the main API to the provided service. Thus common application security best practices should
be applied in the context of TDX, with a starting point being the OWASP top ten [21]. In particular,
neither the xz backdoor [22] nor the Log4Shell vulnerability [23] would have been contained by
TDX.

An Overview of Vulnerabilities and Mitigations of Intel SGX and Intel TDX Applications
February 28, 2025

1.4
15 / 49



D-2-116 / 2025

2.2.1 Notable proof-of-concept attacks
2.2.1.1 The Guard’s Dilemma: Efficient Code-Reuse Attacks Against Intel SGX

An attack [24] that allows various memory corruption vulnerabilities in enclave code to be easily
exploited. They abuse the Intel SGX SDK to make attacks more effective. Their attack does not
rely on elevated privileges or a malicious operating system.

If an enclave does not have vulnerable code then the described attack does not work.

2.2.1.2 AsyncShock: Exploiting Synchronization Bugs in Intel SGX Enclaves

An attack [25] that relies on enclaves to have memory vulnerabilities (like use-after-free). They
show that these vulnerabilities in enclaves are easier to exploit in multi-threaded code and present
a semi-automated tool for exploiting synchronization bugs.

If a synchronization bug exists in an enclave the compromised OS can schedule the enclave
threads in a way to always trigger said bug. We consider this to be fundamental issue that stems
from the design trade-offs. This proof-of-concept attack shows the importance of developing
bug-free enclaves. Avoiding multi-threaded enclaves also fully mitigates this attack vector.

Notes for TDX: This problem is less of a concern for TDX since the scheduler is within the TEE. The
untrusted host cannot influence the scheduler, at least not as easily as with SGX. Further, since
the protected application in a TDX VM can be written using any language, one could consider the
use of a language which has better built-in protection against synchronization bugs compared
to C or C++.

2.2.1.3 SnakeGX: a sneaky attack against SGX Enclaves

Code-reuse attacks can be difficult to detect. SnakeGX [26] is an attack framework to implant a
persistent backdoor in legitimate enclaves. The framework is designed to leave minimal foot-
print. In particular, the original enclave configuration does not change; making the enclave com-
promise not detectable via remote attestation.

While the attack requires the enclave to contain a memory corruption vulnerability this is not a
tall order [27] as Intel SGX SDK is designed to be used with C++. The attack is also made easier if
the targeted enclave is multi-threaded.

2.2.1.4 SmashEx: Smashing SGX Enclaves Using Exceptions

“In this paper, we introduce a new attack called SmashEx which exploits the OS-enclave
interface for asynchronous exceptions in SGX. It demonstrates the importance of a
fundamental property of safe atomic execution that is required on this interface. In
the absence of atomicity, we show that asynchronous exception handling in SGX en-
claves is complicated and prone to re-entrancy vulnerabilities. Our attacks do not
assume any memory errors in the enclave code, side channels, or application-specific
logic flaws.” ([28])

The SmashEx vulnerability relies on software and/or architectural weaknesses of asynchronous
exception handling that enables code-reuse attacks such as return oriented programming. The
attack is powerful enough to leak 1024-bit private key from enclave memory when using Intel
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SGX SSL (based on OpenSSL v1.1.1i). This particular vulnerability has been fixed in SGX SDK since
version 2.14.

2.2.1.5 SIGY: Breaking Intel SGX Enclaves with Malicious Exceptions & Signals

The untrusted host can send signals to the protected application. Signal handling is complicated
and can easily be handled wrongly. For example, software usually assumes that division-by-zero
or segmentation fault signals only originate from the hardware. But the untrusted host can send
these signals, even though they can easily be distinguished from hardware-created exceptions.

“We demonstrate this phenomenon by introducing a new attack called SIGY, which ex-
ploits the OS’s ability to fake signals to execute enclave handlers and subvert SGX guar-
antees. We show that existing runtimes, library OSes, and programming language
constructs are vulnerable to SIGY.” ([29])

Insufficient filtering of interrupts delivered by the host has lead to successful attacks on TDX as
well [30]. A mitigation for wrong handling of interrupts should primarily be implemented by the
SDK.

2.2.2 Countermeasures
2.2.2.1 Enclave API design considerations:

• Simplify and minimize the set of OCALLs and ECALLs.
Simpler interfaces with clear purpose are easier for developers to reason about. A smaller set of
calls allows developers to keep a bigger proportion of the enclave surface in mind at the same
time.

• Document the enclave surface.
Clear and thorough documentation allows developers to reason about the enclave surface. Good
documentation stands as an excellent starting point for formal specification and proofs if the
security level requires that.

• When reasonable split a security application into multiple simple enclaves. While this intro-
duces the complexity of parallel composition it can be worthwhile if enclaves can be com-
partmentalized [31, Chapter 10].
A system that is compromised of multiple enclaves can be more resilient against compromise of a
single enclave. Consider splitting application to multiple enclaves if:

– each of the enclaves has a clear purpose and single responsibility; and
– when one of the enclaves is compromised the security impact is clear and limited.

• When security requirements are strict consider formal specification with correctness and
security proofs.

2.2.2.2 Secure programming considerations:

• Train developers on secure software engineering to follow best practices.
• Establish a code review process.

An Overview of Vulnerabilities and Mitigations of Intel SGX and Intel TDX Applications
February 28, 2025

1.4
17 / 49



D-2-116 / 2025

• Use memory safe languages.
To some degree using a memory safe language mitigates risks involved with SGX enclaves being
able to read and write arbitrary memory. Memory safe languages reduce the risk of introducing
memory safety issues that cause a large portion of all software vulnerabilities [27].

• Avoid using multiple threads in an enclave unless there are very compelling reasons. In
general enforce that enclave can only be entered by a single thread. This can be forced by
configuring the enclave with TCSNum and TCSMaxNum parameters set to one.
Parallel composition of protocols and interfaces is challenging to reason about due to exponen-
tially increased number of possible state transitions. An attacker with local access can trigger any
multi-threading bug as they fully control enclave scheduling.

• Prefer message passing to shared memory.
Whenever trusted (enclaved) and untrusted parts of an application need to communicate either
prefer the explicit ECALL/OCALL mechanism or some other form of message passing over shared
memory.

• Avoid error recovery and fail fast (see crash-only software [32]).
Error recovery paths are likely to contain bugs as they get least amount of testing given how rarely
these paths are taken. To securely implement error recovery developers must not only reason about
correct states of the application but also incorrect states. With crash-only approach error recovery
paths are taken every time the application starts.

• If possible, fuzz your ECALLs and OCALLs. For example, the tool EnclaveFuzz [33] detects
out-of-bound dereference, dangling pointer dereference, null pointer dereference and time-
of-check-time-of-use (TOCTOU) vulnerabilities.

• During remote attestation verify that SMT (simultaneous multithreading) has been disabled.
Majority of side-channel attacks against SGX are significantly more efficient in the presence of SMT.

Side-channel attack mitigations are covered in Section 2.4.4.

2.3 Persistent Memory
Enclaves may need to store their state on a disk in order to recover from a reboot, or to restart
after an application failure. SGX supports this through the data sealing capability: An enclave
can ask the CPU through a special instruction, EGETKEY, to derive a sealing key and then use that
key to encrypt the state. Using the same request arguments at a later call to EGETKEY, the same
sealing key can be re-derived for decrypting the old state. This sealing key can only be re-derived
on the same physical CPU, and, depending on the request arguments, only by the same enclave.

If the solution foresees that the encrypted state is further fully managed by untrusted compo-
nents, then the enclave needs to be aware of state rollback and state forking attacks. A broad
overview and systematization of these attacks is given in [34, 35, 36]. A visualization of the ca-
pabilities of the untrusted host is shown in fig. 1: The untrusted host can repeatedly restart the
enclave from the same (old) state to perform some attack; the untrusted host can create mul-
tiple enclave instances of the same .so enclave file using arbitrary states, and incoming client
requests might be incapable of detecting whether they talk to a legitimate or illegitimate fork.

If the enclave state is split into multiple encrypted files, like a tree-shaped state shown in fig. 2,
then additional care needs to be taken to ensure that the untrusted host cannot shuffle around
some of the state across forked enclave instances.
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Figure 1. A legitimate enclave starts its lifetime, saves its state two times and then dies. The un-
trusted host created three additional enclave instances from the same .sofile, using different state
files.

Figure 2. An enclave may need to split its state into multiple files. For example with a key-value
store, the full set of small keys could be stored in the root state, and each large value could be
stored in a separate file. The enclave code should ensure that a fresh or forked root state cannot
successfully use an unrelated child state.

2.3.1 Access requirements
If the enclave creates encrypted states, then an attacker needs to be able to manage both the
encrypted state data and the enclave life cycle.

2.3.2 Countermeasures
[34, 35, 36] name a few countermeasures which are used by existing project and comments on
their drawbacks. The two main approaches are to use some secure store which either records a
monotonic counter, which is increased by the enclave, or a state digest (a hash over the state and
more). Monotonic counters can be problematic since a forked enclave will continue to increment
its monotonic counter through the same values as the original enclave. For the secure store
various techniques have been proposed:

• TPMs can store monotonic counters. However, they require hundreds of milliseconds for
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write and read operations and might be prone to wear out after insufficiently few write op-
erations, resulting in dysfunctional systems after only a few days.

• The clients could store the monotonic counters or state digests. However, depending on the
life cycle of clients, they could have problems with validating whether their recorded state
digest is an ancestor of the one in the enclave, or whether the enclave state was rolled back
(and forked).

• A trusted third party, possibly a block chain. This could add additional infrastructure/deploy-
ment burden and may add latency to each request to get full protection.

2.4 Side channels
Side-channel attacks exploit implementation details of an algorithm to learn more information
about input data that what is intended by the abstract description of the algorithm. An abstract
description of an algorithm does not usually tell anything about how the program is evaluated
in practice, what kind of hardware the code is executed on, or what kind of underlying data
structures are used. All these implicit properties may give rise to hidden information leaks. Side-
channel attacks may exploit timing information, instruction counts, network packet sizes, probed
memory locations, or power consumption.

Side-channel vulnerabilities are an old topic of research spanning decades. Meltdown and Spec-
tre attacks exploited side channel vulnerabilities and allowed attackers with unprivileged local
access to leak memory contents from one application to another. A remote variant of Spectre [37]
also exists. SGX intends to protect against privileged local attackers that, compared to remote
attackers, have a much larger set of possible side channels to exploit. In this security model any
information leaked via side channels may mean compromised security. Side channels are one of
the few known attack vectors against Intel SGX enclaves.

“As opposed to protection against cryptographic attacks, protection against side chan-
nel attacks is never expected to be absolute: a determined attacker with a massive
amount of resources will sooner or later be able to break an implementation. The
engineering challenge is putting in enough countermeasures such that the attack be-
comes too expensive to be interesting. Products that offer a high level of security
typically implement countermeasures on multiple levels.” (The Keccak Team2)

2.4.1 Sources of side channel vulnerabilities
The following code structures can lead to side channel vulnerabilities when they depend on se-
crets:

• Conditional branches and loop bounds.
• Array/memory look-ups.
• Variable latency CPU instructions.

Side channels are everywhere. For example, even computing the statistical mean of a data set
(see Listing 2.1) leaks the approximate number of input elements via the running time – the
longer the program runs the more input it was given. This side channel is even exploitable by a
remote attacker. With local access attackers can determine the number of input elements more

2https://keccak.team/files/NoteSideChannelAttacks.pdf Accessed: 2021-03-18
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Listing 2.1. Side-channel vulnerable mean
1 float mean(float * arr, size_t n) {
2 float s = 0.0f;
3 for (size_t i = 0; i < n; ++ i) {
4 s += arr[i];
5 }
6

7 return s / static_cast<float>(n);
8 }

precisely. Fortunately, in most applications the number of data elements is not considered to be
sensitive information. This example is artificial at best but does demonstrate how even the sim-
plest piece of code that does not seem to have any obvious security flaws may reveal unintended
information via side channels.

Whether or not the code in Listing 2.1 actually has a vulnerability depends on if we consider the
data set size to be sensitive information. In most cases it is not, but in some cases it might be.
In particular when computing mean of many small subsets.

When we consider the number of inputs n to be private the code example leaks information in 3
distinct ways. It has a loop with an upper bound n, memory is accessed n times which also leak
approximate size, and the division operation can leak some information both about final output
s and input n (via instruction timing channel). If n is considered to be public then only the final
division operation leaks some information about the magnitude of s to a highly motivated3 local
attacker.

Memory accesses may also lead to timing vulnerabilities. Each RAM read4 will cache a small
region of memory so that subsequent accesses to that region would be faster. It is a natural
optimization as most memory accesses are consecutive. This way the high bandwidth of RAM can
compensate for its relatively poor latency (compared to on-die registers and caches). Consider
two consecutive memory accesses to the same memory object, the first with index i and the
second with j5. Assuming that no part of the array has been previously cached then the speed
of the second memory access depends on the distance between the two indices. Hence, timing
information leaks if the index i is close to j.

Side-channel attacks can also exploit shared hardware resources. For example in Intel CPUs the
L1 cache can be shared by multiple threads if these threads happen to be executed simultane-
ously on the same core. This is called simultaneous multithreading or SMT (Intel’s proprietary im-
plementation is called hyper-threading or HT). This means that in some situations processes can
observe each others read and write locations. Even locations of reads performed by an enclave
can be observed.

We take a conservative policy and assume that a privileged attacker is able to observe all mem-
ory read and write patterns. A consequence of this assumption is that many common algorithms
leak a significant amount of information. For example, most sorting algorithms leak the struc-
ture of the input data. The exact information depends on the algorithm used but for instance if
the algorithm (e.g. insertion sort, selection sort, quicksort) performs no memory writes the input

3Instruction-timing attacks require repeated measurements and high resolution timing information.
4Memory writes lead to similar issues via various caches and line fill buffers.
5This is a heavily simplified scenario. In practice these memory accesses may be executed out-of-order. To force

these accesses to happen consecutively the second read location must depend on the result of the first read. For
instance j = mem[i]; k = mem[j];.
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Listing 2.2. Side-channel protected select
1 // Denotationally: select(b, x, y) == b ? x : y
2 unsigned select(bool b, unsigned x, unsigned y) {
3 // well-defined, when b == 1 then m == UINT_MAX
4 unsigned m = - (unsigned) b;
5 return (x&m) | (y&~m);
6 }

must have been already sorted. In other words, attackers are able to keep track of the permu-
tation between input and output. If an attacker happens to have a priori knowledge about the
ordering of input data then that may already leak sensitive information about the output.

Consider a database of name-salary pairs that is initially sorted by names. When the database is
reordered by salary then an attacker capable of tracking memory access patterns will be able to
establish a decently accurate mapping between names and salaries. However, if the database is
initially ordered randomly then only an approximate shape of the distribution of salaries leaks.
Note that, when comparison-based sorting is used then the salary distribution itself does not
leak because those sorting algorithms have identical memory accesses patterns under all order
preserving transformations. For example sorting the array [3,1,2] yields same access pattern
as sorting [10000,9,370].

Not all Intel CPU instructions are constant time. There is a number of useful operations that have
latencies that vary with input, most notably integer division executes in a fewer cycles on certain
input ranges and can leak approximate information about how large the instruction inputs are
(we will discuss techniques to avoid instruction-timing leaks later). Luckily extracting information
with this side channel requires great effort from the adversary. It requires thorough code anal-
ysis and multiple precise measurements. Even then an attack may not be able to extract precise
secret value but only some rough statistical information. In a similar vein, CPU instructions have
a specific power consumption profile depending on the inputs. For example, the amount of 1s
in the register arguments can significantly influence the power consumption, which can be mea-
sured. There is a software interface called Running Average Power Limit (RAPL) which needed to
be restricted due to SGX [38], but a physical attacker can still measure the power consumption
rather accurately.

2.4.1.1 Maintenance and complexity of mitigations

Naive attempts at hardening side-channel vulnerable code may fail due to compiler optimiza-
tions. In many circumstances code that looks like it should not have conditional branches will
have them on the machine code level. Code that makes use of Boolean logic operations is par-
ticularly vulnerable to this.

Consider the attempt to implement a side-channel safe procedure select (Listing 2.2) to pick
one of two values based on a Boolean. This code is side-channel safe on most platform, compiler,
and optimization flag combinations. But in some rare cases it might not be. For example, using
clang (versions 3.0 to 8.0) to compile for 32-bit platform (-m32 -march=i386) produces machine
code that is vulnerable to side-channel attacks due to a jump instruction.

When implementing side-channel safe primitives one must hence not only be careful implement-
ing the algorithms but also continuously and diligently test and verify that the machine code out-
put has remained safe over code changes and updates to compiler(s) across various supported
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Listing 2.3. Side-channel vulnerability from use of side-channel safe primitive
1 float fselect(bool b, float x, float y) {
2 union { float f; unsigned u; } X, Y, Z;
3 X.f = x;
4 Y.f = y;
5 Z.u = select(b, X.u, Y.u);
6 return Z.f;
7 }

Listing 2.4. Assembly for side-channel vulnerable select (GNU syntax)
1 select:
2 testl %edi, %edi
3 cmovel %edx, %esi
4 movl %esi, %eax
5 retq
6 fselect:
7 testl %edi, %edi
8 jne .LBB1
9 vmovaps %xmm1, %xmm0

10 .LBB1:
11 retq

CPU architectures.

Furthermore, a primitive that compiles to a side channel safe machine code might not remain
safe under composition. The aforementioned function select will compile to using a CMOV in-
struction with clang compiler (with -O2 optimization level for a 64-bit platform). This is a side-
channel safe implementation on current Intel platforms. Surprisingly, if used to implement obliv-
ious selection of floating-point numbers (Listing 2.3) a vulnerability is introduced.

Machine code that is produced when compiling select and fselect can be found in Listing 2.4.
Notice how fselect performs a conditional jump. This is a very short jump but even those are
distinguishable for a local attacker. This concrete issue can be solved by forcing the compiler to
never inline select. But the example highlights the importance of side-channel safety review
and testing. Great care must not only be taken to verify that primitives are safe but extra care
must also be taken to make sure that composition of those primitives remains safe.

2.4.1.2 Practical attack resources and tools

In practical terms to track timing and memory access patterns a malicious host can use SGX-Step
(section 2.4.3.7). It is a tool that allows OS level adversaries to interrupt victim enclaves after every
single instruction allowing side-channel observations to be made at extremely fine-grained res-
olution. Hence, we must assume that local attackers are fully able to track the control flow path
taken by enclaved code, including the ability to distinguish if-branches that execute instructions
that in total have equivalent timings [4]. All conditional branches leak to local attackers.

2.4.2 Access requirements
Size-information is exploitable via (remote) snooping attacks. Relatively coarse grained timing
information also leaks remotely.
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Most powerful side-channel attacks leverage local access. Control over operating system gives at-
tacker the power to single-step enclaved applications (section 2.4.3.7) and allows them to gather
various side-channel information after each executed instruction. Access to physical hardware
can facilitate even more attacks and allows attackers to bypass some software-based mitigations.
Mitigations against local attackers are the most challenging and expensive to implement.

2.4.3 Notable proof-of-concept attacks
2.4.3.1 Nemesis: Studying Microarchitectural Timing Leaks in Rudimentary CPU
Interrupt Logic

“Nemesis-style interrupt timing attacks leak this information at an instruction-level
granularity, which allows to precisely isolate (successive) data-dependent instruction
timing measurements in a larger enclaved computation.” (Jo Van Bulck, Frank Piessens,
and Raoul Strackx)

Published in 2018 the paper [4] describes very fine-grained attacks that leverage timing and in-
terrupt counting side channels. The attack relies on the ability to externally interrupt enclaved
execution. We consider this side-channel to be fundamental and unlikely to be mitigated in hard-
ware in the near future. Timing-attack resistant processor design remains an active research
topic.

They are able to extract the secret lookup key from a (timing vulnerable) binary search function
of the Intel SGX SDK. Among other results, they clearly demonstrate that latencies of DIV and
IDIV instructions increase with the number of significant digits in the dividend. Thus, (integer)
division leaks secret input(s) magnitude.

2.4.3.2 High-resolution side channels for untrusted operating systems

The paper [39] presents side-channel attack using timer interrupts and cache misses to partially
recover images from libjpeg running in an SGX enclave. The attack incurs heavy overhead to
the enclave process. They provide an example with an overhead of over 3000x (219 seconds
compared to 62 milliseconds).

This is a clear and practical demonstration that running existing code (such as libjpeg) in SGX
enclave without further mitigations does not provide sufficient protection against a malicious
host. In the particular case it has been shown that an automated tool could be developed that
can extract images from any enclave that uses libjpeg.

2.4.3.3 Single Trace Attack Against RSA Key Generation in Intel SGX SSL

The paper [40] identifies a critical side-channel vulnerability in RSA key generation of Intel SGX
SSL and the underlying OpenSSL library. The attack allows to recover 16 bits of one of the two
prime factors of the public key by observing a single execution of the algorithm. The vulnerability
was fixed in subsequent OpenSSL and Intel SGX SSL releases.

Such critical side-channel vulnerabilities are particularly dangerous when they occur in crypto-
graphic primitives. Even a small number of leaked bits from a private key can compromise an
entire enclave.
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2.4.3.4 Leaky Cauldron on the Dark Land: Understanding Memory Side-Channel
Hazards in SGX

In this paper [41] memory side-channels of Intel SGX are classified. Additionally they propose
schemes for making attacks more difficult to detect. To demonstrate effectiveness they attack
the spelling engine Hunspell, the font rendered FreeType and EdDSA (from libgcrypt v1.7.6, not
side-channel hardened) running in enclave. In the latter attack they are able to fully recover the
secret session key.

The demonstrated memory side-channel attacks are not effective with appropriate countermea-
sures (see below).

2.4.3.5 MemJam: A False Dependency Attack against Constant-Time Crypto
Implementations

MemJam [42] demonstrates an attack against side-channel hardened software AES from Intel
Integrated Performance Primitives (IPP). They demonstrate key recovery against two different
implementations which are secure against cache timing attacks.

We have to note that the Intel SGX SDK does not use this AES implementation. Additionally, AES
implemented using AES-NI instructions is not vulnerable to this type of attack. Finally, this attack
requires hyper-threading.

While this attack is defeated by side-channel countermeasures (see below) they demonstrate that
modern microarchitectures are so complex that countermeasures that have long been believed
to be effective can turn out to not be so. In particular MemJam (as did CacheBleed) is able to
track memory accesses within a same cache-line.

2.4.3.6 CacheBleed: A Timing Attack on OpenSSL Constant Time RSA

CacheBleed [43] is not an attack that targets SGX enclaves. However, it is a relevant side channel
attack that uses a timing information to extract a secret key from OpenSSL constant time RSA
implementation. Parallel implementation of CacheBleed allows complete recovery of the secret
key in minutes by observing decryption operations (60% of the key is recovered by observing
16000 decryptions).

Intel has historically promoted avoiding memory accesses at coarser than cache line granularity
as a side-channel attack countermeasure. CacheBleed clearly demonstrated that this mitigation
is not effective (on HT enabled platforms).

“CacheBleed demonstrates that secret-dependent memory access at a finer than cache
line granularity is vulnerable to timing attacks. In particular, the scatter-gather tech-
nique is not safe. Sensitive software should be written to eliminate all secret-dependent
memory access.” (Yuval Yarom, Daniel Genkin, and Nadia Heninge)

As with MemJam this attack also requires the victim and the attacker processes to be located on
the same physical core. Disabling hyper-threading mitigates this attack fully.
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2.4.3.7 SGX-Step: A Practical Attack Framework for Precise Enclave Execution
Control

SGX-Step [44] is an open-source framework and a tool for side-channel attack research on Intel
SGX. It facilitates the ability to interrupt the enclave execution at every single instruction. Note
that a mitigation against SGX-Step is available on Intel® Xeon® Processors with SGX support,
named AEX-Notify [45], which makes it much harder for an attacker to proceed only one instruc-
tion at a time.

Notes for TDX: TDX has built-in protection against zero stepping and single stepping, however the
initial implementation was flawed [46].

2.4.3.8 Plundervolt: Software-based Fault Injection Attacks against Intel SGX

Up until recent research into undervolting-based fault-injection attacks the integrity of SGX en-
claves was not compromised and vast majority of research was focused on breaching confiden-
tiality.

“We present the Plundervolt attack, in which a privileged software adversary abuses
an undocumented Intel Core voltage scaling interface to corrupt the integrity of Intel
SGX enclave computations. Plundervolt carefully controls the processor’s supply volt-
age during an enclave computation, inducing predictable faults within the processor
package. Consequently, even Intel SGX’s memory encryption/authentication technol-
ogy cannot protect against Plundervolt.” ([15])

Because the attack is fully software controlled it was possible for Intel to mitigate the issue by
modifying remote attestation to allow for clients to verify that software-based undervolting is
disabled.

2.4.3.9 VoltPillager: Hardware-based fault injection attacks against Intel SGX
Enclaves using the SVID voltage scaling interface

To overcome software-based mitigations against undervolting attacks hardware-based voltage
control can be used.

“To this end, we have built VoltPillager, a low-cost tool for injecting messages on the Se-
rial Voltage Identification bus between the CPU and the voltage regulator on the moth-
erboard. This allows us to precisely control the CPU core voltage. We leverage this
powerful tool to mount fault-injection attacks that breach confidentiality and integrity
of Intel SGX enclaves. We present proof-of-concept key-recovery attacks against cryp-
tographic algorithms running inside SGX.” ([47])

This threat is somewhat managed by the fact that undervolting attacks are not simple to carry
out. As with many other side-channels attacks the targeted code has to be carefully isolated
unless vulnerability is exploited in a reusable piece of code. Furthermore, undervolting can be
unreliable. Too much undervolting leads to system instability that can be detected by remote
clients. Too little undervolting makes the attack impossible as no faults are injected. The sweet
spot is specific to hardware and can even depend on the concrete CPU binning.

Hardware-based side-channel attacks against Intel SGX have not yet been explored sufficiently
and we expect this avenue to be a fruitful research direction.
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2.4.3.10 PMFault: Faulting and Bricking Server CPUs through Management
Interfaces

Undervolting of the CPU can also be controlled through the PMBus by other components on the
motherboard.

“In this paper, using the case study of the widely used Supermicro X11SSL mother-
board, we show how remotely exploitable software weaknesses in the BMC (or other
processors with PMBus access) can be used to access the PMBus and then perform
hardware-based fault injection attacks on the main CPU. [...] [We] show that under-
volting through the PMBus allows breaking the integrity guarantees of SGX enclaves,
bypassing Intel’s countermeasures against previous undervolting attacks like Plun-
dervolt/V0ltPwn.” ([15])

The specific software of that motherboard was fixed, and several other motherboards were found
to be resistant to that attack. However, a motherboard can contain components whose firmware
is not part of the SGX remote attestation measurement. Remote users thus need to trust that all
other relevant firmware of the server is up-to-date.

2.4.3.11 PLATYPUS: Software-based Power Side-Channel Attacks on x86

Intel CPUs provide a software interface to query the current electricity consumption, called Run-
ning Average Power Limit (RAPL). Since the amount of 1s in register arguments for certain CPU
instructions distinguishably influences their power consumption, this can leak statistical infor-
mation about processed keys or data even if the algorithm is otherwise constant time.

“By observing changes in power consumption with a resolution of up to 20 kHz, we
show that different executed instructions and features of their operands can be distin-
guished. [...] To demonstrate the applicability of these attacks, we successfully recover
AES-NI keys from an SGX enclave and the Linux kernel in 26 hours. In a privileged
attack context, we recover RSA private keys from mbed TLS within 100 minutes by in-
ferring the instructions executed inside SGX from a power trace with instruction-level
granularity.” ([38])

The RAPL interface has since been changed to report less accurate information. Still, follow-up
research shows that it can still be misused to extract information from SGX enclaves [48].

2.4.3.12 ÆPIC Leak: Architecturally Leaking Uninitialized Data from the
Microarchitecture

“We discover ÆPIC Leak, the first architectural CPU bug that leaks stale data from the
microarchitecture without using a side channel. ÆPIC Leak works on all recent Sunny-
Cove-based Intel CPUs (i.e., Ice Lake and Alder Lake). [...] We target data in use, e.g.,
register values and memory loads, as well as data at rest, e.g., SGX-enclave data pages.
Our end-to-end attack extracts AES-NI, RSA, and even the Intel SGX attestation keys
from enclaves within a few seconds.” ([14])

While we classify it as such the ÆPIC vulnerability should not be considered a side-channel vul-
nerability but a microarchitectural bug that allows attacker to gain access to secrets in a quite
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direct manner. When SMT has been disable the attack is significantly more difficult to carry out.
This vulnerability has been mitigated in software since SGX SDK version 2.17.101.1 and the pres-
ence of software and microcode updates are being enforced since November 29, 2022 (when
using Intel remote attestation).

2.4.3.13 Downfall: Exploiting Speculative Data Gathering

“We introduce Downfall attacks, new transient execution attacks that undermine the
security of computers running everywhere across the internet. We exploit the gather
instruction on high-performance x86 CPUs to leak data across boundaries of user-
kernel, processes, virtual machines, and trusted execution environments. We also de-
velop practical and end-to-end attacks to steal cryptographic keys, program’s runtime
data, and even data at rest (arbitrary data). Our findings, exploitation techniques, and
demonstrated attacks defeat all previous defenses, calling for critical hardware fixes
and security updates for widely-used client and server computers” ([49])

Using the SIMD gather instruction, the Downfall paper demonstrated a leak of SGX sealing keys
(and more) and thus the attack could be used to undermine remote attestation. However, the
attack uses single-stepping and zero-stepping which is currently mitigated through AEX-Notify
[45], and “Intel states that newer CPUs such as Alder Lake, Raptor Lake, and Sapphire Rapids are
unaffected” [49].

2.4.4 Countermeasures
Because leakage strongly depends on the power of the attacker, the more privileged the attacker
the more information they are able gain access to. Hence, the first line of defense must be strict
access control to make local access as difficult to attain as possible.

It is not feasible to mitigate all possible side-channel vulnerabilities in a non-trivial data process-
ing application. In most cases doing so would increase the cost of development prohibitively. To
find the sweet spot between security and too excessive side-channel hardening it is important to
clearly specify what (statistical or otherwise) information must be kept secret and what is allowed
to leak to remote or privileged local attackers.

There are two approaches to mitigating side channel vulnerabilities. Either eliminate the release
of information, or break data associations so that any leaked information is useless to an attacker.

2.4.4.1 Eliminate release of information

For protecting user (meta)data the most obvious approach is to make sure that no sensitive
information leaks. To achieve this user data needs to be processed in a side-channel safe man-
ner. Luckily, many simpler algorithms are already side channel-safe or only require conceptually
minor modifications. On the other hand, many more complicated algorithms are highly chal-
lenging (area of active research) to make side channel safe. One such class of algorithms are
cryptographic primitives.

For protecting cryptographic keys it is utmost important to use side-channel safe protocols and
cryptographic algorithms. Choose by-design side-channel safe primitives when possible. When
no such primitive is available opt for well-researched ones with implementations that have no
known significant vulnerabilities. For example:
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• Hardware based AES (Intel AES-NI [50]) is known to have strong side-channel safety guaran-
tees. Only known attacks are via fault-injection [47], extensive power-analysis [51, 38], and
other hardware vulnerabilities [14].

• Salsa20 [52] stream cipher and its variant ChaCha are resistant to timing and cache attacks
by design.

• Side-channel safety of RSA is thoroughly researched [53] and has hardened implementations
readily available. As demonstrated by CacheBleed [43] full mitigation remains challenging.

• In comparison the safety of elliptic curve cryptography implementations is not quite as well
researched. Well-known techniques from protecting RSA and software-based AES lead be
used for more resilient implementations. Fully side-channel resilient implementations are
challenging [54].

Avoid hand-rolling constant-time cryptographic algorithms. Implementations are very tricky to
get right [55] and vulnerabilities are found even in commonly used techniques thought to be
secure [43, 42, 56].

For protecting data processing code developers have to make sure that there are no secret-
dependent conditional branches, loop bounds or memory accesses. As a rule of thumb an al-
gorithm is side-channel safe if for all possible secret input values it executes exactly the same
instructions and performs exactly the same set of memory accesses (in the same order). Caveats
apply. For example some arithmetic instructions, like DIV and FSIN, have a latency that depends
on input values (see Section 2.4.4.8). Generally try to avoid using floating-point operations (see
Section 2.4.4.9).

2.4.4.2 When possible use side-channel hardened high-level algorithms

Rather than implementing a custom solution for a specific domain use a combination of side-
channel protected algorithms that are more general. Even if there are significant performance
regressions from doing so. Premature optimization is the root of many data leaks and other
security regressions. Optimize only once the need arises and performance bottleneck has been
clearly determined.

2.4.4.3 Minimize side-effects in secret-processing code

Depending on the scope, side effects can be impossible to handle in a side-channel safe manner.
For example, it is not possible to make effects that require operating system interaction non-
observable. In most mainstream languages side effects can creep up surprisingly; even memory
accesses are usually side-effectful.

Limited forms of side effects can be manageable. Like local enclave state transitions. Side effects
that depend only on public inputs are safe. Of course, the side-effectful function not only has
to exclusively take public parameters it must also not be called in a secret dependent way (all
control flow paths that invoke the function are determinable from public information).

2.4.4.4 Eliminate branches that depend on secrets

Instead of branching on a secret and then executing either of the branches evaluate both branches
and select one of the resulting values obliviously based on the secret bit. This approach does not
work if either of the branches performs side effects (like transitioning the program state).
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Listing 2.5. Side-channel protected one-armed conditional
1 auto const s1 = f(s);
2 s = select(cond, s1, s);

Listing 2.6. Attempt at implementing side-channel protected mean
1 float mean(float * arr, size_t n, size_t bound) {
2 float s = 0.0f;
3 for (size_t i = 0; i < bound; ++ i) {
4 s += fselect(i < n, arr[i], 0.0f);
5 }
6

7 return s / static_cast<float>(n);
8 }

For example, instead of transforming program state s conditionally in-place

if (cond) { s = f(s); }

transform the state into copy s1 and then commit the copy conditionally in an oblivious manner.
In imperative code the state is usually implicit and as such, for this technique to work, needs
to be made explicit. Depending on the size of the state and complexity of the function f this
solution is significantly slower.

2.4.4.5 Avoid loops with secret-dependent bounds

Loops should be considered to always leak the bound.

If a loop bound is deemed to be confidential then determine a reasonable upper bound and
always perform that number of iterations. The loop body needs to be transformed to handle
extra iterations to preserve the semantics of the original. Frequently data that is being processed
needs to be padded and the loop body has to be able to correctly and securely handle the extra
padding.

To protect the previously seen function mean against some side channel attacks we can do the
following (using side-channel safe fselect). The function now takes 3 parameters. The pointer
to array arr, the actual size of the array n and an upper bound bound that is acceptable to be
leaked. The assumption is that arr holds room for bound number of elements. We iterate over
the entire capacity of arr and either increment the sum by the present element or by 0. We
select which number to add obliviously. If we know beforehand that all padded elements are 0
then oblivious selection is not necessary.

In the above implementation care must be taken that fselect is not inlined and optimized away
to a side-channel vulnerable machine code. One possible way to achieve this (at the expense
of performance) is to make sure that fselect is not inlined at all and is a completely opaque
function call to the compiler. Disabling link-time optimizations is also necessary.

In order to avoid comparisons (i < n) a sufficiently smart compiler may also split the loop into
two ranges. One spanning from i to (excluding) n and one spanning from n to (excluding) bound.
That would also lead to a side-channel vulnerable implementation. To avoid this optimization we
can move the comparison to a function that is opaque to the compiler.
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Listing 2.7. Side-channel protected mean
1 float mean(float * arr, size_t n, size_t bound) {
2 float s = 0.0f;
3 for (size_t i = 0; i < bound; ++ i) {
4 s += obl::fselect(obl::lt(i, n), arr[i], 0.0f);
5 }
6

7 return obl::fdiv(s, n);
8 }

The code still has an instruction-level timing side-channel via floating-point division. This can
be remedied by implementing division in a side-channel protected manner. One approach is
to approximate the result via a binary-search that performs a fixed number of iterations and
manipulates the search bounds obliviously. The most complicated part of the implementation
is handling special cases in an oblivious manner (infinities, zero, nan, subnormals) and porting
various floating-point related functionality to be oblivious from the C++ standard library. In fact,
this is a considerable engineering effort. In the end a fully safe (according to our knowledge)
implementation of statistical mean is presented in Listing 2.7. Oblivious operations have been
moved to the namespace obl.

2.4.4.6 Hide data record size

In many cases the size of data records can leak sensitive information. For example a person’s
name length is sensitive (especially in smaller data sets), the length of a salary string tells a lot
about a person’s wealth, and some diseases can be uniquely identified from the name length
alone.

Avoid textual data and stringly typing in general. For instance store salary as 64-bit integers as
opposed to strings. Operations (arithmetic, comparison) on register-wide integers do not leak
information about magnitudes.

When applicable convert textual data to identifiers and store the mapping between identifiers
and names in another table6.

When textual data cannot be avoided pad it to a reasonable upper bound. If no obvious upper
bound exists data can be padded in rough increments. For example, in a coarsely increasing
increments with the smallest padding starting at least the median string length. Adopt data
processing algorithms to work on padded data in a side-channel safe manner while keeping the
actual length (and the amount of extra padding) a secret.

2.4.4.7 Avoid secret-dependent array/memory accesses

Frequently it is important to look up information based on private information from some map,
array or memory region. This need arises often in graph algorithms like social network analysis.
These operations can lead to vulnerabilities as memory accesses are traceable by local adver-
saries and cache timing attacks can leak information to even remote adversaries.

One way to hide memory access patterns is via using oblivious RAM (ORAM) that is designed for
this exact purpose. However, ORAM can be an order of magnitude slower than regular random

6Of course, that extra table has to be handled in side-channel protected manner.
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access memory (even with SGX encryption and ECALL overhead). Most ORAM implementations
are designed to work in a client-server model where actions that a client performs leak informa-
tion about the memory access pattern.

Another way is by breaking data associations (see Section 2.4.4.12) when it is applicable.

2.4.4.8 Avoid calling variable latency instructions on secret-dependent values

As a good rule of thumb the instructions to avoid are division/reminder (both integer and floating-
point) and various complex floating-point operations as square root, trigonometric operations,
exponentiation, and logarithm. This is of course in addition to all instructions that take memory
locations as arguments. Unfortunately, no comprehensive documentation on instruction laten-
cies is provided by Intel, but excellent third party resources [57] are available that give a decent
indication whether or not an instruction could be safe to use on a given CPU architecture.

Unfortunately there is no easy way to work around this timing side-channel and the best ap-
proach is situational. There are few options to consider:

• Find a way to avoid using variable-latency instructions. For example, in a code that handles
geometry trigonometric operations (sine, cosine) can usually be avoided.

• Transform input such that leaking those secrets becomes acceptable (see the next section).
• Use constant-time replacements. Unfortunately software implementations of such low-level op-

erations are often many times slower.

2.4.4.9 Assume that no floating-point operation is constant time

Majority of floating-point operations are not constant time. This includes all trigonometric func-
tions, square-root and division7. Even multiplication operation is not constant time when denor-
mals are present. Majority of standard library operations on floats are also not constant-time.

Hence, whenever writing any floating-point code expect it to not be constant time. Always thor-
oughly test that the code seems to inhabit constant time behavior.

2.4.4.10 Disable denormalized floating-point numbers

All processors that support Intel SGX also support denormalized floating-point numbers8 that cause
a significant [58] slowdown of floating-point operations and, as a result, may create a side-
channel vulnerabilities. FPVI [59] vulnerability provides another avenue of attack in the presence
of denormalized numbers. One way to avoid these attacks is to make sure that floating-point
operations do not create denormal values and any denormal values that exist are treated as
zeroes.

In modern Intel CPUs denormals are enabled as per default, but there is are Flush-to-Zero (FTZ)
and Denormals-are-Zero (DAZ) modes that together effectively disable denormal numbers. The
FTZ mode forces any floating-point operation that would produce a denormal as an output in-
stead returns a zero. The DAZ mode treats all denormal values as zeroes. Either use the following
code or some other means to fully disable denormalized numbers.

Avoid using -ffast-math optimization flag. According to GCC documentation "-ffast-math also
7Division of single-precision floats is constant-time operation on later generation of CPUs, division of double-

precision floats is not.
8https://en.wikipedia.org/wiki/Denormal_number Accessed: 2021-03-18
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Listing 2.8. Enable FTZ and DAZ flags
1 #include <xmmintrin.h>
2 void enable_denormal_FTZ_and_DAZ() {
3 _mm_setcsr(_mm_getcsr() | 0x8040);
4 }

may disable some features of the hardware IEEE implementation such as the support for denor-
mals or flush-to-zero behavior."

2.4.4.11 Use masking-based techniques to harden critical components

The countermeasures we have described here do not fully eliminate extremely low-level hardware-
based side-channels like electromagnetic (EM) radiation and power usage. While there has been
no published attacks that exploit these types of side-channels against modern Intel CPUs9 we
can not rule out their possibility.

Standard way to mitigate against these types of attacks is via masking. The idea is to not manipu-
late value x directly but instead work with random shares x1, . . . , xn such that x = x1⊕. . .⊕xn (this
is Boolean masking, regular modular addition can also be used). For an attacker to recover orig-
inal value x all shares xi must be recovered. This technique is very similar to how secret-sharing
based multi-party computation works. The number of shares correlates with the desired security
level.

Because this mitigation is extremely technical to implement we recommend using it to only pro-
tect the most critical parts of the application. For instance, code involved in protecting and using
private keys.

For a more thorough practical overview see Note on side-channel attacks and their countermea-
sures10 by The Keccak Team. For a theoretical security analysis of masking-based techniques
see [60]. Masking-based techniques also have some drawbacks in practice [55] such as require-
ment of source of randomness.

2.4.4.12 Eliminate data associations

Occasionally it is easier to not eliminate side-channel leaks but to just make leaks unusable. This
can be done by breaking data associations. Recall the example of sorting a database of name
and salary records. The database is initially sorted by names and afterwards will be sorted by
salaries. Standard sorting algorithm will reveal (at least partially) the permutation that maps the
initial input to the ordered output. Hence, an attacker is able to (approximately) match names to
salaries. However, if the initial name-ordered data set is randomly shuffled before sorting then
the process of sorting by salaries no longer reveals the mapping between input and output. In
this case the sorting algorithm does not have to be side-channel safe but the shuffling procedure
has to be.

The ground-level primitive operation for breaking data associations is side-channel safe 2-swap.
One possible implementation is found below. It can be used in combination with RDRAND to im-
plement random swap. This is by no means the only or the best implementation and there is

9Existing EM attacks against modern processors can reveal instructions that the CPU is executing. We consider the
enclaved program execution trace to already to be a publicly available information.

10https://keccak.team/files/NoteSideChannelAttacks.pdf
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Listing 2.9. Side-channel resistant swap
1 void swap(bool b, unsigned x, unsigned y,
2 unsigned & o1, unsigned & o2)
3 {
4 unsigned const m1 = - (unsigned) b;
5 unsigned const m2 = ~m1;
6 o1 = x&m1 ^ y&m2;
7 o2 = x&m2 ^ y&m1;
8 }

no guarantee that it will remain secure throughout compiler improvements and new revisions of
processors. A faster implementation could use CMOV that, as of this writing, is constant time and
does not modify the state of the branch predictor (see Guidelines for Mitigating Timing Side Chan-
nels Against Cryptographic Implementations [61] and Intel® 64 and IA-32 Architectures Optimization
Reference Manual [62]).

Breaking data associations in larger sequences can be built using this primitive. One possible ap-
proach is to use permutation networks such as the Omega network [63] or the Clos network [64,
65] to construct a larger shuffle out of many 2-swaps. Unfortunately, the minimal number of
layers in these networks to achieve cryptographic security is still an open problem and as such
these shuffles should be viewed as additional layers of security that alone do not provide full re-
silience against side-channel attacks. Solutions that are decent in performance with logarithmic
number of layers and cryptographic security proofs [66, 67] are complex in implementation.

An alternative approach to shuffling multiple records is to add a new column filled with unique
random numbers to the data set. Next, order the records by the new row. The ordering phase re-
quires side-channel safe sorting of which best known implementations have O(n log2 n) complex-
ity and O(log2 n) round complexity (sorting networks [68] such as bitonic mergesort and odd-even
mergesort).

One approach to generate a column of random numbers is to generate a random AES key and en-
crypt subsequent numbers with that key. This yields a cryptographically strong random-looking
sequence and avoids duplicates. Hashing based approaches could also be used by generating
a random key K and computing a sequence of HMAC-s as HMACK(1), . . . ,HMACK(n). We rec-
ommend HMAC as it is a well established standard and resistant to extension attacks. Alter-
natively, one can simply generate sufficiently large random numbers and with high probability
they are unique. When generating 232 random 64-bit numbers then more than half of the time
the sequence contains only distinct elements. While this approach does not generate all possi-
ble permutations uniformly it yields a sufficiently good shuffle when large random numbers are
used. If a conservative approach is desired we recommend to not shuffle more than

⌊
2n/2−2

⌋
elements using a randomly generated column of n-bit numbers. This lowers the probability of
having duplicates in the generated sequence to just three percent.

Note that the commonly used shuffling algorithm Fisher-Yates11 leaks entire permutation via side
channels. Firstly, it performs random memory accesses. Secondly, the algorithm needs to sam-
ple numbers from arbitrary ranges and the typical methods of doing so (rejection sampling) are
not side-channel safe. One can attempt to harden Fisher-Yates with ORAM but that leads to much
worse performance compared to previous methods. Furthermore, ORAM implementations are
commonly built upon side-channel safe sorting or shuffling.

11https://en.wikipedia.org/wiki/Fisher%E2%80%93Yates_shuffle Accessed: 2021-03-18
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Listing 2.10. Fault-injection resilient squaring
1 unsigned checked_square(unsigned num) {
2 volatile auto v = num;
3 const auto r1 = v * v;
4 const auto r2 = v * v;
5 if (r1 != r2) [[unlikely]] {
6 std::terminate();
7 }
8 return r2;
9 }

2.4.4.13 Duplicate and compare

To protect against hardware-based fault-injection attacks the only known software-based mitiga-
tion is to compute intermediate results multiple times and verify that all duplicate computations
yield the same result. This is difficult to implement manually in all but the most critical code
paths. Letting compiler insert duplicated instructions or by rewriting (binary) code is feasible
with appropriate tooling. The obvious down side of this mitigation is significant reduction of
performance.

Implementing duplicate-compare checks in high-level language like C or C++ is made more dif-
ficult by compilers assuming that no hardware-faults can happen. Compilers are very good at
eliminating common sub-expressions. A way to force re-computations to happen is to mark all in-
volved variables as volatile. For example, following function computes square of input and offers
some resilience against fault injection attacks. Modern compilers (tested with GCC, Clang, ICC,
and MSVC) produce machine code that computes multiplication twice and checks for inequality.

2.4.4.14 Prepare for eventual vulnerabilities

No matter what other mitigations are in place always be prepared for vulnerabilities to be found.
Prepare processes for vulnerability management, respond quickly, make software upgrade for
users as seamless as possible, and minimize the impact of unintended information disclosure as
the final layer of defense. Specifically, secrets provisioned to trusted enclaves could leak later due
to future vulnerabilities. The processes should incorporate the possibility that security updates
for the platform may not become available in a timely manner after a vulnerability is published.
In the context of SGX this has been well demonstrated by SGX.Fail attacks.

“We show that in both cases vendors are unable to meet security goals originally en-
visioned for their products, presumably due to SGX’s long update timelines and the
complexities of a manual update process. This in turn forces vendors into making
difficult security/usability trade offs, resulting in security compromises.” ([69])

Unfortunately, it is difficult to work around slow update cycle of hardware vendors. Software
vendors often can not do better than try and minimize the impact of attacks enabled by hardware
vulnerabilities.

2.5 Speculative execution
Speculative (or transient) execution attacks exploit exception or branch misprediction events that
modify CPU state (like shared caches) in a secret-dependent way. The attacker is able to observe
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Listing 2.11. Enclave code fragment vulnerable to speculative execution attack
1 void enclave_function(size_t untrusted_index) {
2 if (untrusted_index < array1_size) {
3 uint8_t secret_value = array1[untrusted_index];
4 temp &= array2[secret_value * 4096u];
5 }
6 }

these state changes and may thus learn secret information. This is a notable subclass of side
channel vulnerabilities that relies on hardware optimizations (like branch prediction) present in
most microarchitectures.

Speculative execution attacks require enclave code to have particular exploitable code patterns.
Unfortunately, those kinds of patterns occur surprisingly often in user code and in reusable SGX
libraries. In the worst case the exploitable code processes private keys and is thus a pathway
to compromise both confidentiality and integrity guarantees of SGX. If an exploitable function is
found in a commonly reused component (such as in the SGX standard library) then easy-to-use
exploit tools can be implemented.

In this section we will follow a code example where an attacker controls an untrusted index that
it uses to speculatively load otherwise inaccessible memory that holds secret data. The secret
is then leaked via a memory timing side-channel. For this attack to work the vulnerable (victim)
code needs to perform two loads: first with the untrusted index and second with the previously
loaded value. Do note that this is by far not the only way to exploit transient execution. For more
variants and a much more thorough overview see A survey of microarchitectural timing attacks
and countermeasures on contemporary hardware [70], A Systematic Evaluation of Transient Execution
Attacks and Defenses [71] and Security Vulnerabilities of SGX and Countermeasures: A Survey [72].

In the code example the conditional branch that is guarded by a bounds check can be specula-
tively executed by the CPU. This means that both load statements may be executed regardless
of whether untrusted_index is in the bounds of array1 or not. Next, the attacker is able to
use a side-channel vulnerability to learn the value of the secret via a memory timing attack; after
executing line 4 the attacker can probe, outside of enclave, all of array2 to detect which part of
the array was loaded into the CPU cache12. By doing that the attacker learns the secret value.

In summary, these types of attacks use speculative execution optimization and side-channel vul-
nerability in tandem to leak secret values. For more details about side-channel vulnerabilities
see sections 2.4 and 2.5.2.1.

2.5.1 Access requirements
Theoretically this attack can be conducted remotely if the enclave has a web-facing interface and
if a suitable side-channel is found. However, no such attacks have been demonstrated yet and
those are the easiest to detect and the most resource-consuming for an attacker. Most danger-
ous attacks that exploit this vector require local and privileged access.

Local, privileged access enables the use of specialized tools and kernel modules that make some
of the attacks of this kind even possible. For example, side-channel leaks are much more powerful
if an attacker can force victim enclave and the attacker process to be executed on same physical

12Often this process needs to be repeated multiple times to learn the secret information with high probability. Such
attacks can be very slow in practice.
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core in an hyper-threading enabled system.

2.5.2 Notable proof-of-concept attacks
2.5.2.1 RIDL: Rogue In-Flight Data Load

RIDL [73] enables attacker to leak data across VM and SGX security boundaries despite mitiga-
tions against existing attacks. SGX enclaves are vulnerable to their cross-process attacks when
SMT is enabled. The attack requires that victim and attacker processes are situated on the same
physical core in which case reads and writes trivially leak to the attacker.

They demonstrated that contents of the /etc/shadow file can leak from one VM to another using
a RIDL attack. The attack is relatively slow and takes 24 hours to leak 16 bytes of the file.

The vulnerability has since been fixed via hardware microcode security updates. Enclaves run-
ning on platforms with disabled SMT are not vulnerable to this attack.

2.5.2.2 FORESHADOW: Extracting the Keys to the Intel SGX Kingdom with
Transient Out-of-Order Execution

Foreshadow [74] (also known as L1 Terminal Fault or L1TF) attack exploits a speculative execution
bug in Intel processors to reliably leak enclave secrets from the CPU cache. They demonstrate
the attack by extracting full cryptographic keys from enclaves and forging arbitrary local and
remote attestation responses.

The vulnerability has since been fixed via hardware microcode security updates. The attack does
not work on platforms with (in hardware) disabled SMT.

2.5.2.3 SgxPectre Attacks: Stealing Intel Secrets from SGX Enclaves via
Speculative Execution

SgxPectre [75] exploits a CPU bug to break the confidentiality and integrity guarantees of SGX
enclaves. They show that enclave code can be influenced by programs outside of the enclave such
that the control flow of the enclave program can be temporarily altered to execute instructions
that lead to observable cache-state changes. By observing these changes an attacker can learn
secrets inside the enclave memory or its internal registers.

They applied the attack to extract sealing keys and attestation keys from Intel signed quoting
enclaves. The sealing key allows persistent enclave data to be decrypted and the attestation
key can be used to forge attestation signatures. This attack completely undermined the security
guarantees of Intel SGX.

This attack relies on specific vulnerable code gadgets (patterns) to exist in enclaved code. If no
such gadgets exist then the enclaved application is not vulnerable to this attack.

Intel firmware microcode updates have since fixed some more dangerous Spectre variants. How-
ever, some transient effects remain observable but these can be either eliminated (Section 2.5.4.2)
or mitigated by avoiding side-channel leaks (Section 2.4.4).
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2.5.2.4 ZombieLoad: Cross-Privilege-Boundary Data Sampling

In ZombieLoad [9] proof-of-concept attack it is demonstrated that recently loaded values can
leak across logical cores. This means that on SMT (hyper-threading) enabled cores enclaves may
leak information via a side-channel to processes situated on the same physical core. The attack
broke security guarantees of Intel SGX. The vulnerability has since patched via a BIOS applied
microcode update and the attack is also completely mitigated by disabling hyper-threading.

2.5.2.5 LVI: Hijacking Transient Execution through Microarchitectural Load Value
Injection

“LVI abuses that a faulting or assisted load instruction executed within a victim domain
does not always yield the expected result, but may instead transiently forward dummy
values or (attacker-controlled) data from various microarchitectural buffers. We con-
sider attackers that can either directly or indirectly induce page faults or microcode
assists during victim execution. LVI provides such attackers with a primitive to force a
legitimate victim execution to transiently compute on “poisoned” data (e.g., pointers,
array indices) before the CPU eventually detects the fault condition and discards the
pending architectural state changes.” ([76])

2.5.3 Complexity
Most of speculative vulnerabilities are difficult to exploit and require local privileged access.

One exception is if a speculative vulnerability is found in shared code. In that case automated
exploit tools can be developed. Even then an attacker might need to observe thousands of pro-
gram runs, and may slow the program execution down greatly or may need the ability to rerun
programs multiple times on varied inputs.

Usually there are much easier attack vectors to exploit like classic software vulnerabilities (that
lead to remote code execution) or attacks directed against data owners.

2.5.4 Countermeasures
The foremost countermeasure is to keep hardware microcode and the SGX SDK up to date. Sec-
ondarily, consider software based countermeasures.

Assuming that an attacker has privileged local access there are various avenues to reduce efficacy
of such attacks against secure enclaves. To name a few:

• prevent speculation (Section 2.5.4.2)
• prevent reading of inaccessible data (Section 2.5.4.3)
• avoid side-channel leaks (Section 2.4.4)
• obfuscate and randomize (Section 2.5.4.4)

This list of mitigations is by no means complete, For a more detailed overview of Spectre and
mitigations see Spectre is here to stay [77].

All transient execution mitigations have downsides that contribute to higher relative costs of
developing hardened software:
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• complexity – it is difficult to find correct places to apply mitigations and every mitigation
adds development complexity,

• fragility – hardware microcode changes, compiler changes, and modifications to dependen-
cies can break existing mitigations,

• testability – it is challenging to test if applied mitigations are effective on a given platform,
and

• overhead – many of the mitigations come with a significant performance impact.

2.5.4.1 When to harden against transient execution attacks?

In general we recommend applying software based mitigations only when it is deemed neces-
sary.

In other cases we make the following recommendations:

• Always use software based mitigations when handling secret keys.
In particular only use side-channel safe (or hardened) cryptographic primitives that are well re-
searched and understood.

• Use transient execution hardened high-level data structures and algorithms for processing
private user data.
Do so even if it incurs significant performance cost. Do so only if such primitives are readily avail-
able as implementing them is challenging.

• Minimize the time that secrets reside in memory.
The smaller the time span that a secret resides in (encrypted) memory the smaller is the amount
of code that an attacker can exploit to extract it (say, via speculative execution).

• Avoid writing low-level code.
This cannot always be avoided, but prefer using side-channel safe high-level operations. For ex-
ample, instead of implementing high-performance array processing algorithms that directly ma-
nipulate indices implement the same logic using operations such as mapping, filtering, sorting,
joining or using iterators and ranges. Often low-level code, in particularly one that manipulates
pointers or array indices, is difficult to reason about and thus errors there are more challenging
to find.

• While the body of research is still young and practical tools are not plentiful consider using
static analysis and code instrumentation (fuzzing) tools that highlight potential speculative
execution vulnerabilities.

– SpecFuzz: Bringing Spectre-type vulnerabilities to the surface [78]
– DIFFUZZ: Differential Fuzzing for Side-Channel Analysis [79]
– Respectre: The State of the Art in Spectre Defenses [80]
– oo7: Low-overhead Defense against Spectre Attacks [81]
– SPECTRE Variant 1 scanning tool13 (RedHat).
– MSVC compiler has Spectre 1 pass via /qspectre option (Microsoft)

13https://access.redhat.com/blogs/766093/posts/3510331 Accessed: 2021-03-18

An Overview of Vulnerabilities and Mitigations of Intel SGX and Intel TDX Applications
February 28, 2025

1.4
39 / 49

https://access.redhat.com/blogs/766093/posts/3510331


D-2-116 / 2025

Listing 2.12. Speculative execution resistant branching via a memory fence
1 void enclave_function(size_t untrusted_index) {
2 if (untrusted_index < array1_size) {
3 sgx_lfence(); // speculative memory load barrier
4 uint8_t secret_value = array1[untrusted_index];
5 temp &= array2[secret_value * 4096u];
6 }
7 }

Listing 2.13. Speculative execution resistance via masking
1 volatile int poison;
2 void enclave_function(size_t untrusted_index) {
3 if ((poison = (untrusted_index < array1_size))) {
4 uint8_t secret_value = array1[untrusted_index] * poison;
5 temp &= array2[secret_value * 4096u];
6 }
7 }

2.5.4.2 Preventing speculation

One way to avoid speculative execution attacks is to make sure that speculative execution does
not happen on branches that are conditional on untrusted inputs.

The most sure-fire way to achieve this is to disable speculation of all branches. This can be
done with automated tools that insert speculation barriers into appropriate places. Such a heavy
handed solution incurs a great performance cost. The V8 Javascript JIT engine runs the octane
benchmark14 2-3 times slower with speculation barrier on every critical branch. Fortunately, in
domain specific applications there are far fewer relevant branches and generally the run-time
overhead would be much lower.

To mitigate our previous (Listing 2.11) example we can insert a memory fence (in Intel SGX SDK
sgx_lfence) after the bounds check to make sure that the memory is not speculatively loaded
on that branch.

For more details on this mitigation technique see Intel® Software Guard Extensions (SGX) SW De-
velopment Guidance for Potential Bounds Check Bypass Side Channel Exploits [82].

2.5.4.3 Preventing reading of inaccessible data

Speculative execution in essence is not the whole story of these types of attacks. A critical part
is also accessing information that lies outside of the bounds of an array (or some other memory
object). A way to mitigate this speculative execution attack is to simply mask the inaccessible
data. These and some other mitigation techniques are explained in more detail in Speculative
Load Hardening [83] from LLVM documentation.

For example, in our running example we can mask the secret_value by tracking a poison bit
that is either set to 1 if the branch is actually taken and 0 otherwise. Even if secret_value is
wrongly speculatively computed its value will always be 0. Great care must be taken to make
sure that the compiler does not optimize computation involving poison bit as it may easily undo
this mitigation.

14https://chromium.github.io/octane/ Accessed: 2021-03-18
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Listing 2.14. Speculative execution resistance via index masking
1 volatile unsigned array1_mask = array1_size - 1;
2 void enclave_function(size_t untrusted_index) {
3 if (untrusted_index < array1_size) {
4 uint8_t secret_value =
5 array1[untrusted_index & array1_mask];
6 temp &= array2[secret_value * 4096u];
7 }
8 }

This approach has a much smaller running time overhead than explicit memory fences. Down-
sides are that it is also up to the developer to find and fix potential security critical pieces of code
and additionally has to make sure that compiler optimizations will not undo this mitigation. Great
care must be taken to test that new platform and compiler combinations remain secure.

When the array has power of two elements then an even faster alternative is masking array
indices. This mitigation can have better performance but will increase memory usage if many
(or large) arrays are forced to power-of-two length. Again, much care must be taken that the
compiler does not elide the masking operation.

2.5.4.4 Obfuscation and randomization

There is a wide class of various obfuscation and randomization techniques available. Most of
those only make attacks more costly and time consuming but do no fully mitigate their possibility.
Regardless, these are still very useful hardening techniques.

• SGX-Shield: Enabling Address Space Layout Randomization for SGX Programs [84]15

• Mitigating Branch-Shadowing Attacks on Intel SGX using Control Flow Randomization [86]
• SGXBOUNDS: Memory Safety for Shielded Execution [87]
• DR.SGX: Hardening SGX Enclaves against Cache Attacks with Data Location Randomization [88]
• SGXElide: enabling enclave code secrecy via self-modification [89]
• Preventing Page Faults from Telling Your Secrets [90]
• OBFUSCURO: A Commodity Obfuscation Engine on Intel SGX [91]

2.6 Output inference
Output inference is not an attack that exploits implementation details or design weaknesses of
SGX enclaves. Rather it is occasionally possible to infer more information from intended applica-
tion output than was initially expected. In particular anonymization techniques have shown to of-
ten fail [92, 93, 94] as much fewer bits of data can lead to full de-anonymization/re-identification
as what is commonly expected. Output inference can be combined with other techniques (side
channel attacks) to make attacks more effective. Because output inference attacks are a very gen-
eral technique independent of trusted execution being used or not we only give a brief overview
here.

15There have been attempts at breaking ASLR in SGX enclaves [85].
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2.6.1 Access requirements
At minimum output inference requires client level access. Multiple malicious clients in collabora-
tion can infer more from joint output. Higher access levels provide access to side channels that
enable further attacks in combination with output inference.

2.6.2 Notable proof-of-concept attacks
This class of attacks is not specific to SGX and there exists a body of literature on de-anonymization,
re-identification, and database reconstruction attacks

2.6.2.1 Robust De-anonymization of Large Datasets (how to break anonymity of
the Netflix prize dataset)

“We apply our de-anonymization methodology to the Netflix Prize dataset, which con-
tains anonymous movie ratings of 500,000 subscribers of Netflix, the world’s largest
online movie rental service. We demonstrate that an adversary who knows only a lit-
tle bit about an individual subscriber can easily identify this subscriber’s record in the
dataset.” ([92])

2.6.2.2 De-anonymizing Social Networks

“To demonstrate its effectiveness on real-world networks, we show that a third of the
users who can be verified to have accounts on both Twitter, a popular microblogging
service, and Flickr, an online photo-sharing site, can be re-identified in the anonymous
Twitter graph with only a 12% error rate.” ([93])

2.6.2.3 Why Your Encrypted Database Is Not Secure

“In this paper, we take a system-centric view of encrypted databases and investigate
what an attacker would learn in a realistic scenario: stealing a disk, performing SQL in-
jection, or rootkitting the OS. We demonstrate that a “snapshot” attacker, which is the
main security model of most encrypted databases, is largely a myth. Modern DBMS’s
keep logs, caches, and data structures that, in any realistic snapshot attack, reveal
information about past queries. This leakage is inherent in today’s production envi-
ronments because a DBMS must maintain caches and other metadata to adapt the
system to the workload and help manage its performance.” ([95])

2.6.3 Countermeasures
First and foremost the amount of output and how often it is provided needs to be well thought
out. These attacks usually stem from underestimating information leakage from the design
phase of the application. Classical techniques such as statistical disclosure control [96] should
be applied.

Do not give input providers the control to run analysis and extract output on demand. This could
lead to attacks where queries are repeatedly run on carefully chosen inputs to see how it affects

An Overview of Vulnerabilities and Mitigations of Intel SGX and Intel TDX Applications
February 28, 2025

1.4
42 / 49



D-2-116 / 2025

the output. Differences in output can leak information about inputs that should be hidden from
the attacker.

Differential privacy (DP) is a mitigation technique that has steadily gained use in practice [97,
98] and recently the 2020 US Census is design to apply DP for publishing results [99]. DP is
still a very active research topic. A challenge with DP is parameter selection which is not always
intuitive [100] and requires trade-offs between privacy and accuracy [101].
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